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Abstract We study possible CP-violation effects of the
125 GeV Higgs to Z boson coupling at the 250 GeV ILC with
transverse and longitudinal beam polarisation via the process
e+e− → HZ → Hμ−μ+. We explore the azimuthal angu-
lar distribution of the muon pair from the Z boson decay,
and constructe CP-odd observables sensitive to CP-violation
effects, where we derived this observable both by analyti-
cal calculations and by Whizard simulations. Particularly,
we can construct two CP-odd observables with the help of
transversely-polarised initial beams and improve the statis-
tical significance of CP-violation effects by combining two
measurements. We defined the asymmetries between the sig-
nal regions with different signs of the CP-odd observables,
and determine the CP-violation effect by comparing with
the SM 95% CL upper bound. In this paper, we setup a sce-
nario which assumes that the total cross-section is always
fixed whileCP-violation is varying, and such a scenario helps
us to determine the intrinsic CP-mixing angle limit around
|ξCP | ∼ 0.03 rad with (90%, 40%) polarised electron-
positron beams and 5 ab−1 integrated luminosity. In addition,
we determine the CP-odd coupling limit |̃cHZ Z | ∼ 0.01 as
well, where we suppose that the SM tree-level cross-section
is fixed and the CP-violation is the varying additional contri-
bution. Comparing with the analysis with unpolarised beams,
the sensitivity to the CP-violation effect can be improved by
transverse or longitudinal polarisation.
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1 Introduction

Since 2012, a Higgs boson with a mass of 125 GeV has been
discovered by both ATLAS and CMS collaborations [1,2]
within the experimental and theoretical uncertainties that are
consistent with the expectations in the Standard Model (SM)
of elementary particle physics. So far, the LHC experiment
has not discovered significant evidence for physics beyond
the Standard Model (BSM). However, the measured Cos-
mic Microwave Background anisotropies [3] demonstrate,
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for instance, that the Universe has a much larger baryon-
antibaryon asymmetries than the SM predictions can embed.
In principle, the occurrence of Baryogenesis in the early uni-
verse acquires the Sakharov conditions [4], which cannot be
fulfilled in the SM. Therefore, the Two-Higgs-Doublet Model
(2HDM) [5] with a complex vacuum expectation value (vev),
called complex 2HDM (C2HDM), is motivated to introduce
an additional source of CP-violation and can accommo-
date the required strong first-order phase-transition. In the
C2HDM [6], the 125 GeV Higgs boson is an admixture of
scalar and pseudoscalar components, and the process with
Higgs to fermions interaction are CP-violating:

L ⊃ f̄ (cH f f̄ + iγ5c̃H f f̄ ) f H. (1.1)

Hence, the CP structure of the Htt̄ interaction and the
impact on Baryogenesis has been exploited by applying LHC
searches via t t̄ H production [7–11], and the results are sum-
marized in [12–14], while the effects of electron EDM and
baryogenesis are incorporated and discussed together with
the Higgs CP structure measurement in [15].

At the tree level within the C2HDM, the Higgs to gauge
boson HVV interactions are still CP-conserving. However,
the CP-violating Higgs to fermion couplings can change the
CP structure of the HVV interactions at the one-loop level,
where the imaginary part of the H f f couplings leads to the
CP-odd part of HVV interactions. This is called anomalous
Higgs to gauge-bosons coupling and shown in the following

L ⊃ c̃HV V

�
HVμν

˜Vμν, (1.2)

where � is the new physics scale and

Vμν = ∂μVν − ∂νVμ, ˜Vμν = 1

2
εμνρσV

ρσ . (1.3)

This anomalous coupling can appear as the loop contribution
of the CP-odd fermionic coupling iγ5c̃H f f , i.e. the Levi-
Civita tensor εμνρσ is generated by summing over the helic-
ity states in the loop with the γ5 [16]. This coupling can
also be matched to a dim-6 Operator in the SM effective
Lagrangian [17]. Therefore, collider phenomenology of the
CP structure of the Higgs to gauge-bosons interaction can
be investigated, and the LHC has performed the correspond-
ing searches via the VBF and VH productions and H → 4


decay at CMS [18–23] and at ATLAS [24–26]. So far, the
latest LHC experiments provide the observed limits of CP-
odd HVV coupling, which are

(

f H Z Z
CP

)

CMS ∼ [−0.8, 3.5]
[23] and (c̃Z Z )ATLAS ∼ [−0.37, 1.21] [26] at 68% C.L. (see
f H Z Z
CP definition in Eq. (C.2) and c̃Z Z definition in Eq. (C.6)).

Furthermore, the study of CP properties of the Higgs
boson can also be performed at future colliders. The HL-LHC
study [27] provides the prospect of future measurement with
3 ab−1. The electron-positron colliders are very promising,
where the CEPC [28] can provide the unpolarised electron-

positron beams at 240 GeV with 5.6 ab−1 and 20 ab−1. Based
on the CEPC setup, the CP-violation effect on Hτ+τ− inter-
action has already been studied via H → ττ decay [29],
while the studies of [30,31] investigated the CP-violating
H → τ+τ− decay at the ILC as well. On the other hand, the
recoil Z boson from the Higgs strahlung at e+e− colliders can
also carry information of the HZZ interaction, and one can
study the CP structure by the recoil Z decays. Therefore, the
study of [28] performs the determination of HZZ coupling
via the e+e− → HZ → H
−
+ at the CEPC, where the ini-
tial beams are currently foreseen to be unpolarised. Besides,
CLIC and ILC also provides the studies of the CP-structure
of HVV coupling [32,33], where the vector-boson-fusion
would be the dominant process at above 1 TeV. However,
the ILC could generate simultaneously polarised electron
and positron beams, so that also transversely or longitudi-
nally polarised beams (provided by applying spin rotators)
can be exploited for the analysis [34]. By using this initially
polarised beams, the sensitivity to the CP violation effect
can be potentially improved compared to the case without
beam polarisation. Thus, one can use transversely-polarised
beams to test CP-violation effects in the e+e− → HZ pro-
cess, which is already proposed by the studies [16,35,36],
and can provide the future aspects of the determination of
the CP-violation coupling. In addition, the transverse polar-
isation can be used to construct more additional observables,
e.g. the observable probing the R-parity violation [37] and the
observable probing the CP-even T-odd operator [35]. At the
process e+e− → ZH , the H and Z can decay to various final
state particles, and the final states angular distribution can
correlate with ths polarisation. For instance, one can probe
the CP properties of Hττ interaction via the H → τ+τ−
decay by measuring the spin correlations, see Refs. [38–42].

In this work, we focus on the Higgsstrahlung process at
the ILC with a center of mass energy of 250 GeV, apply trans-
versely or longitudinally polarised electron-positron beams,
calculate the scattering amplitude analytically and obtain
the cross-section by numerical integration. Based on the
analysis of the azimuthal angular distribution of the muon
pair produced by the Z decay, we construct T-odd observ-
ables to probe the CP-violation effect. For this study, we
parameterise the CP-violating effect of HZZ interaction by
the CP-mixing angle ξCP , where the CP-odd coupling in
Eq. (1.2) is c̃H Z Z ∝ sin ξCP . Particularly, we can define two
CP-odd observables , where one of the additional observ-
ables is defined by the spin orientation of electron-positron
beams and only exist when the transverse polarisation is
imposed. Therefore, we perform the Monte-Carlo simula-
tion by whizard-3.0.3 [43,44], and obtain the number
of events in the corresponding signal regions with different
sign of the CP-odd observables. These number of events can
be used to construct the asymmetries, as well as carrying out
the likelihood fit, to determine the size of the CP-violation
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effect. We setup two scenarios for the determination, where
the first scenario consists of the fixing total cross-section for
varying intrinsic CP-mixing angle, and we can determine
the CP-mixing angle |ξCP | ∼ 0.035 rad with 5 ab−1 inte-
grated luminosity, where the initial beams are (90%, 40%)
transversely polarised. However, the longitudinal polarisa-
tion can enhance the total cross-section and suppresses the
statistical uncertainty, leading to |ξCP | ∼ 0.03 rad with (-
90%, 40%) polarisation degrees and 5 ab−1. For the second
scenario, we can fix the SM tree-level contribution and vary
the additive CP-odd contribution. In this second scenario, we
determine the CP-odd coupling |̃cHZ Z | ∼ 0.01 with 5 ab−1,
where both (90%, 40%) transverse and longitudinal polarisa-
tion lead complementary to similar results of determination.

