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ABSTRACT. We are currently living in an exciting era, where long sought quantum
phenomena are starting to be simulated in synthetic quantum systems, fulfilling the
original idea by Feynman behind quantum computers:

“Nature isn’t classical, dammit, and if you want to make a simulation of

Nature, you’d better make it quantum mechanical, and by golly it’s a won-

derful problem because it doesn’t look so easy.”

R. P. Feynmann
However, despite the huge success of current platforms, all of them suffer from a common
problem: scalability and noise. Indeed, current platforms are limited to 100 quantum
constituents (e.g. qubits) in the best case scenarios, and the inevitable coupling to the
environment leads to uncontrolled errors. The problem of noisy and relatively small
available platforms permeates the community so much that our time has been termed
as the Noisy-Intermediate-Scale-Quantum (NISQ) era by J. Preskill. Overcoming such
problems constitutes the current biggest challenge in the field. Additionally, the diffi-
culty in robustly storing quantum information represents an important limiting factor
that mitigates the large-scale adoption of modern quantum technologies. Indeed, even
without external sources of decoherence, interacting quantum systems generally tend to
thermalize making most of the memory effectively lost, except the one contained in the
(typically few) conserved quantities, in agreement with statistical mechanics. However,
there exist mechanisms that can prevent the onset of thermalization, and thus make the
above picture not true. This opens up the possibility that local quantum information
could be passively protected, since dynamics would be not able to wash the memory
of the initial state. This thesis goes in this direction, focusing on non-ergodicity in
quantum systems and their possible application in aiding quantum information tasks.
Specifically, we discuss different ergodicity-breaking mechanisms displayed in simple
translationally invariant models, known as Kinetically Constrained Models. We then
explore potential ways for leveraging these ergodicity-breaking properties, particularly
in the protection of quantum information and in the preparation of states useful for
quantum information tasks, such as the multi-mode version of bosonic Gaussian states.
Then, we demonstrate the practical relevance of these models by providing routes for
implementing them in current NISQ devices based on Rydberg atoms and supercon-
ducting circuits.
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CHAPTER 1

Introduction

Despite being far from a fully fault-tolerant universal quantum computer [8], many
platforms have reached enough control to allow the investigation of quantum phenom-
ena in regimes hardly accessible by any other means [9-11]. For instance, long sought
quantum phenomena, such as topological order [12, 13|, non-abelian anyons [14], as
well as quantum dynamics [15-19], can be realized and observed in synthetic systems,
opening up the venue for unprecedented investigations. Such investigations have been
performed adopting either a digital or analogical approach. The digital approach is typ-
ically based on mimicking the Hamiltonian by applying gates [8, 20, 21]. Instead, the
analogical approach is based on finding ways to make the system at hand be described
by the Hamiltonian of interest [22, 23]. In such cases, the Hamiltonian is typically
implemented by properly tuning external parameters, such as frequency and strength
of external lasers, which depends on the specific platform (e.g. neutral atoms, trapped
ions, superconducting circuits) at hand. Between the digital and analog approach, the
former is far more general than the latter, as given a universal set of gates we could sim-
ulate any Hamiltonian. However, the digital approach still suffers from limited fidelity
of the available gates, leading to propagating errors in the simulation. Consequently,
the analog approach is still more developed than the digital one concerning quantum
simulations and is fulfilling the original idea by Feynmann of using quantum systems
for simulating quantum systems [24]. However, despite the huge success of current plat-
forms, all of them suffer from a common problem: scalability and noise. Indeed, most of
the platforms are limited to ~ 100 quantum constituents, e.g. qubits, and the inevitable
coupling to the environment leads to uncontrolled errors. Such errors could be poten-
tially tamed via quantum error-correction protocols [25—-27]. However, their adoption is
still far from being practically useful due to the enormous resources needed. Essentially,
we are currently living in the so-called Noisy-Intermediate-Scale-Quantum (NISQ) era,
as termed by J. Preskill in his seminal paper [9]. Overcoming such problems currently
constitutes the biggest challenge in the field, and different routes are taken both from
an engineering point of view, by mitigating undesired effects, and fundamental ones.
For instance, possible routes involve the design of architectures where entangling gates
are not limited to the nearest-neighbor, potentially allowing a speeding up in the entan-
gling of the system and therefore effectively mitigating the decoherence problems [28,
29]. Instead, from a fundamental point of view a great effort is put into devising new



kinds of qubits. Specifically, a possible route involves the realization of exotic phases of
matter in order to practically exploit them for aiding quantum information processing.
The most prominent example in such direction is non-abelian anyons, which could serve
as robust logical qubits on which implement logical operations via braiding, namely by
encoding the operations in the way space-time trajectories are knotted [30].

Another important limiting factor against a large-scale adoption of modern quantum
technologies is the difficulty in robustly storing quantum information [9]. Indeed, even
without external sources of decoherence, interacting quantum systems generally tend to
make the memory of the initial state virtually inaccessible under their own dynamics.
Such inaccessibility is a manifestation of thermalization and could be framed as the
scattering of local operators (e.g. a single Pauli operator) into an exponentially large
number of complex (non-local) operators (e.g. strings of Pauli operators) under Heisen-
berg evolution [31-36]. Such scattering has an immediate consequence in the capability
to practically retrieve the information initially stored in the local operator, e.g. the
polarization in a spin model, since it would be necessary to measure highly non-local
operators as dynamics continue. Therefore, as experimental measures are generally re-
stricted to simple operators, most of the information of the initial state is washed out
except for the few conserved quantities of the system, in agreement with the onset of
thermalization and statistical mechanics.

However, there exist mechanisms that can prevent the onset of thermalization, and
thus make the above picture not true. In recent years many mechanisms have been
investigated, including strongly disordered many-body localized systems [37, 38], in
which thermalization is impeded by the presence of disordered potentials, to “fracton”
systems, in which dynamical constraints induce fragmentation on the space of reachable
configurations [39-46|, and quantum scarred systems, in which certain classes of initial
states show coherent oscillations for times longer than typical relaxation times [47-60].
Mitigating thermalization opens up the possibility that dynamics is not able to wash the
memory of the initial state, keep local observables simple under Heisenberg evolution
and so experimentally measurable, and make local quantum information passively pro-
tected. This thesis goes in such direction, with a particular focus on ergodicity-breaking
mechanisms and their potential in aiding quantum information tasks.

In Part I we discuss different ergodicity-breaking mechanisms displayed in simple trans-
lationally invariant models, known as Kinetically Constrained Models. We then explore
potential ways for leveraging these ergodicity-breaking properties, particularly in the
protection of quantum information and in the preparation of states useful for quantum
information tasks, such as the multi-mode version of bosonic Gaussian states. Despite
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the models we consider are intrinsically interesting from a fundamental standpoint, they
hold also practical relevance since they can be realized in current NISQ devices based on
Rydberg atoms and superconducting circuits. The details regarding their experimental
implementation will be the object of Part II. While most of the work here presented
concerns low-dimensional systems with short-range interaction, in Part IIT we will do a
detour in the realm of all-to-all interacting systems. Such kind of interactions is relevant
as they naturally appear in cavity-QED setups, in which a cold gas couples to few or
several electromagnetic modes in an optical cavity [61-66]. In such systems, due to the
all-to-all interacting nature, the dynamics occur at the level of macroscopic classical
objects, making quantum effects suppressed with their ‘size’, typically controlled by
the number of particles [67—71]. As a consequence, the system will tend to behave clas-
sically up to times parametrically large in the number of its constituents, after which
quantum effects can no longer be neglected. Intriguingly, in this pre-thermal regime, it
is possible to observe dynamical responses which would be prohibited at equilibrium.
However, it looks like in this pre-thermal regime we are restricted to observing phe-
nomena ‘classical’ in nature. In such direction, we will challenge this common belief
that quantum effects are mostly irrelevant in this pre-thermal regime, by showing how
microscopic quantum effects could have a dramatic impact in dictating the macroscopic
dynamical response of the system.

Before delving into the description of the various ergodicity-breaking mechanisms, it is
first necessary to address a key question: what does it mean that an isolated quantum
system thermalizes? Indeed, unitarity would lead us to think that it is virtually impos-
sible for an initially pure state to be described by a statistical mixture, i.e. a mixed
state, under its own dynamics. In the next chapter, we address such a question.






CHAPTER 2

Quantum Thermalization

Executive Summary. In this Chapter, we provide a brief summary of the concept of
thermalization in isolated quantum systems. We first provide an operatorial definition
of thermalization and then discuss the mechanisms that can lead to its establishment

even when initializing a pure state.

What is new? All the results in this chapter are taken from pre-existing literature
prior to the work carried out in this thesis.

Organization of the Chapter.

e In Sec. 2.1 we provide an operatorial definition of thermalization in isolated
quantum systems.

e In Sec. 2.2 we discuss the connection between entanglement and thermalization;

e In Sec. 2.3 we briefly present the Eigenstate Thermalization Hypothesis, which
constitutes the most successful known theory in explaining the onset of ther-
malization;

e In Sec. 2.4, we briefly discuss an alternative point of view about the onset of
thermalization based on shifting from states to operators.

e In Sec. 2.5 we discuss the implications of thermalization.

2.1. AN OPERATORIAL DEFINITION

Statistical mechanics provide a powerful framework connecting the microscopic world
to the macroscopic one. However, since its foundation, the conceptual puzzle of how
irreversibility rises from reversible processes still lacks a rigorous solution. In classical
systems, the ergodic hypothesis provides an operational approach, namely a system
is assumed to explore with equal probability each accessible configuration under its
own dynamics. Such assumption implies the equivalence between time-averages and

ensemble averages [72],

1

T/O dr O(T) = <O>ensemble‘ (21)



But how and when a system is ergodic? Such a question still lacks a completely satis-
factory answer. However, it is generally believed that interacting Hamiltonian systems
are likely chaotic due to non-linearities in their equations of motion, and are thus ex-
pected to densely explore the whole accessible phase-space, and be potentially ergodic.
On more intuitive grounds, in an interacting classical system, the scattering processes
between particles are typically expected to redistribute energy and make equipartition
theorem and fluctuation-dissipation theorem dynamically settle in, even when the sys-
tem is initially prepared in a highly non-thermal distribution [72].

Right after the formulation of quantum mechanics, the tools of statistical mechanics
were immediately applied to the quantum domain with huge success. However, the
onset of thermalization in an isolated quantum system upon initializing a pure state
has been, and still is, a subject of debate. Indeed, in quantum mechanics there is no
notion of trajectories in phase-space, due to the Heisenberg uncertainty principle, and
the linearity of Schrédinger equation prevents a straightforward definition of chaos.
Additionally, how can we reconcile the unitarity of the Hamiltonian dynamics with the
mixedness of a thermal ensemble to which you would expect the system to evolve to?

To exemplify this, let us consider a quantum system described by a Hamiltonian H
and an initial pure state |1(0)). If |¢(0)) is not an eigenstate of the Hamiltonian, it
will undergo nontrivial evolution under H and remain pure, implying that it cannot be
described by a statistical mixture (as expected by statistical mechanics), namely

_pH

() = e Fp(0)(8) = ——, (2:2)

where Z = Tre~#H is the partition function and 3 is an inverse of a temperature (setting
the Boltzmann constant kg = 1) set by imposing the conservation of energy

($(0)|H|p(0)) = Tr(HeH)/2Z. (2.3)

From Eq. (2.2), the emergence of statistical mechanics in a purely quantum system
looks like a hopeless task.

A possible route to solving such a dilemma is by observing that although a state is
globally pure, it can appear mixed when looked at locally, which is relevant as we are
mostly limited in measuring local observables in experiments [73, 74]. Indeed, in most
cases, when measuring local observables on the evolved state |1(t)), the expectation
values measured on it are compatible with the one computed on a mixed state, generally
given by the thermal ensemble constraint to the conserved quantities of the system. In
other words, statistical mechanics dynamically settles locally. More formally, let us look
at a certain subset A of the physical space. As previously said, the shift from global to
local can be justified from an experimentally oriented point of view: in the real world,
measures are mostly limited to local observables. As there are different definitions of
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locality, we stress that we adopt the following definition: an operator O is said to
be local if it can be written as a sum of terms where each of them acts nontrivially
(differently from the identity) on a finite region in the thermodynamic limit. As an
example, given a one-dimensional system of length N, the operator ) y 0,0, +x, where
O; is an operator which acts on a finite number of sites around the j-th one, is local
if k does not scale with N. Having established the notion of locality we are interested
in, the rest of the system, in which we are not interested as we are not measuring it,
could be seen as an effective ‘bath’. In other words, as we are interested solely in the
information contained in A the ones contained in its complementary A, can be thrown
away, or more formally traced out as

pa(t) = Tra.ps(t), (24)
where pg(t) is the density matrix describing the whole system .S, while §4(¢) describes

solely the region A. In the case discussed above, we would have pg(t) = [¢(2)){¥(2)|.
Given p4(t), we can compute the observable of interest as

Tr[ps(t)O4] = Tx[pa(t)Oal, (2.5)

from which we say that a system thermalizes if the long time expectation value tends
toward the one expected from statistical mechanics, namely

Jim /0 " AT A(6)0] = TrlfemO/Z. (2.6)

since the argument holds for any local operator O4, and since the state remains most
of the time near its time-averaged value, we have also a punctual convergence (without
the need of time averages). Specifically, we have the following chain of equality

Jim 7(t) = W(ON(O)] > pa(t) = Tea plt) = Prverma 27)

which, in other words, states that a system thermalizes if it evolves towards a state
which is locally indistinguishable from a thermal one [74, 75].

2.2. ENTANGLEMENT AND THERMALIZATION

In the previous section, we have given an operatorial definition of quantum thermaliza-
tion, which allows us to reconcile the unitarity of quantum mechanics and the mixedness
of statistical mixtures expected by statistical mechanics. However, we did not answer
the questions about when and how thermalization occurs. Let us first address the
question linked to ‘how’ this is widely regarded to occur. In the classical world, ther-
malization is generally expected to settle in thanks to scattering processes between the
particles. However, in the quantum one, there is no well-defined notion of trajectories,



making such mechanism not well defined!. Thus, it is necessary a different mechanism
in the quantum world. In such direction, it is widely regarded that thermalization in
a quantum system occurs as a result of the presence of entanglement [80]. Indeed, the
quantumness (entaglement) in a system leads also to the formation of thermal entropy
when we look at the system locally [23, 73, 81-83|. A canonical example of this point is
the Bell state of two spatially separated spins: although the full quantum state is pure,
local measurements of just one of the spins reveal a statistical mixture with reduced
purity. Let us explicitly see this:

1
[v) = —= (| Nal L)+ 11)al T)B),
vzo ! (2.8)

= pa=Tes(R)1) = 5 (| Dalt |+ Datt ).

This local statistical mixture is distinct from a superposition because no operation on
the single spin can remove these fluctuations or restore its quantum purity. In such a
way, the spin’s entanglement with another spin creates local entropy, which is called
entanglement entropy. As this picture can be extended to generic states, it also ap-
plies to the evolved state |¢(t)) for typical interacting Hamiltonians, meaning that as
entanglement entropy grows (as generally observed), it dynamically becomes locally
indistinguishable from a statistical thermal mixture (see Fig. 2.1 for a sketch). The
need for entanglement to make thermalization occur can be also shown by looking at
the definition of thermalization formalized in Eq. (2.6). There, we have assumed that
the partial trace over A, on the density matrix describing the whole system pg gives
rise to a mixed state, which holds solely if there is entanglement between A and its
complementary A..

Having given a possible mechanism behind the onset of thermalization in the quan-
tum world, it is still missing the answer about ‘when’ thermalization settles in. Indeed,
the fact that a pure state can appear locally mixed, does not imply that the mixed state
describing it is the one expected from statistical mechanics, e.g. a thermal ensemble.
In the next section, we cover such a point by discussing the most successful theory, the
Eigenstate Thermalization Hypothesis, which provides an answer to this.

2.3. THE EIGENSTATE THERMALIZATION HYPOTHESIS

In the previous section, we have given an operatorial definition of quantum thermaliza-
tion and a phenomenological explanation of its onset based on entanglement. However,

1 Attempts in such direction involves systems with a well defined semiclassical limit (see e.g. Refs. [76—
79)).
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[¥) () = e [4)

thermal

o(t)

time >
Local information gets scattered non locally

FIGURE 2.1. Sketch representing the onset of statistical mechanics in an
isolated quantum system under its own unitary dynamics. Given a system
described by the Hamiltonian H and initial quantum state |¢)), different
from an eigenstate of H, this will nontrivially evolve in time. Throughout
this process, entanglement grows in the system, symbolically represented
by connecting red bonds. Consequently, upon local observation of the
system, e.g. by measuring local observables like magnetization, most
of the information regarding the state is effectively lost except for the
(typically few) conserved quantities. As a result, after the initial transient
where other details of the initial state still matter, the expectation values
of local observables tend to be the ones predicted by statistical mechanics.

the answer to ‘when’ this occurs is still lacking. A possible route is based on looking
at the spectral properties of the Hamiltonian H governing the dynamics of the system
of interest. In such regard, the most successful theory is the Eigenstate Thermalization
Hypothesis (ETH) [84-89]. The ETH roughly states that in order to make thermaliza-
tion occur, all the eigenstates of H has to be thermal in nature, namely the expectation
value of any local observable measures on the eigenstates depend solely on the conserved
quantities of the system itself. In order to be more concrete and formal, let us consider
the same scenario discussed in the previous section. Specifically, let us consider a non-in-
tegrable Hamiltonian H of N interacting constituents (e.g. spins). For simplicity, let
us assume there are no degeneracies in the spectrum so that the eigenvalues {E,} and
eigenstates {|E,)} of H are in one-to-one correspondence. Upon initializing a [4(0)),
which is not an eigenstate of the Hamiltonian H, it will undergo a non-trivial evolution
given by the solution to the time-dependent Schrédinger equation

) = 3 cae B B, (2.9)

where ¢, = (Ey,|1(0)) is the overlap of the initial state |¢/(0)) with the n-th eigenstate
of the Hamiltonian. As previously said, thermalization can be defined locally, and thus
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let us look at the time evolution of a local observable Q4 acting on a region A,

W(D)|Oal(t)) = Y e EmEnich e (n| O am). (2.10)

As the notion of thermalization is formulated at the level of time-averages, let us com-
pute the latter

0= Jim 7 [t WOIOAWE) = X len0lOln) (211

n
where we have neglected oscillating terms using the Rienmann-Lebesgue lemma. If a
system thermalizes, we expect that Eq. (2.6) holds. Now, restricting to short-range
interacting systems, the equivalence of ensembles holds, making it possible to trade the
canonical average (considered in Eq. (2.6)) with the microcanonical one, namely

Oamo = TrlpucOal = = 3 (BJOAE),  (212)
N(E)A E—A/2<En<E+A/2

where N(FE) is the density of states at energy E. By direct comparison between
Eq. (2.11) and Eq. (2.12), we observe that such equality does not seem to hold for
all initial states |1(0)), since the former is a weighted sum over all the eigenstates,
while instead the latter is a uniform sum over all the eigenstates within a small energy
window. However, the two could be put in connection by two additional assumptions:
(i) the |c,| are non-zero in a small energy window; (ii) the diagonal elements of the
operator @4 depends smoothly on the energy E, namely (E,|O4|E,) = O4(E). The
condition (i) is reasonable if the initial state |1/(0)) has small fluctuations around the
mean energy, i.e.

\/<¢(0)Iﬁ2|¢(0)> — ($(0)|H1%(0))?

(v (0)H]w(0))
The condition (ii) is instead the hallmark of the Eigenstate Thermalization Hypothe-

< 1. (2.13)

sis [84-89]. Assuming (i) and (ii) to hold, we straightforwardly obtain
Oa=04(E) Y leal* = Oa(E) = (Oa)mc, (2.14)

since ) |¢,|* = 1. In such a manner, we proved a weak form of thermalization, namely
on average. However, it is possible to prove a stronger version, by making an assumption
on the off-diagonal terms of the operators, which is still the object of the ETH. Indeed,
the ETH states that the matrix elements of a typical local observable O4 computed on
the eigenstates of an interacting non-integrable Hamiltonian are of the form [87]

(En|Oa|Ep) = O(E)bpm + € 5B2 fo(E,w) Ry m, (2.15)

where E = (E,+E,,)/2, w = (E,— E,,)/2 and S(E) = log N'(E) is the thermodynamic
entropy. The coefficients R, ,, are random numbers, with a vanishing average and unit
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variance. Due to the extensivity of the thermodynamic entropy, the off-diagonal terms
are exponentially suppressed in the system size. As a consequence, we immediately see
that the fluctuations around the time-average are exponentially suppressed as

02-04" =33 lenPlem|(EnlOal B < 75 (2.16)
n m#n
with E the energy of the initial state. In summary, ETH states a strong version of
thermalization: not only on average, but also at a given time, up to small fluctua-
tions. Additionally, since the argument holds for any local operator o 4, and since the
state remains most of the time near its time-averaged value, we have also a punctual
convergence (without the need of time averages). Specifically, we have

p(t) = [% () (W (8)] = pa(t) = Trgh(t) = Athermal (2.17)

which is the same as in Eq. (2.6).

2.4. A DIFFERENT ROUTE: FROM STATES TO OPERATORS

So far, we have discussed thermalization in quantum systems focusing on states, while

instead operators have been solely used to define a notion of locality. However, in

the past years, a complementary approach has been proposed based on shifting from

states to operators. The key observation is that, in Heisenberg-picture evolution, simple

local operators generally evolve into highly nonlocal ones in interacting theories. To

exemplify this, let us consider the Heisenberg evolution of the Pauli operator 07 in a

one-dimensional quantum Ising model, with Hamiltonian H = 3" & 0507 +2.;05 We
have,

55(t) = eMoge "
o7+ it o)+ U, (11,67 +
(2.18)
= &} + it (6%_,[0%, Uk] + [6%, 6Z]Uk+1) + O(tz)
= 6; +2t (67167 +6%67,,) + O(t?),

where it is evident that the support of the operator will grow in time. As a consequence,

operators flow from simple to highly complex ones, eventually becoming so complex

that they cannot be computed. However, the increase in complexity can eventually

lead to a simpler description in the spirit of statistical mechanics: the operators decay

in highly non-local objects that serve as a thermodynamic bath when we look at it

locally so that a statistical description should emerge and become exact. This picture

has been confirmed in random unitary models [31-33], where dynamics is governed by
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the application of random gates without being bound to a specific realistic model, as
well as more realistic systems [34-36].

2.5. CONSEQUENCES OF THERMALIZATION

The onset of thermalization has many consequences. The most remarkable one is that
computing local quantities becomes an easy task. Indeed, neglecting the initial tran-
sient, it is enough to compute expectation values over the thermal ensemble compatible
with the conserved quantities of the system, without the need to compute the evolu-
tion of the whole state (which is typically a hard task). Additionally, as the system
thermalizes, it is possible to perform a sort of coarse grain operation. Namely, it is pos-
sible to pass from a microscopic unitary description of a system (exact and reversible
dynamics), governed by quantum mechanics, to a macroscopic hydrodynamic descrip-
tion (approximate and irreversible dynamics) of quantum systems governed by partial
differential equations, i.e. continuity equations [31-36]. From a computational point of
view, the onset of thermalization is a huge advantage, as it implies no need to have a
microscopic quantum description of the system for most practical purposes. However,
despite its predictive power, the fact that statistical mechanics works so well implies
also that many specific features of the system are not relevant in dictating its properties.
Indeed, thermalization implies that most of the features of the initial state are effec-
tively ‘lost’ in highly nonlocal operators, making the system evolve towards a thermal
distribution containing information solely of the (typically few) conserved quantities of
the system, such as energy. In other words, the memory of the initial configuration is
rapidly washed out. On one hand, the irrelevance of the initial condition is a blessing,
as it is not needed to have knowledge on the microscopic details of the system, but on
the other hand, it is a damnation, as it prevents to encode and store information in such
states different from their conserved quantities. Nonetheless, as we will discuss now,
there exist mechanisms that could impede the onset of thermalization by making the
system non-ergodic, opening the door for exploring phenomena beyond the paradigm
imposed by statistical mechanics [90].



Part 1

Escaping the doom of thermalization



In the previous Chapter, we discussed how interacting quantum systems are gener-
ally expected to thermalize and be locally described by a thermal ensemble insensitive
to most of the features of the initial state, making the storage of quantum information
in local observables apparently a hopeless task. However, as robust storage of quantum
information is an important limiting factor that mitigates against a large-scale adoption
of modern quantum technologies [9], a large effort has been put into unveiling mecha-
nisms that could aid in protecting quantum memory.

A possible approach to impede thermalization to a featureless thermal ensemble is
by considering systems with conserved quantities. Indeed, if a system conserves local
quantities, we can store quantum information within them, potentially rendering the
system a perfect quantum memory. The extreme case scenario is integrable systems [91]
which, having an extensive number in the number of degrees of freedom of conserved
quantities, fail to thermalize to a thermal ensemble. Instead, they reach a generalized
Gibbs ensemble which contains the information of all the conserved quantities [92].
However, such models are generally finely tuned, and any weak perturbation eventually
drives the system towards a thermal ensemble.

Another possible route to hinder the onset of thermalization is by looking at the (widely
accepted) mechanisms at its origin. Specifically, while thermalization emerges as a result
of scattering processes in the macroscopic classical world, we expect that the building
up of entanglement in the system will lead to thermalization in the quantum one [23,
73, 81-83]. Therefore, one way to impede the onset of thermalization is by mitigating
the proliferation of quantum correlations (entanglement) in the system. However, we
emphasize that completely impeding the spread of quantum correlations would imply
no additional advantages and features in using quantum systems over classical ones, in-
cluding their utility in quantum information, metrology, and computation, as the source
of quantum speedup lies in the entangled nature of the system. Thus, we anticipate
that we do not desire a system with trivial, i.e., classical, properties.

In such a direction, a paradigmatic example of an ergodicity-breaking mechanism is
disorder-induced localization, seen both in the well-established Anderson localization
phenomenon at the single-particle level [93], and in its extension into the many-body
realm, giving rise to Many-Body Localization (MBL) [38, 94, 95]. Specifically, it has
been argued that a strong enough disorder could lead to localization of the eigenstates
of the Hamiltonian, a zero DC current in the system, and an extreme slow growth of
quantum correlations [96, 97|, impeding the onset of thermalization since the system
fails to act as its own thermal bath. The remarkable failure of statistical mechanics has
been linked to the emergence of an extensive number of conserved quantities at strong
disorder, known as local integrals of motion (LIOMs), making the system effectively



15

integrable [98-101]. However, strong debate still surrounds the existence of MBL as a
true phase of matter in the thermodynamic limit due to the existence of avalanches of
thermal bubbles whose propagation could disrupt localization [102-112]. Additionally,
MBL is not robust against any weak coupling to an external bath (which is inevitable
in any real-world scenario) [113-118|.

Independently of whether MBL exists or not as a stable phase of matter in the ther-
modynamic limit, it has the merit of having spurred interest in questions concerning
the onset of thermalization, as it challenges the generally held belief that statistical
mechanics holds in generic interacting systems. As a result, many proposals have at-
tempted to mitigate the onset of thermalization by confining quantum information into
conserved or quasi-conserved quantities [119-135]. These proposals range from the men-
tioned strongly disordered many-body localized [37, 38| or glassy systems [136-143], in
which thermalization is impeded by the presence of disordered potentials, to “fracton”
systems, in which dynamical constraints induce fragmentation on the space of reachable
configurations [39-46], and quantum scarred systems, in which certain classes of initial
states show coherent oscillations for times longer than typical relaxation times [47—-60].
In the same direction, researchers have started to investigate the quantum generaliza-
tions of so-called kinetically constrained models (KCMs) [144-150].

Kinetically constrained models are inspired by classical structural glasses, which were
introduced to describe the extreme slowdown of thermalization resulting from excluded
volume interactions between particles. Specifically, to mimic excluded volume interac-
tions, the kinetic term of such models (e.g., a spin flip, particle hopping, and so on)
is conditioned, i.e., constrained, by the configuration of the surrounding particles. For
the sake of concreteness and clarity, let us consider a one-dimensional spin system,
where a spin could flip, i.e. | 1), ¢ | |),, solely when the previous one is in the | |),
state. Going immediately to the quantum realm, such a scenario is described by the

H=Y n;j—e™) 6%, (2.19)
J J

potential kin. constrained

Hamiltonian

where 7, = (1 — 6%)/2, with 0§ the a-Pauli matrix obeying the commutation relation
[0F, %] = 2i6%, is the projector on the | |), state. The kinetic constraint is ), 7,654,

¢ where such parametrization is chosen just for historical

and it is controlled by e~
reasons due to its original connection with classical structural glasses [138]. To improve
clarity, in Fig. 2.2 we show a sketch of the action of the Hamiltonian in Eq. (2.19) to
a product state with a single excited spin. The Hamiltonian in Eq. (2.19) is called

the quantum East model, where ‘East’ comes from the fact that its action is nontrivial
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FIGURE 2.2. Sketch representing the action (arrow) of the Hamiltonian
of the quantum East model (cf. Eq. (2.19)) on a spin chain with a single
excitation (black dot) surrounded by de-excited spins (white dots). The
kinetic constraint acts nontrivially only to the right (East) of the excited
spins, while instead other processes (e.g. spin flips to the left) are prohib-
ited as represented by the red cross.

solely towards the East/right of an excitation. The quantum East model has been
subject of intense research owning to its remarkable properties [140, 151-155|. Indeed,
despite its apparent simplicity, it hosts remarkable phenomena, including disorder-free
localization and a dynamical phase transition between a fast thermalizing phase to a
slow one. Such dynamical phase transition will be the object of investigation in this
thesis.

So far we have considered spin systems. However, we are not strictly limited to work
with them. Indeed, we could immediately design a system where instead of having
finite dimensional constituents (spins), we have infinite dimensional ones (bosons). In
such a context, inspired by the quantum East model above, a possible KCM could
be characterized by a kinetic term that acts nontrivially on a certain site solely if the
previous is occupied. For instance, we could think of a conditioned drive field whose
strength is controlled by the number of particles on the previous site. The Hamiltonian
describing such a scenario would be

H=Y n;+ed a2+UY Agigea—e D iy (a1 +8l,), (2.20)
J J J J

TV TV
potential kin. constrained

where a; and &;’. are bosonic annihilation and creation operators acting on site j respec-
tively; n; = &;‘-dj; e~ % controls the constrained creation and annihilation of bosons; €
is the on-site density-density interaction; and U is the nearest-neighbor density-density
interaction. As a remark, the kinetic constraint is reminiscent of the coupling typically
encountered in optomechanical systems [156], where an harmonic oscillator (the me-
chanical part) is driven via radiative pressure exerted by an incoming radiative field
(optical part). We will see that this analogy will aid in discussing the properties of such
model, including disorder-free localization.

As it could be guessed, the KCMs we could define are virtually infinite. However,
defining an arbitrarily large class of models without any criteria sounds like a not so en-
lightening task. Instead, here we opt for a more physics-motivated picture. Specifically,
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after investigating the properties of the models above, we study the impact of deforma-
tions of the kinetic term. We will show that minimal modifications on the kinetic term
have a dramatic impact on the dynamical features of the system. Specifically, we will
show that, upon tuning such constraint, we could select a different ergodicity-breaking
mechanism at will, not limiting to localization, but realizing other forms such as quan-
tum many-body scars [157], Hilbert space shattering [158], and confinement [131].

So far, we have listed possible routes via which thermalization could be avoided. How-
ever, despite unveiling mechanisms that could hinder thermalization is fundamentally
interesting on its own, an interesting question concerns how to exploit such mecha-
nisms. A possible direction is, as mentioned above, to use non-ergodicity to impede the
spreading of quantum information into highly non-local, and thus virtually inaccessible,
degrees of freedom. Another possibility is to utilize these properties for engineering and
preparing quantum states with interesting characteristics. Specifically, in the bosonic
quantum East model, we will show how we can prepare the localized many-mode ver-
sion of single-mode bosonic Gaussian states relevant in quantum information processing
and metrology [159] via simple adiabatic protocols.

Looking for practical ways to harness these properties is not only stimulating from
an intellectual point of view but holds also practical relevance as these mechanisms
could be realized in current platforms. In such direction, our contribution concerns
the proposal of two experimental setups where all the model here discussed can be
analogically simulated. Specifically, the bosonic quantum East model can be realized
in superconducting circuits, while instead the spin version (and deformations) can be
realized in Rybderg arrays. This will be the object of Part II of this thesis. However,
as we enter real-world scenarios, an immediate question immediately arises: how are
the features of these models affected by the inevitable coupling of the system with the
environment? In this part, we will address such a question showing that the phenomena
discussed persist against some source of dissipation.

Structure of Part 1

As above stated, the systems described by the Hamiltonians in Egs. (2.19) and (2.20),
and deformation of the former, will be the subject of Part 1. Specifically, this Part is
organized as follows

e In Chapter 3 we show that localization could be realized in translational invari-
ant systems. We do so by focusing on the low-energy domain of the bosonic
version of the East model (cf. Eq. (2.20)). In doing so, we unveil an emergent
representation of the Hamiltonian in terms of localized operators, in a fashion
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reminiscent of LIOMs in MBL, which is able to capture low energy properties,
both at equilibrium and out-of-equilibrium. We then exploit the localization
of the system for the adiabatic preparation of the many-mode localized version
of metrologically relevant states, such as Gaussian states and cat states, which
are Gaussian with respect to the localized operators just introduced. Finally,
we show how localization is not disrupted by some forms of dissipation.

In Chapter 4 we quantitatively explore ergodicity-breaking features at finite
energy density in the spin version of the quantum East model (cf. Eq. (2.19)).
We do so by proposing and testing a novel complexity-oriented proxy for detect-
ing non-thermal eigenstates. We discover the existence of a (possibly sharp)
transition between a non-thermal and thermal region along the spectrum, rem-
iniscent of a mobility edge. Our finding challenges the common belief that the
latter is exclusive of disordered systems, i.e. MBL.

In Chapter 5 we show how upon performing minimal modifications of the ki-
netic constraint in the quantum East model, the dynamical features are com-
pletely altered. Specifically, we will show how to control and select at will
different ergodicity-breaking mechanisms not limiting to localization, but real-
izing other forms such as quantum many-body scars, Hilbert space shattering,
and confinement.



CHAPTER 3

Utilizing localization in bosonic systems

Most of the content in this Chapter is in:

o “Kinetically Constrained Quantum Dynamics in Superconducting Circuits” (PRX
Quantum 3, 020346 (2022))
Riccardo J. Valencia-Tortora, Nicola Pancotti, Jamir Marino.

Executive Summary. We discuss the properties of the kinetically constrained bosonic
quantum East model. We show by a combination of analytics, exact diagonalization,
and tensor networks, that the system displays localization of the ground state, namely
the corresponding wavefunctions contain nontrivial excitations only on a small compact
region of the lattice and they are in the vacuum state everywhere else. The bosonic
generalization of the spin-1/2 East model opens up several directions including the
construction of many-body versions of archetypal states that are relevant for quantum
information applications such as coherent states, squeezed states, and cat states [160].
Specifically, we will show how upon initializing bosonic Gaussian states on a single site,
we can prepare their localized version which possess the same properties as their single-
mode counterparts, although they are supported on a few neighboring sites. Indeed,
we show how these states, despite being no longer Gaussian with respect to the bare
bosonic operators, are still Gaussian with respect to dressed bosonic operators. We
provide a formal description of these dressed operators by proposing a simple adiabatic
protocol that connects the bare ones, i.e. the usual single-mode bosonic operators (e.g.
d;), to their dressed version, which we name superbosonic creation-annihilation oper-
ators. These operators fulfill the canonical bosonic commutation relations and they
are exponentially localized in the neighborhood of a given site on the lattice. More-
over, we show how the low-energy physics of the Hamiltonian, both at equilibrium and
out-of-equilibrium, admits an effective, non-interacting, theory at low temperature in
terms of the superbosonic operators, in a fashion reminiscent of the I-bit construction
in MBL [98-101]. Finally, we discuss the impact of dissipative channels in the system,
showing how the localization properties are robust against some kind of dissipation and
could also aid in passively protecting the stored quantum information.

What is new? All results of this chapter represent novel research results.
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Organization of the Chapter

e In Sec. 3.1, we introduce the Hamiltonian of the model, enumerate its symme-

tries, and compare it to previous works on similar models.

e In Sec. 3.2 we show that the ground state displays a localized phase, namely

the corresponding wavefunctions contain nontrivial excitations only on a small
compact region of the lattice and they are in the vacuum state everywhere else.
We support our findings by combining numerical and analytical approaches.
In Sec. 3.3 we exploit the localized properties of the system devising an adia-
batic protocol for building the many-body versions of states that are relevant
for quantum information applications such as coherent states, squeezed states,
and cat states [160]. In doing so, we define a set of superbosonic creation-anni-
hilation operators (Sec. 3.3). These operators fulfill the canonical bosonic com-
mutation relations, are adiabatically connected to their bare version, and they
are exponentially localized in the neighborhood of a given site on the lattice.
Additionally, we show that the Hamiltonian can be written as a non-interacting
theory in terms of these localized operators, similar to the I-bit construction in
MBL [98-101].

In Sec. 3.4, we couple the system to different noise sources and, via a detailed
numerical analysis, we show that localized states retain some memory of their
initial condition even in the presence of strong dissipation. First, we consider
the effects of dephasing noise coupled to bosonic occupations, which preserves
the “East symmetry” (see the definition in Sec. 3.1). In this scenario, the local-
ized states are barely altered by the environment. We show that the fidelity
between the time-evolved state and the initial state decays exponentially with
a long decoherence time, controlled by the parameters of the Hamiltonian, the
initial state, and the strength of the noise. Second, we consider the effects of
particle losses that break the “East symmetry.” As expected in this situation,
the magnitude of the fidelity decays exponentially fast in time, with a deco-
herence time that is parametrically small in the loss rate. It is important to
stress that as the localized states have non-trivial structure only on a small
support, any external noise that does not act in their immediate vicinity leaves
them essentially invariant. This set of noise-resilient properties renders the
many-body states studied in this work qualitatively different from localization
induced by disorder, which is inherently fragile to decoherence (for studies on
MBL systems coupled to a bath or external noise see Refs. [113-118]).

This Chapter is composed by a rearrangement of the author’s publication [1].
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3.1. THE BOSONIC QUANTUM EAST MODEL

We investigate the following Hamiltonian with open boundary conditions
1 L
H= —5 Z’ﬁj |:€_s (a'j+1 + &;+1> - Gﬁj - Uﬁj+1 - ].] y (31)
3=0

where a; and &;[ are bosonic annihilation and creation operators acting on site j respec-
tively; e~® controls the constrained creation and annihilation of bosons; € is the on-site
density-density interaction; and U is the nearest-neighbor density-density interaction.

