. symmetry 22

Article

Investigation of Analytical Soliton
Solutions to the Non-Linear Klein—
Gordon Model Using Efficient
Technigques

Miguel Vivas-Cortez, Maham Nageen, Muhammad Abbas and Moataz Alosaimi

Special Issue
Symmetry in Nonlinear Partial Differential Equations and Rogue Waves

Edited by
Dr. Natanael Karjanto



https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/Rogue_Waves
https://www.mdpi.com
https://doi.org/10.3390/sym16081085

symmetry

Article

Investigation of Analytical Soliton Solutions to the Non-Linear
Klein—Gordon Model Using Efficient Techniques

Miguel Vivas-Cortez 1, Maham Nageen 2, Muhammad Abbas >*

check for
updates

Citation: Vivas-Cortez, M.; Nageen,
M.; Abbas, M.; Alosaimi, M.
Investigation of Analytical Soliton
Solutions to the Non-Linear
Klein-Gordon Model Using Efficient
Techniques. Symmetry 2024, 16, 1085.
https://doi.org/10.3390/
sym16081085

Academic Editors: Natanael Karjanto

and Christodoulos Sophocleous

Received: 15 April 2024
Revised: 10 July 2024
Accepted: 25 July 2024
Published: 21 August 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Moataz Alosaimi 3

Faculty of Exact and Natural Sciences, School of Physical Sciences and Mathematics, Pontifical Catholic
University of Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado, Quito 17-01-2184, Ecuador;
mjvivas@puce.edu.ec

Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan; mahamnageen5@gmail.com
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099,

Taif 21944, Saudi Arabia; m.alosaimi@tu.edu.sa

*  Correspondence: muhammad.abbas@uos.edu.pk

Abstract: Nonlinear distinct models have wide applications in various fields of science and engi-
neering. The present research uses the mapping and generalized Riccati equation mapping methods
to address the exact solutions for the nonlinear Klein-Gordon equation. First, the travelling wave
transform is used to create an ordinary differential equation form for the nonlinear partial differential
equation. This work presents the construction of novel trigonometric, hyperbolic and Jacobi ellip-
tic functions to the nonlinear Klein-Gordon equation using the mapping and generalized Riccati
equation mapping methods. In the fields of fluid motion, plasma science, and classical physics
the nonlinear Klein—-Gordon equation is frequently used to identify of a wide range of interesting
physical occurrences. It is considered that the obtained results have not been established in prior
study via these methods. To fully evaluate the wave character of the solutions, a number of typical
wave profiles are presented, including bell-shaped wave, anti-bell shaped wave, W-shaped wave,
continuous periodic wave, while kink wave, smooth kink wave, anti-peakon wave, V-shaped wave
and flat wave solitons. Several 2D, 3D and contour plots are produced by taking precise values
of parameters in order to improve the physical description of solutions. It is noteworthy that the
suggested techniques for solving nonlinear partial differential equations are capable, reliable, and
captivating analytical instruments.

Keywords: Klein-Gordon model; mapping method; generalized Riccati equation mapping method;
solitons; Lie symmetry

MSC: 35C08; 35C09; 35Q51

1. Introduction

Mathematicians, engineers, physicists, and many other experts have been observed
nonlinear problems in the past. The nonlinear evolution equations (NLEEs) are now being
studied in a variety of nonlinear fields including protein chemistry, applied mathematics,
physics [1], geochemistry, chemical kinematics, meteorology, mathematical fluid dynam-
ics [2], plasma physics [3], and the propagation of shallow water waves. There is a growing
interest in the work on soliton wave solutions of NLEEs. Since these NLEEs are mathe-
matical representations of the phenomena, finding the exact solutions to these models will
be helpful in our understanding of the phenomena. These equations are used to model
physical processes that change over time as well as to explain how systems behave over
time. Additionally, complex structures and systems like diffusion, fracture, and turbulence
are examined using NLEEs.

The precise solutions to nonlinear partial differential equations (NLPDEs) can be
found using a variety of significant and efficient methods [4]. Many physical and scientific
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problems in nature are illustrated by differential equations. Precise solutions for traveling
wave differential equations are essential for utilizing these nonlinear phenomena. Signifi-
cant progress has been achieved by mathematicians in developing numerous methods for
solving NLPDEs. Nonlinear physical sciences obtain particularly from exact solutions since
they enable an analysis of the problem’s physical behavior and the investigation of other
aspects that may have an impact on the future [5].

The NLEEs are a type of mathematical equation used to describe how a system changes
over time. An NLPDE is a specific type of equation that combines the ideas of nonlinearity
and describes change across multiple variables. While most NLPDEs are notoriously
difficult to solve, a special class known as integrable NLPDEs offers a glimmer of hope.
These equations, despite their complexity, possess a surprising property: they can be solved
using more manageable techniques compared to the general case. This integrability allows
researchers to find exact solutions or analyze properties that would be intractable for
typical NLPDEs. Some prominent examples of integrable NLEEs include the Korteweg-de
Vries (KdV) equation, crucial for understanding shallow water waves and solitons; the
NLS equation, with applications in diverse fields like nonlinear optics and Bose-Einstein
condensates; and the sine-Gordon equation, relevant in condensed matter and high-energy
physics for studying solitons and kink waves.

Furthermore, a recent review on another NLEE of the nonlinear Schrodinger (NLS)
equation reveals that it can be derived not only from the KdV equation but also from a
nonlinear Klein-Gordon (KG) equation [6]. The author also highlighted an immense range
of applications of the NLS equation and its ability to simulate wave packet dynamics in
various fields, including hydrodynamics, nonlinear optics, superconductivity, and Bose-
Einstein condensates.

For exact solutions of NLEEs including the fractional low-pass electrical transmission
line model, the Korteweg—de Vries (KdV) equation, three coupled nonlinear Maccari
systems, the generalized sine-Gordon equation, a variant of the Boussinesq equation,
the generalized (2 + 1)-dimensional NLPDE the the extended direct algebraic method [7],
the extended trial equation method [8], the truncated Painlevé technique [9] and the
modified hyperbolic function expansion method [10] are quite helpful. The exact three-
soliton solutions of a third-order nonlinear Schrodinger equation are obtained using the
Hirota’s bilinear approach, as indicated in [11]. As stated in [12], the analytical investigation
of three-soliton interactions with various phases in nonlinear optics is obtained using
Hirota’s bilinear approach.

Nonlinear mathematical modeling has been demonstrated to be a valuable field
of study for researchers and scientists. This resulted in the development and enhance-
ment of several important and practical methods for solving problems, such as the modi-
fied rational sine-cosine method [13], Hirota bilinear transformation [14], double (%/, %)—
expansion method [15,16], the spectral collocation technique [17], the generalized unified
approach [18], the inverse scattering transform technique [19], the extended tanh-function
method [20], sine-Gordon expansion approach [21], the Kudryashov approach [22-24],
the new auxiliary equation method [25], the Sardar sub-equation method [26], the modified
and generalized Kudryashov method [27,28], the exp-function method [29], the homotopy
perturbation method [30], the conservation law scheme [31], the modified (%)—expansion
approach [32] and the orthogonal Lie algebra scheme [33] and others.

The new perturbation iteration transform method, as described in [34], is used to solve
linear and nonlinear Klein-Gordon (KG) equations. Traveling wave solutions are found for
the non-linear time fractional KG and sine-Gordon equations through an extended tanh-
function approach as given in [35]. As stated in [36], analytical and numerical solutions
are found for the KG model with cubic nonlinearity. The utilization of the perturbation
iteration techniques described in [37] yields novel approximate solutions to the nonlinear
KG equations. Solve the KG and sine-Gordon equations using the homotopy-perturbation
approach as described in [38]. The numerical solution of the generalized nonlinear KG
equation, as provided in [39], is found using a new trigonometric spline approach. Ref. [40]
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provides an instance of the hybrid cubic B-spline collocation method for solving a gener-
alized nonlinear KG equation. The nonlinear KG problem may be solved using the dual
reciprocity boundary integral equation approach, as described in [41].