2 The CP-violation in the Higgs boson

In general, we can apply the Higgs characterization model for
the 125 GeV Higgs boson [45], which is effective approach
for all possible 125 GeV Higgs boson interactions, without
introducing irrelevant higher dimension operators. The effec-
tive Lagrangian of the Higgs characterization model is given
by:

Leff =
[

cos ξCP κSM(
1

2
gHZ Z ZμZμ + gHWWW+

μ W−μ
)

−1

4
(cos ξCP κHγ γ Aμν A

μν + sin ξCP κ̃Hγ γ Aμν˜A
μν)

−1

2
(cos ξCP κHZγ Zμν A

μν + sin ξCP κ̃HZγ Zμν˜A
μν)

−1

4
(cos ξCP κHggGμνG

μν + sin ξCP κ̃HggGμν˜G
μν)

− 1

4�
(cos ξCP κHZ Z Zμν Z

μν + sin ξCP κ̃HZ Z Zμν˜Z
μν)

− 1

2�
(cos ξCP κHWWW+

μνW
−μν

+ sin ξCP κ̃HWWW+
μν
˜W−μν)

− cos ξCP
�

(κH∂γ Zν∂μAμν + κH∂Z Zν∂μZμν

+(κH∂WW+
ν ∂μW

−μν + h.c.))
]

H

−
∑

f

f̄ (cos ξCP cH f f + i sin ξCP c̃H f f γ5) f H, (2.1)

where the A, Z ,W±,G are the photon, Z boson, W boson
and gluon fields respectively, and � is the new physics scale
of effective field theory. This model contains all the possible
Higgs interactions to the other SM particles. In the effective
Lagrangian, the parameter ξCP is the CP-mixing angle of
the Higgs boson, so that ξCP �= 0, ξCP �= ±π

2 and non-
zero c̃H f f , κ̃HVV imply CP violation. Particularly, we focus
on the HZZ couplings, which contribute via the following

terms

L ⊃ cSM
m2

Z

v
ZμZ

μH − cHZ Z

v
Zμν Z

μνH

− c̃H Z Z

v
Zμν

˜ZμνH, (2.2)

where:

cSM = κSM cos ξCP , (2.3)

c̃H Z Z = 1

4
κ̃HZ Z sin ξCP , (2.4)

cHZ Z = 1

4
κHZ Zcos ξCP . (2.5)

Since we are interested in the physics at Electroweak scale,
we choose � = v ≈ 246 GeV. The coefficients cSM, cHZ Z

and c̃H Z Z parameterize all the possible contributions to the
corresponding operators. In an UV complete model (e.g.
C2HDM), the coefficients of the one-loop contribution κHZ Z

and κ̃HZ Z can be solved by summing up all the loop inte-
grals. However, these couplings can be suppressed by the
factor 1

16π2 , while the experimental constraints on these cou-
plings of 125 GeV Higgs are relatively loose. In this case,
this CP-odd term of HZZ interaction may be contributed by
other sources.

3 The production and decay process at the ILC

3.1 The initial polarised electron-positron beams

Concerning the polarisation of the initial electron and
positron beams, one can define a projection operator, that
is called polarisation matrix:

1

2
(1 − P · σ ) = 1

2
(δλλ′ − Paσ a

λλ′)

= 1

2

(

1 − P3 P1 − i P2

P1 + i P2 1 + P3

)

, (3.1)

where the P is the polarisation vector of the electron beam.
More explicitly, the polarisation vector can be parameterised
by the polarisation fraction f and the direction of the polari-
sation in the polar coordinates (polar angle θP and azimuthal
angle φP ). Therefore, the three components of the polarisa-
tion vector are given by:

P1 = f sin θP cos φP ,

P2 = f sin θP sin φP ,

P3 = f cos θP .

(3.2)

When θP = 0 with non-zero fraction f , the orientation of the
polarisation is along the momentum, and the beam is longitu-
dinally polarised. In this case, we have P1 = P2 = 0 and the
polarisation matrix is diagonal. For the case that θP = ±π/2,

123



   99 Page 4 of 21 Eur. Phys. J. C            (2025) 85:99 

Fig. 1 The Feynman diagram of Higgsstrahlung process

the off-diagonal terms of the polarisation matrix would be
non-zero, and the beam is transversely polarised. For the
unpolarised case, the fraction f = 0 and the polarisation
matrix is the identity matrix with factor 1/2.

The Higgs strahlung e+e− → ZH is the dominant Higgs
production process at e+ e− collider at

√
s = 250 GeV, which

is the main process that we focus on at the e+ e− collider.
The scattering amplitude of the Higgs strahlung Mi

λrλu
can

be easily obtained from the diagram of Fig. 1, where the
λr , λu are the spin indices of the initial electron and positron,
and the index of i indicate the helicity of the radiated Z
boson. The unpolarised cross-section can be generated by
averaging over all the helicity states of the spinor field, which
implies the summation of all possible polarisation states of
the electron and positron. For the scattering process with one
HZZ vertex, the scattering amplitude can be evaluated by:

Mi
λrλu

∝
Mμ

λrλu

v

[

cSMm2
Z gμν

+cH Z Z (q1νq2μ − gμνq1 · q2) + c̃H Z Z εμναβ qα
1 q

β
2

]

εi
ν
(q2)

=
Mμ

λrλu

v

[

cos ξCP
(

κSMm2
Z gμν + κHZZ

4
(q1νq2μ − gμνq1 · q2)

)

+ sin ξCP
κ̃HZZ

4
εμναβ qα

1 q
β
2

]

εi
ν
(q2), (3.3)

where the momenta q1 and q2 are the momenta of the Z
bosons (see Fig. 1). The Mμ

λrλu
consists of the electron-

positron current and the propagator of the Z boson. The
polarisation vector of the Z boson is the εi

ν
, which carries

the spin index i . In this amplitude, the SM tree-level term
with cSM and the next-to-leading-order term with cHZ Z are
both CP-even, while the term with c̃H Z Z is the leading-order
CP-odd term. However, since we take the polarisation of ini-
tial beams into account, we calculate the spin density matrix
by applying the Bouchiat-Michel formula [46]:

u(p, λ′)ū(p, λ) = 1

2

(

δλλ′ + γ5s/
aσ a

λλ′
)

(p/ + m), (3.4)

v(p, λ′)v̄(p, λ) = 1

2

(

δλλ′ + γ5s/
aσ a

λλ′
)

(p/ − m), (3.5)

where σ a is the Pauli matrices, and the four-vector saμ, a =
1, 2, 3 are the three spin vectors, which are orthogonal to

each other and to the corresponding four momentum:

p · sa = 0,

sa · sb = δab,

saμs
a
ν = −gμν + pμ pν

m2 .

(3.6)

Note that λ is the spin index of the spinor field, where the
eigenvalue is λ = ± 1

2 for the spin-1/2 particle. When the
spin indices are summed over for λ = λ′, the spinor fields
product would be recovered to the unpolarised case. In the
high energy limit, the electron mass is practically negligible.
In this case, the Bouchiat-Michel formula with m → 0 limit
is given by:

u(p, λ′)ū(p, λ) = 1

2

[

(1 + 2λγ5) δλλ′ + γ5

(

s/1σ 1
λλ′ + s/2σ 2

λλ′
)]

p/ ,

(3.7)

v(p, λ′)v̄(p, λ) = 1

2

[

(1 − 2λγ5) δλλ′ + γ5

(

s/1σ 1
λλ′ + s/2σ 2

λλ′
)]

p/ .

(3.8)

Thus, the spin density matrix of the Higgs strahlung process
is given by:

ρi i ′
λrλuλ′

rλ
′
u

= Mi
λrλu

M∗i ′
λ′
rλ

′
u
. (3.9)

By summing over all the helicity states of the initial states,
the scattering amplitude squared would be the trace of the
spin density matrix ρλrλuλ′

rλ
′
u

multiplied by the polarisation
matrices of the two initial beams:

|M|2i i ′eeZH = Tr
(1

2
(δλrλ′

r
− Pa−σ a

λrλ′
r
)
1

2
(δλuλ′

u
− Pb+σ b

λuλ′
u
)ρi i ′

λrλuλ′
rλ

′
u

)

,

(3.10)

where the spin indices of the final state Z boson i, i ′ are still
open. Eventually, the scattering amplitude squared can be
divided up in the following parts, depending on the polarisa-
tion configuration:

|M|2i i ′eeZH = (1 − P3−P3+)Aii ′ + (P3− − P3+)Bii ′

+
1,2
∑

mn

Pm− Pn+Cii ′
mn, (3.11)

where the first part Aii ′ is the unpolarised scattering matrix
when the polarisation vectors are both zero. In the case that
only the electron beams are longitudinally polarised, the scat-
tering matrix would be the combination of Aii ′ and Bii ′ . The
last part of the Eq. (3.11) Cii ′

mn indicates the transverse polar-
isation components of the scattering matrix.
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Fig. 2 The Feynman diagram of Higgsstrahlung process with Z decay
to μ+μ−

3.2 The Z → μ−μ+ decay and the angular distribution

The polarisation of the initial beams is carried by the Z boson
and transferred to the final state particles by Z boson decay.
Since the Higgs is a scalar particle, it completely loses the
spin information of the initial polarised beams. Therefore, it
is more interesting to study the Z → μ−μ+ decay to test the
spin correlations between the initial beams and the radiated
Z boson, which is the process presented by the diagram of
Fig. 2.

In order to take the spin correlations into account, the Z
decay process can be calculated by the spin density matrix
ρi i ′
Z→μ+μ− , which indicates the different helicity components

of the Z boson. For the production process, the spin density
matrix can be obtained by the Eq. (3.10) without summing
over the helicity states of the radiated Z boson. The total
scattering matrix of the full process can be derived in the
narrow-width approximation via contracting the polarisation
states of the internal Z boson:

|M|2 ≈ 1

mZ�Z

∑

i i ′
M2i i

′
(e+e− → ZH)ρi ′i (Z →μ+μ−).

(3.12)

Furthermore, we apply Eq. (3.3) for this process, and
obtain the following form of the total amplitude squared (ini-
tial Z -boson polarisation already contracted):

|M|2 = (1 − P3−P3+)(cos2 ξCP ACP-even + sin 2ξCP ACP-odd

+ sin2 ξCP ÃCP-even)

+ (P3− − P3+)(cos2 ξCP BCP-even + sin 2ξCP BCP-odd

+ sin2 ξCP B̃CP-even)

+
1,2
∑

mn
Pm− Pn+

(

cos2 ξCP Cmn
CP-even + sin 2ξCP Cmn

CP-odd

+ sin2 ξCP C̃mn
CP-even

)

. (3.13)

Note that, all CP-even terms, which are proportional to
the cos2 ξCP and sin2 ξCP , are CP conserving (ACP-even,
ÃCP-even, BCP-even, B̃CP-even and CCP-even and C̃CP-even), while

the mixing terms, proportional to sin 2ξCP , violate the CP
symmetry (ACP-odd, BCP-odd and CCP-odd). The explicit ana-
lytical results of the |M|2 of the e−e+ → HZ → Hμ−μ+
process with initial beam polarisation for both the SM CP-
conserving cases and the BSM CP-violating cases are shown
in the appendix A. According to the analytical calculation,
we know that the CP-mixing terms for both unpolarised and
the longitudinally polarised cases depend on the following
triple-product:

ACP-odd, BCP-odd ∝ εμναβ [pμ

e− pν
e+ pα

μ+ pβ

μ−] ∝ �pe−

·( �pμ+ × �pμ−), (3.14)

which is related to the azimuthal-angle difference between
the e+e− plane and the μ+μ− plane in the Higgs rest frame.
In the center-of-mass frame, this observable is the azimuthal-
angle difference between the ZH plane and the μ+μ− plane.