As discussed in the introduction of Part I, Eq. (3.1) is a kinetically constrained “East”
model. The unidirectional constrained feature has consequences for the accessible por-
tion of the Hilbert space by the dynamics. Namely, any initial state with a product of
vacua from the left edge up to a given site in the bulk will exhibit nontrivial dynamics
only on the right side of the lattice after the first occupied site. For sake of concreteness,
let us consider the state |00100...0). Via subsequent application of the Hamiltonian
given in Eq. (3.1) we have,

00120...0)...
/"
00100...0) — |00110...0) — [001110...0)... (3.2)
pY
00100...0)...

where — represents the action of the constrained creation and annihilation of bosons
at each step of perturbation theory. The occupation of the first nonvacant site and of
those at its left cannot change as a consequence of the “East” constraint. More formally,
the Hamiltonian commutes with the projectors

_ %% ®j>k
P(no,k) =Py i7" ® Poo ® 177", (3.3)

where P, ; = |s);;(s| is the projector on the Fock state with s particles on site j, 1; is
the identity acting on site j, and k and ng are, respectively, the position and occupation
of the first nonvacant site. We can split the Hilbert space into dynamically disconnected
sectors Hn,k, such that the action of P(ng,k) is equivalent to the identity, while the
action of the other projectors gives zero. For example, the state |00100...0) € #;
(note that the first site index is 0). Furthermore, since 3 r_, Y me—1 P(no, k) = 1 these
sectors {Hin,} constitute a complete and orthogonal basis of the whole Hilbert space

H, namely H = @f:o @Z?Fl Mo -
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In the following, we focus on a certain block specified by k, ng, and the number of
“active” sites L right next to the k-th one. Since the action of H on sites to the left
of the k-th one is trivial, the index k is physically irrelevant for our purpose and we
therefore choose k¥ = 0 without any loss generality. Exploiting this property, we write
the Hamiltonian given in Eq. (3.1) as Hp1 = Y, Hry1(no), where Hr11(no) is

Hi1(ng) = hy+

L
1 A A . A (3.4)
- 527’1,] [6 y (aj+1 +a;r-+1) —€n; — Unj+1 — 1] y
j=1
with h; = —%no [6_3 (&1 + d{) —eng — Uny — 1] and ng € N*. Furthermore, since

Hy.1(np) commutes with the operators acting on the (L + 1)-th site, we can represent
it as the sum of an infinite number of commuting terms Hy1(no) = -5 H" (no)®ILY,
where Hﬁ is the projector over the eigenstate |3.) with eigenvalue 8, = rU —e=2/U of

the operator (UﬁLH —e° (dL+1 + &EH , where r € N, and,

HY (n) = ha+
1 L-1
— 5 Zl’fllj [6_8 (dj+1 -+ CAL;_H) — G’fllj — Uﬁj—i-l — 1] + (35)
‘7:

1, .
+§nL[Br+enL+1]-

In Sec. 3.2, we focus on the properties of the ground state of the Hamiltonian given in
Eq. (3.5) within a certain symmetry sector.

3.1.1. Connection with previous works

The Hamiltonian given in Eq. (3.1) can be linked to its spin-1/2 version [151] by setting
U = € = 0 and replacing the bosons with hard-core ones. Since the Hilbert space of each
spin is finite, the “East” symmetry is largely reduced with respect to the bosonic case.
Each symmetry sector Hy »,—1 is specified only by the position of the first excitation,
since ng is bound to be zero or one. The ground state properties within a symmetry
sector Hyn,=1, Where the position k of the first nonempty is again irrelevant, have
been investigated in Ref. [151]. It has been observed that the probability of finding an
occupied site in the ground state decays exponentially fast around the first occupied
site when s > 0, namely

(fs) ~ exp(—i/&(5)), (3.6)
where the expectation value is taken on the ground state and we introduce the local-
ization length & > 0. The localization length £ is the typical distance from the first
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occupied site such that the state becomes a trivial product state that is well approxi-
mated by the vacuum. The localization of the ground state does not have an impact
solely at low energy densities, but it has been argued to be linked to a dynamical transi-
tion from a fast thermalizing regime to a slow, non-ergodic one [140, 151], also at finite
energy densities. In particular, in Ref. [151], it has been argued that the slow dynamics
is a byproduct of the localized nature of the low-energy eigenstates of the model. Such
connection stems from the possibility to use the localized ground state, together with
strings of empty sites, as building blocks to construct exponentially many “slow” states
in the size of the system by their concatenation (we provide further details in Chapter 4
where the finite-energy properties of the quantum East model are the central focus).

The dynamical transition observed in Ref. [151] is not guaranteed to survive in the
bosonic case. In fact, the amplitude for “eastern” particle creation can now be enhanced
by the prefactor ny in the bosonic case, suggesting that the transition may be quali-
tatively established when (nge™®) ~ 1. This would imply a critical value s. o log ny,
which is parametrically large in ng, pushing the extension of the localized phase up to
s — 00. Nonetheless, we show in Sec. 3.2 that a localized phase still occurs for s > 0
whenever repulsive interactions are included in Eq. (3.1).

3.2. LOCALIZATION TRANSITION

In this section we show that the Hamiltonian in Eq. (3.5) displays a localization-delo-
calization transition at finite s and U > 0. We give numerical evidence corroborated
by analytical observations that repulsive interactions are necessary to observe such a
transition at finite s. We use the inverse localization length ¢! controlling the decay
of the average occupation number in space (cf. Eq. (3.6)), as proxy for the transition.

In the following, we fix ¢ = 0 and the symmetry sector B,—o in Eq. (3.5), unless men-
tioned otherwise. The additional nonlinear term proportional to ¢ would complicate the
analysis from a technical standpoint without altering the main contents of the paper.
For the sake of clarity, Appendix A.1 shows that, for U = 0 and e > 0, the localization
properties of the ground state remain qualitatively similar to those discussed in the
main text.

In order to investigate the properties of the ground state, we resort to a combination of
mean-field arguments, exact diagonalization (ED), and density matrix renormalization
group (DMRG) methods [161]. Since we aim to explore large system sizes, we mainly
resort to the DMRG and we use ED as a benchmark when both methods can be used.
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FIGURE 3.1. The average occupation number of the ground state for
different values of s at fixed nearest-neighbor density-density interaction
U =1 Wefix L = 15, a cutoff A = 30 to the maximal occupation
number, and ng = 1. In the plot, we do not display the occupation ng
of the zeroth site that fixes the “East symmetry” sector. The dashed
lines are the exponential fit, the slope of which is —1/&, where £ is the
localization length (cf. Eq. (3.6)). Image taken from Ref. [1].

Interestingly, we find that mean field is able to analytically predict the location of the
transition point obtained via the DMRG.

We compute the ground state |1(np)) at fixed ng, s, and U. We fix the system size at
L = 15. This value is sufficiently large to capture the localized tail of the ground state,
without relevant finite-size effects. Although the local Fock space is infinite, in order
to treat the model numerically, we need to fix a finite cutoff A. We work with Fock
states |0) through |A), such that the spin-1/2 case of Ref. [151] is recovered at A = 1.
In Sec. 3.2.2, we show how localization is only mildly dependent on the sector selected
by the occupation ng of the zeroth site. Accordingly, in the following, we set ng = 1.

The Hamiltonian is one dimensional, local, and gapped at finite A; therefore, its ground
state can be efficiently accessed via a matrix product state (MPS) formulation of the
DMRG [161]. The main source of error is given by the finite cutoff A. Indeed, the prop-
erties of |¢g(ng)) can change nontrivially as a function of A. More precisely, for any
finite cutoff A, the model falls into the class of localized systems studied in Ref. [151].
As a result, |1o(no)) is always localized for a large enough s at finite A but this does
not imply localization for A — oco. Indeed, although U > 0 makes the spectrum of the
Hamiltonian in Eq. (3.1) bounded from below, it does not ensure that its ground state
is still localized in space when s is finite. In the following, we extract the A — oo limit
via a scaling analysis.
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FIGURE 3.2. The probability of having k € [0, A] bosons on site j € [1, L]
in the ground state. In the plot, we do not display the occupation ng of
the zeroth site that fixes the “East symmetry” sector. We fix L = 15,
A =30,n9=1and U = 1. In the left panel, we consider a typical config-
uration in the delocalized phase (s = —0.20). The cutoff is saturated over
many sites. The staggered feature is due to the repulsive nearest-neigh-
bor interaction. In the right panel, we consider a typical localized ground
state (s = 0.05). Along each site j, the probability of having k bosons,
(Pr,j), drops exponentially fast with k. The light color means that the
value is smaller than 1072, Image taken from Ref. [1].

In Fig. 3.1, we show the average occupation number (7;) as a function of site j for
some values of s at fixed U = 1. For s not large enough, the average occupation does
not change smoothly with the site j and it saturates the cutoff A, meaning that there
are strong finite-cutoff effects. In contrast, for s large enough, the occupation decays
exponentially in j, matches Eq. (3.6) well, and does not change upon increasing the
cutoff A. The value of s at which this change of behavior occurs depends on U, as we
discuss in more detail in this section.

In order to check the effects of a finite A cutoff, we compute the probability of hav-
ing k bosons on site j, namely the expectation value of the projector Py ; = |k);;(k|,
where |k); is the Fock state with k particles on site j. In Fig. 3.2, we show (Py ;) as a
function of k£ and j for typical localized and delocalized ground states, respectively. The
results in the delocalized phase are not reliable, since the observable suffers finite-cutoff
effects. Instead, in the localized phase,

(Pr;) ~ e Fleri (3.7)

with £r; > 0 for any site j. The exponential decay in the localized phase sheds addi-
tional light on the fact that the system is well described by a finite effective cutoff (for
additional details, see Appendix A.2).
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FIGURE 3.3. The inverse of the localization length £ in a system of L =
15 “active” sites in the symmetry sector ng = 1 and S,—g. The main
plot shows the inverse of the localization length £~! as a function of s for
different values of A € [1,30] and U. The darker lines correspond to larger
values of A. The square is the mean-field estimate of s, in the bosonic case
(A = 00). The inset (a) shows the behavior of s.(U, A) as a function of A
for U = 0 (red) and U = 0.1 (blue). The circles correspond to numerically
extracted values from the DMRG results, while the continuous lines are

the mean-field estimate s, =~ log (1 / VU ), which matches the numerics at
large A. Image taken from Ref. [1].

For each value of U and A, the inverse of the localization length goes from values
smaller than or equal to zero to positive values as s increases. We identify the region
where 1/ < 0 as the delocalized phase, while the region where 1/¢ > 0 is identified
as the localized phase. In the delocalized phase, strong finite cutoff effects can lead
to a positive localization length £&. In order not to mistakenly identify these points as
belonging to the localized phase, we fix a threshold A > 0 and for each A and U we
identify the transition point s.(U, A) as the value of s such that 1/§ < Aand 1/ > ) for
s smaller and greater than s.(U, A), respectively. We choose A ~ 10~!. The results are
weakly affected by this choice of A\. Furthermore, the precise location of the transition
point s.(U, A) is beyond the scope of this thesis, since we are interested in engineering
states deep in the localized phase, as we discuss extensively in Sec. 3.3.

As discussed above, in the delocalized phase, results are strongly dependent on the
cutoff, since the average occupations always saturate their artificial upper bound. This
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FIGURE 3.4. The inverse of the localization length £ in a system of L =
15 “active” sites in the symmetry sector ng = 1 and S,—¢. We fix the cutoff
A = 30. The main plot shows the inverse of the localization length £~ as
a function of s for different values of U. We plot the error bars on top of
each point. In the inset we plot the transition point s.(U) as a function
of U. The dots represent the extracted s.(U) = limp_oo 8c(U,A). The
dashed line is the mean-field estimate for the transition point sMF(U) =

log(l/ﬁ). Image taken from Ref. [1].

circumstance allows us to draw only qualitative conclusions on the physics at s < s, in
the case of the bosonic East model (A — 00).

In Fig. 3.3, we show the inverse of the localization length & swiping s for different
values of A at fixed U. For U = 0, the transition point s.(U = 0,A) always in-
creases with A. Instead, when U > 0, the transition point converges to a finite value
independent of A for A — co. In Fig. 3.3.(a), we show the numerically extracted tran-
sition point s.(U,A) as a function of A and U. For U > 0, it is possible to extract
a finite value of s,(U) = limp—,o0 Sc(U,A). Instead, for U = 0, the transition point
scales as s.(U = 0,A) o< log(A), suggesting that in the actual bosonic system we have
s¢:(U = 0) = 0o, meaning that there is no transition. Therefore, whenever U > 0, the
system undergoes a delocalized-localized transition at finite s.(U). In Fig. 3.4, we show
the inverse of the localization length £ as a function of s for different values of U at
fixed A. The transition point s. depends on the competition between the dynamical
term, controlled by e™®, and the nearest-neighbor density term, proportional to U. The
former favors the delocalization of the state, while the latter favors its localization.
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FIGURE 3.5. Sketch of the ground state assuming a mean-field ansatz, i.e.
no entanglement. The bosonic quantum East model could be intepreted
as a chain of interacting harmonic oscillators which are parametrically
driven by the occupation of the previous site. Upon fixing the first site
in a Fock state |ng) with ng bosons, the Hamiltonian describing the first
site is given by a driven harmonic oscillator, which has as ground state a
bosonic coherent state with amplitude a; = y/nge=*/(noU + 1). In turn
such state pumps the second site, and so on. If the driving term oc e™*
is weaker than the dressed frequency of the harmonic oscillator noU + 1,
we expect the ground state to be localized.

Indeed, in the U — 0 limit, we provide evidence that the bosonic system is always
delocalized if s < 0o. Instead, in the large U limit, the Hamiltonian is approximated
by U ), fiifsi11 + ;, the ground state of which in a specific symmetry sector at given
total particle number is simply |ng)|00. . .0).

3.2.1. An intuitive picture: chain of parametrically driven anharmonic oscillators

The role of the interaction term U in the localization of the bosonic system can be
appreciated in a mean-field treatment. We project the Hamiltonian into the manifold
of coherent product states |¢p) = ®JI.’:1 la;);, with @;|a;); = ajlay);. We evaluate the
Hamiltonian given in Eq. (3.4) in this basis:

L
1 —s
(¢|H(no)|#) = 3 Z |0‘j|2 (23 Qi1 — U|04j+1|2 - 1) ) (3.8)
=0

where |a;|? is the average number of particles in the coherent state at site j. From uni-
directionality of the interaction, we can write (¢|H (no)|¢) = —3 > i leil*hi(@j1,8,U),
where hj(@ji1,8,U) = (26 a1 — Ulaji1|> — 1). For energetic stability the effective
field h;(a;41,8,U) on site j should be negative:

(26_804]'4_1 — U|Olj+1|2 — ].) <0=

20,11 ) (3.9)

1 + U|aj+1|2 Sc(aj-l-l)'

:>s>log(
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Since the system does not conserve the number of particles there can be an unbounded
number of excitations in the ground state within a fixed symmetry sector. Therefore,
in order to have localization at a mean-field level it is necessary that Eq. (3.9) holds for
any value of a1 € [0,00), namely s > max,,,, sc(®;41), and for all sites. For U > 0,
such condition is satisfied if s > log(l /NU ), which turns to be in very good agreement
with the DMRG numerical findings (see Fig. 3.4). Instead, for U < 0, there is no finite
value of s that fulfills Eq. (3.9) for all aj41.

The mean field treatment just discussed could be futher appreciated interpreting the
bosonic quantum East model as a chain of coupled optomechanical systems [156] (cf.
Fig. 3.5). Adopting such picture, the calculation just carried out translate in a stability
condition of such system. When the system is stable, localization of excitations occurs.
Instead, when the system is unstable the system favours an unbouded number of excita-
tions, leading to delocalization. Intuitively, the system localizes if the j-th oscillator is
non-resonant (due to U), and not strong enough (small e~*) to excite the following one.
Otherwise, the system is able to be more and more excited, favouring delocalization.

More quantitatively, the excellent agreement between the DMRG and the mean-field
analysis can be explained by observing that the ground state |1) (excluding the zeroth
site, which fixes the symmetry sector) obtained via the DMRG is well approximated
via a product state, namely |ig) =~ ®§‘=1 |¢;). To further investigate the nature of
the state |1p), we consider the correlator A; = ((73;f;41) — (2;)(741)). We use this
operator as a proxy for non-Gaussian correlations. We compare A; computed on the
ground state obtained via the DMRG and the one computed assuming that the same
state is Gaussian in the operators {&g) }i—1, using Wick’s theorem. As shown in Ap-
pendix A.3, the closer we are to the transition point s., the more the state develops
non-Gaussian features at distances j < €. On the contrary, deep in the localized phase,
the Gaussian ansatz captures the actual correlations at all sites well. Indeed, in the
large s limit, the Hamiltonian turns out to be diagonal in the number basis, namely
H(s> 1) ~ }_.(f;fij11+%;), the ground state of which is [r)[00. . . 0), which is a prod-
uct state of Gaussian states (excluding the zeroth site, which fixes the symmetry sector).

The localized tail can be explained also via the adiabatic theorem. Indeed, the Hamil-
tonian is gapped in the localized phase when U > 0; therefore, we can adiabatically
connect two ground states within it. In particular, we can link any localized ground
state to the one at s = co. This choice is particularly convenient since the Hamiltonian
is diagonal in the number basis at s = oo, H(s — o0) = >, (Uf;f;41 + 7;)/2 and
its ground state at fixed symmetry sector is simply |ng) ®f=1 |0);. Then, the evolution
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with the adiabatically changing Hamiltonian will dress the initial site with an expo-
nentially localized tail. In Sec. 3.3, we further exploit the adiabatic theorem to design
the many-body version of a variety of states that are relevant in quantum-information

setups, such as coherent states, cat states, and squeezed states.

3.2.2. Properties of the localized ground state in different symmetry sectors

So far, we have focused on the case where the first non-empty site is occupied by ng = 1
bosons. However, a natural question is whether upon changing ng the system is still
localized. Indeed, following the qualitative argument carried out in Sec. 3.2.1, we could
naively envision the scenario where the larger is the occupation ny of the 0-th site,
the more the following one is parametrically pumped, and so on. Instead, we observe
that thanks to the interacting terms, such picture does not hold. Indeed, it is true
that the drive increase its strenght, but also the potential term does, which balance its
effect. This can be straightforwardly seen from the mean-field argument summarized
in Fig. 3.5, where the occupation in the first site, for large ng, scales as e~* /U, which is
independent on ng. Nonetheless, this mean-field argument could be disrupted by quan-
tum fluctuations. Consequently, we carry out a detailed analysis using tensor-network
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FIGURE 3.6. The inverse of localization length £ in a system of L = 15
“active” sites upon changing s for different values of ng = 1. We fix
U = 0.1. The main plot shows the inverse of the localization length
¢! as a function of s for A = 30. The inset (a) shows the behavior of
s. as a function of A for different values of ny. The circles correspond
to numerically extracted values from DMRG results. The points are
indistinguishable upon changing ny for A = 10. Image taken from Ref. [1].
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FIGURE 3.7. The overlap of the exponential tail as a function of ny €
[2,40] for two different values of U = {0.1,0.2} and s = {1.20,1.50}. We
choose these values of U and s since we are not so deep in the localized
phase. The more the system is within the localized phase, the more the
localized tails are weakly dependent on ny. Image taken from Ref. [1].

methods, as performed in Sec. 3.2. Doing so, we discuss the properties of the ground
state upon changing the symmetry sector specified by the occupation ng of the first
nonempty site. We confirm that the transition point and the exponential decaying tail
of the ground state occupation is weakly dependent on ny. We discuss the dependence
of the ground state energy on ng, which will be relevant in performing adiabatic proto-
cols for preparing localized states of practical interest in Sec. 3.3.

We perform the same scaling analysis as a function of the cutoff A discussed in Sec. 3.2
(see Fig. 3.6). We extract the transition point s. for different values of ny from the
inverse of the localization length £&. The existence of a finite critical point s, in the
A — oo limit turns out to be weakly dependent on the specific symmetry sector ng
at fixed U. We investigate the dependence of the localized tail of the ground state
|to(no)) as a function of ny (we exclude the first site, which fixes the symmetry). To
this end, we compute |(1o(no = 1)|vo(n0)}|?, with ng > 1 (see Fig. 3.7). We fix ng =1
as a reference as we want to see whether or not the tail is weakly dependent on ng. All
the ground states are computed by fixing A = 30. The overlap |{(¥o(n0)|¢o(n0 = 1))|
strongly depends on s and U. Indeed, the more the system is in the localized phase,
the more the exponentially localized tail is weakly dependent on ng. Therefore, deep
in the localized phase, |¢o(np)) is approximately independent on the specific sector ng
and we can write

[70) = |no) ® |o(n0)) = [no) @ [vo), (3.10)
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FIGURE 3.8. The energies of the ground state as a function of ng for
different values of U at fixed s = 1.5 > s.(U) and cutoff A = 15. The
dashed lines are the linear fit. The more we are deep in the localized
phase, the more E(ng) x ng. Image taken from Ref. [1].

where |1)p) is explicitly independent of ny.

The weak dependence of |1)y(ng)) with respect to ng has consequences on the ground
state energy. Indeed, the expectation value of the Hamiltonian on Eq. (3.10) is

SO 1 —1/¢(n
Eo(ng) = (ng|H|Mp) = §n0 + O(nge 1/¢( 0)), (3.11)

where (f;) ~ e~9/¢Mm0) gince we are in the localized phase. In Fig. 3.8, we give a
numerical evidence of Eq. (3.11).

3.3. LOCALIZED STATES ENGINEERING

In Sec. 3.2, we have discussed the localization properties of the ground state of the
bosonic quantum East model within each symmetry sector specified by the occupation
ng of the first nonvacant site. In this section, we show that the ground states of different
symmetry sectors are connected via bosonic creation and annihilation operators. We
use this infinite set of localized states to construct the localized versions of cat, coher-
ent, and squeezed states that are relevant for quantum-information purposes. These
states share the same properties as their single-mode counterparts, although they are
supported on a few neighboring sites toward the East as the ground states.

Starting with a given symmetry sector fixed by ng, our aim is to find operators A
and A’ that obey the bosonic canonical commutation relations [.A, .AT] = 1, with the
defining property

(AN)™ [0) = Nno) ® [¢ho(no)) = N o), (3.12)
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where |1hg(ng)) is the localized tail of the ground state at fixed symmetry sector ny and
N is a constant. In other words, by acting ng times on the bosonic vacuum state with
the operator Af, we aim to retrieve the localized ground state of the Hamiltonian in
Eq. (3.1) in the symmetry sector with ng particles on the first nonvacant site. From
now on, we refer to these operators as superbosonic creation and annihilation operators
since, in contrast to single site annihilation and creation operators, they act on a local-
ized region of the system, by creating or destroying a bosonic localized tail along the
chain. Likewise, we refer to the localized ground states |ng) as superbosons.

In order to find an explicit form for such operators, we employ the adiabatic theorem.
From numerical evidence our Hamiltonian, is gapped within the whole localized phase
(see Fig. 3.9). Therefore, there exists a slow tuning of s that enables us to connect two
localized ground states at fixed values of U and ny. We consider such a unitary trans-
formation U(s,U) linking the ground state for s = co with the target one at s > s.(U)
in a fixed symmetry sector specified by the occupation ng of the first nonvacant site.
We fix s = oo as our starting point since the Hamiltonian is diagonal in the number
operator when s — oo and its ground state is simply the tensor product |ng) ®;>1 |0);.
By the adiabatic theorem, the unitary operator takes the following form [162, 163]:

U(s,U) = T exp {—i /0 " (s(t))] , (3.13)

where T indicates the time-ordering operator and s(t) is a function that interpolates
from s(t = 0) = oo and s(t = T)) = s. The function s(¢) has to be chosen such that it

satisfies [162, 163],
1

A (T O H @) Wo(0)] < 1, (3.14)
at all times t. In Eq. (3.14), the state |V, (¢)) is the n-th excited eigenstate of the
Hamiltonian computed at time #; H (t) is the time derivative of the Hamiltonian, which
encodes the information about the specific protocol; finally, A(t) = E;(t) — Eo(t) is
the gap at time ¢. For a reasonably fast protocol, we require A(s) ~ O(1) in the
parameter regime of interest. We write H(s(t)) = H(s = oo) + J(t)V, where H(s =
00) = Y,(fj + Uhjfjp1)/2, and V = 3 #;(441 + al,,) is the coupling that we
adiabatically switch on through the time-dependent protocol J(t) = —e~*®/2. The
time derivative of the Hamiltonian then reads H(t) = J(t)V. Let us focus on the
perturbation V' and the gap A at first and then on the specific protocol J(¢). In Fig. 3.9,
we show the gap of the Hamiltonian and the maximum matrix element max, V,(s) =
(¥n(8)|V|1ho(s)) connecting the ground to the n-th excited state as a function of s at
fixed U. Within the localized phase, the gap is O(1) and the maximum matrix element
max, V,(s) ~ ng, where ng is the occupation of the first nonempty site fixing the
symmetry sector. Due to the kinetic constraint, the largest matrix element max, V,(s)
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FIGURE 3.9. The gap of the Hamiltonian in Eq. (3.5) as a function of
s € [0.5,4] for different values of the occupation ng of the first nonempty
site. The inset (a) shows the maximum matrix element max,, V,,(s)/ng =
maxX, (Yn(8)|V]1bo(s)) /o of the perturbation V = 3" fi;(d;41 + Gly,) be-
tween the n-th excited state and the ground state at fixed s. We fix a
system size L = 6, cutoff A = 3 and nearest-neighbor density-density
interaction U = 1. The transition point is at s.(U = 1) = 0. The results
are weakly affected (of the order of few percent) by the finite cutoff A for
s < 2. Image taken from Ref. [1].

is between the localized ground state and the second localized state perturbatively close
to the product states [no100...) (note that this is not necessarily the first excited state).
Therefore, the leading contribution comes from the first few sites, since the other terms
are exponentially suppressed in the localization length of |¥y). Let us consider, as a
possible adiabatic protocol, the linear ramping J(t) = —e *t/(2T), where t € [0,T],
with T' as the total duration time. From Eq. (3.14), the total time T" has to satisfy
T > nge~*%. Recall that we set the on-site bare frequency of the bosons as our energy
scale and therefore the time T is expressed in that unit as well. In Chapter 7, we propose
a possible experimental implementation of the bosonic quantum East model based on
superconducting qubits. The typical on-site bare frequency of superconducting qubits
is O(GHz), leading to T >> (nge~*)ns ~ 1ns, which is within the typical coherence time
of O(1ps) of state-of-the-art superconducting qubits [164].

For s(t) that satisfies Eq. (3.14), we obtain

U(s,U)|nodo X) [0) = 7o), (3.15)

j=1
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FIGURE 3.10. At t = 0, the system is prepared in a single-body coherent
state |a) = |a)o ®f=1 |0),;, where |a)o is a coherent state on the first
site with @« = 1.5. At time ¢ > 0, we apply the adiabatic protocol
defined in Eq. (3.13) to the state |@) up to time ¢ = T, obtaining |&).
In the left panel, we compute the probability amplitudes (n|a), where
In) = |n)o ®JI.’=1 |0); is an eigenstate of the number operator 7. The
data (symbols) match the amplitudes of a single-site coherent state with
a = 1.5 (continuous and dashed line). In the right panel, we compute
the probability amplitudes (n|U(s,U)|a), where |n) is a superboson (cf.
Eq. (3.12)) with n excitations on the first site. The data (symbols) match
the amplitudes of the localized version of a coherent state defined in
Eq. (3.19) well, with o/ = 1.5e'*? (continuous and dashed line). Image
taken from Ref. [1].

where 0 is a phase acquired during the adiabatic time evolution [162, 163]. Using
Ino)o = (ag) *10)/+/no! and U(s, U)[00....0) = [00...0), we obtain

(A(s, D)) 0) = € /mollFio), (3.16)

where [0) = [00...0) and A(s,U)' = U(s,U)altd(s,U)l. We can straightforwardly
generalize Eq. (3.16) taking into account the position j starting from which we want
to embed the state [7io). We define A;(s, U)" = U(s, U)alt(s, U)t, the action no times
of which on the bosonic vacuum generates the state |0)7*<’ ® |7g). Differently from
the generic interacting case, the dressed operator A§-T) (s,U) acts nontrivially in a re-
gion exponentially localized around j. The operator A;(s,U)® satisfies the bosonic
commutation relations, since they are connected via a unitary transform to the bare
bosonic operators &§T). Therefore, they are bosonic operators. As anticipated, we call

the operators A;(s, U)) superbosonic annihilation(creation) operators.
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Since the transition point s, is essentially independent of the value of ng (see Appen-
dix 3.2.2), we can design a protocol that obeys the adiabatic theorem for any initial state
|no) ®10...0). Furthermore, since these states belong to dynamically disconnected
symmetry sectors, Hr=on,, for any values of s and U, it is possible to adiabatically
evolve them independently of each other. Therefore, any linear combination of initial
states turns under the adiabatic protocol into

U(s,U) ch0|ng) ®10...0) = cho (.A(s,u)J’)n0 |0)

)
— Z Cnoeio(no,s,U,T)rﬁO),

no

(3.17)

where 0(ng,s,U,T) is the phase acquired during the adiabatic time evolution. As
discussed in Sec. 3.2.2, deep in the localized phase the spectrum depends linearly on
ng, with small corrections. Since the phase acquired during the adiabatic evolution
depends on the energy of the given state during the protocol, we have 0(ng, s,U,T) ~
nof(s,U,T), where f(s,U,T) is a function that is dependent on the specific protocol.
This has important consequences for the state engineering we discuss in the following.
As an example, let us consider as initial state of the adiabatic preparation the coherent
state |a) = |a)o @), |0);, where

o0 _ 2
e || /2an

la)o = ; T'”h" (3.18)

Using Eq. (3.17), the state |a) turns into

o0 _ 2
elal2/2,n

U(s,U)la) =Y

e'L'B(n,s,U,T) |ﬁ>

n=0 .
o B agm (3.19)
= TW,
n—0 n!

where o = aef(SUT),

In Fig. 3.10, we compute the overlap between U(s(t),U)|a)
and the superbosons |n(s(t),U)) for different values of « at the initial time t = 0
and at the final time ¢ = T of the adiabatic transformation. At the initial time, we
have U(s(0),U)|a) = |a) and |(s(0),U)) = |n) @ |00...0). At the final time we have
|n(s(T),U)) = |n). In Fig. 3.10, the overlaps are in very good agreement with Eq. (3.19)
and we obtain the desired state in Eq. (3.19) with a fidelity ~ 0.9994 for o = 1.5. We
expect that when « is large, the fidelity achieved by the protocol becomes small, since
corrections to the linear dependence of (n, s,U,T) from n become important. We call
the localized version of a coherent state @) = U(s,U)|a) a supercoherent state.

Analogously, we perform the same analysis considering as initial state a cat state |C)

on site j = 0. Indeed, since the phase factor ef»UT) does not depend on «, given a
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cat state 1
€)@ 10); = 57 (lodo + €] = a)o) R) 0}, (3:20)
Jj>1 j>1
where N is a normalization constant, its localized version is

0) = j%[ (1&) +¢%| - a)) (3.21)

where |C) = U(s,U)|C), and o/ = ae'/&UT) We call |C) a supercat state.
We can extend Eq. (3.19) to states of the form

%) = [00...0) ® (i pn50"|n>j) ®100...0), (3.22)

n=0
where p, € R and 3,0 € C. Indeed, if we apply the adiabatic protocol to the state
defined in Eq. (3.22), the phase acquired can be absorbed into 8. Coherent states, cat
states, and squeezed states all fall into the class described in Eq. (3.22). In other words,
using the adiabatic protocol, not only can we engineer the localized versions of states
such as coherent and squeezed states but we can do so preserving their single-mode
properties.

For instance, the localized versions of coherent and squeezed states can be imple-
mented either via the adiabatic time evolution or the application of an operator M
that is linear or quadratic in the superbosonic operators A. The operator M can
be obtained applying the adiabatic protocol to its single-site counterpart M, namely
M =U(s,U)MU(s,U)". For instance, we define the dressed displacement operator,

D(a) = exp (aA! — a*A), (3.23)

where a € C is the displacement parameter, and the dressed squeezed operator,
1
S(&) = exp {5 (¢rA* - h-c-)] : (3.24)

where ¢ € C is the squeezing parameter, the action of which on the vacuum creates a
supercoherent and supersqueezed state, respectively. However, the most natural way to
prepare such states is by starting from their single-mode version and then adiabatically
turning on the off-diagonal term o< e in the Hamiltonian. Note that these states are
Gaussian with respect to the superbosonic operators A" and not with respect to the
bare operators a(f). We call these states super-Gaussian.

We find that superbosons |rp), with different no and the same position j of the first
nonvacant site, are connected via the operators A§-T). We see that their localized fea-
ture makes their energies approximately evenly spaced as a function of ng (cf. Ap-
pendix 3.2.2). The evenly spaced energies of different ground states and the fact that
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the different ground states are connected via a bosonic operator A;(s, U)( resemble
the features of a quadratic Hamiltonian, such as the one-dimensional harmonic oscilla-
tor. Adding up these properties, the action of the interacting Hamiltonian H(s,U) in
Eq. (3.1) in the manifold of the ground states is approximatively equivalent to a free
theory in the superbosonic operators A;(s,U) (), namely

+oo
H(s,U)m Y eAi(s,U) A;(s,U). (3.25)
j=—o00
the eigenstates of which are @2 (A;(s,U))¥|0), where k; € [0,00). The effective

Hamiltonian in Eq. (3.25) well captures the action of the full Hamiltonian Eq. (3.1) on a
superboson |1y well up to a certain n that is parametrically large in s and U, since correc-
tions to the evenly spaced feature of the ground states energies become important as n
increases. Moreover, the effective Hamiltonian in Eq. (3.25) neglects the interaction be-
tween neighboring superbosons. Therefore, in the infinite set of eigenstates of Eq. (3.25),
only those given by superbosons separated by a large number of empty sites with respect
to the typical localization length & approximate eigenstates of the original model well
(up to corrections that are exponentially small with the distance of two superbosons).
For instance, the state A;(s,U)TAjse(s, U)T|0), which describes two far localized ex-
citations, is an eigenstate of the effective theory in Eq. (3.25) and, approximately, of
the original Hamiltonian in Eq. (3.1). Instead, the state A;(s,U)TAz(s, U)T|0), which
describes two nearly localized excitations, is an eigenstate of Eq. (3.25) with energy
2¢0, while it is not an eigenstate of the original model Eq. (3.1), since we are neglecting
the contribution coming from the interacting part of the Hamiltonian. Despite these
limitations, the effective Hamiltonian in Eq. (3.25) captures the equilibrium properties
in the localized phase and the dynamical features of states such as the supercat state
and supersqueezed state well when the interacting part bewteen superbosons can be
neglected. In this regard, the properties of the localized phase of quantum East models
are reminiscent of the [-bits construction in MBL [98-101].
Let us consider a supercat state |1(t = 0)) = |C) defined in Eq. (3.21) as initial state
in order to test the effective quadratic theory in Eq. (3.25). We evolve it and compute
the fidelity

F(t) = K@)t = 0)[*. (3.26)
As shown in Fig. 3.11, the fidelity displays almost perfect oscillations at short times,
followed by a drop and almost perfect revivals. The short-time behavior is compatible
with a rotation of the supercat state in the dressed phase-space Xy = (Ao + .A{J',) and
Py = —i(Ay — .A(‘;), as expected from the effective Hamiltonian in Eq. (3.25). We can
approximately compute the dynamics of the supercat state |C~) generated by Eq. (3.25)
as

e~H G ~ J%f (1@0) + e &), (3.27)
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FIGURE 3.11. The coherent dynamics of a supercat state with o = 1.5.
We simulate a system of size L = 15. We fix s =1 and U = 1. We show
the dynamics of the fidelity F (dark black line). The light black line is
the expected value from the effective quadratic theory in Eq. (3.25) with
a numerically extracted ¢y ~ 0.43. Image taken from Ref. [1].

where a(t) = a(t = 0)e ™. The state in Eq. (3.27) is a rotating supercat state in
the dressed space. From Eq. (3.27) we can estimate the expected fidelity. In Fig. 3.11,
we compare the expected value and the numerical results. The former matches the
numerical results up to times parametrically large in s and 1/a. On the one hand,
nonlinear corrections are suppressed the more the system is localized. On the other,
corrections to the linear dependence of the energies (7i|H|7) become important the
larger n is or, equivalently, «, leading to dephasing processes [165]. The revivals can
be explained considering nonlinear effects; indeed, perfect revivals are observed for sin-
gle-mode cat states with self-Kerr interaction [166] (for a circuit-QED implementation,
see Ref. [167]). Differently from the latter case, we have an extended state and near-
est-neighbor density-density interactions. As a consequence, pushing the simulations to
longer times we observe no perfect revivals as in the case of single bosonic modes with
Kerr nonlinearities. Such behavior might be captured by improving the effective theory
introduced in Eq. (3.25), adding nonlinearities in the basis of superbosonic degrees of
freedom. This is beyond our current scope and therefore left as a potential interesting
follow-up.

We can extend these dynamical properties to any state prepared via the adiabatic
protocol starting from a state of the form given in Eq. (3.22). Indeed, these states
evolve analogously to the supercat state under the effective quadratic theory defined
in Eq. (3.25). The super-Gaussian states fall into this class. Once again, we highlight
that these states are Gaussian with respect to the superbosonic operators A® but not
with respect to the bare operators a(t).
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We have discussed the application of the adiabatic protocol to a single-site state em-
bedded in the vacuum; however, this extends directly to more general initial states.
For instance, we could have started from a product state made of single-body states
separated by a large number of empty sites, with respect to the localization length &,
or from a superposition of those. At the end of the protocol, each one will be dressed
independently from the others. Therefore, the final state will be made of localized states
concatenated one after the other.

3.4. IMPACT OF COUPLING TO THE ENVIROMENT

So far, we have assumed the system to be completely isolated from the environment.
However, any realistic device is inevitably coupled to the environment, and it is thus
necessary to assess how the phenomena discussed so far are affected by such coupling.
To this aim, in this section, we investigate the dynamical properties of the localized
states introduced in Sec. 3.3 when coupled to the environment. Here, we study the
effects of two different couplings with an external bath, namely a global dephasing due
to a noise coupled to the local densities, which commutes with the “East” symmetry,
and global losses, which break the “East” symmetry. Both of these couplings are ex-
perimentally relevant in superconducting circuits setups [164]|, which are at the core of
the experimental implementation we will discuss in Chapter 7. We provide numerical
evidence that local information is erased very slowly when the environment is coupled
via densities to the system. We show how the characteristic time scales depend on the
parameters of the Hamiltonian, the initial state, and the strength of the coupling to
the environment. On the contrary, we show that losses are highly disruptive and that
the time scales are dependent on the strength of the coupling to the environment and
the initial state, while the underlying coherent dynamics does not play a substantial
role. At the end of the section, we show that the typical couplings to the environment
currently achieved in superconducting circuits are small enough to make the effects of
the coherent dynamics appreciable and observable in the presence of losses.

We consider the following Linbland master equation:
p=—ilH,pl+7) (Lij} -5 {L§Lj, p}) , (3.28)
J

where p is the state of the system, H is the Hamiltonian in Eq. (3.1) with e =0, f/j is
the quantum jump operator acting on site 7 and -y is the corresponding rate. In order
to efficiently simulate the Lindbland master equation in Eq. (3.28), we resort to the
quantum trajectories algorithm, which is based on defining the effective non-Hermitian
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Hamiltonian
A A ’7 AL A
He = H — i, > Ll (3.29)
J

and alternating the action of the Hamiltonian given in Eq. (3.29) with the jump oper-
ators {L;} based on a stochastic process (for the details, we refer to Refs. [168, 169]).
The dynamics of any observable O result from averaging over N different uncorrelated
stochastic trajectories labeled by n € [1, V],

(O@) = (O4(),,  On(t) = o) IO (®))r, (3.30)

where [9(t)), is the state for a given stochastic trajectory n € [1, N] at time ¢ and
(- )n denotes the average over the different trajectories. We resort to tensor-network
methods for performing the simulations (see Appendix A.4). We consider two different
jump operators, namely ij = f; and f/j = a;. The former corresponds to dephasing,
while the latter corresponds to losses. We choose such jump operators in order to in-
vestigate the effects of the environment when it preserves the “East” symmetry, as for
the dephasing process, or when it does not, as for the global losses. Both situations are
relevant in superconducing-circuit setups [164]. We compute the observables averaging
over 1000 to 3000 stochastic realizations depending on the value of v and the jump
operator.
We study the dynamical properties of superbosons |n) defined in Eq. (3.12), since they
constitute the building blocks of any localized state that we can engineer. Then,
we turn our attention to a paradigmatic superposition of superbosons, namely the
supercat state, providing arguments to extend our findings to a class of states to
which supersqueezed and supercoherent states belong. We consider as initial state
|Ye(t = 0)) = ®?;ioo |0); ® |n), where the subscript k in |¢(t = 0)) refers to the
position of the first site of the embedded superboson. Since |n) is localized with local-
ization length £ (cf. Eq. (3.6)), we can truncate its support to L' > ¢ sites. Thus, our
initial state is it gt

[t = 0)) = |0); = ® [fi)r ® |0); "™+, (3.31)
where L' is the size of the superboson support.
In a generic non-integrable system, we expect information about initial states encoded
in local observables to be washed out fast. Here, we want to study how localization
and slow dynamics instead protect the information encoded in local quantities. We
compute the fidelity and the imbalance. The fidelity (cf. Eq. (3.26)) provides global
information about the state and sets an upper bound on the time dependence of the
expectation value of any local observable. Nonetheless, the fidelity is highly sensitive to
any local perturbation of the state. Indeed, it is enough to have even a single occupied
site far from the superbosons |17) to make Eq. (3.26) negligibly small. Among all the
possible local observables, we want to investigate if the initial localized peak remains
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well resolved. We therefore compute the imbalance between the occupation of the initial
peak and the second highest peak in the system, namely
T = kT A% TY (3.32)
N + Max;1g N
where k is the position of the first site of the embedded state (cf. Eq. (3.31)). The
imbalance Z € [—1,1] and for Z > 0 the initial peak is the largest one in the system.