The mapping and generalized Riccati equation mapping (GREM) methods are used in
this research to find the exact solutions of KG model. In [42], the solitons and other solutions
for two nonlinear Schrodinger equations using the novel mapping technique. The Biswas—
Arshed model’s optical solitons utilizing the mapping approach are provided in [43]. In [44],
the mapping approach is used to address soliton solutions in optical metamaterials. Soliton
solutions of the (4 + 1)-dimensional Davey-Stewartson—-Kadomtsev-Petviashvili equation
via modified extended mapping method are derived in [45]. The improved GREM tech-
nique for the perturbed nonlinear Chen-Lee-Liu dynamical equation is used in [46]. In [47],
the GREM method is utilized to analyze the reaction-diffusion Lengyel-Epstein system
analytically. The modified GREM approach is presented in [48] for the investigation of
Brownian motion in stochastic Schrodinger wave equation. The modified GREM approach
is applied to investigate the cmZKB and pZK equations, as described in [49]. In [50],
the generalized nonlinear Schrodinger equation with logarithmic nonlinearity is examined
as a template for optical pulse transmission.

The objective of this article is to generalize the exact solutions by applying the mapping
and GREM methods for the well-known nonlinear KG model [51,52],

v (r,t) — sz,,(r,t) +av(r,t) — /32)2(1', £)=0, (1)
_ %o(rt) _ %o(rt) . . .
where vy (r,t) = = U (1, 1) = EreanP v(r,t) describes the particle-wave profile, A

represents the second-order spatial dispersion and the coefficient of quadratic nonlinearity
is represented by . From the analysis of each term and traveling wave variable { = ar — i,
it is clear that Equation (1) is Lorentz-invariant. The transmission of disruption and the
Bloch wall activity of magnets in crystals, magnetic flux on a Josephson line, a “splay wave”
through a membrane, and many other scientific applications are examples of how the KG
model is applied in relativistic quantum fields. The KG equation is encountered in many
scientific fields, including nonlinear optics, solid-state physics, and quantum field theory.
In relativistic quantum mechanics, which describes spinless particles, this equation is very
important. In addition, there has been a lot of interest in soliton-like structures recently.
As they propagate, soliton waves do not cause any deformation from dispersion.

Our primary goal in this research is to use the mapping and GREM approaches to
find the exact solutions to Equation (1). These commonly used mathematical techniques
enable us to do time-consuming and complex algebraic computations quickly and easily.
The results show that compared to the alternative approaches, the mapping and GREM
procedures are more accurate and need less computing power. The forms of hyperbolic
and trigonometric functions for the GREM approach as well as hyperbolic and Jacobi
elliptic functions via the mapping method are derived, with a large range of free parameter
values. These methods yield diverse soliton solutions including bell-shaped waves, anti-
bell-shaped waves, W-shaped waves, continuous periodic waves, kink waves, smooth
kink waves, anti-peakon waves, V-shaped waves and flat wave solitons. In addition to
improving our understanding of the physical phenomena that NLEEs depict, the work
shows the robustness of the mapping and GREM techniques by clearly deriving a variety
of soliton solutions as implications of the variables in the NLEEs. In-depth 2D and 3D
graphical representations of the solutions are included in the research to help with a
better understanding of their physical characteristics and to demonstrate how well the
suggested approach works for solving complex nonlinear equations. The mapping and
GREM methods have not yet been used to find the exact solution for the non-linear KG
equation. The exact solutions to the non-linear KG equation have been extracted for the
inaugural time using these methods. This encourages us to solve the KG equation using
these techniques.
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The work of this paper is arranged in the following manner. Section 2 provides a
description of the procedure for solving NLPDEs by the mapping and GREM methods.
However, Section 3 shows these approaches can be used to solve the nonlinear Klein—
Gordon Model. Section 4 presents the graphical representation. In Section 5, the conclusion
is given.

2. Description of Exact Approaches

This section presents the algorithm for obtaining the exact solutions of NLPDE by
using the mapping and GREM methods. These methods are explained below:

2.1. Mapping Method

The following is the fundamental concept of the mapping method. Suppose a given
NLPDE in two variables r and .

H(U/ UT/ Ut/ UTI’/ vtt/ Urt/ .. ) == O/ (2)

where v = v(r,t) is an unknown function, and H is a polynomial in v and its partial
derivatives, in which the highest order derivatives and nonlinear terms are involved.
Step 1. Using the wave-transformation relation, Equation (2) can be converted into
the ordinary differential equation (ODE). The wave transformation is as follows:

o(r,t) =V(0), {=ar—yt, ©)

where 2 and ¢ are the wave number and velocity, respectively. By inserting Equation (3) in
Equation (2), the NLPDE is converted into the following ODE,

H(V, V', V", V", .. ) =0, 4)

where H is a polynomial in V() with derivatives of V() and the prime represents the
derivative with regard to { such that V'({) = ‘fi‘g, V") = d gZ Y and so on. If Equation (4)
is integrable, then take each integral constant to be zero and integrate it as many times
as needed.

Step 2. Assume that Equation (4) has the formal solution,

k
ngf (5)

where k is a positive integer that needs to be calculated and 7; are real constants such that
1k # 0 to be identified, while ¢(() satisfies the elliptic equation of the first kind

g =18+0g, ©)
g% =18+ 18" +p,
where the prime denotes the derivative with respect to { and v, 6, p are three arbitrary pa-
rameters.
Step 3. The number k depends upon the higher order derivative in Equation (3) and
the power of the nonlinearity in Equation (2).
Step 4. Now substitute Equation (5) along with Equation (6) into Equation (4), equalize
each of ¢/({) coefficients to zero, producing a system of algebraic equations that Mathemat-
ica 12 can solve to determine the values of 7;.
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Step 5. The Equation (6) generates the following solutions, for real solutions, v and J
should be of opposite signs.

$(¢) = tanh({),

§(2) = sech(0),

8(@) =sn(0), or g(¢) = <d(), -
8(@) = en(@),

8(¢) = dn(0),

§(0) =ns(0), or g(¢) = de()

where ¢({) = sn,cd, cn, dn, ns, dc are Jacobi elliptic functions. The Equation (6) is con-
sidered, because solitary waves are obtained by sech-function and shock waves are ob-
tained by tanh-function. However, the periodic waves in terms of Jacobi elliptic functions
g(C) = sn,cd, cn, dn, ns, dc are obtained for appropriate values of the parameters v, § and
p- The Jacobi elliptic functions sn = sn({|b), cd = cd({|b), cn = cd({|b), dn = dn({|b),
ns = ns({|b), dc = dc({|b) where b are double periodic, have the modulus of the elliptic
function and have particular properties with triangular functions, such as:

snz( ) +cn2(§) =1,
dn(Z) + b?sn?() =1,
n(g)" = en(g)dn(Q),
n(g)" = —sn({)dn(g),
dn(g)" = —b*sn(g)en(g).

When b — 0, the Jacobi elliptic functions deform to the triangular functions, i.e.,

N w

sn({) — sin({),

en(f) — cos(Q),
dn() — 1.

When b — 1, the Jacobi elliptic functions deform to the hyperbolic functions, i.e.,

sn({) — tanh(2),
cn({) — sech((),
dn(Z) — sech().

2.2. Generalized Riccati Equation Mapping Method

It is possible to obtain the exact solutions for the NLPDE by employing the GREM
method. Suppose that an NLPDE has the following form

H(U, Or, vt/ Orry vtt/ Orty - - ) = 0/ (8)

where v = v(r,t) is an unknown function, and H is a polynomial in v and its partial
derivatives, in which the highest order derivatives and nonlinear terms are involved.