On the other hand, the transversely polarised termsCmn
CP-odd

can be extracted by another triple-product, which is intro-
duced in [16] and given by

Cmn
CP-odd ∝ εμνρσ [(pe− + pe+)μ pν

μ+ pρ

μ−s
σ
e−]

∝ ( �pμ+ × �pμ−) · �se− . (3.15)

As we see in Eq. (3.15), this triple-product is the azimuthal-
angle difference between the μ+μ− plane and the polarisa-
tion direction of the initial beams. In this case, we define the
orientation of the azimuthal plane by fixing the direction of
the transverse polarisation of the electron as shown in Fig. 3.
Therefore, we choose the center of mass frame and specify
the orientation of the x-axis and y-axis by the spin vector of
the electron as shown in Fig. 3. In this coordinate system, the
azimuthal angle of the μ+-μ− plane is denoted as φμ− , and
the Cmn

CP-odd directly depends on this angle φμ− .
In this coordinate system, the cross section can be obtained

by integrating over the polar angles and azimuthal angles of
the Higgs boson and muon:

σ =
∫ |M|2

4s
dQ(θH , θμ− , φH , φμ−). (3.16)

where the Lorentz invariant phase spacedQ(θH , θμ− , φH , φμ−)

is shown in the appendix B, and s in the denominator is the
center-of-mass energy squared. The total cross-section is a
CP-even observable, which takes the following form

σtot = |cSM|2σSM + 2|cSMcHZ Z |σinterfer

+ |cHZ Z |2σHZ Z + |̃cHZ Z |2σ̃HZ Z .
(3.17)

The CP-odd terms, including ACP-odd, BCP-odd and Cmn
CP-odd

in Eq. 3.13, are given by the following amplitude square

|MCP−mix|2 = (1 − P3−P3+)ACP-odd + (P3− − P3+)BCP-odd

+
1,2
∑

mn

Pm− Pn+Cmn
CP-odd. (3.18)
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Fig. 3 The coordinate system in the center of mass frame for the
e+e− → Hμ+μ− process, the left plot is the y − z plane and the right
plot is the x − y plane. The direction of the electron beam is defined as

the z-axis direction �nz = �pe−/| �pe− |, while we choose the direction of
the electron polarisation as the y-axis �ny = �se−/|�se− |. Thus, the x-axis
can be defined by the cross product �nx = (�se− × �pe− )/|�se− × �pe− |

This |MCP−mix|2 does not contribute to the total cross-
section, since it would be averaged out when we integrate
over the full phase space:

∫ |MCP−mix|2
4s

dQ(θH , θμ− , φH , φμ−) = 0. (3.19)

The total cross-section receives contributions from c̃H Z Z

coupling, remains however still a CP-even observable.
Therefore, in order to construct a CP-sensitive observable,
one has to investigate the differential cross-section, particu-
larly with respect to the azimuthal angle of final state muons.

However, the differential cross-section w.r.t the azimuthal
angle would be constantly distributed, when the initial beams
are unpolarised and the spin dependence would be averaged
out. In order to obtain the non-trivial azimuthal distribution,
the transverse polarisation must be imposed for the initial
electrons-positrons beams. Although the transversely polar-
isation yields the non-trivial distribution w.r.t the azimuthal
angles, the transverse polarised amplitudeCmn would still not
contribute to the total cross-section [47,48], because the spec-
ified azimuthal orientation would be integrated out. There-
fore, only the azimuthal angular distribution would be the
distinctive channel to test the CP-violation effect, when we
apply the transverse polarisation for the initial beams.

4 Phenomenological analysis for the CP-odd
observables

In principle, the HZZ interaction is the linear combination
of all the possible terms in Eq. (3.17) and both of the dim-6

operators c̃H Z Z as well as the cHZ Z can contribute. However,
we want to explore the ability of the CP-odd coupling mea-
surement at the ILC (or any other e+e− collider with initial
polarisation). For this reason, we can perform the indepen-
dent analysis of c̃H Z Z , i.e. fixing all other BSM couplings
to zero and varying the c̃H Z Z , and compare with the inde-
pendent CP-odd coupling analysis from other experimental
studies. On the other hand, the cHZ Z can lead to a signif-
icant change in the cross-section, which can be potentially
measured by a precis total cross-section measurement. If we
assume that the total cross-section would still be closed to
the SM value, the cHZ Z would be strongly constrained [49]
while c̃H Z Z can still have a viable parameter space. Indeed
the CP-even coupling cHZ Z can interfere with the CP-odd
coupling c̃H Z Z , and this interference effect would not be
trivial to be resolved regarding the CP properties. However,
because of the reasons we discussed above, we can neglect
the dimension 6 CP-even operator with cHZ Z in Eqs. (2.2)
and (2.5), and only take the CP-odd term c̃H Z Z and the tree
level SM term cSM into account for the current study.

4.1 Strategical procedure for the analysis with transversely
polarised beams

Therefore, we set up a strategical scenario, which is assum-
ing that the total cross-section of e+e− → μ+μ−H is only
composed by the cSM and c̃H Z Z terms, and shown as the
following

σtot ≈ |cSM|2σSM + |̃cHZ Z |2σ̃HZ Z
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Fig. 4 The analytical results of the differential cross sections with
respect to the muon azimuthal angle (see Fig. 3), where the red solid
lines correspond to the pure SM CP-even case. The orange dotted lines
demonstrate the case with only σ̃HZZ cross section. The blue and green
dashed lines are both for the CP mixing case with the mixing angle

ξCP = π/4, and correspond to forward Higgs ηH > 0 and backward
Higgs ηH < 0 respectively (see definition in the text). The center-of-
mass energy is 250 GeV. The transversely polarised beams in the left
panel are parallel, and in the right panel beams are anti-parallel

=
(

cos2 ξCP κ2
SMσSM + sin2 ξCP

κ̃2
HZ Z

16
σ̃HZ Z

)

, (4.1)

where the cross section σSM denotes the cross section in the
SM at tree level, and σ̃HZ Z provides the cross-section exclu-
sively contributed by c̃H Z Z . In this case, the CP-violation is
parameterised by the CP-mixing angle ξCP .

In order to explore the CP-mixing impact without chang-
ing the total cross-section, we can set up a strategical scenario
that the total cross-section is fixed to the tree-level SM cross-
section, which means σtot = σSM with κSM = 1. In this case,
we can derive the condition

κ̃HZ Z = 4

√

σSM

σ̃HZ Z
∼ 5.64, κSM = 1. (4.2)

Hence, the total cross-section is fixed, but the CP-violation
effect on the differential cross-section only depends on the
CP mixing angle ξCP . This scenario is helpful to test the
phenomenological effect of the CP-violation and to compare
the exclusive CP-violating result with the SM result for this
specific process.

Furthermore, we can make the assumption that both initial
beams are 100% transversely polarised, and we choose the
conventions that the polarisation of the electron and positron
are parallel (φP− = φP+ = 0) and anti-parallel φP− =
0, φP+ = π ) (see Eqs. (3.2)). One should note that, the effect
of transverse polarisation can disappear when both beams
are perpendicularly polarised. According to the coordinate
system in Fig. 3, the transverse polarisation configuration for

Fig. 5 The Monte-Carlo simulation results of the muon azimuthal
angular distribution, where the colors correspond to the same configu-
ration as in the right panle of Fig. 4. The blue color demonstrates the
angular distribution of the maximal CP-mixing case (sin ξCP = 1) with
ηH < 0, and the red color is for the SM angular distribution. The Monte-
Carlo simulation is generated by Whizard-3.0.3, with integrated a
luminosity of 5 ab−1 and the center-of-mass energy 250 GeV

electron beams are set to along the y-axis, which are

parallel P− = (0, 100%, 0) = P+, (4.3)

anti-parallel P− = (0, 100%, 0), P+ = (0,−100%, 0).

(4.4)

In Fig. 4, we present the azimuthal angular distribution
in such a strategical scenario, where the left and right panel
correspond to parallel and anti-parallel polarisation configu-

123



   99 Page 8 of 21 Eur. Phys. J. C            (2025) 85:99 

ration, respectively. In particular, the CP-mixing cases with
the maximal CP-mixing effect sin 2ξCP = 1 are separated
into forward Higgs (the pseudorapidity of Higgs ηH > 0
and cos θH > 0) and backward Higgs (the pseudorapidity of
Higgs ηH < 0 and cos θH < 0), while the CP-conserving
cases lead to the same distribution for forward Higgs and
backward Higgs. One can notice that the direction of the
polarisation change the angular distribution, and the paral-
lel and anti-parallel polarisation lead to the maximal effect.
The non-trivial azimuthal angular distribution would vanish,
when the electron and positron beams are perpendicularly
polarised. In addition, we perform the Monte-Carlo simula-
tion for the same strategical scenario, and show the forward
Higgs ηH > 0(cos θH > 0) with anti-parallel polarisation
(P− = −P+) in Fig. 5.