When dissipation enters in the form of a dephasing noise coupled to the bosonic densi-
ties, the Lindbland equation respects the “East” symmetry. The jump operators com-
mute with the operator in Eq. (3.3). Thus, the n excitations on the first site of the
superbosons |n) and the empty sites to its left are conserved. Furthermore, since the the
jump operators are not able to generate excitations out of the vacuum and the state is
exponentially localized, we can keep only a few empty sites to the left of |) without
introducing relevant size effects. For the set of parameters that we choose, restricting
the superboson support to L' ~ 10 sites and keeping only one empty site to its right
turns out to be sufficient. Thus, our initial state is

% (t = 0)) = [no)rr ® |0). (3.33)

In Fig. 3.12 we show the dynamics of the fidelity and imbalance for different values of s
and noise strength v keeping U = 1, starting from the state in Eq. (3.33) with no = 1.
The imbalance displays an exponential decay Z(t) ~ Z(0)e™*/7, with 7 dependent on the
initial state, the parameters of the Hamiltonian, and the coupling strength -~ with the
external bath. The decay time 7 increases the more the system is in the localized phase
and the larger is the initial occupation ng, while it decreases with the noise strength
v as T o< 1/7. Therefore, the time decay 7 can be enhanced by either tuning the pa-
rameters of the Hamiltonian or embedding a superboson with ng large (cf. Eq. (3.33)).
On the one hand, increasing s or U helps to protect the local memory at longer times,
at the cost of making the initial state less entangled. Indeed, in the s,U — oo limit,
the Hamiltonian tends to o ), (Un;n;+1 + n;), the ground state of which is a product
state of eigenstates of number operators. On the other hand, we can exploit the bosonic
nature of the system and embed a superboson with a larger initial ng, keeping s small
and enhancing the initial state entanglement. It is important to stress that despite the
exponential feature of the decay, the time scale 7 is generally very large with respect to
the time scales of the coherent dynamics of the system. From Eq. (3.32), and inspecting
the late times average occupation number, the initial peak remains still well resolved
and so does the information encoded within it.

The fidelity decays exponentially fast in time F(t) ~ e~*/™, with a decoherence time
7' dependent on the parameters of the Hamiltonian, the initial state, and the strength
of the noise. Analogously to the decay time 7 of the imbalance, the decoherence time
7/ increases the more the system is in the localized phase and decreases with the noise
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FIGURE 3.12. The time evolution of the imbalance (cf. Eq. (3.32)) and
fidelity (cf. Eq. (3.26)) starting from the state in Eq. (3.33) and subjected
to the dissipative dynamics given by Eq. (3.28) with quantum jump op-
erator f/j =f; Wefixng=1,U =1, v = 0.1 and we swipe across
different values of s € [1,2]. The initial value Z(0) ranges from ~ 0.93
to ~ 0.99 as s increases. We show results for s = {1,1.5,2}, on top of
which we plot the exponential fit (dashed black line). Both plots are in
linear-linear scale. The light area surrounding the curves represents the
statistical error due to the finite number of sampled trajectories. Image
taken from Ref. [1].

strength y as 7" o« 1/. Contrary to the imbalance, the fidelity drops faster the larger
is ng. Indeed, the conserved initial occupation ny pumps excitations on the next site,
reducing the typical coherent time scales by approximatively 1/(nge™*) and effectively
enhancing the effects of the environment.

Under the action of single-body losses, the dynamics no longer preserve the “East”
symmetry. Indeed, losses can deplete the occupation of the first site, which fixes the
“East” symmetry sector.

Since the vacuum is invariant under the action of losses and coherent dynamics cannot
create excitations to the West of the initial embedded superboson, we can still consider
Eq. (3.33) as our initial state. In Fig. 3.13, we show the dynamics of the fidelity and
imbalance for different values of ng, keeping U = 1, s = 1.5 and v = 0.1 fixed. Losses
turn out to be detrimental to the initial state independent of the parameters of the
Hamiltonian. Instead, the height of the initial peak plays a substantial role in enhanc-
ing the conservation of the imbalance. Intuitively, if the first site ng is highly occupied
at time ¢t = 0, it will require longer times to drain all the particles. This leads to an
initial plateauz in the imbalance, followed by an exponential decay toward the minimum
value Z(t — 00) = —1. The decay is well fitted by Z(t) = (Ae‘t/ ™ —1) at long times,



44

() F(¢)
1.0 - 1.00
0.51 - 0.75
0.0 - 0.50
—051 - 0.25
104 . 1 0.00

0 2 4 60 2 4 6
ty by

—“n=1 —np=3 — ng="56

FIGURE 3.13. The time evolution of the imbalance (cf. Eq. (3.32)) and
fidelity (cf. Eq. (3.26)) starting from the state in Eq. (3.33), with ng €
{1,3,5}, and subjected to the dissipative dynamics given by Eq. (3.28)
with quantum jump operator f}j =a;. WefixU=1,s=150 (e° =
0.22), and v = 0.1. The imbalance initial value is Z(0) ~ 0.99. In the
main figures we show results for three different values of ng = {1, 3,5},
on top of which we plot the exponential fit (dashed black line). The
imbalance and fidelity decay as an exponential (the dashed lines are the
associated fits). Both plots are in linear-linear scale. The light area
surrounding the curves represents the statistical error due to the finite
number of sampled trajectories. Image taken from Ref. [1].

where 7 o« 1/ is the relaxation time and A is a constant. The insensitivity of the
time decay with respect to the parameters of the Hamiltonian indicates that the slow
dynamics do not provide additional protection against this type of coupling to the envi-
ronment. Indeed, the decay of the imbalance is due to the emission of particles from the
first occupied site, which fixes the symmetry sector, and since the coherent dynamics
cannot create excitations on top of it the initial peak is depleted in time oc 1/7.

The fidelity drops to zero exponentially fast, as expected, with a decay time that is
parametrically small in the occupation of the initial peak. Indeed, the higher the peak
is, the larger is the probability that the emission occurs, which immediately produces
a state orthogonal to the initial one.

Despite losses being more detrimental with respect to dephasing, we show at the end of
the section that the coherent dynamics takes place on time scales that are small with
respect to the relaxation time in typical superconducting circuits (cf. Chapter 7 for the
experimental implementation of the bosonic quantum East model).

Note that we can immediately extend our analysis to a large variety of states. For
instance, we can consider states given by the superposition of superbosons embedded
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in different regions of the systems, namely
|0) o [9(t = 0)) + e lahs(t = 0)), (3.34)

where |tr(t = 0)) is defined in Eq. (3.31), 0 is a phase, and |s — k| > &. These two
states are weakly coupled by the coherent and dissipative dynamics. In a first approx-
imation, we can apply our analysis to each of them separately, and therefore predict
their dynamics easily.

The extension of these results to superposition of superbosons embedded in the same
support (cf. Eq. (3.17)) is less trivial and depends on the specific coupling to the envi-
ronment. For instance, a coupling that does not preserve the “East” symmetry makes
the different states dynamically connected, likely leading to different results from the
ones observed for the single superbosons. On the other hand, a coupling which pre-
serves the “East” symmetry can also lead to additional phenomena such as dephasing
processes between the superimposed states. Indeed, we observe that coupling to the
densities is also detrimental. We give further details in Sec. 3.4.1, exploring the effects
of local dephasing in the system.

3.4.1. Local dephasing

We now investigate the effects of local dephasing in the dynamical properties of a state
given by the superposition of superbosons embedded in the same support. Among the
possible choices, we consider a paradigmatic super-Gaussian state, namely the supercat
state, and then we generalize.

We consider local dephasing due to noise coupled to the densities (see e.g. [170]). In the
case of local dephasing acting on a compact support S, the effective theory in Eq. (3.29)
turns into
~ - ’7 AL A
Ha=H—i; > LiL, (3.35)
jeS

where the summation is along the support S. We consider f/j = fn; as jump operator.

We study the impact of the dephasing as a function of the strength v and the extension
of its support S. Since the dephasing preserves the “East” symmetry, we can once again
focus on system comprising a few sites without introducing relevant finite-size effects.
We initialize our system in the state

[¥(t=0)) =[C)r, (3.36)
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~

where |C) [, is a supercat state (cf. Eq. (3.21)) with support L and average number of par-
ticles |a|?. A support of L = 10 turns out to be large enough for the parameters explored
(¢ =1.50, s = 1.5 and U = 1). In Fig. 3.14 we show the dynamics of the fidelity as a
function of the coupling strength v and support S. The supercat state is still localized in
space for any v and §. Nonetheless, the coherence of the state is highly dependent on ~
and S. Indeed, local dephasing is highly disruptive in an exponentially localized region
around the peak, where the state is mostly located. If, instead, the local dephasing acts
on a region far from the localized peak it does not produce any appreciable effect. More
precisely, we estimate that the typical time 7 at which the embedded state is appre-
ciably affected by the noise scales as 7 ~ minpg_jies 1/(7{n;)) ~ ming_jies %794/,
where k is the site where the peak is located. We numerically verify the polynomial
dependence of 7 on . On the contrary, it is not possible to extract the dependence
on the support & with high enough accuracy from the times explored, because of the
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FIGURE 3.14. The dynamics of the fidelity (cf. Eq. (3.26)) of a supercat
state with & = 1.5 upon changing the noise strength v and its support
S = [a, b], starting from site a and ending at site b. We fix U = 1 and
s = 1.5. The initial state is exponentially localized around the site j =
1. The dephasing is highly disruptive only in an exponentially localized
region around the peak (see the first two columns). Instead, if it acts on
a region far from the localized peak, it does not produce any appreciable
effect at the scale shown in the plots. The light area surrounding the
curves represents the statistical error due to the finite number of sampled
trajectories. Image taken from Ref. [1].
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slowness of the decay.

Our findings can be extended to other channels that do not necessarily preserve the
“East” symmetry. For instance, losses acting far from the localized peak will not af-
fect local information encoded in the localized state. Furthermore, we expect that the
observed dynamical properties can be easily extended to any state prepared via the adi-
abatic protocol from a state of the form given in Eq. (3.22), to which super-Gaussian
states belong.

In this section we have discussed the effects of dephasing and losses, without much
emphasis on the actual value of the coupling strength v to the environment in typi-
cal superconducting circuits (cf. Chapter. 7 for the implementation). As previously
mentioned, we set the on-site bare frequency of bosons as our energy scale, which is
O(GHz) in typical superconducting circuits [164]. The typical strength of the coupling
to the environment v is O(MHz) [164]. Therefore, v ~ 1073 in our nondimensional
units. As a consequence, coherent dynamics take place on smaller scales with respect
to the operational times of typical superconducting platforms of O(1us), hinting that
the physics of localized states is potentially observable in state-of-the-art experiments.
Corroboration of this statement with more quantitative calculations would require an
ab initio study of the dynamics of the architecture introduced in Chapter. 7, which
constitutes an interesting follow-up project per se.

3.5. PERSPECTIVES

The implementation of a kinetically constrained East model using superconducting cir-
cuits represents a bridge between the two communities of circuit-QED and nonergodic
quantum dynamics. It has the potential to attract the former toward fundamental
questions regarding dynamical phase transitions and to stimulate the latter toward the
search for quantum-information and metrological applications of constrained dynamics.
Our explicit construction of localized analogs of squeezed and cat states relying on the
East constraint represents a first stepping stone in this direction.

A fruitful prosecution of this work is the study of an analog of the mobility edge sepa-
rating localized from delocalized states in the spectrum of East models (for the mobility
edge in MBL see Refs. [37, 38]). An understanding of how such a mobility edge scales
with A, is essential for predicting the onset of dynamical transitions in platforms with
unidirectional constraints, as well as of practical interest. For instance, a mobility edge
at finite energy density is a feature of direct relevance for experimental realizations,
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since it would yield the conditions for performing efficient quantum manipulations deep
in the localized phase when finite-temperature or heating effects are present. This will
be object of Chapter 4.

A related interesting question is the survival of the effective integrable description of
the localized phase discussed in Sec. 3.3 upon increasing the density of energy above
the ground state. This would have implications for heat and particle transport features
of the East model in the nonergodic phase, which would be governed by the effective
integrable description in (3.25), as it happens for MBL systems [171].

The insensitivity to noise acting away from localized peaks could open up a path to-
ward the study of the protection of spatially separated macroscopic superpositions of
superbosonic states. Given the slow decay of localized wave packets in the presence
of noise, one could conceive the storage and noise resilience of long-lived many-body
entangled states in faraway regions, with applications to quantum communication.



CHAPTER 4

Mobilility edge in a translational invariant system

Most of the content in this Chapter is in:

e “State-dependent mobility edge in kinetically constrained models” (arXiv: 2407.12909;
to appear in Phys. Rev. X Quantum)
Manthan Badbaria, Nicola Pancotti, Rajeev Singh, Jamir Marino, and Ric-
cardo J. Valencia-Tortora.

Executive Summary. In the previous Chapter, we have shown not only that trans-
lational invariant systems could display localization, but it could be also harnessed for
preparing the localized version of metrologically relevant quantum states. However,
most of the discussion has been carried out focusing on the low energy limits. Here
instead, we aim to investigate the properties at finite energy density. However, an op-
erative definition of a finite-energy in a bosonic system with an unbounded spectrum is
hard. Indeed, the system considered does not conserve the number of excitations, and
so the most excited state has virtually infinite energy even after fixing all the conserved
quantities. As a consequence, in the bosonic case, we cannot define a location along
the spectrum, and everything looks formally equivalent to ‘low energy’ physics. In
order to circumvent such issues, we trade bosons with finite-dimensional constituents,
i.e. spin-1/2. In such a manner, we obtain the quantum East model whose low-en-
ergy properties have been already extensively investigated [3, 140, 151-153] (see also
Refs. [154, 155] for the Floquet version). Here, building on the signatures of a dynami-
cal phase transition separating a fast and slow thermalizing phase [151] at finite energy
density, we aim to further investigate the finite energy density physics. However, com-
puting excited eigenstates is typically limited to small system sizes accessible by Exact
Diagonalization. In order to circumvent such limitations, we propose a novel complex-
ity-oriented proxy based on tensor-networks for detecting non-thermal features along
the spectrum. Using such a proxy, we unveil that the quantum East model hosts a sort
of mobility edge along the spectrum, namely it displays non-thermal features up to a
finite energy density, while instead, it appears thermal above it. We further provide
evidence of the predictive power of our proxy by finding a large family of non-thermal
localized eigenstates at finite energy density. We then discuss the implication of our
results in the context of random unitary circuits, providing arguments that the class of
tilted-CNO'Ts based circuits, i.e. circuits made of CNOTs and single site gates diagonal
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in the computational basis (not necessarily belonging to the Clifford gates), display
regimes where they can be efficiently simulated on a classical computer. This finding
expands the known classes of circuits efficiently simulable, alongside Clifford circuits,
MBL inspired circuits [172], as well as fractonic random circuits [42, 173].

What is new? All results of this chapter represent novel research results.

Organization of the Chapter

e In Sec. 4.1 we introduce the quantum East model and discuss its known prop-
erties, in order to frame our contribution discussed in Sec. 4.2.

e In Sec. 4.3 we introduce the complexity-oriented dynamical proxy of dynamical
phase transitions based on tensor-networks.

e In Sec. 4.4 we test our proxy providing evidence of the existence of a thermal to
non-thermal dynamical phase transitions in the quantum East model. Then,
we carry out a careful analysis (cf Secs. 4.4.4, 4.4.5) and identify the class
of non-thermal eigenstates mostly responsible of the observed behavior. We
then find them using DMRG-inspired algorithm (i.e., DMRG-X) in Sec. 4.4.6,
further fueling the effectiveness of our complexity-oriented proxy in detecting
the presence of non-thermal eigenstates.

e In Sec. 4.5 we discuss the implications of our results in the context of random
unitary circuits, providing arguments that the class of tilted-CNOTs based cir-
cuits, i.e. circuits made of CNOTs and single site gates diagonal in the compu-
tational basis (not necessarily belonging to the Clifford gates), display regimes
where they can be efficiently simulated on a classical computer. This finding
expands the known classes of circuits efficiently simulable, alongside Clifford
circuits, MBL inspired circuits [172], as well as fractonic random circuits [42,
173].

e In Sec. 4.6 we conclude the Chapter and we discuss some possible follow-up
ideas inspired by our results that could be of interest to pursue.

This Chapter is composed by a rearrangement of the author’s publication [2].

4.1. QUANTUM EAST MODEL

We study the quantum East model [1, 140, 151] in open boundary conditions with
Hamiltonian

N
2 ]' A —8 AT
H= 9 E :nj(e 671 — 1), (4.1)
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where 6¢ is the Pauli-a matrix on site j; 7; = (1 — 67)/2 is the projector onto the
state |1) in the local z basis. The term 7, in Eq. (4.1) is the kinetic constraint, which
translates to a nontrivial action of the Hamiltonian solely to the right (‘East’) of a pre-
viously excited (|1)) site. Consequently, the Hamiltonian acts trivially on empty strings
without any excited sites to its left, making a so-called ‘East symmetry’ manifest: start-
ing from the left, the location and occupation of the first excited spin cannot change.
Thus, the Hilbert space splits into N dynamically disconnected sectors indexed with
the position of the first occupied site |1); i.e. the k-th sector has (k— 1) zeros preceding
|1) on the k-th site. This feature is in stark contrast with systems undergoing Hilbert
space fragmentation, where the number of disconnected subspaces is O(exp(N)) [42,
158, 174] (see Sec. 5.2 for a comparison with Hilbert space fragmentation). Because
of the trivial action of Hamiltonian on empty sites, the results do not depend on the
sector considered in the thermodynamic limit. Thus, we fix kK = 1, without loss of gen-
erality. Once the ‘East symmetry’ sector is fixed, any product state can be dynamically
accessed by any other. In other words, the sector is irreducible, as the Hamiltonian
does not possess any other nontrivial (excluding the energy) conserved quantity.

4.1.1. Localization and slow thermalization

Despite being non-integrable and translational invariant, it has been shown that the
quantum East model displays a dynamical transition separating a fast and slow ther-
malizing phase as a result of the competition of the kinetic term, controlled by e,
and the potential one oc > . f; [140, 151]. Intuitively, when the kinetic term domi-
nates (s < 0), excitations propagate ballistically, making the details of the initial state
rapidly lost, while instead when it is small s 2 0, excitations propagate slowly, making
the details of the initial state potentially matter up to long times. In Ref. [151] it was
shown that such dynamical transition can be linked to the existence of a first-order
delocalization-localization quantum phase transition upon changing the parameter s.
Specifically, when s < 0 the ground state is delocalized; namely, the wave function is
spread along the lattice with homogeneous probability and amplitude of finding an oc-
cupied site. Instead, the ground state is localized for s > 0, namely the corresponding
wave functions contain nontrivial excitations only on a small region of the lattice around
the first excitation fixing the East symmetry, while it is approximately in the vacuum
state everywhere else. Specifically, for s > 0 the probability of finding an occupied site
in the ground state decays exponentially as [151]

(fg) ~ e, (4.2)

where £ is the localization length, parametrically small in s, beyond which the ground
state can be approximated as a product state of empty sites. As mentioned above, the
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localization of the ground state is linked to the possible slow thermalization at finite
energy densities [151]. Specifically, in Ref. [151], it has been shown that empty strings
together with the localized ground state form a basis for building an exponentially
large number of area-law states arbitrarily close to true eigenstates of the Hamiltonian,
which in turn can affect the dynamics of a large family of initial states. However, such
construction is not able to capture all the non-thermal states the system hosts, as it is
mostly limited to low-energy ones. Therefore, there is still a lack of a complete under-
standing of the dynamical phase transition at finite-energy density and in particular in
the middle of the spectrum, corresponding to infinite temperature states.

4.2. DOES THE SYSTEM DISPLAY A MOBILITY EDGE?

Here, we aim to investigate the dynamical phase transition of the quantum East model
more closely. Specifically, we focus on whether the system hosts a mobility edge, i.e. a
separation of a thermal region and a localized one in the spectrum of the Hamiltonian,
despite being disorder-free. Indeed, the quantum East model stands as an excellent
candidate capable of exhibiting a mobility edge in addition to being a paradigmatic
example of a disorder-free localized system. This challenges the common belief that a
mobility edge is exclusive to disordered systems [175-177]. However, in Ref. [151], Ex-
act Diagonalization calculations suggest that the spectrum of the quantum East model
does not exhibit a distinct separation between non-thermal eigenstates and thermal
ones (which we replicate in Fig. 4.1), as instead observed in MBL systems with a mobil-
ity edge [95, 175, 176, 178]. Instead, its spectrum displays features more reminiscent to
quantum many-body scarred (QMBS) systems, where few non-thermal eigenstates are
distributed along the spectrum [157, 158]. Nevertheless, it is crucial to highlight that,
in the quantum East model, the non-thermal eigenstates are not evenly spaced in the
spectrum and their number grows exponentially with the system size, contrary to in
QMBS systems where they are evenly spaced in energy and constitute a zero fraction
of the spectrum in the thermodynamic limit. Nonetheless, it might seem as if our task
of having a disorder-free mobility-edge is destined to fail. However, within the same
context, it has been shown that the non-thermal eigenstates exhibit significant overlap
with product states (see Fig. 4.1). This observation presents an intriguing possibility:
the existence of a ‘state-dependent mobility edge.” Specifically, the system behaves akin
to having a many-body mobility edge for a large class of initial states, such as product
states. To draw an analogy, we can envision a scenario resembling quantum many-body
scarred systems, where the impact of the non-thermal eigenstates significantly influ-
ences the dynamics of some initial states. In this scenario, however, the exponential
abundance of non-thermal eigenstates suggests the potential for non-thermal behavior
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FIGURE 4.1. Half-cut entanglement entropy (upper panel) of the eigen-
states |1e) of the quantum East model (cf. Eq. (4.1)) and overlap be-
tween |¢) and its best approximating product state |¢,) (lower panel)
as a function of the normalized energy € = (E — Epin)/(FPmax — Emin)-
In the delocalized phase (s < 0) the spectrum appears to be thermal, as
typical for non-integrable systems. Instead, in the localized phase (s > 0)
there are (exponentially) many non-thermal eigenstates with large over-
lap with product states. We show data for N = 13 sites. Image taken
from Ref. [2].

to become prevalent across a wide range of initial states, particularly among product
states. This question not only captivates theoretical interest but also holds practical
relevance. Indeed, as product states are the easily preparable initial states in current
NISQ devices, understanding this behavior becomes crucial for experimental investiga-
tions [3, 179-185|. In order to mitigate the limitations due to exponentially large Hilbert
space, which limits exact diagonalization to small system sizes, in the following we pro-
pose a novel proxy of non-thermal eigenstates in the spectrum based on tensor-networks.

For generic one-dimensional non-integrable systems, tensor networks stand out as a
widely accepted standard for their efficiency. However, while these methods are less
susceptible to the curse of dimensionality, they still have limitations, particularly in han-
dling dynamics. Specifically, the resources required—i.e., the bond dimension—typically
scale exponentially with time. This occurs as the entanglement typically increases lin-
early in highly non-equilibrium dynamics (e.g., quench protocols) since finite-energy
volume-law eigenstates of the Hamiltonian participate predominantly in the dynam-
ics [186]. However, the presence of non-thermal eigenstates, e.g. eigenstates with little
entanglement, could significantly reduce complexity and enable efficient simulations for
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‘long’ times, as for instance in MBL systems [96, 97, 187]. We note that the constraints
faced by tensor networks in handling dynamics align with our starting goal of investigat-
ing the properties of the eigenstates of a Hamiltonian by assessing the efficiency of per-
forming classical simulations. To be more specific, we categorize a computational task
as ‘hard’ (or ‘easy’) if the required computational resources scale (sub-)exponentially.
We distinguish complexity along the space and time domain. For the time domain, we
adopt the bond dimension y of the matrix product state representation of the evolved
states as a measure of complexity. We choose x due to its connection with entangle-
ment, which is widely regarded as an indicator of ‘hardness’ in representing quantum
states in a classical computer. If x grows (sub-)exponentially in time the task is said
to be (‘easy’) ‘hard.” We then correlate the complexity of simulating the dynamics of
product states via tensor networks with the absence, if the task is ‘hard,” or presence,
if the task is ‘easy,” of non-thermal eigenstates. Instead, for the complexity along the
space domain, we look at the degree of separability of the evolved state, which directly
reflects on the dimension of the accessible Hilbert space. If the state is inseparable,
the complexity of representing it scales exponentially with the system size making the
task of representing it ‘hard,” as typical in interacting quantum systems. Instead, if
the state is separable (at least approximately), the resources (e.g. memory storage in a
computer) needed scale polynomially in the system size making its representation ‘easy.’
In the following, we refer, for simplicity, to the complexity along the time domain and
space domain as time-complexity and space-complexity, respectively. Summarizing,
space-complexity provides us information about the way the accessible Hilbert space is
explored, while instead, time-complexity about the properties of the states dynamically
visited during such exploration.

As we have defined more formally our goal, we now list our main findings (which are

summarized in Fig. 4.2):

(1) Time-complexity is typically ‘hard’ in the delocalized phase, as expected for
generic non-integrable models, while instead it is typically ‘easy’ deep in the
localized phase, analogously to MBL systems (cf. Sec. 4.4.3);

(2) Near the critical point, on the localized side, we observe both ‘easy’ and ‘hard’
time-complexity region as we tune the energy density of the initial state at
fixed Hamiltonian parameters, indicating the existence of a disorder-free mo-
bility-edge (cf. Sec. 4.4.3);

(3) The typically ‘hard’ and ‘easy’ time-complexity regions are separated by a
crossover where details of the initial state, beyond the conserved quantities
(i.e. the energy), matter in dictating the time-complexity (cf. Sec. 4.4.4). This
is in agreement with the observations of Refs. [140, 151], where heterogeneity
of the initial state plays a key role in glassy-like kinetically constrained models;
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(4) Combining the Lieb-Robinson bound [188] on the propagation velocity of quan-
tum correlations with the heterogeneity characterizing glassy-like systems, we
observe, upon initializing product states in the computational basis, a crossover
from ‘easy’ to ‘hard’ in the space-complexity as a function of time. Specifically,
in the ‘easy’ regime, the state is approximately separable and its dynamics can
be faithfully computed by the dynamics of suitably chosen subsystems, ne-
glecting the boundary terms connecting them. Instead, in the ‘hard’ regime
the state is non-separable and such boundary terms have to be taken into
account;

(5) We link the points above by observing the existence of localized kink states
at finite energy density (cf. Sec. 4.4.6), fueling the effectiveness of our com-
plexity-oriented proxy in detecting thermal to non-thermal dynamical phase
transitions;

(6) We discuss the implications of our results in the context of random unitary
circuits, providing evidence that the class of tilted-CNO'Ts based circuits, i.e.
circuits made of CNOTs and single site gates diagonal in the computational
basis (not necessarily belonging to the Clifford gates), display regimes where
they can be efficiently simulated on a classical computer.

4.3. DYNAMICAL PROXY OF NON-THERMAL EIGENSTATES

To overcome the limitations faced by exact diagonalization, here we propose a com-
plexity-oriented proxy based on tensor-networks for detecting non-thermal eigenstates.
Our approach is based on the observation that typical thermalizing systems display an
exponential growth of the bond dimension during dynamics, as opposed to systems dis-
playing non-thermal behavior (e.g. MBL systems) where instead the bond dimension
grows polynomially in time [96, 97]. An intermediate scenario is constituted by systems
with a mobility edge, i.e. systems displaying non-thermal eigenstates in a certain energy
window, and thermal ones in the others. Specifically, in such system we envision that
the complexity of simulating the dynamics depends on the energy of the specific state
at hand, potentially allowing a distinction between the two regions.

We take inspiration from Refs. [177, 189]. Specifically, in Ref. [189], the authors have
considered a fully MBL system, i.e. with all eigenstates localized, showing that ten-
sor-networks allow to efficiently simulate the dynamics of observables in the localized
phase, while instead it is computationally hard in the thermal one. Computing the dy-
namics of observables generally involves democratically the full spectrum of the Hamil-
tonian, not allowing to selectively excite more a part of the spectrum with respect to
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FIGURE 4.2. Cartoon summarizing the complexity phase diagram of sim-
ulating the dynamics of initial product states (cf. Eq. (4.3)) in the quan-
tum East model both in time and space domain, as a function of the
energy density € € [0, 1] of the initial state and the time ¢ reached. Each
box is split into two triangles which encode the complexity either along
the space domain (upper triangle) or along the time domain (lower trian-
gle). A simulation is (easy) hard in the time domain if the computational
resources needed, i.e. the bond-dimension of the tensor network, grows
(sub-)exponentially in time. Instead, a simulation is easy (hard) in the
space domain if the accessible Hilbert space H is, at least approximately,
(in)separable. Simulations are easy in the time domain if the energy den-
sity (although other features play a role, see Sec. 4.4.4) is below a certain
energy density €*, dependent on the parameters of the Hamiltonian, indi-
cating the existence of a mobility edge in the spectrum (cf. Sec. 4.4.3).
Additionally, during the time evolution of initial product states, upon
allowing a small error in the dynamics, the evolved state is separable up
to a time ~ t*, controlled by the Hamiltonian and features of the initial
state (cf. Sec. 4.4.5). As a consequence, the accessible Hilbert space H
can be expressed as a direct sum of smaller disconnected Hilbert spaces
‘H;, in a fashion reminiscent of fragmented systems [42, 158, 174]. Image
taken from Ref. [2].

the others. A possible way to overcome such limitation is by taking inspiration from
Ref. [177], where it was shown how quench dynamics of initial states with small energy
variance could allow the detection of a mobility edge in the spectrum.

Here, we combine the two approaches, adding to the approach carried in Ref. [189]
an ‘energy resolution,’ by considering the dynamics of initial product states, not of ob-
servables. Specifically, we first select initial states with a small energy variance so that
the eigenstates of the Hamiltonian participating in the dynamics are mostly within a
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small energy window. Then, we use the way the bond dimension x grows in time as
a measure of time-complexity. In typical non-integrable systems, we expect an expo-
nential growth of x after a quench, as the bipartite entanglement entropy S o< logy
grows linearly in time [186]. Instead, a sub-exponential growth of x could indicate the
existence of non-thermal eigenstates in the spectrum. In the following, we label it as an
(‘easy’) ‘hard’ task if the bond dimension needed scales (sub-)exponentially in time. In
such a manner, we can potentially locate a mobility edge within the spectrum at fixed
parameters of the Hamiltonian.

4.4. STATE-DEPENDENT MOBILITY EDGE

In this section, we locate the state-dependent mobility edge using as a proxy the time-
complexity of evolving initial product states as a function of their properties, i.e. energy
density and spatial structure, and the Hamiltonian parameters.

We perform the time-evolution using tensor networks, and we employ the maximum
bond dimension Xmax(t) of the matrix product state (MPS) as a metric for time-com-
plexity, due to its connection with the amount of entanglement in the system. Adopting
this measure, we can distinguish time-complexity regions characterized by qualitative
different growths in time of the bond dimension. Specifically, we say that simulating
dynamics is (‘easy’) ‘hard’ if the necessary resources grow (sub-)exponentially in time.
While the exponential behavior is typical in the delocalized phase (s < 0), as expected
for generic non-integrable models, we remarkably observe all the different regimes in
the localized phase (s > 0) also at finite energy density, indicating the existence of a
mobility edge (cf. Sec. 4.4.3). We show the huge impact of the heterogeneity in the
initial state (cf. Sec. 4.4.4), characteristic of glassy-like kinetically constrained models,
in dictating the time-complexity. Combining the Lieb-Robinson bound and the dynam-
ical heterogeneity, we discover a crossover in space-complexity from an ‘easy’ regime,
where the evolved state is separable (up to negligible contributions), to a ‘hard’ one,
where the evolved state is non-separable (cf. Sec. 4.4.5). Building on these results, we
discover a large family of localized states with finite energy density responsible for the
observed behavior for many initial states considered (cf. Sec. 4.4.6). This last finding
corroborates the sensitivity of our complexity-oriented proxy to non-thermal eigenstates
of the Hamiltonian.
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4.4.1. Initial states

As we are interested in investigating the existence of a ‘state-dependent mobility edge’,
we need to specify the class of states of our interest. To our ends, we investigate the
dynamics of initial product states in the computational basis

N

[¥) = 1) @) 10/1)x, (4.3)

k=1
where we keep the first site fixed to |1), making the dynamics occur in the largest
irreducible ‘East’ symmetry sector of our model, while |0/1) could be either |0) or |1).
As discussed in Sec. 4.3, a quench protocol could be used to probe information about
the eigenstates when the energy variance of the initial state is small. Product states as
the one in Eq. (4.3), with M excitations (|1)), have

M e—2s M2
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where AH = (¢|H?[y) — (1|H[)2. Since we are interested in making statements
at finite energy density (i.e. we want (H)/N finite for N — c0), we set M = mN,
with m € [0, 1] the density of excitations. In such a manner, the energy density is finite

while the relative fluctuation around the mean goes to zero in the thermodynamic limit.
Thus, such states are good candidates for analyzing the spectrum of the quantum East
model. Notice that the average energy depends solely on m and not on their location,
allowing us to isolate the impact of the spatial structure in the dynamics keeping it
fixed.

4.4.2. Details on the numerical methods

For a fixed value of s and m, we sample up to 100 random product states to mitigate
sample biases, and we simulate their dynamics using the Time Evolving Block Decima-
tion algorithm [190]. We keep the Schmidt singular values larger than 1074 and we
set the timestep At = 1073. We stop the simulation when either the maximum allowed
bond dimension equal to 512 or the time 7" = 64 is reached. For each simulation, we
investigate how the max bond dimension Xmex(t) = max;ep,n—1] X;(t) grows in time by
fitting either a polynomial (o< z°*) or exponential (o< exp{rt}) function, where o and r
are positive constants, depending on which one better approximates the data. Then, we
link such behavior to the spectral properties of the Hamiltonian, as detailed in Sec. 4.3.
We highlight that trotterizing the continuous-time dynamics induces undesired errors
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tied to the finite time step. However, we do not expect the quantity of interest (i.e., the
way the bond dimension grows) to be qualitatively affected by such errors, provided
that we use a small enough time step. We present results on system size N = 30, as
our statements are not appreciably affected upon increasing N (cf. Appendix B.2 for a
detailed scaling analysis in N). In the following, we investigate dynamics as a function
of the average energy, and their spatial structure (e.g. distance of initial excitations).
All the results were obtained using the python package quimb [191].

4.4.3. Role of energy density

Here we focus on the impact of the energy density of the initial states in Eq. (4.3) in
dictating the time-complexity of simulating the dynamics. While time-complexity is
typically ‘hard’ in the delocalized phase (s < 0), as expected for generic non-integrable
models, we remarkably observe both ‘easy’ and ‘hard’ regimes in the localized phase
(s > 0) also at finite energy density, indicating the existence of a state-dependent mo-
bility edge.

To extract the behavior in the thermodynamic limit, we measure the energy with re-
spect to the ground state and most excited state energies, namely the normalized energy
density € = ((I:I Y — Emin)/(Fmax — Emin), Where Enin and Ep., are the energy of the
ground state and the most excited state (which can be computed via DMRG minimizing
the energy of —H ), respectively. Despite the advantage of initializing product states
(cf. Eq. (4.3)) in isolating the interplay of their properties, e.g. the initial distribution
of excitations, they have a drawback: they do not always allow an efficient sampling
over €. Specifically, as s decreases, it is not possible to sample from the extremes of
the spectrum, as the ground state and the most excited states are ‘far’ from the singly
occupied state and the completely filled state, respectively. Nonetheless, as we are
mostly interested in the central region of the spectrum, associated with high-tempera-
ture states, such limitation does not play a major role in our results.

In Fig. 4.3(a), we show the fraction fesy € [0,1] of states for which time-complex-
ity is ‘easy’, i.e. Xmax(t) grows sub-exponentially in time, as a function of € and s.
As expected, in the delocalized phase (s < 0) the system mostly displays exponential
growth of the bond dimension (feasy &~ 0) as we move towards the middle of the spec-
trum € (cf. Fig. 4.3a), reflecting the thermal nature of the whole spectrum. On the
other hand, for s > 0 we observe regions where f,s, is large not only near the extreme
of the spectrum, but also at finite energy density € (cf. Fig. 4.3(b)). We infer that
such behavior is linked to the fact that, for s large enough a non-negligible fraction
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of highly excited eigenstates becomes non-thermal, with the fraction increasing with s.
Remarkably, for 0 < s < 0.5 (cf. Fig. 4.3(c)), we observe as € increases an ‘inversion’ of
feasy, namely for small e the dynamics is typically ‘simple’ to be simulated (feasy =~ 1),
while moving towards the center of the spectrum dynamics is typically ‘hard’ to be
simulated (feasy &~ 0). Such inversion provides further evidence of the existence of
a state-dependent mobility edge in the spectrum. We highlight that the many-body
spectrum is not symmetric with respect to ¢ = 0.5, e.g. the maximally excited state
is always delocalized, thus there are no reasons to expect a symmetric mobility edge.
In between the two extreme regions, we observe a crossover region where typicality is
lost since the time-complexity highly depends on the specific states at hand at fixed €
(e.g. see Fig. 4.3(c) for e = 0.1), indicating that other features are playing a role in the
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FIGURE 4.3. (a) Fraction of sampled initial product states (cf. Eq. (4.3))
for which time-complexity is ‘easy’ fesy € [0,1] as a function of the
normalized energy density € = ((H)—Emin)/(Fmax—Fmin) and s. The grey
region indicates the lack of data, as the chosen initial states (cf Eq. (4.3))
do not span the whole energy spectrum. The white dashed line serves
solely as guidance to indicate where fe.s; = 0.5. Deep in the localized and
delocalized phase, the behavior displays typicality, namely either fe.s, ~ 0
(typically ‘hard’) or fesy =~ 1 (typically ‘easy’) weakly depending on e.
Near the transition point on the localized side (0 < s < 0.5) feasy highly
depends on ¢, giving evidence of the existence of a mobility edge along
the spectrum. (b-c) Dynamics of xmax(t) for all the sampled states for
different values of s and €, marked in (a). The dashed lines represent fits
for some representative states. Deep in the ‘easy’ and ‘hard’ regime the
growth of Xmax(t) weakly depends on the parameters of the initial states.
Instead, in the regions separating typically ‘hard’ or ‘easy’ we observe
a wide range of growth behavior even for states with the same s and e,
signaling a key role played by other features of the initial state, such as
its spatial structure. Image taken from Ref. [2].

dynamics. We further investigate such dependence in the following section.
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FIGURE 4.4. (a) The same data presented in Fig. 4.3 labeled by the av-
erage size of clusters of consecutive excitations (|1)) normalized by N
(kavg/N) vs average distance between clusters in units of § (wayg/§), With
¢ the localization length of the ground state at the respective value of s.
The red dots correspond to states whose time-complexity is ‘hard’ (expo-
nential growth of the max bond-dimension), with r the exponent. Instead,
the blue dots correspond to states whose time-complexity is ‘easy’ (sub-
-exponential growth of the max bond-dimension), with o the power-law
exponent. We observe that time-complexity is typically ‘hard’ if either
kavg/N increases and w,yg/¢ decreases. In (b) and (c), we show the dy-
namics of the bond dimension y; along each cut as a function of time for
two representative states. In (b), clusters of excitations have started to
entangle beyond a transient time. Whereas in (c), clusters of excitations
haven’t entangled yet due to the presence of large islands of consecutive
|0)s. Image taken from Ref. [2].

