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Abstract
Apparent horizon plays an important role in numerical relativity as it provides
a tool to characterize the existence and properties of black holes on three-
dimensional spatial slices in 3+1 numerical spacetimes. Apparent horizon
finders based on different techniques have been developed. In this paper,
we revisit the apparent horizon finding problem in numerical relativity using
multigrid-based algorithms. We formulate the nonlinear elliptic apparent hori-
zon equation as a linear Poisson-type equation with a nonlinear source, and
solve it using a multigrid algorithm with Gauss–Seidel line relaxation. A fourth
order compact finite difference scheme in spherical coordinates is derived
and employed to reduce the complexity of the line relaxation operator to a
tri-diagonal matrix inversion. The multigrid-based apparent horizon finder
developed in this work is capable of locating apparent horizons in generic
spatial hypersurfaces without any symmetries. The finder is tested with both
analytic data, such as Brill–Lindquist multiple black hole data, and numerical
data, including off-centered Kerr–Schild data and dynamical inspiraling binary
black hole data. The obtained results are compared with those generated by
the current fastest finder AHFinderDirect (Thornburg 2003 Class. Quantum
Grav. 21 743), which is the default finder in the open source code Einstein
Toolkit. Our finder performs comparatively in terms of accuracy, and starts
to outperform AHFinderDirect at high angular resolutions (∼1◦) in terms
of speed. Our finder is also more flexible to initial guess, as opposed to the
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Newton’s method used in AHFinderDirect. This suggests that the multi-
grid algorithm provides an alternative option for studying apparent horizons,
especially when high resolutions are needed.

Keywords: apparent horizon, multigrid, compact finite differences,
Poisson equations

1. Introduction

Apparent horizon has been an important concept for the numerical studies of spacetime that
involve black holes. It serves as a real-time indicator of the existence of a black hole in numer-
ical simulations, as its presence implies the presence of a surrounding event horizon [25]. The
determination of apparent horizon during numerical simulations is made possible because it
can be defined locally in time. This is in contrast to the teleological nature of event hori-
zon, whose determination requires the full knowledge of the future evolution of a spacetime.
Knowing the presence of an apparent horizon during simulation is important not only because
it allows the estimation of the properties of the black hole, such as its mass and spin, but it
also marks the region within which singularity may appear at a later time [32], such region
sometimes is necessary to be avoided through excision to maintain stability of the simulation
[40] (also see, e.g. [1, 5] for using singularity-avoiding gauge instead of excision).

The dynamical evolution of the apparent horizon is also of interest for understanding black
holes and gravitational wave physics. The notion of dynamical horizons (e.g. [3, 38], also see
[4] for a review), which is loosely speaking a world tube formed by the foliation of the appar-
ent horizon at different time slices, can be used instead of event horizons to better study the
interaction and merging of black holes [34]. Recent studies have also suggested correlation
between the dynamics of (common) apparent horizon in black hole binaries with the gravita-
tional waves emitted [22, 35], which could hint a possible imprint of event horizon properties
on the signal.

Numerous efforts have been dedicated to developing an efficient apparent horizon finder,
as discussed in a comprehensive review [43]. Currently, the fastest algorithm for locating the
apparent horizon is based on Newton’s method ([37, 42]), along with some variants of the
matrix inversion scheme for the associated Jacobi equation. In general, such a method suffers
from the poor scaling of the computational time complexity and the reliance on a good ini-
tial guess. On the other hand, while multigrid methods in general exhibit much better scaling,
they have not been applied to the apparent horizon searching problem to our best knowledge.
Multigrid methods, owing to their efficiency in solving elliptic partial differential equations
(PDEs), have been applied to different problems in numerical relativity, including the initial
data construction of binary stellar objects (see, e.g. [8, 12, 19, 21, 31]) and more recently to a
relativistic hydrodynamic code under the conformally flat assumption [16]. It should also be
pointed out that a review article introducing the multigrid method for numerical relativists was
already written about 40 years ago [17]. With the expectation that multigrid methods can solve
elliptic equations efficiently, we aim to implement an apparent horizon finder in a multigrid
approach and examine whether this could be a better algorithm in terms of speed and robust-
ness, especially for cases when one needs to resolve the apparent horizon with high enough
resolution to increase the precision of the inferred properties of the black hole in simulations.

This paper is organized as follows. In section 2, we first describe the equation to solve
for the apparent horizon, and present the implementation of the multigrid algorithm in our
apparent horizon finder. Section 3 includes the test results of our finder in terms of accuracy
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and efficiency in several benchmark data. Finally, we summarize our work and give future
prospects in section 4.

2. Method and implementation

Locating the apparent horizon requires solving a non-linear elliptic PDE—the expansion
equation. In this section, we first introduce the variant ansatz of the expansion equation we
employed. We then give a brief overview of the multigrid methods in general and the specific
scheme we used in this work.

2.1. Apparent horizon and the expansion equation

A black hole region is characterized by the event horizon, which is defined as the boundary of
the causal past of the future null infinity [25]. The event horizon is therefore a global property
of the underlying 4-dimensional spacetime, and its determination in a numerical simulation
can only be done approximately by integrating null geodesics (e.g. [26]) or null surfaces (e.g.
[2]) backwards in time once the spacetime has essentially settled down to a final stationary state
(see [43] for the review of these algorithms). However, if one would like to trace the motion
of a black hole during a simulation, it is important to have a local (in time) characterization of
the black hole. This can be achieved by the concept of apparent horizon.

Intuitively, a black hole is a region where light rays are ‘trapped’ and cannot escape to
infinity. This idea can be formalized by introducing the notion of a trapped region in a 3-
dimensional spatial slice embedded in the 4-dimensional spacetime, defined as the union of
all trapped surfaces1. The outer boundary of the trapped region is defined to be the apparent
horizon. However, this mathematical definition of the apparent horizon is not convenient for
practical use in numerical simulations. In the following, we shall provide a slightly different
definition of the apparent horizon that is used in numerical relativity, using the expansion
function Θ. We also describe how Θ depends on the spacetime geometric variables, and the
ansatz we adopted to solve for an apparent horizon.