As we see, the azimuthal distribution based on the Monte-
Carlo simulation basically match to the analytical result of
the differential cross section, where the SM distribution of the
muon azimuthal angle is symmetric under the parity trans-
formation, i.e. is CP-even. On the other hand, the CP-mixing
case shifts the angular distribution to an asymmetric distri-
bution, while the forward Higgs and backward Higgs are
shifting the distribution into the opposite direction. Since
the direction of the electron e− beams defines the z-axis
of the coordinate system, the charge conjugation would flip
the direction of the electron beam, and the z-axis would be
flipped as well. However, the direction of Higgs is invariant
under C transformation. In this case, the backward Higgs case
would be changed to the forward Higgs case by the charge
conjugation. Note that, the φμ− angular distribution of the
CP mixing case can still be a constant distribution when the
cases of the forward Higgs and backward Higgs are summed
up together.

Based on the analysis for the angular distribution, we can
construct an observable as

OT
CP = ηH sin 2φμ− , (4.5)

which is consistent with the vector product form in [35],

OT
CP ∝ [�se− · ( �pμ− − �pμ+)

]

[

(�se− × �pe−) · ( �pμ− − �pμ+)
] [ �pe− · �pH ]. (4.6)

In this case, the CP-violation in the HZZ interaction leads
to differential cross-sections where the signal regions have
different sign of this observable OCP .

4.2 The CP-odd observable with transverse polarisation

In order to probe the CP-violation effect, one has to construct
a CP-odd observable. However, it is difficult to construct
the actual T -odd observable in collider experiments, since
the true “time reversal” has to exchange the initial and final
states completely (including all possible radiations), which

would be unrealistic. Consequently, we can apply the naive
T reversal TN , which is the T reversal when neglecting all
the initial and final state radiation. If we assume that CPT ≈
CPT N , a TN -odd observable can be converted to a CP-odd
observable by the CPT theorem. Consequently, we construct
an asymmetry based on the observable in Eq. (4.5), which is
given by:

AT
CP = 1

σtot

∫

sgn(OT
CP )dσ

= 1

σtot

∫

dηHdφμ−
(

sgn(ηH sin 2φμ−)
d2σ

dηHdφμ−

)

.

(4.7)

In the experiment, such an asymmetry is obtained by counting
the numbers of events for the two different signal regions,
which is:

AT
CP = N (OT

CP < 0) − N (OT
CP > 0)

N (OT
CP < 0) + N (OT

CP > 0)
, (4.8)

where N denotes the corresponding number of events. Since
the SM isCP conserving for the neutral current, the SM back-
ground for this asymmetry is negligible. However, the num-
ber of events fluctuates statistically leading to the uncertainty
of this asymmetry. The numbers of events of each region
follows a Poisson distribution, which yields the statistical
uncertainties

√
N . The uncertainty of the asymmetry, based

on binomial distribution, is given by:

�AT
CP = 2

√

ε(1 − ε)

Ntot
, ε = N (OT

CP < 0)

Ntot
. (4.9)

Hence, we can obtain:

�AT
CP =

√

1 − AT
CP

2

Ntot
. (4.10)

The uncertainties of the SM cases can be given by the
�AT

CP = 7.9 × 10−3 with 2 ab−1 and �AT
CP = 5.0 × 10−3

with 5 ab−1 . By taking the uncertainties of the asymmetry
into account, one can potentially distinguish the CP-mixing
cases from the SM case with a given integrated luminosity
and derive the unique CP-violation effect.

Thus, we vary the CP-mixing angles from the CP-
conserving case | sin 2ξCP | = 0 to the maximal CP-mixing
case | sin 2ξCP | = 1, and present the results of asymmetries
in Fig. 6, where we still fix the total cross section σtot = σSM

as used before.
As we see in the figure, the CP-conserving case with

| sin 2ξCP | = 0 shows the vanishing asymmetry AT
CP , while

the CP-sensitive asymmetry is enhanced with increasing
| sin 2ξCP |. By comparing with the SM results and its 2σ -
region in Fig. 6, the (PT− , PT+ ) = (80%, 30%) transversely-
polarised beams cannot generate a large enough asymme-
try AT

CP , since even the AT
CP (sin 2ξCP = 1) is still within
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Fig. 6 The analytical results of the asymmetries from Eq. (4.8) with
varying | sin 2ξCP | and fixed total cross section σtot = |cSM|2σSM,
where the uncertainties of the asymmetries are taken from the Eq. (4.9).
The red solid line corresponds to the completely polarised beams
(PT− , PT+ ) = (100%, 100%), while the orange line and magenta line
demonstrate the asymmetries with (PT− , PT+ ) = (90%, 40%) and
(PT− , PT+ ) = (80%, 30%) polarised beams, respectively. The blue and
green dashed line indicate the 2σ limits of the asymmetry for the SM
CP-conserving case, while the green region is the 2σ region of 500 fb−1,
the blue region is for the 2 ab−1 and yellow region is for the 5 ab−1

the 2σ range at 500 fb−1, which is discussed as the inte-
grated luminosity of the first phase running at the ILC with√
s =250 GeV [50,51]. However, if the integral luminosity

can be increased to 2000 fb−1 (cf. running scenario H-20 in
Ref [50]), the asymmetries for | sin 2ξCP | � 0.5 are above
the blue region, which can be roughly distinguished from the
SM CP-conserving case at 95% C.L. (Confidence Level).
Furthermore, we can use the (PT− , PT+ ) = (90%, 40%)

transversely-polarised beams, which are the maximum polar-
isation fraction for the electron and positron beams expected
to be obtained by experiment [34]. In this case, the limit of
| sin 2ξCP |, where the asymmetry AT

CP can be distinguished
from the SM CP-conserving case, can be improved by the
increment of the polarisation fraction.

The actual total cross section would be the linear combi-
nations of all three possible terms in Eq. (2.2), where the size
of each contributions remains unknown. Thus, this observ-
able can be also used for a complementary measurement of
the CP-odd coupling c̃H Z Z , when the CP-odd coupling con-
tribute the total cross-section. In such case, we can fix the
SM tree-level contribution by cSM = 1 and vary the c̃H Z Z

individually, while the results of asymmetry AT
CP in such

scenario would be presented in Fig. 7. This figure demon-
strates that the asymmetry AT

CP reaches the maximum when
c̃H Z Z ≈ 0.4, where the CP-odd and CP-even interaction
contribute the same amount to the total cross-section.

Note that, the maximum values of AT
CP can be sup-

pressed by smaller transverse polarisation fraction, where the

Fig. 7 The analytical results of the asymmetries from Eq. (4.8) depend-
ing on the coupling c̃H Z Z , where the SM tree-level cross-section is fixed
with the additionally varying c̃H Z Z .The configurations of polarisation
and luminosity as well as the uncertainties are presented with the same
colors as in Fig. 6

(PT− , PT+ ) = (80%, 30%) polarised beams with the lumi-
nosity of 500 fb−1 cannot generate a large enough max-
imum asymmetries beyond the SM 2σ deviation. Hence,
the (PT− , PT+ ) = (80%, 30%) polarisation with 500 fb−1 is
insufficient to determine the CP structure of HZZ inter-
action in any cases. However, the luminosity of 2 ab−1

can improve this sensitivity significantly, and the fraction
c̃H Z Z ∼ 0.1 can be determined by (PT− , PT+ ) = (80%, 30%)

using asymmetry AT
CP .

4.3 The CP-odd observable with unpolarised or
longitudinally polarised beams

In addition to the observable in Eq. (4.5), there is another
observable, which is sensitive to the triple product in the
unpolarised and longitudinally polarised cross-section in
Eq. (3.14), and shown in the following,

OUL
CP = cos�φHμ ∝ ( �pμ− × �pμ+) · �pH ,

�φHμ = φμ − φH . (4.11)

This observable can be measured for any kind of initial beams
polarisation, and can be used to construct another asymmetry

AUL
CP = 1

σtot

∫

sgn(OUL
CP )dσ

= N (OUL
CP < 0) − N (OUL

CP > 0)

N (OUL
CP < 0) + N (OUL

CP > 0)
, (4.12)

where the statistical uncertainty of this asymmetry can be
obtained by the same formula, see Eq. (4.10).

We calculate this asymmetry and differential cross-section
w.r.t the CP-odd observable OUL

CP in Fig. 8, where the upper
panel shows that longitudinal polarisation can enhance the
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Fig. 8 Plots of the asymmetry AUL
CP (see Eq. (4.12)) and the partial

cross-section with varying sin 2ξCP at the ILC with the center-of-mass
energy

√
s = 250 GeV. The red lines in both panels are for the unpo-

larised case, and the blue lines correspond to the case with longitudi-
nally polarised beams (PL− , PL+ ) = (−90%, 40%). The upper panel
illustrates the cross-section with different signs of the observable OUL

CP ,
where the dotted lines are for the cross-section σ(OUL

CP < 0) and the
dashed lines are for the σ(OUL

CP > 0). The lower plot presents the asym-
metry AUL

CP for both unpolarised and longitudinally polarised cases.
The yellow region is the 2σ region of SM CP-conserving case with
(PL− , PL+ ) = (−90%, 40%) and 2 ab−1, while the green region is for
the unpolarised case

total cross-section of the process e+e− → Hμ+μ−. As we
see in the lower panel of Fig. 8, the asymmetries AUL

CP of
both the unpolarised case and the longitudinal polarisation
are basically the same, which are also linearly depend on
the CP-mixing angle sin 2ξCP . However, due to the larger
total cross-section, the statistical uncertainty can be sup-
pressed and the precision of measuring the AUL

CP is get-
ting better when the longitudinal polarisation is imposed.
For the integrated luminosity of 2 ab−1, however, the AUL

CP
with the | sin 2ξCP | � 0.1 can be 2σ different from the CP-
conserving value. This sensitivity to the CP-violation effect
is better than the measurement of AT

CP with the transverse
polarisation and the same luminosity, shown in Fig. 6. This is
due to the suppression of the observableAT

CP by the prefactor
of polarisation degree PT− PT+ < 1, while AUL

CP is originating
from the unpolarised part and has therefore no suppression
from polarisation degrees.