4.4.4. Role of spatial structure

Here, we investigate the role of the initial state structure in the time-complexity of
classically simulating the system dynamics. In doing so, we show how the size of ex-
cited regions and their distance plays a crucial role in dictating the time-complexity of
simulating their dynamics. Additionally, we unify the observation of Refs. [140, 151]
adopting as typical length scale the localization length of the ground state, highlighting
its predicting power also in understanding finite-energy density phenomena.

In typical thermalizing systems, dynamics is strongly dependent solely on the few con-
served quantities of the system (e.g. energy density €), while instead in slow thermalizing
systems, such as the quantum East model, memory of the initial state can be retrieved
at long times [151] and its structure can influence the dynamics [140]. The role of the
structure in dictating dynamics is reminiscent of the dynamical heterogeneity of glassy-
like systems, which can be described via classical kinetically constrained models [192,
193]. Hence the role of initial state structure needs to be taken into account, and here
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we use dynamical heterogeneity as an indicator of slow thermalization. To be able
to differentiate the states sampled (cf. Eq. (4.3)) that have the same energy density
€, we need parameters that capture their spatial heterogeneity. In Ref. [140], it has
been observed a close connection between slow-thermalization and the size w of inac-
tive regions given by strings of consecutive |0). Such observation has been qualitatively
rationalized in Ref. [151], linking it to the existence of a finite localization length ¢ of
the ground state. We derive intuition from these results and combine the dependence
of dynamics on the localization length £ and w defining the parameter wayg/§, where
Wavg 15 the average distance between clusters of excitations in the initial state at hand.
In Appendix B.3 we show that without rescaling with £ the quantity is less informative
in capturing the salient features. Additionally, since dynamics primarily occur in the
densely excited regions, we also label the states as a function of the average size kg of
the cluster of excitations, which is also in a one-to-one correspondence with the average
energy (cf. Eq. (4.4)).

Using kavg and w,yg for characterizing the sampled initial states, in Fig. 4.4(a) we
observe their predictive power in capturing, for most initial states, whether the time-
complexity is ‘easy’ (blue markers) or ‘hard’ (red markers) for s > 0. Specifically, as
kave increases the simulations are typically harder, while instead, the opposite occurs
as excitations are farther apart. Such behavior could be understood as the interplay
of dynamics within each cluster of excitations and between different ones. Intuitively,
if clusters are far from each other on average, the time-complexity is mostly dictated
by the single cluster dynamics since the propagating front generating from each cluster
generates little entanglement. In turn, the larger the cluster is, and so is its energy,
the more it is hard to simulate. A possible analogy is given by looking at the system
as a collection of subsystems with a certain temperature, directly linked to the number
of excitations, separated by completely inactive regions at zero temperature: if the in-
ert regions are too extended, the hottest source dominates the hardness in simulating
the dynamics. Such a picture is supported by inspecting more closely how the bond
dimension, or equivalently entanglement, at each possible bipartition, evolves in time
(cf. Fig 4.4(b,c)). Specifically, Fig. 4.4(c) shows an ‘easy’ simulation for s > 0. We
notice that the clusters of excitations are not strongly entangled due to the presence of
large inactive regions between them. This heterogeneity in entanglement is referred to
as dynamical heterogeneity and is an indicator of slow thermalization similar to what’s
observed in classical glasses [192, 193]. Fig. 4.4(b) shows a state in the transition region
for s > 0, where we can see that islands of excitations have started to appreciably
entangle beyond a transient time.
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The distinction between inactive and active regions opens up the possibility of under-
standing the dynamics of generic product states in terms of concatenated and weakly
entangled clusters in the localized phase. We further investigate this observation in the
next sections.

4.4.5. Crossover in space-complexity

We have observed that the structure of the initial state plays a leading role in dictating
the time-complexity in the localized phase. Such a dependence stems from the sharp
differentiation between active and inactive regions in kinetically constrained models.
Here, we go a step further showing that such distinction also leads to a crossover in the
space-complexity from an approximately fragmented regime, where the state is almost
separable, to a fully ergodic one, where the state is non-separable.

Heterogeneity is a hallmark of classical glassy systems, which manifests also in their
quantum counterpart as observed in other studies [141, 193]. The quantum East model
makes no exception, as it is evident from the dynamics of various observables, such as
occupation number and entanglement entropy. This is particularly evident upon ini-
tializing product states (cf. Eq. (4.3)) characterized by excited and de-excited regions,
and looking at the dynamics of the bond dimension on each cut (see Fig. 4.4(b-c)).
This heterogeneity opens up the possibility of distinguishing two timescales: one where
dynamics occurs mostly within each cluster of excitations (intra-cluster), and another
when it also appreciably involves different clusters of excitations (inter-cluster). Specifi-
cally, we could define a time ¢t* up to which the system is approximately separable, since
the entanglement between the different clusters is negligible, and the whole dynamics is
encoded in the dynamics of each cluster separately. The approximate separability could
be formalized using the Lieb-Robinson bound [188]: quantum correlations propagate at
most ballistically with exponentially small corrections in systems with a finite Hilbert
space (e.g. spins) and short-range interactions. In KCMs, empty regions are completely
inactive, and the finite velocity of propagation of entanglement in the system (upon ne-
glecting the exponentially small correction in the distance) implies the separability just
mentioned up to time ¢t*, where the active regions appreciably merge. As a consequence,
an initial product state (cf. Eq. (4.3)) with A cluster evolves as
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FIGURE 4.5. Dynamics of the entanglement entropy S, computed on the
last bond, upon initializing the state |111)®|0)*®|1) with w € [1, 8] in the
delocalized (s < 0) and localized phase (s > 0). The long-time values of S
are independent of w as expected in the thermalizing regime (s = —0.5),
whereas it decreases as w increases for s = 0.5 indicating localization.
(b) Time ¢* at which the two clusters appreciably entangled, i.e. when
S > A, as a function of w. We set A = 10~2 for the sake of concreteness
(see text for a more compelling discussion in terms of Lieb-Robinson
bound). In the delocalized phase (s < 0), t* grows linearly in w as
excitations propagate ballistically. Instead, t* grows exponentially in w
in the localized phase (s > 0), due to the extreme slowdown in dynamics.
The results were obtained via exact diagonalization [191]. Image taken
from Ref. [2].

where |¢,(t)) is the time-evolved state describing the n-th cluster. In other words,
the evolved state is given by a product state of each cluster, i.e. it is separable (up
to exponentially small corrections from the propagating fronts). The transition from
approximate separability to fully ergodic is accompanied by a change in the dimension
of the Hilbert space D potentially accessible. Specifically,
~N x NN <
D(t) = { oN P> 1, (4.6)
which in words translates, keeping N/N fixed, to a transition in the dimension of the
accessible Hilbert space from polynomial to exponential in the system size N. Such
transition could be interpreted as a transition between a Hilbert space fragmented
regime [42, 158, 174] to a fully ergodic one. However, we once more highlight that such
a transition is present in the quantum East model upon neglecting the exponential small
corrections coming from the Lieb-Robinson bound.
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As the Lieb-Robinson bound constitutes an upper bound, it is in principle possible
to observe slower than ballistic propagation. This is the case for the quantum East
model, where the propation could be exponentially slow in the localized phase. As a
consequence, the dependence of the time * with the distance w, defined as the number
of empty sites |0) between two clusters, strongly depends on whether the system is
delocalized or delocalized. To show such dependence, let us look at the evolution of
the entanglement entropy between two clusters at a distance w and define a (arbitrary)
threshold A, so that we consider the two clusters not entangled the entanglement en-
tropy along a cut separating the two clusters is less than A. The specific value of A
is arbitrary and chosen just to show the dependence of t* on w (cf. Fig. 4.5). In the
delocalized phase, t* grows linearly in w as excitations propagate ballistically. Instead,
t* grows exponentially in w in the localized phase, due to the extreme slowdown in
dynamics (cf. Fig. 4.5(b)).

Since t* could be very large in the system size, our observation could prove valuable in
different directions:

(1) For time ¢ < t* the dynamics of the whole system can be efficiently simulated as
a collection of its subsystems neglecting the gates connecting the different ones
making a negligible error. We highlight that a similar idea has been already
proposed to perform digital quantum evolution more efficiently [194], although
for generic systems it is necessary to keep track of the terms connecting the
different regions.

(2) Separability up to time t* justifies the investigation of smaller system sizes in
order to grasp the behavior of larger ones. Specifically, from Eq. (4.5), the
dynamics of a product state given by N cluster is completely encoded looking
at the dynamics of A single-cluster states up to time ¢*.

Based on (2), we now investigate the time-complexity in simulating the time evolution
of single-cluster states. We will show that such investigation not only will confirm
the observed time-complexity in the previous sections, but also allow us to identify a
class of area-law states responsible for such behavior. This will provide evidence of the
sensitivity of our complexity-oriented proxy to non-thermal eigenstates.

4.4.6. Localization at finite energy-density

Following the conclusions of the previous section, we investigate the time-complexity of
simulating the dynamics of the kink states

k) = |1)* ®00...0). (4.7)
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FIGURE 4.6. Time-complexity of evolving kink states |k) =
®%_1[1) ®,,, ®|0) with & € [1, N/2]. Polynomial and exponential fits
are performed to determine the complexity of simulating these states.
(a) Relative error d./, between the exponential and polynomial fits as a.
function of energy density € and s. For d./, < 1, the state is ‘hard’ to sim-
ulate. Conversely, for ./, > 1, the state is ‘easy’ to simulate. We see a
complexity trend similar to the one observed in Fig. 4.3(a), signaling that
most of the complexity of simulating product states could be understood
in terms of the evolution of kink states. (b) Dynamics of xmax for kink
states with varying k, in the delocalized (s = —0.5) regime and in the
localized (s = 0.5) regime. In the delocalized regime, states are ‘hard’
to simulate irrespective of k. Instead, in the localized regime, k has a
huge impact on the time-complexity. The results were obtained setting
N = 30 and are not appreciably affected upon increasing N. Image taken
from Ref. [2].

As always for product states in the computational basis, we have a one-to-one cor-
response between k and the energy density €. Since we now have a single state for
each point in the parameter space € vs s, we show in Fig. 4.6 the relative error ¢,/
between the polynomial and the exponential fit performed on the time evolution of the
max bond dimension Xmax(t). If 6,/ > 1, the exponential fit is better, while instead
viceversa if §,. < 1. We observe that the time-complexity of simulating kink states
follows a similar trend as the one observed in Fig. 4.3(a). This signals that, as expected,
the hardest part to simulate is given by regions densely excited, or in other terms the
‘hottest’ regions.

To better understand our observations, we more closely investigate the eigenstates of the
Hamiltonian. In particular, from Exact Diagonalization calculations, we observe that
the kink states in Eq. (4.7) have a large overlap with a limited number of eigenstates
of the Hamiltonian deep in the localized phase. Inspecting more closely the eigenstates
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1/¢

FIGURE 4.7. Inverse of the localization length £ of localized kink eigen-
states (variance of energy < 107°) obtained via DMRG-X [195], as a
function of their energy density € = ((H) — Eunin)/(Emax — Emin) in a
system of size N = 30. The algorithm converges not only at zero energy
density (e = 0), corresponding to the ground state, but also at finite
energy € > 0, indicating the existence of localized kink-states along the
spectrum for s > 0. Image taken from Ref. [2].

with whom the overlap is the largest, we observe that such states have a density profile
similar to a kink state with an additional localized tail on the right edge. We term
these eigenstates as localized kink states. Due to the limited system sizes accessible
via Exact Diagonalization, we further characterize such states resorting to DMRG-X, a
variation of the standard DMRG, which allows finding area-law eigenstates which are
‘near’ (large inner product) to the initial state provided [195]. In our case, we seed the
kink states (cf. Eq. (4.7)) and let the algorithm find the best approximating eigenstate,
setting a maximal bond dimension of 100. For each of these states, the algorithm could
either fail to converge, which we interpret as the absence of a localized kink state, or
converge. In Fig. 4.7 we show the localization length £ of the states for which the algo-
rithm was able to converge (we set as convergence criteria a variance of the Hamiltonian
< 1075). We observe that the algorithm can find a state with € = 0, faithfully reproduc-
ing the results from DMRG, as it corresponds to the ground state of the Hamiltonian.
Additionally, the algorithm can find other localized states at finite energy density as s
increases, corresponding to the localized kink states above introduced. We observe that
¢ is parametrically small in s, while instead it is parametrically large in e.
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Similarly to what has been done in Ref. [151], we could use the localized kink to-
gether with empty strings as building blocks for defining a large class of states close
to eigenstates of the Hamiltonian for larger system sizes. To show this, let us name
[5¥) the localized kink-states, with & the number of excitations in the kink and N the
system size. First of all, we observe that the state

E) = [BY) ® [0)° ), (4.8)
with support on L > N sites, has energy variance
(UL AH|TLY ~ e (BN [y |[kN) ~ e~Se (V-1 (4.9)

which depend solely on the occupation on the last site of the state |¥%), since the
only contribution to the variance comes from the boundary term between |EN ) and the
subsequent string of empty sites. As an exact eigenstate has energy variance equal to
zero, here we aim to make the variance in Eq. (4.9) as small as possible. Since the
variance in Eq. (4.9) is independent on L, it is small if £ > 0, i.e. |EN ) is localized,
and (N — k) > &. Since & does not scale with N, for large N the second condition is
satisfied if /N < 1, which can be fulfilled for £ < ¢N with ¢ < 1 a small constant and
k < NP with p < 1. Recalling the correspondence between the number of excitations
and the average energy, the former case corresponds to states with an extensive energy,
while the latter to states with a sub-extensive one. The bound in k¥ imposed is quite
strict in practice and could be relaxed by observing the exponential dependence of the
variance on (N — k) /€. Specifically, by setting a target variance ¢ in Eq. (4.9), it would
be enough to have (N — k) ~ £log(1/¢).

Having proven that the localized kink states found at finite N are quasi-eigenstates of
larger systems, we can do a step further. Specifically, we could use the states |E) as a
basis for slowly evolving states in a system of size L > N. Allowing k € [0, kyax], where
[0) = |0)®" and kpax corresponds to the maximum number of excitations for which the
system display localization, the number of states we can define is (max + 1)%/~. Let us
call [WE) € {[0N), [TV), ..., |kN, ) }®L/N & state given by the tensor product of localized
kink states. Since [0V) blocks do not contribute to the variance, the only contribution
comes from the states |EN ) with k& > 1, giving

(UL AH|WE) ~ Ze (N=ki)/E < Me=(N—hmme)/E (4.10)

j=1

where M is the number of states |E) with k > 1, and k; is the size of the j-th con-
catenated localized kink state. We highlight that M is potentially unbounded in the
thermodynamic limit, making the variance inevitably large. The energy is given by

(UL H|TE) ~ f: k| H|k;) Zk (4.11)
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We aim to find a trade-off between small variance and finite energy density. To
this aim, let us assume we embed the maximum number of localized states possible,
namely M = L/N, and consider that the kink states embedded have k ~ ¢N, with
¢ < 1. Let us consider the case where N = L%, with a < 1, to which corresponds
M = L' and k ~ cL®. For this parametrization, we have (UL|H|¥L) ~ cL and
(UL AH|WLY < L'~*e~L°/¢ implying that we can have many states with small vari-
ance (and therefore slow dynamics [151]) and finite energy density.

The existence of localized kink states allows us to rationalize the ease of simulating
the dynamics of a large class of initial states also at finite energy density, namely the
ones with ‘large’ empty regions, deep in the localized phase. Indeed, such states have
a large overlap with states given by product states of localized kink states, which we
have shown have small energy variances and are thus slowly evolving. Additionally,
this further provides evidence of the effectiveness of our complexity-oriented quantity
for detecting the presence of thermal and non-thermal eigenstates. However, we ob-
serve that the localized states here identified do not allow us to explain the dynamics
of all the product states simulated. Indeed, based on our numerical results, we do not
find localized kink states at large energy density for s < 1, while instead looking at
time-complexity as well as small system size exact diagonalization (cf. Fig. 4.1) we
would argue that non-thermal eigenstates should exist. This opens up the possibility
that non-thermal eigenstates qualitatively different from localized kink states exist. We
leave this as a possible direction for future investigation.

4.5. CONNECTION WITH RANDOM UNITARY CIRCUITS

The results obtained in the quantum East model open up the intriguing possibility
that the corresponding quantum circuit could be efficiently simulable as well. More
concretely, the generator of the dynamics could be Trotterized as

T/At T/At
e—iHT _ H e—iHAL H (H e m,,+1At> (4.12)

where the two-sites operator e~this+1At for the quantum East model results equal to

e_iﬁjyj+1At zJ'nJa 1A8/2 —m,At/2 (4]_3)

where J = e~®. By using the definition of the exponential of an operator, together
with ﬁf = n; for k> 0, and (&;”)k =1 for k even, we can write the evolution operator
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exactly as a tilted-CNOT.
e oA U 4 U1
U; =1 — fi; + 7 cos(JAt/2)e A2 (4.14)
Ujj1 =if;6%, sin(JAL/2)e™ At/

This opens up the possibility that a subgroup of such a family of circuits, which does
not belong to Clifford circuits, could be efficiently simulated via classical algorithms.
However, a bit of care is needed, since the circuit does not conserve the energy in the
system, and could thus invalidate the application of our findings. However, we argue
that this is not necessarily the case, since also the Floquet version of the quantum
East model [155] has been shown to display localization. As a consequence, the family
of tilted-CNOTs could be a novel family of circuits that can be simulated efficiently,
alongside Clifford, MBL inspired [172], as well as fractonic random circuits [42, 173].
We reserve a detailed investigation of this for future work.

4.6. DISCUSSION AND PERSPECTIVES

Here, we have proposed a method to probe thermal to non-thermal dynamical phase
transitions by assessing whether simulating the quantum dynamics could be efficiently
computed using classical algorithms. We used tensor networks as classical algorithms,
widely regarded as the most efficient approach for addressing generic one-dimensional
systems, and tested our idea to characterize the dynamical phase transition in the
paradigmatic quantum East model. In doing so, we have identified two different time-
complexity classes, ‘hard’ and ‘easy’. In the (‘easy’) ‘hard’ regime, the bond dimension
scales (sub-)exponentially in time. We have then linked the time-complexity of sim-
ulating the dynamics of product states with the absence of non-thermal eigenstates
when the task is ‘hard,’ or their presence when the task is ‘easy.” We have fueled our
hypothesis by inspecting portions of the spectrum of the Hamiltonian. Specifically, we
have identified the class of eigenstates that mostly dictate the dynamics observed, i.e.
localized states at finite energy density, and we have shown their existence in large-s-
cale numerics using DMRG-X, reaching system sizes well beyond the ones accessible
using exact diagonalization. We have also defined another type of complexity, space-
complexity. We have defined space-complexity as (‘hard’) ‘easy’ if the evolved state is
(in)separable in space. In the model at hand the sharp differentiation of active and
inactive regions, typical in any kinetically constrained model, leads to a crossover in
the space-complexity. Specifically, Eq. (4.5) could be read as a dynamical transition in
the accessible Hilbert space upon performing a small error on the state. Intriguingly,
the transition encoded in Eq. (4.5) is reminiscent of the dynamical transition in the
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complexity of performing the so-called Sampling task [196, 197]. The sampling prob-
lem involves the extraction of events according to the probability distribution provided
by the many-body quantum state, and it is widely regarded as a leading contender in
demonstrating provable quantum advantage. Additionally, and more relevant for us,
the sampling problem has gathered attention also for defining novel kinds of dynamical
phase transitions linked to an easy to hard transition during dynamics, which could
already happen in free bosons systems in a lattice [198]. Specifically, in Ref. [198], it
was considered free bosons sparsely located along a lattice: for times smaller than the
time at which particle interfere, controlled by the Lieb-Robinson bound, the task is easy
as quantum particles behave as distinguishable classical ones; for larger times than the
interference time the task becomes hard, as interference between particles can no longer
be disregarded. This strongly resembles the transition encoded in Eq. (4.5).

4.6.1. Future directions

Our results open up several possible directions: (i) use time-complexity for detecting
the properties of the eigenstates in other systems, such as MBL. This would allow
to reach larger scale systems than the one accessible to exact diagonalization, and
thus aid the extraction of properties (i.e. non-thermal nature of the spectrum) in the
thermodynamic limit; (ii) use space-complexity for investigating the connectivity and
properties of the Hilbert space, such as the presence of extreme slowdown in the explo-
ration of the Hilbert space which reflects in slow thermalization [199]; (iii) application
of more formal complexity theoretical arguments in discussing the sampling task in
kinetically constrained models, in a fashion reminiscent of what has been done in MBL
systems [187]; (iv) investigate the circuit version of other kinetically constrained mod-
els (e.g. the Fredrickson-Andersen model) displaying slow thermalization, so that it
could identify other classes of efficiently simulable circuits. The latter would aid the
identification of tasks that could show a genuine quantum advantage.






CHAPTER 5

Beyond localization: quantum many-body scars, confinement,
and Hilbert space shattering

Most of the content in this Chapter is in:

e “A Rydberg platform for non-ergodic chiral quantum dynamics” (arXiv: 2309.12392;
to appear in Phys. Rev. Letter)
Riccardo J. Valencia-Tortora, Nicola Pancotti, Michael Fleischhauer, Hannes
Bernien, Jamir Marino.

Executive Summary. In the previous Chapters we have discussed non-ergodicity tied
to localization, both at low and finite energy density. However, localization is not the
only way via which thermalization could be impeded. Indeed, in recent years a number
of other mechanisms have been discovered and experimentally observed, such as quan-
tum many-body scars [15, 47, 48, 52, 56, 58, 200], where a few non-thermal excited
states can lead to non-relaxing dynamics; Hilbert space shattering [42], where a set on
nontrivial conserved quantities make the Hilbert space gets shattered in an exponen-
tially large number, in the system size, of disconnected subspaces; confinement induced
by many-body interactions [59, 131, 201, 202], where an emergent attractive potential
between quasi-particles impede the propagation of entanglement in the system. Here,
we will show that upon performing a minimal modification to the nature of the kinetic
constraint in the quantum East model, all these mechanisms can be observed. Specifi-
cally, by making the constraint either tighter or looser, namely, the condition that has to
be fulfilled involves more or fewer surrounding particles, a different ergodicity-breaking
mechanism occurs. Although the choice of the different kinetic constraints may seem
arbitrary at first sight, we will show that the kinetically constrained model proposed
here could be readily realized in current Rydberg atoms platforms. In these platforms,
the different ergodicity-breaking mechanisms could be selected by simply adjusting the
strength of external classical drive fields. We anticipate that this will be the main focus
of Part II.

What is new? All results of this chapter represent novel research results.

Organization of the Chapter

73
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e In Sec. 5.1 we present the model of our interest and enumerate its symmetries
as a function of its parameters.

e In Sec. 5.2 we make a small detour and discuss the concept of Hilbert space
shattering and Krylov-restricted thermalization due to its relevance for the
system here investigated.

e In Sec. 5.3 we discuss the different ergodicity-breaking mechanisms the system
displays in the various parameter regimes.

This Chapter is composed by a rearrangement of the author’s publication [3].

5.1. A UNIVERSAL MODEL FOR DIFFERENT ERGODICITY-BREAKING MECHANISMS

The main focus of the Chapter will be the following Hamiltonian
A Ql A A ~ QZ A A ~
H= o Z 0741 (1 — jp2) + o Z nj0j41Mj+2+
J J

+€ E TLj"‘VNNN E n;njia,
J J

where 7; = (1 — 6%)/2, with 0% the a-Pauli matrix obeying the commutation relation

(5.1)

[6%,64] = 2i0;x67. The kinetically constrained model in Eq. (5.1) could be seen as a
deformation of the quantum East model investigated in Chapter 4. Indeed, if we set

)

Q12 = —e™® and Vann = 0 we recover the quantum East model. The deformations
considered here are not purely theoretically driven but also experimentally motivated,
as the model in Eq. (5.1) can be realized in current Rydberg experiments, as we will
discuss in Part II. Due to its experimentally driven nature, we highlight the presence
of an additional next-nearest neighbor interaction controlled by Vynn, which naturally
appears in Rydberg arrays as a result of the van der Waals interactions between atoms
in the Rydberg state. Additionally, the kinetic constraints are controlled by €2, 5 since,
in the experimental setup we will discuss, they correspond to the Rabi frequencies, i.e.,

strength, of a set of classical drive fields acting on the system.

For clarity, let us explain the action of each kinetic constraint. The term controlled by
; controls spin-flips conditioned on having the previous atom in the |1) state, which
corresponds to the Rydberg state (an electronic state with a large principal quantum
number 2 70) in the experiment, and the following one in the |0) state, which corre-
sponds to the ground state of the atom, taken as a non-Rydberg state (e.g. an electronic
state with a principal quantum number ~ 5). Instead, the term controlled by €2, leads
to spin flips when both neighboring atoms are in the |1) state. More compactly, we
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have
Qlﬁj&;ﬁrl(l — ﬁj+2) : 100 < 110, ( )
5.2
Qzﬁj&f+1’ﬁj+2 : 101 < 111.

As is evident, controlling 2; and 2, allows us to control the nature of the kinetic
constraint and in turn how excitations (|1)) propagate in the system. Specifically, the
first term in Eq. (5.2) controls how strings of excitation (consecutive strings of |1))
shrink and grow. We highlight that such shrink/growth occurs solely on the right edge
of each cluster, since the kinetic constrained term has a notion of directionality (this is
a key feature of the model at hand, as we will further discuss in this Chapter). Instead,
the second term in Eq. (5.2) controls how strings of excitations can merge and split. The
interplay of these two qualitatively different processes will be the focus of this Chapter.
Indeed, we will show that upon tuning the ratio €;/Qs the dynamics not only change
quantitatively, but it displays different forms of ergodicity-breaking mechanisms tied
to the specific constraint at play. Specifically, the system could display non-ergodicity
due to either localization, confinement, or quantum many-body scars depending on the
values of €2 o:

o for )y o # 0 the system inherits the features of the quantum East model (which
is realized for ©; = Q) and could display localization;

e for (; # 0 and 2y = 0, the system displays confinement, namely the excitations
cannot freely spread but they remain spatially confined, impeding in turn the
propagation of entanglement in the system;

e for 21 = 0 and Q5 # 0, we obtain a Hamiltonian which can be connected to the
paradigmatic PXP model, which has been shown to host quantum many-body
scars, namely few non-thermal eigenstates in the spectrum. In the latter case,
the system typically behaves as a generic non-integrable system displaying
fast thermalization for most of initial states. However, this is not the case
for a certain class of initial states, which are of relevance as they could be
easily prepared in experiments, which instead display long-lived oscillations of
various observables (including the fidelity) contrary to what is expected in a
fastly thermalizing system. This behavior has been shown to arise due to the
small fraction of non-thermal eigenstates along the spectrum. Despite their
limited number, these eigenstates exhibit significant overlap with the initial
states, which in turn inherit their non-thermal properties.
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FIGURE 5.1. (a) Sketch of the accessible Hilbert space, at fixed East sym-
metry sector, in a system of size IV as a function of the Rabi frequencies
Q12 (dynamics are initialized in product states). Colors indicate allowed
transitions and they are in one-to-one correspondence with those used for
the drive fields in Fig. 6.1(a). Blank spaces indicate forbidden transitions.
For ©; # 0 and Q2 = 0 strings of excitations can only shrink /expand with-
out merging/splitting, leading to Hilbert space shattering; for s/ # 0,
strings achieve complete mobility, rendering the system ergodic, as any
product state becomes accessible from any other. For Q,/; = 1 we
recover the quantum East model [140, 151]. (b) Dynamics of the den-
sity profile starting from the product state with first half sites excited
(|1)) and the rest in |0) in the shattered (2 = 0) and ergodic regime
(1,2 # 0). Image taken from Ref. [3].

5.1.1. Symmetries of the Hamiltonian

Despite the deformation with respect to the canonical quantum East model investigated
in the previous Chapters, the Hamiltonian in Eq. (5.1) still belongs to the family of
kinetically constrained quantum East models, where dynamics are activated solely to
the right of excited sites. We remind that East models are characterized by a so-called
‘East symmetry’ [151], which implies that empty regions without any excitation to their
left remain frozen. As a consequence, the location of the first excitation encountered
starting from the left edge of the system does not change (see Fig. 6.1 (c)), and the
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Hilbert space splits into N disconnected sectors, with N the system size. We have an
additional tool at our disposal with respect to the quantum East model, namely the
parameters (; 5 (which correspond to the Rabi frequencies of the incident drive fields in
the experimental implementation we propose in Chapter 6). Indeed, once the East sym-
metry sector is specified by the location of the first excitation, we can further shape the
accessible Hilbert space by simply changing the relative power of the drive fields £2; and
Qo (cf. Fig. 5.1(a)), which directly reflects in the mobility of excitations. Specifically,
we anticipate that with a single drive field the East symmetry sector shatters in O(el)
disconnected sectors [174], while when both are active it is irreducible [151], meaning
the dynamics connect all states (see Fig. 5.1). Then, we will illustrate the mechanisms
by which in each regime the onset of thermalization considerably slows down within

each irreducible sector, exhibiting scars, confinement, and localization.

However, before delving into discussing the different regimes, we have mentioned Hilbert
space shattering providing a definition, i.e. a system with an exponentially large num-
ber of disconnected subspaces, yet without further clarifications on its characteristics.
Thus, before delving into discussing the different regimes, we briefly review the notion
of Hilbert space shattering and also Krylov restricted thermalization we will adopt
afterward.

5.2. HILBERT SPACE FRAGMENTATION AND KRYLOV RESTRICTED
THERMALIZATION

In this section we review the notion of Hilbert space fragmentation by briefly summa-
rizing the main properties of fragmented systems, while we refer to, e.g., Ref. [158] for
a more comprehensive and complete discussion.

Given a Hamiltonian H , the Hilbert space H on which it acts can be generally decom-
posed into dynamically disconnected subspaces {H.,}, referred to as Krylov subspaces,
as

Q A
H=CH.  Ha=span e |yn)}, (5.3)
n=1
where @) is the number of Krylov subspaces and

span{e" "y} } = span{|wn), Hlvn), B2[9n), ... } (5.4)

denotes the subspace spanned by the time evolution of the state |¢,,). The states |¢,,) are
chosen so that they are not eigenstates of the Hamiltonian and their Krylov subspaces
are distinct. More concretely, |¢,,) are typically chosen to be product states, as they are



78

the ones more easily accessible experimentally, although recent works are investigating
the case where they are entangled states [152, 174, 203]. In doing such decomposition,
a key question concerns how many Krylov subspaces the system displays, as well as
the properties of each of them. Concerning the number @) of Krylov subspaces, we
can distinguish two main scenarios depending on how () scales with the system size V.
Specifically, we could have

_ {(’)(Np), with p > 0 (5.5)
O(exp(IV))

The first scenario occurs for systems exhibiting no or ‘conventional’ symmetries, where
with ‘conventional’ we mean symmetries that can be written as the sum of local terms
(e.g. U(1) symmetry), or products of one-site unitary (e.g. Zy symmetry). In this case,
the different Krylov subspaces are labeled by the quantum numbers associated with
such symmetries. Instead, in the scenario where Q@ = O(exp(N)) the system is said
to be fragmented, and it occurs when the system displays non-local conserved quanti-
ties [174] (e.g. the presence of bit strings which are invariant under the action of the
Hamiltonian) associated with non-conventional symmetries. See Fig. 5.2 for a pictorial
representation of the structure of the Krylov sectors.

Once the different subspaces are labeled, a relevant question concerns investigating
their properties, such as whether the system thermalizes or not within each Krylov
subspace [204-206]. This is known as Krylov-restricted thermalization, and it will be
the operative definition we will adopt. More specifically, we will investigate whether the
system displays non-ergodicity in the largest irreducible Krylov sector. Indeed, if we do
not resolve the nontrivial symmetries the model displays, we could choose initial states
which has weight in different disconnected sectors. Consequently, we immediately see
that the system cannot thermalize simply because we did not take into account all the
nontrivial symmetries.

5.2.1. Structure of the Hilbert space in our model

As we have given an operative definition of Hilbert space shattering, we now discuss
when the models here considered (cf. Eq. (5.1)) display Hilbert space shattering,.

Given the definition of Hilbert space shattering, we immediately observe that the quan-
tum East model (which we obtain for ; = Qy in Eq. (5.1)) discussed in the previous
Chapters does not display Hilbert space fragmentation. Indeed, it conserves (trivially)
the energy and the location of the first excited site. Given that in a system of size N
there are N different ways in which we can locate the first excited site, we can label
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Regular Quantum
Number Sectors

Thermal

FIGURE 5.2. Schematic depiction of the block diagonal structure of the
Hamiltonian showing the dynamically disconnected ‘Krylov subspaces’ in
systems with (a) conventional symmetries; (b) Hilbert space shattering,
where the Hilbert space gets shattered in an exponentially large number
of sectors; (c) quantum many-body scars, where most of the spectrum

is thermal except for a negligible fraction of states. Image taken from
Ref. [158].

N different Krylov subspaces. Furthermore, each of the Krylov subspaces cannot be
further reduced, namely, it is ergodic, as seeding any product state belonging to such
subspace in Eq. (5.4) allows us to explore the whole subspace. However, the remarkable
aspect is that despite having the possibility to explore an exponentially large Hilbert
space, the way such exploration occurs undergoes a dynamical phase transition between
a regime where this happens fast, to a regime where it occurs extremely slowly impeding
thermalization, as we have shown in Chapter 4.

Instead, if either 2; or €2, are set to zero, the system displays Hilbert space frag-
mentation. Indeed, in such cases, the system admits frozen bit strings, namely strings
which are completely invariant under the action of the Hamiltonian.

Specifically, when ©; = 0 and Q9 # 0 the string |00) is frozen as it can be explicitly
checked:

W65 117512 - )0)510)54a] - ) = .- 10)5]0)j4a] - ) (5.6)
since 712|0) = 0 indendently of the arbitrary quantum state |...).

Instead, when Q; # 0 and Q, = 0, following the same argument, the string |01) is
frozen as can be, again, explicitly checked:

7671 (1 = Aga)| - 10051054l ) = |- 10)511)54a] - ) (5.7)

Additionally, the system conserves also the number of kinks when )y = 0, namely the
Hamiltonian commutes with Q = 3 ; ftj(L="j41) (it counts the number of |10) strings).
In both cases, the presence of frozen bit strings leads to Hilbert space fragmentation.
This can be easily checked in the 23 = 0 case. Indeed, we can first label ~ N dis-
connected subspaces Hy based on the number k of frozen bit strings in the system.
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However, as these strings not only are conserved in number but also their location
(they are frozen), we can further divide the subspaces Hj, just defined based on their
location. Since in a system of size N with k frozen bit strings there is a combinato-
rial number of ways to put them, we see that the number of subspaces we can define
for kK ~ N is exponential in N. We thus have Hilbert space fragmentation as anticipated.

Another defining property of Hilbert space shattering is whether it is weak or strong:
it is strong if the size of the largest irreducible Krylov subspace is a vanishing fraction
of the whole Hilbert space, e.g. it grows polynomially in the system size; instead, it is
weak if the size of the largest irreducible Krylov subspace is a non-vanishing fraction
of the whole Hilbert space, i.e. grows exponentially in the system size. We will see
that the largest irreducible Krylov subspace could be either exponentially large in the
system size (when Q; = 0 and Qs # 0), or increase polynomially in the system size
(when 4 # 0 and Q3 = 0) in the model investigated.

As we have discussed the structure of the Hilbert space in each regime, we now pro-
ceed to show that not only the structure of the Hilbert space changes, but also that
distinct form of ergodicity-breaking mechanisms occur in the largest irreducible Krylov
subspace occur.

5.3. FROM QUANTUM MANY-BODY SCARS TO CONFINEMENT AND LOCALIZATION

In this section, we show how by tuning 2, /Q we can induce a different ergodicity-break-
ing mechanism.

5.3.1. Quantum Many-Body Scars

For ; = 0 and €23 # 0 directionality is lost and a spin flip occurs solely when both
neighboring atoms are excited. Specifically, the Hamiltonian becomes

R X P R <
H= ? ; njaj+1nj+2 +e€ ; n; + VNNN ; n;njta. (5.8)

This model, which we term QXQ-model (see also Ref. [207] for its experimental re-
alization), is reminiscent of the well-known PXP model, in which a spin flip occurs

when both neighboring atoms are in the ground state. Indeed, the PXP model and
N g
i=1%5>
which translates to interchanging |0) <+ |1). This includes Hilbert space shattering [158]

ours share the same physics as they are connected via the transformation U= I
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FIGURE 5.3. Dynamics of the fidelity for 2; = 0 and Q5 # 0. The system
presents scarred eigenstates along its spectrum. As a consequence, for
some special initial states, the system displays long-lived oscillations (left
panel), whose lifetime is affected due to long-range interactions (Vanyn #
0), while instead for generic initial states the system fastly thermalizes as
expected (right panel).

and the presence of quantum many-body scars, which slow down the onset of thermal-
ization when initializing specific states [15, 200]. Specifically, the PXP model (and so
ours) have a spectrum that is mostly thermal except for few non-thermal, i.e. area-law,
eigenstates which are (almost) evenly spaced along the spectrum. As these non-thermal
states are very few, i.e. N+1 with N the system size, in comparison with the abundant
non-thermal one, i.e. ~ 2%, we might expect that they do not play a role in dictat-
ing the properties of the system. This is indeed the case in most cases, as for almost
all initial states the system quickly thermalizes. However, as anticipated, it has been
remarkably observed that upon initializing a certain class of initial states (e.g. Néel
state) revivals, i.e. oscillations of observables where observed [15], incompatible with
fast thermalization (see Fig. 5.3). As the PXP model hosts quantum many-body scars,
this is the case also for our model. Also, as it occurs in the actual Rydberg experiment
where the PXP has been realized, long-range interactions (Vann # 0) contribute to
disrupting the perfect revivals [15].

5.3.2. Hilbert Space Shattering and confinement of excitation

When Q; # 0 and Q5 = 0, the Hamiltonian turns into

L P R N "
H = > ano';:+1 (1 - nj+2) + ean + VNNN Z NjNjy2, (59)
J J J
where strings of consecutive excitations can shrink or grow but not merge or split
(]101)4¥{111)), making the system conserve their number, associated with the conserved
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quantity Q = >_;fij(1 — fj41). Additionally, the directional character of the dynamics
implies that solely the rightmost edge of each string can mode, while instead the leftmost
is fixed. Indeed, the system admits |01) as frozen bit string, as discussed in Sec. 5.2.1,
which corresponds to the leftmost edge of each cluster of excitations. Due to these
constraints, each string of excitations is confined between its left edge and the left edge
of the next one, and no entanglement can be generated between them during dynamics.
As a result, the Hilbert space gets shattered in O(e") disconnected sectors [174], as
discussed in Sec. 5.2.1. Thus, upon initializing a product state (which are the ones
most easily preparable in experiments) made of N -strings of excitations, the whole
physics can be captured by studying the dynamics of A 1-string states. Therefore, we
can focus on the symmetry sector with a single string (Q = 1). A complete basis of
single-kink states is given by |k) = ®?=1 |1) ®;V=k +110). Adopting this basis, and using
the following results:

(q|7;71j42]k) = 8 xb(k — (j +2)),

(q|767,1|k) = 6g-1,40j-1 + Og11,k0k, (5.10)

(q|767 1 Mj42]k) = 0,

by plugging them in the Hamiltonian in Eq. (5.9) represented in the same basis

7 = Y (alA k) g) (K], (5.11)
k.,q
we obtain
A Q N-1 N N
H= ?1 (k) (k + 1] +H.c.)+ezk|k)(k| + Vann Z(k—2)|k)(kz|, (5.12)
k=1 k=1 k=2

where the first term controls the change of the string length, while the second the po-
tential energy proportional to such length. Notice that the size of the Hilbert space
scales polynomially with the system size N, indicating that the system displays strong
Hilbert space shattering. This Hamiltonian is integrable and has been derived in sev-
eral similar scenarios [59, 208-211|. Direct inspection shows that Eq. (5.12) is the well-
known Hamiltonian of an electron in a lattice subjected to a constant electric field [209,
210]. In such condition, it known that the system displays Stark localization [209],
which leads to real-time Bloch oscillations of period Tgioen ~ 27 /(€ + Vann) and
size Lploch ~ §21/(€ + Vann) originating from the rightmost edge of the string. Hence,
excitations and quantum correlations are confined, preventing thermalization, closely
resembling confinement in non-integrable systems [131, 201, 202, 212].

