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High-Resolution CMB Bispectrum Estimator

Wu Hyun Sohn

The Cosmic Microwave Background (CMB) is one of the most valuable probes of the
universe we have today. Anisotropies present in the ancient light contain rich statistical
information about the perturbations in the early universe and their subsequent evolution until
now. The CMB bispectrum, the Fourier equivalent of the three-point correlation function,
allows us to study weak non-Gaussian signatures of the primordial fluctuations. Primordial
non-Gaussianity is a key prediction of many physically well-motivated inflation models,
and measuring its shape and amplitude allows us to constrain various models of the early
universe.

This thesis comprises two sections. In the first section, we present forecasts on primordial
non-Gaussianity constraints from upcoming CMB surveys. We focus our attention on models
favoured by the Planck analysis, where a sharp feature in either the inflationary potential
or sound speed causes oscillations in the bispectrum. Using preliminary specifications, we
find that the Simons Observatory will have up to a factor of 1.6 improvements over Planck,
increased to 1.7-2.2 for the CMB Stage-4 experiment. Motivated by bright prospects, we
developed a novel CMB bispectrum estimator suited for the resolution and sensitivity of
future surveys.

We discuss our high-resolution bispectrum estimator in the second section. Our code,
named CMB-BEst, utilises a set of general basis functions to accurately constrain a wide
variety of models. Implementing such a flexible and precise estimator was a computationally
challenging task. We detail our algorithm design, code optimisation and parallelisation for
high-performance computing clusters, which made this challenging computation tractable.
Validation tests, both for internal consistency and comparisons against conventional estima-
tors, are provided together with a proof-of-concept application. We highlight how CMB-BEst
can be used for both general and targeted analyses of previously unconstrained models.
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Chapter 1
Introduction

The galaxies we observe today are in fact their images from tens of thousands of years ago.
This is due to the speed of light being finite, so the more distant an object is from us, the
older the image we observe. This raises the question “how far back can we see?”

The radio astronomers Arno Penzias and Robert Wilson were calibrating their 50-foot-
long horn antenna in 1964 when they found a mysterious background noise [1]. The
measurements were independent of time and location in the sky and persisted after the
removal of various potential contaminants. After the theoretical work of Robert Dicke, Jim
Peebles, and David Wilkinson was brought forward, Penzias and Wilson identified the noise
as Cosmic Microwave Background (CMB) radiation: ancient light from the early universe
reaching us after billions of years [1, 2]. The discovery provided us with one of the most
valuable probes of the physical universe.

Our modern mathematical formulation of cosmology is built on Einstein’s work on
general relativity in 1915 [3]. Using his framework, Friedmann, Lemaitre, Robertson, and
Walker contributed to writing down the unique metric for a spatially homogeneous and
isotropic universe [4-8]. It was then realised that this FLRW metric has no stable static
solution, and the universe likely started from a Big Bang and has been continuously expanding
since. This was supported by Edwin Hubble’s measurements of Cepheid variables in 1929
[9] and confirmed by the aforementioned discovery of the CMB, which was one of the key
predictions of the Big Bang cosmology.

The Big Bang theory by itself, however, could not explain the apparent uniformity of the
CMB in the early universe, as well as the flatness of the universe and the lack of magnetic
monopoles today. The theory of cosmic inflation emerged to address these problems; the
universe undergoes a phase of accelerated expansion shortly after the Big Bang [10]. Inflation
successfully resolved the problem and further provided a mechanism for generating the

initial density fluctuations which grow into the structure in the universe we observe today.
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These primordial fluctuations originate from quantum fluctuations of the inflaton which
has a nearly scale-invariant spectrum. This was confirmed when the Cosmic Background
Explorer (COBE) discovered small anisotropies within the CMB in 1992 consistent with the
inflationary predictions [11].

What is widely accepted to be the standard model of modern cosmology, the ACDM
model, appeared only in the late 1990s. In 1998, measurements of distant type la supernovae
showed that the universe’s expansion is accelerating [12] which implied the presence of dark
energy (A). Various astrophysical observations including galaxy rotation curves suggested
the existence of dark matter [13], and that most of the matter in the universe is dark matter.
The cold dark matter (CDM) scenario is currently the most favoured. The ACDM model
considers the primary constituents of the universe to be dark energy, cold dark matter, baryons
and radiation. The ACDM model has been extremely successful in explaining modern
cosmological observations. CMB measurements from the Planck satellite, in particular, show
exceptional agreement with the model [14]. Planck has mapped the CMB anisotropy to
remarkable precision and resolution. The Planck CMB data by itself has placed one of the
most stringent bounds on the theoretical parameters of ACDM to date [14, 15].

How does the CMB contain so much information about the universe? The answer
is twofold. The first reason is that CMB anisotropy is linearly related to the primordial
perturbations from inflation. Statistical properties of these initial fluctuations can thus be
deduced from analysing correlation functions of the CMB, which lets us constrain the early
universe physics. The second reason is that the CMB tracks the expansion history of the
universe as it travels from the last scattering surface to us today. CMB photons scatter with
baryons before free-streaming all the way to us, which then experience both the growth of
the universe and the gravitational potential of matter perturbations. These signatures are
engraved in the CMB anisotropy spectrum.

The CMB anisotropy is observed to be nearly Gaussian distributed. Statistical charac-
teristics of a Gaussian random field can be summarised entirely using two-point correlation
functions, or their Fourier counterpart: power spectra. The CMB power spectra have been
thoroughly studied to constrain various cosmological parameters [16—19]. Meanwhile, higher-
order statistics such as three-point correlation functions (bispectra in Fourier space) allow us
to test the validity of the Gaussian assumption. They probe the non-Gaussian statistics of the
CMB which can arise from either primordial dynamics or late-time effects [20].

Primordial non-Gaussianity is a key statistic for studying the physics of the early universe
[21, 22]. The theory of inflation has been successful in describing the observed data, but
its exact mechanism is yet undetermined. Currently, there are numerous viable inflationary

models with well-founded physical motivations. Non-Gaussian signatures of primordial



fluctuations are robust predictions of various models, and measuring their shape and ampli-
tude allows us to constrain particular inflationary scenarios. CMB bispectrum analysis from
Planck yielded the most precise measurements of primordial non-Gaussianity to date [23].
So far, no statistically significant amount of non-Gaussianity has been detected.

In the near future, we expect several new major CMB experiments. The Simons Observa-
tory (SO) [24] is a ground-based experiment currently under construction in the Atacama
Desert of Chile. SO is expected to measure both CMB temperature and polarisation to
unprecedented precision, largely improved compared to Planck. The first light from SO is
planned to be observed in early 2022. Many more next-generation experiments such as CMB
Stage-4 (CMB-S4) [25, 26] and LiteBIRD [27] are due course, brightening prospects for
CMB science. In particular, the upcoming measurements will allow us to further constrain

primordial non-Gaussianity, providing discovery potential [28].

This thesis is organised as follows. In Chapter 1, we review the standard formulation of
cosmology. We discuss the evolution equations of a homogeneous and isotropic universe as
well as the basic theory of inflation. Chapter 2 details the cosmological perturbation theory
with a focus on CMB anisotropy. We summarise how to compute the CMB power spectrum
from primordial perturbations. Next in Chapter 3, we outline how the CMB bispectrum can
be used to probe primordial non-Gaussianity. We provide an example scenario to demonstrate
how to calculate the bispectrum from the inflationary Lagrangian using the in-in formalism.
The theory of CMB bispectrum estimation is reviewed together with the details of current
implementations.

Chapters 4 and 5 contain my original work based on research conducted myself under
the supervision of James Fergusson. Chapter 4 contains the forecast for future CMB-S4
surveys on the primordial non-Gaussianity parameter fni, which was published in [29]. SO
experiment specifications and expected CMB-S4 setup were used to predict their improved
constraints via Fisher information analysis. We focussed on models with oscillatory features,
where the significant enhancement in polarisation sensitivity significantly enhances the
constraining power [30].

Motivated by the positive prospects from forecasts detailed in Chapter 4, we worked
on developing a high-resolution bispectrum estimation pipeline suitable for future surveys.
Chapter S contains the formulation and development details of the developed program, as
well as many consistency checks performed during the extensive verification process. We
outline the advantages of the new pipeline compared to conventional methods. Some working

examples, studied in collaboration with Philip Clarke and Paul Shellard, are presented
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[31]. Lastly, Chapter 6 concludes the thesis by summarising and laying out plans for future
research.

Chapters 1 and 2 are purely introductory and contain textbook materials for cosmology.
The formalism and interpretations presented are largely based on [32] and publicly available
lecture notes [33—36]. Chapter 3 consists of literature reviews on the topic with references in
the text. All written texts, codes and plots in Chapters 4 and 5 are results of my own work

unless explicitly specified otherwise.

1.1 The homogeneous universe

In this section we review the standard cosmological formulation for the homogeneous
universe, neglecting any perturbations. What we derive here will serve as a background
solution for the full perturbative result discussed in the next chapter. We assume general

relativity to be an accurate theory of gravity for the relevant scales we consider.

1.1.1 Geometry

In general relativity, spacetime is represented by a 4-dimensional Lorentzian manifold

equipped with a metric. Distance measure in curved spacetime is given by the metric tensor

8
ds* = guy dx*dx, (1.1)

where the Greek letters i, v =0, 1,2, 3 represent time (0) and spatial (1,2, 3) indices of local
coordinates. Flat spacetime has metric g,y = 1,y = diag{—1,1,1,1}, also known as the
Minkowski metric. Throughout this thesis, we adopt the sign convention (—,+,+,+) and
work in units where ¢ = 1. Unless specified otherwise, the Einstein summation convention is
assumed.

In curved spacetime, free particles follow a trajectory given by the geodesic equation;

d?xH u dxV dxP
T —0 1.2
ds? thve ds ds ’ (1.2)

with s an affine parameter parametrising the trajectory, and Fﬁ,lp the Christoffel symbol

representing the metric connection. Its value is given in terms of the metric tensor by

1
l—‘l\fp =5 gh° (apgvc + dvgpo — acsgvp) . (1.3)
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Here and throughout this thesis, dy, denotes the partial derivative with respect to local
coordinate x*. Note g is the inverse metric satisfying g""gvp = 6.

Defining the tangent vector as U* = dx* /ds, the equation can be rewritten in a covariant
form given by

(VyU* = UYV,U* = 0. (1.4)

Note that in terms of local coordinates, the covariant derivative of a vector field is defined as
VyUH = oy UH + T, UP.

The distance between two geodesics that are initially parallel may change in curved
spacetime. Such geometric information is encapsulated within the Riemann curvature tensor
R}, ' From Rj ., we can evaluate the Ricci curvature tensor R, the Ricci scalar R, and
finally the Einstein tensor G,;,. They are defined as follows.

R‘\fpo = apl—‘ecr - aari\fp + Ff/arlrlp - l—‘f,pl—#(,, (1.5)
Ruy =R}y, (1.6)
R = g“vRuv7 (1.7)

1
Guv :=Ruy — 58uvR. (1.8)

The Einstein tensor is symmetric, i.e. Gyy = Gyy. It is also important to note that its
divergence vanishes; V# Gy, = 0, which can be proven using the contracted Bianchi identity.

1.1.2 The FLRW universe

On very large scales, our universe is observed to be uniform in space (homogeneous) and
does not have a favoured direction (isotropic). The spatial part of the homogeneous and
isotropic metric has constant curvature and can be categorised into three classes depending
on its sign: spherical (S?), Euclidean (E3), and hyperbolic (H3). They are induced from
embedding R? into submanifolds of R* equipped with the Euclidean metric, defined as
K|x|> +u?> = 1. Here K = 1,0, —1 for S®, E, and H?, respectively. Writing the embedding
as f:x' = (x,y,2) = X! = (x,,2,/1 — K(x2 +y2 +72)), the induced metric is

8X1 8X] xixj

M= o5 ox O = ij+ 1 — Kxyxk (1.9)

IConsider a 1-parameter family of geodesics (s, ), where ¢ is an affine parameter. The geodesic deviation
equation states TPV, (TVV,S*) = R}, T"TPS®, where tangent vectors T = 9 /dt, S = 9 /ds.
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The spatial line element is therefore given by

;o K(x-dx)?
2 — yvediid =dx - i Sl 1.1
dI* = y;;dx'dx’ =dx dx+1_K(X'X) (1.10)
dr’ +r2dQ?, (1.11)

:l—Krz

where the angular line element dQ? = d62 + sin® 0d¢>.

We may now write down the form of the metric describing our universe on large scales;

ds* = —dt* +a(t)? ( dr? +r2d£22> : (1.12)

1—-Kr?
This is known as the FLRW metric, named after independent researchers who worked on the
topic. The function a(t) is called the scale factor and it dictates the growth of the universe over
time. Note that the metric is invariant under rescaling a — Aa, r — r/A, and K — k := A2K.
Hence we may set the scale factor to be a(zp) = 1 at present time, at the cost of replacing
Ke{-1,0,1} by k e R.

The Levi-Civita connection corresponding to the FLRW metric can be computed using

the definition (1.3). Its non-zero components are given in terms of ¥ (1.9) as follows.

a

T =%, (1.13)
i i a i

o =To; = _9;, (1.14)
. 1 .
Uk :2_4127/1 (akifjl-i-aﬂkz _al'}’jk)- (1.15)

The overdot denotes time derivative () := d/dr here, and in the remainder of this thesis.
Indices for y are raised and lowered using 7, not g.

Note that a path defined by 7(7) = 7 and x(7) = const is a timelike geodesic satisfying the
geodesic equations (1.2). Comoving observers who follow these paths continue to perceive
the expanding universe to be isotropic. Meanwhile, they find that they drift apart, as the
physical distance 7, = a(t)r grows in time.
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The Ricci curvature and Einstein tensor of the FLRW metric follows from definitions
(1.5-1.8);

;
Ry = — & (1.16)
a
. N\ 2
2%
Ry £l+2(£’) 2 ey (1.17)
: a a a
.. .\ 2
k
R—6 E+(€> A (1.18)
a a a
2
k
Goo =3 (E) L (1.19)
a a
2% (a\* k| ,

While deriving (1.17) we used the fact that the Ricci tensor of three-dimensional spatial
metric Y is equal to 2kY;;. 2 Also note that components Go; vanish and G; j o< gij, which is

expected for a spatially homogeneous and isotropic spacetime.

1.1.3 Cosmic inventory

According to general relativity, spacetime is curved by its contents. Particles interact with
gravity through the energy-momentum tensor 7),,, which encapsulates their energy, mo-
mentum flux, and stress. Thanks to spatial homogeneity and isotropy, components of the
homogenous universe can be modelled as perfect fluids; they are completely characterised
by their rest frame energy density and isotropic pressure. Defining the 4-velocity to be

U* = dx* /ds 3, the energy-momentum tensor of a perfect fluid is given by

where the energy density p and pressure P only depends on time. For an observer comoving
with the fluid, T = diag{p, P, P, P}.

%In general, the Ricci tensor of any n-dimensional constant-curvature space with metric gij 1s given by
R;j = (n—1)Kg;;. Here k denotes sectional curvature of the space, which is equal to k for y defined in (1.9).

3Here s is an affine parametrisation of geodesic followed by the fluid. It is equal to proper time T for massive
particles geodesics, and g, U*U"Y = —1. Massless particles such as photons follow null trajectory, and s is
chosen so that g, U*U" = 0.
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The energy-momentum tensor is conserved by construction and V, T*V = 0. We can

check that this is indeed the case for a perfect fluid;

VyTHY =(p +P)Vy (U*U") + PV " (1.22)
—(p+P) (U'V,U* +UFV,UY) + V184V (1.23)
=0. (1.24)

The first term in (1.23) vanishes because the fluid’s 4-velocity satisfies the geodesic equation
(1.4). Incompressibility implies that V,U"Y = 0, so the second term also vanishes. The last
term is zero since the Levi-Civita connections are metric; i.e., Vg = 0.

Using the connections of the FLRW metric computed in the previous section, the 4 =0

component of (1.24) yields the continuity equation;

3a
p+;(P+P):O. (1.25)
Further imposing a constant equation of state w = P/p,

p a _
5 +3(1+w) > =0, (1.26)

p o< a 34w, (1.27)

The universe contains a number of different components, but all known particles can be
broadly categorised into three: radiation, matter, and dark energy.

Radiation consists of relativistic particles: photons and neutrinos. The energy-momentum
tensor of radiation is traceless, fixing the equation of state to be w = 1/3. While the number
density of photons decrease as o< a3, their energy density scales as < a~* instead because
each individual photon loses energy as the universe expands. We define the redshift z to

quantify this effect;
1
14+z:=-. (1.28)
a

Hence, a photon with original wavelength Ay gets redshifted by AA = zAy. Note that the
redshift is directly related to the scale factor a(z). It can be used to parametrise time at and
distance to a light source in a model-independent way. Neutrinos show similar behaviours to
photons since they remain ultra-relativistic.

Matter includes cold dark matter, electrons and protons. The latter two are often grouped

as baryons, even though electrons are not technically baryonic. Pressure from non-relativistic
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matter is negligible, and w = 0. Their number density scales o« ¢~ as the universe expands,
and so does their energy density. Cold dark matter constitutes about 84% of the matter and
roughly a quarter of the total energy density today.

Dark energy is perhaps the most mysterious of the three, despite having the largest
contribution to the total energy density at present time. The first evidence of its existence
came from Type la supernovae measurements which implied that the universe’s expansion is
accelerating. Subsequent observations of CMB and baryonic acoustic oscillations provided
further proof. The exact physical mechanism for dark energy is not yet known, but potential
explanations include the cosmological constant and quintessence [37, 38]. For purposes of
the ACDM model, dark energy has negative pressure (w = —1), hence its energy density is
independent of the scale factor.

Table 1.1 summarises the species of the universe and their properties discussed above.
The last column contains the fractional energy density of particles and shows how abundant
each species are at present time. A precise definition of fractional density will appear in the
next section.

Table 1.1 Cosmic inventory. The fractional density values are quoted from Planck CMB
analysis [14].

Equation Density Fractional density
Examples
of state growth today

Photon Q,~1x1074
Radiation (r) ) w=1/3 po<a? 4

Neutrino (V) Q, <2x1072

Cold dark Q, ~ 027
Matter (m) matter (c) w=0 po<a’

Baryon (D) Q) ~0.05
Dark Energy (A) w=—1 p = const Qp ~0.68

1.1.4 Evolution of the universe

We are now ready to calculate the time evolution of the homogeneous universe. The Einstein
field equation of general relativity reads

Guv = SnGTuv, (1.29)
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where G is the Newtonian constant of gravitation. * Substituting in the Einstein tensor for
the FLRW metric from (1.19-1.20) and the energy-momentum tensor from (1.21), we obtain

7 k
3 Kf) + —2} —87Gp, (1.30)
a a
2 [(a\* k
- (—) — — =3nGP. (1.31)
a a a
Rearranging above yields the Friedmann equations;
a\> 81G _ k
-] ==—p—= 1.32
i 4nG
S (e3P, (1.33)

Note that the continuity equation (1.25) can be obtained from (1.33) and the time derivative
of (1.32).
The Hubble parameter is defined as H := d/a. From (1.32) we may compute the critical

energy density for which the curvature k vanishes;

3H]

— 1.34
8tG ( )

Perit,0 :=
Subscripts 0 indicate that they are evaluated at present time ¢ = #y, where a(tp) = 1.
In reality, the energy density and pressure appearing in the Friedmann equations are sums
of contributions from different fluid components. The fractional density of a given fluid X is
defined as

Q.X = Px

— . (1.35)
Perit,0

In the previous section we derived how each fluid’s energy density depends on the scale

factor. Quoting results summarised in Table 1.1, the Friedmann equations can be rewritten as

follows;
Q Q
a> =H} ( 02 4 Qg a2> —k, (1.36)
a a
Q Q
. gp2 [ 24r0 5S4m0
a = ( i o —|—.Q.A,0 a) . (1.37)

4Constant G is not to be confused with the Einstein tensor Gy on the left-hand side.
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These equations dictate the growth (or shrinking) of the universe given its curvature and
energy density composition today. For k < 0, the right-hand side of (1.36) is always positive
regardless of fractional density value. In this case, the fact that the universe is currently
expanding suffices to show that scale factor a has been increasing monotonically. The
universe began with the Big Bang at a = 0.

When k > 0, d vanishes at one or two values of a. There are multiple scenarios in this
case, including Einstein’s Static Universe (ESU) where ¢ = d = 0. The ESU is however
unstable; perturbing around the static solution as a(t) = agsy(1+&(r)) in (1.37) gives & >0
to leading order, which implies that there exists a growing solution for &. In fact, there are
no stable static solutions to the Friedmann equations, rendering such models implausible.
Another possibility is a closed universe without dark energy (24 = 0), where the scale factor
grows until it hits the maximum and then decreases. This scenario requires ¢ < 0 at all times.
Measurements of Type Ia supernovae strongly suggest that the universe is currently in an
accelerating phase, ruling out this option as well. Lastly, there is the bouncing universe model.
The scale factor starts large, drops to a minimum value, and bounces back to accelerating
growth. This model has been disregarded due to the need for the introduction of various new
physics in the early universe but has recently regained popularity as an alternative to inflation
[39].

Constraints from modern cosmological observations indicate that our universe is ex-
tremely flat, with k =~ 0. For the rest of this thesis, we set the curvature kK = 0 and follow a
standard Big Bang theory.