Step 1. Using the wave-transformation relation, the Equation (8) can be converted into
ODE. The wave transformation is as follows:

o(r,t) =V(), {=ar—yt ©)

where a and 1p are the wave number and velocity, respectively. By inserting Equation (9) in
Equation (8), the NLPDE is converted into the following ODE,

H(V,V, V", v", . .)=0, (10)
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where H is a polynomial in V({) with derivatives of V() and the prime represents the

derivative with regard to { such that V/({) = ‘fi—‘g, V() = % and so on. If Equation (10) is
integrable, then take each integral constant as zero and integrate it as many times as needed.

Step 2. Suppose that Equation (10) has the formal solution

k

V() =Y 0G(0), (11)

j=—k

where k is a positive integer that needs to be calculated and ¢} are real constants such that
0 # 0and 0 # 0 to be identified, while G({) satisfies the generalized Riccati equation

G'(¢) =k + uG(g) +vG*(D), (12)

where «x, y and v are arbitrary constants, such that v # 0.

Step 3. The number k depends upon the higher order derivative in Equation (9) and
the power of the nonlinearity in Equation (8).

Step 4. Now substitute Equation (11) along with Equation (12) into Equation (10),
equalize each of G(Z)/ (j = 0,41,£2...) coefficients to zero, producing a system of
algebraic equations that Mathematica 12 can solve to determine the values of ¢;.

Step 5. The Equation (12) generates the following families of solutions.

Case 1. When A = u? — 4xv > 0 such that uv # 0 or vk # 0, then the following
solution exists

Gi(O) = e+ VAtanh(YRD))

Gae) = So(u+ VAcosh(Y27)),

Go(0) = 5 (n+VB(tanh(VAY) £ isech(VAD))),

Gi(Q) = S (n+ VA(coth(VAL) % esch(VAL)),

Gs@) = o n-+ Valtnh( Y20 +cotn(2D)),

Gell) = ;1( _ V/A(P*+ Q%) — PV/Acosh(VAD)

° 20 F Psinh(vVA7) +Q ’
-1 A(Q? — P2) + Pv/Asinh(VAQ)

G7(€) - oy (,’l/l+ PCOSh(\/Eg)JrQ

where P and Q are two non-zero real constants satisfying Q> — P2 > 0.

Ge) — ZKCOSh(@C)
8 \/Ksinh(@g)—ycosh(@g),
—2K sinh(@g)
G _ 7
9(2) ysinh(@é) — /A cosh(Y27)
6t 2k cosh(v/AQ)

VA sinh(vVA) — pcosh(vV/AL) +iv/A
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6ull) = 2k sinh(v/AQ)
1 ~ —usinh(vV/AZ) + vVAcosh(vVAZ) £ VA
4xcsinh(YA7) cosh(¥A7)
Gu(f) =

—~2psinh(¥YA7) cosh(Y27) +2v/A cosh? (VA7) — VA

Case 2. When A = y? —4xv < 0 such that uv # 0 or vk # 0, then the following
solution exists

Gi() = 5 (- vV=han(Y>50),
S RS )

-1

Gis(0) = - (n—V-Atan(v=AZ) £ sec(V-A7))),

Gio() = 5 (u-+ V=A(cot(V=AL) % cse(V=A))),

Girle) = (- v=hlan(Y20) - ot 20y,

-1, £/-AP?— Q%) — PV—Acos(V-A])

GlS(g) = v (‘u PSID(\/TAg)+Q
Go() = Ly TVZAP-Q)+PV-Asin(v=AQ)
wle) = 2w Pcos(v/—AZ)+Q ’

where P and Q are two non-zero real constants satisfying P> — Q% > 0.

(D) = —2K cos(@é)
V=Rsin(Y727) + pcosh(Y520)’
2K sin(@@)
G _ ’
21(8) —ysin(@@) + \/TACOS(@g)
CnlD) = —2k cos(v/—AQ)
V=B sin(v=A) + tcos(v/=87) + i/ =B’
6nll) = 2k sin(v/—AQ)
—psin(v=A¢) + V=B cos(V=AZ) £ V=4’
e 4k sin(@@) COS(@O

—2psin(Y527) cos(Y520) + 2v/—A cos? (Y337) — VA

Case 3. When x = 0 and pv # 0, then the following solution exists

G25(€) - U(C + cosh(}lC)) — Slnh(yg)/

—p(cosh(y{)) + sinh (1)
v(c + cosh(u{)) + sinh(4)’

Gas(0) =

where c is an arbitrary constant.
Case 4. When x = y = 0 and v # 0, then the solution is

-1
Gor(0) = Tt
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where c; is an arbitrary constant.

3. Implementation and Applications of the Exact Techniques

For the nonlinear KG model, the exact solutions can be identified via the mapping and
GREM methods in this section.

3.1. Applications of Mapping Method

It is possible to obtain the exact solutions for the KM model by employing the mapping
method. For this aim, take into consideration Equation (1) and use the following traveling
wave transformation

o(r,t) = V(), {=ar—yt, (13)

where a and 1 are the wave number and velocity, respectively. With the aid of Equation (13),
Equation (1) can be converted into the subsequent ODE

(p? — A2a®)V" 4 aV — V2 = 0. (14)

The terms V" and V? provide us the balance number of Equation (14) as k = 2. Conse-
quently, Equation (5) simplifies to

V(Z) =no+mg(Q) +1m8*(2), (15)

where 79, 771 and 77, are constants to be determined. The polynomial equation in the
form of g({) for Equation (14) is constructed exactly as follows by utilizing the solution
Equation (15)

(=3a*0A%12 + 36y — B3) (8(0))* + (—a®5A%n1 + 9P — 2Bin2) (8(2))° + (—Bni
— 422y A2y 4wy + AvyPnn — 2Bnon2) ((2)) + (—a®y A2y + apy + vyt — 2Bnom ) (8(2))

+ano — Biig — 202 pA%p + 2pp%p = 0. (16)

By adjusting the coefficient of comparable power of (g(Z))" : i = 0,1,2,3,4 in Equation (16)
to zero, the set of algebraic equations (AEs) is produced.

(8(8))* : =3a%6A%n; + 3oy — P =0,

(8(2))° : —a?6A%y + 691 — 2Bz =0,

(8(8))% = —pri — 4a>y A2z + gy + 4?2 — 2Bigory2 = 0,

(82N —a®yA%m + ayr + v — 2Bior =0,

(8(2))° = wipo — i — 2a%0A%12 + 20421 = 0.

Solving the system of AEs generates the following families by using Wolfram Mathematica

12 software.
Family 1.

ety 370(a?A% — ¢?) gy = 0N+ 52
== M=%
2p P 2p
Setting the estimations of the constraints in the Equation (15), yields
—PyA ety 576(a%A% — y?) —a26A2 + oyp?
2p P 2p

The Equation (17) generates the following solutions, for real solutions,  and ¢é should be of
opposite signs.

V(C) = g4 (0). )

g(2) +
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e Ify=-2,6=2andp =1, then the exact solution is

20202 + & — 29%  iV6(a*A* — ¢?) tanh(ar — tp)
2

Vi11(0) =

(—2a?A2 + 2¢?) tanh? (ar — tp)
+ 26

e Ify=1,0=—2andp =0, then the exact solution is

20%A% + o — 24? B iv6(a*A2 — ¢?) tanh(ar — tp)

Vi,12(0) = 26
(—2a%A2 + 2¢?) tanh? (ar — t)
+ .
2p
e Ify=—(1+b%),5=2b"andp = 1, then the exact solution is
—a2(=1 = b2\ \2 —1 = b2\ y?
Viia(l) = — ( ) ;;XJF( v
302(—1—b2)(a®A? — p2)sn(ar — ty)  (—2a2b*A% + 20>¢?)sn?(ar — typ)
— + ,
p 2p
or
—2—1—b2)\2 _1_b2 2
Vi) = — ( ) ;;;H_( L
362(—1—02) (a®A2 — p?)cd(ar — ty)  (—2a26%A2 + 202p2)cd?(ar — typ)