To better observe such dynamical features, in Fig. 5.4 we show the dynamics of a kink
state ®;‘il 1) ®;V=M +110) with M = N/2 excitations, where N is the system size.
Since the accessible Hilbert space by such states grows linearly in N, we can push our
simulations to very large N also using exact diagonalization. For our purposes, N = 30
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FIGURE 5.4. Dynamics in the shattered regime (Qy = 0, see Eq. (5.9))
of an initial kink state ®jﬂi1 1) ®;v= w41 |0) with M = N/2 excitations,
with N the system size in the confined (Vynn > 0, upper panels) and
deconfined one (Vyny = 0, lower panels). When Vynn > 0, the system
displays real-time Bloch oscillations along the surface both at the level of
occupation number, as well as in the entanglement entropy along each cut,
impeding the spread of quantum correlations and thus thermalization.

is enough. As anticipated, when max{|e|, |Vann|} # 0, the system displays confinement
due to emerging real-time Bloch oscillations. We observe that also the entanglement
entropy along each cut displays Bloch oscillation, which demonstrates how quantum
correlations build up solely along the surface and remain confined, impeding thermal-
ization. Instead, when max{|e|,|Vann|} = 0, excitations can freely spread, as well
as the entanglement, and the system quickly thermalizes towards a generalized Gibbs
ensemble, since the system is integrable.
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5.3.3. Quantum FEast model regime

When both drive fields are active (Q; 5 # 0), strings of excitations gain full mobility since
they can shrink, grow, merge, and split (cf. Fig. 5.1(b)). Thus, the accessible Hilbert
space does not shatter and any product state can be dynamically reached by any other at
fixed East symmetry sector [151]. Nonetheless, it is still possible to observe an extreme
slowdown of thermalization. This can be immediately seen by setting Q5/Q; = 1, for
which Eq. (5.1) reduces to the quantum East model investigated in Refs. [140, 151]
apart from additional density-density interactions which do not alter the qualitative
picture. Such model has been shown to display a dynamical transition separating a
fast and slow thermalizing phase [140, 151] due to the competing kinetic term o € and
on-site energy o €. Intuitively, if the kinetic term dominates (£2;2/(2¢) 2 1) strings of
excitations expand and merge ballistically, fastly washing local information of the initial
configuration, while if it is subleading (€2, 2/(2¢) < 1), excitations can expand slowly,
making possible to retrieve information about the initial conditions. Such behavior is
strongly linked to the localization of the ground state and it can be observed for an
exponentially large number, in the system size, of initial states [151]. As the quantum
East model has been the subject of intense investigation in the course of the thesis, we
will further discuss it in Part II in close connection with the experiment where it could
be realized.



Part 11

Realizing ergodicity-breaking mechanisms in
NISQ devices



So far, we have focused on discussing different mechanisms which could hinder the
onset of thermalization, without caring about their actual experimental relevance. In
this part, we aim to show that the mechanisms discussed before could be analogically
simulated in current Noisy-Intermediate-Scale-Quantum (NISQ) devices [9]. At the core
of quantum analog simulations, there is the goal of making the system evolve under the
desired Hamiltonian. To achieve this, the typical approach is based on a combination
of:

e Use the native interactions characterizing the constituents, e.g. dipole-dipole
interactions in Rydberg atoms or capacitive coupling superconducting circuits;

e If a lattice model is desired, embed the desired configuration on the way the
constituents are arranged in space via, for instance, optical lattice and tweezers
for Rydberg atoms, or actually welded on chip for superconducting circuits;

e Manipulate these constituents externally (e.g. via lasers) so that in the regimes
of interest, e.g. small coupling, weak external drive field, far detuned laser from
the atomic transition, and so on, the Hamiltonian effectively behaves as the
target one.

Before continuing, we highlight that analog quantum simulations are not the only path-
way for simulating quantum systems. Indeed, we observe that a major limitation of the
analog approach is the possibility of typically simulating a restricted class of effective
Hamiltonians in a given experimental setup. To overcome such limitations, another
possible route is abandoning the analog approach in favor of the digital one. Such ap-
proach is based on devising a set of quantum gates via which the target Hamiltonian
could be realized by their application. The remarkable aspect is that, if in a given
platform it is possible to engineer a universal set of gates, i.e. a set of gates via which
any other can be approximated with arbitrary accuracy, it is in turn possible to engi-
neer any target Hamiltonian. It is evident that the digital approach offers way more
flexibility with respect to the analog one. However, as it could be guessed, it suffers
of limitations as well. Indeed, it is necessary that the gates have high enough fidelity,
namely they are the desired gates with high accuracy; and are fast with respect to the
typical decoherence time of the system so that you can apply many of them before your
quantum system potentially behaves as a classical one. For this reason, despite being
less flexible, analog quantum simulations are currently and typically more reliable for
simulating a target Hamiltonian with respect to the digital approach.

For such reasons, in this Part, we will focus solely on analog approaches via which
the family of models so far discussed, i.e. the spin/bosonic quantum East models and
variants, can be realized. We highlight that the models we are interested in are kind
of ‘unnatural’ at first glance, since they display interactions that are not symmetric
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under the exchange of constituents. In particular, the kinetic term 7,67, is not sym-
metric under exchanging neighboring sites, contrary to what it is natively available in
nature. In previous works, in order to overcome such issue, some proposals have been
developed based on inducing non-Hermitian (and directional) processes via dissipation
(see e.g. Refs. [213-215]). Instead, here, we will show that such limitation could be
overcome upon relying on purely coherent processes, without the usage of dissipation,
in either Rydberg or superconducting circuits-based platforms. Specifically, this Part
is organized as follows:

e In Chapter 6 we discuss an experimental protocol, realizable in current Ry-
dberg atoms based platforms, via which the kinetically constrained spin-1/2
models can be realized. We achieve this goal by presenting a blueprint for Ry-
dberg atomic arrays featuring chiral interactions that aren’t symmetric when
neighboring atoms are exchanged. Specifically, we consider a one-dimensional
array with a staggered configuration of atomic positions and drive fields. In
such a scenario, each atom can distinguish the neighboring atom on the left
from the one on the right, since they interact with a different strength. Due to
this, we will show that by driving the atoms with drive fields with a suitable fre-
quency, we can selectively make processes resonant towards one direction and
off-resonance towards the other. In summary, due to strong Van-der-Waals
interactions, we can access a regime we term directional antiblockade, wherein
an atom can change its internal state solely when an atom to its right (or left)
becomes excited. As this scheme is scalable in the number of atoms, we can
immediately get access and explore the many-atoms regime.

e In Chapter 7, we trade Rydberg atoms with a one-dimensional array of cou-
pled superconducting circuits with the goal of simulating the bosonic quantum
East model. We abandon the Rydberg platform as embedding a bosonic de-
gree of freedom from spins is hard, while instead superconducting circuits are
well approximated with anharmonic quantum oscillators, whose excitations are
bosonic in nature. Also, in this case, we achieve our goal by driving the system
with external drive fields. However, differently from the Rydberg implemen-
tation, we do not aim to make the desired processes resonant, but the target
Hamiltonian will emerge in the low-energy limit as a result of second-order vir-
tually-mediated processes. We opt for this approach as the parameters needed
are the ones where superconducting circuits based platforms typically operate.






CHAPTER 6

A Rydberg platform for non-ergodic chiral quantum dynamics

Most of the content in this Chapter is in:

e “A Rydberg platform for non-ergodic chiral quantum dynamics” (arXiv: 2309.12392;
to appear in Phys. Rev. Letter)

Executive Summary. In this Chapter, we discuss a Rydberg atoms array based
platform to realize the kinetically constrained spin-1/2 models which have been the
focus of Chapters 4 and 5. Specifically, we will show how to realize the Hamiltonian in
Eq. (5.1), which we rewrite for the sake of understanding

~ Ql Qg
— § s AT A~ A oA o
9 ”jcj-‘rl (1 ”j-i—2) 2 § :”jcj+1nj+2
J J

+€E ’I’Lj"‘VNNN E n;njta,
J J

where 6% is the a-Pauli operator; fi; = (1 — 67)/2; where € o are the Rabi frequencies

(6.1)

of external drive fields; € is the detuning of the frequency of the acting drive fields
from the desired resonant condition; Vynn controls the next-neighbor Van-der-Waals
interactions, naturally present in Rydberg arrays.

As already discussed in Chapter, by tuning €; o (which can be easily done in exper-
iments), is possible to shape the kinetic constraint and in turn activate a different
ergodicity-breaking mechanisms: quantum many-body scars (for Q; = 0 and Qy # 0);
confinement (for ; # 0 and Qy = 0); disorder-free localization (for €, 2 # 0).

These mechanisms have been already discovered prior to our study. However, so far the
experimental realization of each of them requested a taylored implementation. Specifi-
cally, quantum many-body scars [15, 47, 48, 52, 56, 58, 200] were realized in Rydberg
arrays [15] or with superconducting qubits [216]; Hilbert space shattering [42], has been
realized in ultracold atoms [46, 217] confinement of quasi-particles induced by many-
body interactions [59, 131, 201, 202] was observed in trapped-ions [218]. Instead, in our
proposal, these mechanisms are intricately linked to the specific constraints at play and
can thus be controlled and selected by simply adjusting the strength of the external drive
fields. This versatility transforms our platform into a universal quantum simulator for
non-ergodic quantum dynamics. As an additional benefit, our platform allows for the
implementation of the quantum East model [140, 151], which has been absent in prior

89
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studies, albeit several Rydberg implementations have focused on related constrained
models [179-185]. We highlight once again the significance of the quantum East model
lies in its distinction as one of the rare cases where an interacting system undergoes
a disorder-free transition between delocalization and localization in the ground state
and dynamics [151], in a fashion markedly distinct from many-body localization [38, 40].

What is new? All results of this chapter represent novel research results.

Organization of the Chapter

e In Sec. 6.1 we briefly motivate why we choose a Rydberg based platform for
our implementation.

e In Sec. 6.2 we propose an experimental setup of Rydberg atomic arrays fea-
turing chiral interactions that aren’t symmetric when neighboring atoms are
exchanged. Specifically, we consider a one-dimensional array with a staggered
configuration of atomic positions and drive fields (cf. Fig. 6.1(a)). In such a
scenario, due to strong Van-der-Waals interactions, we can access a regime we
term directional antiblockade, wherein an atom can change its internal state
solely when an atom to its right (or left) becomes excited.

e In Sec. 6.3.1 we show the robustness of these mechanisms to experimental
imperfections, like thermal disorder in atomic positions, and provide further
details about the experimental setup needed, which we highlight is currently
available. This opens up its usage in state-of-the-art platforms and for simulat-
ing exotic many-body systems displaying chiral interactions, such as directional
kinetically constrained quantum models (KCMs).

e In Sec. 6.4 we test our scheme in simulating the target many-body systems (cf.
Eq. (6.1)) by direct comparison between the desired result and the one achiev-
able with realistic experimental parameters and limitations, such as limited
accessible time and thermal disorder in the atomic positions.

This Chapter is composed by a rearrangement of the author’s publication [3].

6.1. WHY RYDBERG ATOMS?

As mentioned throughout this thesis, despite being far from full fault-tolerant quantum
computing [9], reliable analog quantum simulations are nowadays attainable across a
variety of atomic, molecular optical (AMO) as well as solid-state platforms. Among
them, atomic Rydberg arrays stand out prominently due to their remarkable degree of
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programmability, as highlighted in various studies [15, 219-222]. This has led to ground-
breaking experiments in areas such as topological order [12, 13|, engineerable quantum
phase transitions [15, 219, 223, 224], lattice gauge theories [201], and strongly correlated
quantum dynamics [15, 17-19]. Such broad flexibility suggests opportunities in design-
ing quantum simulators with no direct counterpart in traditional AMO or condensed
matter physics. A prominent example in such direction is given by the realization of
the PXP model, whose peculiar dynamical properties observed in Ref. [15] sparked con-
siderable interest in the community. In this context, a challenge centers on creating
systems hosting non-reciprocal processes that can differentiate, particularly in one di-
mension, between the flow of information in the right and left directions. Directionality,
already when restricted to single-particle processes, has proven useful in various tasks,
such as mitigating back-action effects [225], realizing chiral transport [226], aiding the
preparation of nontrivial topological states [213, 227-229], and realizing unconventional
phases of matter [138, 230]. Thus, combining directional interactions with the high con-
trol achieved in Rydberg platforms would pave the way for entering the realm of chiral
strongly correlated phenomena as an uncharted frontier of quantum information pro-
cessing [231]. Here, we achieve this goal by presenting a blueprint for Rydberg atomic
arrays featuring chiral interactions that aren’t symmetric when neighboring atoms are
exchanged. While in this thesis we focus on the usage of our mechanisms in simulating
strongly correlated chiral phenomena, of which the quantum East models and varia-
tions constitute a candidate, an interesting direction could be finding ways to harness
such directional for applications in quantum information processing. In such regard,
we highlight a recent study [232] where the mechanism we describe below has been
independently discovered, which could be used in atomtronics.

6.2. CHIRAL INTERACTIONS IN RYDBERG ARRAYS

The key ingredient to engineer a directional interaction is a staggered configuration
of the atomic spacings and drive fields in a Rydberg array (cf. Fig. 6.1(a)). The
Hamiltonian describing such scenario, in the rotating frame with respect to the bare
atomic transitions, can be written as

N

N 1 )

H(t)=) (5 (Qu,;(t) + (1) 67 + H.c.) +
=1

N_o (6.2)

+V Z N1 + Va Z MjMj+1 + VNNN E 12,

jodd jeven j=1
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where &7 = [1);;(0| transfers the j-th atom from the ground state |0) to the Rydberg
state |1); f; = |1);;(1|; Q1,;(t) and Q9(¢) are classical drive fields controllable in the
experiment with Rabi frequencies {; and 2, respectively; V; (V3) are Van-der-Waals
interactions (V(r) = Cg/r®) on odd (even) bonds; Vinn is the next-nearest neighbor
interaction. Throughout, we work in the regime |Vio|,|Vi — Vo| > Q12 > Vann. In
this regime, interactions play a crucial role in dictating the dynamics of the single
atom. Specifically, two extreme scenarios can be realized: excited atoms either inhibit
spin-flips of neighboring ones (blockade) [233], or facilitate them (antiblockade) [234].
The blockade condition occurs by setting the drive field resonant with the bare atomic
transitions so that the interaction energy due to a neighboring excited atom makes it
off-resonant. Instead, the antiblockade occurs when the acting drive field is detuned
from the bare atomic transitions by the interaction, and thus it becomes resonant solely
if a neighboring atom is excited. In translational invariant systems, each atom cannot
distinguish its right neighbor from the one to its left, and so no preferable direction
can appear. In our scheme instead, since V; # V3, the atom can distinguish the two
neighboring atoms and we can selectively make processes resonant towards one direction
and off-resonance towards the other. We term this mechanism directional antiblockade,
which implies that an atom can flip only when an atom to its right (or left) is excited.
To achieve this regime, it is enough to apply a single drive field on each atom, and so we
temporarily set {2 = 0. We now discuss two possible experimental regimes where the
desired condition could be realized. Then, we provide further details on the experiment.

6.2.1. First scheme for obtaining directional antiblockade

A possible scheme is based on imprinting an additional staggered configuration in the
drive field frequencies of 2y ;(¢). Specifically, we can set the drive field on site j detuned
by V1 (if j is even) or V5 (if 7 is odd) from the bare atomic transition, so that it is resonant
solely when the atom to its left is excited and the one to its right is not, obtaining the
anticipated directional antiblockade (see Fig. 6.1(b)). Specifically, we set

—iat j even

e
Q:(t) = % ) 6.3
3(t) =t {e_Mt, j odd. (6.3)

The net result is that an excitation seeded in the system triggers an avalanche of
excitations solely towards ‘East’ (see Fig. 6.1(c)).
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FIGURE 6.1. (a): An array of Rydberg atoms in a staggered configura-
tion of drive fields (each color refers to a different frequency) and spac-
ings r; and 79, with corresponding nearest-neighbor interactions V; and
Va. (b): Scheme of the most resonant processes (see box) which happen
exclusively at the right of excited atoms due to the directional antiblock-
ade. (c): Dynamics of the density profile seeding a single excitation and
including thermal disorder in the atomic positions 7, = 0.012 (see text).
(d): Dynamics of the imbalances Zg,s; (continuous line) and Zyyes (dashed
line) starting from the same state as in (c) for different values of 7,. The
imbalance Zgas; (Zwest) is defined as the sum of the average occupations
to the right (left) of the initial seeded excitation. Excitations propagate
preferably towards ‘East’ as desired (Zgas; > Zwess) despite finite temper-
ature effects. Image taken from Ref. [3].

6.2.2. Second scheme for obtaining directional antiblockade

Here we discuss a different, but equivalent, route for obtaining the directional antiblock-
ade condition. Given Eq. (6.2), we set again (3 = 0 as it is not necessary for this pur-
pose. In Sec. 6.2.1 we have discussed a scheme based on a staggered configuration in the
atomic distances and drive field frequencies driving the atoms. Here, we retain the es-
sential ingredient of a staggered configuration in the atomic spacings. However, instead
of imprinting the staggered configuration on the drive field frequencies, which we set to
be homogeneous in space, we impose the staggered configuration on the atomic tran-
sition frequencies. This condition could be achieved by site-resolved light shifts [235].
Specifically, we set the atomic transition frequencies to be detuned by —V; from the
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drive field when j is even and by —V, when j is odd. In this manner, the directional
antiblockade condition discussed in the main text emerges, as the drive field acting on
the j-th atom is resonant only when the (j — 1)-th atom is excited. This can be seen
explicitly writing the Hamiltonian in the rotating frame with respect to the drive field,
which is given by

N 0 N N-2
2 N 1 e A A A
H=-— E V}_l,jnj + 7 O'j + Vi E niNjr1 + V,z E UIUZES] + VNNN E U EDE
j=1 Jj=1 jodd j even j=1

(6.4)
From Eq. (6.4), it can be seen that if the (j — 1)-th is excited, the energy shift cancels
the contribution from the first term on the j-th atom, making the acting drive field
resonant and able to induce a spin-flip.

6.2.3. Derivation of the effective theory with both sets of drive fields

As we have discussed the experimental protocol needed to achieve the desired direc-
tionality, we here show how in such regimes the family of KCMs contained in Eq. (6.1)
can be realized. Given the Hamiltonian in Eq. (6.2), we set () = Qe #(Vi-1i—)t
and Qy(t) = Qe +%2-9  where € is a (small) detuning from the desired resonant
condition, obtaining

N

. I -

H(it)=) [5 (e V1379 4 Qe itV 5ty H-C-] +
i=1

Ne3 (6.5)
+W E it + Va E fiNj11 + Vann E 42,
jodd jeven j=1

To obtain the effective Hamiltonian, we pass in interaction picture Hy.=UHU — ﬁo
with

N N-1
U= exp [—ZHot] y H() = —EZ’fI/j + Z V}',j+1’nj’nj+1. (66)
j=1 j=1

We have
e—iezj ﬁjto_;-e’l:EEj fijt e—ie|1)(1|t|1><0|eizj AGIN1LE e—ieta;-, (67)
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and, exploiting ¥ = A; for k € N*, we have

e+’i > ‘/j—l,j'ﬁj—lﬁjta-;l‘e—": 25 Vim1,if—1fyt _ e+iVi—1,iﬁi—1ta.zji-e+iVi,i+1ﬁi+1t

= (Viet)* ) . | = (iViipad)® \
1+ (Z —( k:;, ) ) m—1] Ui+ 1+ (Z —( ’]:"1 ) ) n’i-l—l]
k=1 ’ ’

k=1
= [1 + (6+iVi_1’it — 1) ’fbi_l] Az_ [1 + (6+iVi’i+1t — 1) ’fL,;+1]

= <Pz'—1 + 6+M‘1"t’ﬁi—1) &7 (Pi+1 + 6+Zw’i+1tﬁi+1)

(6.8)

where we have introduced P, = (1—1;) (projector on the vacuum |0);;(|). Thus, paying
attention to the boundary terms, the Hamiltonian in interaction picture is given by

N 1 , ] N )
s = 5 { (e 4+ e ) 6 (B + ¥ty ) + Hec. | +
1 N—-1
+ 5 {(Qle_ivj_l’jt + Qze_i(V1+V2)t) (Pj_l + 6+iVj_1’jt’fI,j_1) 6’;_ (Pj+1 + 6+iVj’j+1tﬁj+1) + HC} +
=2
1 , ) ~ ,
4+ 5 (Qle—’LVN—l,Nt + Q2e—l(V1+V2)t) (PN—l 4+ e+’LVN—1,Nt,fLN_1) a-]-\i-] + H.C.} +

N N-2
+€ Z ’fbj + VNN Z ﬁjﬁj_l_z.
j=1 j=1
(6.9)

Given Eq. (6.9), after performing the RWA in the limit |V; — V5|, V12 > |Q4 5|, keeping
the most resonant processes (the ones without any time dependence), we obtain

v . N Qo sz o
H="3 650 (1= fija) + 5 Y 267t
' j

J
+e€ E n; + VNNN E niNjt2,
J J

which is the desired target Hamiltonian (cf. Eq. (6.1)).

(6.10)

6.3. DETAILS ON THE EXPERIMENTAL SETUP

Here we provide additional details on how to generate the staggered atomic array and
drive fields scheme needed to induce the directional antiblockade described in the main
text. The atomic array could be produced by trapping the atoms in optical tweezers.
Generating these beams using acousto-optic deflectors (AOD) or spatial light modu-
lators (SLM) would allow us to achieve the desired bipartite spacing. An undesired
effect due to the trapping potentials holding the atoms is a shift in the atomic energies.
Specifically, we can distinguish two components: the intensity variation from trap to
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trap, and the atomic motion inside the trap, which causes it to sample different inten-
sities/AC Stark shifts in different shots of the experiment. Such effects could mildly
compromise the desired antiblockade condition. However, unlike other experimental
imperfections such as thermal disorder in the atomic positions (which we have taken
into account), it is possible to completely eliminate this shift by switching the traps off
entirely during the Rydberg driving [15]. This technique eliminates all potential AC
Stark shifts and remains effective for approximately 10 us of evolution time, which is
the maximum time discussed in our work. With respect to the desired staggered config-
uration in the drive field frequencies, the latter could be applied to the atoms through
the same microscope objective used for the optical tweezers [236]. This, in combination
with spatial light modulators (SLM) for the driving beams, would allow the generation
of the desired staggered pattern in the drive fields frequencies, i.e., Q; ;(t) = Q1eVi-1t)
with Q; as a constant. Additionally, the uniform drive field Qy(t) = Qe!"1+V2) with
25 as a constant, could also be sent through the microscope objective.

6.3.1. Experimental feasibility

In actual experiments, the directional antiblockade could be spoiled by finite temper-
ature fluctuations, inhomogeneities due to the harmonic frequency trap holding the
atoms, or dephasing coming from finite laser linewidth. The first two can be taken into
account including quenched disorder in the atomic positions [237]. Specifically, at low
enough temperature T', the displacements dr; from the ideal atomic positions are con-
stant during a single experimental realization and distributed accordingly to a Gaussian
distribution with zero average and width n, = \/kgT/(mw2) along the a—axis, with
W, the trapping frequency and m the atomic mass. Instead, dephasing induced by
finite linewidth of the laser can be modeled by a Lindblad master equation with jump
operators ij = /yh%, with j € [I, N]. Yet, in our setup, we work in regimes where
~v ~ 10 kHz is at least two orders of magnitudes smaller than the other energy scales,
and therefore it can be neglected. Specifically, we will show results up to a time of
10 s, where the dynamics can be considered purely coherent as also spontaneous decay
from the Rydberg state can be neglected. We elaborate further in the conclusions and
Supplemental Material on the opposite limit, where dephasing is large, illustrating how
our scheme readily enables us to investigate ‘classical’ non-ergodic dynamics with direc-
tional character. For concreteness, we consider 8Rb atoms located along the z-axis, at
temperature 1" = 3K and optical traps with w, = w, = 5 Xxw, = 40kHz, which give rise
to an anisotropic disorder 7, = 1, =1,/5 ~ 0.1 um. We consider the atomic level 705
as Rydberg state which has Cs/(27) = 864 GHz/(um)®. In the following, we measure
disorder as the relative variation with respect to the mean distance, namely 7, = 1,/71.
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We consider Rabi frequencies €2; 5 in the range between 27 x 1 MHz and 27 x 5 MHz.
For this set of parameters, we found a good compromise between fast dynamics, small
impact of disorder, and 2 » <V j+1, the average spacings r = 6.2pm and r, = 5.4pum
(for which 7, =~ 0.01), to which corresponds interactions V;/(27) = (15.0 £ 1.0) MHz
and V2/(27) = (30.0 + 2.2) MHz, respectively, and Vann/(27) = (0.33 £ 0.02) MHz.
We note that disorder could be reduced by setting the atoms more far apart from each
other, at the expense of a smaller (2, 5 in order to still work in the strongly interacting
regime, which in turn would lead to the observation of fewer cycles in the time window
of 10us considered. Despite we show results mostly in this parameters’ regime, we keep
7)o as a free parameter to explore different experimental scenarios. In the following, we
show results averaged over 50 realizations of disorder, for which statistical errors are
~ 1% or less. As it can be seen in Fig. 6.1(c-d), the main impact of disorder is a reduc-
tion of the propagating front, while its directional character is not appreciably spoiled.
Having shown the robustness of our scheme, we now proceed to discuss some models
immediately accessible by simply tuning the strength of the external drive fields.

6.4. COMPARISON BETWEEN THE FULL MODEL AND THE EFFECTIVE ONE

We have discussed how chiral interactions between Rydberg atoms could be realized
and provide details on the experimental setup needed for such a purpose. In doing so,
we have also discussed the impact of disorder in the atomic positions due to the finite
temperature in the setups. Despite the disorder contributes to impeding the spread of
excitations in the system, in this section we show that the different ergodicity-breaking
mechanisms are quantitatively affected, but not qualitatively. In our discussion, we
focus on the QXP and quantum East model, as the features of the QX(Q model are the
same as the PXP model, which has been already realized in experiments.

6.4.1. Confinement (Q2/Q =0)

In this regime, strings of excitations can only expand or shrink, making the dynamics
occur solely along the surface. Thus, to better observe such dynamical features, we
initialize a kink state @7, |1) @/, 10) with M = N/2 excitations, where N is
the system size, set to be N > 50 (see Fig. 6.2). Simulations of the effective theory
(cf. Eq. (6.10)) can be efficiently carried out using Exact Diagonalization upon writing
it in the kink basis (cf. Eq. (5.12)). Instead, we employ Tensor Network methods for
simulating the full theory (cf. Eq. (6.2)). As stated in the main text, the system displays
confinement due to emerging real-time Bloch oscillations with a period T = 27 /Vynn
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and width £ ~ Q;/Vynn. In the full theory, such oscillations are still present, although
suppressed due to quenched disorder in the atomic positions.

For completeness, we also show the dynamics of the entanglement entropy along each
cut to demonstrate how quantum correlation builds up solely along the surface and
remains confined, impeding thermalization.

() full theory (7, = 0.012

(2) effective theory

effective theory  (Dfull theory (7, = 0.012) S

0.75

t(ps)

0.50

0.25

1 20 40 60 80 1001 10 20 30 40 50 ’ 1 20 40 60 8 1001 10 20 30 40 50
j J g J

FIGURE 6.2. Dynamics in the confined regime ({22 = 0) of an initial kink
state ®J1Vil 1) ®;V= a1 [0) with M = N/2 excitations, with IV the system
size. We compare the dynamics obtained in the ideal regime, where the
effective theory (cf. Eq. (5.12)) is exact, with a realistic experimental
scenario (cf. Eq. (6.2)) including positional disorder 7 due to thermal
fluctuations. The system displays real-time Bloch oscillations along the
surface both at the level of occupation number (a,b), as well as in the
entanglement entropy along each cut (c,d). Parameters: Q;/V; = 0.2,
Vo/Vi =2, e=0, V; =2r x 15 MHz. Image taken from Ref. [3].

6.4.2. ‘Quantum East Model’ (1/% #0)

When both drive fields are active (€ 2 # 0), strings of excitations gain full mobility since
they can shrink, grow, merge, and split (cf. Fig. 5.1(b)). Thus, the accessible Hilbert
space does not shatter and any product state can be dynamically reached by any other
at fixed East symmetry sector [151]. As a first comparison, we consider as initial state
one with a single seeded excitation (cf. Fig. 6.3). We observe, similar to the confined
regime, a propagating front of excitations towards the East, with additional oscillations
in the bulk, attributed to the presence of ‘string-breaking terms.’ The oscillations are
influenced by the strength of the external drive field, exhibiting a period ~ s (which is
the Rabi frequency of the global drive controlling the ‘string-breaking’ processes) and
amplitudes of near order 1.
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FIGURE 6.3. Dynamics in the ‘quantum East model’ regime (£2; /s = 1)
of an initial seeded excitations. We compare the dynamics obtained in the
ideal regime, where the effective theory (cf. Eq. (6.10)) is exact, with a re-
alistic experimental scenario (cf. Eq. (6.2)) including positional disorder
1 due to thermal fluctuations. The system displays both a propagating
front of excitations towards the East as well as oscillations in the bulk
(a,b). In (c) we show some vertical cuts of the heatmaps (a,b) for clarity,
comparing the effective theory (dashed line) with the full theory (contin-
uous line) upon averaging 100 disorder realizations. The shaded areas
around the continuous lines are the statistical errors due to the finite
number of sampled trajectories. Parameters: ;5/Vi = 0.2, V2/V1 = 2,
e =0, V1 = 2m x 15 MHz. Image taken from Ref. [3].

6.4.3. Localization in the full theory

As extensively discussed, the quantum East model has been shown to display a dy-
namical transition separating a fast and slow thermalizing phase [140, 151] due to
the competing kinetic term oc {2 and on-site energy o e. Intuitively, if the kinetic
term dominates (€2 2/(2¢) 2 1) strings of excitations expand and merge ballistically,
fastly washing local information of the initial configuration, while if it is subleading
(©1,2/(2€) < 1), excitations can expand slowly, making possible to retrieve informa-
tion about the initial conditions. Upon introducing thermal disorder 7,, the picture
is slightly affected. Indeed, 7, can already induce undesired mismatches from the per-
fect resonant directional antiblockade condition. Thus, we expect the dynamics to be
dictated by the competition of {2 and the joint contribution of 7, and €. We test this
by initializing a representative high-temperature product state characterized by regions
with low and high densities of excitations. In the slow phase, heterogeneity in the initial
state plays a crucial role in dictating the dynamics up to very long times, in contrast
with typical fast thermalizing systems where all local information is quickly lost except
for global conserved quantities. We chose as a proxy for distinguishing the different
dynamical phases the autocorrelation function [138, 151]

C(H) = 2 Y (s00) - 1, (6.11)
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FIGURE 6.4. Dynamics in the quantum East model of Refs. [140, 151]
(Q12 = Q) in the full theory (cf. Eq. (6.2)) initializing the state
|01010001110). (a-b): Time-averaged autocorrelation function C(¢*) at
time t* = 10us keeping fixed either thermal disorder 7, or detuning e,
respectively. For small €2 the memory of the initial state is kept up to
long times (C(t*) > 0), while instead for large Q the memory of the initial
state is rapidly washed out (C(t*) =~ 0). (c): Dynamics of the density
profile in the two phases (marked via symbols in (b)) at fixed thermal
disorder 7, = 0.012 in units of the average spacing 71 = 6.2 um (see text).
Image taken from Ref. [3].

where Z = ) _.(7;(0)) is a normalization constant. For the initial product state con-
sidered, C(t) is the density of the initially occupied sites at time %, to which we sub-
tract an evenly distributed ‘background’ corresponding to an infinite temperature state,
(n;) = 1/2. Thus, C(t) serves as a good proxy for the memory of initial conditions,
as its initial value is C(¢ = 0) = 1 and tends to zero when the system thermalizes.
In Fig. 6.4(a-b) we show the time-average C(t*) = fot* C(7)dr/t* up to experimentally
accessible time windows using the full theory (cf. Eq. (6.2)) in two scenarios: either
keeping fixed the thermal disorder and varying €, or vice versa. As anticipated, both
€ and 1), contribute to slowing down dynamics. Indeed, in both dynamical phase di-
agrams, we can distinguish a phase where the system retains memory of the initial
state and a phase where the system quickly thermalizes and all local memory is quickly
erased.

6.5. TUNING THE DEGREE OF CHIRALITY AND THE CLASSICAL REGIME

In this Chapter, we have proposed a scheme for realizing chiral interactions in Rydberg
arrays by means of a directional antiblockade condition, namely an atom can change its
internal state only if the atom to its right (or left) is excited. Our scheme is based on
‘energetic’ arguments and gives rise to constrained interactions. While we have focused
on the strictly unidirectional regime in the previous sections, we highlight that the
degree of chirality in the interactions can be tuned by relaxing the condition AV =
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Vi — Vo| > Q. Specifically, for 0 < AV/Q < 1, dynamics still has a preferable
direction, but there are near-resonant processes towards the other as well (similarly to
other Rydberg proposals [238, 239]). This offers a path for accessing regimes with a
tunable bias towards one direction or the other. As an extreme example, in the zero
bias case (AV = 0), and by setting ; = /2, we can effectively simulate the quantum
Fredrickson-Andersen model [139, 240] with Hamiltonian

H=0) (63041 +0;651) + €Dy (6.12)
J J

6.5.1. Classical rate equations

Our protocol could be readily extended in the presence of dominant classical noise. In
such regime, dynamics is effectively described by rate equations, with rates dependent
on the detunings, interactions, and atomic configuration [179, 181], opening up to the
simulation of dissipative uni-directional spin dynamics. Let us restrict for simplicity to
the single drive field regime setting {23 = 0. We keep the detuning A; of the drive field
frequency from the bare atomic transition as a free parameter for generality. In the
rotating frame with respect to the drive fields, the starting Hamiltonian is given by

N N
A . Q R | R
HZZAj’nj-FEZUj +§ZV},jnmj. (613)
Jj=1 Jj=1 %,

Due to the presence of dephasing, the full dynamics of the state p is given by the
Lindblad master equation

~ TET A N AN 1 A 3
0up = —ilH,pl+7) (njpnj - 5{%9}) (6.14)
j

In the previous sections, we have worked in the regime v < 2. Now, we work in the
opposite regime v > (). In this regime, we can distinguish fast and slow processes: the
fast processes are controlled by the interacting part of the Hamiltonian and the dissipa-
tive process; the slow processes are controlled by the external drive fields. Projecting
out the fast dynamics (see Ref. [179] for the derivation), the dynamics of the projected
state [i is governed by

AP o
O = — > Ty (63065 — i), (6.15)
J
with rates dependent on the parameters of the Hamiltonian, dissipation, and atomic
configuration
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Let us focus on a specific site j and fix the staggered configuration in the potentials dis-
cussed in the main text. Keeping up to nearest-neighbour terms, the rate in Eq. (6.16)
turns into

(6.17)

A;+ Vi + V2'ﬁ/j+1)2
")I )
where we have assumed V;_;; = Vi and V; ;41 = Vs, without losing generality. As

-1 __
I; _1+4(

evident, the rate I'; depends on the atomic configuration and A;. We aim to show that
the rates are not symmetric under the exchange of the pair of excitations (5 — 1) «+
(j +1). To do so, in Fig. 6.5(a) we show the rate as a function of A; for V2 =2 x V;
in the non-symmetric scenarios, namely n;_; = 1, n;y; = 0 and viceversa. It is evident
that at fixed parameters, the rates are generally not symmetric as desired for V; # V;
(except for a fine-tuned value of A; at which the curves cross). As in the coherent case,
the degree of directionality can be tuned via |V; — V5| and A (cf. Fig. 6.5(b)).

o
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FIGURE 6.5. (a) Rate I'; (cf. Eq. (6.17)) at fixed V5/V; = 2 and atomic
configurations (values of n;_; and nj+1). As evident, the rate is not
symmetric under the exchange of neighboring atoms (the two curves do
not overlap). (b) Ratio of the rates I'; in the two scenario n;_; = 1,
nj+1 = 0 and viceversa at fixed A; = —Vj. In the symmetric case (V; =
V2) no notion of directionality appears (I';(1,0)/I';(0,1) = 1). Instead,
for Vi # V4, rates display ‘chiral’ features (I';(1,0)/I';(0,1) # 1). The
‘chirality’ can be readily tuned by simply changing the ratio V7 /V5, or the
detuning A;. In all the calculations we have set v/V; = 1. Image taken
from Ref. [3].



CHAPTER 7

Non-ergodic quantum dynamics in superconducting circuits

Most of the content in this Chapter is in:

e “Kinetically Constrained Quantum Dynamics in Superconducting Circuits” (PRX
Quantum 3, 020346 (2022))
Riccardo J. Valencia-Tortora, Nicola Pancotti, Jamir Marino.

Executive Summary. In this Chapter we discuss an analog quantum simulator of
the the bosonic quantum East model discussed in Chapter 3 based on superconducting
circuits. Specifically, we will show how to realize the following Hamiltonian

L
1 Z [ s (A . . N
H = —5 n; [6 (ajH + a;r-+1) — €&n; — Unj+1 — 1] y (71)
J=0

Our proposal is based on considering a chain of superconducting circuits coupled via
simple hopping which can transfer excitations from one superconducting circuit to the
neighboring one, which could be realized either via a direct capacitive coupling or via a
common resonator, subjected to a suitable set of drive fields. We will show that, in the
limit of weak coupling and low anharmonicity, we find an effective description of such
superconducting qubits array in terms of the bosonic quantum East chain.

What is new? All results of this chapter represent novel research results.

Organization of the Chapter

e In Sec. 7.1 we briefly motivate why we choose a superconducting based platform
for our implementation.

e In Sec. 7.2 we provide the details about the superconducting circuits based
setup on which we can analogically implement the bosonic quantum East model

(cf. Eq. (7.1)).

This Chapter is composed by a rearrangement of the author’s publication [1].
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7.1. WHY SUPERCONDUCTING CIRCUITS?

In recent years, unprecedented quantum control of interacting superconducting qubits
with microwave photons has been reached in circuit-QED platforms [164, 241-248].
These circuits allow quantum-information-processing tasks and the quantum simulation
of paradigmatic light-matter interfaces. Superconducting Josephson junctions allows us
to introduce nonlinearity in quantum electrical circuits, which is a key factor in protect-
ing quantum resources, by making these platforms resilient to noise and errors. This is
a key factor of merit for any superconducting qubit, ranging from the established trans-
mon to, for instance, the more recently developed superconducting nonlinear asymmet-
ric inductive element (SNAIL) [249, 250]. Here, we consider a chain of superconducting
circuits (see Refs. [249, 251-258]), which can be described as anharmonic oscillators,
coupled via a hopping term (cf. Fig. 7.1). In the limit of weak coupling and low anhar-
monicity, we find an effective description of such superconducting qubits array in terms
of the bosonic quantum East chain.