Note the different powers of the scale factor a are associated with each component of the
universe in (1.36). According to the CMB measurements ., < Q,, 0 < Q4 o. The energy
density is therefore dominated by a single component at a time, resulting in three different

€ras:

+ Radiation domination (RD) where 0 < a < Q,.0/Q.0,
« Matter domination (MD) with ©,0/Q0 < a@ < (Q0/Q0)"/3, and
« Dark energy domination (AD) for a > (2,,0/Qa,0)"/>.

When the universe consists mainly of a single fluid component X, we can simplify the

Friedmann equations as follows;

a* =H§Qx ga 73X, (1.38)

2
a oct3U0vx) - if wy # —1. (1.39)

Note that the scale factor grows exponentially for AD as wp = —1; a =< exp(H?).
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It is often convenient to consider conformal time defined as 7 := ftf(l /a(t"))dt’, for some
initial time reference #;. As dt = adt, the flat FLRW metric is given in terms of conformal

time by
ds® = —di* +a(1)2dx® = a(1)? [~d7* +dx?] . (1.40)

Rewriting (1.38) with da/dt = aa, we obtain

2
o< TIWX I, (1.41)

Calculations in this section are summarised in Table 1.2.

Table 1.2 Evolution of the universe. Ranges for the scale factor are computed from the
cosmological parameters estimated in [14].

Growth Growth
Era Scale Factor .
(comoving) (conformal)
Radiation Domination a<29x107* a o< t!/? ao< T
Matter Domination 29x107%<a<0.77 ao<t?/3 a < T2
Dark Energy Domination a>0.77 a o< et ax<—1/t

1.2 Inflation

Soon after the quantitative formulation of Big Bang cosmology, several issues with the initial
conditions were raised [10]. The CMB was observed to be nearly homogeneous, even though
many parts of it should have been causally disconnected at the time. The curvature of the
universe is extremely close to zero, while k = 0 is an unstable stationary point. The standard
Big Bang cosmology provided little justification for such initial smoothness and fine-tuning.

The theory of cosmic inflation not only resolved most of these problems successfully but
also provided a physical mechanism for the generation of inhomogeneities in the universe.
Quantum fluctuations of the inflationary field seed the initial conditions, whose statistical
properties are consistent with current observations. Inflation has therefore become the most

widely accepted theory of the early universe to date.
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In this section, we formulate the puzzles which led to the introduction of inflation (1.2.1)

and outline the basic inflationary paradigm (1.2.2).

1.2.1 The horizon problem

According to relativity, information cannot travel faster than the speed of light. It is therefore
possible to have two different points in spacetime that are causally disconnected; their
lightcones do not intersect, so no events since the Big Bang could have affected both.
Physical properties at such two points are independent of each other. The aim of this section
is to compute the size of causally disjoint regions at the epoch of recombination when most
of the CMB photons start free-streaming.

Consider a photon travelling in a straight line. Writing the radial part of dx* as dx?, our

spacetime metric (1.40) becomes
ds® = a(1)*(—dt* +dx?). (1.42)

Photons follow null geodesics, meaning ds> = 0 along their trajectories. Thus ¥ (7) =
T+ const or x(T) = —T+ const. They appear to be straight and diagonal lines on the -7
plane, as shown in Figure 1.1. The distance light travels starting from some initial time 7; to
Ty is then given by

ard ar 1
XPH ‘= Tf — T, = d—Tda = / —_da. (1.43)
a; a a

i

Here, ypy is called the particle horizon. No particles could have travelled further than this
distance since the initial time 7;.

Suppose that the universe is dominated by a single perfect fluid X in between a; and ay.
The simplified Friedmann equation (1.38) then gives

ar q(3wx=1)/2 2 Gwx+1)/2  (Bwyx+1)/2
XPH = / ———da= a; X —a, X . (1.44)
ai Hp, /.ijo (3WX -+ I)H()w /.QX7() ( f )

Note that the particle horizon is bounded as a; — 0 if and only if 3wy +1 > 0.

According to the conventional big bang cosmology, the universe begins at a; = 0 with
radiation contributing the most to energy density. The CMB last scattering surface lies
around redshift z ~ 1090 (or dreec = 9.17 X 10~) in the matter domination era. Quoting
cosmological parameters from tables 1.1 and 1.2, as well as treating radiation and matter

domination separately in the integral, we get ycmp ~ 340 Mpc.
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The conformal distance to the last scattering surface ). can also be computed using the
same formula (1.44), now integrating from ae. to ag = 1. Approximating again by separating
matter and dark energy domination era, ), ~ 15000 Mpc. This is much larger than ypy!

As shown in Figure 1.1, CMB photons at two different opposite sides of the sky had no
causal contact at all; their particle horizons have zero overlaps. Furthermore, ycms /X« =~ 1.3
degrees. Every disjoint 1.3deg patch in the sky was causally unrelated at the time of
recombination. There is no obvious reason for cosmological parameters in these patches to be
similar. Despite this fact, the observed CMB is isotropic everywhere in temperature to order
O(1073). This is the horizon problem; the universe at recombination is too homogeneous

considering the small particle horizon then.

AT

70

— —

XCMB XCMB X

Fig. 1.1 The horizon problem. According to the conventional big bang cosmology, different
regions of the CMB we observe today have had no overlap in their particle horizon. Yet, the
CMB is measured close to uniform everywhere.

To resolve this issue, we need the particle horizon at recombination to be larger. The
theory of cosmic inflation achieves this by having a period in the early universe where
3w+ 1 < 0. In this case, we see from (1.44) that ypy is unbounded as a; — 0. The initial
conformal time 7; — —oo, allowing enough proper time for the particle horizon growth. Then
even the two opposite regions of the CMB we see can have had causal contact in the past, as
depicted in Figure 1.2.

Inflation can alternatively be characterised using the comoving Hubble radius defined as

1

-1._
A= (1.45)
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D

Fig. 1.2 Solution to the horizon problem. Inflation allows more conformal time for different
regions to have been in causal contact before recombination.

Note that the particle horizon can then be expressed in terms of the comoving hubble radius

as

ar 1 Inay
APH = / —da = A Ydna. (1.46)
a; aa Ina;

The particle horizon represents the distance where objects could have ever talked to each
other. On the other hand, the comoving Hubble radius is a scale for how far information
can reach now. ° As can be seen from (1.44), 77 1 o gBwx+1)/ 2 which is = a for radiation
domination and o< q!/2 during matter domination.

Inflation explains the homogeneity of the observed CMB by requiring .77 ~! to have
shrunk rapidly in early times; d.7#~! /dIna < 0. We find that i > 0, so the universe undergoes
accelerated expansion. The steep decrease in 7! is parametrised using a ‘slow-roll’

parameter

£€:=— =-— <1 (1.47)

STwo points .7~ apart drifts away with relative physical velocity vpnys = . ~! = 1, which is equal to ¢
in our units. It is difficult for such points to have causal interaction right now, especially within Hubble time
HL.
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Inflation also needs to last long enough for the particle horizon to grow sufficiently large. We
define another parameter to denote this constraint;
__dlne &

— £ <1 1.48
M= e en S (1.48)

1.2.2 Slow-roll inflation

The simplest model of inflation consists of a single scalar field ¢. The action for a real scalar
field with canonical kinetic term and potential V (¢) is given by

1
Sy = /dta’3x V-8 {—Eg“vau¢8v¢ -V(o)|, (1.49)
where g := detg. Denoting the integrand as the Lagrangian density .Z[t,X, ¢,d, ¢], the
energy-momentum tensor can be expressed using functional derivatives as

Ty = 292 _ 5,92
VT P P

Here, we used the identity §/—g = —(1/2)\/—gguvSg"”. Substituting (1.49),

+guvZ. (1.50)

Tuy = (aﬂ¢> (dvo) +guv (—%g’wapwcfp —V((D)) . (1.51)

Now suppose that ¢ drives inflation in the FLRW background. Due to the symmetries
present in the homogeneous and isotropic metric, the inflation field can only depend on time;

o (x,t) = ¢(t). We can read off the inflation field’s energy density and pressure from the

energy-momentum tensor.

1 -
P =—To=50"+V($), (1.52)

, . (1 - -
P38 =T'; =&} <§¢2 —V(q))) . (1.53)

The two terms %(]32 and V(@) can be interpreted as the kinetic and potential energy of the

inflation field, respectively. The equation of state is also expressed in terms of the two;

24v

Yo _20°4V00)
#-v

Wiz = =
¢ P

Na=NN

(1.54)

[STE TR

—~ |
< | S
~— | —
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It follows that ¢ satisfies the condition 3wg + 1 <0 required for inflation, as long as the
potential energy dominates over kinetic energy.
The classical equations of motion are obtained from the Euler-Lagrange equation. After

some calculations we obtain

0 +3Hp =-V'(9). (1.55)

Even though ¢ is a field, its dynamics given in (1.55) are identical to those of a particle
rolling down a one-dimensional potential. Its movement should be slow for the kinetic energy
to be much smaller than the potential, and hence the name ‘slow-roll” inflation.

The Friedmann equations (1.32-1.33) can now be expressed in terms of the background

inflationary field.
871G (1 - _ 871G -
H =2 (5¢2+V<¢>> ~ =V (9), (1.56)
a_ 8nG (= 1 -\ 381G -
= (2 3v@) ~ v, (157

where the slow-roll approximations have been used in the last step. Taking the derivative of
(1.56) gives us 3H¢$ ~ —V'. The parameters defined as

A% 1 v
&= TenG (V) V=G v (1.58)

are then shown to be small. Therefore the slow roll parameters from (1.47-1.48) satisfy
eregyl, n=-2ny+dey K 1. (1.59)

We see that as long as the potential V(¢) is chosen such that &y, ny < 1, the field ¢ can
drive a period of accelerated expansion. Here, ¢ () acts as a clock; it measures the progress

of inflation until € eventually grows comparable to 1 and inflation ends.

1.2.3 Quantum fluctuations

So far our considerations on the inflation field ¢ have been entirely classical. Moving on to
quantum theory, field values are no longer fixed at each point in spacetime. The goal of this
section is to quantify the statistical properties of these quantum fluctuations.

We assume that the metric remains unperturbed for simplicity. Gravity is coupled with
perturbations of the inflation field in reality, but this approximation will still allow us to
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derive most of the crucial results. We further neglect any terms suppressed by slow-roll
parameters.

We write the inflation field as a sum of the classical solution and perturbation;

0(x,1) = (1) + -

(1.60)

where the factor of 1/a has been introduced for later convenience. First rewriting the scalar

field action (1.49) in terms of conformal time,
1 1
Sp = /drd3xa(r)2 {E(W)Z - 5(V9)? —a(r)sz)} . (1.61)

When we include perturbations, terms linear in v vanish from the equations of motion of ¢.
Further removing terms with derivatives of V(¢ ) using the slow-roll condition,

5S /drd3x Ly d) Ly (1.62)
= —(v——] —=(Vy .
o 2 a 2
3 // 1
=[d ——v —=(V 1.
/fd { +2av o v)] (1.63)
Integration by parts has been used to obtain the last line. The equations of motion for v
follows;
a//
V' ——y -V =0. (1.64)
a
Defining Fourier transforms of v as
d k 1k~x~
k 1.65
vx1) = [ el D), (169

we obtain the Mukhanov-Sasaki equation;

ViH (K2 ——)=0. (1.66)

Tildes above v have been omitted for brevity. Each k mode of the perturbative field v(k, 7)

evolves independently from each other. During slow-roll inflation a < —1/7, and a”" /a =
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2/7%. The general form of the solution is given by the mode functions vi(t).
i - i\

T=ci(l1——)e* e (1+— )t 1.67

vi(T) c+( kf)e +c ( +k‘c>e (1.67)

We would like to canonically quantise the field v(k, 7). To achieve this goal, we first

convert from the Lagrangian to Hamiltonian formalism.

¢
ﬂ::a—v/:v, (168)
0% 1 1 1d"
Ho= = — L= P (V) — 2 1.69
oV PRI N N (1.69)
We now promote classical fields v(k, 1), 7(K, T) to operators Vk(7), Ak (7) satisfying equal-
time commutation relations ¢
[Pk, (7), 7o, ()] =(27)* 8 (k; + ko), (1.70)
[‘Gk1 (T)aﬁk2<r>] = [ﬁ'k1 (T)’ ﬁkz(r)] =0. (1.71)
Defining operators dx and dl appropriately, we may write
Di(T) =vi(T)d +vi ()" a" (1.72)
A (7) =V (7)ak +vi(t)*a’ . (1.73)

As long as we normalise the mode functions v (7) so that its Wronskian W := vvi* —viv, =i

(purely imaginary since vy is real), we obtain
(1.74)

i (), iy (7)) =1 |y

[&kndlz] =(2m)38%) (k) —ka). (1.75)

SThis follows from its Fourier equivalent: [$(x;,7), #(x2,7)] = i8®) (x; —x,).
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The constructed @ and @' are analogous to the creation and annihilation operators of a

quantum harmonic oscillator. Our next step is to compute the Hamiltonian operator;

N 1 1 14"
H :/d3x {Efr%r 3 (VD)% — ia_ﬁz} (1.76)
a
&’k; d’ky 1 <. . Lo.od
:/d3x (277,')13 (27_[)3 Ee (k1 +ko)-x {ﬂkl 7'L'k2 — (kl -kz)vklvk2 — ;Vklvkz:| (1.77)
Pk 1[, . o a .
—/ (27_[)35 [ﬂkﬂ_k +k2vkv_k—;vkv_k] (1.78)
d’k .
= [ Gy B (andl +a"\ax) + R+ Fralaly ) (1.79)
where
2 2 a" 1,0 2012 L 2.2
o =k — Ey 1:§(|Vk| + g |vil), Fio:= E(vk + i) (1.80)

Note that we are currently in the Heisenberg picture where the operators depend on time.
Our mode functions have two degrees of freedom: ¢ and c_. One of them has been fixed
by the normalisation condition W = 2ik(|c. |> — |c_|?) = i. The other degree of freedom
remains, availing us a one-parameter family of possible initial mode functions. Note that d;((
are defined in terms of ¥y and 7. Fixing d is thus equivalent to choosing V.

We define the vacuum |0) to be the state satisfying d|0) = O for all k € R3. The expected
energy of the vacuum state is given by

. d’k
OVA10) = [ s Ela.aljo (181
— / d*kE53)(0), (1.82)

where the divergence 56 (0) arises only because we are integrating over the whole space.
Removing this factor, we may interpret Ej as the vacuum energy density for mode k.

We now ask the vacuum state to be a ground state of the Hamiltonian. Minimising the
energy density E; while keeping normalisation condition W = i, we obtain the Bunch-Davies

mode function;

_L _i —ikT
Vk(f)—m<1 kr)e : (1.83)
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For this choice of mode function and vacuum, Ej, — hay /2 as T — —oo. 7 This is analogous
to the case of the quantum harmonic oscillator.
Lastly, we compute the zero-point fluctuation of the inflation field with respect to the

vacuum. The two-point function follows from the commutation relation (1.75);

(P, (T) 0, (7)) = (0| [ai,,a" 110) vi, ()0, (2) (1.84)
= 27)36%) (k| +k») P, (k1,7), (1.85)

where we defined the power spectrum of v as P,(k, t) := |v¢(7)|2. Fourier transforming back

using

P(x,7) = ’k [v a +v*5ﬁ]e"“'x (1.86)
) - (271_)3 kUk k%k 9 .

we compute the local variation in v;

(9,0 = | g:)l g:; (Olvi, i, v, 8, |0) (187)
/ 4k, d3k23 v (0] [, al, | 0) (1.88)

—/ d3k3| vl (1.89)

:/d (Ink) 2, (k, 7). (1.90)

The dimensionless power spectrum is defined as

3

k Pk, T). (1.91)

Pyl T) = o

Recall that perturbations in ¢ is given by 6¢ = v/a from (1.60). The dimensionless power

spectrum for fluctuations in ¢ is therefore

P,(k,7)  (H\* 5
P (kp)= 2T (TN Lk 1.92
6¢( 77:) a<r>2 7 ( +( T) )7 ( )
where we used the fact that a(7) = —1/Ht during slow-roll inflation. For scales larger than

the comoving Hubble radius we have k7 < 1. In this limit, P54 — (H/ 27)? which is nearly

71 has been reinstated here for clarity.
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constant. This is a key prediction from our simplistic model of inflation; we expect a nearly

scale-invariant power spectrum of the primordial (end-of-inflation) perturbations.
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Summary

In this introductory chapter, we covered the basic foundations of modern cosmology. Under
a simplifying assumption that the universe is homogeneous and isotropic, we wrote down
the most general metric tensor in which the scale factor a(r) parametrises the expansion of
the universe. We then considered radiation, matter and dark energy as the main constituents
of the universe and derived Friedmann equations, which can be solved to determine the
universe’s expansion history given its energy composition. The universe likely began with a
Big Bang and has been continuously expanding since. This led to another puzzle, the horizon
problem; the early universe observed through the CMB seems exceptionally uniform despite
supposedly having many causally disconnected regions. We discussed how inflation solves
the problem by introducing a period of accelerated expansion shortly after the Big Bang,
dramatically increasing the size of the particle horizon. Inflation also successfully provides a
mechanism for generating the initial density fluctuations in the universe required to create
the structure we observe today. We showed that quantum fluctuations in the inflation field
follow a nearly scale-invariant spectrum which is consistent with observations to date.

The universe observed today is not quite homogeneous and isotropic at all scales. It is the
distribution of inhomogeneities—perturbations about the homogeneous background—that
contains valuable information about the universe and provides crucial observables for pre-
cision cosmology. We formulate the cosmological perturbation theory that describes the
evolution of these primordial perturbations in the following chapter in the context of the
CMB.






Chapter 2

Cosmic Microwave Background
Anisotropy

The early universe consisted of hot plasma. Photons were tightly coupled to baryons through
Compton scattering and remained in thermal equilibrium with them. Since the photon
energy density dropped more rapidly with the universe’s expansion compared to that of
matter, the universe eventually transitioned from radiation-dominated to matter-dominated.
Its temperature also continued to drop until it was low enough for the electrons and protons
to combine and form neutral hydrogen. Following this rather abrupt event at redshift ~ 1100,
called recombination, the photons no longer had electrons to scatter off from and instead
started streaming freely through space. These photons are now observed by us today as the
Cosmic Microwave Background (CMB).

The CMB follows a blackbody spectrum, since the radiation was in thermal equilibrium
before it decoupled at recombination. Its temperature has been redshifted since then from
approximately 3000K to Tcmp = 2.725K, which we observe today. Looking closer into
the map of CMB temperature, there are fluctuations of order 10~ that were seeded by the
primordial perturbations and evolved subsequently in time. Such anisotropy in the CMB
therefore contains valuable information about the universe. Satellite surveys such as COBE
[11], WMAP [40] and Planck [41], as well as numerous ground-based experiments including
ACT [17], SPT [42], and BICEP/Keck array [43] have produced precise measurements of
the CMB which have allowed us to constrain various cosmological parameters. The CMB
anisotropy is the gold standard dataset for precision cosmology.

This chapter provides mathematical background and some physical intuitions for studying
the CMB anisotropy, based on some standard materials on the topic including [32-34]. We
start by taking a step forward from the homogeneous and isotropic universe discussed in

the previous chapter and formulate the cosmological perturbation theory in Section 2.1.
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Focussing on scalar perturbations we derive the linearised equations governing the time
evolution of the perturbative variables in Section 2.2. In Section 2.3 we introduce the
Boltzmann equation for photons and outline how it is solved numerically. We connect the
primordial power spectrum to the angular power spectrum of the CMB anisotropy measured
today.

2.1 The inhomogeneous universe

2.1.1 Maetric perturbations

Recall that the FLRW metric is given using conformal time by
ds® = a(t)*(—dt* +dx>). 2.1)
We now perturb the metric as follows.
ds* = a(t)* [~ (1 +2A)dr* +2B; dvdx' + (& + hj)dx'dx'] . (2.2)

The spatial indices 7, j,- - - here are lowered and raised using §;;. Note that the scale factor
has not been perturbed, since any variation of it can be absorbed into other perturbative
variables. There are 1, 3 and 6 degrees of freedom coming from A, B; and h;;, respectively,
adding up to 10 as expected from a metric tensor of the 3+1 dimensional spacetime.

We further extract the divergence part from B; and 4;;, as well as the trace of &;;. Using

V and T to denote vector and tensor quantities,

B;=9dB+B/ (2.3)

hij =2C8j+20,;0,E + (Q;E] + d;E] ).+ 2E];, (2.4)

where 8<l~8j> = 0;dj — %5,- jVZ. The variables are chosen such that Bl‘-/ is divergence-free,
while hg is traceless and transverse.

The Scalar-Vector-Tensor (SVT) theorem states that to linear order in the perturbations,

these modes decouple and evolve in three independent groups: scalars (A, B,C, E), vectors

(B}/,EI-V ), and tensors (EZT). These groups each contain 4, 4, and 2 degrees of freedom, again

J
adding up to 10 as required. In this section, we are only interested in the scalar perturbations
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responsible for generating the temperature anisotropy and E-mode polarisation observed in
the CMB. ! We will therefore set the vector and tensor modes of the perturbations to zero.

Keeping only the scalar modes, the perturbed metric becomes
ds* = a(t)* [—(1+2A)dt* +20;B dvdx' + ((142C)8;+ 29,0, E) dx'dx’] . (2.5)

Coordinate transformations are gauge symmetries in General Relativity; they correspond
to redundancies in our mathematical representation of the system. Redefining the coordinate
variables may change how the theory looks, but all physical results derived in the new set are
equivalent to the original theory. These redundant degrees of freedom may still appear to
evolve in a non-trivial manner and therefore need to be treated properly. Here, we outline
how to fix a gauge in the perturbed metric and use gauge-invariant quantities to connect
results from different gauges.

