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Quantized polarization and Majorana
fermions beyond tenfold classification

Check for updates

Sang-Hoon Han1,3, Myungjun Kang 1,3, Moon Jip Park1 & Sangmo Cheon 1,2

Exploration of topology is central in condensed matter physics and applications to fault-tolerant
quantum information. The bulk-boundary correspondence and tenfold classification determine the
topological state compared to a vacuum.Contrary to this belief, wedemonstrate that topological zero-
energy domain-wall states can emerge for all forbidden 1D classes of the tenfold classification table.
The guiding principle is that the difference in the topological quantities of two trivial domains can be
quantized, and hence, a topologically protected state can emerge at the domain wall. Such nontrivial
domain-wall states are demonstrated using generalized Su-Schrieffeer-Heeger and generalized
Kitaev models, which manifest quantized polarization and Majorana fermions, respectively. The
quantized Berry phase difference between the domains protects the non-trivial nature of the domain-
wall states, extending the bulk-boundary correspondence, also confirmed by the tight-binding and
Jackiw-Rebbi methods. Furthermore, we show that the seemingly trivial electronic and
superconducting models can be transformed into their topological counterparts in the framework of
the topological Fermi-liquid theory. Finally, we propose potential systems where our results may be
realized, spanning from electronic and superconducting to optical systems.

The tenfold classification of the topological periodic table provides a sys-
tematic understanding of topological insulators and superconductors using
time-reversal (T), particle–hole (C), and chiral (Γ) symmetries (Fig. 1a)1,2. As
a guiding principle of topological materials, the bulk-boundary
correspondence3,4 predicts robust topological boundary states against per-
turbation, which has potential applications in many subfields of physics,
including spintronics5,6, ultracold atomic gases7,8, photonics9,10, and
mechanics11,12. In particular, topological superconductors and their boundary
modes (or Majorana fermions) are expected to open novel quantum com-
putation technologywith thehelpof quantumbraiding13,14. Furthermore, new
types of topological phases have been discovered using finer topological
classifications in topological crystalline insulators andsuperconductors,where
a crystalline point group symmetry protects topological boundary states15,16.
Similarly, higher-order topological phases17 and topological semimetal phases
are also classified18,19. Beyond the conventional classifications, several studies
have tried tofind amethod that still results in topological phases; for example,
sub-symmetry-protected topological phases and quasi-symmetry-protected
topological semimetal were investigated20,21. These classifications lead to
robust topological phases as well as unexpected topology beyond the usual
space group classifications, even in the absence of full symmetry. As an
alternative guiding principle, our endeavors are focused on revealing whether

topological zero-energy states can exist for the systems of topologically trivial
classes, as shown inFig. 1abecause suchanextensionwill openanewpathway
for robust topological applications and technology.

Usually, a topological phase of a bulk is determined by the existence of
topological states at the edges and a nontrivial topological number by
comparing them with a vacuum (or an atomic limit), and the topological
number is calculated considering all the filled electronic/superconducting
states in the band structure. However, it is recognized that topological
quantities such as the Berry phase and Berry curvature depend on the band
structurenear theFermi level,which is fully consistentwith theFermi-liquid
theory in the viewpoint of a topological Fermi-liquid theory22.Here, even for
a seemingly topologically trivial class, we show that the topological zero-
energy states can emerge at the center of a domain wall when the difference
of the topological quantities between the corresponding two domains is
quantized and the low-energy effective theory is still topological from the
perspective of topological Fermi-liquid theory. Thus, our findings diverge
from the topological classification for defects23, as defect classifications
typically require that one of the domains remain topological.

In this work, we start our discussion by demonstrating the emergence
of the topological zero-energy domain-wall state in 1D insulating chains
using the generalized Su–Schrieffer–Heeger (SSH) models. In the original
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SSH model, which belongs to the BDI class, two energetically degenerate
groundstates are topologically distinct and have quantized Berry phases24,25

such as 0 and π depending on the solid angle swept by the so-called d vector
in the corresponding Bloch sphere (Fig. 1b), where the d vector comes from
the Dirac-type Bloch HamiltonianHðkÞ ¼ d

!ðkÞ � σ!with Pauli matrix σi.
Therefore, the domain-wall configuration connecting two topologically
distinct groundstates generates a topological zero-energy state with quan-
tized electric polarization. Such a zero-energy state is known as the
Jackiw–Rebbi zero-mode in the 1D relativistic quantum field theory26,27.
Expanding the SSH model, we investigate a domain-wall configuration
belonging to the AI class, where particle–hole and chiral symmetries are
broken (Fig. 1a). While any one of the groundstates does not have a
quantized Berry phase (Fig. 1c), the quantized difference of the Berry phase
between the adjoined domains results in the zero-energy domain-wall state
having quantized electric polarization. Furthermore, our seemingly trivial
generalized SSH chain can be transformed into the topological SSH chain
through unitary transformations from the perspective of the low-energy
effective topological Fermi-liquid theory.

According to the modern theory of polarization and topological field
theory, a domain wall state can possess the amount of polarization corre-
sponding to the Berry phase difference between two domains28,29. However,
whether the domain-wall configuration that has quantized Berry phase
difference hosts a topological zero-energy state has not yet been studied.
Moreover, such a concept has not been extended to the superconducting
systembecause the corresponding topological zero-energy state, aMajorana
fermion, should be described by the Majorana representation, which is the
cumbersome split electron representation.

Therefore, we confirm the emergence of topological zero-energy
domain-wall states for all 1D trivial electronic and superconducting classes
using the generalized SSH and Kitaev models, as summarized in Fig. 1d.
Consequently, such insulating and superconducting systems demonstrate
quantized electric polarization and Majorana fermions, respectively.

Results and discussion
Extendedbulk-boundarycorrespondence forelectronicsystems
We investigate the minimal tight-binding model belonging to the topolo-
gically trivial AI class as the representative insulating system using the
generalized SSH model30. The tight-binding Hamiltonian is comprised of
the Hamiltonian of the SSH model HSSH

31 and the symmetry-breaking
potential terms Hon

32, as shown in Fig. 2:

HAI ¼ HSSH þ Hon;

HSSH ¼
X
n

tnþ1;nc
y
nþ1cn þ h:c:;

Hon ¼
X
n

mz cy2n�1c2n�1 � cy2nc2n
� �

;

where cyn/cn indicates the creation/annihilation operator for site n= 1,⋯ ,N.
The nearest-neighbor hopping parameter is tn+1,n= t0+ (−1)n−1Δ/2 with t0
and Δ being the hopping amplitude and energy-valued dimerization,
respectively. mz is the strength of the onsite staggered potential. If mz is
constant, the Hamiltonian becomes that of the RM model32. The
corresponding Dirac-type Bloch Hamiltonians obtained using conventions
I and II are given as,

HðIÞ
AIðkÞ ¼ d

!ðkÞ � σ!; ð1Þ

HðIIÞ
AI ðkÞ ¼ 2t0 cosðkaÞσx � Δ sinðkaÞ σy þmzσz; ð2Þ

where dx ¼ ðt0 þ Δ=2Þ þ ðt0 � Δ=2Þ cosð2kaÞ, dy ¼ ðt0 � Δ=2Þ sinð2kaÞ,
and dz =mz. The length of the unit cell is 2a and for simplicity, we set a = 1.
See more information about the Bloch Hamiltonian convention in Supple-
mentary Note 1.1. Whenmz = 0, the Hamiltonian is simplified into the SSH
model having time-reversal, particle–hole, and chiral symmetry, {H, σz} = 0

31.
However, for nonzero mz, this Hamiltonian has time-reversal symmetry
(T =K) but neither particle–hole nor chiral symmetry.