However, the observable AUL
CP can be also measured

when the initial beams are transversely polarised, since the
triple product in Eq. (4.11) exists in the unpolarised cross-
section and can still contribute in such a case. Therefore, one
can measure two CP-odd observables simultaneously with
imposing transverse polarisation, which are AUL

CP and AT
CP .

In such a case, the sensitivity to the CP-odd effect can be
improved furthermore by combining these two observable
measurements.

5 The determination limits of the CP-violation with
beam polarisation at the ILC

In the previous section, we discuss the impact of the CP
sensitive observables. Hence, we can use these observables
to determine the size of the CP-violation effect at the ILC
with certain integrated luminosities and polarisation degrees,
where we used two scenarios for the determinations. One of
the scenario is (i) fixing the total cross-section, while only the
CP property of the process can be varied. In such a case, one
can determine the intrinsic CP-mixing angle with the help
of asymmetries in Sect. 4. The another scenario is supposing
that the (ii) SM tree-level cross-section is fixed, and the c̃H Z Z

term contribute the total cross-section additionally. In this
case, the total cross-section can be varied by the CP-odd
coupling. Therefore, we can determine the CP-odd coupling
by fitting the numbers of events in the signal regions differed
by CP-odd observables.

5.1 The determination for the CP-mixing angle

We present the Monte-Carlo simulation results of the asym-
metry AT

CP with varying CP-mixing angle in Fig. 9, which
are generated by Whizard − 3.0.3. As we see in Fig. 9,
the asymmetry is linear dependent on sin 2ξCP , which is
the same as the analytical calculation in Fig. 6, where the
asymmetry has the bigger statistical fluctuation for the inte-
gral luminosity 2000 fb−1 than for the 5000 fb−1. Since
the 500 fb−1 is insufficient to determine the CP-violation
effect based on previous discussions, we do not present the
results with 500 fb−1 for the Monte Carlo simulation. Based
on the MC data, we perform linear fits for the AT

CP versus
sin 2ξCP dependence, which are presented in the solid lines
in Fig. 9. By comparing with the SM 2σ -limits with respect
to different integrated luminosities, we obtain the limits of
the CP-mixing parameter sin 2ξCP with different transverse
polarisation fractions and different asymmetries, which are
presented in Table 1. In these studies, we do not consider the
background estimation, since the SM background is basically
CP-even and the asymmetries would cancel out the CP-even
contribution. The efficiency of the μ+μ−H channel at ILC
with 250 GeV is around 94% [52], so that we can estimate the
number of events roughly by 100% detection efficiency. Fur-
thermore, the SM μ+μ−H signal significance can already
reach to at least 7.46 σ with 250 fb−1 (see Refs. [52,53]),
and the SM background can be even more suppressed with
2000 fb−1 and polarised beams [54]. Therefore, we can sim-
ply estimate the limits of the CP-mixing parameters without
taking the background into account.

Since the unpolarised observable AUL
CP can be simultane-

ously measured when transverse polarisation is imposed, we
can combine the two observables by introducing the follow-
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Fig. 9 The plots of asymmetry AT
CP (see Eq. (4.8)) vs sin 2ξCP .

The dotted points with error bars are the Monte-Carlo simulation
results of the AT

CP generated by the Whizard-3.0.3, where the
error bars are the statistical uncertainties and the total cross-section
is fixed to the SM tree-level value. The solid lines are the linear fit
of the MC data. The left panels correspond to the polarisation frac-

tion (PT− , PT+ ) = (80%, 30%), and the right panels correspond to
(PT− , PT+ ) = (90%, 40%). The SM 2σ -bounds of the upper two plots
refer to the integrated luminosity of 2000 fb−1, and the lower two plots
refer to 5000 fb−1. For all the figures, the fitting lines come across the
SM 2σ -bounds determining the limit of sin 2ξCP

ing χ2:

χ2
ACP =

( AT
CP

�AT
CP

)2

+
( AUL

CP
�AUL

CP

)2

, (5.1)

where the uncertainties of both asymmetries �AT
CP and

�AUL
CP are the statistical uncertainties, obtained by Eq. (4.10).

We take the 95% C.L. of one degree of freedom as the crit-
ical value of χ2

ACP , which is roughly χ2
ACP < 3.84. Conse-

quently, these determination results are shown in Table 1 as
well.

Furthermore, we can also determine theCP-violation with
only using the longitudinal polarisation. Although the CP-
odd observable AUL

CP cannot be enhanced by the longitudinal
polarisation, the total cross-section would be enlarged and
the determination results can be improved. As a result, we
also present the determination results using longitudinally
polarised beams in Table 1.

As we see in Table 1, the method of combining the two
observable with transverse polarisation yields much better
precision for the CP-mixing angle sin 2ξCP than the method
of only using AT

CP . Although the longitudinal polarisation
can not enhance the CP-odd observable, the sensitivity to
the CP-violation effect can be still improved by the longitu-
dinally polarised beams due to the larger total cross-section.
Consequently, the precision of using the longitudinal polari-
sation can be approximately the same or even slightly better
than using the transverse polarisation and combining the two
observables.

5.2 The determination for the CP-odd coupling

If we assume that the SM tree-level contribution of this pro-
cess is fixed and the c̃H Z Z term provides an additional contri-
bution, the total cross-section can be increased by theCP-odd
coupling. In order to take the effect of cross-section incre-
ment into account, we perform the fit for the corresponding
signal regions deferred by the CP sensitive observable, and
obtain χ2 by

χ2
N =

∑

i

(

(N (Oi < 0) − NSM(Oi < 0))2

N (Oi < 0)

+ (N (Oi > 0) − NSM(Oi > 0))2

N (Oi > 0)

)

, (5.2)

where i corresponds to the different CP-violating observ-
ables. For this analysis, we only use statistical uncertainties
for the rough estimation without including the systematic
uncertainties.

Figure 10 presents the p-value of the χ2
N fit in Eq. (5.2),

where the observable is only referring to OT
CP , and Fig. 10

demonstrates the p-value dependence on the coupling c̃H Z Z

obtained by analytical calculation. By comparing the solid
lines with 95% C.L., one can easily determine the limit of
c̃H Z Z , where 5 ab−1 luminosity provides a limit of c̃H Z Z <

0.03. In particular, the higher luminosity of 5 ab−1 with lower
polarisation degrees (PT− , PT+ ) = (80%, 30%) provides the
better precision in c̃H Z Z than (PT− , PT+ ) = (90%, 40%) but
with lower luminosity of 2 ab−1.

Furthermore, we implement the fit method for the Monte-
Carlo data generated by Whizard-3.0.3, where we made
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Table 1 The summary table for 2σ limit of CP-mixing angle sin 2ξCP
with center-of-mass energy 250 GeV. The column of AT

CP shows, the
determination results only using the observable AT

CP with transverse
polarisation, while the column of AUL

CP corresponds to the results with

using longitudinal polarisation. Note that the column of “CombineAT
CP

& AUL
CP” still uses the experimental set up of transverse polarisation but

measures the two observables

(P−, P+) L [ab−1] sin 2ξCP limit

Observables AT
CP Combine AT

CP & AUL
CP AUL

CP

Transverse polarisation

(80%, 30%) 2.0 [−0.50, 0.53] [−0.113, 0.125]

(80%, 30%) 5.0 [−0.36, 0.36] [−0.068, 0.079]

(90%, 40%) 2.0 [−0.33, 0.34] [−0.118, 0.110]

(90%, 40%) 5.0 [−0.23, 0.22] [−0.066, 0.077]

(100%, 100%) 5.0 [−0.082, 0.069] [−0.056, 0.051]

Longitudinal polarisation

(−80%, 30%) 2.0 [−0.119, 0.082]

(−80%, 30%) 5.0 [−0.066, 0.063]

(−90%, 40%) 2.0 [−0.085, 0.106]

(−90%, 40%) 5.0 [−0.059, 0.062]

(−100%, 100%) 5.0 [−0.047, 0.053]

Fig. 10 The p-value of χ2
N function in Eq. (5.2) depending on the CP-

odd coupling c̃H Z Z , where the observable is only for the OT
CP . The

red and orange solid lines are both using the transverse polarisation
(PT− , PT+ ) = (80%, 30%), and corresponds to the integrated luminosity
of 2 ab−1 and 5 ab−1 respectively. The blue and cyan lines are using
polarised beams (PT− , PT+ ) = (90%, 40%) and integrated luminosity
of 2 ab−1 and 5 ab−1 respectively. The area below the green dashed line
is the region deviated from SM at 95% C.L., while the yellow dashed
line is for the SM 68% C.L

the quadratic function fitting to the number of events in each
signal regions with respect to the coupling c̃H Z Z . The fit
function is shown as the following

N = a c̃2
HZ Z + b c̃H Z Z + c. (5.3)

where the uncertainties of N are obtained by the statisti-
cal fluctuation. Here, two of the fitting results are shown in
Fig. 11 as examples.

By using the number of events determined via the fitting
lines, one can calculate the χ2

N function in Eq. (5.2) and
obtain the statistical p-values for specific polarisation frac-
tions and luminosities, shown in Fig. 12.