Consider the coordinate transformations x* — ¥* = x* 4+ E* for some small £. As long
as & is of the same order as other perturbative variables, the background metric remains to be
FLRW. We dcompose & as above, keeping only the scalar perturbations. The transformations
can then be described by two arbitrary functions 7 and L so that £ = T(t,x) and &' =

d;L(7,x). The transformation matrices take the form

ax* (14T o,T dx*  (1-T' —o;T 2.6)

dx* oL’ 5,']‘ + 8,-8_,~L ’ dxe —o;L’ 5,‘_]' — 8l~8_,~L . .
The metric tensor in the new set of coordinates can be found using the tensor transformation
rule

. dx* dxVv
guv — gap = d7® g ShY (2.7)

Note also that the scale factor also changes under metric transforms due to variations in
its argument; a(7)? — a(%)? = a(t)>(1 +252T) at first order in perturbations. After some

calculations, we see that each perturbation variable in the metric (2.5) transforms like

A=A-T —#T, B=B+T-L, (2.8)
. 1 3
C:C—%T—szL, E=E-L (2.9)

ITensor modes also generate the temperature anisotropy and E-mode polarisation as well as B-mode
polarisation, but their contributions are negligible compared to those of the scalar modes.



28 Cosmic Microwave Background Anisotropy

Hence, the two free functions 7" and E can be chosen in a way that the metric perturbations
satisfy some desirable properties containing two degrees of freedom. Doing so fixes the
gauge and no further redundancies remain in our formulation. Popular choices include the
spatially flat gauge, where C = E = 0 and the spatial perturbations vanish as 4;; = 0, and the
synchronous gauge, for which A = B = 0 and the time is left unperturbed.

Results from different gauge choices may appear dissimilar. In order to link them together,
it is convenient to work with quantities constructed from the perturbative variables such that
they remain invariant under the transformations (2.8)-(2.9). The Bardeen potentials are two

such examples of gauge-invariant variables;

WYg:=A+#(B—E)+B —E", (2.10)

1
dp = —C—%(B—E’)+§V2E. (2.11)

The gauge we will be using for the rest of this chapter is the Newtonian gauge where
B = E = 0. This allows us to identify A and C with the Bardeen potentials, and the metric
takes the form (dropping the subscript)

ds? = a(7)? [~ (1 +2%)dt* + (1 — 2®)dx*] . (2.12)

The perturbations ¥(7,x) and ®(7,x) are directly related to the classical gravitational

potential in the Newtonian limit.

2.1.2 Matter perturbations

In order to complete the Einstein field equation, we need the energy-momentum tensor as
well as the metric written to first order in perturbations. Recall that a perfect fluid in a
homogeneous universe has T,y = (p + P)U,Uy + Pgyy. The perturbations in 7y, come
from two sources: a) directly from perturbations in the energy density and pressure, and
b) indirectly through variations in the metric and comoving observer’s four-velocity. We

consider the local inertial frame to separate these two effects. Let
(Eo) :=a '(1-W)&}', (E)*:=a '(1+®)5". (2.13)

The four vectors above form an orthonormal frame where gy (Eq )" (Eg)" = Ngp. In this
locally-Minkowski frame, each component of the tensor 7P represent a physical property
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of the fluid. We write

T™=p=p+dp, TY=4=(p+P), (2.14)
T = psi — 11V = (P+ 6P)8" —T17. (2.15)

The momentum density ¢ and the mean velocity v are first-order quantities which vanish in
the absence of perturbations. The symmetric and traceless matrix IT¥/ represents anisotropic
stress. This quantity vanishes for non-relativistic fluids such as dark matter, while it remains
small but non-zero for relativistic particles like photons.

Transforming back to the original coordinates through THY = (Ey ) (Eﬁ)VTO‘ﬁ , we get

T =a2p +a2(8p—-2%p), (2.16)
7Y% =0 +a%q, (2.17)
TV =a2P§" +a *[(§P+2PP)5Y —T1"], (2.18)

at first order in perturbations. Note that when only the scalar modes are considered, we may
write v/ = d;v and T/ = d(;0I1 for some v and IT. If multiple fluids contribute, then the
total energy-momentum tensor can be obtained by summing over the individual values for
each constituent I; 6p =Y ; 8p;, 0P =Y ;6P, and 6q =Y, q;.

The energy-momentum tensor is also subject to the gauge transformations (2.6). Each

perturbation variable appearing in 6THV transforms as

Sp=8p—Tp', SP=86P—TP, (2.19)
i=q+/p+P)L, 7 =1 (2.:20)

We may therefore choose to work in a gauge where some of the above vanish. For example,
0p = B = 0 in uniform density gauge, and spatial slices of the fluid have constant energy
density.

2.1.3 Initial perturbations

With the metric and matter perturbations written down, we only need one more ingredient to
solve the linearised Einstein’s equations: initial conditions. In inflationary ACDM, deviations
from the background solution originate from the quantum fluctuations of the inflation field as
we discussed in Section 1.2.3. Statistical properties of the perturbations’ distribution depend
on the details of the inflationary scenario.
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In models where a single-field drives inflation, such as slow-roll inflation, the field can be
thought of as a local clock. Classical equations of motions dictate the trajectory followed by
the field, which then regulates the expansion of the universe. The spatial fluctuations of the
inflation field can therefore be considered as the differences in how far the field has moved
down the trajectory at each point in space. Any such perturbations can be determined solely

from the variations in the local ‘clock’ time 87(7,X);

8f = f(t+81,x)— f(1,x) = 3—551‘, (2.21)

for any f. By substituting f = p; and P; we find that §p; /p; = 6P;/P] = &7, which is locally
constant for each constituent /. Combined with the background continuity equation (1.25),

5 5
L+w;  1+wy’

(2.22)

where we have defined the density contrast as & := 8p;/py. 2 In particular, 8, = (4/3)3,, at
each point x. Furthermore, for a fluid with a constant equation of state w; = P;/py, the sound

speed c; 1s defined as

o of _ Z’: = d—l_s’ = wy. (2.23)
épr Py dpr

Hence, the perturbed energy density and pressure also satisfy the equation of state; Py = wypy.

Perturbations satisfying the strong constraint of (2.22) are called to be adiabatic. They
affect every component of the universe equally so that the ratio between density contrasts
is uniform in space. Orthogonal to adiabatic modes are isocurvature modes where the total
density contrast vanishes everywhere and 8, = —J,, at the end of inflation. Some multi-field
inflation models are expected to seed isocurvature perturbations. However, all observations

so far are consistent with purely adiabatic initial conditions [15, 44].

2.2 Linearised equations

In this section, we derive equations governing the time evolution of the perturbations defined
in the previous section. The equations are of first order in the perturbative variables. Although

all calculations here are performed in the Newtonian gauge, the methodology illustrated here

2To avoid confusion with the differential operator and Dirac delta function, we always write the density
contrast d; with a subscript / indicating which fluid it represents. The fotal density contrast will be denoted as

6t0t‘
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is general and applies to any choice of gauge. In order to avoid conflicting notations later, we

use 7 instead of 7 for conformal time in this section. 3

2.2.1 Kinematics

Non-interacting perfect fluids such as cold dark matter are conserved; they should satisfy the
perturbed metric’s equivalent of the continuity equation (1.25), as well as the Euler equations
regarding time evolution of the perturbative velocity field v(1,x). In this section, we derive
the conservation equations for the perturbation theory using the constraint V, TV, = 0.

The first step is to compute the Christoffel symbols (1.3). Working in Newtonian gauge,
they are given by

[,=2 +Y, % =0 +oV, (224
I, = #8; — [ +2(¥+9)] 5, =0 ¥, (225
= + (kD)5 — (d@) 8 — (9;®) 8y, Ty =#8; —@'5;.  (2.26)

The background values appear as the first term in each equation. Note that these look different
to (1.13)-(1.15) because the conformal time 7 is used here instead of the comoving time 7.
Spatial indices are lowered and raised using the delta function above.

There are four components in the equation Vy TV, = oy TV + TV, T, — quTVY =0.
We take y = 0 and substitute in the perturbed energy-momentum tensor (2.16)-(2.18). After
removing the background part p’ = —3.#(p + P), we obtain

(6p) +V-q+3#(8p+86P)—3d' (p+P)=0. (2.27)

This is the continuity equation. Only the first two terms would be present if the spacetime
were flat; any changes in the energy density perturbation 8p are then due to the fluid flow
parametrised by the momentum density q = (p + P)v. The third term accounts for the
dilution of the fluid density from the expansion of the universe. The last term corrects for
the perturbations in the expansion, where @' comes from the time derivative of the effective
spatial scale factor a(n)(1 — ®(n,x)). All factors of 3 here originate from having three
spatial dimensions.

(2.27) applies to every fluid component which does not interact with others. Rewriting

in terms of the equation of state w; = P;/p;, sound speed cZ = §P/8p, and density contrast

3Unfortunately, we could not have avoided the clash by using 1 to denote conformal time to begin with,
since 7 is also commonly used as one of the slow-roll parameters in inflation.
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O = 6p;/p1, we have
8+ (14+w))V v +37(c2 —wp)& —3(1 +w))® = 0. (2.28)

This is a first-order differential equation for J;.

Meanwhile, the p = i part of VTV, = 0 yields the Euler equations;

vi+H <1—3_—17) vi+ V_<5P_) +V¥ =0. (2.29)
p +P
We do not have the zeroth order terms in this case since v = 0 in the homogeneous universe.
Although (2.29) is a vector equation, it has only one independent scalar component after
rewriting v = Vv for some v. This is because we are only considering the scalar perturbations.
The physical meaning of the individual terms in (2.29) is as follows. The second term
with a factor of 7 represents the dilution, or redshift, of the velocity due to the universe’s
expansion. The third relates to the pressure; the fluid’s velocity accelerates in the direction of
the steepest pressure gradient. Lastly, the gravitational force pulling towards a potential well
is encapsulated in the final term.
If we assume adiabatic initial conditions where P'/p’ = §P/8p = c2, then the Euler

equation further simplifies to

2

S V&G +VY =0 2.30
1+ 7+ ) ( )

Vi4+ (1 =3)v + -
I

for a given fluid component /.

2.2.2 Dynamics

Our next step is to solve the linearised Einstein’s equations. Using the Christoffel symbols
(2.24)-(2.26), we may calculate the Einstein tensor for the perturbed metric. After a rather
long but straightforward algebra,

Goo = 3> +2V2D — 67D, (2.31)
Goi=0 +20;® +20,9, (2.32)

2
Gij=—QA" +7#%)8; —0,0;(¥—@)+ §V2(‘P—CI>)+ZCI>”

+ (4 +2°) (P + @) + 2V + 44D | 55, (2.33)



2.2 Linearised equations 33

where we have separated the zeroth and first order terms as before.

Einstein’s equations, G,y = 8TGTy, consists of 10 parts. Among these only 4 of them
relate to scalar modes, similarly to how there are 4 independent scalar perturbations in the
metric tensor (2.5). We obtain one equation for each of Go, Gjp, the trace of G;;, and lastly
the trace-free part of G;;.

We start with the trace-free component of G;;. Combining (2.33) and (2.18) gives

—0,i0)y (¥ — @) = 9;0;I1. (2.34)
The anisotropic stress IT is negligible in reality. Non-relativistic matter does not contribute at
all to I, and photons induce non-zero but small anisotropic stress. Hence, we set II ~ 0 and
let W = & for the rest of our derivations.

The 00, {0, and ij trace parts of Einstein’s equations then take the form

V2P 34D — 347D = 471G a*5p, (2.35)
& + AP = —41G d’q, (2.36)
& + 34 + 24" + AP = 41G a*SP. (2.37)

We used the background equations to remove terms of zeroth order in perturbations. The
i0 part generally gives a vector identity but it only has one scalar degree of freedom since
q=(p+P)v=Vqforsome q:= (p+P)v.

Time derivatives of ® on the left-hand side can be removed by putting (2.35) and (2.36)

together. The result is Poisson’s equation;
V2® = 471G a*(8p — 3.4q). (2.38)

This resembles Poisson’s equation for Newtonian gravity: VZ@newt. = 47G p. We confirm
our previous claim that & corresponds to the perturbations of the Newtonian gravitational
potential. Note that (2.38) is best solved in Fourier space where V>®(7,x) reduces to
—k*®(n,k).

2.2.3 Curvature perturbations

The Bardeen potential ®p is an extremely useful quantity for studying cosmological perturba-
tion theory. It is not only gauge-invariant but also representative of a physically meaningful
quantity—gravitational potential—in Newtonian gauge which can be solved using the Pois-
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son’s equation (2.38). Gauge-invariant quantities also let us connect results from different
gauge choices in a consistent manner.
Another gauge-invariant variable which plays a crucial role in cosmology is the constant
density curvature perturbation, or simply curvature perturbation, defined as
1 0
(= —C+-VE+ 2L (2.39)
3 p
The name originates from the fact that it closely relates to the spatial curvature RB) in the

uniform density gauge B = dp = 0. In Newtonian gauge,

op op
¢ p’ 3(p+P) (240
where we used the background continuity equation p’ = —3.57(p + P) for the second equality.

The time derivative of { can then be evaluated using (2.27):

!/ / 1 éF él / ép(p_l 1_/)
— V. - —_ .
4 CI>+[3 V4 = o> 3 1 PP (2.41)
1 I P
- V% _ ) 4
3 V4 — (6P _lép) (2.42)

The second term in (2.42) vanishes for the adiabatic modes sourced by single-field inflation,
as long as we assume the constant equations of state shown in (2.23). We are then left with
¢'=(1/3)V?y.

Now consider scales much larger than the comoving Hubble radius .7~ !, namely the
‘super-horizon’ scales. The Fourier space equivalent of this condition is k < .7¢°. The Fourier
transform of V2v equals —k*¥, which is much smaller than the typical time scale .7 in this
limit. It follows that {’ & 0; curvature perturbations are conserved in super-horizon scales.

For this reason, the curvature perturbations play a major role in connecting inflation to the
primordial initial conditions. Recall that the comoving Hubble radius .#~! shrinks during
inflation due to exponential growth of the universe. Most physical scales of interest that were
originally sub-horizon, or k=! > .7 ~!, eventually exit the horizon as 7#~! drops below
k~!. After the end of inflation, 57! grows back so that the modes can re-enter the horizon.
Here, since { remains constant at super-horizon scales, the value of { at horizon re-entry is
equal to that evaluated at the time the mode left the horizon. { serves as a bridge which links
the quantum fluctuations generated during inflation to the initial perturbations after inflation.
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2.3 CMB anisotropy

The linearised Einstein field equations (2.35)-(2.37) dictate the time evolution of the grav-
itational perturbations given the total energy, momentum, and pressure of the universe’s
constituents. The cold dark matter’s contributions to these quantities can be solved using
the perturbed continuity equation (2.27) and Euler equations (2.29). This section covers
how perturbations in the photon temperature evolve and translate into the observed CMB
anisotropy, the main cosmological dataset of our interest.

Studying photon perturbations is similar in principle to cold dark matter but involves
two major complications. First, photons interact directly with baryons through Compton
scattering. Their perturbations hence stay tightly coupled until recombination, when the
electrons and protons combine to form neutral hydrogen and the photons start free-streaming
instead. We outline in Section 2.3.1 how the Boltzmann equations are used to find the
time evolution of photon perturbations while accounting for the scattering effects. Second,
unlike cold dark matter whose perturbations are characterised by its density contrast 6 p,,
and velocity field v,,, we require a whole hierarchy of functions to accurately describe
photons. This is because the photons do not necessarily travel parallel to the wavevector
when perturbed; p }f k. We discuss the details in Section 2.3.2.

2.3.1 Boltzmann equations
Photons

We start by calculating the path a photon takes while free-streaming within the perturbed
metric (2.12). The 4-momentum of a photon in local coordinates satisfies 1,5P*PP =0

since photons are massless. We may hence write its components as

PP=p, P =pp, (2.43)

where P is a unit vector indicating the direction of propagation and p is the magnitude of the
3-momentum. We can revert back to the perturbed metric using the tetrad in (2.13); since
Pt = (Eq)"P?,

PP =a1(1-¥)p, P =al(14+®)pp'. (2.44)
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Recall that the 4-momentum is defined as P* = dx* /A for some affine parameter A. Using
our definition above,
dx'  dx'dA P ,
T L (1AW PP 2.45
to first order in perturbations. A comoving observer finds photons to be travelling more
slowly while passing through overdense regions with ¥, ® < 0.
The geodesic equation (1.2) takes the form

aPt o [(dP° 0
Meanwhile, differentiating (2.44) gives
dP’ 1-W¥ [dp p (0¥ dx 0¥
— = — = — ===+ —=. 2.47
dn a <dn %ﬂp) a <8n+dn 8x’> (247)

Note that the total derivative d/dmn here is taken along the trajectory x* = x*(n) of the
photon. We may combine (2.46) and (2.44) to obtain an expression for the total derivative of

p;

1 (d—p) =+ - pow. (2.48)
p\dn

Only the first term on the right-hand side is present at the zeroth order in perturbations,
where we get p < a~!. We confirm that photons are redshifted as the universe expands,
justifying the definition of the redshift z in (1.28). The other two terms quantify the effect
of gravitational perturbations on photon energy. Photons at a place where the potential is
increasing over time gain energy o ®'. On the other hand, photons moving out of a potential

well lose energy o (p-V)W. Dividing by p gives the last term in (2.48).

Distribution function

In order to fully understand the physical properties of photon perturbations, we need to study
their distribution function f(7n,x,p) which measures the number of particles in a unit phase
space volume. Photons in a thermal equilibrium within the homogenous universe follow the

Bose-Einstein distribution where

F(n.p) = {exp{i} - 1] - (2.49)
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up to a factor and the Boltzmann constant, both of which we set to 1 for convenience. This is
equivalent to the blackbody radiation with temperature 7(1).

We define the fractional temperature anisotropy ® by perturbing the photon distribution
function as follows;

s~ [oo{ o) 1] %20

We have made an implicit assumption here that @(1,x,p) does not depend on p, the photon

energy. This claim will be justified later as we show that the Thomson scattering between
photons and electrons leaves the energy of photons virtually unchanged.

The distribution function (2.50) can be expanded to linear order in perturbations as

f=f- 3 0, (2.51)
by replacing p with p(1 — ®) in (2.49). The temperature anisotropy @ therefore closely
relates to perturbations in the distribution function.

Collisionless equations

Liouville’s theorem states that the phase space distribution function remains constant along
the system’s classical trajectories. A generalisation of this to systems with collisions is the
Boltzmann equation. For our photon distribution function, it reads
df df dfdx of d(lnp) df dp'
dn dn  dxidn d(lnp) dn dptdn
af

dT[ scattering

(2.52)

(2.53)

In (2.52) we used the chain rule to expand out the total derivative again. Note that the last
term only appears at second order in perturbations since both (9 f/dp') and (dp’/dn) appear
at first order. This term corresponding to gravitational lensing opens up a whole subject of its
own but will be neglected for the purposes of this discussion.

Without scattering, the term in (2.53) vanishes and the distribution function is conserved

along each trajectory. The zeroth order part of the equation yields

=L = 0. (2.54)
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Substituting the form of f we see that the background temperature scales as 7 o< a~ !,

consistent with the redshift caused by the expansion of the universe.
We can write down the first order part of (2.52) in terms of the temperature anisotropy ©
using our previous results (2.45), (2.48), and (2.51);

df a< Jf ®)_ of ;90 P o of <ac1> AiaW)

dn ~ an\a(np) ) " anp)’ ax T anp)2” " T d(np) \an P ox
(2.55)
8.f_ / Al / N/
=— O+ p'00—-d + p'o¥|, (2.56)
d(Inp)

after some lengthy algebra. There are four terms in (2.56). The first two naturally arise from
the free-streaming of the photon and correspond to the temporal and spatial changes in ©.
The other two in brackets account for the changes in photon energy caused by the metric
perturbations ® and . The sum of the two is in fact equal to —p~!(dIn(ap)/dn). The

comoving energy ap of the photon remains constant in the homogeneous universe.

Thomson scattering

The early universe contained hot plasma in which photons bounce off charged particles via
Compton scattering. In particular, photons and electrons interact through Thomson scattering
e~ + 7Y <> e +7v. This interaction provides the dominant contribution to the Boltzmann
equation for photon temperature anisotropies until recombination, when electrons and protons
combine to form neutral hydrogen, letting photons travel freely.

Thomson scattering involves a photon and a non-relativistic electron with energy E,(q) =
me + 2%;1642’ where m, is the electron rest mass. In the electron’s rest frame, the scattering
term (2.53) takes the form

df
dne

d
— e [ b g (B:Bin) [F(p.Bn) — (1B, @57

scattering

where 7, and 7i, denote the proper time and (background) mean number density of the
electrons, respectively. We have suppressed the 11 and x dependencies from the photon
distribution function f(n,x, p,p) for now. The integrand of (2.57) comprises two parts. The
former corresponds to the photons originally travelling in the direction p;, but then scattered
into p. The latter is the opposite; it accounts for the photons scattering out of p to some other
direction, say pi,. Both in and out scatters are equally effective since Thomson scattering is

reversible. The rate of interaction depends on the number densities 7z, and f, as well as the
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angle-dependent function given by

dG(A bin) = 307
P,Pin) = lon

o [1+ (P Pin)?] (2.58)

for Thomson scattering [32]. The Thomson differential cross section o7 is a fixed constant
equal to 8mha? / 3c2m§. Note from (2.57) and (2.58) that Thomson scattering leaves the
photon energy p unchanged. This justifies our previous assumption to drop the p dependence
from ©; the photon energy remains unperturbed by scattering in our linear perturbation
theory.

