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Abstract: The C-parameter event-shape distribution for e+ e− annihilation into hadrons is com-
puted in the framework of SCET including input from fixed-order perturbation theory. We calcu-
late all missing ingredients for achieving N3LL resummation accuracy in the cross section, which is
then matched onto O(α3

s) fixed-order results. Hadronization power corrections are incorporated as
a convolution with a nonperturbative shape function. Wide-angle soft radiation effects introduce
an O(ΛQCD) renormalon ambiguity in the cross section, which we cure by switching to the Rgap
short-distance scheme. We also include hadron mass effects, but find their effect is rather small.
Performing fits to the tail of the C-parameter distribution for many center of mass energies we find
that the strong coupling constant is αs(mZ) = 0.1123± 0.0015, with χ2/dof = 0.99.

Introduction

The LEP e+ e− collider, previously located at CERN, has delivered an enormous amount of highly
accurate experimental data, which can be used to explore the theory of strong interactions in its
high-energy regime. To study Quantum Chromodynamics (or QCD) at high energies one needs to
deal with jets: highly boosted and collimated bunches of particles that can be seen as the remnants
of the underlying partons created at very short distances. One appealing strategy for describing jet
dynamics is through event shapes, infrared- and collinear-safe observables which are constructed
from the energy and momenta of all the produced hadrons (in this sense event shapes are global
quantities). They are designed to measure geometrical properties of the distribution of particles,
and in particular they quantify how “jetty” the final state is. Additionally, being global observables,
it is possible to compute high-order perturbative corrections, carry out log resummation to higher
order, show factorization and exponentiation properties, and use factorization to control power
corrections.

One of the main uses of event-shape distributions is the determination of the strong coupling
constant αs. The advantage of event shapes over other inclusive observables is that they are
essentially proportional to αs, rather than probing αs via corrections to a leading term (as is the
case, for example, of DIS or the total hadronic cross section). Thus, event shapes are very sensitive
to the strong coupling constant. On the other hand, event shapes are afflicted by nonperturbative
power corrections and by large double Sudakov logarithms, which necessitate resummation.

Here we study the C-parameter which can be written as [1],[2]:

C =
3

2

∑
i,j |~pi||~pj | sin2 θij

(
∑

i |~pi|)2 . (1)
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It is interesting to compare C-parameter with thrust [3],

τ = 1− T = min
~n

(
1−

∑
i |~n · ~pi|∑
j |~pj |

)
, (2)

where ~n is referred to as the thrust axis. The three main differences between C and τ are: a) C
does not require a minimization procedure for its computation, whereas τ does (namely finding the
thrust axis, event by event) ; b) C is defined through a double sum, whereas τ sums only particle
by particle ; c) the fixed-order prediction of C-parameter develops an integrable singularity at
Cshoulder = 0.75, whereas thrust is always smooth. By shoulder we refer to the fact that the partonic
cross section attains an integrable singularity [4] at Cshoulder, and only non-planar configurations
contribute for C > Cshoulder.

∗ There are also a number of similarities between C and τ , and
perhaps the most remarkable one is that in the dijet limit (C, τ � 1) and up to and including NLL
resummation, both partonic cross sections are related in a simple way, which can be schematically
expressed as follows: τNLL = CNLL/6 [5]. Some other similarities will be highlighted later.

Previous analyses of the thrust distribution using SCET at N3LL and analytic power corrections
have found rather small (albeit precise) values of αs [6],[7] †. Two motivations for carrying out this
new analysis are providing an additional determination of αs and studying the universality of the
leading power correction between thrust and C-parameter. In this proceedings we summarize work
done in Refs. [16],[10].