2.1.1. Notations and definitions. Let na denote the timelike future-pointing unit normal vec-
tor to a spacelike hypersurface Σt, and sa denote the spacelike outward-pointing unit normal
vector to an arbitrary 2-dimensional smooth closed surface S embedded in Σt. The spatial
3-metric γab induced on Σt and the 2-metric mab induced on S are given by

γab = gab+ nanb, (1)

mab = γab− sasb = gab+ nanb− sasb, (2)

where gab is the spacetime metric. By denoting the unit vector along the future-pointing out-
going null geodesics by ka = (sa+ na)/

√
2, the expansion function can be expressed as (see,

e.g. [9]),

Θ≡ mab∇akb =
(
Di s

i +Kijs
i sj−K

)
/
√
2, (3)

1 A trapped surface is a closed spacelike 2-surface embedded in the 3-dimensional spatial slice with the property that
the expansion function Θ of both future-pointing outgoing and ingoing null geodesics is negative everywhere on the
surface.

3



Class. Quantum Grav. 42 (2025) 055008 H-K Hui and L-M Lin

where ∇a and Da are the covariant derivatives associated with the metric tensors gab and γab,
respectively;Kij is the extrinsic curvature, and K denotes its trace (i.e. K≡ γijKij). S is called a
marginally outer trapped surface (MOTS) ifΘ= 0 everywhere on S. There could also be mul-
tiple MOTSs or even nested MOTSs inΣt. The apparent horizon is defined to be the outermost
of such surfaces.

By assuming that the apparent horizon is topologically equivalent to a 2-sphere and is a star-
shaped surface around an interior local coordinate origin2, we use standard spherical coordin-
ates (r,θ,ϕ) to parameterize it. The apparent horizon surface is represented by a horizon func-
tion h(θ,ϕ) which measures the radial coordinate distance of the surface from the local origin.
The aforementioned outward-pointing normal si can be constructed using the gradient of a
level-set function F= r− h(θ,ϕ), namely

si = λmi ≡ λ∂iF= λ(1,−∂θh,−∂ϕ h) , (4)

where λ is the normalization factor such that si si = 1. Using such parameterization, (3) can
be cast into an elliptic PDE in terms of h.

2.1.2. The ansatz adopted. Following [28], we separate out a linear elliptic operator from
the non-linear expansion equation Θ= 0, such that it is in a suitable form to be solved by
standard relaxation method. We first consider

∆θϕh− 2h=∆θϕh− 2h+ ρΘ, (5)

where ρ= ρ(h,θ,ϕ) is a scalar function to be determined and∆θϕ is the flat-space Laplacian
on a 2-sphere which is given by

∆θϕh= ∂2θh+ cotθ∂θh+
1

sin2 θ
∂2ϕ h. (6)

We briefly discuss how the Laplacian shows up in the expansion equation and how the scalar
function ρ should be chosen.

A 3-metric tensor γij(r,θ,ϕ) on a spacelike hypersurface Σt can be expressed by its con-
formally related metric γ̄ij and be further decomposed into the flat metric ηij along with a tensor
field hij, i.e.

γij = ψ−4γ̄ij = ψ−4
(
ηij+ hij

)
, (7)

where the conformal factor ψ is given by

ψ =

(
detγij
detηij

)1/12

. (8)

By introducing the covariant derivative D̃i associated with the flat metric tensor ηij and the
corresponding connection coefficients Γ̃kij, the divergence term in the expansion function (3)
is

Di s
i = mijDi (λmj) = λmijDimj (9)

= λψ−4ηijD̃imj+λ
(
ψ−4hij− si sj

)
∂imj−λ

(
γij− si sj

)
Γkijmk

+λψ−4ηijΓ̃kijmk, (10)

2 We refer the reader to [33] for the removal of the star-shaped assumption in the axisymmetric case.
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where Γkij are the connection coefficients associated with the 3-metric γij. One can see that the
Laplacian, i.e. the linear elliptic part we are looking for, appears in the first term. In spherical
coordinates, it reads

ηijD̃imj =− 1
h2

(∆θϕh− 2h) . (11)

The expansion function now becomes
√
2Θ= Di s

i −
(
γij− si sj

)
Kij (12)

=−λψ
−4

h2
(∆θϕh− 2h)+λ

(
ψ−4hij− si sj

)
∂imj

−
(
γij− si sj

)(
λΓkijmk+Kij

)
+λψ−4ηijΓ̃kijmk. (13)

Comparing with (5), the combination ∆θϕh− 2h on the right hand side cancels out if we
choose ρ=

√
2h2ψ4/λ, yielding a PDE in suitable form to be solved by relaxation schemes.

We make an additional remark that from (10), the linear elliptic operator in the expansion
equation is indeed

h2ηij
(
D̃imj+ Γ̃kijmk

)
=−

(
∂2θh+

1

sin2 θ
∂2ϕ h

)
, (14)

but it turns out that such form is not suitable for relaxation methods to work properly.
Finally, the ansatz we adopt in this work in explicit form is given by

∆θϕh− (2− η)h= S
(
h,∂i h,∂

2h;γij,∂kγij,Kij;η
)
, (15)

with the source term S being

S=∆θϕh− (2− η)h+
h2ψ4

λ

(√
2Θ
)

(16)

= h2ψ4

[(
ψ−4hij− si sj

)
∂imj−

(
γij− si sj

)(
Γkijmk+

Kij
λ

)]
+ h2ηijΓ̃kijmk+ ηh, (17)

where the extra parameter η can speed up convergence in the relaxationmethod if appropriately
chosen [39]. Our experience with the benchmark tests (see section 3) suggests that the optimal
value of η can only be found empirically, but in general it should take a value between 0 and
1.

2.2. Implementation of multigrid apparent horizon finder

2.2.1. Multigrid method. Iterative schemes have been a standard tool for solving general
elliptic PDEs numerically. For iterative schemes that use a finite difference discretization setup,
there is sometimes a trade-off between choosing a grid of higher resolution for more accurate
results and a grid of relatively lower resolution for faster convergence. The persistent low-
frequency components in the numerical error is one of the factors that reduce the convergent
rate, but they can be eliminated rather efficiently at lower resolutions.