We now account for the bulk velocity v, of electrons (baryons). In the non-relativistic
limit where ||v,|| < 1, the Doppler effect alters the distribution function by an amount
proportional to i, (P - v, ). We also rewrite f = f — (df/dInp) © and substitute (2.58) into
(2.57) to obtain

% - =an _df [G)(f)) — —/dzﬁ [©(R) (1+(p-1)*)] —p-vy|, (2.59)
scattering

where we relabelled p;, as fi and performed the [ d?f integral for the out term cancelling

out the factor 3/167. We now have a complete form of the scattering term appearing in the

Boltzmann equations.

Line of sight solution

We obtain the full photon Boltzmann equation by combining (2.56) and (2.59).
O+(P-V)O—-d+(p-V)¥

\%
3
= ai,or {—®+ Ton / d*h [O(R) (14 (p-A))] +p-vs| - (2.60)
Note that every term on the right-hand side has a factor of afi,0r from scattering, which

motivates us to define the optical depth;

o(n) == /n " an' [y or]., 2.61)

where 7 is not to be confused with conformal time, also denoted 7 elsewhere in other chapters.
Here, —01 = an,or 61 corresponds to the probability of scattering to occur between some
small time interval 11 and 1 + 61. The optical depth hence measures how opaque the
universe has been for photons to travel without running into something until today. The
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probability of a scatter between some time 1 and today 7 is in fact equal to e~ "), This is
1 for 7 =0 and tends to 0 as T — oo. Taking the time derivative yields the visibility function
g(n) := —7/(1)e "M, or the probability of having last scattered at 7.

Using 7 and 17 we may rewrite (2.60) as follows.

167
=:8(n,x,p), (2.63)

% [e " (@+¥)] = (¥ + D) +g {i / d* [O(R)(1+ (p-0)H)] +p-vp| (2.62)

where we defined the source term S(7n,x,p) as the right-hand side of (2.62). Integrating
along the line of sight yields a formal solution to the Boltzmann equation of the form

Mo
®(n0>X0713)+lP(7707X0) :/0 dn/ S(n/7X0—(770—77/)f’;l3)> (264)

since 7(1g) = 0 and 7(0) = oo.

We can simplify the problem further by assuming that all photons last scattered at a
fixed n = 1, and have started free-streaming since. The visibility function is then equal to
g(n) ~ g(n«)d(n —n.), and e~ * switches immediately from O to 1 at recombination 1 = 1..
The integral term in (2.62) reduces to the monopole @ := (1/47) [ d*f O(f) as long as we
neglect the anisotropic stress, which we will detail in the next section.

With these approximations,

®<n07X07f)) +\P(n07X0)
Mo
A Op(N:, %) + ¥ (N, X)) +D- Vo (N X)) + [ dn' (W' + D) (', x0— (mo—1')P),
M«
(2.65)

Here, x,. = Xo — (1o — N« )P is the comoving coordinate of the point within the last scattering
surface where the given photon comes from.

There are several different contributions to ® in (2.65). Firstly, the difference in the
potential ¥ between the last scattering (1.,X.) and today (1o,Xo) induces gravitational
redshift for any photons climbing out of the potential well. Next, the monopole ® at
recombination is closely related to the photon energy density contrast, as we will see shortly.
The sum of ¥ and © is often called the Sachs-Wolfe (SW) contribution and is dominant
at large scales. The third term P - v, measures the Doppler effect caused by the electron’s
peculiar velocity at the last scattering. Lastly, the last integral accounts for the Integrated

Sachs-Wolfe (ISW) effect, where time variations in the gravitational potentials affect the
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photon energy. Accelerated expansion in the late universe due to dark energy contributes the

most to this integral.

2.3.2 Boltzmann hierarchy

The full Boltzmann equation (2.60) is not in an ideal structure for us to solve numerically. It
is not only in an integro-differential form, but also a function of three quantities 17, X and p,
totalling 6 dimensions. In this section, we outline the formulation that the Boltzmann solvers
today such as CAMB [45] and CLASS [46] use to find the time evolution of the photon
temperature anisotropy.

We work in the Fourier space of x so that ® = @(n,k,p). The term (p-V)® then
simplifies to (p-i k)C:) = iku®, where 1t := p - k measures the angle between wavevector k
and the direction of propagation p.

The next major simplification comes from the fact that even though ®(n,k,p) depends
on P, it is axisymmetric with respect to k for the scalar perturbations we are studying. The
scattering term in (2.59) also preserves this axisymmetry. Thus, O(n,k,p) = O(n,k,u),
where we managed to cut down one dimension. This motivates us to define the /th multipole

as4

2 A
0/(1,k) =1 d—"P(f« p) ©(n.k.p) (2.66)

where we dropped the tildes on ® representing Fourier variables for brevity. (i) denotes

the /th order Legendre polynomial, constructed to satisfy the orthogonality condition

Ldp 1

12 ll(N)Plz(N) = m&llz- (2.68)

Legendre polynomials form a complete basis for smooth functions defined on interval [—1,1].
Hence, we may expand @(1,k, i) in i using these polynomials for each (1n,k). After
substituting into (2.67), (2.68) yields

o)

O(n,k,u) = Y (=)' (21 + 1)P(1)®(n,k) (2.69)
=0

4Note that some literature adopt a different convention where a factor of 2/ + 1 is included in the definition
of ®l-
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The lowest multipole at / = 0 corresponds to the monopole we discussed earlier; @y =
(1/47) [ d*f ©(p), which is a simple angle average. Next is the dipole at [ = 1 given by

= (i/4m) [d*h (k- P)O(p), then the quadrupole at [ = 2, and so on. The integrated term
in (2.60) now takes a simpler form

3

167r/d2A [®("77k7ﬁ)(1+(f)ﬁ)2)] :®0(nak)+lP2(R'ﬁ)®2(nvk)a (270)

2
after some calculations and noting that P (1) = (1/2)(3u% —1).

Incorporating the results so far, the Boltzmann equation becomes
1
O (1) +iku®(u) — @ +iku¥ = —v' | —0(u) + O + EPz(‘LL)@)z +ikuvy |,  (2.71)

where v, = Vv, and the 1) and k dependences are omitted for clarity. We combine the above

with the Legendre basis expansion (2.69) to get

(o)

Y (=)' 21+ 1)P(u) [©] + iku®,]
=0

= 1 1 1
Z 20+ 1)P (1) |70+ 8o(' — 7 ®o)+511( k¥ + kT Vb)+512(1—of 0,)],

(2.72)

since Py(i) = 1 and P;(u) = u. Note that the term iku®; related to free-streaming of
photons has an extra factor of u, which can be removed using the recursion relation for

Legendre polynomials given by

I+ 1P (p) = (I+ )Py (1) + 1P (1) (2.73)

We can then equate the coefficients of P;(u) from both sides for each /, since the Legendre
polynomials are orthogonal when [ # I'. The result is a hierarchy of differential equations
for the multipoles:

l [+1

/
- L #
O = 3 KO kO

1 1 1
= ’C/@l + 51()( —7T @0) + 5[1( —k¥ + 3kT vb) + 612(1—01' @2) (2.74)

for/ =0,1,2,.--- (®_1 set to 0). Finally, the first-order differential equations from each /
can be solved in conjunction with other linearised equations including (2.27), (2.29), and
(2.35)-(2.37) derived from the perturbation theory.
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We note two key properties of the full set of differential equations which dictate how
perturbations in the metric, matter, and radiation vary as the universe expands. First, the
Fourier modes ‘decouple’; they evolve independently from each other. The perturbative
variables evaluated at different ks do not affect each other to leading order and hence can be
studied separately. Second, the time evolution of each Fourier mode only depends on k = ||K]|
instead of k for scalar perturbations. This is because our background theory is isotropic and
there is no preferred direction in our formulation. The Euler equation (2.29) may seem to
depend on the full vector k at first, but it simplifies greatly after rewriting v = Vv for some v.

The same is true for the {0 component of the linearised Einstein’s equations (2.36).

2.3.3 Late-time anisotropy

We have derived the set of differential equations governing the time evolution of photon
temperature perturbations. Adiabatic initial conditions mean that there is only one degree of
freedom for scalar perturbations at the end of inflation. Hence, ®(n;,K) for example fully
specifies the initial values needed for the evolution equations, which themselves depend only
on the magnitude k of the wavevector as discussed earlier. It follows that the radiation transfer
function defined as A; (k) := O(k,no)/P(k, ;) encapsulates all the relevant information about
the photons’ time evolution, from the early times, 7 = 1n;, to present, 7 = 1. In this section,
we derive the relations between the photon temperature perturbation ®(k, 1) and the CMB
anisotropy observed today.

We measure the CMB while sitting on a fixed point in spacetime: here (X = X¢) and now
(n = nop). Small variations in our time and location have effects that are completely negligible
considering the Hubble scale today. Anisotropy in the CMB temperature we observe hence

takes the simple form

AT
() )= etm.x0.5.m0) @75)

The vector p relates to which direction in the sky we point our telescopes. The observed data
thus lie on a two-dimensional sphere containing p. The equivalent of Fourier transform for

functions defined on a sphere is the spherical harmonic transform;

O(X,p,N) =Y am(X,1M)Yim(P)- (2.76)

l,m

A

In physical terms, the spherical harmonics Y;,,(p) are joint eigenstates of the angular mo-

mentum operators L> and L3 with associated quantum numbers / and m, respectively. In
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mathematical terms, they form a basis of harmonic (vanishing Laplacian) polynomials of
degree [ in three dimensions, their domain restricted to a sphere. For each /, the number m
may take one of the 2/ + 1 values in {—1,—I+1,---,l}. Note that Y,,s are orthogonal and
normalised by construction:

[ @ Y (8 (B) = S @.17)

Another useful identity is the addition theorem for spherical harmonics given by

l

P(k-p Z k)Y, (P (2.78)

where P(t) are Legendre polynomials.

As long as sufficiently many multipoles / are included, the spherical harmonic coefficients
contain full information of the original function, just like the Fourier transform. Thanks to
their orthonormality (2.77), the spherical harmonic coefficients can be computed using

am(x,1]) = / % O (x, p, )Y, (P). 2.79)

:/ dSk i /215(9 )Y (b). (2.80)

Note that the evolution equation (2.71) for the perturbations @(k,p,n) above only
depends on k = ||K||, the angle u = k- p, and time 7). The rest are determined from initial

conditions. The following ratio therefore only depends on k, u and n as well;

= f(k,u,m) (2.81)

©;(k,n)
o(k,n;)

= 21+ 1)P(n)

(2.82)
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where we expanded using Legendre polynomials in (2.82) and used the definition of transfer
functions. Substituting this into (2.80),

3 . N
antxn) = [ gzsean) [ @ Py ) .84
3 - ! A
= [ e etem) [ @ ¥ [ 01 - DR kD) ¥ )
(2.85)
3
= [ Gy [t () @+ D) )] 2:86)

For the last line, we expanded P using the addition theorem (2.78) and performed the [ dp
integral. Orthonormality (2.77) forces I’ = [ and simplifies the summation over /.
Setting x = x¢ = 0 and choosing 1) = 1, we obtain a formula for the observed temperature

anisotropy:

d’k

(27)?

aim = 47(=)' [ 5 S EM (Y, (K). (2.87)

2.3.4 CMB power spectrum

Slow-roll inflation generates quantum fluctuations that are mostly Gaussian. In Section
1.2.3 we derived the dimensionless power spectrum for d¢ (1.85), the fluctuations in the
inflationary field, by evaluating the vacuum expectation value (6¢ (ky,7)0¢ (ky, 7)) through
canonical quantisation of d¢. The equivalent expression for the potential ® evaluated at the
end of inflation is

(@(K)D(K)) = (27m)36%) (k+K') Py (k), (2.88)

where Py (k) is the power spectrum of ®. The Dirac delta function above enforces the
momentum conservation, a manifestation of statistical homogeneity. This can be seen by
considering a spatial translation X — X + ¢ under which the field transforms as ®(k) —
exp(ik - ¢)®(k). The correlation function on the left-hand side of (2.88) then gains a factor
of exp(i(k+ k') - ¢). For this to be equal to 1 for arbitrary ¢, we require k + k' = 0 as above.
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We can now compute the power spectrum of late-time CMB temperature anisotropy from

the given primordial power spectrum Py (k). Using (2.87),

[ &’k K o N
() = @i [ S s @) (MR (R () 259
sip [ dK L
— (4m)2 / 0 (R ()i (R () (2.90)
_ %il” / dk K2A () Ay (1) Pop (K) 81 Sy 2.91)
- Clall’émm/y (2.92)

where the angular power spectrum is defined as
2
Cri== / di K2 A (K) 2P (k) = 4 / d(Ink) |A(K) 2 P (k). (2.93)

The dimensionless power spectrum P (k) := (1/27?)Pp (k) as before.

The Gaussianity of primordial perturbations from slow-roll inflation means that the ay,,,s,
which evolved linearly from the initial fluctuations, are also Gaussian. CMB measurements
show that the a;,,,s are indeed consistent with a multivariate Gaussian distribution. The form
of (2.87) shows that the multipoles a;,,, are uncorrelated with each other and, since they are
Gaussian distributed, vanishing correlation implies independence. In particular, the a;,,s
with the same / but distinct ms are independent and identically distributed. We can therefore

combine them to get a more precise estimate for Cy;

!

G = ﬁ m_zla;‘ma,m. (2.94)
In cosmology, we are often interested in the theoretical distribution from which an
observable is sampled from. Unfortunately, there is only one realisation of the universe we
may observe: the one we live in. The number of samples used to estimate the underlying
distribution is therefore limited, and it imposes an inherent lower bound on the estimation

error called cosmic variance.
This also applies to estimating the angular power spectrum C; from a single set of a;,,,s
observed from CMB experiments. Even in a perfect experiment with zero measurement

noise, we expect the variance of the estimator to be

2 2
21+1C"

Var [C)] = (2.95)
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Having access to 2/ 4 1 independent samples a;,, for each [ is therefore crucial for doing
precision cosmology with the CMB data; the cosmic variance for C; is suppressed by a factor
of 21+ 1.
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Summary

In this chapter we formulated the cosmological perturbation theory with a focus on the CMB
anisotropy. Starting from the perturbed metric of the universe, we derived the conservation
and Einstein equations to first order in perturbations. We then discussed how to fix a
gauge and introduced several important gauge-invariant quantities, including the curvature
perturbation { which is constant at super-horizon scales. Working in Newtonian gauge, we
derived the time evolution equations for both matter and radiation perturbations. The latter
involved writing down the Boltzmann equation with scattering terms. The result is a system
of differential equations for the multipoles @, of the photon temperature perturbations, which
can be solved to obtain the transfer functions encapsulating the full evolution history of the
CMB.

CMB anisotropy is the most powerful probe for constraining cosmological parameters of
the ACDM model. The CMB power spectrum obtained from recent observations provided
extremely precise estimates of the inflationary ACDM parameters such as the energy compo-
sition and age of the universe. In addition to the temperature anisotropy mainly discussed in
this chapter, weak polarisation present in the CMB caused by Thompson scattering is also a
key observable for cosmology. There are two polarisation modes, E and B, mainly sourced
by the scalar and tensor perturbations, respectively. The E-mode polarisation data have been
combined with the temperature data which significantly improved the CMB’s estimation
power thanks to recent advances in measurement sensitivity [14].

Furthermore, the fact that the CMB anisotropy depends linearly on the primordial per-
turbations makes it an ideal dataset for studying higher-order correlation functions. In the
next chapter, we will discuss how the CMB bispectrum can be used to test the Gaussian

assumption and constrain various inflation models via primordial non-Gaussianity.



Chapter 3

Bispectrum and Primordial
Non-Gaussianity

The primordial perturbations are consistent with being Gaussian distributed according to
observations to date [23]. The statistical properties of a Gaussian random field are completely
characterised by its mean and two-point functions. The latter is directly related to the CMB
angular power spectrum since the CMB is a near-linear probe of the early universe. In fact,
the power spectrum is a sufficient statistic if the perturbations are Gaussian, which means
that it contains all the information about the distribution of the primordial perturbations we
may ever extract from the CMB. The inverse is also true however; if the initial perturbations
were non-Gaussian, it is essential to go beyond the power spectra and study higher-order
statistics. Such non-Gaussian contributions are well captured in the three-point correlation
functions, or their Fourier counterpart, the bispectrum.

In single-field slow-roll inflation with standard kinetic term and vacuum, the primordial
bispectrum is suppressed by slow-roll parameters [47]. However, numerous other inflationary
scenarios that are physically well-motivated violate these simple assumptions and hence
predict non-Gaussian signatures. They are expected to leave imprints on the CMB bispectrum
with a characteristic shape and amplitude, where the latter is parametrised by fnr.

We discuss the bispectrum in relation to primordial non-Gaussianity in this section,
from both theoretical and observational sides. Section 3.1 covers the basic formalism of
bispectrum analysis. Section 3.2 then introduces the theoretical tools for calculating the
primordial bispectrum from a given inflation model Lagrangian. On the CMB side, we

formulate the optimal bispectrum estimator and its existing implementations in Section 3.3.
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3.1 Bispectrum

Consider the three-point correlation function (& (x1) & (x2){ (x3)) of the curvature perturbation

¢ at the end of inflation. Its Fourier transform is given by

(C(k1)C(k2)C (k3)) =/d3X1d3de3X3 et HX) (£ (x))C(x)E (x3)) . (B.1)

Assuming that the universe is statistically homogeneous, these correlation functions are
invariant under arbitrary spatial translation x — X = x + ¢. In particular, we have
(C(x1)8(x2)8(x3)) = (& (x1 —x3){(x2 —x3)£(0)). Relabelling the integration variables so
that x| = x; —x3 and x, = X, —x3, (3.1) becomes

/d3x’1d3x’2d3X3 oK1 (X]+x3) +Ko- (x5 4+x3) +k3 3] <C(X/1)C(X,2)C(0)>

= (21)*89) (k) +k; +ks) / d*xid’xy e M) (C(x))E(x5)6(0))  (3.2)

= (27)363) (k| +k» +k3) B(ky,Kz), (3.3)

where we defined B(ky,k;) to be the integral expression appearing in (3.2). The delta

function enforces k; + k, + ks = 0 which corresponds to the conservation of momentum.
Assuming further that the universe is statistically isotropic, the correlators remain constant

under rotations X — X = Rx for any orthogonal matrix R. It is straightforward to see that

B(kj,k;) remains invariant under rotations as well;

BRI, Ri) =[xy e 00501 (L) £ () £(0)) (3.4)

— [ @xiaxs XD (R (RS 0)) = Blkiko),  (35)

where we have used the fact that R = R~!. We may therefore fix k; to be aligned with the
z-axis, for example, and rotate further to have k; lie on the xz plane. B then depends only
on three variables: two lengths &, k» and the angle between the two given by k; -k /(k1k3).
Since |[k3||* = ||k1 +ka||> = k& + k3 +2(k; - k), the angle can be replaced by k3. Putting

everything together, we obtain
(C(k1)E (k) (k3)) = (27)° 6P (i +ka +Ks) Blki, ko, k3). (3.6)

Note that the bispectrum B(kj,kp,k3) is a three-dimensional function, as opposed to the one-
dimensional power spectrum P(k). The domain of B is further restricted by the constraint

given by the delta function; k1, k>, and k3 must form three sides of a triangle.
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k1 ko
k1 ko ky ks
ks ks k3
Squeezed Equilateral Flattened
k1~ ko > ks k1~ ko ~ k3 k1 + ko =~ ks

Fig. 3.1 Three notable triangle configurations for the bispectrum B(ky,k»,k3).

The functional form of the bispectrum comprises two parts: its dependence on the overall
scaling K = k| + kp + k3, called running, and the shape of the triangle formed by k;,k; and
k3. Some notable shapes are depicted in Figure 3.1.

The squeezed, equilateral and flattened limits of bispectra all have distinct physical
meanings. For example, the squeezed limit corresponds to a configuration with two small-
scale (large k) modes and one large-scale (small k) mode. Heuristically, this relates to how
the small scale covariances are affected by an encompassing large-scale mode.

One of the most studied bispectrum shapes comes from the local model. In this model,

the perturbative field {(x) is expanded as a local function of some Gaussian field {g(x) as

£06) = Galx) + 2 A (%) — (83)) + - (3.7)

The non-linearity parameter fn; measures the amplitude of quadratic contributions to the
field. A factor of (3/5) here is conventional; the original definition of fxr was written in
terms of the potential ®, which is equal to (3/5)¢ on super-horizon scales.

Substituting this form into (3.1) gives an expression involving correlation functions
of four Gaussian fields, to leading order in fnp. Isserlis’ theorem, also known as Wick’s
theorem to physicists, allows us to write such four-point correlators in terms of the sum over

all possible contractions:

(Lo(x1)*86(x2)Ea(x3)) =(La(x1)?) (Co(x2) Ca(x3)) + (L (x1)Ea(x2)) (S (x1) o (x3))
+(Ge(x1)Cc(x3)) (Ca(x1)Ca(x2)) - (3.8)

Contributions from the first term in (3.8) cancel out with the ones coming from <§é> in the
definition (3.7). After expressing the two-point correlations in terms of the power spectrum
in Fourier space as ({g(k;)&g(k2)) = (2m)38C) (k; + k) Py (ki,k2), we obtain the local
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bispectrum;

B(ky,ka,k3) = ngL [2P; (ka) Py (k3) -+ 2Py (k3 ) Py (k1) +2P; (k1) Py (k2) ] - (3.9)

Due to this fact, it is common in literature (e.g. [48]) to define ‘the reduced bispectrum’
INLtobe fNL(kiska,k3) == 5B(k1,ka,k3)/6(P(k1)P(k2) + P(k2)P(k3) + P(k3)P(k1)). L is
then a three-dimensional function in general. This is potentially confusing because of a
conflicting convention in the observational community where fnp represents a parameter
measuring the amplitude of a specific bispectrum shape.