Theoretical developments

Until a few years ago, theoretical uncertainties were larger than the corresponding experimental
ones and hadronic power corrections were not understood from ab-initio QCD considerations. The
situation on the theory side has dramatically changed with the advent of Soft-Collinear Effective
Theory (SCET) [11], [12], [13], [14]. This effective field theory separates the relevant physics
occurring at the various scales which play a role when jets are being produced: hard scale µH ,
of the order of the center of mass energy Q (describes the production of partons at very short
distances), jet scale µJ ∼ Q

√
C/6 (describes the formation and evolution of jets at intermediate

energies), and the soft scale µS ∼ QC/6 (describes wide angle soft radiation at longer distances).
All three scales are widely separated for C � 1, and there is one function associated to each one
of them: the hard coefficient HQ (the modulus square of the QCD to SCET matching coefficient),
which is common to all event-shape factorization theorems ; the Jet function Jτ (built up with
collinear Wilson lines), which is common for thrust, C-parameter [16] and Heavy Jet Mass (ρ) [15] ;
and the Soft function SC (defined through soft Wilson lines), which in general depends on the
specific form of the event shape. Whereas the former two are perturbative (µH , µJ � ΛQCD),
permitting the calculation of the hard and jet functions in powers of αs, the soft function also
has nonperturbative corrections that need to be accounted for (µS & ΛQCD). Renormalization
evolution among the three scales sums up large logarithms to all orders in perturbation theory. It
turns out that the anomalous dimensions for the soft function for C and τ are identical, see [16].

∗In Ref. [4] it is shown that soft gluon resummation at Cshoulder makes up for a smooth distribution at LL order.
†Other lower-order resummation event-shape analyses have also found small (although less accurate) values of αs

[8], [9].
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The soft function can be further factorized into a partonic soft function Ŝ
C̃

, calculable in perturba-
tion theory, and a nonperturbative shape function FC , which has to be obtained from fits to data ‡.
The treatment of hadronic power corrections greatly simplifies in the tail of the distribution, de-
fined by QC/6� ΛQCD, where the shape function can be expanded in an OPE. The leading power
correction is parametrized by ΩC

1 , the first moment of the shape function. Interestingly, if one
ignores hadron mass effects [20],[21], this matrix element can be related to the corresponding one
in thrust in a trivial manner: Ωτ

1/2 = ΩC
1 /(3π) ≡ Ω1 [22]. The main effect of this leading power

correction is a shift of the cross section, dσ̂(C)→ dσ̂(C − ΩC
1 /Q). When presenting the results of

our fits, we will employ the power correction parameter Ω1 to ease comparison.

The leading SCET factorization for the partonic C-parameter distribution can be written as [23],[10]:

1

σ0

dσ̂s

dC
=
Q

6
HQ(Q,µ)

∫
ds Jτ (s, µ) Ŝ

C̃

(
QC

6
− s

Q
, µ

)
. (3)

It describes the most singular (and numerically dominating) partonic contributions in the dijet
limit. The resummation of large logarithms is achieved by evolving the functions HQ, Jτ , and Ŝ

C̃
from their respective natural scales µH , µJ and µS , where logs are small, to a common scale µ
(which without loss of generality can be chosen to be, for instance, µJ). In Eq. (3) Ŝ

C̃
is also in the

MS scheme, and suffers from an O(ΛQCD) renormalon. We can switch to the renormalon-free Rgap
scheme [24] by performing subtractions on the partonic soft function (through an exponential of a
derivative operator) and simultaneously allow the same terms to change ΩC

1 from the MS scheme
to the Rgap scheme. Our strong coupling αs will always be in the MS scheme. Adding these
subtractions plus the renormalization group evolution kernels gives:

1

σ0

dσ̂s

dC
=
Q

6
HQ(Q,µH)UH(Q,µH , µ)

∫
dsds′dk Jτ (s, µJ)U τJ (s− s′, µ, µJ) (4)

× U τS (k, µ, µS) e
− 3π

δ(R,µs)
Q

∂
∂C Ŝ

C̃

(
QC − 3π∆(R,µS)