From the Bloch Hamiltonian, the energy eigenvalue is given by

E ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t20cos2kþ Δ2sin2kþm2

z

q
. In particular, Δ and mz act as order

parameters because they distinguish various groundstates, as shown in
Fig. 2a. When mz = 0, there exist energetically degenerate groundstates A
and B. On the other hand, when mz ≠ 0, there exist four energetically
degenerate groundstates (A0;B0;A00; B00) depending on the signs of Δ and
mz. Ifmz is constant, the RMHamiltonian has two degenerate groundstates,
either A0;B0 or A″, B″.

We now consider three types of domain-wall configurations that
connect the various groundstates [indicated by the red, blue, and green lines
in Fig. 2a]. The schematic geometric configurations for the three types of
domain-wall configurations are shown in Fig. 2b. In this case, Δ andmz are
no longer constants but become spatially varying functions connecting two
groundstates. For instance, for the SSH (RM) domain-wall configurations,
where the domain wall center is located at x = 0, the dimerization spatially
varies in the form of ΔðxÞ ¼ Δ0 tanhðx=ξ1Þ with Δ0 < 0 throughout the
chain connecting A and B (A0 and B0) groundstates when mz = 0
(mz = const.)31,32. When mz is additionally interpolated, such as mzðxÞ ¼
m0 tanhðx=ξ2Þ withm0 < 0, a new type of domain wall emerges connecting
the A0 and B″ groundstates, which is labeled as the AI domain-wall con-
figurationor shortly, theAI chain.Here, ξi is the characteristic length scale of
the domain wall.

The energy eigenvalues and wavefunction distributions of the finite
chains corresponding to the three domain-wall configurations are shown in

Fig. 1 | Classification table andschematics of the generalizedSu–Schrieffer–Heeger
(SSH) andKitaevmodels. aClassification of the tenfoldAltland-Zirnbauer classes in
1D. The lack of symmetry is presented with 0. For the antiunitary time-reversal (T)
and particle–hole (C) symmetries, + and − distinguish the cases in which the
symmetry operators' squares become I or −I. The absence and existence of chiral
symmetry (Γ) is expressed via 0 and 1, respectively.Z andZ2 represent topological
indices, while NA indicates topology is not allowed. b, c Schematics for the d vector
distribution in the Bloch sphere for the generalized SSHmodels described by the 1D
Dirac Hamiltonian in Eq. (1). In b, the d vector of the SSH model is constrained on
the equator from chiral symmetry, and the solid angle surrounded by the d vector is 0
or 2π for the two degenerate groundstates. Therefore, the domain-wall state con-
necting the two groundstates has a quantized polarization. In c, the d vector of the
generalized SSH model is not constrained in the Bloch sphere’s equator; hence,
neither groundstate has a quantized polarization. However, if the two degenerate
groundstates have symmetrical d vectors (red and blue circles), the solid angle
difference can be quantized as 2π, which can result in a quantized polarization for
the corresponding domain-wall systems. d Schematics of the relation between the
generalized SSH and Kitaev models and the classes where there is no topologi-
cal index.
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Fig. 2(c,d). The ingap state in the SSH (RM) chain is located at zero (non-
zero) energy, and the corresponding wavefunctions of the ingap states are
localized at the domain wall, as expected. Surprisingly, the AI chain exhibits
the emergence of the zero-energydomain-wall state. Figure 2d shows zoom-
ins of the wavefunction distributions near the domainwall, which exhibits a
slight difference between the AI chain and the others. However, such a
difference is not problematic but consistent with the analytical solution,
whichwill be discussed later. In addition, to compare the domain-wall states
with the usual edge states, we investigate the ingap states localized at the left
and right edges for the same type of three chains systems but extended to
have both left and right edge states (Fig. S3); due to chiral symmetry
breaking, the RM and AI chains exhibit non-zero-energy edge states, while
the SSH chain has topological zero-energy edge states.

When we consider the tight-binding Hamiltonian of a finite chain
system, HAI, we find that the SSH and AI chains satisfy the global chiral
symmetry HAI; Γ

� � ¼ 0, which protects the zero-energy states localized at
the domain wall. Here, the global chiral symmetry is an inversion-like
symmetry anticommuting with the finite Hamiltonian of a long enough
subchain containing the domain wall. According to the explicit form of Γ, it
exchanges the wavefunction amplitudes of two sites which are at an equal
distance from the domain-wall center, accompanied by the appropriate sign
change (see more details in Supplementary Note 1.5). Note that this global
chiral symmetry is not anecessarybut a sufficient condition for the existence
of the zero-energy state. Therefore, an in-depth analysis, such as the
robustness against a random disorder which breaks both chiral and global
chiral symmetries, is required to claim that the numerically obtained zero-
energy state is topological.

To see the robustness of the zero-energy domain-wall states under
perturbations, we investigate the energy spectra in the presence of the onsite
staggered quasi-periodic disorders for the three chains (Fig. 4a–c). The
additional onsite potential at the ith site is given by �1ð Þiλ cos 2πβi

� �
with

disorder strength λ and the inverse golden ratio β. The system size is chosen
such that the onsite potential is nearly zero at the domain wall center,
maintaining the topological phase transition for the SSH chain or a gapless

phase transition condition for theAI chain,whichwill be elaboratedon later.
Such disorders are introduced as they are powerful enough to give random
perturbations to the system33,34. Figure 4a–c shows the robustness of the
zero-energy state of theAI chain todisorder, similar to that of the SSHchain,
even in the absence of any global chiral symmetry that protects the zero-
energy state, implying their topological nature. On the other hand, the RM
domain-wall state fluctuates easily under the same disorder because it is not
topologically protected.

To analytically confirm the origin and topological stability of the zero-
energy domain-wall state, we adopt the Jackiw–Rebbi method introduced
for explicitly analyzing the topological zero modes in the SSH model26,27.
Following the method, we examine the low-energy effective continuum
Hamiltonian for the generalized SSH model. We take the Dirac approx-
imation at k ¼ � π

2 þ k0, expand for a small k0 regarding theHamiltonian in
Eq. (2), and upgrade the Δ and mz as local functions considering the
domain-wall configuration. Then, the effective continuum Hamiltonian is
given as

Heff ¼ 2t0k
0σx þ ΔðxÞσy þmzðxÞσz ; ð3Þ

where k0 ¼ �i∂x acts as the momentum operator in real space. Due to the
last term, mz(x)σz, which is a function of x and anti-commutes with
the other terms, it is difficult to find a general Jackiw–Rebbi solution. Thus,
we first consider a simpler case where ξ1 = ξ2 = ξ and therefore
ΔðxÞ ¼ Δ0 tanhðx=ξÞ;mzðxÞ ¼ m0 tanhðx=ξÞ,withΔ0 < 0andm0 < 0.Then,
the zero-energy solution localized at the domainwall center (x= 0) is given by

ψðxÞ ¼ N e∓
1
2t0

R x

0
dx0

ffiffiffiffiffiffiffiffiffiffiffi
Δ2þm2

z

p
�Δ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þm2

0

q
; im0

	 
T

;

where N is the normalization factor, the upper and lower signs indicate
x > 0 and x < 0 regions, respectively, and Δ(x) and mz(x) are denoted as Δ
andmz for simplicity. We take a semi-infinite boundary condition for x > 0
and x < 0, with ψ(x = ±∞) = 0 and match the wavefunction at x = 0. This