- B * 2B

o Ify=(2b>—1),5 = —2b?and p = 1 — b?, then the exact solution is

—a?(—1+2b%)A? —142b%)y?
Vi,15(0) = c(C1v2r) 2;“+( r2)e

V/3b2(—1 —b2) (a2A% — p?)en(ar — tp) N (2a%b2A% — 20%p?)cen? (ar — typ)
B 28 :

e Ify=2- b2, 6 = —2 and o= b? — 1, then the exact solution is

—a?(2— D) A2+ a+ (2 — b2)y?
26
Biy/ 3 (P22 — g)an(ar — 19) | 3yp(26242 — 24)dr(ar — 1)
- 3 + 12— 12)p ‘

e Ify=—(1+b%),6=2and p = b? then the exact solution is

Viie(l) =

—a?(—1—=b)A2 +a+ (-1 — b?)y? 3(—1—b2) (a?A% — p?)ns(ar — t)
Vip7(0) = 26 - B

(—2a%A% + 2¢2)ns? (ar — typ)
+ 28 ,

or
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2 (-1-V)A +at (-1-0) 9> /3(=1-1?)(a®A* — ¢?)dc(ar — tp)

V prm—
11,8(2) 26 B
(—2a%A% + 2¢2)dc? (ar — ty)
+ 25 .
As b — 1, then the above equation take the from
—a?(—1=b)A2 +a+ (=1 —b?)y? 3(—1— b2)(a*A% — ¢?) csc(ar — t)
Vi19(0) = -
2p p
—2a%A% +2¢?) csc? (ar — t
n 4 4
2B ’
or
—a?(—1—=V)A2 +a+ (-1 - b?)y? 3(—1 —b2)(a*A? — ¢?) sec(ar — t)
Vi110(0) = 28 - E
N (—2a%A% 4+ 2¢%) sec? (ar — typ)
2B ’
As b — 1, then the above equation also takes the form
—a?(—=1—=b)A2 +a+ (-1 — b?)y? 3(—1—b2)(a*A? — ¢?) coth(ar — ty)
Vip(f) = 26 - B
(—2a2A2 4 2¢2) coth? (ar — t)
+ 26 .
Family 2.

—af + Br/24a*5pA* + a% — 48a25p A2 2 4 245p1p* 3(a%6A% — 6y?)
Mo = — 25 ,17120,172:—#.

Setting the estimations of the constraints in the exact solution Equation (15), yields

—ap 4 B\/24a%5pA% + a2 — 48a26pA2Y2 + 245ppt  —3(a%0A% — y?
The Equation (18) generates the following the exact solutions for v and § should be of
opposite signs.

e Ify=2,0=—2andp =1, then the exact solution is

_ —ap+ B/48a*A* + a? — 96a2A2yp? + 48yt

Vip1(0) = 28

3(2aA% —2¢7) tanh? (ar — ty)
5 :

e Ify=1,0=—2andp =0, then the exact solution is

—ap+Va2p 3(—2a2A% + 2¢?)sech? (ar — ty)
V122(8) = - 25 - B .
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o Ify=—(1+b%),0=2band p = 1, then the exact solution is

 —aB+ B/48a*B7AY + o — 96a7b2A2y? + 48b2y*
2p2

Vi23(0) =

3(2a202A% — 2b?¢?)sn? (ar — )
ﬁ 7

or

 —aB+ B/48a*B7AY + o — 96a7b2A2y? + 48b2 "

V1,2,4 (g) = 2/32

 3(2a70%A% — 26%y?)cd? (ar — ty)
5 :

o Ify= (20> —1),6 = —2b?>and p = 1 — b?, then the exact solution is

—af+ By/—48a%b2(1 — b2)A% + a2 + 96a2b2 (1 — b2)A2y2 — 48b2(1 — b2)y*

Vi5(0) = —

2,[32
3(—2a2b?A2 + 2b%¢?) cn? (ar — tip)
ﬁ .
o Ify=2-1b%06=—2andp = b* — 1, then the exact solution is
Viae(l) = — —ap+ By/—48a*(—1+ b2)A* + a2 4+ 9642 (—1 + b2)A2yp? — 48(—1 + b2)y*

22
3(—2a2A% + 2¢2)dn?(ar — ty)
5 .

e Ify=—(1+b%),5=2and o= b2, then the exact solution is

 —aB+ B/48a*B7AY + o — 96a7b2A2y? + 48b2y*
2p2

Vi27(0) =

3(2a2A% — 2y ns? (ar — tip)
ﬁ 7

or

 —aB+ B/48a* DAY + oZ — 96a7b2A2y? + 48b2y*
2p2

Vi28(0) =

_ 3(20%A% — 29%)dcP (ar — typ)
5 .

As b — 1, then the above Equation take the form

_ —ap + B/48atb?A% + a2 — 96a2b2A2y? 4 48b2

Vip9(0) = 28

~ 3(2aA% = 2¢°) esc? (ar — t)
3 ,
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or

_ —aB+ B/48a b2 + a? — 96a2b2\2yp? + 48b2
2p2

Vi2,10(8) =
3(2a2A2 — 2¢p?) sec? (ar — t)
5 :

As b — 1, then the above Equation also take the form

_ —ap + B/48a* b2 A% + a2 — 962212 A%y? 4 48b2
2p2

Vip1(g) =

3(2a2A% — 2¢?) coth? (ar — tip)
5 :

3.2. Applications of Generalized Riccati Equation Mapping Method

It is possible to obtain the exact solutions for the KM model by employing the general-
ized Riccati Equation mapping method. For this aim take into consideration Equation (1)
and use the following traveling wave transformation

o(r,t) =V(0), ¢=ar—1t, (19)

where g and 1 are the wave number and velocity, respectively. With the aid of Equation (19),
Equation (1) can be converted into the subsequent ODE

(p? — A2a®)V" +aV — BV2 = 0. (20)

The terms V" and V? provide us the balance number of Equation (20) as k = 2. Conse-
quently, Equation (11) simplifies to

V() = 02G %(0) + 0-1G Q) + 00 + 01G({) + 02G*(Q), (21)

where 0_j, 0_1, 0y, 07 and 07 are constant to be determined. The polynomial equation in
the form of G({) for Equation (20) is constructed exactly as follows by utilizing the exact
solution Equation (23)

(—6a*v* A%y + 6¢* %00 — B0z ) (G(0))8 4 (—2a*V2A%0y + 202 ¢P 0y — 100> uvA?oy + 10pvp? o — 2B0102)(G(Z))”
+ (—=3a>uvA?0q + 3uvypPoy — ot + aocy — 4a’ A oy — 8aPvkA oy + 4uP Y on + Sukpon — 2Bog0s)
(G(2))® + (woy — a?u?A%0q — 2a*vkA?0oq + p2 Py + 2ukp? oy — 2Bogoy — 6a>uxA?oy + 6uxp?or — 2Bo_102)(G(Z))°
+ (—2a*2A%0 o + 20?0 o — a®uvAP o + pugto g + aoy — Bog — aPuxA?oq + pxytoy — 2o 101 —
2a* 3020 + 2k% Py — 280 202) (G(Q))* + (—6a2uvA?0_o + 6pvy?o o + oy — a?p*A%0_ | — 2a°vkA?0 4
+ 12920 + 2ukypPo_ — 2Bo_100 — 2B0201)(G(Q))? + (a0_y — 4a* 4P A2y — 8aPvkA?0_o + 4220 o+
Sukyp?o_y — 3auxA?o_q + 3uxp?o_q — Bot, — 2B 200)(G(Q))* + (—10a*uxA’0_,
+ 10puxy?o_y — 2a2k*A%0_1 + 2k2¢%0_1 — 2B0_20_1)(G(Q)) — 6a*k*A%0_5 + 6K2¢?0_5 — Bo?, = 0. (22)

By adjusting the coefficient of comparable power of (G({) )j ;7=0,1,2,...,9 in Equation (22)
to zero, the set of AEs is produced.
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(G(Q))8 : —6a2v2A\20; + 6q*¢*0y — Pos =0,