6
− s

Q
− k, µS

)
,

where δ(R,µS) is a series in powers of αs(µS) that can be computed directly from the thrust partonic
soft function in Fourier space. For the renormalon to be properly canceled by the subtractions,
it is crucial that the exponential and the partonic soft function are consistently expanded out
to a given order in αs(µS). The subtractions introduce a scale R, which is close to the soft
scale µS and can be used to sum up large logs in the subtraction series through the finite shift
parameter ∆(R,µS). The dependence on R formally cancels between δ(R,µS) and ∆(R,µS) order
by order in perturbation theory, but the R parameter is crucial to eliminate the ΛQCD renormalon.
Nonperturbative corrections are incorporated though a convolution with the shape function FC(p)
whose first moment is ΩC

1 . The hadron level prediction for the distribution is

1

σ0

dσ

dC
=

∫
dp

1

σ0

dσ̂

dC

(
C − p

Q

)
FC(p) ,

dσ̂

dC
=

dσ̂s

dC
+

dσ̂ns

dC
, (5)

and also includes the nonsingular contributions, dσ̂ns/dC, which in the dijet limit contains all terms
which are kinematically suppressed by additional powers of C.

‡Power corrections for the C-parameter distributions have been studied in other frameworks, see e.g.

Refs. [17],[18],[19].
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For our analysis we include perturbative corrections to the matrix elements HQ, Jτ and Ŝ
C̃

to O(α3
s).

For HQ they are known analytically, whereas for Jτ and Ŝ
C̃

only the logarithmic terms at O(α3
s) are

known (since the anomalous dimensions are known at three loops). These non-logarithmic terms
are added as unknown coefficients that are varied when we estimate the theory uncertainties. At
O(α2

s) the jet function can be directly taken from Ref. [25]. The soft function needs to be computed
to O(α2

s) [10], which can be done analytically at O(αs) and for the logarithmic corrections at O(α2
s).

For the non-logarithmic O(α2
s) terms our evaluation uses numerical output of the parton level MC

EVENT-2 [26],[27].

Through RGE evolution we achieve N3LL resummation of the logarithmic terms. The anomalous
dimensions required for solving the running equations can be taken directly from thrust. The only
missing term is the four-loop cusp anomalous dimension, which is estimated using Padé approxi-
mants but is nevertheless varied in a wide range when estimating perturbative uncertainties. Its
effect is in any case negligibly small. The required components for a given resummation order are
specified in Table 2. We introduce a primed counting, which is defined as the regular (unprimed)
one, but with the matrix elements being included to one order higher. For consistency, the renor-
malon subtraction series are including to one order higher as well. The primed counting achieves a
better description of data and allows the correct summation of logs at the level of the distribution
(for an extended discussion of this the reader is referred to [28]).

We include nonsingular terms at the same order as the functions HQ, Jτ , Ŝ
C̃

. These can be obtained
by subtracting the fixed-order singular cross section as described by the SCET factorization theorem
from the full QCD partonic distribution. The latter can be computed analytically at O(αs), and
determined numerically at O(α2

s) and O(α3
s) from the parton-level MC programs EVENT2 and

EERAD3 [29],[30], respectively. For the O(α2
s) and O(α3

s) nonsingular contributions our numerical
procedure entails uncertainties which are accounted in the estimate of the theoretical uncertainty.

It is sometimes customary to write the most singular terms of an event-shape cumulant cross section
in the following exponentiated form:

Σ̂(C) =
1

σ̂

∫ C

0
dC ′

dσ̂

dC ′
=

(
1 +

∞∑

m=1

Bm

(
αs(Q)

2π

)m)

× exp



∞∑

i=1

i+1∑

j=1

Gij

(
αs(Q)

2π

)i
lnj
(

6

C

)
 . (6)

From the result for the factorization theorem in Eq. (3) one can determine the Gij and Bi coeffi-
cients as shown in Table 1, see [16].

Resummation Order Calculable Gij ’s and Bi’s

LL Gi, i+1

NLL′ Gi, i and B1

N2LL′ Gi,i−1 and B2

N3LL′ Gi,i−2 and B3

Table 1: Hierarchy of Gij ’s at each given order of resummation.
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cusp non-cusp matching β ns δ

LL 1 - tree 1 - -

NLL 2 1 tree 2 - -

N2LL 3 2 1 3 1 1

N3LL 4p 3 2 4 2 2

NLL′ 2 1 1 2 1 1

N2LL′ 3 2 2 3 2 2

N3LL′ 4p 3 3 4 3 3

Table 2: Loop corrections for primed and unprimed orders. For the anomalous dimensions of

∆(R,µS) one uses the same orders as for other non-cusp anomalous dimensions. The superscript

“p” indicates that a Padé approximation is being used.