A multigrid scheme combines multiple levels of grid with different resolutions to tackle
low-frequency components in the error in the coarser grids while retaining good accuracy of
the solution in the finest grid. The major components of a multigrid scheme are as follows.
Smoothers (e.g. standard relaxations) are applied on each but the coarsest level to eliminate

5



Class. Quantum Grav. 42 (2025) 055008 H-K Hui and L-M Lin

error modes at different spectral range, and a solver is employed at the coarsest level at which
an exact/approximate solution can be found more efficiently. With multiple levels of grid, the
inter-grid data transfer operators—restrictions and prolongations—are there to bridge suc-
cessive grid levels by transferring the current solutions and/or error corrections between them.
Finally, a cycling scheme is chosen to specify the exact scheduling, when to jump between
different levels of grid, of a multigrid solver. We refer the reader to [13, 24, 44] for detailed
discussion on the multigrid methods.

2.2.2. Linear multigrid algorithm. Owing to the fact that the principle Laplacian in (15) is
linear, we choose to use a linear multigrid algorithm, which will be briefly outlined in the
following.

Suppose we solve a linear elliptic equation L(u) = f on a uniform grid of spacing k, and we
write

Lk (uk) = fk, (18)

where L is the elliptic operator, f is the source term and u is the exact solution. Let ũk denote
the intermediate approximate solution, and ek = uk− ũk denote the corresponding error. Since
L is linear, (18) becomes

Lk (ek) = fk−Lk (ũk)≡ rk, (19)

where rk is called the residual. This residual equation is easier to solve on a coarser grid of
spacing 2k if we consider an approximation version of it, i.e.

L2k (e2k) = r2k, (20)

where the coarser grid residual r2k is found by restricting the finer grid residual rk using the
restriction operatorR, i.e. r2k =R(rk). The solution to (20) can be thought as the correction to
the approximate solution ũk we have for the original problem (18). Now denote the approxim-
ate solution to (20) by ẽ2k, we can interpolate it to the finer grid by the prolongation operator
P such that the approximate solution ũk is updated by

ũnewk = ũk+P (ẽ2k) . (21)

The above procedure is an illustration on a 2-grid structure and can be easily generalized
for an n-grid solver. In particular, coarser grids can be recursively constructed when solving
for the correction in (20).

2.2.3. Grid discretization. We discretize the apparent horizon surface h(θ,ϕ) using a vertex-
centered grid. At the finest grid level, there are Nθ points along the polar direction and Nϕ

points along the azimuthal direction. The grid points sit at

θi = i∆θ = i

(
π

Nθ − 1

)
, i = 0, . . . ,Nθ − 1; (22)

ϕj = j∆ϕ = j

(
2π

Nϕ − 1

)
, j = 0, . . . ,Nϕ − 1. (23)

Note that we require the numbers of grid points in the finest grid level, i.e. Nθ and Nϕ, to
be odd number, but this condition can be relaxed for the subsequent coarser grid levels. We
further discretize the apparent horizon equation (15) using a 4th order central finite difference
representation for the Laplacian such that it is in a suitable form for conventional relaxation
methods.
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Figure 1. The structure of one V-cycle with 4 grid levels. The operators are applied in
chronological order from left to right. In our code, we use the smoother instead of an
exact solver at the coarsest grid as well.

2.2.4. Boundary condition. Special treatments are carried out to the boundary points of this
vertex-centered spherical grid. In the azimuthal direction, periodic boundary conditions are
applied. The points at ϕj = 2π are ghost points and their values are set by h(θi,2π) = h(θi,0).
The boundary conditions in the polar direction are a bit more tricky because both the Laplacian
∆θϕ and the expansion function Θ exhibit singularity at the poles. The polar singularities are
avoided by not updating the horizon function h with (15) there. Instead, we first interpolate
one value of h at the (north) pole, say at (θ = θ0 = 0,ϕ = ϕk) for some k, through a cubic
polynomial constructed using the points h(θ−2,ϕk), h(θ−1,ϕk), h(θ1,ϕk) and h(θ2,ϕk), where
the negative indices of θ represent points on the opposite side across the (north) pole. This
value of h(0,ϕk) is then copied to all other points at θ= 0, that is, all h(0,ϕj) are forced to be
the same for each j. In practice, the value of k does not matter much and we have set k= 0, i.e.
ϕk = 0, for convenience. The same procedure is done at the south pole to ensure the smoothness
of the surface across both poles.

2.2.5. Smoothers and inter-grid transfer operators. In the multigrid algorithm, we need to
specify a way to obtain approximate solutions to (18) and (20). We use the Gauss–Seidel line
relaxation method [36] in the ϕ-direction as a smoother (see section 2.3 for more details) at
all grid levels including the coarsest level. The smoothing operator applied before restrictions
and after prolongations consists of 1 and 2 sweeps of relaxation, respectively. At the coarsest
level, the smoothing operator consists of 100 sweeps of relaxation.

For the inter-grid transfer operators, we choose the bi-linear prolongation operatorP and the
full-weight restriction operatorR. These operators can be represented in the stencil notations
(see, e.g. [45]) by

P =
1
4

1 2 1
2 4 2
1 2 1

 , R=
1
16

1 2 1
2 4 2
1 2 1

 . (24)

2.2.6. Cycling algorithm and the solving procedure. Among different multigrid cycling
algorithms, we choose to use the V-cycle (see figure 1) owing to its simplicity. Successive V-
cycles are carried out until some prescribed tolerance is satisfied to locate the apparent horizon.
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Assuming that the geometric objects γij and Kij are given on a hypersurface, an initial trial
surface h(0) is specified for the calculation of the source term S according to (17). Note that
we do not need the value of S at the poles since these points are excluded from the relaxation
domain. One V-cycle is then performed to obtain a new guess surface h(1) while keeping the
source term fixed. The new surface h(1) is used to update the source term S before entering the
next V-cycle. This process is repeated until the maximum change in h between successive trial
surfaces, denoted by ∥δh∥∞, and/or the maximum value of the expansion on the final guess
surface, denoted by ∥Θ∥∞, are less than some tolerance ϵh and ϵΘ, respectively, within the
relaxation domain (i.e. excluding the poles).

2.2.7. Handling of numerical spacetimes. The ability to process numerical spacetime is
important for an apparent horizon finder to be applicable in numerical simulations, where the
geometric objects γij andKij are given only at discrete locations. To update the source term (17)
between each V-cycle with numerical spacetime data, we need the values (in spherical basis)
of γij, Kij and also ∂kγij on the current trial surface h(θ,ϕ). The current implementation of the
interpolator in our finder takes input of γij and Kij on a uniform Cartesian grid, interpolates γij,
∂kγij and Kij in Cartesian basis onto the trial surface using tricubic Hermite spline, and finally
transforms the components from Cartesian basis to spherical polar basis. In approximating the
first to third order derivatives of γij and Kij in Cartesian basis which are required for tricubic
Hermite interpolation, a standard 4th order finite differencing scheme is used to maintain an
overall third order accuracy in the interpolator.