(G(2)) : —2a%v?A20q + 212920 — 10a?uvA 20y + 10uvyp?os — 2Boyoy = 0,

(G(Q))® : =3auvA?oy + 3uvyp?oy — Bo? + aoy — 4a* A0y — 8a?viA20y + 4p¢Poy + Bvky?os — 2Bopor = 0,
(G(2))? : aoy — a?u?A%0q — 2a%vkA %0y + p2¢?oq + 2ukyp?oy — 2Bogoy — 6a?uxA?oy + 6uxp?oy — 2105 = 0,
(G())*: —2a2v2A\20_5 + 20290y — a*uvA%0_1 + pvp?o_q + aoy — Bog — a?uxA?oy + puxyp?oy — 2Bo_101—

20212 \20y + 26%p? 0y — 2B0 205 = 0,
G(0))3 : —6a2uvA20_y + 6uvp?c_y + ao_q — a?u?A%0_1 — 2a2veA20_q + up?o_q + 2ukpro_q — 2Bo_q00—
H uvip M ueyp Y

2Bo_p01 =0,
(G(0))? : ao—p — 4a?y2A20_5 — 8a*vkA20_p + 4v2¢20_o + 8ukyp?o_p — a2 puxA?o_q + uxy?o_q — Bo?,—
2‘30'_20'0 =0,

(G(0))' : —10a2uxA%0_5 + 10uxp?o_y — 2a°k*A%0 1 + 2k>p?0 1 — 2B 201 =0,
0. 642:222 2020 o — Bo2. —
(G(0))? : 6a*k“A0_o + 6K°9p*0_p — P, = 0.

Solve the above system of AEs with the aid of Mathematica 12 gives

6(a2k2A2 — k2y?) 6(a?uxA? — uxy?)
03 = — 01 = — s
p p
o — a2 A? — 8a?vkA? + pPp? + Svkyp? 2uv (a*A% — ¢?) 2(a2v2A2 — v2y?)
0y = 28 01 = — B , 02 = 38 .

Setting the estimations of the constraints in the exact solution Equation (23), yields

76(0121(2)\2 — K21IJ2> G72(€) + 76(5127’”{/\2 B ]/[KIIJZ).B

)= B c1(0)
a — a?12)2 — 8a2ukAZ + 12y? + 8uky?  —2uv(atA? — ¢? 2(a?v2 A2 — v2y?
p p 3p
This results in the subsequent traveling wave the exact solution of Equation (23), depending
upon the respective cases.
Case 1. When A = p? — 4xv > 0 such that uv # 0 or vk # 0, then the following exact
solution exists
V() = 7 A% — BaPkAPy 4 PP + Bivy? 2407 (a%KPA% — KPYP) N 12v(a?kA % — kpp?)
1, - 2 2 A
. B+ Vatann(¥))" Bkt VAtann(¥3%))
2
u(a?A? —y¢?) (;4 + ﬂtanh(@)) (2?2202 — v2y?) (y + ﬂtanh(@))
+ + ,
B 6pv?
Vy1(Z) = & — P A%p* — 8akAPy + PP p? + Bkvy? 2412 (a*12\? — k2y?) 12v(a?kA%p — kpp?)

K21/)
28 Bln+ \/gcosh(@))z ’ B(n+ VBcosh(¥3%))
(

u(a*A% —y¢?) (;4 + ﬂcosh(@)) . a?A2? —v2y?) (y + \/K’f.%h(@))2

+ 8 612 ,
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Vara(D) = 27 a?A%p? — 8a*kA?v + PP g? + Brvyp? 24v% (2?12 A2 — 1y?)
213(8) = 26 . 2
B (y + 1sech(\/K§) + ﬂtanh(ﬂ@))
. 120 (26X — xpy?) .\ u(a?A? — y?) (y + isech(\/gg) + ﬂtanh(ﬂé))
ﬁ(y—i—isech(\/xg) + ﬂtanh(ﬂ@)) B
(aZ)\sz — 1/21112) (;4 + 1sech(\f§> + \Ftanh(\fg))
* 6pv>
Va1 a(0) = = @A p? — 8a*kA?v + PP P? + Brvyp? 2402 (22222 — 12y?) i
" 2p B(r+ (VA coth(VAZ) + Csen(Vag) ) )
) e (V) (&)
B(n+ (VAcoth(VAZ) + Csch(VAg)) ) B
(aZAZVZ — 1/21/]2) (y + (\/Zcoth(\/gg) + Csch (\/Eé)))z
M 6pv? ’
Vars(Q) = &= @A p? — 8a kA% + PP P? + Srvyp? 962 (a2k2A2 — 12p?) i
- 2p ,B(Zy—l—coth(@) +\/Ztanh<@)>
. 24v (a2A 2y — xpp?) . pu(a?A? — y?) (2]4 + coth(@) + \/Etanh(@))
ﬁ(Zy—i—coth(@) +\/Ktanh(@>> 2p
(424202 — 2y?) (2 + coth (V) + \/Ktanh(@))2
+ 24pv? ’
Vyre(0) = 2 @A p? — 8a”k APy + PP P? + Brvy® 24v% (%6272 — i2y?)
210 a 26 (P24+Q%)A—Av/Acosh (VA7) 2
p <}4 N Q+Psinh(VAQ)
\/W*A\/Zcosh(\/gé)
12v(a®kA?u — kuy?) N u(a*A% —y?) (V B Q+Psinh(VAQ) )
+ _ V(P2+Q%)A-AVAcosh (VA7) B
PLH Q+Psinh(v/A7)
(P24+Q2)A—Av/A cosh \/Zg) 2
(22202 — v2y?) (V _V e ( )
* 6pv?
Va1r(Q) = = a?A?p? — 8a*kA?v + PP y? + Brvyp? 24v2 (a®k2A% — i%y?)

2 (CPEQ2)A+Py/Asinh (VA7) |2
'B #- Q+Pcosh(\/5§)



Symmetry 2024, 16, 1085 15 of 31

N 12v(axA?pu — kpy?) N # LA Q+Pcosh(VA])
v/ (—P2+Q?)A+P+/Asinh (VA7) B
ﬁ B Q-&-Pcosh(\/gg)

212,2 _ 212 V(—PZ1Q2)A+Py/Asinh(VAZ) ) 2
(11 ATy 4 )('u N Q+Pcosh(\/Z§)
6pv2

+

where P and Q are two non-zero real constants satisfying Q* — P> > 0.

VA2
& — @A2p2 — 8a2kA2y + u2y? + SKuy> . 8x2 (a*A%v? — v2¢?) cosh (Tg)

V2,18(0) = 2B ﬁ(—ycosh(\/&) N \/Zsinh(fg))z
dicpv (a®A? — cosh( 5 ) 3(a* Ay — kpyp )sech(fg)( ycosh(‘/zg) + \/Kmnh(fT))
R !3( ;lcosh( ) +\/Ksmh<@)) N B
3(a21c2/\2 _ ¢ )sech(‘FT) ( ycosh(@) i \/Zsinh(@)f
B 2Bx2 ,
Varo(0) = &= a?A?u? — 8a’kA%v + p?¢? + 8xvp? N 8«2 (a?A%v? — v2¢?) sinh (\FT)
: % 35(—\/Zcosh<‘g§) +ysmh(‘€—A))2
4Kyv(a2A2 _ 4,2) sinh(@) 3(”2K/\2V — KWPZ)Csch(@) (—ﬂcosh(#) + ysmh(%))
+ +
ﬁ(—\/KCOSh(@) —l—ysinh(@)) B
3(a2k2A% — Kngz)Csch(@)z(—\/Zcosh(@) + ]Asinh(@))2
- 2Bx?
Va1 10(0) = o — a?A?u? — 8akA%v + 2 y? + 8xvp? 8«2 (a2A%v2 — v2y?) cosh (\/Zg)z
h 2p 3,5(—(y cosh(ﬁﬁ) :ti\/K) + \/Esir1h(\/5§)>2

dcpv (a2A2 — ¢?) cosh(\/Zé)
- B (— (y Cosh(\/gg) + 1\/Z) + \/Zsinh(\/zg))
3(a*kA%u — K‘ulpz)sech(\/gg) (— (],t cosh(\/ZC) + 1\/3) + \/Esinh(\/ﬁé))
_ o
3(a22A2 KzlPZ)seCh(\/Eg)z (~(mcosh(VA7) £ivA) + VA sinh(\/Kg))z
2pK? ’
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V(@) = 2222 — 82K\ + 1242 + Bivy? 8«2 (a2A%v? — v?y?) sinh (\/Eg)2