Fig. 2 | Generalized Su–Schrieffer–Heeger (SSH) chains. a Schematics for various
groundstates and domain-wall configurations for the generalized SSH models in the
order-parameter space comprised of energy-valued dimerization (Δ) and onsite energy
mz.Groundstates are labeledusing capital letters (A;B;A0;B0;A00;B00), and theaandb in
the unit cell represent two sublattice atoms. The black line in eachBloch sphere indicates
the trajectory of the d vector for each groundstate, and ϕ indicates the value of the Berry
phase, where δ is a positive number. The SSH, Rice–Mele (RM), and AI domain-wall
configurations are represented by red, blue, and green dotted lines, respectively.
bSchematics for the SSH(top), RM(middle), andAI (bottom) chains.The red, blue, and
green spheres indicate the center of the corresponding 1D chains. c Energy eigenvalues
of finite SSH, RM, and AI chains, of the corresponding ingap states. The points

indicating the ingap states aremagnified by two for clarity. The SSH andAI chains show
topological zero-energy domain-wall states indicated by red and green. On the other
hand, the RM chain shows topologically trivial non-zero-energy domain-wall states at
E =−mz indicated by blue.dTotal wavefunctions and their zoom-ins near the domain-
wall states for the SSH, RM, andAI chains. For n ± 1 and n ± 3 sites of the zoom-ins, the
data is magnified ten times. The hopping parameter is t0 = 1.2 for all three cases with
dimerizationΔ(x) interpolated from0.96 to−0.96 along the chain. Theonsite energymz

is fixed at 0.3 for the RM chain and interpolated from 0.3 to− 0.3 for theAI case. For all
cases, the characteristic length is given by ξ1 = ξ2 = 5. For numerical calculation,
L = 2n− 1 = 249 atoms are applied (with approximately n = 125 unit cells).
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zero-mode solution is identical to that of the SSHmodel whenmz(x) = 026,27;

ψðxÞ / e
1
2t0

R x

0
dx0Δðx0 Þð1; 0ÞT . The analytical solution for the RM model is

givenby the samewavefuction32. These analytical solutions for the SSH,RM,
and AI chains are also consistent with the numerically calculated
wavefunction distributions, given in Fig. 2.

When solving Eq. (3), it should be noted that both Δ(x) andmz(x) must
change their signs across the domain-wall center for the emergence of zero-
energy Jackiw–Rebbi solutions. If we choosemzðxÞ ¼ m0∣ tanhðx=ξÞ∣ leaving
the others same, the resulting zero-energy solution for each region is given as

ψðxÞ ¼ N e∓
1
2t0

R x

0
dx0

ffiffiffiffiffiffiffiffiffiffiffi
Δ2þm2

z

p
�Δ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þm2

0

q
; ± im0

	 
T

;

whereN is the normalization constant, the double signs are in order, and
the upper signs indicate x > 0 while the lower signs indicate x < 0, respec-
tively, and Δ(x) and mz(x) are denoted as Δ and mz for simplicity. Such a
zero-energy solution is not continuous at x = 0 and, therefore, is impossible.
Topologically, this condition that both Δ(x) and mz(x) must change their
signs across the domainwall is consistent with the quantization of the Berry
phase difference of two interpolating domains, whichwill be discussed later.

To find a general solution to the zero-energy domain-wall states, we
show that the low-energy effective Hamiltonian of Eq. (3) is equivalently
transformed into that of the SSH model through an SU(2) unitary trans-

formation. Using an unitary operator U ¼ exp � i
2 tan

�1 mz ðxÞ
ΔðxÞ

� �
σx

h i
, the

continuum Hamiltonian in Eq. (3) is transformed into

H0
eff ¼ ð2t0k0 þ FÞσx þ sgn ðΔÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þm2

z

q
σy; ð4Þ

where k0 ¼ �i∂x is the momentum operator while Δ(x) and mz(x) are

denoted as Δ and mz for simplicity. FðxÞ ¼ �∂xt0tan
�1 mz ðxÞ

ΔðxÞ

� �
rapidly

converges to zero as ∣x∣ ! 1 and is written as F for simplicity. This F term
acts as a small oscillatory correction term, as shown in the zero-energy
solution below. Hence, the F term does not change the topological nature of
the zero-energy solution. Without loss of generality, we select Δ(−∞) > 0,
Δ(+∞) < 0, mz(−∞) > 0, and mz(+∞) < 0. Then, the zero-energy solution
ψ0ðxÞ is given by

ψ0ðxÞ ¼ N 0e
� 1

2t0

R x

xc
dx0 iFðx0Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðx0Þ2þmz ðx0Þ2

p� �
1; 0ð ÞT ;

¼ N 0e
∓ 1
2t0

R x

xc
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðx0 Þ2þmz ðx0Þ2

p� �
þ i

2 tan
�1 mz ðxÞ

ΔðxÞ

� �
1; 0ð ÞT ;

whereN 0 is thenormalization factor, and theupper and lower signs indicate
the x > xc and x < xc regions, respectively. Here, xc is the domain-wall center
where the sign ofΔ(x) changes. The second term in Eq. (4) plays the role of
Δ(x) of the SSH case26,27. Importantly, the transformed Hamiltonian in Eq.
(4) has a generic chiral symmetry, fH0

eff ; σzg ¼ 0. Therefore,within the low-
energy effective theory, the generalized SSHmodel is equivalent to the SSH

model and protects zero-energy topological modes through the generic
chiral symmetry.

Such Jackiw–Rebbi analysis also highlights the relation between the
emergence of the zero-energy domain-wall state and the gap-closing phase
transition point. In the SSHmodel, Δ(x) should experience the sign change
within the domain wall for the convergence of the zero-energy solution
mathematically, which implies the existence of a gap-closing phase transi-
tion point x0 satisfying Δ(x0) = 0, where a zero-energy state is localized.

Similarly, in the generalized SSH model,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðxÞ2 þmzðxÞ2

q
should be zero

within the domain wall due to the mathematical convergence of the zero-
energy solution and boundary condition of wavefunctions, which implies
that a topological state is localized at the gap-closing point where a phase
transition occurs. IfΔ(x) andmz(x) become zero at different positions along
the chain, then there will be no zero-energy domain-wall states (Fig. 3).

Note that the existence of the gap-closing point along the chain is a
necessary condition for the existence of zero-energy domain-wall states. If
one adds a large on-site potential at the center of the domainwall, the energy
of the domain-wall state will be shifted fromzero.However, such a large on-
site potential will result in the absence of a gap-closing point, which violates
the necessary condition and hence is not allowed in this work.

Moreover, due to the topological stability of our domain-wall states, the
details are also unimportant in the lattice system. We show that the zero-
energy state is robust regardless of whether or not the gap-closing position

xc, which satisfies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðxcÞ2 þmzðxcÞ2

q
¼ 0, is at the center of an atom (see

Fig. S4 for more details). Also, the zero-energy domain-wall state is stable
even when two characteristic lengths are different (Fig. S2).