2.3. Line relaxation smoothing operator

As mentioned in the previous section, we have chosen the Gauss–Seidel line relaxation in
the azimuthal direction as the smoothing operator in our multigrid code. Due to the inherent
asymmetry between the polar and azimuthal directions of the spherical Laplacian∆θϕ, the line
relaxation has better convergence, especially near the poles, than a simple point-wise relaxation
with or without red-black ordering updates [6]. Because of the periodic boundary condition
in the azimuthal direction, one step of the ϕ-line relaxation requires solving a cyclic banded
diagonal system [36]. In particular, a cyclic penta-diagonal system is needed to be solved
for each relaxation step if we use a standard 4th order 5-point finite difference formula. This
obviously requires much more work than solving a tri-diagonal system, which is the case with
a 2nd order 3-point finite difference scheme. In order to take advantage of the efficiency in
solving tri-diagonal system while achieving 4th order accuracy, we aim for a compact finite
difference scheme for (15) (see e.g. [46] and [15] respectively for such treatment in Cartesian
Poisson equation and polar Helmholtz equation).

The compact finite difference scheme, or theMehrstellenverfahren discretization (e.g. [44])
is not a new concept and can be traced back to as early as the 1960s [18], which was then
referred to as the Hermitian method. It aims at increasing the accuracy of a finite difference
scheme without involving more grid points that are too far away from the current pivoting
point. As an example, for the Poisson equation (∂2x + ∂2y )u= f on a square Cartesian grid of
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step size k, the traditional 4th order (non-compact) finite difference scheme involves the second
next neighboring grids, as represented by the stencil notation

1
12k2


−1
16

−1 16 −60 16 −1
16
−1

uij = fij,

while its 4th order compact finite difference representation is [18]

1
6k2

1 4 1
4 −20 4
1 4 1

uij = 1
12

0 1 0
1 8 1
0 1 0

 fij.
Notice the smaller stencil size (width) in the compact finite difference scheme. This compact
representation can be viewed as the incorporation of a correction to the 2nd order finite differ-
ence formula to eliminate the leading error in its Taylor’s expansion (see, e.g. [7, 15, 20, 23,
27, 46] for a variety of PDEs that such method has been applied to). The compact form for
the spherical Poisson equation, to which the apparent horizon equation (15) belongs, can be
derived in a similar manner. We refer the reader to [20] for a summary of compact scheme for
Poisson equation on Cartesian grids.

Since our ultimate goal is to create a stencil that is suitable for reducing the ϕ-line relaxation
to solving a tri-diagonal system, we only need to ‘squeeze’ the usual 5-point-wide stencil in
the ϕ direction, which we refer to as semi-compact. We derive such semi-compact stencil for
a general 2-dimensional spherical Poisson equation in the following3. Suppose we solve

∂2θu+ cotθ∂θu+
1

sin2 θ
∂2ϕ u= f(θ,ϕ) . (25)

First observe that using a 2nd order finite difference method for the third term, we have

1

sin2 θ

∂2u
∂ϕ2

=

(
1

sin2 θ

∂2u
∂ϕ2

)
FD2

− k2

12sin2 θ

∂4u
∂ϕ4

+O
(
k4
)
, (26)

where the subscript FDn indicates that the corresponding term is approximated by an nth order
finite difference scheme, and k is the step size in the ϕ direction. By differentiating (25) twice
w.r.t. ϕ and substituting the result to (26), we obtain

1

sin2 θ

∂2u
∂ϕ2

=

(
1

sin2 θ

∂2u
∂ϕ2

)
FD2

− k2

12

[
∂2f
∂ϕ2

− ∂4u
∂θ2∂ϕ2

− cotθ
∂3u
∂θ∂ϕ2

]
+O

(
k4
)
. (27)

With a factor of k2 in front, the terms inside the square bracket only need to be evaluated at 2nd
order accuracy to maintain an overall 4th order accuracy. Finally, assuming that the step size in
θ direction is also k for simplicity, the semi-compact 4th order finite difference representation
of (25) can be given by

3 For completeness, we also derive the fully-compact representation in appendix for a general 2-dimensional Poisson
equation on the sphere. We do not use the fully-compact form because it requires the value of the source term f at the
poles, but the apparent horizon equation (15) contains the expansion function Θ which is undefined at the poles in
spherical coordinates (see (13)).
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Table 1. Comparison of the efficiency between using point-wise relaxation and line-
relaxation as the smoothing operator to locate the apparent horizon for the analytic
Kerr–Schild spacetime of a black hole with massM= 1 and spin parameter a= 0.8. The
columns represent the resolution, number of grid levels n, and the number of V-cycle
and user CPU time (in seconds) required to reach the solution for both relaxation meth-
ods. The tolerance parameters are set to ϵh = ϵΘ = 10−8. The results in the rows marked
with (without) an asterisk are obtained using η= 0.8 (0). For the pointwise relaxation,
the number of relaxation sweeps before restrictions and after prolongation is changed to
10 and 20, and that at the coarsest level to 200. Both the results of pointwise relaxation
using the non-compact (NC) and the semi-compact (SC) finite difference scheme are
shown for comparison.

Point relax. (NC) Point relax. (SC) Line relaxation

Nθ×Nϕ n-grid V-cycle Time(s) V-cycle Time(s) V-cycle Time(s)

65× 65
3 36 0.251 35 0.330 34 0.204
3∗ 22 0.161 20 0.194 19 0.122

129× 129
3 80 2.170 66 2.671 45 1.035

4 64 1.652 53 1.794 34 0.735
4∗ 67 1.743 54 1.822 20 0.446

257× 257

3 318 33.502 254 37.065 128 11.537

4 272 27.828 217 28.664 46 3.903
4∗ 278 28.332 219 29.177 35 3.009

5 260 25.884 205 26.693 34 2.857
5∗ 257 26.624 204 26.529 21 1.814

(
∂2u
∂θ2

+ cotθ
∂u
∂θ

)
FD4

+

(
1

sin2 θ

∂2u
∂ϕ2

)
FD2

− k2

12

[
∂2f
∂ϕ2

− ∂4u
∂θ2∂ϕ2

− cotθ
∂3u
∂θ∂ϕ2

]
FD2

+O
(
k4
)
= f. (28)

The adaption of this form to our apparent horizon equation (15) is straight-forward, despite
the fact that the source term now also depends on the solution. Notice that the stencil is only
3-point-wide in the ϕ direction such that a ϕ-line relaxation can be done by a more efficient
tri-diagonal algorithm.