B 28 Sﬁ((\/gcosh<\/gg) + \/Z) — ysinh(ﬁg))z

dicpv (a2A2 — ¢?) sinh(x/gg)
- ﬁ((ﬂcosh(x/gg) + \/Z) — ysinh(\/gg))
- 3(a?kA%p — Kylpz)Csch(\/Kg) ((\/Kcosh(\/gg) + \/Z) — ysinh(ﬂg))
Bx
3(a2K2/\2 _ K2¢2)Csch(\/ZC>z((\/KCOSh(\/Zg) + \/K) — ysinh(\/Zg))z
B 2BK2 ’

Voin(0) = &7 22202 — 82K\ + 1242 + 8rvy? . 32 (a?A%v? — v*?) cosh (fg) sinh (@)2

" 2p Sﬁ(—\/g+ 2\/Ecosh2(‘/;> 2u cosh(fg) smh(@))z

8xuv (a®A? — ¢?) cosh( \Fg) sinh( fg)
- ﬁ(—\/E—FZ\/Kcoshz( ) Zycosh( )smh(‘/&))
3(a?xA%u — xuy*)Csch (@)sech( fg) —V/A +2+/Acosh? ( \fé) 2u cosh(fT) smh(%)
a 2Bk
3(a2K2A2 — K21P2)CSC]’1 (@)2sech(%> ( VA + 2v/Acosh? ( ‘/;5) 2u cosh( VAL ) smh(L))
8px2 '

Case 2. When A = p? — 4xv < 0 such that uv # 0 or vk # 0, then the following exact
solution exists

Va1 s(0) = 4= a2 A?u? — 8a2kA%v + 2 y? + 8xvyp? 24v2 (a?k2A% — i%y?) N 12v(a?kA%pu — kpp?)
21,13(0) = -
2 ( —\/Ttan(@»z ﬁ(ﬂ—V_Atan(@ )
u(a*A? — y?) ( Ftan(Fg) (a®A%v% —v2y?) (y - \/—7Atan<\/?§))2
+ ; + o ,
a — a?A?u? — 8akA%v + p?y? + 8xvp? 24v2 (26272 — k2p?) 12v(a?xA%pu — kpp?)
V2114(0) = 5 - 7t VAL
? B+ v=Beor(58))" B+ vV Reor(¥5%))
V=AL

u(a?A? —y?) (pt +ﬁ\/7Acot(‘/_27A€)> . (a2A202 —v2y?) O;;/;/j cot(

9

_|_
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Vanis(0) = A2 = BNy + g2 o+ Brvy? 2412 (a?k2A% — 12y?) )
1, 2B ﬁ(l‘_ (\/TAtan(ﬂg) isec(ﬂg)))
n 12v(a2kA%p — kpyp?)
o (o /75) o 5]
N j(a2A2 — )( (Ftan(x/ig) isec(Fg)))
p
(22202 — v2y2) (]1 _ (Mtan(ﬂ(j) + sec(ﬂg))y
" 6pv? /
Va16(0) = A2 — 8a’kA?v + p?y? 4 Brvy? 2402 (@202 — i2y?)
: i ,B(V‘l- (MCOt(\/TA(’:) :I:csc(ﬂgf)))z
+ 12v (kA% — k1)
B (V + (ﬂcot(ﬂé‘) + csc(ﬂg) >)
n p(a?A2 — 1[12)( (Mcot(ﬂé) j:csc(ﬁg)))
p
(aZAZVZ _ 1/21,[«72) (],t + (\/jcot(\/jg) 4 CSC(H@’)))Z
! 6pv? /
V2,1,17(0) = w = a? AP — 8aPk APy + pPy? + Brvy? 962 (a2k2A2 — k2y?) 2
1, 2B 5(2;4 cot( ) Ftan( ))
n 241/(a KA p — xpp?)
ﬁ(Zy Cot( ) Ftan(rg)>
p(a?A? — y?) (2;4 cot( ) Ftan(ré))
+ % |
(22202 — v2¢?) (2 — cot J/Atan
! ( 2(4,31/2 ) ( )) ,
Vy 1 1s(g) = LT ENIE —BEKNY iy + Brvy? 2402 (2272 — K2y?)
2,118 2B 8 <H B —PMCOS(JTAg)+i\/m> 2
Q+Psin(v—A7)
120 (kA% — pp?) p(a®A2 —y?) (ﬂ - *Pﬂcogﬁf&%d (pchm)
+ ﬁ(ﬂ B _Pﬂcosé(ﬁj();%\é)_(lﬂw> + 7

2

7P\/jAcos(\/jA§)+i —(P2—QD)A
(ﬂz/\2y2 — 1/21/?2) (.” - Q+ Pein(V-AJ) )

i 6pv?
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Va11o(0) = 4= @A p? — 8a*kA?v 4 PP p? + Brvy? 2402 (a?k2A2 — i%y?)
2 26 /(PP QB)A+Py/—Asin(v=A7) | 2
‘B B Q+Pcos(\/jA§)
(@22 — 2 (u =V (P2-Q)A+PV—Asin(V=A7D)
N 12v(a?kA?pu — kpp?) N ¥ Q+Pcos(V—AZ)
g ++/—(P2—Q2)A+Py/—Asin(v=A7) B
H Q+Pcos(\/TA§)
2
+1/=(P2=Q%)A+Pv/—Asin(vV—A
(2722 — 242) (V _ m;(mg) ( é))
* 6pv2 ’
where P and Q are two non-zero real constants satisfying P> — Q% > 0.
— o\ 2
Va120(0) a — a?A2p? — 8%k A%y + p2y? + Sxvyp? n 8x?(a®A?v? — v?y?) cos (@)
21,20(¢) = 3
2p 3/3(ycosh(‘/j§ +\/—Asin(@))
dicpv (a?A2 — §?) cos( vose )
_l’_
ﬁ(ycosh(@) —i-\/—Asm( ))
3(a%kA%u — ku?) sec (@) (;4 cosh( \/jg) +vV-A sin( \/?g))
Bx
2 2
3(a?k2A% — k?Y?) sec (\/?g) (y cosh( ) +v-A sm( ))
a 2pBx2 ’
2
V(D) = 27 a?A?u? — 8a2kA%v + p?y? + 8xvp? N 8x* (a>A%v? — v2y?) sin (\/?C)
21,21(C) = 2
2p 3B(\/—Acos<\/_?g) —ysin(‘/?g))
drcpv (a2A? — ¢?) sin(@
ﬁ(x/—Acos(@) — ysin( _ZM))
3(11210\2;4 - Kyt/;z) csc(@) (\/ —A cos(@g) —u sin(V?g))
_ o
2 2
3(a?x2A% — k%9?) csc (\/?g) (\/TACOS ( \/?g) —u sin( \/?g))
a 2«2 ’
2
Voin(D) = 22202 — 82K\ + 1242 + 8rvy? 8xk2 (a?A%v? — v2¢?) cos (\/—Ag)
21,22(C) = 2
2p 35(@ Cos(\/—Ag) + \/—Az) +V=A sin(s/—Ag))

dicpv (a?A% — )cos(rg)
,B((y cos(ﬂ@) + \/—7A1> + ﬂsin(ﬂ@))

+
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3(a?kA%u — kuyp?) sec(JTAC) ((y cos (\/—7A§) + \/TAl) + Msin(ﬂ@))
Bx
3(a2k2A% — k2y?) sec (\/TAC)Z((V cos(ﬂé) + \/TAl) + Msin(mg))Z
2pBx? ’