In this thesis, we follow the latter convention and associate one scalar fnp with each of
the bispectrum shapes. For example, fni. in (3.9) is denoted f#’fal, tied to the local shape.
The connection between the theoretical predictions and observations is often made using
approximate analytic templates for the bispectrum.

We parametrise the power spectrum as Py (k) = ACk”S_4 using the power spectrum

amplitude A and scalar spectral index n;. The local bispectrum template is then defined as

1
B (ki k3 ) := 24° [W +2 CYC-] ) (3.10)
1 2

where A2 := (3/ 5)A%. Note that we do not include £;5 in our definition of the template
either; it is set to one.

The primordial bispectrum from multi-field inflation models typically falls into this cate-
gory (reviewed in e.g., [49]). The local shape peaks in the squeezed limit where k| ~ ky > k3,
diverging as k3 — 0. General single-field models, on the other hand, are better described by
the equilateral and orthogonal templates [50, 51]:

1 2
—| ——5—+2cyc. | —
(kéll—nskg—ns y ) (k1k2k3)2(4_n5)/3

1
+ +5cyc. ||, (3.11)
< k§4—nx) /3 k§(4—ns)/3 k§4—nx) > ]

quun(kl,kg,lq) 1= 6AZ

By (ki ka, k3) := 6A°

1 8
3| =75+ 2c¢cyc. | —
(kéllnskgns y ) (kl k2k3)2(4fns)/3

1
+3 +5cye. ||, (3.12)
( (/B2 /3 ) ) ]
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The equilateral and orthogonal shapes are peaked at the equilateral and flattened limits shown
in Figure 3.1, respectively. The latter was constructed explicitly to probe bispectrum shapes

perpendicular to the equilateral shape.

3.2 Primordial non-Gaussianity

Previously in Section 1.2.3, we derived the power spectrum of perturbations in the infla-
tion field assuming a homogeneous background. This section outlines how to compute
cosmological correlation functions from single-field inflation in general.

We introduce the necessary tools in Section 3.2.2 and 3.2.1. The bispectrum from a
general type of single-field inflation is derived in Section 3.2.3. We focus on illustrating the
framework without delving too much into the technical details. A simple example is used to
demonstrate how explicit calculations are done, while we refer to, e.g., [21, 47, 48] for the

full (and laborious) calculations.

3.2.1 ADM formalism

In order to study the perturbed metric in the presence of one or more inflation fields, it is
convenient to use the Arnowitt-Deser-Misner (ADM) formalism [52]:

ds® = —Ndt* + hi;(dx' + N'dt)(dx’ + N’ dt), (3.13)

where the lapse and shift functions N and N’, respectively, are non-dynamical variables
of the action. They act as Lagrange multipliers and provide constraint equations. We
focus on the scalar perturbations here and ignore vector and tensor modes since they evolve
independently owing to the SVT theorem. The spatial metric /;; contains two scalar degrees
of freedom. When inflation is driven by a single scalar field, there is one extra scalar mode
from perturbations of the field. Out of the three dynamical scalar degrees of freedom, two
can be fixed by a gauge choice as we saw in 2.1.1. Here we choose the gauge so that the

inflation field is uniform. The spatial metric takes the form

hij=a(1)? &% &, (3.14)
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where {(x,1) is equivalent to the curvature perturbation we defined earlier in (2.39). Note that,
if we define N(r) = ftg Hdt' =1na(t) —Ina(ty) (not to be confused with the lapse function
N) to represent the number of e-folds of expansion between time ¢ and 7o, then { = SN. !
We now write down the action. Compared to (1.49), the Einstein-Hilbert term is added
since the metric is no longer fixed. We consider a generalised form of the field Lagrangian

with the action given by

M,
S = /dnﬁx\/_—g {TPRJFP(X,(p)], (3.15)
where M, := (87G)~'/? is the reduced Planck mass and X := —% gV 9, ¢dy ¢ is the canonical

kinetic term. We set M, = 1 for convenience. P(X,¢) is an arbitrary function which
generalises X — V(¢) of the standard slow-roll inflation [53].

One notable consequence of the non-trivial kinetic term P is that the fluctuations in the
inflation field no longer necessarily propagate with the speed of light. The sound speed,

defined as the ratio 6P/Jp, in these models is given by

2 Px

= 3.16
cs Px+2XPxx’ (3.16)

where the subscript ‘, X’ represents taking a partial derivative with respect to X.
In the ADM formalism, (3.15) becomes

1 1 .
=3 /dtd3x Vi N [R(3) 12P(X, ¢)} +3 /dtd3x VENTU[EGET—EY,  (3.17)
where the R®) is the three-dimensional Ricci scalar of hjj, and

Eiji= 5 (hij=ViN;j=V;N;),  E:=Eyjh". (3.18)

| —

The spatial indices i, j are lowered and raised by £;;.

In order to obtain an action for §, we substitute (3.14) into the expression and expand
perturbatively in {. We keep terms of order up to three as they are all that is relevant for
three-point correlation functions. It is sufficient to evaluate N and N; to first order in § since

they multiply with constraint equations which vanish up to first order.

ITo be precise, SN is defined as in (2.21) with f = N. We have {(r,x) = SN = N(t + 8t) — N(t), where
0t (t,x) represents the perturbations in the inflationary ‘clock time’ at the given spatial position x.
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The quadratic part of the action is given by
E .
S, = /dtd3x [—2a3C2 —ea(dl)?|, (3.19)
CS

where the slow-roll parameter € = —H /H? has made a reappearance. Here, (9{)? is short-
hand for 0;{d"¢ which involves the spatial derivatives of . Note that there are no terms
proportional to ¢? in the quadratic action, meaning that ¢ is massless even without the
slow-roll assumptions.

The third order action contains many terms with varying amounts of contributions to the
bispectrum. We write only one particular term here for an example calculation which will be
shown later. The full result can be found in [53].

2 .
3O /drd3x & [—Hicz (1 . l) + MCS] &3 (3.20)

2 2
s 3 H-<¢e

3.2.2 In-in formalism

We need to calculate the Hamiltonian from the action in order to quantise the field. When
only the quadratic part (3.19) is considered, the corresponding Hamiltonian, say H, is also
quadratic in { and its conjugate momentum 7 := d.%/ 8(C ). Hy describes the free theory
in which the equations of motion are linear and we can find the mode functions that solve
them, as we did in Section 1.2.3. Meanwhile, third-order and higher terms in the action such
as (3.20) appear in the Hamiltonian as couplings that contribute to the correlation functions.
Denoting these ‘interacting’ terms as Hjp, the total Hamiltonian for the perturbations takes

the form
H = Hy+ Hy. (3.21)

There are multiple formalisms in quantum mechanics regarding the time evolution of
operators and states. In the Schrodinger picture, the states evolve in time according to the
Hamiltonian, while the operators remain fixed over time. On the other hand, the Heisenberg
picture has the operators varying in time and the states constant. Yet another alternative is the
interaction picture where the Hamiltonian (3.21) is split into two parts, responsible for the
time evolution of the states and the operators, respectively. All three pictures are physically
equivalent; all the correlation function values are identical between them.

We choose to work in the interaction picture where the operators and states evolve in
time through Hy and Hjy, respectively. The main advantage of this formalism is that we can

use the results from the free (H = Hp) theory to evolve operators in time. In particular, we
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may canonically quantise the field 5 (x,t) using its Fourier transform;
G(t) = w(r) ax +uj(r) @', (3.22)

where the mode functions u;(7) satisfy the equations of motion from the quadratic action
(3.19) related to Hp, which we can solve analytically. Note that u;(7) depends only on k = ||K||
because the spatial derivatives enter through (d¢)? only. The annihilation and creation oper-
ators dk and dT_k satisfy the usual commutation relations: [dkl,d;((z] = (2m)380) (k; —ky).

Meanwhile, all the information about the interactions is captured in the time evolution
operator Uy(t,ty) = T exp (—i f[to H(¢')dr' > , where H; denotes Hjy in the interaction picture.
The time-ordering operator 7" arranges the operators so that the ones evaluated at earlier
times appear on the right. The states at time ¢ are given by |y;(t)) = U;(t,t0)|wi(1))-

The in-in formalism ([54-56]) allows us to calculate correlation functions at a given
time ¢ using two ‘in’ states: two copies of the vacuum at infinite past in our case. For some
local operator Q(t) written as a product of € (x,7) and #(x, ), we define its expected value as
follows;

(Q(r)) := (in| O(z) [im)
= (0| {Texp (i [OIHI(t’)dt)} Qr(t) {Texp (—i tOZHI(t/)dtH 0). (3.23)

The interaction picture vacuum, |0), lies in the infinite past # = #p, where we assume that it
can be identified as the vacuum of non-interacting theory and hence ak|0) = 0.

Note that the operators within the correlator in (3.23) are not time-ordered thanks to the
anti-time-ordering operator 7. To complicate things further, we do not have an equivalent
of the Feynmann propagator in Minkowski space that handles the time ordering for us. We
instead treat the time ordering manually. Let us define the contraction between two terms
{(ky,t1) on the left and {(ky,#,) on the right as the commutator given by

[EF (ki,t1), 8 (Ko, 12)] = wg, (1), (tz)[dkp&;;z] (3.24)
= uy, (t1)uj, (12) (27)* 8P (k) + ko), (3.25)

where the positive and negative frequency solutions {* and {~ refer to the terms with 4 and
a'" in (3.22), respectively. Note that swapping the order of {(ky,#;) and £ (ky,1,) does alter
the value of this commutator. We make equivalent definitions for the quantised conjugate
momenta 7.
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We now have a result comparable to Wick’s theorem;

010(ky,12) - O(ky,1,)[0) =: O(ky,15)---O(Ky,1,) : + : all possible contractions : .
(3.26)

The normal ordering :: keeps ds to the right and 4" to the left so that the vacuum expectation
value vanishes. The fields O are either ¢ or 7.

3.2.3 Bispectrum from single-field inflation

The mode function defined in (3.22) can be obtained analytically by solving the equations
of motion from the quadratic action (3.19). If the slow-roll and other variation parameters
remain small and change slowly in time, then
u(7) = L(l + ikegT) e kesT, (3.27)
\decgk?
where 7 is conformal time. The choice of u(7) being the positive frequency solution as
shown here is analogous to (1.83) from before; we are fixing the vacuum state to be the
Bunch-Davies vacuum.

Before proceeding to compute correlation functions using the in-in formalism, we first
need to obtain the Hamiltonian of the system. The conjugate momentum is defined as
m=0%/3, where .Z is the Lagrangian density. The Hamiltonian density then takes
the form 7 = EC — L = Q)+ . At the order of perturbations we are studying, 7%,
consists only of cubic terms .73, which is simply equal to —.%3 obtained from the cubic
action S3. It is also sufficient to consider the leading contribution to £, so that 7 o< (: .2 We
will rewrite 7 in terms of C the rest of this section.

When working perturbatively, the leading contributions to the three-point correlation
function comes from the terms with one factor of the interaction Hamiltonian. Noting that
the two terms coming from the two Hjs in (3.23) are complex conjugates to each other, we
have

(G, (1) Gy (1) Giy (1)) = 2Re | (O] = i, (1) &1y (1) Gy (1) /ﬁ: Hl(f')df'l(’)} : (3.28)

2There are some subtleties here. We first use 7 = 9./ 8(5 , which does contain contributions from higher
order terms coming from . = %+ .%,,;. The Hamiltonian density 7 = n{ — . is obtained using this 7.
We then rewrite 7 in terms of { and its derivatives within J#. Next, the quadratic terms in .7# are combined as
. From this free Hamiltonian we define the conjugate momentum in the interaction picture; 7;; := 0.7/ a¢.
This 77 is what we refer to as 7, simply proportional to { in our case.
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in tree-level. This is the key formula for computing the primordial bispectrum from a given
single-field inflation Lagrangian.

We will now demonstrate how to compute (3.28) using a simple example. We take the
term proportional to {3 within the cubic action (3.20). To simplify further, we write it as
ua’ C 3, where u = W (z) is given in terms of the variation parameters such as A and €. The

corresponding contribution to the interaction Hamiltonian is given by

Hy 43 (t) := —p(t)a(t)’ / d3x ¢(x,1) 3 (3.29)
d? d3 d?
= —Ua /d3 Pl p)z (27;3 o (P1+p2+p3)x [Cp@pzcm} (3.30)

d°p1 d°py d’p;
(2m)? (2m)? (2m)3

where we used the definition of Fourier transformation and omitted the time dependence for

= —(21)*8% (p1 +p2 +p3)~ua3/ G| 33D

brevity. Note also that {,(#) = const after the mode crosses the horizon because the curvature
perturbation freezes out at super-horizon scales—a result we have shown in Section 2.2.3.
We substitute (3.31) into (3.28) and swap the order of expectations and integrals. The

integrand include a six-point correlation function which can be evaluated using (3.26);

(01, (1) Gy (1) s (1) G, () G, (1) G, (£)10)

= (0| : all contractions : |0) (3.32)
= [C7(k1,1), 8 (pr,1)][E T (ka,1), & (p2,t)][C T (k3,1), & (p3,1)] +5 perms.
(3.33)
3
~T1 [ukju;;j () (2m)36®) (k; +p;)] +5 perms.. (3.34)
=1

Note that we discarded some terms which involve contracting the fields at equal times. Such
contractions necessarily cause one of the p; to be 0 due to the delta function present in (3.31).
o corresponds to a constant scaling of the background a(z), and after absorbing that factor
into a(t), o can be set to zero.

Combining the results so far, we obtain the following expression for the bispectrum
induced by the C 3 term

t
Bkt Ko,k 1) = Re | 2 (1) (e (1) | 'm0 )ale'y i (1), )i () + 5 perms |
(3.35)
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In order to evaluate the bispectrum at the end of inflation, we convert back from comoving to
conformal time. The time integral is then taken from 7T = —oo to T = 0. The lower limit of the
integral can be troublesome since €7 in the mode function displays oscillatory behaviour
as T — —oo. We shift —eo to —oo(1 +i€) so that the integrand is suppressed at the lower limit.
We further approximate the variation parameters including ((7) to be constant and use the
de Sitter background a(t) &~ —1/(Ht) within the integral;

[ 0
B b k)~ 120 T, O Oy 0) [ avalene, (e, (i ()
(3.36)
(H>c3 1 0 .
— —12u-1 s / d 2 icsT(ki+ky+k3) 3.37
KM | 6083 Takaks Jwrie) T © € 537
3uH> 1 1
= . 3.38
ge3 kikyks (k] + ko +k3)3 ( )
The corresponding shape function takes the form
kikoks
Ses(k,ko,k3) o Kt tk)’ (3.39)

which is maximised in the equilateral limit and vanishes at the squeezed limit.

The full bispectrum can be computed using the general methodology shown in this
section. We quote one of the most important results; for canonical slow-roll inflation with
P(X,9) =X —V(¢), the bispectrum is suppressed by the slow-roll parameters € and 7
[47]. However, relaxing any of the assumptions—canonical kinetic term, slow-roll, single-
field, and Bunch-Davies vacuum—may yield significant and observable signatures in the
bispectrum (see [21, 22] for reviews).

3.3 CMB bispectrum estimation

The presence of a non-vanishing bispectrum at the end of inflation due to primordial non-
Gaussianity leaves imprints on the CMB. The bispectrum of the observed CMB anisotropy
directly relates to the primordial counterpart thanks to the linear nature of the evolution and
hence is a key statistic for constraining primordial non-Gaussianity.

The CMB appears consistent with being Gaussian distributed, so its bispectrum has
relatively small signal-to-noise. In contrast to the power spectrum analysis where we treat
each C; (after binning) as an independent data point, the noise-dominated by, ;,;,s are not

so significant individually. Therefore, we instead fit the whole bispectrum data to the
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theoretical prediction from a given model in order to estimate a single parameter measuring
the amplitude: fnr.

In this section, we formulate the theory of CMB bispectrum estimation. Estimating fnr
is an extremely challenging task due to its computational complexity and the oscillatory
integrals involved. We review several conventional approaches to handle these challenges
and summarise their respective strengths and weaknesses. Lastly, we discuss some significant
non-primordial sources of non-Gaussianity that needs to be carefully accounted for in the
estimation process.

3.3.1 CMB bispectrum

Consider the three-point correlation function of the spherical harmonic coefficients affn from
(2.87);

3 3k .
(o oy ) = () (i) <H [ / % C(k)Ay (k)Y ﬂ%-)} > , (3.40)
=

where we replaced ® with { in the integrand. Here, X ;s can be either 7' or E which correspond
to the temperature and E-mode polarisation of the CMB anisotropy, respectively. The transfer
functions AX (k) for { depend only on k = ||k||. They incorporate all information about the
evolution of the primordial perturbations { and then projection onto the observed sky today.
We may take everything but {(k;)s outside the brackets (-). From the definition of

bispectrum, we have

(C(k1)E (k)¢ (k3)) = (27)° 51 (ky + ko +k3)B(k1, k2, k3) (3.41)
= / dr ek tks) g ko k3), (3.42)

where an integral expression is substituted for the Dirac d-function in the second line. At the
cost of introducing an extra integral, we managed to express the d-function in a separable
form: exp(r- (k; +ka+ksz)) =exp(r-Kk;)exp(r-ka)exp(r-ksz). The remaining exponentials

are rewritten using the plane wave expansion,;

oo

e *T =Y (214 1)(—i) ji(kr)P/(k ) (3.43)
=0
) [
=Y ¥ An(=i) ji(kr) Y (K)Y, (7). (3.44)

[=0m=—I
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The Legendre polynomial PI(R -T) has been expanded using the spherical harmonic addition
theorem in the last line. Note that k and r mix only through their amplitudes within the
spherical bessel functions as j;(kr). Once substituted into (3.40), we can perform the angular
integral dzﬁj separately for each j = 1,2,3, since d°k = dkjkidzk}. Note also that the

spherical harmonic orthogonality relation is given by

/ AR Y}, (R)Y, () = 8,8 (3.45)

There are no implied summations over indices throughout this section. Incorporating (3.40),
(3.42), and (3.44), we obtain

Xy X2 X3
A1ymy Uymy Gzms
(47)

— (zﬂ)g(—l)11”2+l3/d3r &’k d*kyd’ k3 B(ky, ko, k3)

3
<[TIX X dykir) Yo (R)Y, (B)A) (k)Y (K;)

(3.46)
3 X
:( ) /d3rdk1dk2dk3 (kikaks)? B(k1, ko, s) T | []l (i)Y, (B (K )} (3.47)
j=1
2 . Ll >
_ (ﬂ) %,,}1,%1;,*;13/drdk1dk2dk3r (kikaks) 2 B(ky, k. k3) Hl[ ,)},
j:
(3.48)
where the Gaunt integral is defined as
ghih / AP Vi, ()Y gy () Yoy () (3.49)

This value is always real, so we may omit the complex conjugate in (3.48). Note also that we
dropped a factor of (—1)/1*2+5 in (3.47). This is due to parity reasons. Spherical harmonics
have definite parity; Y;,,(—f) = (—1)"Y},,(f). Applying parity transformation to the integral
in (3.49) gives %ﬁ}fﬁfim = (- 1)11”2”354 l‘l,z,fgm The Gaunt integral therefore evaluates to
zero unless [; + /> + I3 is even.

We define the reduced bispectrum as

3
bfnéfé& ::< ) / drdkydkydks (rkykaks)? B(ky, ky, k3) H][ kj). (3.50)
J:
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The late-time bispectrum can now be written in a concise form;

(o @i, ) = SV 35

Recall that the three-point function in (3.41) is given by a product of delta function
enforcing kj + Kk, + k3 = 0 and the primordial bispectrum B(kj,k3,k3). Its spherical har-
monic counterpart (3.51) takes an analogous form. The Gaunt integral %ﬁ;f,%{;m contains all
geometrical information, enforcing the triangle condition on /1, >, /3 and angular momentum
conservation mj + my +m3 = 0. Meanwhile, the reduced bispectrum encodes statistical
information about the underlying three-point functions, just like B(ky,k»,k3).

The value of the Gaunt integral is best represented using Wigner 3-j symbols;

glllzh . \/(211 + 1)(212 + 1)<213 + 1) (ll 12 l3 > <ll 12 l3> ) (352)

B 47 my mp mj3 0 0 O

The Wigner 3-j symbols, written here as a 2-by-3 matrix, are closely related to the addition
of angular momenta. They are real coefficients appearing in the expansion of the zero-total-

angular-momentum state |0 0);

ooy=Y ¥ Y (ll b l3>|11m1>|12m2>|13m3>. (3.53)

ly,my lp,my I3,m3 mp mp m3

For further details on Wigner 3-j symbols see, e.g., [57]. We quote the following two
identities for our purposes.

2
)y (ll b 13) —1, (3.54)

my,my,ms \M1 M2 M3

2
L b l3 _l 1
(0 0 0) _2/_1d“”ll(“)”lz(u)1’13(u)- (3.55)

The normalisation condition (3.54) can be easily derived by computing the norm of the state
|0 0) in the definition. The second identity (3.55) allows us to rewrite a square of any given

3-j symbol satisfying m; = my = m3 = 0 in terms of a separable integral.
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We make one last definition which will prove to be useful in the next section;

2
2 - Ll
Mt = L (%ﬁlﬁéms) (3.56)
my,myp,m3
2
2+ 1)2L+1)25+1) (I L 1
_CL+1)CL+1)26+1) (L b (3.5
An 00 0
26+ 1)(2L+1)(2+1) !
X zg,r e >/1duﬁl(u>ﬁz(u>ﬁ3(u). (3.58)

By squaring the Gaunt integral and summing over ms, we get a simpler quantity hlz1 by
which preserves all of the important geometrical information. Here /;, [, and /3 must still
satisfy triangle inequalities and add up to an even number. Otherwise, the integral over

Legendre polynomials in (3.58) vanishes.