We make some final remarks to conclude this section. First, a simple point-wise Gauss–
Seidel relaxation (using either 5-point-wide non-compact or semi-compact finite difference
scheme) can certainly serve as the smoothing operator, but the efficiency of the solver will be
much degraded (see table 1 and the discussion in section 3.1). It is worth noting that although
using semi-compact scheme gives a slightly better convergence (in terms of the number of
V-cycles) than using the usual non-compact scheme, the computational costs of the two are
roughly the same due to the more arithmetic operations needed in the semi-compact scheme.
Second, the asymmetry in the spherical Laplacian may change direction from the pole to the
equator depending on the grid sizes in the θ- and ϕ-directions [6]. In the case when the num-
ber of points in the θ-direction is much larger than that in the ϕ-direction, the ϕ-line relaxation
may not provide good convergence, especially near the equator, or it may even fail. A remedy
is to use a combined relaxation [6], sometimes referred to as the segment relaxation scheme,
which applies the θ- and ϕ-line relaxations to different domains according to the direction of
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asymmetry in the Laplacian. Although this could be relevant for further increasing the effi-
ciency of our finder when applied to spacetimes with axisymmetry, we will continue to use
the ϕ-line relaxation here.

3. Results

We have tested our multigrid apparent horizon finder with several benchmark spacetimes and
the results are reported in this section. All tests are run on a 3.6GHz processor and the timings
are reported in user CPU time.

The geometric objects γij and Kij are given analytically in spherical coordinates for the
calculation of the source term S (17), except for numerical data where they are interpolated
onto the surface. Unless otherwise specified, the initial guess surface is a sphere of coordinate
radius 1.5M, whereM is the mass of the black hole. The tolerance to stop the iteration process
is set to ϵh = ϵΘ = 10−8, and the convergence parameter is set to η= 0.8. After locating the
apparent horizon, its proper area is calculated numerically by [28]

A=

ˆ 2π

0
dϕ
ˆ π

0
dθ
[(
γrrh

2
,θ + 2γrθh,θ + γθθ

)(
γrrh

2
,ϕ + 2γrϕh,ϕ + γϕϕ

)
−(γrrh,θh,ϕ + γrϕh,θ + γrθh,ϕ + γθϕ)

2
]1/2

. (29)

3.1. Kerr–Schild spacetime

For describing a Kerr black hole of massM= 1 and spin parameter a (0⩽ a< 1), one can use
the Kerr–Schild coordinates [30], of which the spatial metric γij and the extrinsic curvature Kij

are given in Cartesian coordinates by

γij = ηij+ 2Hℓi ℓj; (30)

Kij = 2αHℓk∂k (Hℓi ℓj)+α [∂i (Hℓj)+ ∂j (Hℓi)] , (31)

where ηab = diag(−1,1,1,1) is the flat metric and α≡
√
1+ 2H is the lapse function. The

function H and the auxiliary components ℓi are defined by

H≡ MR3

R4 + a2z2
; ℓi = ℓi ≡

(
Rx+ ay
R2 + a2

,
Ry− ax
R2 + a2

,
z
R

)
, (32)

with the parameter R being the Boyer–Lindquist radial coordinate which satisfies

x2 + y2

R2 + a2
+
z2

R2
= 1. (33)

The analytic forms of γij, ∂kγij and Kij, after a coordinate transformation, serve as the input
for the calculation of the source term S in (15). There are two horizons at R= r± ≡M(1±√
1− a2) and the apparent horizon is given by the outer one, which is, in spherical coordinates

(r,θ,ϕ),

r2 =
r2+
(
r2+ + a2

)
r2+ + a2 cos2 θ

, (34)

with the corresponding proper area given by

AKerr = 4π
(
r2+ + a2

)
. (35)
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Table 2. Finding the apparent horizon in analytic Kerr–Schild spacetime of spin para-
meter a= 0.6 and 0.9. The columns represent the resolution Nθ ×Nϕ on the finest grid
level, the number of grid levels n; the relative error in the proper area δA/AKerr; the
number of V-cycle and the user CPU time (in seconds) required to locate the apparent
horizon. In the first column, the angle (e.g. 5◦) inside the parenthesis in each row is
approximately the angular separation between two neighboring grid points in the θ- or
ϕ-direction.

a= 0.6 a= 0.9

Nθ ×Nϕ n-grid |δA/AKerr| #V Time (s) |δA/AKerr| #V Time (s)

37× 73 (5◦) 4 2.8× 10−6 16 0.063 1.2× 10−6 25 0.096

61× 121 (3◦) 4 3.6× 10−7 16 0.162 1.7× 10−7 26 0.249
61× 121 (3◦) 5 3.6× 10−7 16 0.160 1.7× 10−7 25 0.243

91× 181 (2◦) 4 7.2× 10−8 17 0.377 3.9× 10−8 26 0.562
91× 181 (2◦) 5 7.2× 10−8 16 0.350 4.2× 10−8 25 0.525
91× 181 (2◦) 6 7.2× 10−8 16 0.349 4.0× 10−8 24 0.510

Before considering the performance of our apparent horizon finder, we first use the analytic
Kerr–Schild spacetime as a test case to show the advantage of using a line relaxation smoother
over a point-wise one in a multigrid code as noted in section 2.3. As shown in table 1, the
number of V-cycles required to reach the solution is less when a line relaxation is used. The
difference becomes more significant with higher resolution and more grid levels. Combined
with the enhancement given by tuning the convergence parameter η, the use of line relaxation
over point relaxation leads to an order-of-magnitude overall boost in terms of speed in certain
test cases.