To further understand the topological nature of the zero-energy
domain-wall state, we elaborate on the Berry phase difference between two
corresponding domains and apply the bulk-boundary principle. The Berry
phase difference is calculated from the Berry curvature by applying Stoke’s
theorem. Here, the Berry curvature is defined in 2D space-time, with the
additional auxiliary time axis, i.e., the system is adiabatically transformed
fromone to another groundstate along thedotted lines seen inFig. 2a as time
passes (see more details in Supplementary Note 3). Figure 4d–f shows the
calculated Berry curvature distributions for the three types of adiabatic
evolution that correspond to the domain-wall configurations in Fig. 2a. The
resulting Berry phase difference between the phases is quantized to π
(arbitrary) forboth theSSHandAI (RM)domainwalls,which canbe seen in
Table 1. In the scope of themodern theory of polarization28, the SSH andAI
domain walls have quantized electric polarizations. Moreover, we can see
the topological nature of the domain-wall states more clearly in the Berry
curvature distributions in Fig. 4d–f; in theAI cases, the singular points in the
Berry curvature indicate gap closing and mimics topological phase transi-
tion, similar to the SSH case. On the other hand, there is no such topological
phase transition point in the RM case.

We suggest a guiding principle that extends the conventional bulk-
boundary correspondence regarding topological domain-wall states. The
essential quantity is not the Berry phase of each domain itself but the Berry

Fig. 3 | Two types of chains without crossing the
gap closing point. a Schematics of two types of
configurations connecting A0 and B″ phases without
crossing the gap closing point. The purple and
orange lines indicate configurations with x1 < x2 and
x1 > x2, respectively, where x1 and x2 are defined as
the order-parameter-vanishing points satisfying
Δ(x1) = 0 and mz(x2) = 0 for the energy-valued
dimerization Δ and onsite energy mz. Energy
eigenvalues for the chain configurations along the
b purple (x1 = 123, x2 = 127), and c orange (x1 = 127,
x2 = 123) lines. The parameters are the same as the
AI domain-wall configuration of Fig. 2.
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phase difference between two domains that create the domain wall, as
shown inFig. 1b, c. Suchaprinciple canbe easily applied to theSSHdomain-
wall configurations and the corresponding topological domainwall state. As
shown in Fig. 2a, the Berry phase of the topologically trivialA groundstate is
zero while that of the non-trivialB groundstate is π, which endows the zero-
energy domain-wall state in the SSH model due to the bulk-boundary
principle. On the other hand, for the AI systems, the four groundstates
(A0;A00;B0;B00) have Berry phases which are non-zero but also not π.
Therefore, to have a topological domain wall, two groundstates withΔϕ = π
need to form a domain wall. For the blue and green lines of Fig. 2a, it can be
seen that the value of Δϕ will be π− 2δ and π, respectively, and therefore
only the domain-wall configuration of the green line will have topological
domain-wall states, which is consistent with the results that we have given.
Therefore, the quantized Berry phase difference and the gap-closing phase
transition guarantee the topological zero-energy domain-wall state. This
indicates that even for seemingly trivial classes, zero-energy domain-wall
states can emerge, which extends the conventional bulk-boundary
correspondence.

Generalization to superconducting systems
We extend our concept and method from electronic to superconducting
systems. Like the SSH chain, the Kitaev chain35 is one prototypical system
that hosts topological zero-energy boundary states (i.e.,Majorana fermions)
(Fig. 5a). It is a spinless single-orbital fermionic lattice tight-binding model
with the nearest-neighbor hopping t, and p-wave superconducting pairing

potential Δp. The Bloch Bogliubov-de-Gennes (BdG) Hamiltonian is
given as

HBDIðkÞ ¼ � 2t cos kþ μ
� �

τz þ 2Δp sin kτy; ð5Þ

where the Pauli matrices τi indicates the Nambu space and μ is the onsite
chemical potential. The Hamiltonian HBDI has time-reversal (T =K),
particle–hole (C = τxK), and chiral (Γ = τx), implying the topological BDI
class in the tenfold classification table (Fig. 1(a)) because T2 =C2 = 1. The
system is topological when ∣μ∣<∣2t∣, and trivial otherwise. Therefore, two
groundstates are topologically distinguishable, and a domain-wall config-
uration connecting them generates a topological zero-energy Majorana
fermion (Fig. 5a).

On the contrary, we now introduce the minimal spinless model
belonging to the topologically trivial CI class as a representative model
among the superconducting classes in Fig. 1a. Thismodel will be denoted as
the generalizedKitaevmodel.Unlike the conventionalKitaev chainutilizing
p-wave pairing potential only, we consider both s- and p-wave pairing
potentials to examine the existence of theMajorana zeromodes. Themodel
is essentially a two-orbital model, which will be discussed later. Thus, the
modelHamiltonianHCI is comprisedof threepartsHn,Hs, andHpwhich are
normal state, s- and p-wave pairing Hamiltonians (Fig. 5b):

HCI ¼ Hn þ Hs þ Hp;

Hn ¼
X
γ;j

�t cyγ;jcγ;jþ1 þ cyγ;jþ1cγ;j
� �

� μcyγ;jcγ;j;

Hs ¼
X
j

Δs �c1;jc2;j þ c2;jc1;j
� �

þ h:c:;

Hp ¼
X
γ;j

Δp cγ;jþ1cγþ1;j � cγ;jcγþ1;jþ1

� �
þ h:c:;

where cyγ;j/cγ,j indicates the creation/annihilation operator for orbital γ = 1, 2
at site j. Here, μ, t,Δs, and Δp are the chemical potential, nearest-neighbor
hopping parameter, and s- and p-wave pairing gaps, respectively. Thus, the
Bloch BdG Hamiltonian in the basis of ðcy1; cy2; c1; c2Þ is given by

HCIðkÞ ¼ � 2t cos kþ μ
� �

τz þ Δsτyσy þ 2Δp sin kτyσx; ð6Þ

where the Pauli matrices τi and σj indicate the Nambu space and orbital
degrees of freedom. Generally, when Δs ≠ 0, the Hamiltonian HCI(k) has
time-reversal (T =K), particle–hole (C = τyσzK), and chiral (Γ = τyσz)
symmetries, implying the CI class; T2 = 1 and C2 =− 1. On the other hand,
when Δs = 0, the Hamiltonian HCI(k) is equivalent to two independent
Kitaev Hamiltonians HBDI(k) in Eq. (5) because HCI(k) can be block-
diagonalized according to the eigenvalues of σx in the last termofHCI(k) and
each subblockHamiltonian is of the form of the Kitaevmodel.Moreover, in
each Kitaev Hamiltonian, C0 ¼ τxK with C02 ¼ 1 plays the role of the
particle–hole symmetry operator, implying the topological BDI class. For
this reason,whenΔs = 0,wedenote the generalizedKitaevmodel as a double
Kitaev (DK) model. For convenience, when Δs = const., we denote
the generalized Kitaev model as a constant s-wave (CSW) model. In this
case, the constant Δs term anticommutes with the other terms of the
Hamiltonian, therefore acting as a Dirac mass term.

Unlike the Kitaev model described by the 2 × 2 BdGHamiltonian, the
simplest representation of the CI class is a 4 × 4 matrix BdG Hamiltonian
(i.e., two-orbital model) due to the Fermi statistics, Δ(k)T =−Δ(− k),
and symmetry constraints of the particle–hole symmetry, CH(k)
C−1 =−H(− k), which forbids the presence of s- and p-wave pairings for a
1D chain within a 2 × 2 BdG Hamiltonian (see details in Supplementary
Note 2.1). Note that theHamiltonian in Eq. (6) is generic because symmetry
analysis forbids pairing terms that are proportional to neither τyσy nor τyσx.