3.3.2 Optimal estimator

The bispectrum of the CMB anisotropy is a powerful statistic for studying primordial
non-Gaussianity. The Planck collaboration’s CMB bispectrum analyses provided the most
stringent bounds on the amplitude of primordial bispectrum with respect to various shapes
and constrained a wide class of inflationary models. Due to the largely linear evolution of the
CMB, there are few contributions to the bispectrum from non-primordial origins compared to
other probes such as the large scale structure. Here, we derive the optimal CMB bispectrum
estimator using mathematical foundations laid out previously.

Consider a number of inflation models which predict non-zero primordial bispectra. We
often use template bispectra which capture some common characteristics of a class of models,
like the local, equilateral, and orthogonal shapes (3.10-3.12). We would like to find out if the
true underlying bispectrum, if any, can be expanded in terms of the functions BY chosen;

B(ky, k2, k3) ZfNL ) (ki ko, k3), (3.59)

where the primordial non-Gaussianity (or non-linearity) parameter flsfﬁ measures the magni-
tude of the ith bispectrum shape found in reality. Detection of a non-zero fni. would serve as
strong evidence for the corresponding inflation models. Non-detection of fnr, on the other
hand, still allows us to place bounds on it and hence constrain models which predict larger
bispectra.



64 Bispectrum and Primordial Non-Gaussianity

Expressing (3.59) in terms of the late-time CMB anisotropies,
X1 2 3 bl X1X2X3.,(i)
<a11m1alzm2 l3m3> ZfNL m1”%1§m3 Il . (3.60)

The goal of the CMB bispectrum estimation is to compute flsfﬁs that best describes the
observed data. In reality, we can only observe one realisation of the universe and therefore a
single set of a;,,,s. The expectation values (-) on the left-hand side of (3.60) are replaced by
sample estimates, which introduces some errors;

X, ZfNL aghbls X1X2X37(l') + £X1XX3 ‘ (3.61)

allmlalzn’lzal:;mg mymam3 111213 Ll l3,mymyms3

For simplicity, we drop the X;’s from now on. The derivation of the bispectrum estimator
here can easily be generalised to include both temperature and E-mode polarisation. We also

define some shorthand notations for the harmonic multipole indices to improve readability;
lj = (lj,mj), L:= (11,12713), and L := (11,12,13). (3.62)
The estimation problem is summarised as follows.

By ZB Ny (3.63)
where BOLbs = ay,a,a), and B(L) = %Lb(Li). (3.64)

The form of (3.63) makes it clear that the bispectrum estimation is linear regression in
essence. Borrowing words from statistics, we specify the components of our analysis below.

* B is the regressand, in our case the noisy observed bispectrum samples BObs obtained

for each observation L.

« BUs are the regressors, theoretical bispectra Bg) motivated from inflationary models.

i . : . .
. fIEH)ds are the regression coefficients which parametrise how much each regressor con-

tributes to the regressand. Our main objective is to estimate them.

* ¢ is the error term which represents the noise in the bispectrum sample compared
to the true underlying value. €, can be sourced by the sampling error (from having

limited number of samples) and/or inaccuracies in the measurements.

We adopt the least squares method to estimate fyrs from given B°? and Bg). Before

doing so, each element of the regressand and regressors needs to be normalised so that the
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expected variances in the error are constant across different observations L. We compute the
theoretical variance in Bibs under two assumptions. First, we work in a weak non-Gaussian
limit where the dominant contributions to correlation functions come from the Gaussian
part of a1s. Wick’s theorem then reduces the problem down to summing over all possible
contractions. Second, we neglect inaccuracies in the a;,, measurements as we are cosmic
variance limited; the sampling error dominates the total error.

Under these assumptions, the expected covariance of the observed bispectra is given by
bs pob
<BE SB?_/S> = <alla12a13ayl allza113> (3.65)

= | (aay ) {anay) (agay )+ (ayay ) (a,ay ) {anay )+ -]i

+ [<a11alz> <al'1 al’2> <al3al’3> + (an, ar,) <al’2alg> <al3al’1 > +- } ii- (3.66)

Here, (3.66) contains all possible contractions of the 6 a;s, 3 from each of Bibs and B}’},’S.
There are 15 such contractions: 6 consisting only of terms between the two bispectra (in
1) and 9 which also have internal contractions (£¥). Our aim is to modify the regression
variables so that the resulting covariance matrix reduces to the identity. The error in each L
is required to be independent and of unit variance.

The terms in () originate from symmetries present in the bispectrum; B{bs = ay, ay,ay, is
invariant under permutations of 1;,1,13. In order to remove duplicate elements, we restrict
our Ls to ones satisfying l; <1, <ls. 3

On the other hand, terms in (i) reveal a more complex issue about our formulation. The
observed anisotropies aj are not necessarily independent since various factors such as partial
sky coverage and correlated noise can induce correlations between them. Even if they are
independent, our construction of Bﬁbs can yield non-zero terms in (£%) when at least two out
of 11,1,15 are identical. This is similar, in essence, to incorrectly estimating the variance of a
random variable X from samples X; by computing ) ; Xi2 instead of the correct ¥;(X; — (X))?.

We redefine the observed bispectra in terms of the gjs by subtracting off these extra

contributions.

b,
B/i > = apana; — <a|1a|2> ay — <a12a13>a11 — <al3a11 > a, - (3.67)

The newly introduced terms linear in a;s have zero mean since (q;) = 0 except for the

monopole [ = 0 which is excluded from the CMB bispectrum analysis. Thus B’ ibs is still an

3(11,m1) < (lz,mz) if and only if (I1 <)) or (I} =1, and m; < myp).
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unbiased estimate of the underlying bispectra. Substituting into (3.65), all terms that were
previously in (}%) now vanish.

In theory, we can compute (3.65) using the full covariance matrix Cj,), = (a,a,) and
invert it to get the least squares estimate for fnyrs. In practice, however, this is a costly and
numerically demanding operation. * We instead approximate the non-diagonal covariances
in (3.67) using the Monte Carlo method: <al(1; ag )uc from an ensemble of realistic Gaussian
simulations. In other places, we assume Cj,), ~ Cj, 81,1, to simplify our calculations.

Each element of the regressand is now independent;

bs bs
<B/OL sB/;)J5> = C11C12Cl3 Ap11 6111’1 5121’2 5I3l’37 (3.68)

where Ay 1,1, is a symmetry factor equal to 6 if I} =1, = I3, 2 if exactly two of them are

Ll
identical, and 1 if all three are distinct. The regressand and regressors are rescaled so that

each element of the error term has unit variance;

. 1

BObs = a),a,ay, — <a| a >Cl| —{ay,ay )ay, —{a,ay )qa,| , (369)
L A111213C11C12C13 [ 1723 1%/ H3 < 2 3> 1 < 3 1> 2}

_(; 1 ;

B .= G.b). (3.70)

VAL, CL CLC,

The ordinary least squares estimate for a linear model y = X3 + € is given by 3 =
(XTX)~1XTy. We define the equivalent objects to (X X);; and (XTy); in our linear model
(3.63) as F;; and S;, respectively. The matrix F is given by

Fj = BO.BU (3.71)

o R g R
L dmen Mok GGGy 7,6 GGG, 47, 6 CLCLCL '

The symmetry factor in (3.72) was removed by relieving the restriction I <1 <13 in the
summation. For the last equality we used the function hlz1 Iy defined in (3.56).

Similarly, the vector S can be written as

S; := B . Bobs (3.73)

_ Z ng(Li)
6 C;,C,Cpy

= [alla12a13 —(a,an,) ar, — <a12a13>a11 - <a13a11 > 6112} : (3.74)
111,15

“4For Planck-like experiments, the matrix is about 2500% x 25007 in size and hence costly and numerically
unstable to invert.
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We finally have the least squares estimate of fyi. in terms of ' and S;

A= XS, (3.75)
J

One of the main strengths of the ordinary least squares estimator lies in its optimality; it
has the smallest possible variance among all unbiased estimators that are linear in data. That
is to say, it saturates the Cramer-Rao bound. Since <S,-S j> = F;j, we have Var( flgll) = (F _1) i
(no sum over 7). This value is indeed equal to the Cramer-Rao bound computed from the

Fisher information matrix F here.
The Fisher matrix of the estimator naturally motivates the following definition of an inner

product on the space of reduced bispectra.

0 b\ .y ML _
<b b > ZL: a6, .6 =T (3.76)

In particular, the correlation between two bispectrum shapes can be defined as

Corr (b,b7) o) (3.77)

B /(b0 bO) (bIB0)) '

If all bispectrum shapes under consideration are uncorrelated with respect to this metric so
that |Corr(b(i) ,bU ))| < 1 whenever i # j, then the Fisher matrix F' is approximately diagonal
and (F~1);; = (F;;)~! (no sum over i implied). In this case, the estimated flsfl{s in (3.75) are
identical to the values obtained using a single regressor B(®). In other words, we may analyse
individual bispectrum shapes independently.

We write down the estimator for single shape analysis and restore the shortened indices;

A 1 Gk bt o1
fNL == N Z Clql ZCVI3C[I = [allmlalgmzal3m3 - 3 <allm1alzm2>al3m3:| bl (378)
lj,mj 1 23
h?, b7
N:=6F = W (3.79)
lj7mj Lh-h%l

where the symmetry in indices was used to combine the linear terms into one. We also

defined the normalisation factor N to follow conventions in the literature. The theoretical

error on fxr is then o(fxr) = VF 1 = 1/6/N.
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3.3.3 CMB bispectrum estimators

The estimator (3.78) can be intimidating. The multipole moments / can go up to 2500 for
the Planck survey [41], meaning that the sum over all possible /;,m; contains =~ 2.7 x 1013
terms.> Direct evaluation of the Gaunt integral g,fgf,%fgm involves calculating Wigner 3-j
symbols, which are expensive to compute and store. Not to mention that the number of terms
scales as o< [2 .

All known CMB bispectrum estimation methods therefore deploy some ingenious tech-
niques to reduce the computational cost. In this section, we review the three most common

approaches: KSW [50, 58], Modal [59, 60], and Binned [61, 62].

KSW estimator

The Komatsu-Spergel-Wandelt (KSW) estimator was first introduced in [58] together with
the construction of the bispectrum estimator and has been studied extensively since then
[50, 63, 64] (see e.g, [22] for reviews). The core idea is to exploit the separability of the

bispectrum. Consider the local shape for example:

stocal (k) ko, k3) = 2A4% 4 + i - i (3.80)
e koks ' ksky | kiky )’

where Ag is the amplitude of the power spectrum of @ when the scalar spectral index n; is
set to 1. Note that each term can be expressed as a product of three separate functions that
only depend on one of the variables: k7 /(kaks) = k7 - k5 ! k3 !, for example. The reduced
bispectrum then simplifies to an integral of separable terms;

b, = 2A2/dr r* (o4, (r) Bry (r) By (r) + By (r) o, () By () + B, () By () e (7)] - (3.81)
where
au(r) = % / i K2A(K) jy (kr), (3.82)

By(r) = % / ik A () i (kr). (3.83)

5This number was calculated considering the symmetry (I; > I, > [3), triangle inequality (I + I3 > [1), and
restrictions on m;s from angular momentum conservation (m + m; +m3 = 0).
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Substituting (3.81) into the bispectrum estimator (3.78) gives

local /drr /dZA rn rn)2 2<A(r n)B(r,ﬁ)>A(r,ﬁ)—<B(V,fl)2>A(”vﬁ)} )

where we have defined the filtered maps

A(rh) = C apmYim(fi), (3.85)
I,m l

B(r,h) := P gr)aszzm(ﬁ)- (3.86)
I,m l

The estimator (3.84) has significantly lower computational complexity compared to the
original form. The integral over fi becomes a summation over map pixels, roughly 50 million
in Planck-like settings. The filtered maps (3.85-3.86) are efficiently obtained using Spherical
Harmonic Transforms (SHTSs).

We are now only left with the normalisation factor. An integral representation of hi by I

(3.58) allows a fast computation of N, as introduced in [65];

= (24%)? / du / drr / dr' r"* [3RGoRpg + 6RepReaRua] (3.87)
where
Ry (r 1) 1= ;% X P(u) (3.88)
for X,Y =, B.

The KSW formalism can be used to constrain various other separable shapes by replacing
oy and fB; with appropriate functions, which we refer to as modes. The equilateral and
orthogonal shapes, for example, call for four such functions with k~!, 1,k, and k? in place
of k% in the integral (3.82). Constant feature models with shape function S(ki,kp,k3) =
sin(@(k; + k2 +k3) + ¢) can be written in terms of the two modes sin(wk) and cos(@k) via
trigonometric identities [66].

In some cases, a non-separable function can be expanded to separable ones using an

analytic formula. For instance, the Schwinger parametrisation

(k +k1+k Y (n—1)! / duad e TR o
1 2 3 -
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allows us to approximate the left-hand side with a sum over separable terms parametrised
by u [65]. These numerical tricks, however, are restricted to cases where the integrand is
relatively well-behaved. Otherwise, we require a large number of terms for an accurate

expansion, and the trick causes a net increase in computation time instead of a net decrease.

Modal estimator

The KSW estimator is fast and numerically stable but restrictive in the type of bispectra it
can tackle. The Modal estimator, first developed in [59] and expanded much further through
[60, 67-69], builds on a simple but effective idea to address this issue; when the bispectrum
shape cannot be factorised, we may instead expand it using a basis constructed from separable
functions.

The essence of Modal estimator is captured in the following ‘modal’ expansion;

Vi, Vi, Vi
— 25 ) Y  al0uun- (3.90)

Libly =
VA eNeN n<(p1,p2,03)

The left-hand side is the reduced bispectrum, rescaled using C;s and v; := (2] + 1)1/ 6 for later
convenience. On the right-hand side is the mode expansion, where each triplet (py, p2, p3) is
associated with a number n. o is the expansion coefficient with respect to the basis function
0, which is defined as

1
Onihly i= 6 [, (1) ap, (2)ps (13) + qp, (1) qp, (13)qps (1) + -], (3.91)

with appropriate mode functions ¢, (7). Polynomials and Fourier modes are common choices
for these mode functions, but the formalism itself is completely general. All we require is
that the modal expansion (3.90) accurately describes the given bispectrum.

As seen from the KSW estimator, separability greatly simplifies (3.78). We define the
filtered maps analogous to the KSW ones up to some factors;

M) = ¥ v ). (3.92)

Im Vl\/a

Note that we do not have the line-of-sight integral r appearing in the KSW formalism since
the mode expansion was performed in the late-time / space, instead of the primordial k space.
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The estimator (3.78) now becomes

A 1 N A A A A A
INL = N Z anQ /dzn [MPI (n)Mpz (n)Mps (h) -3 <MP1 (n)Mpz (n)> My, (n)} .
n<(p1,p2,03)
(3.93)
One of the Modal pipeline’s key objectives is to compute
By = /dzn [Mpl (ﬁ)Mpz (ﬁ)Mps (h) -3 <MP1 (ﬁ)Mpz (ﬁ)> My, (ﬁ)} ) (3.94)

so that the estimator simply becomes a dot product of ¢ and f: fnr, = ]lVZn o2 ﬁ,,,Q . Note
that ﬁnQ depends on the observed data and choice of basis functions, but is independent of
theoretical model in consideration. This is an important property of the Modal estimator;
the time-consuming integral of (3.94) only needs to be performed once per dataset. We can
then constrain a wide range of models simultaneously by computing a2 for each bispectrum
shape. The modal decomposition costs much less than the fnyr. estimation in general.

Before moving on to calculating the normalisation factor, we first modify the inner
product defined in (3.76) as

" Binn 0 0)
(b,p1)) = Y S bt b (3.95)
ViV Vi

The weights appearing in the inner product above, (hy, 1,1, /vi, Vi, Vi, )% & const., are now nearly
uniform across the allowed / configurations [59]. This serves as a natural inner product for
basis functions Q,,, especially for polynomial modes.

Expanding the bispectrum in (3.79) gives

h 11
N:ZZ%QI%QZ (Z 12:} On, 1,113 On, 111213> (3.96)

ny np lj vl] vlz I3
=YY o202 (Qu,Qn,) - (3.97)
ny nyp

Another key quantity to be computed in the Modal formalism is the matrix

Yainy := (Qnys Qny) - (3.98)

Even if the mode functions g,(I) are chosen to be orthogonal, the three-dimensional basis

functions Q,, are not necessarily orthogonal with respect to the inner product. Once 7 is
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computed, however, we may transform our basis functions to become orthonormal. By
definition 7y is symmetric and positive semi-definite. As long as we choose the basis Qs to
be linearly independent, v is always non-degenerate and hence invertible. Since y~! is also
symmetric and positive-definite, we may perform a Cholesky decomposition on it;

y1=2AT, (3.99)
for some lower triangular matrix A. We now define a new set of basis
R, ==Y Ay Q. (3.100)
n
The new basis functions are now orthonormal with respect to the inner product (-, -);

<Rt17Rl‘2 Z A‘n]l‘l Qn17Qn2> Nty — (A‘ }/A‘)lltz 51‘11‘2' (3101)
ny,nz
Orthonormality of the basis is especially useful for the modal decomposition. Taking the
inner product with R; in the modal expansion (3.90) for R,

Vi, Vi,V
ak = <M bi bty Rt>. (3.102)

After we obtain X, the expansion coefficients for Q,, can be found by

ol =Y Auaf, (3.103)
t

from which it is straightforward to check ), a,,QQn =Y, oc,RRt. There is no new information
gained from converting our basis from Q to R; it is simply a change of basis.

The normalisation factor in (3.97) further simplifies when we use R;

N=YY ofaf (R, R, Zyat\ (3.104)

n n

So far, we have been working on the late-time harmonic space directly related to the
CMB observations. The theoretical bispectrum B(kj,k»,k3) predicted by inflation models,
however, lies within the primordial Fourier space. The remaining work is about how to
bridge this gap. In particular, we would like to obtain «® from a given shape function
S(ky,ka,k3) = (kykaks3)?B(ky,ka,k3) so that we can get an fyi estimate for S(ky, ko, k3).
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The primordial and late-time spaces are formulated similarly in the Modal approach. We

expand the shape function using an independent set of primordial basis functions;
S(ki ko, ks) = Y @20, (ki ka,ks),  where (3.105)

- 1
On (klvk2vk3) ::6 [QPI (kl)q_l?z (kZ)QP_s (k3) +qp, (kl)QPz (k3)q_l73 (kz) + ] . (3.106)

A bar is placed above each variable to denote that they are primordial quantities. The inner
product is defined following [59];

<s(i>,s<f>> = | dkidkodks B (ki ko, k3)BY) (ki ko, ks).  (3.107)

Vi ki +ky+ k3

The mathematical formulation from here on is identical to that of the late-time case. We

therefore simply write down the primordial counterparts;

yl’llnz - <Qn17Qn2> (3108)
7y l=2A7, (3.109)
R =) Ay Qu, (3.110)
af = (S(ki,ka.k3) , R), (3.111)
5 =Y JuaF. (3.112)

t

A key step in connecting primordial results to late-time is the projection via transfer
functions (3.50). Projecting O, (ki,k2,k3) yields

3
Onlibly i= ( ) /drdkldkzdk3 (rkikaks)® On (ki ko, k3) [ ] Lt (kjr) A (k)] (3.113)
j=1
where a tilde indicates that it is a projected quantity, as opposed to a bar for primordial
quantities and none for inherently late-time variables.
The following inner product serves as the bridge between objects defined in the early and

late universe:

T = (R, Q). (3.114)
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By the virtue of the projected bispectrum’s dual representation,

Vi, Vi, Vi
Zaz nhibly = — A Za On - (3.115)

bl
/—Cll C12 Clg 1 213

Taking an inner product with R; on both sides gives

of =Y Ial. (3.116)
n

The matrix I' therefore lets us convert the primordial modal expansion coefficients OZnQ to

the late time ones o,

We have discussed the inner workings of the Modal estimator in great detail. Despite
the long list of formulae here, its core idea is captured in the modal decomposition (3.90).
The main computational challenge in the Modal approach is precomputing B<, which
contains complete information about the fit between the basis and the observed bispectrum.
Afterwards, the bispectrum estimation problem reduces down to a matter of finding the modal
coefficients o for models under consideration. This decomposition is performed fast and

efficiently using the orthonormal basis functions R and R.

Binned estimator

The binned bispectrum estimator, introduced in [61] and used for Planck analyses [23, 30, 62,
70], uses carefully chosen bins to reduce the computational complexity. In this section, we
highlight the main concepts of its formalism while relabelling some notations in the original
literature [61] in order to be consistent with our previous discussions.