Setting the Renormalization Scales

The C-parameter can be divided into three distinct regions, in which the renormalization scales
must satisfy different constraints

1) nonperturbative: C . 3πΛQCD

µH ∼ Q, µJ ∼
√

ΛQCDQ, µS∼R∼ΛQCD ,

2) resummation: 3πΛQCD � C < 0.75 (7)

µH ∼ Q, µJ ∼ Q
√
C

6
, µS∼R∼

QC

6
� ΛQCD ,

3) fixed-order: C > 0.75

µH = µJ = µS = R ∼ Q� ΛQCD .

These three regions are sometimes referred to as the peak, tail and far-tail regions, respectively. In
order to satisfy these requirements we need to use renormalization scales that depend on the value
of C, called profile functions. The constraints in Eq. (7) do not fully specify the profile functions,
but this ambiguity cancels order-by-order in perturbation theory. This allows variations of the
profiles to be used to estimate perturbative uncertainties. The specific form of the profile functions
and the variation of their parameters are given in Ref. [10], and illustrated in Fig. 1.

In Fig. 2 we show our C-parameter cross section for Q = mZ , together with experimental data.
This figure is produced with our best theoretical prediction and uses our central values for αs(mZ)
and Ω1 presented in Sec. 2. The center blue line corresponds to the prediction for our central
profiles, whereas the light blue band shows the perturbative uncertainty.

Fit results

Fitting for Ω1 together with αs(mZ) accounts for hadronization effects in a model-independent
way. In order to determine αs(mZ) and Ω1 in the same fit, one needs to perform a global analysis
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Figure 1: Profile functions for the renormalization scales µH , µJ(C), and µS(C), when using the

default profile parameters (center thick line) and when varying them (light band). Fully canonical

profiles are shown in gray.

Figure 2: Theoretical prediction for the C-parameter distribution at N3LL’ order for Q = mZ ,

using the best fit values for αs(mZ) and Ω1. The blue band corresponds to the theory uncertainty

as described in the text. Experimental data for various experiments are also shown.

that includes data at many center of mass energies Q. For each Q the differential distribution has
a noticeable degeneracy between the two fit parameters, and the use of data from the different Q
values breaks the degeneracy. Hence LEP and SLAC data are employed together with data from
lower energy experiments such as TRISTAN and PETRA. For our analysis we use all available
experimental data with energies between 35 GeV and 207 GeV in the tail region. To estimate
theoretical uncertainties we perform 500 fits at each order in the resummation, NLL′, N2LL′,
and N3LL′, with theory parameters randomly chosen for each fit. These parameters specify: the
profile functions, unknown perturbative coefficients, or statistical uncertainties on the numerical
determination of the non-singular contributions. The result of these many fits are shown graphically
as dots in Fig. 3. We show two projections: αs vs 2 Ω1 in panel (a), and αs vs χmin/dof in panel
(b). As the resummation order increases the perturbative uncertainty decreases as expected, and
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Full Results
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Figure 3: The left panel (a) shows the distribution of best fit points in the αs(mZ) - 2Ω1 plane

for fits performed with our best theoretical predictions: resummation of large logs and power

corrections defined in the Rgap scheme with renormalon subtractions. The dashed lines corresponds

to an ellipse fit to the contour of the best-fit points to determine the theoretical uncertainty. The

total (experimental + theoretical) 39% CL standard error ellipses are displayed (solid lines), which

correspond to 1-σ (68% CL) for either one-dimensional projection. The big points represent the

central values in the random scan for αs(mZ) and 2 Ω1. The right panel (b) shows the distribution

of best fit points in the αs(mZ) -χ2/dof plane, corresponding to the points given in panel (a).