We use several resolutions to locate the apparent horizon in Kerr–Schild spacetime with
spin parameter a= 0.6 and 0.9. The results are reported in table 2. With the same number of
grid levels, increasing the resolution slightly increases the number of iteration needed to reach
convergence. This, however, can be compensated by introducing more grid levels. Overall, we
find that the number of iterations (V-cycles) to reach convergence is more or less the same
for a fixed a, independent of the resolutions. The run time reported here is only determined by
the searching algorithm, excluding the interpolation routines required in numerical spacetimes
(see section 3.3). We find that the run time is proportional to the total number of grid points
on the finest grid level.

3.2. Brill–Lindquist spacetime

The second test for our finder is to locate the apparent horizon in Brill–Lindquist multiple black
hole data [14]. This is a classic analytic solution for the constraint equations in 3+1 numerical
relativity that represents a multiple black hole spacetime. The black holes are assumed to
be momentarily at rest. The derivation of this solution can be found in standard numerical
relativity textbooks (e.g. [9]). Under time symmetry and the assumption that the spatial slice
is conformally flat, the 3-metric and the extrinsic curvature for N-black-hole spacetime in
isotropic coordinates (r̄,θ,ϕ) are, respectively,

γij =

(
1+

N∑
α=1

Mα

2|̄r− r̄α|

)4

diag
(
1, r̄2, r̄2 sin2 θ

)
, (36)

Kij = 0, (37)
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Table 3. Finding the apparent horizon for analytic Brill–Lindquist equal-mass 2-black-
hole spacetime at d= 1.532≈ dcrit. While the spacetime is axisymmetric, we do not
impose it in the tests.

Nθ ×Nϕ A ∥Θ∥∞ Time (s)

41× 73(5◦) 196.4138 1.57× 10−8 1.22
61× 121(3◦) 196.4158 1.50× 10−8 1.93
91× 181(2◦) 196.4162 1.52× 10−8 4.16
181× 361(1◦) 196.4163 1.57× 10−8 16.20

where Mα and r̄α are the mass at infinite separation and the coordinate position of the αth
black hole, respectively. The isotropic coordinates here are the analog of those in the iso-
tropic Schwarzschild metric, which can be obtained by substituting the radial coordinate in the
Schwarzschild metric by r= r̄[1+M/(2r̄)]2. In the following, we consider the case of N= 2
andN= 3.We use very high resolution ofNθ ×Nϕ = 385× 769 (angular spacing<0.5◦) with
6 levels of grid in these tests without assuming any symmetry of the apparent horizon.We relax
the convergence criteria in this section to ϵh = 10−8 and ϵΘ = 10−6.

3.2.1. Brill–Lindquist 2-black-hole spacetime. Let us first consider the Brill–Lindquist data
for two black holes. When the two black holes are far away from each other, each black hole
possesses its own apparent horizon. With decreasing separation distance d, there exists a crit-
ical separation d= dcrit at which the two black holes start to have a common apparent horizon.
One of the benchmark tests is to determine the value of dcrit. The center of the two black holes
are on the z-axis at (0,0,±d/2) in the following.

We first consider two equal-mass black holes with M1 =M2 = 1. Our finder reports the
critical separation to be dcrit = 1.5323948, which agrees well with the generally accepted val-
ues in the literature (e.g. 1.532 3949 [42], 1.532 [28]). The critical area is found to be Acrit =
196.40795 (agrees with [42] to 5 decimal places). At the critical separation we found, the
maximum expansion on the numerically-computed apparent horizon is ∥Θ∥∞ = 2.3× 10−8.
We also report the results for finding the apparent horizon near the critical separation at
d= 1.532≈ dcrit for lower resolutions in table 3.

We then consider unequal-mass black holes withM1 = 0.2 andM2 = 0.8. The initial guess
surface for this case is changed to a sphere of coordinate radius r̄= 1.5. Our finder reports
the critical separation to be dcrit = 0.6987161 with the proper area being A= 49.688602. The
maximum expansion on the numerically-computed apparent horizon is ∥Θ∥∞ = 2.1× 10−7.
The value of the critical separation agrees with that reported recently in [33] by using an
axisymmetric apparent horizon finder.

3.2.2. Brill–Lindquist 3-black-hole spacetime. We now consider a system of three black
holes which are placed to form an equilateral triangle on the x̄–z̄ plane, each at a coordinate
distance R from the origin, and one of them sits on the +z̄-axis. Each black hole has unity
mass. We find that the critical parameter for the three black holes to have a common apparent
horizon is Rcrit = 1.1954995, which agrees with the result in [42] to seven decimal places.
The critical area and the maximum expansion on the numerically-computed apparent horizon
are A= 444.75623 and ∥Θ∥∞ = 2.3× 10−8, respectively. The left panel of figure 2 shows
the cross section (red dashed line) of the common horizon on the x̄–z̄ plane for the case R=
1.195≈ Rcrit. The right panel shows the side view of the full surface of the common horizon.
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Figure 2. The apparent horizon for Brill–Lindquist equal-mass 3-blackhole spacetime
at R= 1.195≈ Rcrit. The left panel shows the cross-section (red dashed line) of the
common horizon on the x̄–z̄ plane; the right panel is the side view of the full surface of
the common horizon.

3.3. Numerical spacetimes

Weprepare numerical spacetimes to further test our finder using the open source code Einstein
Toolkit [29]. The simulation variables γij and Kij are post-processed to produce data on a
uniform rectangular Cartesian grid before importing to our finder. In the case of dynamical
binary black hole simulation where adaptive mesh refinement is turned on, we use the python
package KUIBIT [10] for the post-processing. We also activate the inherent apparent horizon
finder in the code, AHFinderDirect [41, 42], for comparison.

3.3.1. Numerical Kerr–Schild spacetime. We first test our finder with an off-centered Kerr–
Schild data. The numerical spacetime data spans the Cartesian grid space of x,y,z ∈ [−2.5,2.5]
with a grid spacing of ∆x=∆y=∆z= 0.05. We use a sphere of coordinate radius 1.5
centered at the coordinate origin as the initial guess surface. We use the ILUCGmatrix routine
in all cases for AHFinderDirect.