Wenowdiscuss thedegenerate groundstates and thedomain-wall state
connecting them. For simplicity, we focus on the physics near the Fermi
level (that is, near k = 0), where the superconducting gap opens. Moreover,

Table 1 | Quantized Berry phase differences between two
groundstates in generalized Su–Schrieffer–Heeger (SSH)
models

Berry phase difference

SSH π

RM 0.61π

A π

AI π

AII (π, π)

All cases, except for the Rice-Mele (RM) domain wall, exhibit quantized values of π and manifest
zero-energy domain-wall states, consistent with the principles of the extended bulk-boundary
correspondence. The corresponding distributions of Berry curvature can be found in Figs. 2d–f and
S1c, f for SSH, RM, AI, A, and AII domain walls, respectively. For the spinful AII class, two values
enclosed in parentheses represent results for individual up and down spins.

Fig. 4 | Response to disorder and the Berry curvature for the generalized
Su–Schrieffer–Heeger (SSH) models. The energy eigenvalues with respect to the
quasi-periodic disorder strength λ for the a SSH, b Rice–Mele (RM), and c AI
domain-wall configurations. Normalized Berry curvature distributions for the
d SSH, e RM, and fAI systems under the adiabatic evolution time parameter (t). The
parameters are the same as in Fig. 2.
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we take a limit of large Δp where the p-wave dispersion is more dominant
than the electronic dispersion 2t cos k, i.e., a degenerate limit. Then, the

energy eigenvalue of Eq. (6) is given by E ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μ2 þ Δ2

s þ 4Δ2
psin

2k
q

,

where �μ ¼ μþ 2t is an redefined chemical potential. Depending on �μ and
Δs, there exist various groundstates, which indicates that �μ andΔs act as our
order parameters of the system with a fixed Δp (Fig. 5c). For Δs = 0, there
exist two degenerate groundstates A and B, which are of the BDI class as
discussedbefore.On theother hand,whenΔs ≠ 0, the combinationofΔs and
�μ make up four energetically degenerate groudstates (A0;B0;A00;B00)
depending on the signs of �μ and Δs, as shown in Fig. 5c.

We now consider three types of domain-wall configurations con-
necting groundstates;A→ B,A0 ! B0, andA0 ! B00, givenby the red, blue,
and green dotted lines in Fig. 5c, respectively. We denote these three
domain-wall configurations as the double Kitaev (DK), constant s-wave
(CSW), and CI chains, respectively. If Δs(x) = 0 throughout the chain and
the redefined chemical potential varies as �μðxÞ ¼ μ0 tanhðx=ξÞ connecting
the A and B groundstates, the domain-wall configuration becomes the DK
chain.Here, ξ is the characteristic lengthof thedomainwall. TheDKchain is
equivalent to two independent Kitaev chains because the DK chain
Hamiltonian can also be block-diagonalized, as discussed before.Moreover,
whenΔs(x) is additionally interpolated, such asΔsðxÞ ¼ Δs;0 tanhðx=ξÞ, the
CI domain-wall configuration connectingA0 and B″ groundstates emerges,
which can be seen in Fig. 5b. Without loss of generality, we take the char-
acteristic lengths of the order parameters of �μðxÞ andΔs(x) to be equal. Note
that even if the characteristic lengths are different, there would be no sig-
nificant difference regarding the topological zero-energy domain-wall states
for the CI chain, as discussed in the case of the generalized SSH chain;
solving the effective Hamiltonian in Eq. (8) allows the general solution
independent of the details to be obtained, which is discussed later. For
comparison, the CSW domain-wall configuration connecting A0 and B0

groundstates (Fig. S5(b)) is also considered where Δs(x) =Δs,0 = const.,
which prohibits a zero-energy state. That is, due to Δs behaving as a Dirac

mass term, the energy eigenvalues of the ingap states are given as E = ±Δs,0,
similar to the RM chain (see more details in Supplementary Note 2.2).
Therefore, theDK,CSW,andCI chains are comparable to the SSH,RM, and
AI chains in the electronic systems, respectively.

The energy spectra for the three domain-wall configurations are
shown in Fig. 5d; the DK and CSW domain-wall states are located at zero
and non-zero, respectively, as expected. On the other hand, unexpected
Majorana zero-energy modes emerge in the CI domain-wall states. To
compare the domain-wall states with the usual edge states, we also
investigate the ingap states localized at the left edge for the three cases
(Fig. 5d). For the DK case, the left edge states are zero-energy ingap
states. On the other hand, for the CSW and CI cases, the left edge states
are non-zero in-gap states located at E = ± Δs, which can be seen as in-gap
states split by the Dirac mass term Δs. Note that, for the conventional
Kitaev chain case, there are two zero-energy ingap states, which are each
localized at the domain wall and the left edge, as can be seen in Fig. S7a.

The stability of the zero-energy Majorana domain-wall states is
examined using a similar onsite quasi-periodic disorder used for the gen-
eralized SSH cases33,34. The additional onsite potential at orbital γ = 1, 2 at
site i is given by ± �1ð Þγλ cos 2πβi

� �
with disorder strength λ and the

inverse golden ratio β, where the positive and negative overall signs indicate
the disorders in the electron and hole parts of the BdG Hamiltonian,
respectively. As shown in Fig. 6a–c, the domain-wall states for the DK and
CI chains show robustness against random disorder, similar to the con-
ventional Kitaev model of Fig. S7b, while that of CSW does not.

Using a corresponding low-energy effective Hamiltonian to the gen-
eralized Kitaev Hamiltonian in Eq. (6) and the Jackiw–Rebbi method, we
analyze the origin and topological stability of the Majorana zero-energy
domain-wall state. Taking the Dirac approximation at k = 0, the effective
Hamiltonian is obtained as

HCI
eff ¼ ��μ ðxÞτz þ ΔsðxÞτyσy þ 2Δpkτyσx; ð7Þ

Fig. 5 |GeneralizedKitaev chains. a Schematics for a domain-wall configuration for
the Kitaev chain in the Majorana fermion representation, where the gray oval
indicates a fermion in the physical lattice, and the spheres inside indicate Majorana
fermions. The domain-wall configuration connects from topological to trivial
groundstates, where the black (red) sphere indicates a zero-energy Majorana fer-
mion localized on the left edge (at the center) of each chain. b Schematics for two
groundstates and a domain-wall configuration for the CI chain in the Majorana
fermion representation. The blue and orange lines indicate s- and p-wave pairings,
respectively; solid (dotted) lines indicate a positive (negative) expectation value. For
simplicity, the black lines represent the effects of the chemical potential and hopping.
The squares with two green circles each indicate Majorana states localized at the
center of the chain. c Order-parameter space composed of the redefined chemical
potential (�μ ¼ μþ 2t) and s-wave pairing function (Δs). The black line in each Bloch
sphere indicates the trajectory of the d vector for each groundstate. ϕ indicates the

value of the Berry phase of each groundstate, where δ is a positive number. The red,
blue, and green dotted lines indicate the double Kitaev (DK), constant s-wave
(CSW), and CI chains. d Energy eigenvalues and the wavefunctions of the corre-
sponding ingap states for DK, CSW, and CI chains. The ingap states are dis-
tinguished by the colors and magnified by two for clarity. The DK and CI chains
show topological zero-energy domain-wall states indicated by red and green. On the
other hand, the CSWchain shows non-zero-energy domain-wall states withE = ± Δs

indicated by blue. For the edge states indicated by black open circles, theCSWandCI
chains exhibit non-zero-energy edge states with E = ± Δs, while only the DK chain
shows topological zero-energy edge states. For all three cases, the hopping parameter
and p-wave pairings are fixed at t = 1, Δp = 10, respectively, and the chemical
potential μ is interpolated from 1 to −5. The characteristic length is ξ = 5, and the
number of sites is L = 4n = 1600. The s-wave pairing term is fixed at 0, 0.3, or
interpolated from 0.3 to −0.3 for the DK, CSW, and CI chains, respectively.
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where k =− i∂x in the real space. For simplicity, the spatial functions, �μðxÞ
and Δs(x) are denoted as �μ and Δs. Due to �μðxÞ and Δs(x) both being x-
dependent, it is difficult to find a general Jackiw–Rebbi solution. Thus, we
consider a simpler case where �μðxÞ ¼ μ0 tanhðx=ξÞ and ΔsðxÞ ¼
Δ0 tanhðx=ξÞwith μ0 < 0 andΔ0 < 0without loss of generality. Note that the
solution for the general �μðxÞ and Δs(x) is given below. The two resulting
zero-energy domain-wall solutions are