order αs(mZ) (with Ω1) αs(mZ) (with Ω1(R∆, µ∆))

NLL′ 0.1071(60)(05) 0.1059(62)(05)

NNLL′ 0.1102(32)(09) 0.1100(33)(06)

N3LL′ 0.1117(16)(06) 0.1123(14)(06)

Table 3: Best fit values for αs(mZ) at various orders with theory uncertainties from the theory

scan (first value in brackets), and experimental and hadronic error added in quadrature (second

value in brackets). Our final result at N3LL′ is shown in bold face.

the χ2/dof also decreases significantly. The corresponding numerical results and uncertainties are
shown in Table 3 [10].

In Fig. 4 we show determinations of αs(mZ) from fits to the C-parameter distribution with different
levels of theoretical sophistication. From left to right they are: fixed order with O(α3

s) (large logs
not yet summed up), N3LL′ resummation (no Ω1 in the fit), with power corrections included (not
yet removing the renormalon), including Rgap scheme (not yet accounting for hadron masses), and
with hadron mass effects. All error bars are perturbative, so the error bars of the first two deter-
minations to the left of the vertical dashed line do not account for the neglect of power corrections.
Including the nonperturbative power corrections by fitting Ω1 has the greatest effect on αs(mZ).
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Hadron mass effects give negligible contributions within current uncertainties.

Below error bars & ± ® perturbative error

All errors: ΑsHmZL = 0.1123 ± 0.0015OHΑs
3L fixed-order

0.1317 ± 0.0052

+ N
3LL' summation

0.1219 ± 0.0028
+ Power Correction

0.1117 ± 0.0016

+ R-scheme

0.1123 ± 0.0014
+ hadron mass effects

0.1119 ± 0.0013

0.110

0.115

0.120

0.125

0.130

0.135

ΑsHmZL

ΑsHmZL from global C-parameter tail fits

Figure 4: Impact of the different components of our theoretical setup on the determination of

αs(mZ).

Conclusions

We have presented an accurate determination of αs(mZ) from fits to the C-parameter distribution.
The key points to our precise theoretical prediction are: a) higher order resummation accuracy
(N3LL), achieved through the SCET factorization theorem, b) inclusion of O(α3

s) matrix elements
and fixed-order kinematic power corrections, c) field-theoretical treatment of nonperturbative power
corrections, and d) switching to a short-distance Rgap scheme, in which the sensitivity to infrared
physics is reduced. We have not discussed hadron mass effects, as their effect is quite small. A
thorough discussion can be found in [16].

Our final results from the global analysis reads [10]

αs(mZ) = 0.1123 ± (0.0002)exp ± (0.0007)hadr ± (0.0014)pert ,

= 0.1123 ± (0.0015)tot

We conclude by presenting a comparison of our C-parameter fit with the determinations of αs and
Ω1 from our previous thrust analysis [6] of the thrust distribution, see Fig. 5. The figure shows that
the determination of the strong coupling constant for both event shapes is compatible. Moreover
there is universality in the result for the leading power correction Ω1 = ΩC

1 /(3π) = Ωτ
1/2 determined

in both analyses. The two independent determinations agree within their 1-σ uncertainties, where
the precision of the extractions is greater than that achieved in the past. Note that without
including the respective prefactors (3π and 2) (shown in green) the values of Ωτ

1 = 0.329 GeV and
ΩC

1 = 1.98 GeV numerically differ by ≈ 4.5-σ, so the agreement nicely demonstrates the consistency
of our theoretical predictions. A detailed comparison with other αs(mZ) determinations can be
found in Ref. [10].
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Figure 5: Comparison of αs(mZ) and Ω1 determinations from fits to the C-parameter with Ωτ
1 (red),

C-parameter with ΩC
1 (green), and thrust (blue) tail cross sections, at N3LL′ with power corrections

and in the Rgap scheme. The ellipses show the ∆χ2 = 2.3 variations in the αs(mZ) - 2Ω1 plane,

representing 1-σ errors for two variables.
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