Consequently, we are able to determine a limit of c̃H Z Z

coupling by comparing the p-value lines with SM 95% C.L.
level in Fig. 12, and all the results with the different possi-
ble experimental configurations are presented in Table 2. As
we see in Table 2, the determination with only using OT

CP
yields a limit of c̃H Z Z ∼ 0.03, where the initial beams are
(PT− , PT+ ) = (90%, 40%) polarised and the integrated lumi-
nosity is 5 ab−1. However, combining OT

CP and OUL
CP can

strongly improve the sensitivity to CP-odd coupling, and
provides a limit of c̃H Z Z ∼ 0.01. Note that the higher polar-
isation fraction cannot significantly enhance the precision
of the CP-odd coupling while the integrated luminosity is
fixed. Nevertheless, the limits of c̃H Z Z can be more pre-
cise with larger luminosity for fixed polarisation degrees.
In addition, we also present the results with using longi-
tudinal polarisation only in Table 2. One can see that the
(PL− , PL+ ) = (−90%, 40%) polarisation and 5 ab−1 luminos-
ity can determine the limit ofCP-odd coupling c̃H Z Z ∼ 0.01,
which is roughly the same as the result with transverse
polarisation of (PT− , PT+ ) = (90%, 40%) and L =5 ab−1.
However, for the configuration of (80%, 30%) and 2 ab−1,
the result with using only longitudinal polarisation gives
c̃H Z Z ∼ 0.017 occasionally better than the result with only
using transverse polarisation, c̃H Z Z ∼ 0.02.
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Fig. 11 The quadratic fitting function result of the number of events
in different signal regions with respect to the CP-odd coupling c̃H Z Z .
The red lines and data points are for the signal region with OCP < 0,
and the blue lines and data points are for OCP > 0. The left panel is

for the signal regions defined by the signs of OUL
CP , and the right panel

corresponds to the observable OT
CP . Both cases are using the transverse

polarised beams of (PT− , PT+ ) = (90%, 40%) and integrated luminosity
of 2 ab−1

Fig. 12 The p-values of the χ2 function defined in Eq. (5.2) depend-
ing on the coupling c̃H Z Z , where the model predictions are generated
by fitting the Whizard-3.0.3 simulation data. The upper two plots
are both for the polarisation (PT− , PT+ ) = (80%, 30%), and the lower

two plots are for (PT− , PT+ ) = (90%, 40%). The left two plots use the
integrated luminosity of 2 ab−1, and the right two plots use 5 ab−1.
Both yellow and green dashed lines correspond to the SM 68% C.L.
and 95% C.L
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Table 2 The summary table for the limits of CP-odd coupling c̃H Z Z
at 95% C.L., where the results with using transverse and longitudinal
polarisation are both presented in the table. Particularly, the results with
transverse polarisation are including the fitting only referring to OT

CP

and the fitting combiningOT
CP andOUL

CP . The center-of-mass energy are
both 250 GeV, and the polarisation fractions are using (80%, 30%) and
(90%, 40%), while the integrated luminosities are 2 ab−1 and 5 ab−1

(P−, P+) Luminosity [ab−1] c̃H Z Z (×10−2) limit

Observables OT
CP Combine OUL

CP & OT
CP OUL

CP

Transverse polarisation

(80%, 30%) 2.0 [−4.45, 4.65] [−2.26, 1.93]

(80%, 30%) 5.0 [−3.55, 3.85] [−1.29, 1.06]

(90%, 40%) 2.0 [−4.55, 4.15] [−2.24, 1.69]

(90%, 40%) 5.0 [−2.65, 3.75] [−1.12, 0.98]

Longitudinal polarisation

(−80%, 30%) 2.0 [−1.55, 1.96]

(−80%, 30%) 5.0 [−1.01, 1.16]

(−90%, 40%) 2.0 [−1.73, 1.53]

(−90%, 40%) 5.0 [−0.93, 1.18]

In the end, we summarize the current measurements of
the HZZ coupling and the analyses at other future collid-
ers in Table 3, where the interpretations of the other analy-
ses can be translated by the relations given in appendix C.
As we see, the ILC 250 GeV with transverse or longitudi-
nal polarisations (|P−|, |P+|) = (90%, 40%) and 5000 fb−1

can significantly improve the precision of the c̃H Z Z coupling
compared to current ATLAS [26] and CMS [18,19] results.
Regarding expected HL-LHC results [27], this method acces-
sible at e+e− colliders can determine the c̃H Z Z coupling
much better than the hadron collider with 3 ab−1. Note
that the polarised beams at e+e− collider can improve the
sensitivity to the CP-odd coupling, compared to the CEPC
unpolarised analysis via the exact same Higgs strahlung pro-
cess with 5.6 ab −1 [28]. For the ILC 250 GeV study, the
same process with unpolarised beams gives the precision of
f H Z Z
CP = ±3.9×10−5 with 2500 fb−1 [13,55], which can be

translated into c̃H Z Z ∼ ±1.60 × 10−2 by Eq. (C.2). In addi-
tion, the determination of the c̃H Z Z coupling via Z -fusion
at 1 TeV ILC with 8 ab−1 [33] can also provide a sensi-
tivity to CP-odd couplings roughly at the same level as the
250 GeV CEPC results with unpolarised beams. Since the Z -
fusion process is a different channel compared to the Higgs
strahlung process, and can be more dominant with larger
center-of-mass energy, the Z -fusion analysis would be the
complementary study for CP-violation of HVV interaction.

6 Conclusions

This paper mainly discusses the study of CP-properties via
the process e+e− → HZ → Hμ−μ+ with a center-of-
mass energy 250 GeV and the transversely and longitudinally
polarised e± beams at the ILC. In this paper, we carried out an

analytical computation of the differential cross section for the
Higgs-strahlung process with a Z -boson decaying into two
muons while incorporating the effects of initial polarisation.
Applying full spin correlations, we investigated the impact
of CP-violating couplings on the muon azimuthal angular
distributions and discovered that the partial cross sections
for the regions of ηH sin 2φμ− > 0 and ηH sin 2φμ− < 0 are
asymmetric. Particularly, the azimuthal angle of the muons
pair is defined by the orientation of the transverse polarisation
of the initial beams. Based on the analysis of angular distri-
butions, we construct a CP-odd observableOT

CP in Eq. (4.5),
which is odd under the naive T reversal transformation. This
CP-odd observable can be used to construct the asymme-
try AT

CP , which is sensitive to the CP-violation. Based on
the analytical calculation, we know that the size of AT

CP is
highly depending on the polarisation fraction, and the larger
polarisation fraction leads to larger AT

CP .
In addition, the other CP-odd observable OUL

CP can be
constructed as well, which can be always measured what-
ever initial beams polarisation is applied. The asymmetry
AUL
CP , defined by OUL

CP , is independent on the polarisation
fraction for both longitudinal and transverse polarisation.
Since the OUL

CP is a different observable as OT
CP , one can

combine these two observables to increase the statistical sig-
nificance, when transverse polarisation is imposed. On the
other hand, the statistical fluctuation can be suppressed by
enhancing total cross-section when longitudinal polarisation
is imposed. Therefore, the longitudinal polarisation can be
helpful to increase the sensitivity to CP-violation as well.

Furthermore, we performed the Monte-Carlo simulation
for this process at 250 GeV center-of-mass energy with initial
polarised beams by whizard-3.0.3. For the data gener-
ated by MC simulation, we made the fit for the number of
events in the signal regions, and obtain the asymmetries by
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Table 3 Summary of the limits of c̃H Z Z at 95% C.L., where the results
are obtained from both current LHC measurements and future colliders
analysis, including HL-LHC, CEPC, ILC and CLIC. The other inter-

pretations of these results are given in the appendix C, including the
effective CP-odd fraction f H Z Z

CP and the coupling c̃Z Z

Experiments ATLAS [26] CMS [21] HL-LHC [27] CEPC [28] CLIC [32] ILC [33] ILC
Processes H → 4
 H → 4
 H → 4
 HZ W -fusion Z -fusion HZ , Z → μ+μ−√
s [GeV] 13,000 13,000 14,000 240 3000 1000 250

Luminosity [fb−1] 139 137 3000 5600 5000 8000 5000
(|P−|, |P+|) (90%, 40%)

c̃H Z Z (×10−2)

68% C.L. (1σ )limit [−5.1, 16.6] [−7.2, 15.2] [−4.5, 4.5] [−0.8, 0.8] [−1.6, 1.6] [−1.0, 1.0] [−0.4, 0.7]

c̃H Z Z (×10−2)

95% C.L. (2σ )limit [−16.4, 24.0] [−22.4, 63.9] [−9.1, 9.1] [−1.6, 1.6] [−3.3, 3.3] [−1.9, 1.9] [−1.1, 1.0]

the fitting results. Particularly, we setup two scenarios for
varying CP-violation effect. Firstly we vary the CP-mixing
angle ξCP with fixing total cross-section. With the help of
this scenario, we can determine the limit of intrinsic CP-
mixing angle |ξCP | ∼ 0.035 rad with 5 ab−1 and trans-
verse polarisation only (PT− , PT+ ) = (90%, 40%) according
to Fig. 6, and |ξCP | ∼ 0.03 rad with longitudinal polarisation
only (PL− , PL+ ) = (−90%, 40%) (see Fig. 8). The other sce-
nario is fixing the SM tree-level HZZ interaction and vary
the additional contribution from CP-odd coupling c̃H Z Z . In
this case, we can determine the limit of CP-odd couplings
c̃H Z Z ∼ 0.011 with 5 ab−1 and transverse or longitudinal
polarisation (|P−|, |P+|) = (90%, 40%).

By comparing with the other analysis for the c̃H Z Z cou-
pling, the precision via Higgs strahlung process at e+e− col-
lider 250 GeV can be significantly better than current LHC
measurements. Concerning the analysis at CEPC with unpo-
larised beams, the initial polarised beams can improve the
sensitivity to CP-violation effect, for both transverse and
longitudinal polarisation. The reason of the improvement is
because that the transverse polarisation can provide addi-
tional observable, while the longitudinal polarisation can
increase the total cross-section and suppress the statistical
uncertainty. Additionally, the Z -fusion process at 1 TeV
e+e− colliders can provide complementary information on
the determination of the CP properties of HZZ coupling.

Overall, these determination of CP-odd coupling limits is
an optimistic estimation, which did not take the full back-
ground analysis and systematic uncertainties into account.
However, based on this analysis, we have learned which
effect contributed by the initial beams polarisation, and
obtained a method to improve the sensitivity to CP-violation
effect of HZZ interaction, when transverse or longitudinal
polarisation is imposed.
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Appendix A: The analytical result of cross section

In order to calculate the cross section of e−(pe−)e+(pe+) →
Z(q2)H(pH ) → μ−(pμ−)μ+(pμ+) process, we applied
the narrow width approximation, and calculate the Higgs
strahlung and Z decay separately.