7.2. REALIZATION OF THE BOSONIC QUANTUM EAST MODEL IN
SUPERCONDUCTING CIRCUITS

Here, we propose an experimental implementation of the Hamiltonian in Eq. (3.1),
namely

L
1y [=s (4 . . .
H= —3 J§=0 v [e (aj+1 + a}H) —enj — Unjpq — 1] ) (7.2)

in terms of a simple superconducting-circuit setup. To this aim, we consider a chain of
driven superconducting circuits.

A superconducting circuit is basically a quantized LC' oscillator with capacitance C'
and nonlinear inductance L [164]. This nonlinear dependence can be achieved via a
Josephson junction working in the superconducting regime without introducing unde-
sired dissipative effects [164, 259, 260]. In particular, we consider here the SNAIL
introduced in Ref. [250] as our building block. We consider specifically the SNAIL
parameters in Ref. [261], where kinetically constrained terms (at just two sites) are ob-
tained using the second-order nonlinearity oc (a'a'a + h.c.) of the SNAILs. Differently
from Ref. [261], we do not use the second-order nonlinearity of SNAILs. Indeed, any
superconducting circuit that can be approximated as an anharmonic oscillator with
positive anharmonicity could be a suitable candidate for our setup (e.g., the C-shunt
flux qubit [262]).
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FIGURE 7.1. (a): A chain of driven superconducting qubits coupled via
exchange interaction g. In the red box we write the low-energy effective
interaction between the j-th and (j+1)-th superconducting qubits. (b): A
sketch of a localized state subject to external noise (arrows). The visibility
of the initial peak with respect to the rest of the system (measured by the
imbalance Z(t)) decays exponentially with a time 7 much larger than the

characteristic operational timescales of state-of-the-art superconducting
circuits. Image taken from Ref. [1].

"
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We consider an array of L driven superconducting circuits (SC) coupled via an exchange
interaction as our starting point (see Fig. 7.1(a) for a scheme). In typical setups, the SC
is used in regimes where it can be well approximated by a two-level system. This can
be done as a result of the non-linearity, which makes its energy levels not evenly spaced
in energy. As a result, it is possible to selectively make some levels participate more in
the dynamics with respect to others, which in turn makes truncating the unbounded
spectrum with a bounded one a not-so-rough approximation. However, in our proposal,
we retain all the energy levels of each SC circuit. The Hamiltonian can be decomposed
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as a sum of three terms, H = Hy + Hgive + V, where

Stats
Hy = E wja a;+ aja]ajaj,

L1
Hirive =Z it (Qj&;[ + ej+1d;[+1) + h.c., (7.3)
j=1

L-1
V=3¢ (aja}H + h.c.),
j=1

where &T (@;) creates (destroys) an excitation in the j-th SC qubit; Hy is the bare Hamil-
and anharmonicity E¢ > 0 [164];
Hg,ive describes the action of classical drive fields on the bare SC qubits; and V' describes

tonian of the SC qubits with qubit frequencies {w; } % =1
hopping processes that can be engineered by a common bus resonator [263] or a direct
capacitance [264]. An illustration of the scheme of Eq. (7.3) is given in Fig. 7.1(a).

We work in the weak-coupling regime g < |w; — wj41| and in the low-anharmonic-
ity limit B¢ < |w; — wjt1| for all j. The former condition is necessary in order to
have far-detuned processes connected by V, and therefore to treat V' in perturbation
theory [265]. The low-anharmonicity limit is necessary to retrieve a bosonic model in
the effective perturbative Hamiltonian achieved after treating V' with a Schrieffer-Wolf
transformation in the small g limit. Each SC qubit j € [1, L — 1] is driven by a classical
drive field of amplitude (2; and frequency «;. These classical drive fields give rise to the
desired interaction together with undesired single-site fields in the low-energy effective
Hamiltonian [266]. In order to get rid of them, we add another drive field on each SC
qubit j € [2, L] of amplitude €; and frequency o;_; [267, 268].

Once again, we highlight that we are interested in exploiting the multilevel (bosonic)
structure of SC qubits. Thus, we do not reduce each component of the system to a
qubit. We introduce the ladder operators

Z\/£+ 1¢,5)(¢+1,7] = Zc“, (7.4)

where ¢, ; is the ladder operator which destroys an excitation in the (£+ 1)-th level and
creates an excitation in the £-th level on the j-th SC qubit. Analogously, we can define
its Hermitian conjugate, éz’j.

We work in the so-called dispersive regime, g < A;,1, where A;; = w; —w;. In
such regime, physical first-order processes resulting in the exchange of excitations be-
tween the SC are negligible, and the effect of it could be well captured by second
order hopping-mediated virtual processes. Formally, such second order perturbation
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theory can be carried out via a Schrieffer-Wolf transformation. In our case, we pertur-
batively diagonalize the Hamiltonian Hy + V' to second order in g via a Schrieffer-Wolf
transformation S [269]. The drive field terms in Hgyive are modified by the same SW
transformation. From now on, we neglect terms of order O(g?Q;/A2., ) and higher.
We move to the frame that rotates at the frequencies of the drives and we neglect the
fast oscillating terms by employing the rotating-wave approximation (RWA). Before de-
tailing the calculations, we discuss the physics of each term in the Hamiltonian defined
in Eq. (7.3). The bare Hamiltonian Hj provides the necessary anharmonicity that we
desire. The perturbation V' gives rise to the nearest-neighbor interaction, a renormaliza-
tion of the bare energies of the SC qubits, and some additional two-excitation processes.
The drive field yields the constrained terms 71,(@;41 + d}ﬂ) toward “East” and “West”.
The time dependence of the drive fields in the laboratory frame enables us to get rid
of the undesired processes, such as the two-excitation processes and the “West” terms,
passing in the rotating frame of the drive fields and employing the RWA.

To find the explicit form of the SW transformation, we follow the prescription in
Ref. [270]. First, we compute n = [Hp, V]; we consider 1 with arbitrary coefficients as

an ansatz for S. Finally, we fix these coefficients, imposing the condition [S, Hy] = —V'.
We obtain (cf. Appendix C.1)
L-1 oo

§=>2. ﬁ (Gnehun = & jeegnn) (7.5)
j=1 £,s=0 4,5+1 $J

where A[,j = (w;+EcL), the first summation is along the system, while the second

summation is along all the levels of the SC qubits. Using the Baker-Campbell-Hausdorff

expansion, the Hamiltonian in Eq. (3.1) after the SW transformation reads

H =eHe™S
29) (7.6)

zI_IO + Hdrive + [S, Hdrive] + 5 [S V] +0 ( A2

After lengthy yet standard calculations, we obtain H explicitly dependent on the ladder
operators C?J) introduced in Eq. (7.4) and with coefficients dependent on the site and
internal levels (see Appendix C.2). Our aim is to write H as a function of the bosonic

4" We need to find a regime in which the coefficients in H are approximately

operators a a;
1ndependent of the specific level, so that we can use Eq. (7.4). These coefficients are
similar to the one appearing in Eq. (7.5). In order to make them level independent, we
need

Dpjir = Doy ™ wjn1 —wj = Aji, (7.7)
which holds if |¢ — s| < |Ajt1,;|/Fc. Since the SC qubit can have an infinite number
of excitations, we have (¢ — s) € (—oo,+00). This means that Eq. (7.7) cannot be
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satisfied for all possible ¢ and s if Fo # 0. Nonetheless, it can be achieved up to a
certain value N of ¢ and s, such that N < |A;1;/Ec|. Therefore, the coefficients in
H satisfy Eq. (7.7) up to the N-th energy level, leading to a bosonic Hamiltonian that
approximates the action of the full Hamiltonian to states with an occupation that is
small with respect to N (cf. Appendix C.3). The bosonic H still displays undesired
processes, such as hopping and local fields. We move to a rotating frame of reference
via the unitary transformation

-1
U =exp (ztz ajﬁj+1> (7.8)
j=1

and we neglect all the oscillating terms by employing the RWA (cf. Appendix C.4).
In doing so, we get rid of almost all the undesired processes except for some local
fields at the sites j > 2. These fields can be eliminated via the additional drive fields
of amplitudes {¢;}, analogously to what has been done in similar scenarios (see, e.g.,
Refs. [267, 268]). We tune their amplitudes such that they cancel the undesired local
terms. We obtain the matching condition €; = g€2;_1/A;_1;, with 7 > 2. This leads to
the effective Hamiltonian

2¢°E¢ 9UGE:, (.

Az it 7 (a‘;+1 + CAlj+1> (7.9)

L
- Z~ .,  FEo. .
H= wjnj-l—?njnj -+

where (:Jl = wl—Ec/2 + O(gz/Alg) and (IJj#l = wj—Ec/2 — Qi + 0(92/Aj,j+1).

We now evaluate the couplings in Eq. (7.9), considering the SNAIL as our SC qubit
and using the parameters of Ref. [261]. We work in the parameter regime in which the
SNAILs Hamiltonian is given by Hy in Eq. (7.3). We fix E¢c ~ 150MHz, g = 7T5MHz
and w; ~ 3GHz. We consider the classical drive fields with amplitude Q; = —100MHz
(the amplitude has to be negative to have the correct sign for the constrained hop-
ping), which can be achieved by adding a 7 phase to the external drive fields. Any
real system is inevitably coupled to the environment and SC circuits are no exception.
In the context of SC circuits, two different time scales are defined, namely 77 and
T [164]. The time scale T is the typical time at which the coupling with the environ-
ment leads excited states to decay to lower-energy states. The time scale T quantifies
the coherence time of the system. For consistency with the chosen parameters (taken
from Ref. [261]), we also consider, as T} and T3, the values from Ref. [261], which are
Ty =~ 1lus. We fix the qubit frequencies w; and the drive field frequencies «; in order
to satisfy: (%) the dispersive regime, valid for g/A; ;11 < 1; (4) the low-anharmonicity
limit, Ec < Aj jt1; (44) the validity of the RWA, namely |a;| > Q;, |aj11 — o] > Q;
and |02 — 0| > gQ12/Aji1 jro; (W) @ = wj— oy > 0 for j > 1, necessary in order
to have localization; (v) 1/T} o small with respect to the typical energies in the effective
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j=1]j=2[j=3j=4]j=5
a;(GHz) | 0.75 | 1.6 | 0.65 | 1.7 | 0.75
w;i(GHz) | 3 | 375 | 45 | 375 | 45

TABLE 7.1. A possible configuration for the external classical drive field
frequencies {a;} and bare frequency {w;} of SNAILSs for the experimental
implementation of the bosonic quantum East model in a system of size
L = 5. For bigger system sizes, it is enough to periodically repeat the
configuration from site 7 = 2 to j = 5. The other parameters are as
follows: anharmonicity F¢ = 150MHz, bare capacitive coupling g =
75MHz, and classical drive field amplitude 2 = —100MHz. Table taken
from Ref. [1].

Hamiltonian in Eq. (7.9); and (vi) the system is in the localized phase.

The more stringent conditions are given by (i) and (v). A good trade-off between (i)
and (v) is obtained at |A; ;11| = A = 5E¢ ~ 750MHz, for which the typical time scale
of the kinetically constrained term is approximately T ./2. We have g/A, ;41 ~ 0.1,
meaning that (i) is reasonably satisfied. Condition (i) is satisfied by a staggered
configuration of the drive field frequencies with an additional inhomogeneity between
next-neighbor drive field frequencies, for instance: a; = aj—1 + (=1)7(6 + (j — 1)¢)
for j € [2,4] and boundary condition a; >  (for larger systems, it is enough to
periodically repeat the configuration of the frequencies), with 6 > Q, a; > Q, and
¢ > gQ/A =~ 10MHz. Condition (iv) is satisfied by a staggered configuration of the
qubit frequencies as well: w;11 = w;+(—1)A for j > 2, we = wi+A, with boundary con-
dition w; > «;. For instance, we can consider a; =750MHz, § = 7T50MHz, ( = 100MHz,
and w; = 3GHz. These conditions lead to Eq. (7.9) being almost translationally invari-
ant (except for inhomogeneities in the frequencies @; of the order of approximately 5%,
which can be eliminated via a more fine-tuned choice of {w;}). Moreover, condition
(vi) is satisfied for this set of parameters. In Table 7.1, we summarize a possible set of
parameters available in state-of-the-art superconducting circuits for implementing the
bosonic quantum East model.
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A different route for non-ergodicity: from

short range to all-to-all interactions



In the previous parts we have discussed different mechanisms that could impede the
onset of thermalization in translational invariant systems (cf. Part I), together with pro-
posals where models hosting such phenomena could be realized (cf. Part. IT). Here, we
conclude our journey in delving into non-ergodic phenomena by taking a different route.
While so far we have focused on short-range interacting systems, it is currently possible
to engineer highly non-local interactions up to the regime where each constituent inter-
acts with any other one with the same magnitude (all-to-all interactions). Such regime
can be realized in cavity-QED platforms, in which a cold gas couples to few or several
electromagnetic modes in an optical cavity [61-66] (see Fig. 7.2). In such setups, the
cavity is not empty but hosts photonic modes (whose features depend on the cavity
itself), which can interact in a democratic manner with the atoms placed inside the
cavity. A typically realized photon-mediated process is the creation (or annihilation)
of a photon as a result of the de-excitation (or excitation) of an atom. Specifically, as-
suming that only two atomic levels mostly participate in the dynamics, so that we can
approximate the (potentially complex) atom with a simple two-level system described
by a pseudo spin-1/2 &, the process just described is governed by the Hamiltonian [271]

Hiightematter = 9(67a 4 a%67), (7.10)

which is known as Jaynes-Cummings coupling. Upon considering a collection of L
atoms, if they are located far enough apart so that interference effects [272] and atom-
-atom interactions can be neglected, the system is governed by the Hamiltonian

L
Higntmatter = 9 y_ (670 + 8167, (7.11)
j=1

which, apparently, describes a set of independent spins. However, this is not the case
as the atoms absorb/emit the same kind of photons. As a consequence, the atoms are
effectively interacting. Such influence can be made explicit by assuming that the photon
is the fastest degree of freedom, a regime that can be experimentally achieved, so that
it is a good approximation to adiabatically eliminate it [273-277]. Specifically, in the
regime where the photon dynamics (controlled, for instance, by its frequency) is faster
than the photon-matter dynamics, controlled by g, the photon mediates an exchange of
excitations between the atoms via a second order virtual process (emission/absorption

FIGURE 7.2. Cartoon of a typical cavity-QED setups in which N atoms
(black dots) interact via a common cavity field (red area).
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or viceversa). Since all the atoms within the cavity are involved, after performing such
a procedure, we obtain an all-to-all spin-exchange Hamiltonian

H~ Y6767, (7.12)

which is completely non-local and insensitive to the dimensionality of the system. In

such scenario, it is evident that the system tends to behave collectively since the Hamil-
L At

tonian can be exactly written as a function of the collective operators S+ = Ej:l ;

and 5~ = (81 as

H~8%5. (7.13)
As dynamics occur at the level of macroscopic and classical objects, quantum effects are
suppressed with their size (~ L). The fact that the large spins are classical objects in the
large L limit can be rationalized upon observing that the commutator [5"*, S’_] = 26°
is subleading when the spin is large. To see this explicitly, let us trade large objects
(which scales with L) with O(1) objects by defining 5t = L3*. Plugging this in the
commutator, we observe [§t,87] ~ 1/L — 0 for L — oo, proving our statement. As
dynamics preserve the collective nature of the system, the system will tend to behave
classically up to times parametrically large in L, after which quantum effects can no
longer be neglected [67-71]. Since quantum effects are suppressed as 1/L in the initial
transient regime, quantum thermalization is by definition not possible, as the system is
incapable of building substantial entanglement. In other words, the system naturally
displays a pre-thermal regime which can be extended in time upon increasing the system
size L. However, it looks like this pre-thermal regime cannot display features different
from the ones accessible classically. This is in contrast with the ergodicity-breaking
mechanisms discussed in Part I, where also the non-ergodic phase was characterized
by quantum effects. Our contribution challenges such common belief. Specifically, in
Chapter 8 we will show that quantum effects could dictate the dynamical response
also at the level of collective objects upon trading two-level systems with multi-level
ones, whose investigation has gathered increasing attention in the last years [278-291].
In particular, we will show how quantum correlations allow us to craft the collective
dynamical response of the system.






CHAPTER 8

Crafting the dynamical structure of synchronization

by harnessing bosonic multilevel cavity QED

Most of the content in this Chapter is in:

e “Crafting the dynamical structure of synchronization by harnessing bosonic
multilevel cavity QED” (Phys. Rev. Research 5, 023112 (2023), Editors’ Sug-
gestion)

Riccardo J. Valencia-Tortora, Shane P. Kelly, Tobias Donner, Giovanna
Morigi, Rosario Fazio, Jamir Marino.

Executive Summary. In this Chapter we discuss the features of the collective dy-
namical response in a cavity-QED with multi-level bosonic atoms inside. We show
how, upon going beyond the paradigmatic two-level approximation and entering into
the N-level case, with the matter described by SU(N) spins, it is possible to influence
and control the collective dynamical response via microscopic quantum effects.

What is new? All results of this chapter represent novel research results.

Organization of the Chapter

e In Sec. 8.1 we provide a brief overview of cavity-QED, with the aim to provide
the context to better frame our contribution.

e In Sec. 8.2 we illustrate the model which we will investigate.

e In Sec. 8.3, we provide a compelling discussion on the regimes we consider and
the approximations we perform.

e In Sec. 8.4 we discuss the different dynamical responses the system could dis-
play, together with a hypothesis concerning all-to-all interacting models. Such
hypothesis, which we term dynamical reduction hypothesis, briefly states that
an all-to-all interacting system tends to behave collectively even in the presence
of single-body term which explicitly breaks the collective nature of the system.
We will show how this hypothesis will prove useful in predicting the dynamical
responses the system can display.

e In Sec. 8.5 we show the predictive power of our hypothesis in the case where
the Hamiltonian is permutational invariant, namely it is invariant under the
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exchange of any pairs of atoms. In such context, we will also show how the
dynamical response can change upon introducing quantum fluctuations when
considering SU(N) spins with N > 2. Such a finding is in contrast to the
typically investigated SU(2) spin case, where quantum fluctuations are not
expected to play a role.

e In Sec. 8.6 we show how our hypothesis holds also in the presence of terms
that explicitly break the permutational invariance. Specifically, we will show
how an optimized effective single-body Hamiltonian is able to quantitatively
reproduce the dynamics of a many-body system.

e In Sec. 8.7 we present a possible experimental cavity-QED platform where the
model we investigate could be realized.

e In Sec. 8.8 we conclude by discussing possible extensions of our work.

This Chapter is composed by a rearrangement of the author’s publication [/].

8.1. INTRODUCTION

Tailoring light-matter interactions is at the root of numerous technological or exper-
imental applications in quantum optics, and it has generated a persistent drive for
better control of atoms and photons since the advent of modern molecular and atomic
physics. For instance, the pursuit to create precision clocks and sensors has lead to
the development of cavity QED systems in which a cold gas couples to few or several
electromagnetic modes in an optical cavity [61-66]. Such systems can be brought out of
equilibrium to generate reproducible many-body dynamics which show complex behav-
ior including self-organization [64, 292-300] and dynamical phase transitions [61, 66,
297, 301-305], quantum squeezed and non-Gaussian entangled states [306-312], time
crystals [313-316], and glassy dynamics [294, 298, 317, 318]. This rich phenomenology
comes from a high degree of tunability in such systems, allowing control over local exter-
nal fields, detunings between cavity mode and applied drive fields, the ability to couple
multiple atomic levels to the cavity field [65, 283, 286, 294, 319-322], and more recently
the realization of programmable geometries for light-matter interactions [323-325].

Recently, the theoretical and experimental investigation of multilevel cavity systems
has gathered increasing attention. Current progress includes dissipative state prepa-
ration of entangled dark states [278-280], multicriticality in generalized Dicke-type
models [281, 282], incommensurate time crystalline phases [283-285], correlated pair
creations and phase-coherence protection via spin-exchange interactions [286-288], spin
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squeezing and atomic clock precision enhancement [289-291]|. Yet, the quenched dy-
namics in multilevel cavity systems is widely unexplored and the few individual results
lack an organizing principle.

Here, we propose a unifying framework for the dynamics after a quench of all-to-all
connected multilevel systems. We show that the flexible control endowed by bosonic
multilevel atoms is sufficient to reproduce established dynamical phases and beyond.
We explain how the dynamical response can be crafted into these new and existing dy-
namical phases by introducing a reduction of dynamics to a few-body effective classical
evolution, valid regardless of the underlying integrability of the model. Of particular
note, we demonstrate how quantum correlations in the initial state can drive a transi-
tion between a regular and chaotic synchronized phases.

Our analysis extends the established phenomenology of the two-level Tavis-Cummings
model with local inhomogeneous fields. This two-level model is integrable [68], and al-
lows for the emergent collective many-body dynamics to be exactly described through
an effective few-body Hamiltonian [326-336]. In particular, the few body model yields
predictions for the dynamical responses of collective observables S(t), such as the col-
lective spin raising operator, given by the macroscopic sum of several individual con-
stituents [326, 329, 330, 333-337]. The resulting dynamical phases are best presented
in terms of the possible synchronization between the local atomic degree of freedoms
(spins-1/2) which evolve with a frequency set by the competition of their local field
and collective photon-mediated interactions. In the desynchronized phase, which we
call Phase-I as shorthand, all the spins evolve independently as a result of dominant
classical dephasing processes imprinted by the local inhomogeneous fields, thus S(t)
relaxes to zero. In the synchronized phase, collective interactions lock the phase pre-
cession and we can distinguish three different scenarios in which S(¢) either relaxes to
a stationary value (Phase-II), up to a phase of a Goldstone mode [326] associated to a
global U(1) symmetry, or its magnitude enters self-generated oscillatory dynamics, cor-
responding to a Higgs mode [326], either periodic (Phase-1II), or aperiodic (Phase-IV).
While Phase-I and Phase-II describe relaxation to a steady state up to an irrelevant
global phase, Phase-ITI and Phase-1V are instead examples of a self-generated oscillating
synchronization phenomenon without an external driving force [338—-341].

8.1.1. Summary of results

Here we investigate dynamics beyond two-level approximations by considering N, bosonic
atoms, each hosting N levels which realize SU(N) spins. The additional structure due
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to the bosonic statistics allows us to naturally consider both classical and quantum
initial states (c.f. Sec. 8.3.1). Using this flexibility in the initial state, and also the
tunability of Hamiltonian parameters, we show how to craft not only the dynamical
responses present in the two-level integrable setup (from Phase-I up to Phase-IV), but
also how to access a novel chaotic dynamical response. This chaotic response, which we
refer to as Phase-IV*, again has all atoms synchronized but with the dynamics of the
average atomic coherences characterized by exponential sensitivity to initial conditions.
The self-generated chaotic Phase-IV* emerges from the interplay of initial quantum
correlations, and the collective interactions mediated by the cavity field. It is therefore
qualitatively different from chaos induced by other mechanisms as due to additional
local interactions [342] or external pump [315, 343-346].

In order to show how to craft and control these dynamical responses, we introduce
a generalization of the reduction hypothesis used for two level systems. Specifically, we
propose that the different dynamical phases (Phase-I up to Phase-IV*) all correspond to
a different effective few body Hamiltonian that depends on the global symmetries of the
many body system, degree of inhomogeneity, W, number of atomic levels N, and degree
of quantum correlations in the initial state, quantified by a parameter p (cf. Sec. 8.5.2).
Then, by considering an appropriate classical limit arising in the limit of large system
size (cf. Sec. 8.3), we apply the Liouville-Arnold theorem to the effective Hamiltonian
to identify a correspondence between the dynamical phases and the effective Hamilto-
nians. Using physical arguments for the nature of the effective Hamiltonian, we then
predict how to tune between different dynamical responses. The result is an intuitive
control over the rich dynamical response possible in multilevel cavity QED. See Fig. 8.1
for a cartoon of the different dynamical responses for N = 3 level atoms, using as a
proxy the synchronized (or de-synchronized) evolution of the magnitude of the average
intra-level coherences in the ensemble.

We conclude by discussing the potential universality of the reduction hypothesis. In
particular, we conjecture it applies not only for state-of-the-art cavity QED experiments
(cf. Sec. 8.7), but could find potential applications in other fields. Following Refs. [347,
348|, where cavity QED platforms are proposed to model the dynamics of s-wave and
(p + ip)-wave BCS superconductors, our results could find potential applications to
lattice systems with local SU(N) interactions, such as SU(N) Hubbard models [349-
352]. Another possible outreach of our results could consist in noticing that the N
levels of the atoms could be used as a synthetic dimension, with the geometry fixed
by the photon-mediated processes, as for instance in a synthetic ladder system [353,
354]. Furthermore, since we consider bosonic systems, our results could potentially find
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FIGURE 8.1. Cartoon of the possible dynamical responses of intra-level
phase coherence in a photon-mediated spin-exchange model between
SU(3) spins, as a function of the degree of inhomogeneity of the local
fields W, and of quantum correlations in the initial state parameterized by
p. At p = 0 each site is initialized in the same bosonic coherent state. For
p > 0, there are finite quantum correlations in the system. The parameter
p tunes from bosonic coherent states (p = 0) to a multimode Schrédinger
cat state (p > 0) initialized on each site. The susceptibility of the dynam-
ical response to quantum correlations is strictly linked to having SU(N)
spins with N > 2, thus cannot be achieved considering two-level systems.
Up to inhomogeneity W/(xN,) = 1, the system is in the synchronized
phase. At larger inhomogeneities, the system enters in the desynchronized
phase and all phase coherence is washed (Phase-I). In the synchronized
phase, phase coherence relaxes asymptotically to a nonzero value up to a
phase associated to a global U(1) symmetry (Phase-II), or its magnitude
enters a self-generated oscillatory dynamics, either periodic (Phase-III),
or aperiodic (Phase-IV), as well as potentially chaotic (Phase-IV*). In
this last case dynamics are exponentially sensitive to changes in initial
conditions. Image taken from Ref. [4].

applications in spinor Bose-Einstein condensates [355, 356] or in molecules embedded
in a cavity, where bosons could be identified as their vibrational modes [357, 35§].

8.2. THE MODEL

We consider a system of N, bosonic atoms interacting via a single photonic mode of a
cavity. The atoms are cooled to the motional ground state and evenly distributed among
L different atomic ensembles labeled by a site index j. Within each site (ensemble),
the atoms are indistinguishable and can occupy N different atomic levels with energies
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that are site- and level-dependent. We consider the atoms sufficiently far apart for
interatomic interactions to be negligible. The photon-matter interaction mediates atom
number conserving processes where the absorption and/or the emission of a cavity
photon results in an atom transitioning from level n to levels n + 1 within the same
site, with a rate generally dependent on the specific level n. The associated many-body
light-matter Hamiltonian reads

A —wata + Z Z BB bt

j=1 n=1
L N-1

+ZZ [gn( nt1,5 n3a+hc) + A (bn+1jbnja —I—hc)]

j=1 n=1

(8.1)

where @) is the bosonic annihilation (creation) operator of the cavity photon; b(T)

the bosonic annihilation (creation) operator on site j € [1, L] and level n € [1, N], Wlth
energy splitting hg); gn and A\, are the single-particle photon-matter couplings which
controls rotating and co-rotating processes, respectively. Tuning g, and A, enables us
to pass from a generalized multilevel Dicke model, when g,, A\, # 0, to the multilevel
Tavis-Cummings model, when A, = 0. Here, we consider dynamics on time scales where
dissipative processes are sub-dominant compared to coherent evolution (cf. Sec. 8.8.1).

When the cavity is far detuned from the atomic transitions, the photon does not actively
participate in dynamics of Eq. (8.1) but instead mediates virtual atom-atom interac-
tions [359]. This occurs in the limit wg > ma,x{hgf ). g/ N, AV N,}, where the factor
VN, comes from the cooperative enhancement given by the N, atoms [67, 360]. The
mediated interaction results in an effective atoms-only Hamiltonian of the form

= g;zhu>zg;;+
=1 n=1

N (8.2)
- Z [Xn,mzn—i—l,nzm,m—l-l + C’n,mzn,n+12m+1,m+ '

m,n
+ Vn,m2n+1,nzm+1,m + Vm,nzn,n+1 Em,m+1] y

where Xnm = ngm/Wo; Cnm = AnAm/Wo; Vnm = Angm/wo. For convenience, we have
written the Hamiltonian in Eq. (8.2) as a function of the operators

29 = b b, (8.3)
L
Som =y 9. (8.4)
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The operators {XAI%J )m} are generators of the SU(N) group [265, 361] and they obey the
commutation relations [S),, 2}(52] = i,j(i],(;’)l(sm,k - f],g{ll&n’l), and (S9),)f =29,

The regime we are mostly interested in is vy, , = (nm = 0, wWhich translates to A, = 0.
In this limit, the Hamiltonian in Eq. (8.2) turns into a spin-exchange interaction Hamil-
tonian between SU(N) spins with rates {xnm} and inhomogeneous fields, Y. In the
following, we set the collective spin-exchange rate yN, = N, Zn 1 Xn,;n @S OUTr energy
scale, such that the time-scales of our results are independent of the number of atoms
N, in the system. An implementation of the spin exchange model in Eq. (8.2) is offered
in Sec. 8.7.

Below, we consider both situations when the energies of the atomic levels are homoge-
nous and when they are inhomogenous. In the latter situation, we expect our results
to hold for various forms of inhomogenities, but we will in particular focus on the situ-
ations when the atomic levels on each site are in an evenly spaced ladder configuration
with spacing Ah; = (hgll — Y )) sampled from a box distribution with zero average
and width W. In this case, the Hamiltonian is spatially homogeneous for W = 0, and
spatially inhomogeneous for W > 0. At W = 0 we can make precise predictions of
the dynamical responses as a function of the features of the initial state and multilevel
structure. Then, we show numerically their robustness against many-body dynamics
due to inhomogenities (W > 0), in a fashion reminiscent of a synchronization phenom-
enon.

Given an evenly spaced ladder configuration within each site, the Hamiltonians in
Eq. (8.1) and Eq. (8.2) can, for certain values of the couplings g, and \,, be writ-
ten in terms of the generators of a subgroup of SU(N). For instance, in the N = 3
level case, if g, = g and A, = A, the Hamiltonian can be written as a function of
the generators of a SU(2) subgroup of SU(3). Speciﬁcally, only the SU(2) operators
S'J_ = \/5(29) (J)) S"‘ (S’J_)T, and Ssz = (ZA]:(),J,% (J)) are required to represent
the Hamiltonian, and as a consequence, the dynamics can be more simply described by
the dynamics of these SU(2) spins. For instance, we recover the spin-1 Dicke model
for A = g and the spin-1 Tavis-Cummings model for A = 0 in Eq. (8.1). Since we aim
to explore the impact of genuine interactions between SU(N) spins, we fix g, and A,
such that the dynamics cannot be restricted to a subgroup of SU(N), if not otherwise
specified. An important exception is the three-level case, where the system can enter
in a chaotic phase upon passing from interactions between SU(2) to SU(3) spins (see
Sec. 8.5.2). We highlight that while the interactions considered lead to nontrivial effects
in the SU(N) degrees of freedom, they are not SU(N)-symmetric.
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8.3. MEAN FIELD LIMIT

Given a generic interacting Hamiltonian, the dynamics of any n-point correlation func-
tion depends on higher order correlation functions — a structure known as the BBGKY
hierarchy [362]. In fully connected systems, as in our case, the hierarchy can be effi-
ciently truncated starting from separable states, or in other words, from a Gutzwiller-
type ansatz [363]

¥) = ®7_1|95) ® |, (8.5)
where |1);) is a generic state on the j-th atom, and |a) is a bosonic coherent state
describing the cavity field. Given |¥) in Eq. (8.5), the hierarchy can be truncated as
(2533,1&) = (2552,1)(&) and (2532,2@ = (f]fﬁn)(f]rs) up to 1/L corrections [67-71]. Here
and from now on, we assume all expectation values are taken with respect to the state
|W), ie. (6(t)) = (V|6(¢)|¥). In the limit L — oo no additional quantum correlations
build up in time, hence the equation of motions of one-point and two-points correlation
functions are exactly closed at all times and the state |¥) remains an exact ansatz of
the many-body state.

Combining the large L limit and the nature of the interaction in the Hamiltonian,
the dynamics of (£0)) and (&) can be accordingly obtained in the mean field limit of
the Hamiltonians in Eq. (8.1) and Eq. (8.2). This is achieved replacing the operators
flq(fzn and &) by classical SU(N) spins and photon amplitude given by

29, = (59 /(Na/L),
a = (a)/\/No,

with N, /L the average number of bosonic excitations per site and by substituting the

(8.6)

commutators with Poisson brackets. The same dynamics can be obtained starting from
the Heisenberg equation of motions and then taking the expectation value on the state
|¥) in Eq. (8.5) [361] truncating the hierarchy as discussed above.

The hierarchy can be further truncated at first order in the bosonic operators if the one-
body reduced density matrix £, with matrix elements £¢},, is pure (Tr[(Z?)?] = 1),
namely there are no quantum correlations on a given site j. For instance, if the state
;) in Eq. (8.5) is a bosonic coherent state on each level of site j, the matrix X is
pure and straightforwardly factorized as ¢), = (ZA)LJ)(IA)mJ) The truncation at first
order in the bosonic operators well approximates the full dynamics up to corrections
which are suppressed [364] in both the number of sites L and the occupation on each
site N /L. Therefore, in the limit N, — oo, the hierarchy is exactly truncated at first

order in the bosonic amplitudes (IA)(T

n;) and (a), at all times. In this limit, their dynamics

can be equivalently obtained in the classical limit of the Hamiltonians in Eq. (8.1) and
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Eq. (8.2) by replacing the bosonic operators BS%

bn = (bng)/V/Na/ L,
a = (a)/V/Na,

and replacing commutators with Poisson brackets.

and a by the classical fields

(8.7)

In the following sections we will investigate the collective dynamical response of multi-
level atoms in both mean field limits. We will show that the dynamical response could
be highly susceptible to quantum correlations in the multilevel atom case, while it is
insensitive in the two-level case.

8.3.1. Initial states

Here we derive general results that can be applied to any state of the form given in
Eq. (8.5). As discussed in Sec. 8.3 we distinguish two different classical limits, arising
in the large L limit, corresponding to the one-body reduced density matrix £() on site
j being pure or mixed, respectively. For the sake of concreteness, we now present a
few states corresponding to the two cases discussed above. The first two states are
a bosonic coherent state and a SU(N) spin-coherent state, both having no quantum
correlations and a one-body reduced density matrix that is pure. While the other is a
multimode Schro cat state, whose one-body reduced density matrix on a given site is
mixed reflecting the presence of quantum correlations.

Coherent states. The most general bosonic coherent state |¢;) on a given site j reads

45 = exp (7 - Bf = huc.) 0) = %),

Yi = (71,1'7 V2,55 - - a’YN,J')7 (8'8)
bl = (@l b} ,,...,8%.),

with 7, ; € C the amplitude of the bosonic coherent state on the n-th level and site 7, so
that the average number of particles per site is 22;1 |Vn,i|*> = Na/L. We highlight that
the state in Eq. (8.8) does not have an exact number of particles. Nonetheless, since the
fluctuations of the number of particles are subleading with respect to the mean in the
limit we consider (N,/L — o0), the mean field treatment is unaffected. Such a state
has a pure single particle reduced density matrix, and will have an evolution captured
by a mean field limit characterized by the classical variables b, ; and a.

SU(N) spin-coherent states. The second example of state with pure one-body re-
duced density matrix is given by the superposition: |¢;) = S~ Vn,jIA)Lj|O), which has
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one excitation per site. Once again, in this case, the mean field limit applies. Further-
more, the choice to truncate to one particle per site is insensitive of particles’ statistics:
either a fermion or boson could be the single particle occupying the site, as we further
elaborate in the concluding section, Sec. 8.8.2. Such a state is the single particle limit
of the more general N, /L particle SU(N) spin-coherent state [265] defined by

Nao/L
|'¢J> m (Z Tn,ji n,J) |0>7 (8'9)

which again has a pure one-body reduced density matrix reflecting a lack of quantum
correlations. Thus, the dynamics of the classical variables b, ; and a perfectly describe
the dynamics of both the bosonic and SU(N) spin coherent states in the limit of a
large number of bosons N,. Below we will present numerical results simulating these
classical dynamics; they can be interpreted as describing the evolution of either of these
two states. For the sake of simplicity, we will explicitly refer to these states as coherent
states.

Schrodinger cat states. To consider a state in which the full two point correlations
of the bosons, ZL({; 2,1, must be considered, we add quantum correlations on site j. This
ensures that the one body reduced density matrix is not pure and cannot be written
in the mean field approximation, E(J ) # b, jbm,j- As an example, we consider a state
where each site is initialized in a multlmode Schrédinger cat state’ [365, 366], which
are the multimode generalization of ‘entangled coherent states’ [367-369], given by
the superposition of two bosonic coherent states [7™) with average occupation N, /L,
defined in Eq. (8.8), with m = {1,2}

v = (A9 +32)). (8.10)

Here D is a normalization constant. If |(¥ 1)|~(2))| = 1 the state in Eq. (8.10) reduces
to the one in Eq. (8.8). Instead, if |(¥. 1)|~(2))| < 1, the one-body reduced density
matrix is mixed, reflecting the presence of quantum correlations on site j ((BL,ij,ﬁc =
(IAJL jlgm,j) - (IA)IM) (bm;) # 0). We anticipate that the collective dynamical response could
be highly susceptible to quantum correlations in the multilevel atom case, while they
do not play a role in the two-level case. As an instance, we discover the onset of chaos

S |(IA)LJIA)mJ)c| increases in the N = 3 levels case (cf. Sec. 8.5.2). We highlight that
quantum features of the state can only enter in initial conditions since dynamics are

incapable of building quantum correlations in the mean field limit (cf. Sec. 8.3).
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8.4. CLASSIFICATION OF DYNAMICAL RESPONSES

Our main purpose is to investigate and classify the dynamical response of collective
observables in multilevel cavity QED systems in the long-time limit. Specifically, we
investigate the dynamics of the magnitude of the intra-level average coherences, defined
as |Z§‘=1 E&f,)m| /N, (for n # m). To this end, we formulate the dynamical reduction
hypothesis, which generalizes a similar procedure used for the integrable SU(2) limits
of Eq. (8.1) and Eq. (8.2). The hypothesis conjectures that the dynamics of collective
observables can be captured by the Hamiltonian dynamics of a few effective collective
degrees of freedom (DOFs). In the integrable case, the effective Hamiltonian has been
used to quantitatively predict the dynamical responses observed, which include relax-
ation and persistent oscillations either periodic or aperiodic [326-336, 370]. Despite
lack of integrability, we still obtain in our case not simply relaxation, but also the per-
sistent oscillatory responses present in the integrable case, together with the possibility
to develop chaos (see Fig. 8.3 for example) [370-372]. Due to the generic non-integrable
nature of multilevel systems an exact procedure for extracting the effective model is not
available (see Ref. [288], where the authors have attempted to extend the technique of
the SU(2) case to a SU(N)-symmetric interacting spin system).

Here, we conjecture that, if an effective model exists, it is solely determined by the
symmetries of the microscopic many-body problem and the relevant effective DOFs.
Once the effective Hamiltonian is fixed, we show that the classification of dynamical
responses follows from the combination of 1) the Liouville-Arnold theorem [373], which
sets the criteria to distinguish a regular from an irregular (likely chaotic) regime, and
2) of the number of symmetries under which a given observable of interest is not invari-
ant. Analogously to the integrable cased mentioned above, we offer a classification of
dynamical responses richer than the mere distinction between desynchronization and
synchronization.