The estimator (3.74) can be rewritten as

(i)
Ll
5= Z 6C, ]C% 3C Z g"l;j%;ms [allmlalzm2a13m3 - (<a11m|alzmz>alsm3 +2 cyc.)]
L Lh-h*l mipmoyms
(3.117)

()
— _ hbls [ 24 . .
11%:13 6C,Ci.C /d (M, (B)M,, (R)M;, () — ((M;, ()M, (R)) My, (R) +2 cyc.)],

(3.118)
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where M;s analogous to the filtered maps of the KSW and Modal estimators are defined as

l
Y anYim(i). (3.119)

m=—I

They correspond to the /-multipole component of the original map. We define the observed
bispectrum B?ll}; I, to be the integrand of (3.1 18).6

The core idea of this formulation is based on the fact that q;,s with similar /s are
distributed in a comparable fashion and can be binned without big loss of information. The
multipole moments / in the range [/nin, /max| are divided into Ny, intervals A; := [l;, ;11 — 1],

where i = 0,1, -, Mpin — 1. The filtered map corresponding to the ith bin is given by

[
=Y ) anlim(d). (3.120)

leAim=—I

The binned bispectrum take the form

=>

1
B, = o [ PR (M ()M, (80, (8) — (M, ()M () My (8) +2 cye.)], (.121)
11113

where Z; ;,;, counts the number of allowed (/;,1»,13) triplets in the bin (A;,, A;,, A;; ) satisfying
the triangle inequality and parity condition /1 4/, + I3 € 27Z. We further impose that iy, i,
and i3 are ordered in a way that i} <ip <is.

We now compute the expected variance of the binned bispectrum. Assuming that the

covariance matrix of the a;,,s is diagonal, calculations similar to (3.65) yield

be b g .. )
<B?11;l3B;)17152 > 6111 5121251313 (3;11;22:)2 Z Z Z hlllzl3Cl1C12Cl3 (3122)

A EAil b €Ai2 I3 GA,'3

8180 8t Vi (3.123)

lll 1212 lglg

for some V;, ;, ;;. The symmetry factor g;,;,;; = 6,2, and 1 for 3, 2, and no identical numbers
within iy, i3, i3, respectively.

We write the theoretical binned bispectrum as

1
h 2 2 h
B§11213 = Z Z Z hlllzl3hlllzl3b;1lzl3’ (3.124)

oo .
=i I GA,‘I lzGA,‘z l3€A,‘3

This is the convention from the original literature [61], which is different to some conventions elsewhere

by a factor of /, ;. In terms of the theoretical reduced bispectrum by, ;,;,, we have (B?lblz ) = hlzl I l3b}ll‘lz Iy
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where b is the usual reduced bispectrum. Then the binned estimator takes the form

R Bobs7Bth
= <<]3th—Bth>>7 where (3125)
(1) p2)
<B(1)7B(2)> — Z Bi1i2i3Bi1i2i3 ) (3126)
W<h<iy Vi
The ordering i < i < i3 can be removed similarly as before by replacing g;,;,i; in the
denominator of (3.126) with 6.
Binning different multipoles together inevitably causes some information loss and hence

increases the variance of the final estimate. This effect is quantified by the ratio

- Var( Ali\?fal) B <Bth’Bth>binned

T Var<f13iilned) - <Bth,Bth>n0 binning ’ (3.127)

which always lies between 0 and 1. As long as R is close to 1, the binned estimator performs
just as well as the full bispectrum estimator.

The main advantage of the binned estimator is the significant reduction in computational
complexity. Using optimised binning strategies outlined in [62], this can be done with
minimal loss of information. The Binning formalism works particularly well for models
with smooth bispectra or features in /-space. The full binned bispectrum can also be used
for non-parametric studies of non-Gaussianity from observations after certain smoothing
operations. It is also worth noting that the most computationally expensive part of the
estimation process—obtaining B?’lli.;i3—only needs to be done once per dataset. The result
can then be used to constrain various models instantaneously as long as their theoretical
bispectra are provided.

Meanwhile, the binned estimator is not as effective for constraining models with general
features or oscillations. This is not only because the binning smooths out high-frequency
oscillations in the bispectrum, but also since evaluating the theoretical bispectra in / space
through (3.124) becomes numerically challenging. The reduced bispectrum needs to be com-
puted for every (I,/,13) triplet and then summed over within each bin. Such computation
of the bispectrum is often practically intractable unless the given shape is separable. For the
same reason, the binned estimator struggles to constrain non-separable shapes, even though

the formalism itself applies to any shape.
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3.3.4 Other sources of non-Gaussianity.

The CMB is one of the cleanest probes of the primordial bispectrum. CMB anisotropy remains
linear in initial perturbations to a very good approximation so that its bispectrum contains a
little contribution from non-linear evolution. Nevertheless, there are non-primordial sources
of non-Gaussianity that require close attention. In this section, we discuss both physical
and experimental complications to the CMB bispectrum estimation. Instrumental effects
including the measurement noise and the width of the probing beam will be covered in the

next chapter (Section 4.2.4).

Lensing bispectrum

After its departure from the last scattering surface, the CMB photons travel through the per-
turbed universe until they reach us. Overdense regions on their path act as gravitational lenses
and alter the trajectories, which leave observable imprints on the CMB map. Overdensities
magnify the CMB around them and thus shift the power spectrum towards larger scales. The
deflection o away from observation angle fi can be computed from the line-of-sight integral

given by

e X=X -
a=-2 / dy VaPw(xi;no — ), (3.128)
0 XX
where the Weyl potential Wy = (¥ + ®)/2 is defined as the average of two Newtonian
potentials. The integral is performed along the unperturbed path, an assumption known as
the Born approximation. This is valid as long as the deflection angle o remains small. The
angular derivative Vj is taken orthogonal to fi and within the tangent plane on the sphere. The
integration weight quantifies how earlier deflections cause greater displacements in the sky
today. However, most contributions to the integral in fact come from the late-time universe

with redshift z < 2. We define the lensing potential as

o N e 4 .
yi=-2/ dy Ww (xfi; 10 — ), (3.129)
0 XX
so that (i) = Vi in our regime. Y is a secondary observable of the CMB which opens up
a whole field by itself. We refer to [71-73] for detailed reviews on the topic of CMB lensing,

including derivations of the equations above.



78 Bispectrum and Primordial Non-Gaussianity

Another significant late-time contribution to CMB anisotropy comes from the Integrated
Sachs-Wolfe (ISW) effect. This is the last term in (2.65) with a simple relabelling of variables:

pa
®rsw (1o, X0, 1) = 2 /0 dy Wy (xf o — %) (3.130)

The integrand is small except during the accelerated expansion phase at low redshift, again
z 5 2. The two integrals (3.129) and (3.130) are highly correlated through Ww and thus
generate a non-trivial bispectrum, mainly in the squeezed limit. This lensing-ISW bispectrum

is well approximated by the template given by [20];

blens _

1 5
Ity = 5 (L +1)—hL(L+1)+5(+ 1)]C,T1Tcl7;"’+5 perms., (3.131)

where C’lTT is the lensed angular power spectrum and CZTW is the cross power spectrum
between temperature (7)) and y. Assuming the standard ACDM cosmology we expect to
find the bispectrum above in the CMB without any additional factors. We can measure its
amplitude in the CMB data through the usual bispectrum estimator (3.78)-(3.79) by setting
b = b'®™ 50 that fi&s = (blens, Hobs) /(blens plens)  where we used the inner product (-, )
from (3.76). This value has been estimated in the Planck 2013 analysis to a 2.50 level [74].
The most recent Planck analysis estimates fﬁ?ﬂs =0.73£0.27 (68% CL) using the SMICA
foreground-cleaned CMB temperature maps [23].

The lensing-ISW bispectrum is an observable originating from the non-linear evolution
of the CMB. When studying primordial contributions to the observed bispectrum, however,

such late-time effects need to be subtracted. The lensing-ISW bias is given by

<b(t), blens>

b0 b0 (3.132)

A =
for the bispectrum template b(*) of interest. This bias can be significant for templates with

a large squeezed limit, such as the local template, since they are highly correlated with the
lensing-ISW bispectrum (3.131).

Note that CMB lensing also affects the bispectrum estimation by increasing the estimator’s
covariance [75]. The covariance of the bispectrum estimator, which is a six-point function of
the CMB anisotropies, gets an extra contribution through the connected four-point component
from gravitational lensing. This effect has been small but will be important for the future

CMB surveys with increased resolution power.
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Sky mask and inpainting

CMB measurements are affected by various foreground contaminants. A number of compo-
nent separation methods such as SMICA [76], NILC [77], SEVEM [78], and Commander
[79] have been developed to clean unwanted signals from data [80], but some regions with
an overwhelming amount of contaminations need to be masked away. The corresponding
parts of the sky are simply removed from any analysis. Even in a full-sky survey like Planck,
only ~ 78% of the sky can be used for science [80].

The partial sky coverage due to masks induces multiple complications. For the CMB
bispectrum analysis, there are two main issues to manage. First, the statistical isotropy of
the data is broken due to the irregular mask shape. The covariance matrix Cj,, 1, m, =
(a}‘lmlalz,m) is no longer diagonal. Using the full covariance matrix can be costly for
bispectrum analysis, but the linear part of the bispectrum estimator introduced in (3.67)
can handle most of the errors caused by off-diagonal covariances.

Second, the sky mask generates a non-vanishing bispectrum by itself which introduces
additional noise in the estimation. Sharp cuts around the edges of the mask induce some
high-frequency signals. A low-frequency mode from the overall mask shape then correlates
with them to produce bispectrum in squeezed configurations. We follow [81] and utilise a
simple inpainting method to reduce the effect. In this approach, a linear diffusive method
is used to interpolate and hence smoothen the mask edges; at each iteration, every pixel
within previously masked regions takes the average value of its neighbouring pixels. The
resulting inpainted map after a sufficient number of iterations is shown to contain little excess
contamination from the mask.

Lastly, we note that not all contaminants can be masked away, especially if they are
localised and scattered. As detailed in [70], extra-Galactic point sources such as synchrotron
emission and thermal emission from dust appear in the measured CMB data. Their reduced
bispectrum is expected to be constant. Similarly to the case of the lensing bispectrum, these
bispectrum contributions from point sources bias the fni, estimates and therefore need to be
subtracted off. We use the bias given in (3.132) with b"S = 1 instead of b'™ to account for
this effect.
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Summary

In this chapter, we introduced the theory of the bispectrum and explained why it is a key
quantity for testing inflation against the CMB data. We first outlined how to compute the
primordial bispectrum from the inflationary Lagrangian using the in-in formalism. The
bispectrum is expected to be unobservably small for the simplest single-field, slow-roll
inflation with a canonical kinetic term and Bunch-Davies vacuum. However, we showed
using an example of a non-canonical kinetic term that breaking some of these assumptions
can induce detectable non-Gaussianity with distinct shapes. Moving on to the late-time
universe, we reviewed the theory of CMB bispectrum estimation while keeping an analogy
to linear regression in mind. It was noted that the high-dimensional integrals appearing in the
bispectrum estimator are computationally expensive and numerically challenging. Exploiting
separability is the key to reducing computational complexity. We detailed the three main
estimators used in the latest Planck analysis: KSW, Modal and binned.

No observations so far have found statistically significant non-Gaussianity of primordial
origin. In the most recent Planck analysis, however, there were some interesting ‘hints’
from some oscillatory shapes that appear in the feature and resonance type models. The
signal has not yet been decisive after accounting for the look-elsewhere effect [23, 82]. The
constraining power of these oscillatory models has benefited considerably from the inclusion
of the E-mode polarisation data in the Planck analysis and is expected to improve further in
future CMB experiments with enhanced polarisation sensitivity. We present a forecast for

oscillatory models in Chapter 4.



Chapter 4

CMB Stage-4 Forecast

The Cosmic Microwave Background (CMB) radiation is one of our most valuable probes of
the primordial universe. The temperature and polarisation of this ancient light contain rich
statistical information both about the primordial perturbations created during inflation and
also their subsequent evolution until now. This allows us to test our inflationary theories and
also the history of our universe. The recent Planck CMB experiments have provided stringent
tests on various models of inflation through the estimation of cosmological parameters and
via primordial non-Gaussianity [23, 30].

The simplest model of inflation involves a single scalar field slowly rolling down a
smooth potential. In this case, the CMB temperature fluctuations are expected to be Gaussian
distributed with only tiny deviations (e.g. [47]). However, many other physically well-
motivated models generate larger non-Gaussian signatures at the end of inflation (see reviews
of [21]). Such primordial non-Gaussianities are well constrained by three-point correlation
functions of the CMB anisotropies or their Fourier transform, the CMB bispectrum. Different
inflationary models predict bispectra with different momentum dependence, or ‘shapes’. We
constrain these models by using an optimal estimator for their amplitude parameter, fni, for
each specific bispectrum shape (see, e.g, [22, 83] for reviews).

Although all observations to date are consistent with vanishing non-Gaussianity, the
models most favoured by the latest Planck CMB analysis were the ones with oscillations in
the primordial power spectrum [30]. Among them are feature models, where the oscillations
are caused by a sharp feature in either the inflationary potential [84—89], sound speed [90, 91],
or multi-field potentials [92] (see [21, 93] for reviews). The primordial power spectrum
then becomes scale-dependent, displaying sinusoidal oscillations that are linearly spaced
in momentum space. The resulting bispectrum also oscillates and is highly uncorrelated
with other popular bispectrum templates [94], therefore allowing us to constrain them

independently.
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Planck constrained fni, for feature models from CMB bispectra, but no signals above 30
significance were found after accounting for the ‘look elsewhere effect’ using the method
introduced in [95]. The multi-peak statistic analysis, however, revealed some non-standard
signals up to 40 level that deserves closer attention [30]. There have been many other
searches on signatures of oscillations. Constraints also come from the CMB power spectrum
[82, 96-100], the large scale structure [101, 102], and a combination of the two [103, 104].
We expect stronger constraints on feature models from future LSS experiments [105]. This
paper covers the prospects of upcoming CMB experiments in constraining fyi, for feature
models.

Currently, there are two implementations of the optimal estimator for constraining fnr
for feature type models. The Planck analysis adopted the Modal estimator for which the
given bispectrum is expanded using a separable basis [60, 67]. This method is efficient and
can flexibly account for various oscillatory shapes and can easily constrain all frequencies
simultaneously. However, when the oscillation frequency is large the modal basis fails to
converge within a reasonable number of basis elements, making the method impractical. The
other approach using a KSW-type estimator is viable for various shapes including the feature
model [58, 66]. Although this method mainly applies to models with separable bispectra,
even highly oscillatory templates can be computed. This method however tends to be more
expensive as each frequency must be dealt with separately. We present further optimisations
to the fast KSW estimator introduced in [106] and apply it to the feature models in our
forecasts.

CMB Stage-4 (CMB-S4) is the next-generation CMB experiment located at the South
Pole and in the Atacama Desert in Chile [25]. One of the main goals of CMB-S4 is to
measure the polarisation signal in the CMB to the cosmic variance limit. In the Planck
analysis, constraints on oscillatory models benefited much more from the inclusion of
E-mode polarisation data compared to others, and therefore are anticipated to improve
significantly with the future CMB experiments. Preliminary specifications have been released
for these experiments [24, 25] and have been used to produce some forecasts for the standard
J/NL templates, but not yet for feature type models. Here we address this by presenting the
Fisher forecasts on fxi, for feature models based on these specifications and observe that
the feature type models do indeed receive larger improvements from the extra polarisation
information than the standard templates.

This chapter is organised as follows. First, we briefly review the theory of the CMB
bispectrum in Section 4.1, building on our previous formulation to include polarisation. A
bispectrum template for the feature model is defined and computed here. In Section 4.2 we

formulate the bispectrum estimator and introduce methods to further optimise its computation.
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The technique is applied to the case of feature models to obtain equations for the Fisher
forecast of fnr.. The implementation details are briefly discussed. In Section 4.3 we present
the results of our forecast and how they depend on the model and experimental parameters.
In particular, forecasts for the Simons Observatory are compared with the Planck results. We
provide a summary at the end. The materials presented in this chapter are from my original

research supervised by James Fergusson and published in [29].

4.1 Feature model bispectrum

4.1.1 CMB bispectrum

Recall that the three-point correlation function of the primordial perturbations is defined as
(@(k1)P(ka)D(ks)) = (27)*5) (ki + ko + ks) Bo (k1 ko, k3), (4.1)

under assumptions of the statistical homogeneity and isotropy. The primordial bispectrum
Bg vanishes for Gaussian perturbations, but more general inflation models predict non-zero
bispectra with various shapes. In order to constrain these models we re-parameterise the
bispectrum into an amplitude parameter fni, and a normalised shape part. Constraining
J/NL from the CMB measurements allows to determine how well a particular shape under
consideration aligns with the data, which we translate into constraints on the model itself.
In order to compare the theory with measurements, we first need to relate the primordial
perturbations to spherical multipole modes of the late-time CMB anisotropies. The form of

(2.87) derived previously generalises to include the CMB polarisation as well;

[ 4’k .
af = an(—i) / T D(K)AS (k)Y (). (4.2)
(27)

Here the index X is either 7" or E, representing the CMB temperature and E-mode polarisation,
respectively. The linear CMB radiation transfer function Af (k) can be computed from the
Boltzmann solvers like CAMB [45] and CLASS [46].

The three-point correlation function of afms yields the reduced bispectrum by, ;,;, times a
geometrical factor %lf,%fgms, or the Gaunt integral. After some algebraic manipulations we
obtain the formula (3.50) for the reduced bispectrum ;

AN 3
BN (E) /O rdr %d3k(k1k2k3) Bo(ki, k2, k3) I'HJ, (k) A (K)| @3)
=
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where j; is the spherical Bessel function arising from the Rayleigh expansion formula.
Using this equation, we can compute the projected bispectrum from any given primordial
bispectrum. Direct computation of this four-dimensional integral for every / combination,
however, is practically impossible. Not only is the integral in 4D but also the oscillatory
integrand requires a large number of sample points in each of k;, making the full calculation
for every /; triple prohibitively expensive. All bispectrum estimators get around this problem
by expanding B¢ as a sum of separable terms. We will use the feature model template to
explain this in more detail later.

4.1.2 Feature model

We follow the works of [30, 66, 82, 95] and assume the following template for the bispectrum

of feature models;
2

B (k) ky, k3) = > sin (0K + ¢), (4.4)

e
(kikaks)
where K = kj + ko + k3, A represents the primordial power spectrum amplitude, and ¢
denotes a phase. The oscillation ‘frequency’ @ is associated with the location and scale of
the feature in the inflationary potential. It is often written in terms of the oscillation scale k.
as @ = 271 /3k.. @ is measured in Mpc but we omit the unit for notational convenience.

The feature model template has two free parameters that need to be fixed before we can
constrain the model: the frequency @ and phase ¢. The phase can be easily dealt with by
observing that

Bg (ki,ka,k3) = cos ¢ BE"(ki,k2,k3) +sin ¢ BE® (ki,ka, k3). (4.5)

Here Bff,“ and Bg® correspond to feature models with ¢ = 0, 7/2 respectively. A template
with some non-zero phase simply corresponds to a linear combination of the sine and cosine
templates. As we will see later these two shapes are in fact highly uncorrelated and hence
can be constrained independently from each other.

On the other hand, one still has a complete freedom of choice on the oscillation frequency.
Such freedom dramatically expands the size of the parameter space. In practice, we constrain
JnL for each fixed value of the oscillation frequency, which yields hundreds of estimates.
Since there are so many numbers we are looking at, there is a good chance that we find
notable signals by sheer luck. This is called the look elsewhere effect and has been accounted
for in the Planck analysis [23, 30] using the methods introduced in [82, 95]. The look-

elsewhere-adjusted statistics used in the literature can be employed for the future CMB-S4
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data analysis. This work, however, focuses on forecasting the raw estimates and comparing
them with those of Planck.

4.1.3 Separability

The bispectrum template of feature models (4.4) is an example of a separable shape. It can
be expressed as a sum of terms in the form f(k;)g(kz)h(k3) for some functions f, g and
h, dramatically simplifying the computation of reduced bispectrum by ;,;, as we have seen
in Section 3.3. The three-dimensional integral over the k space in (4.3) splits into three

individual one-dimensional integrals for separable shapes. Feature models for example have

3
bflliiX37feat _ 6A2 ( ) / Zdr/f/k d3kela) ki+ky+ks) H |:]l k 7" ]

i=1
2(2) [, C ok X;
= o2 (= /0 rdrH /O i € jy (k) A (k) | 4.6)
i=1

Here the real and imaginary parts of b correspond to the bispectra of cosine and sine

feature models, respectively. Now define

2/3 oo

sK(r) = 2An /0 dk sin (k) j; (kr)AY (k), 4.7)
2/3 oo

cX(r) = 2An /0 dk cos (k) j; (kr)A¥ (k). (4.8)

These are analogous to o (r) and 3 (r) we defined in (3.82)-(3.83) for the vanilla KSW
estimator. Then (4.6) reduces to

X1 X, X3 feat = 2 X1 X0 X3 X1 Xo X3 X1 X0 X3 X1 X X3
Lilals = 6 r dr cl1 €l €y =€ Sy, Sy =8y, € S =Sy sy

N A X1 X X o X1 X X5 X| X X3 Xi X X
+ 61/0 redr <sl <, cl3 +Cll s, ch —l—cll €l 81, =81, 81, 50, )

X1X2X3 ,COS . X1X2X3 ,sm
by, +iby . (4.9)
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4.2 Efficient computation of the estimator with polarisation

4.2.1 Estimator

The full optimal estimator for a given bispectrum in the weak non-Gaussian limit including

both temperature and E-mode polarisation is given by [22, 58];

hily  X1X2Xs (i) (1 X1 X4 (~—1 XoXs (~—1 X3 X6
Z ng1m2m3 Ll (Cllml ,l4m4) (Clgmz,l5m5) (Cl3m3,lﬁm6)
lj Jmj X

X4 X5 X6 Xo :
Do @loms Ggme — (Cl4m4715m5a16m6 +2 cychc)] . (4.10)
Computing this form involves an inversion of the full covariance matrix which is com-
putationally expensive. As a result we will follow the diagonal covariance approxima-

tion in [106] for the inverse covariances so that C; ! ~1/ C11 I\l 5P \—my» and approx-

[ lymymy
imate the covariance in the linear term with an ensemble average of realistic simulations
Ci}f,fi s <ai1ml aizmz>. With these the estimator takes the form;
2 -1
fi= Y (F1)isS;, @.11)
J
where
hbly  pXiXeXs,(i) (o= I\XIX] (0= 1Yo X) (0= 1) XX
Z Z Govmms 1,1 (G, )G, )P R(C, )R
Z],mj X; X
X X} X3 X X} X}
|:allml lzm2 l3m’; << l|m1a12m2> al3m + 2 CyChC>i| (412)

The summations here are taken over [, m;, X; and X ,/ for each j = 1,2, and 3. The spherical
multipole moments a;,, ’s are computed from either the observed or simulated CMB maps.
The covariance matrix CIXY 1s a 2 X 2 matrix consisting of values CITT, ClTE , Cf T and CfE .
The linear terms (the second term in square brackets) are required to account for anisotropies
induced by masking and anisotropic noise. The bracket (-) denotes averaging over Monte
Carlo simulations of Gaussian realisations.