+

0 — a0 — 8aPkARY 4 P 4 By 8 (a2A2v? — v2y?) sin (\/TM)Z
2 36((vV=Acos(vV=AL) + V&) — psin(vV=4Z) )’
v (a222 — ) sin (V=4
~ B((V=hcos(v=50) £ v=B) — psin(vV=57)

Va1,23(0) =

3(a2xA%u — kuy?) csc(ﬂé) ((\/TACOS(\/TAg) + \/—7A> - ysin(ﬂg))

Bx
3(a2k2A% — x%9?) csc (M@)z((MCOS<F§> :I:\/i) ysm(\/ig))
a 2pBx2 ’
2 2
Viral@) = & — AL — 86121(2)\;1/ + 2y + Sxuy? . 322 (a*A%v2 — v2?) cos (‘/?€> sin (ﬂg) 2
3ﬁ(—ﬂ+2ﬂc05 (@) Zycos<‘/7§>sin(\/?g))
8xcpv (a*A% — ?) cos( ﬂg) sin(ﬂ)
ﬁ(f\/jAJrZ\/jAcos <@) Zycos(‘/ig)sin(@>)
3(a? kA% — kpp?) csc(r§> sec(@) (—\/TA—F 2v/—Acos (‘/?g)Z —2u cos(‘/?é) sin(‘/jTM))
B 2Bk
2
3(a**A2? — k2¢?) csc (Fg) sec (\/?gy <—\/—7A+ 2v/—Acos (‘ﬁjg)z —2u COS(\/?g) sin(\/jTM))
B 8pK2
Varas(D) = °° a’A2u% — 8a?xkA%v + p2y? + Brvy? N 20202 (a2A202 — v2y?)
2L 26 3B(v(c+ cosh(Zu)) — sinh(Zu))?
N 222 (A% — y?) | 6(@kA % — xuy?) (v(c + cosh(¢p)) — sinh(Cp))
Bo{c + cosh(Ze)) — sh(Z0) m
6(ak2A% — Kk29?) (v(c + cosh({u)) — sinh({u))?
- i '
o — a?A2p% — 8a%kA2v + p2y? + Skvy? | 2p%(a2A%v? — v2y?) (cosh({p) + sinh(Zp))’
V2,1,26(8) = + : 2
26 3B(v(c + cosh({p)) + sinh(Zn))
| 212v(@®A? = y?) (cosh(Cp) + sinh(Cp)) | 6(a’kA%p — kpy?) (v(c + cosh(Cp)) + sinh(Cp))
B(v(c+ cosh(Cp)) + sinh(Zu)) B (cosh(Gp) + sinh(Zu))

 6(a*2A2 — k22) (v(c + cosh(Zn)) + sinh(gp))
Bu?(cosh(Zu) + sinh(éﬂ))z
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& — a?A?p? — 8Pk Ay + 2?4 Skvy?  6(aPkA%u — kuy?) (—Cv — 1)
V21,27(8) = -
28 B
2(a2A%2 — v2y?) N 2uv(a2A2 — ¢?)  6(a22A% — k2¢?) (Qv 4 ¢1)?
3B(Cv +c1)? B(lv+c1) p '

4. Results and Discussion

In this section, the exact solutions of the nonlinear KG model are explained and
discussed via the mapping and GREM methods by using 3D, 2D graphics and contour
plots. To demonstrate the visual significance of wave dispersion, a 3D plot is utilized
and a 2D plot is generated to clearly examine the amplitude and phase component of the
exact solutions. While using a contour plot, a 3D figure can be shown on a 2D surface
graphically. This type of graph is widely used in physics, meteorology, and astrology.
In mathematical physics, the KG model is significant. The equation has received a lot of
interest from researchers studying condensed matter physics and solitons, in examining
the recurrence of initial states, the interaction of solitons in a collisionless plasma, and the
nonlinear wave equations.

4.1. Physical Descriptions via Mapping Method

This portion shows the contour plots in addition to the 3D plots and corresponding
2D line graphs which are generated by using Mathematica 12. Specific waveforms such as
dark, bright, bell-shaped, continuous periodic wave, W-shaped soliton and others can be
found from generic exact solutions by changing the values of the free parameters. Each of
these displays is influenced by the values of the indicated parameters in the exact solution
that were recently found. Below is a list and discussion of the outcomes.

Figure 1 shows the 3D, 2D and contour plot representation of the result V; 1 1(¢) have
been displayed for the values of the constants ¢y = 0.9,a = 1,4 = 0.1, = 0.8,A = 0.1
within the interval —5 <r,t < 5. This representation is a dark soliton. The values of the
wave velocity and constants satisfy the stability conditions. The results of the analysis
are reliable. The values of the wave velocity and constants satisfy the stability conditions.
The results of the analysis are reliable. For the values p = 0.8,a =1, a4 =2, =1,A = —0.1
of the parameters Figure 2 shows the 3D, 2D and contour plot representation of the result
V1,12(¢) within the interval —10 < r,t < 10, which is bright soliton. Figure 3 shows
the continuous periodic wave soliton is the profile of result, V; 1 3({) for the value of the
constant ¢ = 1.6,a = 1.5,a =2, = 3,A = 0.09,b = 1.2, while the contour and 3D, 2D
plots are displayed within the interval —10 < r,¢ < 10. On the other hand, for the values
p=05a =1, =0.1, =09,A = 1,b = 1.5 of the parameters, the exact solution V; 1 5({)
represents bell-shaped soliton in Figure 4. The contour 3D and 2D representations are
revealed within the limit —1 < r < 1and -2 <t < 2. Figure 5 displays the contour 3D
and 2D representation of the obtained result V; 1 g({), which is a W-shaped soliton for the
particular standards of the parameters ¢y = 0.5,a = 1,4 = 0.1, =09,A =1,b = 1.1
within the range —2 < r,t < 2. Conversely, Figure 6 shows the contour 3D and 2D depiction
of the outcome which is displayed in the range —5 < r,t < 5. The soliton V;,1({) is a
W-shaped soliton for the values of the constants ¢y =0.9,a =1,4 =0.1, =0.8,A =0.1.
Figure 7 shows the exact solution V5 3() for the constant values ¢ = 0.01,a = 0.01,
x=09,8=0.1,A=0.090b =1, the contour, 3D and 2D representation of result V; »3({)
have been presented with in the interval —10 < r,t < 10. The result is dark soliton. For
p=1a =05a=09,=17=020b=15,result V1 ,4(0) delivers the continuous
periodic wave soliton and portrayed in Figure 8 within the limit —5 <r,t <5.
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Figure 1. The exact solution of V1’1,1(§ ) produces a dark soliton, when ¢ = 09,2 = 1,a = 0.1,
B=08A=01,(a)3Dplotat =5 < r < 5and —5 < t < 5 (b) 2D plot for different values of j at

t =1 (c) contour plot of V3 11({).
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Figure 2. The exact solution of V;1,(Z) produces a bright soliton, when ¢y = 0.8,a = 1,a = 2,
B=1,A=—-0.1,(a) 3D plotat =10 <r < 10 and —10 < ¢t < 10 (b) 2D plot for different values of

att =1 (c) contour plot of V1 12({).
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Figure 3. The exact solution of Vj13({) produces a continuous periodic wave soliton, when
p=16,a =15a=2,=3,A=0.09,b =12, (a) 3D plotat —10 < r < 10and —10 <t < 10
(b) 2D plot for different values of B at t = 1 (c) contour plot of V3 1 3(7).