For the SM Higgs strahlung e−(pe− , λr )e+(pe+, λu) →
Z(q2, λ

i )H , the scattering amplitude with the spin indices
of the initial electron, positron and the Z boson is given by:

Mλi

λrλs
= v̄(pe+, λu)

⎡

⎣i
g2mZ

2c2
W

−ημν + kμkν

m2
Z

k2 − m2
Z

γ μ
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(cV + cAγ5)ε
∗ν

(q2, λ
i )

⎤

⎦ u(pe−, λr ). (A.1)

After applying the Bouchiat-Michel formula of Eq. (3.7)
and polarization matrix of Eq. (3.1), the result of the scatter-
ing amplitude square is given by:

ρi i ′ = (1 − P3−P3+)A + (P3− − P3+)B +
1,2
∑

mn

Pm− Pn+Cmn .

(A.2)

For the SM, the unpolarized part is:

ASM = g4m2
Z

4c2
W (s − m2

Z )

(

(c2
V + c2

A)[(εi · pe+)(ε∗i ′ · pe−)

+(εi · pe−)(ε∗i ′ · pe+) − (εi · ε∗i ′)(pe+ · pe−)]
−i2cV cAεαμβνε

iαεβ i
′
pe−μ pe+ν

)

, (A.3)

and the longitudinally polarized part is

BSM = g4m2
Z

4c2
W (s − m2

Z )

(

2cV cA[(εi · pe+)(ε∗i ′ · pe−)

+(εi · pe−)(ε∗i ′ · pe+) − (εi · ε∗i ′)(pe+ · pe−)]
−i(c2

V + c2
A)εαμβνε

iαεβ i
′
pe−μ pe+ν

)

, (A.4)

as well as the transversely polarized part

Cmn
SM = g4m2

Z (c2
A − c2

V )

4c2
W (s − m2

Z )

(

(sm− · sn+)[(εi · pe− )(ε∗i ′ · pe+ )

+(εi · pe+ )(ε∗i ′ · pe− ) − (εi · ε∗i ′ )(pe− · pe+ )]
+(pe− · pe+ )[(εi · sn+)(ε∗i ′ · sm− ) + (εi · sm− )(ε∗i ′ · sn+)]

)

.

(A.5)

For the Z(q2) → μ−(pμ−)μ+(pμ+) decay, we have the
amplitude:

Mi = ig

2cW
ελi ū(pμ−)γλ(cV + cAγ5)v(pμ+), (A.6)

ρi i ′
D = g2

c2
W

(

(c2
V + c2

A)[(εi · pμ−)(ε∗i ′ · pμ+)

+(εi · pμ+)(ε∗i ′ · pμ−) + δi i
′
(pμ− · pμ+)]

−i2cV cAεαμβνε
iαε∗i ′β pμ

5 pν
μ+
)

. (A.7)

By using the narrow width approximation of Eq. (3.12),
the full scattering amplitude square is given by:

|M |2 = g6mZ

4c6
W (s − m2

Z )2�Z

{

(1 − P3−P3+)

×
[

2(c2
V + c2

A)2
( (pe− · q2)(pe+ · q2)

m2
Z

(pμ− · pμ+ )

− (q2 · pμ− )2

m2
Z

(pe− · pe+ )

−2

[

(pe− · q2)(q2 · pμ− )

m2
Z

− pe− · pμ−
]

×
[

(pe+ · q2)(q2 · pμ− )

m2
Z

− pe+ · pμ−
]

)

−24c2
V c

2
A[(pe− · pμ− )(pe+ · pμ+ )

−(pe− · pμ+ )(pe+ · pμ+ )]
]

+(P3− − P3+)2cV cA
[

(c2
V + c2

A)

×
( (pe− · q2)(pe+ · q2)

m2
Z

(pμ− · pμ+ ) − (q2 · pμ− )2

m2
Z

(pe− · pe+ )

−2

[

(pe− · q2)(q2 · pμ− )

m2
Z

− pe− · pμ−
]

×
[

(pe+ · q2)(q2 · pμ− )

m2
Z

− pe+ · pμ−
]

−6[(pe− · pμ− )(pe+ · pμ+ ) − (pe− · pμ+ )(pe+ · pμ+ )]
)]

−
∑

m,n
Pm− Pn+

[

(c4
V − c4

A)

×
[

(sm− · sn+)
( (pe− · q2)(pe+ · q2)

m2
Z

(pμ− · pμ+ )

− (q2 · pμ− )2

m2
Z

(pe− · pe+ )

−2

[

(pe− · q2)(q2 · pμ− )

m2
Z

− pe− · pμ−
]

×
[

(pe+ · q2)(q2 · pμ− )

m2
Z

− pe+ · pμ−
]

)

+2(pe− · pe+ )
(

(pμ− · pμ+ )

(

(q2 · sn+)(q2 · sm− )

m2
Z

− sn+ · sm−
)

−2

( (q2 · sn+)(q2 · pμ−
)

m2
Z

− pμ− · sn+)

×
(

(q2 · sm− )(q2 · pμ− )

m2
Z

− pμ− · sm−
))]]

}

. (A.8)

For the case with the BSM CP-odd contribution, the result
of the full scattering amplitude squared still takes the form
of Eq. (3.11), which can be separated into the three parts as
well. Therefore, we have:

|M|2 = (1 − P3−P3+)(c2
ακ2

SMASM

+sαcακSMκ̃HZ Z ACP-odd + s2
ακ̃2

HZ Z ÃCP-even)

+(P3− − P3+)(c2
ακ2

SMBSM + sαcακSMκ̃HZ Z BCP−odd

+s2
ακ̃2

HZ Z B̃CP−even)

+
1,2
∑

mn

Pm− Pn+(c2
ακ2

SMCmn
SM + sαcακSMκ̃HZ ZC

mn
CP−odd

+s2
ακ̃2

HZ ZC
mn
CP−even), (A.9)

where for the CP-odd part, we have:
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ACP−odd = −
g6εαβμν pα

e− pβ

e+q
μ
2 pν

μ−

c6
W (s − m2

Z )2m3
Z�Z

×
[

2(c2
V + c2

A)2(q2 · pμ−)(pe− − pe+) · q2

+m2
Z (2c2

V c
2
A(pe− + pe+) · q2

−(c2
V + c2

A)2(pe− − pe+) · pμ−)
]

,

(A.10)

BCP−odd =
g6εαβμν pα

e− pβ

e+q
μ
2 pν

μ−

c6
W (s − m2

Z )2m3
Z�Z

cAcV (c2
A + c2

V )

×[2(q2 · pμ−)(pe− − pe+) · q2

+m2
Z ((pe− + pe+) · q2 − 2(pe− − pe+) · pμ−)]

(A.11)

and

Cmn
CP−odd = − g6(c4

A − c4
V )

2c6
W (s − m2

Z )2m3
Z�Z

×
[

2(sn+ · sm−)((q2 · pμ−)(pe− − pe+) · q2

−m2
Z (pe− − pe+) · pμ−)εαβμν p

α
e− pβ

e+q
μ
2 pν

μ−

+s[εαβμν(pe− + pe+)αqβ
2 pμ

μ−s
m−

ν

×((q2 · pμ−)(sn+ · q2) − (sn+ · pμ−)m2
Z )

+εαβμν(pe− + pe+)αqβ
2 pμ

μ−s
n+

ν

×((q2 · pμ−)(sm− · q2) − (sm− · pμ−)m2
Z )]
]

.

(A.12)

Lastly, the part of the c̃2
HZ Z contributions are:

ÃCP−even = g6

8m3
Z c

6
W (s − m2

Z )2�Z

×
[

− 8(c2
A + c2

V )((pe− · pμ− )(pe+ · q2)

−(pe− · q2)(pe+ · pμ− ))2

+2s(q2 · pμ− )((c4
A + c4

V )[((pe− · q2))
2 + ((pe+ · q2))

2

−2((pe− + pe+ ) · q2)((pe− − pe+ ) · pμ− )]
+2c2

Ac
2
V [3((pe− · q2))

2 − ((pe+ · q2))
2

−2((pe− − pe+ ) · q2)((pe− − pe+ ) · pμ− )])
−sm2

Z [−2(c2
V + c2

A)2((pe− − pe+ ) · pμ− )2

−8c2
Ac

2
V ((pe− − pe+ ) · pμ− )((pe− − pe+ ) · q2)]

−s2m2
Z (c2

A + c2
V )2(q2 · pμ− )

]

, (A.13)

B̃CP−even = g6cAcV (c2
A + c2

V )

8m3
Zc

6
W (s − m2

Z )2�Z

×
[

8((pe− · pμ−)(pe+ · q2)

−(pe− · q2)(pe+ · pμ−))2

+s2m2
Z (q2 · pμ−) − 4s(q2 · pμ−)[(pe− · q2)

2

−((pe− − pe+) · q2)((pe− − pe+) · pμ−)]
+2sm2

Z [((pe− − pe+) · q2)((pe− + pe+) · pμ−)

−((pe− · pμ−) − (pe+ · pμ−))]
]

(A.14)

and

C̃mn
CP−even = − g6(c4

A − c4
V )

8m3
Z c

6
W (s − m2

Z )2�Z

×
[

8(sm− · sn+)[(pe− · q2)(pe+ · pμ−)

−(pe+ · q2)(pe− · pμ− )]2

+2s
(

(sm− · sn+)(q2 · pμ−)[(pe− · q2)(pe+ · q2)

−(pe− · pμ−)(pe− · q2) − (pe+ · q2)(pe+ · pμ− )

−3(pe− · pμ− )(pe+ · q2) − 3(pe− · q2)(pe+ · pμ−)]
+((pe− + pe+) · q2)((pe− + pe+) · pμ−)

×((sm− · pμ− )(sn+ · q2) + (sm− · q2)(sn+ · pμ− ))

−((pe− + pe+) · pμ−)2(sm− · q2)(sn+ · q2)

−((pe− + pe+) · q2)2(sn+ · pμ− )(sm− · pμ−)
)

+sm2
Z [2(sm− · sn+)(((pe− + pe+) · pμ− )2

+4(pe− · pμ− )(pe+ · pμ− ))]
+s2(q2 · pμ− )[(sm− · q2)(sn+ · q2)

−2(sm− · pμ−)(sn+ · q2) − (sn+ · pμ−)(sm− · q2)

+2(q2 · pμ−)(sm− · sn+)]
]]

. (A.15)

Note that, the internal Z boson momentum can be converted
to the momentum of the Higgs boson by the momentum con-
servation

q2 = pe− + pe+ − pH . (A.16)

The total cross section can be the above result applied into
the Eq. (3.17), and obtained by the numerical integration.