ψiðxÞ ¼ N exp ∓
1

2Δp

Z x

0
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
s þ �μ2

q" #
ϕi;

whereN is the normalization factor, i= 1, 2, and the upper and lower signs
indicate x > 0 and x < 0 regions, respectively. The x-independentϕi is given by

ϕ1 ¼ �Δs;0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
s;0 þ μ20

q
; 0; 0; μ0

� �T
;

ϕ2 ¼ 0; μ0;�Δs;0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
s;0 þ μ20

q
; 0

� �T
:

The two wavefunctions at zero energy are degenerate and form Majorana
pairs in the simplified forms

Ψ± ðxÞ ¼ ψ1ðxÞ±ψ2ðxÞ;

satisfying the Majorana condition ofΨc
± ¼ Ψ± . This analytically obtained

wavefunction is consistent with the wavefunctions obtained numerically
using the tight-binding method in Figs. 5d and S5d. It should be noted that
similar to the Jackiw–Rebbi solution to Eq. (3), for ϕ1 and ϕ2 to be
continuous, a sign change of �μðxÞ andΔs(x) must occur at x = 0. This is also
consistent with the guiding principle regarding the Berry phase of two
interpolating states to be quantized.

Similar to the case of the generalized SSH model, to find a general
solution to the zero-energy domain-wall states, Eq. (7) is equivalently
transformed into that of theKitaevmodel throughanSU(4) transformation.
Under a SU(4) unitary transformation via unitary operator

U ¼ exp i
2

π
2 τ0 þ tan�1 ΔsðxÞ

�μðxÞ
� �

τx

� �
σy

h i
, the effective Hamiltonian is

transformed into

HCI0
eff ¼ � sgn ð�μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μ2 þ Δ2

s

q
τz þ 2Δpkþ F

� �
τyσz ; ð8Þ

wherek =− i∂x is themomentumoperatorwhile�μðxÞ andΔs(x) aredenoted

as �μ and Δs for simplicity. FðxÞ ¼ �∂xΔptan
�1 ΔsðxÞ

�μðxÞ
� �

rapidly converges to

zero as ∣x∣ ! 1 and is written as F for simplicity. This F term, as was the
case of the SSH model, acts as an oscillation term and, therefore, does not
affect the topological nature of the zero-energy solution. Note that the
Hamiltonian inEq. (8) is that of the two independentKitaevmodels because
thisHamiltonian can be block-diagonalized depending on the eigenvalue of
σz and each subblock Hamiltonian is the effective Hamiltonian of the
Kitaev chain.

Without loss of generality, we select �μðþ1Þ<0, �μð�1Þ>0,
Δs(+∞) < 0, and Δs(−∞) > 0. Then, the Jackiw–Rebbi zero-energy solution
of this Hamiltonian is given by

ψeff
1 ðxÞ ¼ N 0 exp �

R x
dx0iFðx0Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δsðx0Þ2þ�μðx0Þ2

p
2Δp


 �
�1; 0; 1; 0ð ÞT ;

ψeff
2 ðxÞ ¼ N 0 exp �

R x
dx0iFðx0 Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δsðx0Þ2þ�μðx0 Þ2

p
2Δp


 �
0; 1; 0; 1ð ÞT ;

whereN 0 is thenormalization factor, and theupper and lower signs indicate
the x > 0 and x < 0 regions, respectively. These wavefunctions are, as
expected, indicates Majorana fermions. Our zero-energy solution is
topological as it is independent of the precise form of �μðxÞ and Δs(x). It
only depends on the sign change of �μðxÞ and Δs(x) across the domain wall,
and the Hamiltonian of Eq. (8) is similar to that of the conventional Kitaev
model. It can be seen that the first term of Eq. (8) plays the role of the
chemical potential in the conventional Kitaev chain. Moreover, the
Hamiltonian HCI

eff
0
has time-reversal (T =K), particle–hole (C = τxK), and

chiral (Γ = τx) symmetries, implying the BDI class. As was the case for the

generalized SSH model,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μ2 þ Δ2

s

q
should be zero within the domain wall

for the emergence of the zero-energy Majorana domain-wall states due to
the convergence and boundary conditions of the wavefunction of the
domain-wall states. This is consistent with the gap-closing phase-transition
condition.

Ascending from the low-energy limit and considering the full
Hamiltonian, the Berry phase, and as a result, the extended bulk-boundary
correspondence is used to explore the topological nature of the Majorana
zero-energy domain-wall states further. Usually, a winding number
describes the topological order of a superconducting system1,2. Equivalently,
the Berry/Zak phase can be applied24,25,36. Similar to the generalized SSH
model, the Berry curvature is defined in 2D space-time, and from the Berry
curvature, the Berry phase difference between the two domains is obtained.
Figure 6d–f shows the calculated Berry curvature for the three domain-wall
configurations given inFig. 5c. TheBerry curvature for all three cases is zero,
implying no change in the Berry phase. However, under a basis change of
ðcy1; cy2; c1; c2Þ ! ðcy1; c2; cy2; c1Þ, HCI(k) can be block-diagonalized as

H 0
CIðkÞ ¼ � 2t cos kþ μ

� �
σz þ Δsτzσx þ 2Δp sin kτzσy;

which is grouped into subblocks according to the τz eigenvalues. As seen
fromthe electron–hole picture (Fig. S6a), suchbasis change is alloweddue to
the interacting configuration within the model. It is for this Hamiltonian
H0

CIðkÞ, where the d vector for the groundstates shown in Fig. 5c is defined
via H0

CIðkÞ ¼ τzðdxσx þ dyσyÞ þ dzσz . The Berry phases of individual
subblocks arenowexamined.The subblocks for theDKandCIdomain-wall
systems have a quantized Berry phase difference of π and gap closing in the
degenerate limit, similar to the conventional Kitaev system as shown in
Fig. S7c. Regarding the subblocks for the CSW domain-wall system, the

Fig. 6 | Response to disorder and the Berry curvature for the generalized Kitaev
models. Energy eigenvalues for the a double Kitaev (DK), b constant s-wave (CSW),
and c CI domain-wall configurations with respect to the disorder strength λ. The
energy eigenvalues for λ = 0 are equal to the energy eigenvalues given in Fig. 5d. In
a, c, the topological zero-energy domain-wall states are stable for reasonable
strength of disorders, while the two edge states spread out as λ increases because the
disorder hybridizes two edge states. In b, all ingap states are not robust out as λ
increases because they are non-topological. Normalized Berry curvature distribu-
tions for the d DK, e CSW, and f CI systems under the adiabatic evolution time
parameter (t). Berry curvature distributions for the subblocks are given on the right.
In d, f, the sharp points indicate the singular point where the gap is closed and a
topological phase transition occurs. The Berry curvature is blurred in (e), implying
no topological phase transition and non-quantization of the Berry phase difference.
The parameters and the domain-wall configurations are the same as in Fig. 5.
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Berry phase difference is not quantized, indicating that the topological zero-
energy state is forbidden (Table 2). As was the case for the generalized SSH
model, Majorana zero-energy domain-wall states can also emerge in
seemingly trivial systems via our extended bulk-boundary correspondence.