8.4.1. Dynamical Reduction Hypothesis

In Sec. 8.3 we argued that, in the L — oo limit and for an initial state of the form given
in Eq. (8.5), the dynamics of the cavity field and multilevel atoms are described by the
equations of motion generated from a classical Hamiltonian composed of an extensive
number (in the size L) of classical SU(N) spins. The dynamical reduction hypothesis
conjectures that the dynamics of collective observables are effectively described by a
classical Hamiltonian composed of a finite number, X, of effective SU(N) systems (cf.
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FIGURE 8.2. Sketch of N, atoms, each one hosting N levels (panels on
the side), distributed over L sites (black dots), interacting via a common
cavity field (red area). In the cartoon below we show the effective X-body
system towards which the original many-body system is attracted in the
long time t 2 t*. We show a single-body effective model (X = 1), since
it is the one explicitly considered throughout this Chapter. We also show
the internal structure of the single site both in the original many-body sys-
tem and in the effective few-body description. Image taken from Ref. [4].

Fig. 8.2); or in other words, the emergent collective dynamics can be effectively cap-
tured by a few-body macroscopic system.

Specifically, we conjecture that a fully-connected many-body system with L-sites, each
with local degrees of freedom s; = {s;1, )2, ...}, and classical Hamiltonian H({s;}_,)
will, after a sufficiently long time ¢ 2 ¢* and in the thermodynamic limit L — oo, possess
an effective X-site effective model describing the collective dynamics. The hypothesis
supposes that the effective model will have X finite, even when L is in thermodynam-
ics limit, and that the effective local degrees of freedom {8;}; will be governed by a
classical effective Hamiltonian H ({3;}/21). Hence, in order to predict dynamics of a
collective observable S(t) = f({s;(t)}j=;), we will assume the existence of a function
f of the effective degrees of freedom, which will effectively reproduce the dynamics of
S(t). Note that in general, fis not necessarily of the same functional form of f. We
can then compactly formulate the dynamical reduction hypothesis as

) 2P
lim H({s;}jey) == H({E}5),

. (8.11)
fim § = f({s;}m) == F{E}).
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The effective Hamiltonian H is of the same functional form in the integrable case [326,
333, 370], while it is not generally expected to be so for non-integrable systems [370].
Importantly, we assume that the effective Hamiltonian obeys the same global symme-
tries as the many-body Hamiltonian.

In the following we apply the dynamical reduction hypothesis (8.11) to craft various
dynamical responses associated to the problem of synchronization in bosonic multivel
cavity QED summarized in Fig. 8.1. We believe that our conjecture has universal flavor
and it is applicable to several other settings as we elaborate further in the concluding
section.

8.4.2. C(lassification of Dynamical Responses

We construct a classification of dynamical phases by considering the different dynam-
ics collective observables can display in the many-body system. In the case of cav-
ity QED, we consider the magnitude of the intra-level average coherence |X, . (t)| =
| Z;?:l 3 Zn(t)| /L with n # m. These observables can distinguish between cases when
the atoms are synchronized (|%,,(t)| # 0) or desynchronized (|X, . (t)| = 0), and in
the case of synchronization we distinguish four dynamical responses.

Desynchronized phase:

e Phase-I: in the long time limit |3, ,,(¢)| — 0, as a result of classical dephasing
processes in the microscopic model due to inhomogeneities in the local fields;

Synchronized phases:

e Phase-II: |3, ,,(t)| relaxes to a stationary non-zero value;

e Phase-IIl: |X, ., (t)| displays self-generated Floquet dynamics (i.e. periodic
oscillations) characterized by a spectrum with well-resolved commensurate fre-
quencies;

e Phase-IV: |X,, ,(t)| displays aperiodic oscillations characterized by a spectrum
with well-resolved incommensurate frequencies;

e Phase-IV*: |3, ,(t)| displays chaotic oscillations exponentially sensitive to
small changes in the initial conditions and characterized by a spectrum with
multiple broad peaks.

While Phase-I and Phase-II are quite generic in the presence of inhomogeneous dephas-
ing, Phase-III, Phase-IV and Phase-IV* are examples of self-generated non-relaxing
responses in absence of an external drive. As previously mentioned, the dynamical
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responses from Phase-I to Phase-IV were already observed in the integrable two-level
case [326, 329, 330, 347], while the chaotic Phase-IV* is accessible only in non-integrable
systems [372].

To predict and control when such phases occur we use the dynamical reduction hy-
pothesis, and arguments based on symmetry and the Liouville-Arnold theorem. The
Liouville-Arnold theorem [373] states that given a system with M degrees of freedom
and () conserved quantities, there exists a canonical transformation through ‘action-an-
gle’ variables, such that () ‘actions’ are constant, and () ‘angles’ evolves periodically at
a frequency imposed by the value of the corresponding conserved quantity [373-375].
Thus, if 2¢) > M, the dynamics is solely along tori and the system is said to be classi-
cally integrable. If instead 2Q) < M, there will be (M — 2@Q)) degrees of freedom which
evolve without any constraint and can in principle display chaotic behavior. Notice
that Q > 1 since the effective Hamiltonian always obeys time translation symmetry
such that the effective energy is always a conserved quantity.

To apply this theorem to describe the different phases with different effective mod-
els, we assume that an X site effective model has in total M DOFs. Phase-I can be
described by an effective model with X = 0 sites, thus M = 0 DOFs, since no effective
degree of freedom is necessary to capture a vanishing observable. In the microscopic
models, the synchronized phases generally occurs when the all-to-all coupling is large
enough with respect to the inhomogeneities in the local fields, and it can be captured by
an effective model with X > 1 sites, thus, M > 1 DOFs, since we need at least one DOF
for describing nontrivial behavior. Combining the number of DOFs M, the number of
symmetries (), and the number of symmetries under which the specific observable is
invariant, it is possible to predict the specific synchronized dynamical response. We
show that, in SU(N) systems, an effective single-site Hamiltonian (X = 1) is already
sufficient for observing all the dynamical responses from Phase-I up to Phase-IV*. This
is in contrast to the SU(2) integrable case in which an X-body effective Hamiltonian
is necessary to capture Phase-(X + 1) [326, 329, 330, 336, 347|.

To apply this classification to multilevel cavity QED, we must identify the global symme-
tries present in such systems and the number of DOFs that could occur in the effective
models. We identify the global symmetries and number of DOFs in Sec. 8.4.3, present
a few examples of effective models in Sec. 8.4.4 and give the predictions for the allowed
dynamical responses for different N-level systems in Sec. 8.4.5.
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8.4.3. Counting DOFs and symmetries

Given a generic product state, as in Eq. (8.5), we conjecture an effective classical model
composed of effective DOFs describing the matter and the cavity field separately. We
assume that the effective cavity field is given by a bosonic amplitude @ specified by two
real numbers. As the detuning from the atomic transitions increases, the contribution
from such DOFs becomes suppressed, and consequently can be neglected in the far
detuned limit [336]. The effective matter’s DOFs are either SU(N) spins or bosonic
amplitudes, depending on whether the collective observables 3, ,(¢) can be factorized
or not.

If 3, m(t) cannot be factorized, the emergent effective classical model is composed of X
SU(N)-spins with elements 5", where n,m € [1, N] and k € [1, X]. Such an effective
model has M = X x N? matter DOFs, corresponding to the N? matrix elements for
each effective spin >®). Since the effective degrees of freedom are SU(N) spins, the
number of independent parameters is reduced due to the Casimir charges 3N, f]%k%
and Zﬁ,m:l f],(lk,)nﬂ,'ﬁ)n, which are the conservation of the number of bosons and length
of the SU(NN) spin on each site k. As a consequence, the number of independent matter

DOFs is M = X x (N2 —2).

Instead, if 3, , (t) can be factorized, then the effective model in the SU () spins further
simplifies and involves only X x N effective bosonic amplitudes gn,k with k € [1, X] and
n € [1, N]. In this case, the number of matter DOFs is M = X x 2N, being each bosonic
amplitude specified by two real parameters. Assuming that the effective SU(N) spins
and effective bosons are related analogously to the microscopic ones via f)’flm = N;"L’kgm,k,
the two Casimir charges defined above are still conserved. In this case they are depen-
dent one from the other and can be linked to the local U(1) symmetry Zn,k — eid’kgn,k
of the bilinears E;;,kZm,k. Since the number of bosons is conserved, the corresponding
conjugate variable, the sum of the phases of the bosonic amplitudes, is irrelevant and
the number of nontrivial matter DOFs is M = X x (2N — 2).

Once the effective DOFs are identified, we can construct the effective Hamiltonian which
governs their dynamics imposing the same symmetries of the many-body Hamiltonian
in Eq. (8.1) and Eq. (8.2) in the classical limit. The first symmetry is time translation in-
variance, which implies the conservation of the energy, while the second is a global U(1)
symmetry present solely in absence of co-rotating processes. Specifically, for A\, = 0 the
Hamiltonian in Eq. (8.1) is invariant under (X, n11,a) = (6%, nt1, €a) and thus con-
serves the number of total excitations, which in the two-level case is [(Xg2—X1,1)/2+|al?]
while in the generic multilevel case is a linear combination of {¥,,,} and |a|? [358,
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Q|N=2|N=3 |N>4
g, A # 0 and wy finite | 1 | IV* Iv* Iv*
G A#0and @y — oo |1 |III IV IV
X =0 and @ finite |2 | III IV* IV*
A=0and@p— oo |2 |II ITI or IV* | IV*

TABLE 8.1. Summary of the dynamical responses of the magnitude of
the intra-level average phase coherence captured by the effective Hamil-
tonians in Eq. (8.12) and Eq. (8.13). The number of matter DOFs is

either (2N — 2) or (N2 — 2) depending on whether ¥ can be factorized
or not, respectively (cf. Sec. 8.4.3). If the cavity field detuning @y is fi-
nite, we need two additional DOFs to describe the modulus and phase of
the actively participating cavity field. The presence of a U(1) symmetry
increases the number of conserved quantities @ by 1. For the N = 3
spin exchange model (last row) the system can display from Phase-I to
either Phase-IIT or Phase-IV* depending on whether 3. can be factorized
or not, respectively. In all cases, all the responses with ‘less order’ than
the one reported, could be in principle accessed tailoring the initial state
and the parameters of the Hamiltonian. The same table holds in the case
the Hamiltonian is spatially homogeneous, since the effective models are

trivially equal to the microscopic ones (cf. Sec. 8.5). Table taken from
Ref. [4].

376]. Analogously, for vy, ., nm = 0 the atoms-only model in Eq. (8.2) is invariant
under ¥, .41 — ewZn,n_H, which leads to the conservation of the number of atomic
excitations (e.g. (Y22 — X11) in the two-level case).

Combining the effective DOFs and symmetries, we can now propose a possible set
of effective models and predict the dynamical responses of collective observables via
arguments based on symmetry and the Liouvile-Arnold theorem.

8.4.4. Effective Models

In order to make concrete the above picture, here we present a set of possible effective
models for multilevel cavity QED systems described by Eq. (8.1). As mentioned above,
an exact derivation is not available in the generic multilevel case (see Refs. [326, 333, 370]
where the effective few-body Hamiltonian can be derived from the Richardson-Gaudin
integrability of the SU(2) case). Nonetheless, considering the initial state to be a generic
product state (cf. Eq. (8.5)), the effective DOFs are SU(N) spins, and the simplest
effective theory is given by the microscopic Hamiltonian in Eq. (8.1) with L = 1 (thus
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X =1 effective sites)

N
H(Znm, @) = 500G+ Y hnSnnt
n=1

vt (8.12)

—l—Z[gn( n+1na+hc)+)\ ( 1" +hc)]
=1

Analogously, in the far-detuned cavity mode limit described by the Hamiltonian in
Eq. (8.2), we propose the effective Hamiltonian

N
He(in,m) - Zﬁnin,n+
n=1

Xn,m2n+1,n2m,m+1 + Cn,mzn,n+12m+1,m+
m,n=1

[~ < < s = = (8.13)

+ Vn,m2n+1,nzm+1,m + Vm,nzn,n+12m,m+1] .

Additionally, if the collective observables f]n,m can be factorized, we conjecture effective
models for the boson DOFs of the form

H(bn,d) = HSnm = bbm,d) (8.14)
Ho(b,) = Ho(Shm = bbm) (8.15)

where we conJecture that the effective one-body reduced density matrix factorizes as
Enm = b*b . These effective models are trivially exact when the Hamiltonians in
Eq. (8.1) and Eq. (8.2) are spatially homogeneous for b9 = h, at W = 0. Indeed,
at W = 0 the many-body Hamiltonians trivially reduces to a few-body one due to the
permutation symmetry under swapping of any pair of sites. Despite their apparent
simplicity, the effective models here introduced allow us to obtain quantitatively the
whole set of dynamical responses described in Sec. 8.4.2. Furthermore, we show in
Sec. 8.6 that these models describe correctly the dynamics of collective observables
also at moderate inhomogeneity, with a quantitative matching in the case of N = 3
spin-exchange interactions.

8.4.5. Classification for multilevel cavity QED

We are now in the position to discuss the possible dynamical phases for the X = 1
effective models introduced in Sec. 8.4.4 for different number of levels N. As already
anticipated, we consider as collective variable the magnitude of the intra-level average
coherences, which in the effective models are given by |Zy, ;u(t)| with n # m. The results
of this section are summarized in Table 8.1.
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For a generic multilevel atom with N > 4 levels, the number of DOFs M is always larger
than the 2¢Q) < 4 symmetries identified. Thus, generically, the effective model can show
aperiodic oscillations (Phase-IV) and may even display chaotic behavior (Phase-IV*).

N = 2 level atoms. The case of N = 2 levels has been well studied [69, 377, 37§]
and in this section we discuss how our approach reproduces known results. The number
of matter DOFs is M = 2, either considering an effective bosonic model, or with SU(2)
spins. Thus, it is not possible to access different dynamical responses upon introducing
quantum correlations in the mean-field limits considered. If the cavity field actively
participates to dynamics, we need to keep track of two additional DOFs given by the
real and imaginary part of its amplitude.

Let us consider the two level system with a photon actively participating in dynamics.
We can identify the two regimes corresponding to either the generalized Dicke model
(X, § # 0) or the Tavis-Cummings model (A = 0). Both models have M = 4 DOFs, but
a different number of conserved quantities. The generalized Dicke model conserves only
the energy beyond the total spin (which we already taken into account), opening the
option of chaos (Phase-IV*), as it has been seen for instance in Refs. [379-387]. Instead,
the Tavis-Cummings model has one additional conserved charge (total number of exci-
tations), is therefore integrable and in fact it shows regular dynamics [377, 388-390].
Under change to action-angle variables, the dynamics are seen as the evolution on a
3-tori, with 3 independent frequencies. Thus a general observable might show Phase-IV
oscillations. Nevertheless, the magnitude of the mean coherence | 5(t)| only shows
periodic oscillations (Phase-III) since it is invariant under two of the symmetries, specif-
ically the U(1) symmetries (y2,3) — (€%, €?a) and b, — €?b,, with n = {1,2},
linked to the conservation of the total number of excitations and spin, respectively.

In the limit where the cavity mode is far detuned from the atomic transitions, the
Tavis-Cummings model becomes a simple spin-exchange model with M = 2Q = 2 (the
conservation of energy and of the total number of excitations are dependent). Since
this model can only have two independent frequencies corresponding to the precession
of the U(1) angle variables, the observable |§31,2 (t)| is constant yielding Phase-II. If the
additional U(1) symmetry is broken, one recovers the Lipkin-Meshkov-Glick (LMG)
model, and the observable |§1,2 (t)| can again oscillate with a single frequency and dis-
play Phase-III, as it is generically observed [364, 391-395].

N = 3 level atoms. In the three-level case, M depends on whether the model re-
duces to a bosonic model or to a SU(3) spin system. In the bosonic case, the atomic
sector is described by M = 2N — 2 = 4 real DOFs. In the generic SU(3) case, the
matter is described by M = N? — 2 = 7 DOFs. If the photon is an active DOFs, its
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additional DOFs leads to M > 6 in either the bosonic or spin model, and since @) < 2
for any set of parameters, the dynamics can enter the chaotic Phase-IV*.

The case of the spin-exchange model, corresponding to Emm = Unm = 0 in Eq. (8.13),
is perhaps the most interesting, since depending on whether the model reduces to a
bosonic model or a SU(3) spin model, the dynamics can be either in Phase-III or
Phase-IV (possibly IV*). Indeed, the three level bosonic model H,(b) has M = 4 DOFs
and () = 2 conserved charges, corresponding to the total energy and ‘number of exci-
tations’ (53,3 - fl,l) , and it is therefore integrable. Again, two of the frequencies are
absorbed in the invariance of |§]n,m| under the two U(1) symmetries, and thus all oscil-
lations must be periodic, yielding Phase-III. If instead the initial state has inm # Z;Zm,
we must consider the SU(3) spin model H,(3, ), and the extra number of degrees of
freedom leads M > 2Q) = 4 allowing the dynamics to be either Phase-IV or Phase-IV*.
If Zn,m,'ﬁn,m # 0 the system loses a U(1) symmetry, associated to the conservation of
(533,3 - il,l), and consequently can display chaotic behavior for both bosons or SU(3)
spins.

8.5. HOMOGENEOUS SYSTEMS

In this section, we consider the homogeneous case (W = 0) of Eq. (8.2), where the
dynamical reduction hypothesis is true due to the permutation symmetry, and we test
the predictions of Table 8.1. In Sec. 8.5.1 we consider permutation invariant coherent
states, discussing the role of the interactions. In Sec. 8.5.2 we discuss the consequences
of classical and quantum correlations in the initial state focusing on the N = 3 levels
spin-exchange Hamiltonian, where we observe the onset of a chaotic phase.

For W = 0 both the Hamiltonians in Egs. (8.1), (8.2) are permutationally invariant
under swapping of any pair of sites, and they can be written as a function of the collec-
tive operators in Eq. (8.4). Thus, we can immediately achieve the thermodynamic limit
L — oo considering a single large SU(N) spin. As a consequence, in the mean field
limit we exactly obtain the classical Hamiltonians H (in,m,'d) or ITIe(’Xv)n,m), depending
on whether the cavity field is an active DOF or not, respectively. Here, unlike in the
general case, the effective DOFs trivially relate to the original collective DOFs being
Ynm = f(inm) = in,m, and the parameters of the effective Hamiltonians are equal to
the original ones (e.g. Wy = wp). As discussed in Sec. 8.3, the choice of reducing the
model to spin degrees of freedom, i.e. er(fln,m), or to bosons, er(Zn), depends only on
the purity of the effective one-body reduced density matrix f], i.e. whether its elements
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f]n,m can be factorized as the product of bosonic operators. In the next sections we
investigate both scenarios and confirm the prediction summarized in Table 8.1.

8.5.1. Homogeneous coherent states

We set as initial state a permutationally invariant (in space) coherent state with equal
average occupation on each level (v, ; = v in Eq. (8.8)). Since the state is homogeneous
in space, the average one-body reduced density matrix is pure, and can be factorized
in the bosonic amplitudes as X,,, = b;,b,. Therefore, the effective model describing
collective observables is either H (b, a) or H,(b,) (notice that we interchanged the effec-
tive bosonic amplitudes with the microscopic ones being equal in this case). We show
results only in the case where the photon is not an active DOF. Generally, we expect
that an active photon leads to a change of dynamical response from Phase-Y', displayed
in its absence, to Phase-(Y + 1), due to the additional DOFs [336]. Nonetheless, this
effect is suppressed as the detuning of the cavity field frequency with respect to the
atomic transitions increases, making our results approximately valid also for large but
finite detunings.

In Fig. 8.3 we show the dynamics of the magnitude of the phase coherence |3 5| in
the spin-exchange model (Eq. (8.2) with vpm = (um = 0) in the homogeneous limit
(W = 0) for different number of atomic levels N € {2,3,4}. As predicted in Table 8.1,
upon changing the number of levels, the system can display markedly different dynam-
ical responses: for N = 2, |3 5| displays Phase-II; for N = 3, |¥; o| displays Phase-III;
for N = 4, |X, 2| displays chaotic behavior (Phase-IV*). We also observe the onset of
aperiodic oscillations (Phase-IV) in the N = 4 case for different sets of parameters
and initial states. This is a simple signature of the importance of considering multilevel
atoms, although the model has all-to-all interactions.

8.5.2. Chaos induced by quantum correlations

In this section we discuss the impact of quantum correlations in the initial state in the
spin-exchange model (Eq. (8.2) with v, = (o m = 0). We show that the subsequent
dynamics is susceptible to quantum correlations, with particularly striking effects in
the SU(3) case, where we can craft a specific dynamical response by manipulating the
initial state, from Phase-III up to Phase-IV* (chaos).

We set on each site the same multimode Schrédinger cat state (cf. Eq. (8.10)). As
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FIGURE 8.3. Left plot: Dynamics of the magnitude of the average phase
coherence |X;5(¢)| in the homogeneous limit (W = 0) for the N-levels
spin-exchange model (Eq. (8.2) with vy s = (um = 0) with N = {2, 3,4}.
The initial state is a permutation invariant (in space) coherent state with
same average occupation on each level n € [1, N]. The couplings Xnm
are chosen such that we have genuine SU(N) spins. For N = 2, |31 5(t)|
is constant (Phase-II); for N = 3, |X;5(¢)| displays periodic oscillations
(Phase-I1I); for N = 4, there are not enough conserved quantities to
constrain the space of accessible states and therefore |X;4(¢)| displays
oscillations exponentially sensitive to small changes in initial conditions
(Phase-IV*). Right plot: magnitude of the Fourier spectrum of |£; ().
For N = 2 the only nonzero component is at w = 0, being |X;5(¢)| a
constant; for N = 3 the spectrum has two well-resolved peaks; for N = 4
there are multiple broad peaks. Due to the permutation invariance under
swapping of any pair of sites, the thermodynamic limit can be achieved by
simulating a single site (L = 1) in the microscopic model in Eq. (8.2), or
equivalently the effective model of Eq. (8.15). Image taken from Ref. [4].

discussed in Sec. 8.3.1, when |(F|7®)| < 1, the one-body reduced density matrix is
mixed, the phase-coherences do not factorize (X, ,, # b%bn,), and we have to keep track
of all the bilinears ¥, ,,. Thus, the effective model passes from the one in the bosonic
DOFs defined in Eq. (8.15) to the one in the SU(N) spins defined in Eq. (8.13). Due
to quantum correlations, the number of effective DOFs passes from 2N to N? and the
constraint imposed by the conserved quantities no longer ensures classical integrability
for N > 2. This is particularly striking in the SU(3) case, where quantum correlations
in the initial state can lead to a transition from a regular regime to a chaotic one. For
this reason, we focus on the SU(3) case in the following. Specifically, we consider as
initial state a family of multimode Schrédinger cat state (cf. Eq. (8.10)) parameterized
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via a parameter p € [0,1/3] as

0 =N (s VIB VB ),

0 =% (V1B VI B ViR,

The overlap |(¥V)[7()| is exponentially suppressed both in p and N, /L, so that (7)) [7®)) =

(8.16)

0 for any p > 0 in the limit N,/L — co. We quantify quantum correlations by the
connected two-point functions (X, — biby,). Given the state in Eq. (8.16), the con-
nected two-point functions are null at p = 0 and increase polynomially with p. As a
consequence, the number of effective DOFs M needed is expected to increase with p.
Based on our classification, we thus expect a change of the collective dynamical response
displayed. This is manifest looking at the Fourier spectrum of |X; 5| (cf. Fig. 8.4(a)),
where as p increases we observe a crossover from a regime with few commensurate peaks
(Phase-III) to a regime with multiple incommensurate one (Phase-IV), analogous to pe-
riod doubling phenomena, and eventually the onset of chaos (Phase-IV*) for p 2 p*.
The value p* generally depends on the parameters of the Hamiltonian. We locate p*
computing the maximum Lyapunov exponent ¢, which is the largest exponential rate
at which nearby trajectories diverge and it is finite and positive in chaotic system and
zero for regular Hamiltonian dynamics [396, 397]. We find p* =~ 0.3 for g1/gs =~ 2 (cf
Fig. 8.4(b)). We refer to Appendix D.1 for the details about the calculation of the
Lyapunov exponent and p*.

We highlight that the interactions between SU(3) spins are an essential ingredient
for observing chaos. Indeed, for g; = g» (and thus x11 = X22 = X1,2) dynamics take
place in a SU(2) subgroup of SU(3), thus the number of DOFs reduces and there can-
not be chaos as a consequence of the Arnold-Liouville theorem. While deep in the
SU (3) regime we have chaos for any p 2 p*, instead near the SU(2) limits we observe
regions in p of chaotic behavior embedded in regular ones (specifically Phase-IV). In
Appendix D.2 we provide details on the Lyapunov exponent as a function of p and the
ratio gi1/ge, passing from the SU(2) (g1 = g2) to the SU(3) spin case (g1 # g2 # 0).

In absence of interference effects ((Y|7) = 0), as it is for any p > 0 in the limit
N,/L — oo considered, the equations of motion of the collective observables %, ,, are
the same starting either from the Schrodinger cat state in Eq. (8.10), or from a state
with half sites in the state [7(!)) and the other half in the state |[7®). In this context,
p effectively controls the ‘sharpness’ of a ‘kink’ in the initial spatial configuration of
the SU(3) spins, in analogy with domain walls in the SU(2) case [347]. The primary
difference is that in Ref. [347] it is only possible to generate Phase-III by considering
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FIGURE 8.4. Dynamical response in the N = 3 levels spin-exchange
model starting from a multimode Schrodinger cat state (cf. Eq. (8.16))
as a function of initial quantum correlations parameterized via p. We set
N, = 00, g1/92 = 2 and W = 0. (a) magnitude of the Fourier spec-
trum of the magnitude of the average coherence |X; 5| (the other |3, .|
behaves similarly) as a function of p, which displays a crossover from few
commensurate peaks (Phase-III) to a regime with multiple incommensu-
rate ones (Phase-IV), and eventually signals the onset of a chaotic phase
(Phase-IV*). (b) Maximum Lyapunov exponent o/(xN,) as a function
of p, which enables to locate the transition from a regular regime to a
chaotic one at p* ~ 0.3. (c) Dynamics of |X;2(¢)| starting from three
nearly sampled initial states at two different values of p ~ {0.299,0.306}
(marked in (b)), showing exponential sensitivity to changes in initial con-
ditions in Phase-IV*. Image taken from Ref. [4].

an inhomogenous configuration of the local fields. Specifically, they consider a configu-
ration such that the local fields are positive in half the sites and negative in the other
half, and initializing the z-component of the spins along their corresponding local field,
which is equivalent to a spatial ‘kink’. In analogy, we can notice that embedding a
Schrodinger cat state is similar to the insertion of an internal ‘quantum kink’: the word
‘quantum’ highlights the presence of multi-particles entangled states, while ‘kink’ refers



138

to the phase-space representation of the state, which would be given by two coherent
states pointing in opposite directions, but now in the internal Hilbert space of the atom.

The sharp feature in the Lyapunov exponent as a function of p in Fig. 8.4(b) looks
similar to a first-order phase transition. A field theory investigation of this phenom-
enon is ongoing and it represents a natural and fruitful direction of outreach of our
results.

8.5.3. Chaotic seeds in initial states

We now explore the option to induce a chaotic phase by initializing a fraction of the
sites in a Schrodinger cat state, while keeping the other sites in a coherent state. We
consider [theat) ~ (7)) + [7?)) as defined in Eq. (8.16) with p € [0,1/3]. We initialize
a fraction F' € [0, 1] of sites in |¢cat) such that the initial state is

FL ~
|\Il> = ®}:1J |¢ca.t> ®f:|_FLJ+1 |7(1)>a (817)

where |z| returns the least integer greater than or equal to z. The region initialized
in |t)cat) could favor Phase-IV*, while the region initialized in a coherent state would
favor a regular dynamical response (Phase-III). We observe that the chaotic region
proliferates and drives the whole system into the chaotic Phase-IV* for F' 2 F*, where
F* depends on the details of the initial state and parameters of the Hamiltonian. For
the state in Eq. (8.17), F* =~ 0.5 at p ~ 1/3. In Appendix D.3 we offer a more detailed
analysis.

8.6. EFFECTS OF INHOMOGENEOUS FIELDS

Upon introducing inhomogeneous local fields (W > 0) the permutation symmetry is
broken and the Hamiltonians in Eq. (8.1) and Eq. (8.2) cannot be straightforwardly
written as a function of collective DOFs. Regardless, the dynamical responses observed
in the homogeneous case (W = 0) are generally robust against finite inhomogeneity
(W > 0), and we provide numerical evidence that the simple effective Hamiltonians
defined in Sec. 8.4.4 describe quantitatively the many-body collective dynamics of the
full model in a regime of moderate inhomogeneity W. In particular, we focus on the
spin-exchange Hamiltonian in Eq. (8.2) for vy m = um =0,

L N N-1
H= Z Z hg)zg% - Z Xn,mzn-i-l,nzm,m—i-l- (818)

j=1 n=1 m,n=1
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FIGURE 8.5. Dynamics of the magnitude of the average phase coherence
|Xim(t)| in the N = 3 levels spin-exchange model at fixed go/g; =~ 102
and W/(xN,) = 0.1. The initial state is a permutationally invariant (in
space) coherent state. The continuous lines are obtained simulating the
full many-body dynamics with L = 10* sites. The dashed black lines are
obtained simulating the effective model in Eq. (8.13) with parameters nu-
merically obtained by the optimization of the cost function in Eq. (8.19).
Image taken from Ref. [4].

To demonstrate the validity of the effective Hamiltonian, we numerically identify the
parameters of the simple ansatz in Eq. (8.13) that reproduce the dynamics of collective
observables. Our procedure can be summarized as follows:

(1) we compute the time evolution of the collective observables ¥, ,,(¢) from the
full many-body dynamics obtained via the Hamiltonian in Eq. (8.18);

(2) we set the initial conditions {Enm(t = 0)} and give a numerical ‘seed’ to the
parameters {hn, Xn,m §nm, Unm} in the effective model in (8.13);

(3) we compute the time evolution of the collective observables using the effective
model in Eq. (8.13);

(4) we vary the initial conditions and effective Hamiltonian parameters to minimize
the average norm-1 distance between ¥(£) computed in (i) and %(¢) computed
using the effective model in (iii) i.e. we set as cost function

2

nm—

Snm(t) = Snm(®)| dt. (8.19)

In Appendix D.4 we discuss the details of steps (ii) and (iv).

Since the dynamical reduction hypothesis has been extensively demonstrated to hold ex-
actly for two-levels atoms through integrability [326, 333, 370|, we focus on the N = 3
levels case. In Fig. 8.5 we show the results obtained in the spin-exchange model at
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W/(xNa) = 0.1 by simulating the full many-body dynamics given by Eq. (8.18) (con-
tinuous line). We initialize the system in a permutation invariant coherent state (cf.
Eq. (8.8)) which displays Phase-III at W = 0, and we consider photon-matter couplings
g1 # Go, S0 that x11 # X2 # X12 in Eq. (8.18). The black dashed lines are obtained
from the numerically optimized single-body effective Hamiltonian. The dynamics of
collective observables obtained via the effective Hamiltonian match well the dynamics
obtained via the full many-body mean field Hamiltonian; this suggests not only that
the dynamical response observed in the homogeneous case is robust, but also that the
dynamical reduction hypothesis holds at finite .

Due to exponential sensitivity to initial conditions the procedure described above does
not converge with high enough accuracy in the SU(3) system in the chaotic phase of
Sec. 8.5.2, which however persists also for weak inhomogenities.
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FIGURE 8.6. Dynamics of the magnitude of the average phase coherence
|X2,3(t)| in the N = 4 levels spin-exchange model for x12 # X2,3 7 X3.4-
The initial state is a permutation invariant (in space) coherent state. As
W/(xN,) increases, the system displays different dynamical responses,
passing from Phase-IV to Phase-11I, then to Phase-II and eventually to
Phase-1. The different phases are separated by crossover regions where the
dynamical responses cannot be sharply identified (not shown here). In
the inset we show the magnitude of the Fourier spectrum in the late time
dynamics. The results shown are obtained with L = 10* sites and are not
appreciably affected upon increasing L. Image taken from Ref. [4].
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FIGURE 8.7. Dynamical response in the N = 3 levels spin-exchange
model (Eq. (8.18)) with inhomogeneity W/(xN,) and ¢1/92 ~ 2 (x1,1 #
X12 # X22), initializing a multimode Schrédinger cat state parameter-
ized by p (cf. Eq. (8.16)) on each site. We focus on |X; 3|; the other
phase-coherences behave similarly. In the top panels we show the mag-
nitude of the Fourier spectrum and dynamics of |X; 3|, starting from two
close-by initial states, changing p at fixed W/(xN,) = 0.08. Instead, in
the bottom panels we change W/(xN,) keeping p = 0.32 fixed. As p in-
creases, and W/(xN,) is fixed, we can infer from the Fourier spectrum a
crossover from a regime with well-resolved peaks with commensurate fre-
quencies (Phase-III), to multiple peaks with incommensurate frequencies
(Phase-IV) and eventually to spectrum with multiple broad peaks typical
of chaotic dynamics (Phase-IV*). In (b) we show three examples of the
different dynamical responses at p = {0.15,0.299,0.32} (marked in the
plot of the Fourier spectrum). As W/(xN,) increases the system passes
from Phase-IV* to Phase-IV and eventually Phase-I. In the (d) panel we
show the dynamics at W/(xN,) = {0.5,1.8}, corresponding to Phase-IV
and I (marked in the plot of the Fourier spectrum), respectively. The
results shown are obtained with L = 10* sites and are not appreciably
affected upon increasing L. Image taken from Ref. [4].

8.6.1. Robustness of dynamical responses to inhomogeneities

Inhomogeneities in the local fields are generally expected to have an impact on the dy-
namics of collective observables. One could argue that for W/(xN,) > 1 the local fields
{hg )} will dominate dynamics, and phase-coherences would be washed out (Phase-I).
Here, we explore the dynamical responses at moderate inhomogeneity in spin-exchange
Hamiltonian of Eq. (8.18) for N = 3 and N =4 levels atoms. In the N = 3 levels case
we initialize a multimode Schrédinger cat state on each site for which the dynamical
response is chaotic (Phase-IV*) at W = 0. On the contrary, in the N = 4 levels case
we consider a coherent state for which the dynamical response is aperiodic (Phase-IV)
at W = 0. In both cases, |Xn | displays dynamical responses different from Phase-I
and Phase-II (relaxation) for W/(xN,) S 1.
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First, let us consider the N = 4 spin-exchange model in Eq. (8.18). In Fig. 8.6
we show the dynamics of |¥y3| for different values of inhomogeneity W/(xN,). We
fix as initial condition a permutation invariant (in space) coherent state with different
amplitudes on each level. The intra-level phase coherences |¥, | displays Phase-IV
up to a finite value of inhomogeneity W/(xN,). Upon increasing W/(xNa), |Enm| dis-
plays Phase-I1I, Phase-II and eventually Phase-1. The different dynamical responses are
divided by regions (not shown in Fig. 8.6) where the distinction between the different
dynamical responses becomes more blurry.

Similarly, in the SU(3) case, the dynamical response generally passes from Phase-Y
to Phase-(Y — 1) as W/(xN,) is increased (at fixed initial state), and with the dynam-
ics eventually entering Phase-I due to the dominant inhomogeneous local fields (bottom
panels in Fig. 8.7). Instead, as initial quantum correlations in the initial state increases
with p, the dynamical response generally passes from Phase-Y to Phase-(Y + 1) (top
panels in Fig. 8.7). Additionally, we highlight that the dynamical responses are gener-
ally robust against small breaking of the permutation symmetry in the initial state.

The robustness of the various dynamical responses against inhomogeneous local fields
for W > 0 can be ascribed to the many-body gap o x.N, that suppresses local spin flips
and favors spin alignment. This mechanism has been shown to protect phase coherence
in the spin-exchange model between SU(2) spins [287, 303, 398], and it is likely present
also in our N levels case. As W increases, this ‘many-body gap protection’ is less
effective and dephasing processes between the SU(N) takes over. As a result, within
the framework of the dynamical reduction hypothesis, the number of effective sites re-
quired to describe dynamics is reduced and accordingly the dynamical responses change.

For instance, in the SU(4) case (cf. Fig. 8.6), at moderate inhomogeneity the sys-
tem has M > 2() effective DOFs, which lead to to Phase-IV observed in the W = 0
case. As W becomes sizeable, dephasing starts to affect dynamics and, since M < 2Q,
the system displays Phase-III, II and eventually I, upon increasing the degree of inhomo-
geneity. The effects of dephasing are apparent in the Fourier spectrum of |, ., (¢)| (cf.
inset of Fig. 8.6), where the various Fourier components are ‘depleted’ as W increases
until the whole spectrum becomes flat in Phase-I. Similarly in the SU(3) case, inhomo-
geneity leads to a loss of effective phase-space, a reduction of the effective DOFs and
correspondingly leads to a loss of chaos (the Lyapunov exponent vanishes). Along the
same argument, the number of effective DOFs M increases as initial correlations in the
initial state increase, thus the system could enter in a regime with different dynamical
responses and eventually display chaotic behavior, as observed in the homogeneous case
of Fig. 8.4. We highlight that the dynamical response displayed does not necessarily
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have to pass smoothly from Phase-Y to Phase-(Y £ 1), but there can be a ‘jump’, as
in the SU(3) case where Phase-IV turns into Phase-I (see Fig. 8.7), without displaying
Phase-III and Phase-II. This has been also reported in the integrable SU(2) case [347].

8.7. EXPERIMENTAL IMPLEMENTATION

A possible experimental scheme to implement the couplings of Hamiltonian Eq. (8.2)
is sketched in Fig. 8.8. Ensembles of NV, /L atoms are trapped at L fixed positions and
collectively coupled to a single mode of a high finesse optical cavity with resonance
frequency w.. At the same time, the atoms are subject to a multi-frequency laser field.
The atoms are assumed to have a manifold of ground state sublevels which can be
coupled using Raman transitions. If one leg of such a Raman transition is driven by
a classical field while the second leg is coupled to the resonator mode, cavity-assisted
Raman transitions can be implemented [286, 305, 321]. In a microscopic description,
a photon from the laser field is scattered into the cavity, while the internal state of an
atom in one of the ensembles is changed. The photon is delocalized over the cavity mode
and can subsequently drive a second Raman transition in another atomic ensemble. In
this process, the photon is absorbed by an atom and then emitted into the driving laser
field via bosonic stimulation.

As example we consider 8’Rb atoms, where the F' = 1 ground-state hyperfine manifold
has N = 3 magnetic sublevels mp = (0,41). A sufficiently strong applied magnetic
field leads to a non-degenerate level splitting due to linear and quadratic Zeeman shifts,
as sketched in the figure. In combination with a two-frequency transverse laser field,
this allows to drive state-selective, cavity assisted two-photon Raman transitions be-
tween these states, as indicated in Fig. 8.8b. The laser field is far detuned from atomic
resonance to avoid any spontaneous decay of the excited atomic state. The frequencies
w, and w_ of the transverse laser field are chosen to match the different atomic level
splittings when a photon is absorbed from or emitted into the cavity mode. For exam-
ple, an atom at a specific site can be transferred from mr = 0 to mp = —1 by absorbing
a photon from the laser field at frequency w_ and emitting a photon into the cavity.
The very same cavity photon can then drive a transition at a different site where an
atom in mgr = 0 absorbs that photon and undergoes a transition to mr = +1 while
emitting into the laser field at frequency w,. These two-photon Raman transitions
correspond to the processes proportional to g, in Hamiltonian Eq. (8.2), where the cou-
pling strengths g,, can be engineered via the single-photon Rabi frequencies (2, and Q2_.

The co-rotating terms proportional to A, in Hamiltonian Eq. (8.2) can be implemented
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FIGURE 8.8. Suggested experimental implementation. (a) Ensembles of
3-level atoms in L traps (black dots) are coupled to a single mode of an
optical cavity (red) and transversely illuminated by a two-frequency laser
field (blue, green). (b) The applied magnetic field B leads to a non-de-
generate atomic level splitting allowing to selectively drive cavity-assisted
Raman transitions. Coupling via the transverse laser fields (the cavity)
are shown as solid (wiggly) arrows. If additional frequency components
(grey arrows) are introduced, co- and counter-rotating terms can be en-
gineered. Image taken from Ref. [4].

if additional laser frequencies are added to the transverse laser field. Such couplings
are indicated by the grey arrows in Fig. 8.8b. The relative strengths of the co- and
counterrotating terms can be independently tuned via the respective Rabi rates of the
driving laser fields [321].