Particularly, the CP-odd transverse polarisation amplitude
has the following terms

Cmn
CP−odd ⊃ m2

Zεαβμν(pe− + pe+)αqβ
2 pμ

μ−

(sm−
ν
(sn+ · pμ−) + s−+

ν
(sm− · pμ−)). (A.17)

Here we can apply the center-of-mass frame, which means
that

pe− + pe+ = (
√
s, 0, 0, 0), (A.18)

and assume that s− = s+ = (0, 0, 1, 0) according to
Eq. (4.3). Hence, we obtain the simplified form

Cmn
CP−odd ⊃ [(�q2 × �pμ−) · �ny] (�ny · �pμ−)

= [( �pμ+ × �pμ−) · �ny] (�ny · �pμ−), (A.19)
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where we use the momentum conservation to replace the Z
boson momentum

q2 = pμ+ + pμ− . (A.20)

Particularly, the triple product in Eq. (A.19) can be expressed
in terms of the angle of final state μ−, which is given by

( �pμ+ × �pμ−) · �ny ∝ cos φμ− , (A.21)

�ny · �pμ− ∝ sin φμ− . (A.22)

Therefore, this term gives the CP-odd observable OT
CP ∝

sin φμ− cos φμ− = sin 2φμ−
Furthermore, the unpolarised part and longitudinally-

polarised part contain both the following term

ACP−odd, BCP−odd ⊃ εαβμν p
α
e− pβ

e+q
μ
2 pν

μ−

= εαβμν p
α
e− pβ

e+(pμ− + pμ+ )μ pν
μ−

= εαβμν p
α
e− pβ

e+ pμ

μ+ pν
μ−

∝ ( �pμ+ × �pμ−) · �pe− .

(A.23)

For this triple product, the spin vector is not involved and the
orientation of the azimuthal plane is undefined. Therefore, we
can apply another center-of-mass frame, where the z-axis is
along to the H and Z momenta. In this frame, we have

pH = (EH , 0, 0, | �pH |),
q2 = (EZ , 0, 0,−| �pH |). (A.24)

Because of the momentum conservation in Eq. (A.20), the
muon and anti-muon momenta have the following relations

px
μ− = −px

μ+ ,

py
μ− = −py

μ+ .
(A.25)

Hence, the z component of ( �pμ+ × �pμ−)z = 0. For this
reason, the triple product of ( �pμ+ × �pμ−) · �pe− is basically
the azimuthal angular difference between e+-e− plane and
the μ+-μ− plane, which is given by

( �pμ+ × �pμ−) · �pe− ∝ cos �φeμ. (A.26)

This azimuthal angle of μ+-μ− plane in this frame can be
converted to the azimuthal angle of the Z -H plane in the
laboratory frame (Fig. 3).

Appendix B: The phase space

As we know, one can eventually obtain the cross section of
e+e− → Hμ+μ− process by integrating over the three-body
phase space. However, one of the degrees of freedom can be
integrated out by applying the narrow width approximation,
and there are only four degrees of freedom in the final phase

space. In this case, the Lorentz invariant phase space is given
by:

dQ = 1

(2π)4

d�Hd�μ−

16
√
s

×
|p f

H ||p f
μ−|

| �pH + �pμ−| + |p f
μ−| + |p f

H | cos θHμ

= Q d�Hd�μ− , (B.1)

where:

|p f
H | = 1

2
√
s

√

(s − (mH + mZ )2)(s − (mH − mZ )2),

(B.2)

|p f
μ−| = m2

Z

2
√

|p f
H |2 + m2

Z + |p f
H | cos θHμ

. (B.3)

The term cos θHμ indicates the projection of the muon
momentum on the Higgs momentum.

In particular, we can evaluate the phase space in the center
of mass frame. If the electron and positron beams are trans-
versely polarized, their spin vector �se± would be perpendic-
ular to their momentum �pe± . In this case, we can define a
coordinate system by using the spin vector and momentum
of electron beams �se− , �pe− , where the momentum of final
state particles are shown in Fig. 3. Consequently, the projec-
tion cos θHμ can be expressed as:

cos θHμ = − sin θH cos φH sin θμ− cos φμ−

− sin θH sin φH sin θμ− sin φμ−

− cos θH cos θμ− .

(B.4)

Appendix C: Matching relations between different inter-
pretations

Effective CP-odd fraction

In order to test the CP properties of the Higgs boson, one can
define an effective CP-odd fraction f H Z Z

CP , referring to [56]

f H Z Z
CP = �CP−odd

H→Z Z

�CP−even
H→Z Z + �CP−odd

H→Z Z

, (C.1)

where �CP−odd
H→Z Z is the decay width obtained by setting cSM =

cHZ Z = 0 and c̃H Z Z = 1. If we assume that theCP-odd term
c̃H Z Z is the unique BSM contribution, and the SM tree-level
contribution stays invariant, the effective CP-odd fraction is
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Table 4 Summary of the limits of f H Z Z
CP at 95% C.L., where the results are obtained from both current LHC measurements and future colliders

analysis, including HL-LHC, CEPC, ILC and CLIC

Experiments ATLAS [26] CMS [21] HL-LHC [27] CEPC [28] CLIC [32] ILC [33] ILC
Processes H → 4
 H → 4
 H → 4
 HZ W -fusion Z -fusion HZ , Z → μ+μ−√
s [GeV] 13,000 13,000 14,000 240 3000 1000 250

Luminosity [fb−1] 139 137 3000 5600 5000 8000 5000
(|P−|, |P+|) (90%, 40%)

f H Z Z
CP (×10−5)

68% C.L. (1σ )limit [-40, 420] [−80, 350] [−30, 30] [−1.04, 1.04] [−4.1, 4.1] [−1.44, 1.44] [−0.26, 0.67]

f H Z Z
CP (×10−5)

95% C.L. (2σ )limit [−410, 870] [−760, 5880] [−127, 127] [−3.92, 3.92] [−16.66, 16.66] [−5.76, 5.76] [−1.85, 1.53]

Table 5 Summary of the limits of c̃Z Z at 95% C.L., where the results are obtained from both current LHC measurements and future colliders
analysis, including HL-LHC, CEPC, ILC and CLIC

Experiments ATLAS [26] CMS [21] HL-LHC [27] CEPC [28] CLIC [32] ILC [33] ILC
Processes H → 4
 H → 4
 H → 4
 HZ W -fusion Z -fusion HZ , Z → μ+μ−√
s [GeV] 13,000 13,000 14,000 240 3000 1000 250

Luminosity [fb−1] 139 137 3000 5600 5000 8000 5000
(|P−|, |P+|) (90%, 40%)

c̃Z Z

68% C.L. (1σ )limit [−0.37, 1.21] [−0.53, 1.10] [−0.33, 0.33] [−0.06, 0.06] [−0.12, 0.12] [−0.07, 0.07] [−0.03, 0.05]

c̃Z Z

95% C.L. (2σ )limit [−1.2, 1.75] [−1.63, 4.66] [−0.66, 0.66] [−0.12, 0.12] [−0.24, 0.24] [−0.14, 0.14] [−0.08, 0.07]

given by

f H Z Z
CP = 1/

⎛

⎜

⎝
1 + 1

|̃cHZ Z |2 �CP−odd
H→Z Z

�CP−even
H→Z Z

⎞

⎟

⎠
sgn(̃cHZ Z ). (C.2)

where the decay width ratio can be approximately the same as
the cross-section ratio, since the branching ratio of H → Z Z
is small and the contribution of total width by CP-odd HZZ
coupling can be negligible. There we can obtain the decay
width ratio by

�CP−odd
H→Z Z

�CP−even
H→Z Z

∼ σ3

σSM
[pp → H → 4
(13 TeV)] ∼ 0.153.

(C.3)

Since the f H Z Z
CP is defined in the Higgs boson decay, the

f H Z Z
CP is also an unique process independent quantity. Con-

sequently, we can match all the results in Table 3 to the f H Z Z
CP

interpretation, which is presented in Table 4
Furthermore, one can also define a effective CP-mixing

angle ψCP by using the effective CP-odd fraction, which can
be extracted by:

sin2 ψCP = f H Z Z
CP . (C.4)

CP-odd couplings

The coupling a3 in [20] can be converted to another interpre-
tation of CP-odd coupling by the following relation [21]

c̃Z Z = − sin2 θW cos2 θW

2πα
a3, (C.5)

where the coupling c̃Z Z is defined by the following effective
Lagrangian in Eq. (21) of [27]

Leff = g2
1 + g2

2

4
c̃Z Z

H

v
Zμν Z̃

μν. (C.6)

Therefore, we have the matching relation

c̃H Z Z = g2
1 + g2

2

4
c̃Z Z = m2

Z

v2 c̃Z Z . (C.7)

By using the matching relation, we can convert our results
to the c̃Z Z interpretation, and the summary table of c̃Z Z is
given by Table 5.
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