We consider a black hole of unity mass and spin a located at (0.2,0.2,0.2) in Cartesian
coordinates. We tabulate the results for a= 0.6 and a= 0.8 in table 4. The time to locate the
solution surface mainly depends on two factors—the overall convergence of the algorithm
and the computational cost within each iteration. The convergence order of the algorithm is
important in the sense that as many as 30 interpolations for the geometric variables are required
at every grid point at each (outer) iteration. Since we adopt a pure multigrid algorithm, which
has a slower convergence than the quadratic convergence in Newton’s method, one can see that
our finder needs more iterations (number of V-cycles) for convergence, so more time is spent
on the interpolation routines when compared to AHFinderDirect. Notice that the number of
iterations is insensitive to the resolution used for fixed a. Had we used the pointwise Gauss–
Seidel relaxation as the smoothing operator, the number of iterations would grow linearly with
the number of grid points, and the speed of the code would become very slow due to the large
amount of interpolations required.

At high resolutions, however, we find that our finder generally locates the apparent hori-
zon faster than AHFinderDirect. This is somewhat expected because, at a rough estimation,
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Table 4. Finding the apparent horizon in numerical off-centered Kerr–Schild data with
a= 0.6 (top) and a= 0.8 (bottom). The first column represents the resolution to describe
the horizon surface. The following four columns represent the number of grid levels
n, the relative error in the proper area δA/AKerr, the number of V-cycle and the time
(in seconds) required to locate the apparent horizon using our code. The last two
columns represent the number of Newton steps and time (in seconds) required for
AHFinderDirect. See text for the numerical setup of the spacetime.

a= 0.6 MGAHF AHFinderDirect

Resolution n-grid |δA/AKerr| #V Time (s) #Newton Time (s)

37× 73 (5◦) 4 2× 10−6 18 2.635 8 1.604
61× 121 (3◦) 5 2× 10−7 17 6.294 8 4.180
91× 181 (2◦) 6 1× 10−8 17 12.387 8 11.393
181× 361 (1◦) 7 1× 10−8 18 33.802 8 88.632

a= 0.8 MGAHF AHFinderDirect

Resolution n-grid |δA/AKerr| #V Time (s) #Newton Time (s)

37× 73 (5◦) 4 2× 10−6 23 3.251 8 1.628
61× 121 (3◦) 5 3× 10−7 22 7.864 8 4.170
91× 181 (2◦) 6 4× 10−8 21 14.461 8 11.009
181× 361 (1◦) 7 1× 10−7 21 37.178 8 87.173

the operation cost of performing the matrix LU decomposition of the Jacobian equation in
AHFinderDirect isO(N3) but that of one multigrid cycle isO(N), where N is the total num-
ber of grid points used to describe the horizon surface and N=Nθ ×Nϕ in our case. The total
search time is a competition between the two factors mentioned above. The computational
cost of each iteration becomes more important with increasing resolutions. Although the over-
all convergence rate of our multigrid algorithm is not as fast as Newton’s method, there is
a critical resolution at which our multigrid algorithm starts to work faster4. In particular, our
finder can be more than two times faster when the angular separation between two neighboring
grids is about 1◦ as shown in table 4. We have performed the same test for additional values
of the spin parameter a at 1◦ resolution, and the runtimes are plotted in figure 3. Although
the runtime of our finder grows with a, it takes lesser time to converge in all cases. Recall
that the performance of our finder has extra dependence on the convergence parameter η. At
the extreme case of a= 0.99, the optimal value of η shifts to around 1.45, and the runtime is
reduced by half comparing to the case η= 0.8.

We further test on the case where the spin parameter is a= 0.99, but with the black hole
relocated to (0.2,0.2,0). The initial guesses are spherical surfaces centered at the coordinate
origin as before, with radius r0 ranging from 1.5 to 1.6 with increments of 0.01. We found that
AHFinderDirect is more volatile to the initial guess surface, and is able to find the apparent
horizon only at r0 = 1.54,1.57,1.58 and 1.6 (it fails to converge otherwise). On the other hand,
our finder is able to find the correct solution for all these cases.

4 There is a variantmultigrid algorithm, namely theNewton-multigridmethod [13], that deals with nonlinear equations
directly. This method uses an outer Newton step as in AHFinderDirect, but solves the inner Jacobi equation with lin-
ear multigrid methods instead. We expect that this should (theoretically) outperform both the algorithms used in
AHFinderDirect and our work. We have not used the Newton-multigrid here not only because it requires the manip-
ulation of the Jacobian matrix, but also that it is not directly compatible with the compact finite difference scheme.
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Figure 3. Comparison between our finder and AHFinderDirect on the runtime to loc-
ate the apparent horizon in numerical off-centeredKerr–Schild data with different values
of spin parameter a. A spherical surface of radius 1.6 centered at the coordinate origin
is used as the initial guess. The angular resolution for the runs is 1◦. The rightmost 4
sets of data points correspond to a= 0.96,0.97,0.98,0.99.

Table 5. Comparison between our finder and AHFinderDirect on the proper areas of
the individual horizons and the common apparent horizon found inmerging binary black
hole spacetime. The relative difference is reported in the last column.

MGAHF AHFinderDirect |δA/A|

Horizon of m1 19.0239 19.0097 7× 10−4

Horizon of m2 9.4808 9.4671 1× 10−3

Common apparent horizon 39.8666 39.8691 6× 10−5

3.3.2. Dynamical binary black hole spacetime. We simulate the merger of an unequal-mass
black hole binary using Einstein Toolkit [29]. The initial mass ratio of the two non-spinning
black holes is set to be q≃ 0.7. We use standard evolution schemes and gauge conditions, with
multiple layers of mesh refinements to perform the simulation. The finest grids of grid spacing
∆x=∆y=∆z= 0.03125 cover the two black holes at all times.We export the numerical data
to a uniform grid of the finest grid spacing by Kuibit [10] to search for the horizons using our
finder. For the two individual horizons, the local coordinate origin is chosen by the position
of singularity provided by the PunctureTracker thorn in the simulation code, while that of
the common apparent horizon is simply set to be the origin of the simulation grid.

We report the results of horizon finding at the simulation time when the common apparent
horizon first appears in table 5 and the corresponding snapshot of the three horizon surfaces
in figure 4. The horizon surfaces are modeled by 5◦ angular resolution (Nθ×Nϕ = 37×73). In
figure 4, the common apparent horizon is represented by the purple surface, inside of which are
the two individual horizons represented by the green and blue surfaces. In terms of the proper
areas, our finder agrees with the default AHFinderDirect in the simulation code to within
0.2%. The difference is the biggest for the horizon of the smaller black hole, as the spherical
grids become overly stacked at that radius.
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Figure 4. The common apparent horizon and the individual horizons found by our finder
in a dynamical spacetime of merging unequal-mass black hole binary at a time when the
common apparent horizon first appears.