40
Vias(rt)35,
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(c) contour Plot

Figure 4. The exact solution of V;15({) produces a bell-shaped soliton, when ¢ = 05,4 = 1,
a=01=09A=10b=15(a)3Dplotat -1 <r <land —2 <t < 2 (b) 2D plot for different
values of § at t = 1 (c) contour plot of V1 5({).
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Figure 5. The exact solution of V;18({) produces a W-shaped soliton, when ¢y = 05,2 = 1,
a=01=09A=10b=11(a)3Dplotat -2 < r <2and -2 < t < 2 (b) 2D plot for different
values of § at t = 1 (c) contour plot of V; 1 g(Z).
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Figure 6. The exact solution of V;,1({) produces a W-shaped soliton, when ¢ = 09,2 = 1,
a«=018=08A=0.1,(a)3Dplotat =5 < r < 5and —5 < t <5 (b) 2D plot for different values of
B att =1 (c) contour plot of V17 1({).
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Figure 7. The exact solution of V;,3({) produces a dark soliton, when ¢ = 0.01,a = 0.01,
a« =098 =01A=0090b =1, (a) 3D plot =10 < r < 10 and —10 < ¢t < 10 (b) 2D plot for
different values of B at t = 1 (c) contour plot of V3 5 3(7).

—B=1g
(a) 3D Plot (b) 2D Plot

(¢) contour Plot

Figure 8. The exact solution of Vj,4({) produces a continuous periodic wave soliton, when
p =1,a =05a =098 =19 =02b=15()3Dplotat =5 < r < 5and -5 < t < 5
(b) 2D plot for different values of B at t = 1 (c) contour plot of V3 5(7).

4.2. Physical Descriptions via Generalized Riccati Equation Mapping Method

In this subsection, the primary goal of the study is to discuss the results obtained
using the GREM method. The exact solutions are theoretically significant and physically
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meaningful. These exact solutions will be more advantageous if traveling wave solutions
gain physical significance. Energy is transferred from one point to another primarily
through traveling waves. The intensity of traveling waves, which are recognized for their
capacity to transfer energy, can be associated with certain characteristics. Depending on the
behavior of the parameters, the found exact solutions are classified as complex, real-valued,
trigonometric, and hyperbolic functions. Below is a list and discussion of the outcomes.

Figure 9 shows that the exact solution V; 1 1({) gives the smooth kink soliton which
rises from right to left. The 3D, 2D and contour representation of the achieved result
V21,1() are sketched for the specific standards of y = 1.9,v = 1.5,k = 0.5,a = 0.8,
Y =2, =050 =22 =03 within the limit -5 < r,t < 5. Moreover, result V;13({)
also describes the rouge wave type soliton for the values 4 = 1.1,v = 05,x = 0.5,
a=199 =198 =12,a = 02,A = 03. In the interval —10 < r,t < 10, the physi-
cal representations are shown in Figure 10. A W-shaped soliton is the contexture of the
exact solution V; 1 7({) with constant y = 3,v = 0.15,k = 2.5,a = 0.5, = 0.6, = 4,
x=2,A=09,Q=12,P = 1. Figure 11 shows the 3D, 2D and contour representation of
the outcome within the range of —5 < r,t < 5. Figure 12 shows the exact solution V; 1 g()
for the constant values y = 2,v = 0.85,x = 0.85,a =2, = 1.9, =4, =2,A = 0.9,
the contour, 3D and 2D representation of result V; 1 g({) have been presented with in the
interval —10 < r,t < 10. The result is anti-peakon soliton. Once more, the 3D, 2D and con-
tour representation of result V; 1 13({) are obtained and displayed in Figure 13 for the values
of the constanty = 0.1,v =0.1,x = 0.5,a = 0.11,¢ = 0.05, 8 = 10,2 = 2, A = 3 within the
interval —2 < r,t < 2. V-shaped soliton the exact solution is this representation. For the
values y = 0.8,v =09,k =12, =0.04, =0.05=1,0 =09,A =2,0=09,P =1 of
the parameters, Figure 14 shows the 3D, 2D and contour plot representation of the result
V2,118() within the interval —5 < r,t < 5, which is flat wave soliton. For the values
u=15v =12,k =0,a =059 =09, =5,a = 2,A = 3,¢c = 2 of the parameters,
Figure 15 shows the 3D, 2D and contour plot representation of the result V, 1 »5({) within
the interval —10 < r,t < 10, which is kink wave soliton.

Vaaa(rt) 4

-4

5

-5-5
(a) 3D Plot (b) 2D Plot

-4 2 0 2 4

(c) contour Plot

Figure 9. The exact solution of V,11({) produces a smooth kink wave soliton, when p = 1.9,
v=15x=05a=081¢=2=5a=2A=03()3Dplotat -5 <r <5and -5 <t <5(b)2D
plot for different values of p at t = 1 (c) contour plot of V,11({).
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Figure 10. The exact solution of V;13({) produces a rouge wave soliton, when y = 1.1,v = 0.5,

k=05a=19,9p=19,=12a=02A=03()3Dplotat —10 <r < 10and —10 < ¢t < 10
(b) 2D plot for different values of B at t = 1 (c) contour plot of V51 3(7).
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Figure 11. The exact solution of V;17(Z) produces a W-shaped soliton, when y = 3,v = 0.15,

Kk =25a=0519=06p=4a=2A=09Q=12P=1()3Dplotat =5 < r < 5and
—5 <t < 5(b) 2D plot for different values of § at t = 1 (c) contour plot of V51 7({).
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Figure 12. The exact solution of V;14({) produces anti-peakon soliton, when u = 2,v = 0.85,
k=085a=219=19=4a=2A=09()3Dplotat —10 <r <10and —10 < t < 10 (b) 2D
plot for different values of § at t = 1 (c) contour plot of V51 8({).

Vz.1,13("v1)o_05\‘;'

0.00 :’.;” P

(a) 3D Plot

q
XD
AN 74 ‘r‘

o
X
&

NP
N
5

X
K=y

-2

-3 -2

(¢) contour Plot

Figure 13. The exact solution of V3113({) produces a V-shaped soliton, when y = 0.1,v = 0.1,
x=0.5,a=011,¢ =0.05=10,a =2,A =3 (a) 3D plotat —2 < r <2and -2 <t <2 (b) 2D plot
for different values of § at t = 1 (c) contour plot of V; 1 13({).
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Figure 14. The exact solution of V;115({) produces a flat wave soliton, when y = 0.8,v = 0.9,
x=12,a =004y =005p8=1a=09A=20Q=09P=1(a)3Dplotat =5 < r < 5and
—5 <t <5(b) 2D plot for different values of  at t = 1 (c) contour plot of V3 115(7).
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Figure 15. The exact solution of V;15({) produces a kink wave soliton, when = 1.5,v = 1.2,
k=0,a =05¢=09=5a=2A=3,c=2(a)3Dplotat —10 < r < 10and —10 < ¢t < 10
(b) 2D plot for different values of B at t = 1 (c) contour plot of V31 25(7).

5. Conclusions

The exact solutions to the KG equation have been found in this research. One of the
more fascinating problems in nuclear and high-energy physics has been figuring out the
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exact solutions to the KG equation. The KG equation has been widely used in relativis-
tic quantum mechanics to characterize particle dynamics. Many efforts have been made
recently to solve these relativistic wave equations for different potentials using various
techniques. The exact solutions for the quadratic nonlinear KG model have been achieved
by mapping and GREM methods. These often-used mathematical approaches have been
recommended, permitting us to conduct complex and time-consuming algebraic compu-
tations. Both approaches have been successfully utilized while working with differential
equations. It has been shown from the results that the mapping and GREM approaches
are more accurate and need less computing power than the other approaches. With a wide
range of free parameter values, the outcomes that have been obtained include the forms
of trigonometric and hyperbolic functions for the GREM technique as well as hyperbolic
and Jacobi elliptic functions via the mapping method. As a result, precise types of solitary
waves such as dark, bright, periodic, W-shaped, smooth kink, rouge wave, anti-peakon,
V-shaped, and flat soliton waves have been established. Figures have been created to show
how the parametric variables, in particular, for various values, affect the soliton’s form
using Mathematica capabilities. It needs to be emphasized that these methods are credible,
reliable, and easy to use with different NLEEs. These results have been utilized in quantum
field models and can contribute to a better understanding of the variety of events that arise
in the many physical systems encompassed by the present framework.
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