This scheme can further be extended to N > 3 by choosing atomic states with larger
magnetic sublevel manifolds as they can be found for example in lanthanide atoms.
Finally, site dependent energies hg ) of the atomic modes can be introduced by applying
a magnetic field gradient along the cavity axis in addition to the homogeneous magnetic
field [323, 399]. In a realistic scenario also cavity decay due to losses at the mirrors
has to be taken into account. Its influence can however be reduced by introducing a
detuning between the cavity resonance and the frequency of the field scattered into the

cavity mode.
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8.8. DISCUSSION
8.8.1. Role of dissipation

In our analysis we have considered the system completely isolated from the environment.
In cavity-QED systems there are two main sources of dissipation, free-space emission of
single-atom excitations and loss of the cavity field. Let us denote the rates of the two
processes with 1 and k, respectively, and their jump operators with f/ff ) = \/ﬁf],(f 31 1
and [ = \/ka, where j € [1,L] and n € [1, N — 1]. The relevant time scales for the co-
herent dynamics are set by the collective photon-matter couplings \,v/N, and g,+/N,.

The different dynamical responses can be dominantly ascribed to Hamiltonian dynam-

ics if )\n\/:;aagnv:;a > K, 1.

We provide a more accurate estimate in the far detuned cavity mode regime, where
all our results have been derived. Focusing on the SU(N) spin-exchange case for
simplicity , the photon effectively induces elastic all-to-all interactions of strength
Xnm = gngmwo/ (w3 + (k/2)%); in addition, the collective atomic transitions are ra-
diatively broadened by the coupling to the cavity, leading to collective decays with rate
per-particle ', = g2k/(w2 + (x/2)?) [273-277]. The coherent dynamics are fast with re-
spect to the time scales of the dissipation if NoyXnm > {Nav/Tnlm, n}, which translate
to wp > Kk and Nyxnm > 1 (see Appendix D.5 for the complete derivation). In this
parameters’ regime, dynamics are basically ruled only by coherent evolution, at least
up to times parametrically large in wop/k and NoXn m/7-

8.8.2. Connection with SU(N) fermionic systems

As already anticipated in Sec. 8.3.1, the number of atoms per site N, /L is a conserved
quantity in our system and our results can be extended to a large class of systems
which can be mapped to the Hamiltonians in Egs. (8.1) and (8.2). As an example, let
us consider a N-level fermionic system with annihilation (creation) operators égg with
n € [1, N] and site index j. We can define the pseudospins 59, = éL’jém,j [265], which
in turn can be expresses in terms of Schwinger bosons as EA],(fzn = IA)IL,jIA)m,j. If via this
procedure the fermionic Hamiltonian as a function of the Schwinger bosons is identical
to one of the Hamiltonians here investigated, our results obtained via coherent states
could be applied straightforwardly. Indeed, the mean field at the level of the Schwinger
bosons is mathematically equivalent to simulating pure single-particle states |¢;) =
SN (bn;)|n;), with the caveat of interpreting the bosonic amplitudes as probability

n=1

amplitudes [288].
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8.8.3. Roadway towards a universal dynamical reduction hypothesis

Here, we have formulated and tested a reduction hypothesis for the dynamics of SU(N)
cavity QED systems with atoms in a multilevel ladder configuration. We found that
the reduction hypothesis was a useful description for a variety of systems with different
initial states, levels, inhomogeneous fields, and light matter interactions. This plethora
of applications calls naturally for a broader framework. Our classification of dynam-
ical responses based on the dynamical reduction hypothesis and the Arnold-Liouville
theorem might posses the flavor of universality. It would be in fact extremely interest-
ing to encompass all the specific examples mentioned above, under the lenses of the
symmetries both of the local DOFs and of the light-matter interactions. Similarly to
renormalization group approaches, one could explore the basins of attraction of the
effective few-body models presented here. Upon changing the symmetries and the con-
servation laws of a given macroscopic model, one could expect to distinguish a set of
irrelevant perturbations in which the reduction hypothesis remains valid, and set of rel-
evant perturbations in which the reduction hypothesis fails and no effective few-body
model describes the dynamics of collective observables.

From our numerical experiments it seems natural that perturbations that do not dramat-
ically change the long-range nature of the interactions would be irrelevant. We would
therefore expect similar dynamical responses in the presence of different photon-assisted
transitions (e.g. from the n-th level to any m-th level level via a single-photon process),
or of squeezed terms (e.g. o< (b'bta + h.c.)), where the information about the state can-
not be retrieved solely by the SU (V) coherences, but would also require terms such as
(b'bt) [322]. Investigations into the latter perturbations might disclose connections be-
tween multi-mode squeezing and the generation of universal dynamical responses. It is
also completely natural to investigate the impact of different level configurations, for in-
stance, studying the case of two degenerate subspaces of excited and ground states [278,
279, 354]. A preliminary analysis suggests that they are also irrelevant perturbations
and that a reduction hypothesis still holds here. Finally we note that SU(N) gener-
alizations of BCS models [349-352] would, under a generalized Anderson pseudo-spin
mapping, have a similar form as to the models we study here and also be describable
by a reduction hypothesis.

In contrast, any perturbation that introduces short range interactions could be ex-
pected to be relevant to the effective few-body Hamiltonian basin of attraction. This
appears to be the case in the context of time crystals [324, 325, 400-403], where short
range interactions generally melt the time crystal at late times and lead to generically



. CRAFTING THE DYNAMICAL STRUCTURE OF SYNCHRONIZATION
BY HARNESSING BOSONIC MULTILEVEL CAVITY QED 147

asynchronous relaxation. Separability of the interactions will also likely play a role: sys-
tems with separable interactions seem describable by an effective few-body model [336,
404]; while models with inseparable interactions can lead to glassy relaxation [405-407]
and cannot be described by effective few-body models [404, 408]. Furthermore, systems
with a number of atomic levels comparable to the number of sites, N ~ L, may also
pose obstacles in defining an effective few-body theory, but could be relevant for exper-
iments in synthetic dimensions [353, 354]. Naturally the effects of dissipation would
also not be captured by a few-body Hamiltonian picture, but instead potentially be
described by a few-body dissipative model such as a Lindbland master equation.

The strong numerical-oriented approach we have taken here has provided serious ev-
idence of a description using an effective few-body model, even demonstrating a near
perfect ability to capture the dynamics of collective observables. Still, an analytic ap-
proach could yield important insights and provide a more solid ground for classifying
different perturbations as relevant or irrelevant to the few-body attractive basin. Con-
sidering the variety of AMO systems modeled by collective interactions, finding such
description would constitute a significant step forward in understanding universality
out of equilibrium [409, 410).






APPENDIX A

Supplemental information for Chapter 3

A.1. ROLE OF ON-SITE DENSITY-DENSITY INTERACTION

In Chapter 3, we focus on a simplified version of the model without on-site density-den-
sity interactions, to keep to a minimum the amount of technical details in the course
of the presentation. In the following, we address the role of on-site density-density
interactions, focusing on the localization properties of the ground state and comparing
them with the statements in Chapter 3 resulting from numerics performed at U > 0
and € = 0.

Starting from the Hamiltonian in Eq. (3.5), we consider U = 0 and € > 0. For € = 0,
the model does not display localization at finite s in the bosonic limit, as extensively
discussed in Sec. 3.2. On the other hand, for ¢ > 0, the ground state is localized for
s > 8. in the bosonic limit, with s. being parametrically small in e. We perform the
same scaling analysis as a function of the cutoff A discussed in Sec. 3.2. In Fig. A.1,
we show the inverse of the localization length £ swiping s for different values of A at
fixed e. The scaling analysis suggests that the transition point s.(A,€) converges to a
finite value independent of A for A — oco. The overall qualitative picture is therefore
unaffected if one considers on-site or nearest-neighbor nonlinearities.

A nonzero value of € introduces, however, anharmonic spacings between ground states
with different values of ng. Indeed, we have, for the energy of the ground state,
E(no) =~ no/2 + end/2. This additional anharmonicity has an impact on the adiabatic
protocol discussed in Sec. 3.3, since each adiabatically evolved state U|no)o ® @);¢ [0);
in Eq. (3.17) would acquire a phase with a nonlinear dependence in ng, which technically
complicates state preparation without altering the main physical message. Nonetheless,
it is still possible to tame the effect of this nonlinearity by considering a small enough
€, at the cost of having a smaller e~* (larger s) and therefore working effectively deeper
in the localized phase. These types of unnecessary technical complications are at the
root of our choice of working throughout the main text with e = 0 and U > 0.
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FIGURE A.1. The inverse of the localization length & in a system of
L = 15 “active” sites in the symmetry sector ng = 1, B,—9- The main
plot shows the inverse of the localization length £~! as a function of s for
different values of A € [1,15] and € at U = 0. The darker lines correspond
to larger values of A. The inset (a) shows the behavior of s.(¢,A) as a
function of A for € = 0.1 (red) and € = 0.2 (blue) at U = 0. Image taken
from Ref. [1].
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FIGURE A.2. The scaling analysis of 1—|(1p(A)|1)o(A+1))| as a function
of A at fixed U = 0.1 and s = {1.2, 1.5} for different values of ng € [1, 30].
The dots and squares refer to the numerical results obtained at s = 1.2
and s = 1.5, respectively. The overlap tends exponentially fast to 1 in A.
The decay is slower as ng increases at fixed s and U. Image taken from
Ref. [1].
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A.2. SCALING ANALYSIS IN A

In the main text, we show that the bosonic system displays a delocalized-localized tran-
sition at finite s if U > 0. Here, we show that the ground state is not only localized
but it is weakly dependent on the physical cutoff A. This provides quantitative proof
that we can investigate the bosonic system with a finite A in the localized phase.

We fix the symmetry sector ng and (s > s.(U),U > 0) in the localized phase. We
compute |1p(A)) for different values of A. We calculate 1 — |{1ho(A)|o(A + 1))|? as a
function of A (see Fig. A.2). The fidelity |(1o(A)|¥o(A+1))|? approaches 1 exponentially
fast in A. The more the system is in the localized phase and ng is small, the faster is the
convergence. This gives the first evidence that the ground state of the actual bosonic

system is well described with small effective cutoffs.

We compute the variance of the Hamiltonian given in Eq. (3.1) over the ground state
|10)0 ® |Y0(A)), taking into account the bosonic nature of the original Hamiltonian in
Eq. (3.1). This quantity is exactly zero if the state |ng)o ® [t)o(A)) is an eigenstate of H.
We aim to see how this quantity goes to zero as a function of A. In order to do so, we
write the Hamiltonian given in Eq. (3.1) as the sum of two terms H = H_ + H,. H_
acts on the Hilbert space spanned by states with an occupation number up to A, while
H, acts on the Hilbert space spanned by states with an occupation number greater than
A. We label the sectors on which H, acts nontrivially as the H_ sectors, respectively.
We apply the same procedure to the number operator and the annihilation(creation)

operator:

k) (k| + Z k|k) (k

I|
Eonld
n M>
o

k=A+1
= fi_ + Ay,
T (A1)
A o0
o= VEk—1)kl+ > Vklk— 1)k
k=0 k=A+1
- &_ + &+.

The commutator [i_, 7] = 0, while [6_,a+] = v/A(A+ 1)|A —1)(A + 1| # 0. This is
because the operators a(T) connect the two sectors H.. From Eq. (A.l), we straightfor-
wardly obtain the expressions for H.:

:_—anﬂ:[ ( z+1:|:+a1+1:|:)+

—Ufiy1,+ — 1] .

(A.2)
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FIGURE A.3. The scaling analysis of (1o(A)|AH|1o(A)) as a function
of A at fixed U = 0.1 and s = {1.2,1.5} for different values of ng €
[1,30]. The dots refer to the numerical results. The dashed lines are
the analytical estimation given by Eq. (A.4). The variance AH decays
exponentially fast in A. The decay is slower as ng increases at fixed s and
U. Image taken from Ref. [1].

In our numerical scheme, we fix a finite cutoff A. Therefore we are computing the ground
state |¢o(A)) of H_. Since G are noncommuting operators, the two Hamiltonians
H_ and H, do not commute as well. Therefore, it is not ensured that |¢o(A)) is an
eigenstate of the full Hamiltonian H. We compute the variance AH over |¢g(A)) of the
Hamiltonian H = H_ + H,,

AH = (H H.) + ({Hy, H-}) + (H_H_) — (H)?, (A.3)

to check whether |¢o(A)) is an eigenstate of H. The terms in H. that preserve the
sectors H. give a zero contribution in Eq. (A.3). Indeed, the ones that keep the system
in the H_ sector give a zero contribution since |1o(A)) is an eigenstate within this sector
by definition. Instead, the ones that keep the system in the H, sector trivially give
zero since we do not have any occupation larger than A. The only contribution comes
from the operators a{ or, more precisely, the term (VA + 1A+ 1)(A| + h.c.) which
connects the two sectors. Using Eq. (A.2), we straightforwardly obtain

—9g L—1

> (1) (Pisia), (A4)

J=0

e
AH =A 1

where P;;, = |k);;(k| is the projector on the Fock state with occupation & on site j. The
first term of the sum (5 = 0) encodes the information about the fixed symmetry sector,
since (A2) = nZ. The variance given in Eq. (A.4) depends on the mean occupation
number and on the projector over the Fock space on A. In the main text, we show

that the system displays a localized phase in the bosonic limit, A — oo, if U > 0. This
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FIGURE A.4. The points correspond to the quantity computed on the
ground state obtained via the DMRG; the continuous lines are the results
obtained assuming that the state is Gaussian. We fix U = 1, ng = 1, and
A = 15. Image taken from Ref. [1].

enables us to estimate Eq. (A.4) in the localized phase. In the localized phase, the
average occupation number of the ground state is (f;) ~ e /¢ (cf. Eq. (3.6)). The
exponential decay of the occupation number along the chain reflects on the behavior
of the expectation value of Py ;, which decays exponentially fast in k (cf. Eq. (3.7)).
Therefore, the series in Eq. (A.4) is finite for A — oo and L — oo, since each term is
exponentially suppressed. In Fig. A.3, we numerically compute the variance AH over
|to(no, A)) for different values of A and ng. Rigorously, the cutoff A limits the accessible
ng, since (7;) < A. Nevertheless, because ng appears as a constant in the Hamiltonian,
we can also compute the ground state |¢p(ng,A)) for ng > A. The numerical results
match Eq. (A.4) perfectly. The variance goes exponentially fast to zero. Therefore, an
eigenstate of H_ is an eigenstate of the fully bosonic system as well, with a reasonably
small cutoff A when U > 0.

A.3. GAUSSIANITY AND NON-GAUSSIANITY IN THE GROUND STATE

In Fig. A.4, we show the correlator A; = (f;7,41) — (f;)(f;+1) as a function of j
for different values of s at fixed U = 1. We compare A; computed on the ground
state obtained via the DMRG and the one computed assuming that the same state is

Gaussian in the operators {dg-ﬂ }5—1, which we call A%
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A.4. NUMERICAL METHODS

In this appendix, we provide the details of the parameters adopted for simulating a single
stochastic trajectory at the core of the quantum trajectories method, while we refer to
Ref. [168, 169] for details of the algorithm. As stated in the main text, we resort to tensor
networks in order to numerically integrate a single trajectory. The deterministic part
of the dynamics given by the action of the effective Hamiltonian defined in Eq. (3.29) is
performed via the time-evolving block-decimation (TEBD) algorithm with second-order
Suzuki-Trotter decomposition. When a jump occurs, the corresponding jump operator
is easily applied being a single-site gate. We fix a time step dt = 5 x 1073, a maximal
bond dimension Ymax = 75 and we keep the singular values greater than 1071°. We
verify that the results are not affected by the time step ¢t and xpax- All the simulations
are performed using the ITensor library [411].
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Supplemental information for Chapter 4

B.1. DYNAMICS OF ENTANGLEMENT ENTROPY IN THE QUANTUM EAST MODEL

In Fig. 4.3(a) we have located a state-dependent mobility edge for initial product states
using the time-complexity as an indicator. Specifically, we used the way the max
bond-dimension Y.y grows in time as an indicator to identify states whose dynamics
are ‘hard’ or ‘easy’ to simulate. Based on this, we located a ‘hard’ and ‘easy’ regime as
a function of the Hamiltonian parameters and energy density of the initial state. Here
we present the data for the growth of max entanglement entropy (Syax) which is the
largest value of von Neumann entropy across all bipartitions of the state. Due to the

e=04
— 8=-03
— 8=0.5
— 8=15
~ 0.8log(t)
s 0.4log(t)
0 20 © 60

FIGURE B.1. Dynamics of the maximum entanglement entropy of ~ 100
product states (cf. Eq. (4.3)) at fixed normalized energy ¢ = ((H) —
Ewin)/(Emax — Emin) = 0.4 and different values of s. Deep in the delocal-
ized phase (s = —0.3), we observe a linear growth of Sy, as expected
for typical thermalizing systems. Instead, in the localized phase (s > 0),
we observe a logarithmic growth of Sy« with a coefficient parametrically
small in s. This indicates the presence of localization and the suppres-
sion of the spread of entanglement rate in the system with increasing and
positive s. Image taken from Ref. [2].
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connection between the MPS representation of the state and the entanglement entropy
(S ~ logx), we expect that an exponential growth of x (x o e™) translates to a linear
growth of S (S o t), while instead a polynomial growth of x (x oc t*) translates to a
logarithmic growth of S (S o log(t)).

In Fig. B.1, we show the dynamics of Sy.x for a sample of initial product states at
a fixed € = 0.4 and different s. We perform linear (o t) and logarithmic (ox log(t))
fits. For states deep in the delocalized regime (s = —0.3), we have a linear growth
of Spax, which is expected in the thermal regime. It also supports the data presented
in Fig 4.3(b), where we observe exponential growth of Xmax for s = —0.3. In the
localized phase s > 0, we observe logarithmic growth of Sp.x. This behavior indicates
the presence of localization and non-thermal properties and suppression of the rate at
which entanglement spreads in the state upon increasing s. The logarithmic growth in
the s > 0 regime agrees with data in Fig 4.3(b) where we get polynomial growth of
Xmax for the displayed values of s and e.

B.2. FINITE SIZE SCALING

In Sec. 4.4.1, we have provided evidence of a so-called ‘state-dependent mobility edge’
in the spin version of the quantum East model. We studied the model on a system
size of L = 30, and the way the max bond-dimension max grows in time was used as
an indicator to classify ‘hard’ or ‘easy’ regimes. Here, we perform a finite-size scaling
analysis to ensure that our results are unaffected by the system size considered.

As we have established that the spatial structure plays a vital role in the dynamics,
particularly in the crossover regime, we investigate the dynamics of product states for
different system sizes L, being careful in keeping the spatial structures. Also, we con-
sider states having the same energy density € = ((|H|v) — Egs)/(Emax — Fas) as we
tune the system size L.

In Fig. B.2(a) we show the dynamics of the max bond-dimension Xmax for different
values of L and energy density €. Each curve with a specific color consists of five
overlapping curves for system size L € [30,60,90,120,150], which cannot be distin-
guished due to the absence of finite-size effects at the timescales reached. The overlap
gives a clear indication that our results are unaffected by the system size considered.
Figs. B.2(b-c) show the data for the extracted growth rates r and o from these prod-
uct states for different € and L. Fig. B.2(b) shows the exponential growth rate r as a
function of system size L, whereas Fig. B.2(c) shows the power-law exponent a as a
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FIGURE B.2. Dynamics of product states (cf. Eq. (4.3)) with similar
spatial structure and same € are initialized across different system sizes
L € [30,60,90,120,150]. (a) Evolution of x vs t for different €, and
each color consists of five overlapping plots for L € [30, 60, 90, 120, 150],
which cannot be distinguished due to the absence of finite-size effects.
(b) Extracted exponential growth rate r as a function of L for different
e. (c) Extracted power-law a as a function of L for different €. Both r
and «a are independent of the system size L, indicating the insensitivity
of our results to finite-size effects. Image taken from Ref. [2].

function of system size L. It’s clear that the growth rates are constant and unaffected
by finite-size effects.

B.3. ROLE OF EQUILIBRIUM LOCALIZATION LENGTH &

In Sec. 4.4.4 we have used the localization length of the ground state £ as a typical
length scale also out-of-equilibrium. By doing so, we were able to address the key role
of the spatial structure of the states in the localized phase (s > 0). To further prove
the predictive power of £, in Fig. B.3 we show the same data as in Fig. 4.4 but without
&. We see that the ‘hard’ and the ‘easy’ states completely overlap and we are not able
to differentiate between different complexity regimes. Such observation highlights the
key role of the localization length & of the ground state in governing the dynamics of
product states, even at finite energies.
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FIGURE B.3. Same data presented in Fig. 4.4 but without rescaling the
distance between cluster excitations w, i.e. the number of consecutive |0),
and the average size of the clusters kayg, i.e. the number of excitations |1),
with the localization length & of the ground state at the corresponding
s. The red dots correspond to ‘hard’ (exponential growth) states with r
the corresponding rate. The blue dots correspond to ‘easy’ (polynomial
growth) states with a as the power-law exponent. Both ‘hard’ and ‘easy’
states overlap because the effect of £ on growth dynamics is not consid-
ered, highlighting the key role of £ also out-of-equilibrium. Image taken
from Ref. [2].
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Supplemental information for Chapter 7

C.1. PERTURBATIVE CONSTRUCTION OF THE GENERATOR S OF THE
SCHRIEFFER-WOLFF TRANSFORMATION

We write the Hamiltonian Hy and the perturbation V as a function of the operators
c?]) defined in Eq. (7.4)

L oo L o
=3 w41 =D wepes, V.

j=1 £=0 j=1 ¢=0

~

-1 oo
g Z (CEJCSJ+1 + h. c)

1 £4,5=0
(C.1)
where wy; = (wj—Ec/2) j+FEcj?/2 and we introduce py; = |¢, j)(¢, j| for convenience.

o,
I|

We compute the generator n = [Ho, V]

=1 £,6=0

where Agyj = wpy1; — we; = (wj+Ecl). Following Ref. [270], the ansatz for the
generator S of the SW transformation is S = E;‘:l >0 Ajts (cs,jc},j +1—cl,jce,j+1).
We compute [S, Ho] and we impose [S,Hy] = —V. This condition is satisfied if
Ajos =9/ (A[,j+1 - As,j). Therefore

_ g
S=Y Si1,  Signn= ) X A (Cs,jcz,j+1_cl,jcl,j+1> : (C.3)

j=1 [,3=0 A£7J+1 - 8,J
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C.2. COMMUTATOR OF THE HAMILTONIAN WITH THE GENERATOR S OF THE
SCHRIEFFER-WOLFF TRANSFORMATION

We write the perturbation V' = Zf:_ll Vjj+1, where Vi1 =g> "% (c;,jcs,jﬂ + h.c).
We compute the commutators [S;_1,;, Vjj+1], [Sij+1, Vij+1] and [Sj—1,5, Vi ]

29°E¢
[Sjj+15 Vija] = Z = = = ~ cs,jcs+1,10§+1,j+102j+1+
t (Besngn —Bys) (Begsa — Bosay)
>
+ X ~——4ps,jPej+1+
s De-1j41 — Ay
2¢°E¢
+3 o . ” " s€ps,jpej+1+
s (Ae—l,j+1 - As,j) (Ae,j+1 - As—l,j)
g2
- Z A A 8Ps,iPe,5+1 + h.c. )
f’s Z7J+1 - 3_17j
2
9°Ec¢
[SJ)J"F]-’ V7_17J] = Z ~ ~ ~ ~ SCQJ_lpsv]cz,j-‘r].—'_
b (Ae,j+1 - As,j) (Ae,j+1 - As—l,j)
2
9 t
+ X X Cq,j—1Ps,iCp 11T
e,s,q Z7J+1 - 8,J
2
9°Ec
— Z — — — — c;’j_lcs,jcsﬂ,jcz’jﬂ + h.c. y
tog (Af,jJrl - As,j) (Ae,j+1 - As+1,j)
2
9°Ec
[Sj_l’j’ V77.7+1] = Z ~ ~ ~ ~ Ecs,j—lp@,jcz,j_kl_'_
tsk (Ae,j - As,j) (AE—l,j - As,j—1>
2
g t
- Z = = Cs,j—1P2,jC j+17T
f,s,k AK,] - Asvj_]-
2
9°Ec
— Z — — = — cs,j_lcz+1,jc},jck,j+1 + h.c.,
t,s)k (Ae,j - As,j—l) (Ae+1,j - As,j—l)

(C4)
which constitute the building blocks for computing [S,V]. We consider a drive field
acting on site j, Harivej = 2 (6*%%a; + h.c). We compute the commutator [S, Harive ;] =
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[Sj-1,5, Harive,j] + [Sjj+1, Harive,5):
9 Ec

Ae-1 g A, j—l) (Aﬂ,j - As,j—1)

io;t
" 5 1pe s+

— 67’ajtc ._1p£ _|_
Z AE,J s,'—l 5,J J
98, Ec i
R (Besns = Buss) (Beg = Bugm) engacii gt e
+1,j — Dsj—1 0,j — Ds,j—1
gQ EC o
[S5.5+1> Harives] = ) 7= . ~ ~ e s, i} 41+
s ( £,5+1 — As,j) (Ae,j+1 - As+1,j)
ng —iait i
+ e "M'pg ic, .., + h.cC.
Zs: Agjr1 — Ay 7
- Z = = ngl?o = eiajtcs,jcs+1,jcz,j+1 + h.c.
(Ae,j+1 - As,j) (Az,jﬂ - As+1,j)

(C.5)
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C.3. LOW-ANHARMONICITY LIMIT

In the following, we explicitly consider the results with L = 4 superconducting qubits
for clarity. The generalization to a larger number of superconducting qubits is straight-
forward. We work in the limit Ec < A;j, such that Af,j+1 - As’jzAjH’j = Wj41 — Wj.
We neglect the contributions coming from the the commutators of the drive fields con-
trolled by {¢;}, since, as we show, they give subleading corrections. From Egs. (C.4)
and (C.5) and using the identities Y ,° co; = aj, D oo fPe; = nj and > ;2 pe; = 1,
we obtain

2¢°Ec 2¢g°Ec g2 ¢  ¢°Ec t 9% + ¢°Ec ;
S, V]~ + aaaa+ n1Ng+ ny— Ng+ aingQg — ajty— a1a2a203+
2 2 2 2 2 2 2
9°Ec 1 g i 9°Ec 1 1 29°E¢ t 4 29°Ec g
+ aingasg + a1a3— 1020203 + 2020303 + Nong+-—ng——n3+
2E 2 2E
—I—gA—2Cazn3af1 - Ag—4a2 1 — gA2 a$a3a3a4—|—
34 3 34
49 ’Ec i, 9% + 9°Ec i 2¢°Ec i+ 29°Ec g 92
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C.4. ROTATING FRAME OF REFERENCE

We focus again on the four superconducting qubits system (cf. Appendix C.3). We
change the frame of reference via the unitary transformation U = exp(it(ains + agns + asny)),
from which

UHdriveUT = Q1 (eialtal + hC) -+ Qz(ei(az_al)taz + hC) + Q3(ei(a3_°‘2)ta3 + hc)—|—
+ es(ag + h.c.) + e3(ag + h.c.) + €4(aq + h.c.)

20°E0 giens 1+, 29°Ec 9 g9’
U[S, V]UT I~ +A—%26 oot 1010905 + A%2 n1n2+A12 1—A—12n2+
’F, ’E,
+gA2Ceza2ta n2a§ _ A’;ezagtalag gA2C —z(2a1 a2t Ta aza;r),_i_
23 23 23
2

2
g Ece'iaztaana;_'_ g 'iazt 1' g EC —z(2a1 ag)t Ta a2a;+
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20°EC__si(a1—an) i+ 29°Ec g° 2
+ A%3 e a2a2a3a3+ A%3 ’I’LQ’I’L3+A23 2 A23’I’L3+
2 2
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W E , Q4
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9 Ec
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We discard all the oscillating terms employing the RWA in the limits,

’F, O\ E
a; > max (Ql, I A%:, I AI%QC) , (C.9)
2 2 2 2
9° ¢ 9°Ec g°Ec gﬂz)
Q9 > max , , , , C.10
? (Am Ass’ AL A% Ar (C.10)
90 Ec ¢*Ec
|a; — ag| > max (Qz, —, , (C.11)
A3, 7 AL
Qs E- ¢*F,
|Ot2 — 0[3| > max (93, gA?)TC,gA—?JAC) , (012)
2 2
9°Ec g°Ec gSh:E¢
|21 — ag| > max ( , , , (C.13)
A% 7 AL, T AL
2 2 2 2
9Ec g° 9°Ec g° gEcS% gﬂs)
o3 — 0q| > max , , , , , C.14
los — el ( A3, T Az’ A% T Agg’ A3y T Ags (C14)
2 2
9°Ec 9°Ec gEc3
lar — 2 + a3| > max ( , , . (C.15)
A3’ AT AL

which are satisfied in the dispersive regime and at low-anharmonicity F¢ limit via a
staggered configuration of the drive field frequencies with a little dishomogeneity, as
discussed in Chapter 7. Discarding the oscillating terms in Eq. (C.7) and Eq. (C.8) we
obtain

4 3
R . 20°Eg ., . 9%Ec. (.
= E (wjnj Ja;'ajaj) + E <A2 ninj1+=5— Azl (aj+1—|—aj+1) +

Jyj+1 7,3+1

(C.16)

Since we do not want local fields o< (a; + a;-) we fix the condition €; = gQ;_1/A;_1;
with 7 = 2,3,4. We obtain

4
~ - E A 2ngc A gQ Ec R R
H = Z (wjnj—|- 2 ;r Ia iQj ) + Z (—A2 ninj1+=-— A2 n; (aﬁl + a;r_H)

j=1 j=1 Jri+1 J3+1
(C.17)

In the dispersive regime, the drive fields amplitudes {¢;} are very small compared to the
drive fields controlled by {€2,}. Therefore, it is appropriate to neglect the contributions
coming from their commutators with S. The above calculations can be straightfor-
wardly generalized to the multisite case, since the superconducting circuits in the bulk
will behave analogously to the second one in the case treated explicitly above.



APPENDIX D

Supplemental information for Chapter 8

D.1. COMPUTATION OF THE LYAPUNOV EXPONENT

Here we give further details about the calculation of the Lyapunov exponent referring
specifically to the results in Sec. 8.5.2. We extract the Lyapunov exponent investigating
the divergence of R nearly sampled initial conditions. We use as measure of the dis-
tance of two trajectories the Frobenious norm of the difference of the average one-body
reduced density matrices, namely

ASG, G, = 4| > [Znm(ist) = Zam( )] (D.1)

n,m=

where i, j € [1, R] label the trajectory and ¢ is the time. The R initial states are sampled
such that AY (4,5 # 4,t = 0) =~ 1078, Then, we compute the average distance over all

A €

10~2 ;

» A () :
104 100
107 - y ufm ]

. ’, p = 0.3064 10! E
10- ;‘ I I I L I I I

0 250 500 750 028 0.30 0.32

txNa P

FIGURE D.1. (a): Dynamics of the average distance between R = 12
nearly sampled trajectories starting from two multimode Schrédinger cat
states parameterized by p (cf. Eq. (8.16)) in the N = 3 levels spin-ex-
change model. We fix two different values of p = {0.2994,0.3064}. The
continuous line is the polynomial fit. The dashed line is the exponential
fit. (b): Relative error between the exponential fit and the polynomial fit.
When € > 1 (e < 1) the polynomial (exponential) fit better approximates
the data. The horizontal dashed gray line is at ¢ = 1. Notice the sharp
change of € around p ~ 0.3. The parameters of the simulations are the
same as the one in Fig. 8.4 in the main text. Image taken from Ref. [4].
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the trajectories

9 R R
AX(t) = mz > AS(,4,1). (D.2)

i=1 j=i+1
The dynamics is regular when AY(t) grows polynomially in time, while it is chaotic
if AX(t) grows exponentially in time, with the largest Lyapunov exponent equal to
the rate of the exponential. In Fig. D.1(a) we show two paradigmatic examples in the
regular phase and chaotic phase. Specifically, referring to the results in Fig. 8.4, we
fix p < p* and p 2 p* with p* = 0.3, in order to highlight the abrupt change of the
behavior of AX(¢). In Fig. D.1(b) we show the relative error e between the exponential
fit and the polynomial fit. When € > 1 (e < 1) the polynomial (exponential) fit better
approximates the data. We checked that our results are not affected by decreasing the
time step.

D.2. CHAOS INDUCED UPON TRADING SU(2) WITH SU(3) INTERACTIONS IN
THREE-LEVEL SYSTEM

Here, we investigate the onset of a chaotic phase in the three-level spin-exchange model
starting from a separable state in Eq. (8.5) with |¢;) in a Schrédinger cat state param-
eterized by p via Eq. (8.16). In Fig. D.2 we show the maximum Lyapunov exponent as
a function of the ratio g;/g. = tan(f) and p in the homogeneous case (W = 0). For
6/m = {0,0.25,0.5} the Hamiltonian can be written in terms of a SU(2) subgroup of
SU(3), and since dynamics are therefore restricted to that subgroup there is no chaos
for any value of p. Furthermore, for /7 = {0,0.5} we have gy = 0 and g, = 0, re-
spectively, thus we recover the SU(2) two-level system limit. As 6/ deviates from the
SU(2) limits, the system displays chaotic behavior for sufficiently large p. Deep in the
SU(3) limit, we observe chaos for any p 2 p*, while near the SU(2) limit there are
islands of chaotic behavior embedded in regular ones. We compute the Lyapunov ex-
ponent following the procedure described in Appendix D.1. Additionally, we manually
set o/(xN) = 0 when it is less than 0.01, since our procedure was signaling chaos in
regions where, by direct inspection, there were no signatures of it.

D.3. CHAOS INDUCED BY A FINITE FRACTION OF SCHRODINGER CAT STATES IN
SU(3) SPIN-EXCHANGE HAMILTONIAN

Here, we provide additional details about the results discussed in Sec. 8.5.3. We consider
the Schrodinger cat state [theat) ~ (|7®)+[7®)) defined in Eq. (8.16) and parameterized
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via p, while we consider [7(!)) as coherent state. We initialize a fraction F of Schrédinger
cat states |1cas), such that the initial state is

FL ~
) = @51 [theat) B pr 41 FD), (D-3)

where |z | returns the least integer greater than or equal to . The evolution is governed
by the SU(3) spin-exchange Hamiltonian at W = 0 and g¢; /g2 ~ 2 (in units adopted in
Fig. D.2 it corresponds to §/m = 0.36). In Fig. D.3 we show the Lyapunov exponent
as a function of p and F. For F' < F* the system displays regular dynamics, while for
F > F* the system enters in a chaotic regime. The Lyapunov exponent is computed
following the same procedure discussed in Appendix D.1.

0’/ (XNa)

: =" : a_=-!l.
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FIGURE D.2. Lyapunov exponent as a function of p and 6 in the N =3
spin-exchange model. The initial state is a multimode Schrédinger cat
state parameterized by p via Eq. (8.16). We set N, — oo and W = 0.
The vertical dashed lines are along the SU(2) limit, where the dynamics
is effectively taking place in a SU(2) subgroup of SU(3). The all-to-all
couplings are parameterized such that x11 < xo0o for /7 € [0,0.25),
X1,1 > Xo2 for 8/7 € (0.25,0.5] and x11 = X22 at /7 = 0.25. In the
SU(2) limits (/7 = {0,0.25,0.5}) the dynamical response is regular for
any value of p, since the couplings constrict the dynamics to take place
in a SU(2) subspace of SU(3). Deep in the SU(3) limit (6/7 ~ 0.1 and
0/m ~ 0.4), |2, | displays exponential sensitivity for any value of p 2 p*,
with p* dependent on . Near the SU(2) two-level limits (6 /7 = {0,0.5})
we observe chaotic regions embedded in regular ones. Image taken from
Ref. [4].
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a/(xNa)
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FIGURE D.3. Lyapunov exponent for the N = 3 levels spin-exchange
Hamiltonian in the homogeneous case (W = 0) as a function of the
initialized fraction F' of multimode Schrédinger cat states in the state
in Eq. (D.3). The results were obtained simulating L = 100 sites at fixed
91/92 = 2 (in the units adopted in Fig. D.2 it corresponds to /7 = 0.36).
The results are not affected upon increasing L. Image taken from Ref. [4].

D.4. OPTIMIZATION PROCEDURE

Here we give further details about the practical implementation of steps (ii) and (iv) in

the optimization procedure discussed in Sec. 8.6. We set as initial guess for the initial

state X, m(t = 0) = X m(t = 7), with the time 7 large enough, such that the initial

L (n)
h

j=1"%
initial guesses for the parameters. Throughout the procedure, we keep (;m = Unm =0

transient dynamics is neglected. We set En => /L =0 and Xnm = Xnm, aS
since they control processes absent in the bare model. Then, we numerically optimize
both the initial state {E,,(t = 0)} and the parameters (B, Xn,m} in order to minimize
the cost function in Eq. (8.19) in the main text. The optimization procedure stops
when the relative change between two consecutive iterations of the guessed solutions is
less than =~ 1072,

We also test the convergence of the optimization procedure modifying the cost function.
Specifically, we consider as cost function the average norm-2 distance

N

1 T
62:?\/0 Z

n,m=1

S () = Sum(®)| dt, (D.4)

and compare with the one based on the norm-1 cost function in Eq. (8.19). We test
the two procedures using the same parameters and initial state of Fig. 8.5 in the main
text, namely W/(xN,) = 0.1, g2/g1 =~ 1072 and a permutationally invariant (in space)
bosonic coherent state. Once the two procedures converged, we compare them com-
puting the norm-1 distance between the optimized () and X(¢) obtained from the
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full many-body dynamics. We obtain €;/e2 = 0.6 (where € is the norm-1 computed
at the end of the optimization procedure based on the minimization of the norm-2 in
Eq. (D.4)) showing a slight advantage of norm-1 over the norm-2 in the optimization

procedure.

D.5. DYNAMICS WITH CAVITY LOSSES

The dynamics of the matter-light system can be described by the master equation for
the density matrix

dp . n A

L = —ilf, 5|+ Lolp] + Lald] (D-5)

Here, H is the Hamiltonian in Eq. (8.1), where now the photon is an active DOF, and

L.[p] = (2apa — atap — pata) ,

L N-1 (D.6)
Lalfl =7 Z

(2ESL+1pszll,n — 50,50 1p - 550, 50,1)
are the Lindbland terms that describe the cavity-photon loss with decay rate x and

IIM

emission of single-atom excitation with rate . From now on we set A, = 0 in the
Hamiltonian H and we consider the far detuned regime of the cavity mode as we
are mainly interested in the spin-exchange interaction case. We perform adiabatic
elimination such that [273-277]

Z'g'n,\'rz'n,—i-l
D.
Z (iwo + K/2) (D7)

In this regime the dynamics of the density matrix of the matter DOFs p,, is given by
the matter-only master equation

dﬁm T A A A

dt —i[Had, pm| + Lr[pm]| + Lalpm)- (D.8)
Here, H,4 is the Hamiltonian given in Eq. (8.2), with vpm = (um = 0 and all-to-all

couplings per-particle

Xnm = 2+ (522

The dissipative part Lr[py,] is given by

L‘I‘[pm] = Z F L

'I’L'ITL—

(22n,n+1ﬁm2m+1,m - {f}n+1,ngm,m+17 ﬁm})a (DlO)

where )

gn®
r,= ", D.11
w2 + (k/2)? ( )
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is the decay rate per-particle of the collective DOFs. Imposing NoXnm > NavVTnlm
and Ny Xnm > 1 we obtain the conditions discussed in the main text.
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