Conclusion
So far, the discussion has focused on the generalized SSHandKitaevmodels
for the AI and CI classes. Regarding the other three classes (A, AII, C), the
methodology and the results thereafter are similar to those of the AI (for A,
AII) or CI (for C) classes, which can be seen in the Supplementary
Notes 1 and 2, respectively. We, therefore, conclude that even systems
classified as trivial can possess zero-energy topological domain-wall states.
Physical realization of such systems inevitably results in quantized electric
polarization for the generalized SSH model and Majorana zero modes for
the generalized Kitaev models. Our results are for the simplest model pos-
sible, however, there is no loss of generality, and the extensions will be
numerous. For instance, both spinless and spinfulmodels for theA class are
suggested in Supplementary Note 1, and two generalized Kitaev models are
suggested for the C class in Supplementary Note 2.

The realization of the generalized SSHmodel is expected in various 1D
electronic systemswhere the tuning of parameters and generating a domain
wall is relatively easier, e.g., atomic nanowires37,38, artificial electronic
lattices39,40, graphene nanoribbons41,42, optical and plasmonic systems9,10, etc.
Application for the generalized Kitaev model is also expected in super-
conducting systems, e.g., proximity-effect-induced superconductors43–47

and hybrid 1D superconductors48–50. As these domain-wall states are points,
it could be possible to realize such domain-wall states in higher-order
topological systems51–55. Besides closed systems, our idea can also be applied
to non-hermitian and open systems56–59. Expanding on our findings and
their realization could open new platforms in topological science, with
potential applications in quantum computation and topological devices,
including topological lasers10,13,14.

Methods
The tight-bindingmethod was used to calculate the numerical results of the
domain-wall configurations for both electronic and superconducting sys-
tems. For analytical results, the Jackiw–Rebbi formalism is used. For
Majorana fermion representation in Fig. 5, the relation for the ithMajorana
fermion operator at the γ orbital of the jth site, ai,γ,j, is given by

a1;γ;j ¼
1ffiffiffi
2

p cγ;j þ cyγ;j
� �

; a2;γ;j ¼ � iffiffiffi
2

p cγ;j � cyγ;j
� �

;

where cyγ;j and cγ,j indicate the creation and annihilation operators for the
electron at the γ orbital of the jth site.

The Berry curvature of the generalized SSH and Kitaev models are
calculated using a cyclic adiabatic time evolution of a 1D Hamiltonian

H(k, τ) with a time τ. This 1D lattice system is expanded into a 2D lattice
system by considering the time τ as an extra dimension. This allows the
derivation of a Berry curvature along k and τ, leading to the Berry phase of
the domain-wall configurations given in Tables 1 and 2. Further details can
be found in Supplementary Note 3.

Data availability
The data used in this paper are available fromM.J.P. or S.C. on reasonable
request.

Received: 8 February 2024; Accepted: 5 July 2024;

References
1. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A.W. Classification of

topological insulators and superconductors in three spatial
dimensions. Phys. Rev. B 78, 195125 (2008).

2. Chiu, C.-K., Teo, J. C., Schnyder, A. P. & Ryu, S. Classification of
topological quantum matter with symmetries. Rev. Mod. Phys. 88,
035005 (2016).

3. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors.
Rev. Mod. Phys. 83, 1057 (2011).

4. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev.
Mod. Phys. 82, 3045 (2010).

5. He, Q. L., Hughes, T. L., Armitage, N. P., Tokura, Y. & Wang, K. L.
Topological spintronics and magnetoelectronics. Nat. Mater. 21,
15–23 (2022).

6. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological
insulators. Nat. Rev. Phys. 1, 126–143 (2019).

7. Atala, M. et al. Direct measurement of the Zak phase in topological
Bloch bands. Nat. Phys. 9, 795–800 (2013).

8. Cooper, N., Dalibard, J. & Spielman, I. Topological bands for ultracold
atoms. Rev. Mod. Phys. 91, 015005 (2019).

9. Meier, E. J., An, F. A. & Gadway, B. Observation of the topological
soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 7,
13986 (2016).

10. Ozawa,T.etal.Topologicalphotonics.Rev.Mod.Phys.91, 015006(2019).
11. Zhou, X.-F. et al. Dynamically manipulating topological physics and

edgemodes in a singledegenerate optical cavity.Phys.Rev. Lett.118,
083603 (2017).

12. Zeng, L.-S., Shen, Y.-X., Peng, Y.-G., Zhao, D.-G. & Zhu, X.-F.
Selective topological pumping for robust, efficient, and asymmetric
sound energy transfer in a dynamically coupled cavity chain. Phys.
Rev. Appl. 15, 064018 (2021).

13. Nayak,C., Simon,S.H., Stern,A., Freedman,M.&DasSarma,S.Non-
Abelian anyons and topological quantum computation. Rev. Mod.
Phys. 80, 1083–1159 (2008).

14. Stern, A. & Lindner, N. H. Topological quantum computation-from
basic concepts to first experiments. Science 339, 1179–1184 (2013).

15. Shiozaki, K. & Sato, M. Topology of crystalline insulators and
superconductors. Phys. Rev. B 90, 165114 (2014).

16. Cornfeld, E. & Chapman, A. Classification of crystalline topological
insulators and superconductors with point group symmetries. Phys.
Rev. B 99, 075105 (2019).

17. Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry
indicators and anomalous surface states of topological crystalline
insulators. Phys. Rev. X 8, 031070 (2018).

18. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional
Dirac semimetalswith nontrivial topology.Nat. Commun.5, 4898 (2014).

19. Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals in
three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

20. Wang, Z. et al. Sub-symmetry-protected topological states. Nat.
Phys. 19, 992–998 (2023).

21. Guo, C. et al. Quasi-symmetry-protected topology in a semi-metal.
Nat. Phys. 18, 813–818 (2022).

Table 2 | Quantized Berry phase differences for the
generalized Kitaev models

Total Subblock 1 Subblock 2

Kitaev π NA NA

DK 0 π −π

CSW 0 0.94π −0.94π

CI 0 π −π

C 0 π −πeC 0 π −π

All cases, except for the Kitaev model, exhibit a total Berry phase difference of zero. On the other
hand, with the exception of the constant s-wave (CSW) case, the quantization of Berry phases is

observedwithin their respective subblock for double Kitaev (DK), CI, C, and eCcases. Consequently,
these cases adhere to a extended bulk-boundary correspondence. Detailed Berry curvature

distributions can be found in Figs. 5d–f, S6d, g, and S7c for DK, CSW, CI, C, eC, and Kitaev systems,
respectively.

https://doi.org/10.1038/s42005-024-01737-z Article

Communications Physics |           (2024) 7:243 8



22. Haldane,F.Berrycurvatureon the fermi surface:anomaloushall effectas
a topological fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

23. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in
insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

24. Berry,M. V. Quantal phase factors accompanying adiabatic changes.
Proc. R. Soc. Lond. A Math. Phys. Sci. 392, 45–57 (1984).

25. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62,
2747–2750 (1989).

26. Jackiw,R. &Rebbi, C. Solitonswith fermion number 1/2.Phys. Rev.D.
13, 3398–3409 (1976).

27. Jackiw, R. & Schrieffer, J. R. Solitons with fermion number 1
2 in

condensed matter and relativistic field theories. Nucl. Phys. B 190,
253–265 (1981).

28. Resta,R.Modern theoryofpolarization in ferroelectrics.Ferroelectrics
151, 49–58 (1994).

29. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-
reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

30. Han, S.-H., Jeong, S.-G., Kim, S.-W., Kim, T.-H. &Cheon, S. Topological
features of ground states and topological solitons in generalized Su-
Schrieffer-Heegermodels using generalized time-reversal, particle-hole,
and chiral symmetries. Phys. Rev. B 102, 235411 (2020).

31. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene.
Phys. Rev. Lett. 42, 1698–1701 (1979).

32. Rice,M. J. &Mele, E. J. Elementary excitationsof a linearly conjugated
diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

33. Roy, S., Mishra, T., Tanatar, B. & Basu, S. Reentrant localization
transition in a quasiperiodic chain.Phys. Rev. Lett. 126, 106803 (2021).

34. Roy, S., Nabi, S. N. & Basu, S. Critical and topological phases of
dimerized kitaev chain in presence of quasiperiodic potential. Phys.
Rev. B 107, 014202 (2023).

35. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physica
44, 131 (2001).

36. Viyuela, O., Vodola, D., Pupillo, G. & Martin-Delgado, M. A.
Topological massive Dirac edge modes and long-range
superconducting Hamiltonians. Phys. Rev. B 94, 125121 (2016).

37. Cheon, S., Kim, T.-H., Lee, S.-H. & Yeom, H. W. Chiral solitons in a
coupled double Peierls chain. Science 350, 182–185 (2015).

38. Kim, T.-H., Cheon, S. & Yeom, H. W. Switching chiral solitons for
algebraic operation of topological quaternary digits. Nat. Phys. 13,
444–447 (2017).

39. Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in
engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

40. Huda, M. N., Kezilebieke, S., Ojanen, T., Drost, R. & Liljeroth, P.
Tuneable topological domainwall states in engineered atomic chains.
Npj Quantum Mater. 5, 17 (2020).

41. Li, J. et al. Topological phase transition in chiral graphenenanoribbons:
from edge bands to end states. Nat. Commun. 12, 5538 (2021).

42. Gröning,O. et al. Engineeringof robust topological quantumphases in
graphene nanoribbons. Nature 560, 209–213 (2018).

43. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana
fermions at the surface of a topological insulator.Phys. Rev. Lett. 100,
096407 (2008).

44. Nakosai, S., Tanaka, Y. & Nagaosa, N. Two-dimensional p-wave
superconducting states with magnetic moments on a conventional
s-wave superconductor. Phys. Rev. B 88, 180503 (2013).

45. Stanescu, T. D., Sau, J. D., Lutchyn, R. M. & Sarma, S. D. Proximity
effect at the superconductor–topological insulator interface. Phys.
Rev. B 81, 241310 (2010).

46. Guan, S.-Y. et al. Superconducting topological surface states in the
noncentrosymmetric bulk superconductor pbtase2. Sci. Adv. 2,
e1600894 (2016).

47. Chang,T.-R. etal. TopologicalDiracsurfacestatesandsuperconducting
pairing correlations in pbtase 2. Phys. Rev. B 93, 245130 (2016).

48. Nadj-Perge,S.etal.ObservationofMajorana fermions in ferromagnetic
atomic chains on a superconductor. Science 346, 602–607 (2014).

49. Kim, H., Rózsa, L., Schreyer, D., Simon, E. &Wiesendanger, R. Long-
range focusing of magnetic bound states in superconducting
lanthanum. Nat. Commun. 11, 4573 (2020).

50. Kim, H. et al. Toward tailoring Majorana bound states in artificially
constructed magnetic atom chains on elemental superconductors.
Sci. Adv. 4, eaar5251 (2018).

51. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4,
eaat0346 (2018).

52. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric
multipole insulators. Science 357, 61–66 (2017).

53. Herrera,M. et al. Cornermodes of the breathing kagome lattice: origin
and robustness. Phys. Rev. B 105, 085411 (2022).

54. Proctor, M., Blanco de Paz, M., Bercioux, D., García-Etxarri, A. &
Arroyo Huidobro, P. Higher-order topology in plasmonic kagome
lattices. Appl. Phys. Lett. 118, 091105 (2021).

55. Lee, S. et al. Evidence of surface p-wave superconductivity and
higher-order topology in MoTe2. Preprint at arXiv https://doi.org/10.
48550/arXiv.2406.07260 (2024).

56. Yao, S. & Wang, Z. Edge states and topological invariants of non-
hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

57. Lubatsch, A. & Frank, R. Behavior of floquet topological quantum
states in optically driven semiconductors. Symmetry 11, 1246 (2019).

58. Song, F., Yao, S. & Wang, Z. Non-hermitian skin effect and chiral
damping in openquantumsystems.Phys.Rev. Lett.123, 170401 (2019).

59. Dangel, F., Wagner, M., Cartarius, H., Main, J. & Wunner, G.
Topological invariants in dissipative extensions of the Su-Schrieffer-
Heeger model. Phys. Rev. A 98, 013628 (2018).

Acknowledgements
This work was supported by the National Research Foundation of Korea
(NRF), funded by the Ministry of Science and ICT (MSIT), South Korea
(Grants Nos. NRF-2022R1A2C1011646, NRF-2022M3H3A1085772,
NRF-2022M3H3A1063074, RS-2023-00252085, and RS-2023-00218998).
This work was also supported by the Quantum Simulator Development
Project forMaterials Innovation through theNRF funded by theMSIT, South
Korea (Grant No. NRF-2023M3K5A1094813). S.H. Han, M. Kang, and
S. Cheon also acknowledge support from the POSCO Science Fellowship
of the POSCO TJ Park Foundation.

Author contributions
S.-H.H., M.K., M.J.P, and S.C. conceived and designed the project. S.-H.H.
and M.K. performed the tight-binding calculations and analyzed the results
under the supervision ofM.J.P andS.C. All the authors discussed the results
and contributed to the writing of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42005-024-01737-z.

Correspondence and requests for materials should be addressed to
Moon Jip Park or Sangmo Cheon.

Peer review informationCommunications Physics thanks the anonymous
reviewers for their contribution to the peer review of this work. A peer review
file is available

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42005-024-01737-z Article

Communications Physics |           (2024) 7:243 9

https://doi.org/10.48550/arXiv.2406.07260
https://doi.org/10.48550/arXiv.2406.07260
https://doi.org/10.48550/arXiv.2406.07260
https://doi.org/10.1038/s42005-024-01737-z
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42005-024-01737-z Article

Communications Physics |           (2024) 7:243 10

http://creativecommons.org/licenses/by/4.0/

	Quantized polarization and Majorana fermions beyond tenfold classification
	Results and discussion
	Extended bulk-boundary correspondence for electronic systems
	Generalization to superconducting systems

	Conclusion
	Methods
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