4. Conclusions

We have presented a new apparent horizon searching algorithm using a multigrid method in
this work. We have evaluated the performance of our finder on analytic spacetimes, including
the Brill–Lindquist data with two or three black holes. We have recovered the results of the
critical parameter for a common apparent horizon to appear in these spacetimes. We have also
tested our finder on numerical spacetimes, namely the off-centered Kerr–Schild data and the
inspiraling binary black hole spacetime.We have demonstrated that, in terms of speed, themul-
tigrid searching algorithm begins to outperform the currently fastest algorithm (Thornburg’s
AHFinderDirect [41, 42]) at high resolutions. We have also shown that our finder is capable
of capturing the first appearance of the common apparent horizon in merging black hole binary
simulation.

From a numerical perspective of viewing our finder as a general multigrid solver for Poisson
equations on the 2-sphere, there are some notable aspects. We have verified that the line
relaxation scheme is preferable (in terms of convergence) to a pointwise relaxation scheme,
even when dealing with a solution-dependent nonlinear source term. We have derived the
(semi-)compact 4th order finite difference scheme for solving the spherical Poisson equation.
The derivation follows a similar procedure used for Cartesian grids (see [20] and references
therein). Our study demonstrates the applicability of this scheme in reducing the complexity
of a line relaxation technique on spherical coordinates, from a penta-diagonal matrix inver-
sion to a more efficient tri-diagonal matrix inversion. We believe the formula derived should
be directly applicable to other 2-dimensional Poisson equations on the sphere.

Wemake some final remarks on how our multigrid algorithm can be further improved. First,
the segment relaxation scheme (see section 2.3) could be used to improve the convergence.
We only use ϕ-line relaxation as the smoother in our multigrid solver, but the line relaxation
direction is preferred to be aligned with the anisotropy direction in the differential operator as
it could give better convergence [6]. Second, using a variant multigrid algorithm might also
improve the convergence. We solve the non-linear apparent horizon equation by turning it into
a linear elliptic equation with a non-linear source term. In this way, the nonlinearity of the prin-
ciple equation is avoided. However, by not addressing it directly, the rate of convergence could
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be compromised. The common multigrid methods to tackle nonlinearity directly are the full
approximation scheme [11] or Newton-multigrid [13] algorithm. We have not adopted these
methods in the current work since they in principle bring up technical implementation issues
in the case of the apparent horizon equation. Exploring these alternative multigrid schemes
could be one future investigation direction for increasing the efficiency of our multigrid code.
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Appendix. Fully-compact 4th order finite difference scheme for spherical
Poisson equations

Suppose we solve a general Poisson equation in spherical coordinates,(
∂2

∂θ2
+ cotθ

∂

∂θ
+

1

sin2 θ

∂2

∂θ2

)
u(θ,ϕ) = f(θ,ϕ) , (A.1)

on a spherical grid of grid size5 h=∆θ and k=∆ϕ. Using a 2nd order finite difference
approximation, the first two terms on the left side are

∂2u
∂θ2

+ cotθ
∂u
∂θ

=

(
∂2u
∂θ2

+ cotθ
∂u
∂θ

)
FD2

− h2

12

(
∂4u
∂θ4

+ 2cotθ
∂3u
∂θ3

)
+O

(
h4
)
. (A.2)

We then seek an expression to replace the third and fourth order derivatives in the second
parenthesis. Differentiating (A.1) w.r.t. θ gives

∂3u
∂θ3

+ cotθ
∂2u
∂θ2

− 1

sin2 θ

∂u
∂θ

− 2cosθ

sin3 θ

∂2u
∂ϕ2

+
1

sin2 θ

∂3u
∂θ∂ϕ2

=
∂f
∂θ
. (A.3)

The second derivative reads

∂4u
∂θ4

+ cotθ
∂3u
∂θ3

− 2

sin2 θ

∂2u
∂θ2

+
2cosθ

sin3 θ

∂u
∂θ

+
6− 4sin2 θ

sin4 θ

∂2u
∂ϕ2

− 4cosθ

sin3 θ

∂3u
∂θ∂ϕ2

+
1

sin2 θ

∂4u
∂θ2∂ϕ2

=
∂2f
∂θ2

. (A.4)

5 We follow the standard notation to use h for the grid spacing, which should not be confused with the horizon function
h(θ,ϕ) used elsewhere in the paper.
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Combining the last two equations, we have

∂4u
∂θ4

+ 2cotθ
∂3u
∂θ3

=

(
cotθ

∂f
∂θ

+
∂2f
∂θ2

)
+

(
1+

1

sin2 θ

)
∂2u
∂θ2

− cosθ

sin3 θ

∂u
∂θ

+
2sin2 θ− 4

sin4 θ

∂2u
∂ϕ2

+
3cosθ

sin3 θ

∂3u
∂θ∂ϕ2

− 1

sin2 θ

∂4u
∂θ2∂ϕ2

. (A.5)

The right hand side of this equation can be evaluated by 2nd order finite difference approx-
imation and be substituted back to (A.2) while the overall error is maintained at O(h4). We
can then combine the result with (27) to obtain the fully-compact 4th order finite difference
approximation for the spherical Poisson equation (A.1). The explicit expression is(
∂2u
∂θ2

+ cotθ
∂u
∂θ

)
FD2

+

(
1

sin2 θ

∂2u
∂ϕ2

)
FD2

− k2

12

[
∂2f
∂ϕ2

− ∂4u
∂θ2∂ϕ2

− cotθ
∂3u
∂θ∂ϕ2

]
FD2

− h2

12

[
cotθ

∂f
∂θ

+
∂2f
∂θ2

+

(
1+

1

sin2 θ

)
∂2u
∂θ2

− cosθ

sin3 θ

∂u
∂θ

+
2sin2 θ− 4

sin4 θ

∂2u
∂ϕ2

+
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sin3 θ

∂3u
∂θ∂ϕ2

− 1

sin2 θ

∂4u
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]
FD2

+O
(
h4,h2k2,k4

)
= f. (A.6)
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