The Fisher matrix of the estimator is given by

fsky X1X2X3 (1) X X! I\ X-X! XX, X/ XIX0 ()
' ! —H)%2 —1hX3 14243,(J
11§X’ ;lhlllzh it (Cl' ) 1<Cl2 ) Z(CIS ) ’ blllzl3 : 4.13)
a a

INote that this is equivalent to the other convention in literature [67], which instead uses a 2/ x 2/ matrix
containing four diagonal  x I block matrices C*7, CTE, CET and CEE.
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2
Here, fsy denotes the fraction of the sky covered by the experiment, and h? hiyly *= Lm; ( ,f;fz,f;m3> .

Since the estimator f,~ in (4.11) is nearly optimal, its 68% confidence (10) interval can be
computed from the Fisher matrix as o; := A flsfﬁ = (F~ ;.

Note that the CMB-S4 experiment is ground-based and inevitably probe smaller fractions
of the sky compared to satellite experiments like Planck. Having a smaller fraction of the sky
available leads to increased uncertainties for the estimator. The current estimate is that many
of the new experiments will cover approximately 40% of the sky, which is much less than
the 74% of Planck. The error bars will thus increase by a factor of 1.38 from the decrease
in fgy alone. This loss in constraining power can be ameliorated by adding the Planck data
from the pixels unobserved by these experiments.

4.2.2 Orthonormalising the covariance matrix

In [67] it was noted that orthogonalising the multipoles of temperature and polarisation
maps dramatically reduces the number of terms required for computing the Modal estimator.
This technique can also be applied to KSW estimators, or indeed any optimal bispectrum
estimator, which is yet to be done to the authors’ knowledge.

In both (4.12) and (4.13) there are summations over indices X and X’ to account for cor-
relations between the CMB temperature and E-mode polarisation. This can be simplified by
essentially making a change of basis in X space for each / so that every C; becomes orthonor-
mal. Perform a Cholesky decomposition on C; and invert the matrix. Then C;” = LITLI,
where L; is a lower triangular matrix given by

;TT 0
L= \_/CCZ crr (4.14)

/CTT \/CTTCEE CTE2 /CTT \/CTTCEE CTE2

Now let
A () =Y LAY (k), and af, =Y L¥af. (4.15)
X' X'
When a;,,,’s are generated from simulations, the second transformation is not required as long
as the new transfer function Af( is used in the process.
Defining Z’ll to be the corresponding reduced bispectrum, (4.12) and (4.13) simplify to

bl

hipls X1X2X37() ~X; ~Xo X3 X1 X ~X3 .
Z nglmzmS Ll allm1a12m2a13m3 allmla[2m2 a[3m3+20yChC (416)

lj,mj
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and

liblz Yl hibl;
all X all

Fj - % Y Y02, BRI i) 4.17)
Using this method not only is mathematically concise but also halves the number of
terms involved in the summation. The linear transformations in (4.15) only need to be done
once at the beginning of the program and cost little compared to the main computation.
We also found it easier to optimise the code using instruction-level parallelism after this
simplification.
The only downside of this formalism is that we can no longer get breakdowns of signal
from each of the TTT, TTE, TEE and EEE bispectrum since our new modes are linear
combinations of the 7 and £ modes. However, we are interested in either 7-only or 7+ E

results in most cases, and this method works perfectly well for these cases.

4.2.3 Estimator for feature models

We now consider the estimator for feature models. The method is similar to the one seen
in [66] except that the polarisation is included in a more concise way so that the covariance
matrices are trivial, thanks to the orthonormalisation process outlined above.

Consider the bispectrum shape of
Bo (ki ka,k3) = REB™ (k1 k2, k3) + [REB (k1. k2, k3), (4.18)

for a fixed value of oscillation frequency @. Here B*" and B°* correspond to the reduced
bispectra b5 and b°** defined in (4.9). The Fisher matrix F is 2 x 2 but its off-diagonal
entries are 2-3 orders of magnitude smaller than the diagonal ones in most cases, as we will
see in the next section. Thus, the two shapes are assumed to be uncorrelated and constrained
individually. Here we present detailed computations for 1&}{1 only but the cosine one can be
computed similarly.

From (4.9) and the definition of Gaunt integral %f,‘ll,z,fgm = [d Y, ()Y}, (0)Y,, ()
it follows that

seub — /O Pdr [ @R[-M7+3MM3], and (4.19)

glin _ _3 /oo ,,Zdr/dzﬁ [—M; (M) + M (M*) +2M, (MM,)] , (4.20)
0
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where
ZZSX r)a@r Y (h), (4.21)
X Im
=YY & () a, Yin (). (4.22)
X Im

The sum of SU° and S"" gives the final value of S for the sine feature model.

For efficient Fisher matrix calculation, we follow [65] and deploy the identity

20+ 1)L+ 1)2+1) 1
hzlzzzs—( RaL éﬂ i )/1duﬂl(u)ﬂz(u)ﬂg(u), (4.23)

where P;(1t) represents the Legendre polynomial. Then,
3
= / r’dr / r2dr / dp [Py + 3Py Pa, — 3PPy — 3PaPy + 6P PicPoc] . (4.24)
where we have defined

Po(rr' 1) = ;;<2z+1>s~i‘<r>s~i‘<r'>a<u>,

Pe(rr ) = Y Y 1+ 1)§ (1 (F)P(w). (4.25)
X 1
and similarly P and P,..
Calculation of (4.20) and (4.25) are two of the most computationally expensive steps. If
we did not orthonormalise the covariance matrix, there would be extra summations over X’

and some 2 x 2 matrix computations involving (C,” 1)XX in these steps.

4.2.4 Probing beam and instrumental noise

In an ideal experiment where measurements are made on each point of the sky perfectly, the
covariance matrices CZXX "in (4.12) and (4.13) would consist purely of the signal. In reality,
however, the probing beam has finite width and the sensors are noisy. These effects can be

incorporated by modifying the covariance matrices and bispectra as follows;
G o WP L W, a2

X1 X,
N

where WZX and represent the beam window function and the noise covariance matrix,

respectively. When substituted into the KSW estimator, these changes are equivalent to
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modifying
Gl — I 4 (W) N (RO (e, @)

while keeping the bispectrum same as before. We have defined the effective (beam-corrected)
noise covariance matrix Cl“(’ise. Modes for which Cl“"ise is much larger than ClSig contribute
little to the fni. estimator.

For forecasting purposes, we assume Gaussian beam and white uncorrelated noise until
more detailed experiment specifications become available. Under these assumptions, the
effective noise covariances reduce to [107]

Clnoise,TT — exp (l(l + I)Gt%eam) Nohite, CaniSG,EE —9 ClnoiSe,TT7 Clnoise,TE —0. (4.28)

The factor of two for the EE mode comes from measuring the two Stokes parameters Q and
U. The Gaussian beam profile is usually specified by its FWHM (full width at half maximum)
in arcmin, which is then converted to standard deviations in radians for Gye,,. The noise
level is in the units of uK - arcmin. This is then divided by Teyp = 2.725K, converted to
radians and squared to get Nypite-

For the Planck component-separated maps, the beam FWHM equals 5 arcmin and the
noise level of 47 puK-arcmin gives a good approximation to the noise covariances. For
CMB-S4 the details are not confirmed, but the beam FWHM is expected to lie between 1-5
arcmin, while the noise level will range from 1 to 9 uK-arcmin. [25]

In reality, there exists extra contamination in large angular scales due to the 1/f noise.
Though most of our analysis assumes a simpler form of the noise covariances elaborated
above, for the Simons Observatory forecasts we follow [24] and model the 1/f noise as
N; = Nred(1/Iknee ) *1%¢ + Nyhite. The noise curves from each channel were then put together
using the inverse variance method. This is a good approximation for the E-mode polarisation
but not for temperature, since extra degradations occur during the component separation
process. Still, this would be a reasonable approximation for our forecast since the dominant
contributions to the feature model signal come from the polarisation data. For Planck, the

full post-component-separation noise curves are available and were used for our analysis.

4.2.5 Implementation and validation

We implemented the pipeline outlined above using the C programming language and paral-
lelised using hybrid MPI + openMP to fully benefit from modern computing architecture.
The code was then run in the COSMOS super-computing system.
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The transfer functions are generated from the CAMB code [45]. The spherical Bessel
function values were pre-computed using recursion relations and stored, while the Legendre
function values were computed on the fly using the GNU scientific library. We computed
the angular power spectrum data from the ACDM parameters estimated in the Planck 2015
results.

Numerical integrations for the variables k, r and ' were performed using a simple
trapezoidal method, which were found to be accurate and easier to vectorise for optimisation
purposes. On the other hand, the integration of u required more care because the Legendre
polynomials are highly oscillatory. We adopted the Gauss-Legendre quadrature rule with
1.5 max + 1 points which can integrate polynomials up to order 3 /¢ exactly. The weights
and nodes for the quadrature were computed using the QUADPTS code [108].

We performed various checks to ensure that the code runs correctly. First we used the
code to reproduce the Planck results on the error bars for feature models, which agreed
within 3% level. The error mainly comes from the difference in Modal and KSW approaches
for representing primordial bispectra. We discuss this further in Chapter 5. The code was
then used to compute the bispectrum of the constant model which corresponds to the feature
model template with @ = ¢ = 0. There exists an approximate analytic form in this case [60]
which we were able to reproduce accurately. We also performed convergence tests on r and
¢ integration by doubling the number of points for each of them. The grid was chosen to
be very dense around recombination and quite dense near reionisation. We confirmed that

changes in the integral are kept less than 0.5% for each value of .

4.3 CMB-S4 forecast results

4.3.1 Phase dependence

We now present the CMB-S4 forecast on the fnp. estimation power for feature models. For
notational convenience, we denote the error bars for fyp of sine and cosine feature models
by Oiin and Ocos. The superscripts 7 and T + E are also put to distinguish temperature-only
analyses from the full polarisation ones.

First of all, we check that the sine and cosine bispectrum templates defined in (4.6) are
indeed uncorrelated and can be constrained separately. We see if the Fisher matrix of feature
models is robust to changes in the phase for different @ values of interest. The feature model

bispectrum with a specific phase ¢ can be represented as a sum of sine and cosine ones as in
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(4.5). Hence, its Fisher matrix is given by
F(0,0) = cos® ¢ Fy(®)+sin® ¢ Fre(®) +2cos ¢ sing Fy.(0), (4.29)

where Fj; is the element F;; of the Fisher matrix in (4.13) with the reduced bispectra pli) =
b)) = p" and so on. Correlation between the sine and cosine templates can be expressed as
Fyo/(FysFyc) 1/2 and this value can be learned from analysing the ¢ dependence of F (0,0).

Figure 4.1 shows the forecast error bars for the full phase range [0, 7] in the most sensitive
experiment specification of 1° beam and 1uK - arcmin noise. The forecast ¢ varies within a
1% level for every @ > 20. In terms of the Fisher matrix, the cross term F. was 2-3 orders of
magnitude smaller than Fgg and F;. for all cases. The correlation between the sine and cosine
templates was less than 1%. This justifies our previous choice of constraining fﬁfﬁ and fp>
separately. We now focus our attention on Gy, for our discussions.

For smaller values of w, the phase affects the error bar primarily through modulating the
amplitude of the acoustic oscillations in the CMB itself. The radiation transfer functions
are non-zero for k values in 0 — 0.8 Mpc~!. The argument wk covers less than two full
periods in this k range if @ < 10 Mpc, and phase has a direct influence on the amplitude of
the acoustic peaks. In the extreme case of ® = 0, the bispectrum vanishes completely for the
sine feature model. Variations in the overall bispectrum amplitude therefore result in varying

Fisher information for low frequencies.

10°

——w = 2000
—— w = 1000
w = 500
w = 200
w =100

w =150
——w=20
—w=10

10

‘ ‘ ‘ ‘ ‘ ‘
0.5 1 1.5 2 2.5 3 3.5
phase (radians)

Fig. 4.1 Forecast error bars 6/ % versus the phase ¢. Apart from the smallest frequency

o = 10, the error bar remains almost constant. This implies that the sine (¢ = 0) and cosine
(¢ = m/2) feature models can be constrained independently.
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4.3.2 Inhax dependence

Figure 4.2 shows the graph of the forecast error bar GSY;I:— E

as we increase [,x. The forecasts
were done within angular scale range 2 </ < [,x, the oscillation frequency ® set to 100,
and assuming 1’ beam and 1y K-arcmin noise. The Planck noise curves were approximated
by ones for 5’ beam and 47 pK-arcmin noise for this plot only since we extend [« to 4000
here.

The Planck error bar essentially stalls out when /i« reaches 2000. The forecast error
bar, on the other hand, keeps decreasing until /jhax = 4000 thanks to the improved sensitivity
in measuring small scales (and large /’s). Despite the information loss due to smaller sky
coverage fy, the forecast error bar reduces to about 42% of Planck by Imax = 4000. This

corresponds to a factor of 2.4 times improvement to measurement precision on fnr .

120

——Planck
—6—1’ beam, 1uK noise |

*

100 -

20 -

0 I I I I I I
500 1000 1500 2000 2500 3000 3500 4000

l777,(lﬂ’7

Fig. 4.2 Forecast error bars GSTi;“ E when multipoles 2 <[ < [« are included, in comparison

with Planck. The oscillation frequency @ is set to 100 Mpc in all cases. Planck did not
have access to the information from modes / > 2000, but CMB-S4 is expected to be able to
explore modes up to [ = 4000.

4.3.3 Beam and noise dependence

Now we explore the effects of different beam widths and noise levels on the forecast error

bars. Figure 4.3 shows forecast GQ E

for ranges of beam and noise levels. Their oscillation
frequencies are also varied, but only two representatives @ = 20 and 2000 are chosen here.
Forecasts for the other values of ® also display similar dependences on beam widths and
noise levels.

First of all, note that all estimated error bars in the plot are smaller than Planck, for which

Gg;_ E — 34 when @ = 20 and 657;;‘ E — 610 when @ = 2000. In fact, even the least sensitive
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CMB-S4 specification of 5° beam and 9K -arcmin noise is expected to put better bounds on
feature models. Note that /;,,,x = 4000 for both T and E here.

Wider beams and noisier detectors provide less signal and thus larger error bars, as
expected. In this range of beam width and noise levels, noise has a bigger effect on the
forecast; experiments with 1’ beam and 5 K-arcmin noise yields larger error bars than the
ones with 5’ beam with 1uK-arcmin noise. Between the most sensitive specification of 1’
beam and 1uK-arcmin and the least sensitive one with 5’ beam and 9uK-arcmin, oy;, differs
by a factor of 1.6.

500 T T T T T 500 T
——w = 2000 —*—w = 2000

450 f 1500

T+E

sin

g
S 4o} */_/*_/’*’/,*/* 1 © a0l
5 . . . . .

i > 3 i 5 0 s i 6 5 10
Beam FWHM (arcmin) Noise level (K -arcmin)

Fig. 4.3 Beam (left) and noise (right) dependences of the forecast error GSTi: E for @ = 2000
(top) and @ = 20 (bottom). The noise level was set as 1 K-arcmin for the first plot, while
the second plot had a fixed beam FWHM of 1°. We obtain less information from using wider
beam and noisier sensors, as expected.

4.3.4 Oscillation frequency dependence

We present the main results of the forecast. Figure 4.4 summarises the oy, forecasts for
several different CMB-S4 preliminary specifications, including the Simons Observatory
(SO) baseline and goal. Note that the 1/f noise effect is incorporated in SO forecasts but
not in other ones. We also provide 10 errors for joint estimators, for which Planck signals
from the fraction of the sky not covered by CMB-S4 are combined via a simple inverse
variance method; ngiit = GEI\%[B-S 4t GP_kfan. This is not statistically optimal but serves as a
conservative estimate of the joint estimation power.

The most sensitive setup with 1’ beam and 1uK-arcmin noise would yield error bars
that are 47-62% of Planck. These correspond to a factor of 1.6-2.1 improvements. Here
relatively smaller improvements are made for high oscillation frequencies. They correspond

to smaller momentum scales k. = 27 /3, or larger angular scales, which benefit less from
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the increased sensitivity of CMB-S4. When the results are combined with Planck, the error
bar reduces to 45-57% of Planck, or a factor of 1.7-2.2 improvement.

Forecast error bars from the SO baseline specification and the more ambitious one (‘goal’)
do not differ very much. Quoting in terms of the baseline values, ogj, lies about 68-86% of
that of Planck or equivalently, 1.2-1.5 times smaller than Planck. Numbers change to 62-74%
when combined with Planck, so the overall improvement ratio is about 1.3-1.6.

700 T T T 700 T
—+— Planck —*— Planck

600 . —*— SO baseline /,,z 600 . —*— SO baseline + Planck /,,3
SO goal //' SO goal + Planck //'
—+—1" beam, 1K noise 7 A —+—1" beam, 1K noise + Planck 7
500 | /' A 500 | P
o o
e e
/,,/ - /,,/
o A00F 7 1o Wof -
+ g e + g e
&7 */ S *{/
S 300 s 4 © 300 7
—~ //
// 3
200 | 200 | =y
- 7 x
¥ ',;//’/’//////
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P e
Oﬁ* ‘ ‘ o ¥ ‘ ‘ ‘
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Fig. 4.4 Frequency dependence of the forecast error in comparison to Planck (left). All
CMB-S4 specifications would improve constraints on feature models. The most sensitive
setup with 1’ beam and 1uK-arcmin noise is expected to yield error bars that are 1.6-2.1
times smaller than Planck. When the Planck results are combined with CMB-S4, we get
even stronger constraints (right).

Figure 4.5 shows the results when only the CMB temperature data are used in the forecast.
CMB-S4 would in fact be worse than Planck in terms of constraining flffft for this case. The
loss in information due to less sky coverage overwhelms the increased sensitivity. We see
again that the real strength of CMB-S4 lies in measuring CMB polarisation.

Then how much information do we actually gain from adding E-mode polarisation?
Figure 4.6 shows the ratio of 0,s between the temperature-only and polarisation-included
analyses. The forecast error bars reduce up to 4.6 times smaller when polarisation information
is added, which is much larger than the corresponding Planck value of 2.2. The ratio decreases
overall when the joint statistics with Planck are considered. An intriguing feature of this plot
is that the ratio is maximised around @ = 200 before it starts dropping again.

In order to gain insight into this behaviour, we performed some simplified computations
using the power spectrum. We imposed oscillations on the primordial power spectrum as
Preat(k) = P(k) (1 +sin(2wk + ¢)), which is just like our feature model bispectrum template
but with @(k; + k» + k3) replaced by @(k + k). Prea(k) is then projected to the late-time
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Fig. 4.5 Frequency dependence of the forecast error from temperature data only, in compari-
son to Planck (left). CMB-S4 would perform worse than Planck when only the temperature
map is concerned. After the addition of Planck data the error bars improve only marginally
(right). This shows that polarisation data is crucial for constraining feature models.

harmonic space using the transfer functions;

=2 [ Kakpi (AY (A (1), (4.30)
We observed that the fractional variation (Crey; — C;)/C; displays some oscillations in /,
and the largest contribution comes from a term o sin(2@!/At) where At represents the
conformal distance to the last scattering surface. This fact can be explained by approximating
the transfer function as A;(k) ~ (1/3)j;(kAt) and noting that the spherical Bessel function
has a sharp peak at [ for large /’s. The integral in (4.30) therefore picks up a term proportional
to sin(2wl /A7).

The amplitude of these ‘maximal’ oscillations in (C] — C;) /C; were then computed using
discrete Fourier transform for different values of oscillation scale @ and two different phases
¢ =0,7/2 (i.e. sine and cosine). The results are shown in Figure 4.7. Some extra wiggles to
the graph come from the phase of oscillations imposed; we indeed see that graphs of sine
and cosine oscillate between each other. Some peak features near ® ~ 70 and 140 arise from
resonances with Baryonic Acoustic Oscillations.

We can think of the computed amplitude as a measure of information C;’s contain about
the primordial oscillations. First of all, note that the amplitude in all four plots generally
decreases as @ grows. Previously in Figure 4.4 we saw that the amount of information
obtained from the CMB is smaller for larger @’s, consistent with what can be said from the
amplitude analysis. Moreover, the amplitudes for the EE mode are generally larger than the
TT mode ones, and their difference is the largest in the w range of 70 to 300. This could
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Fig. 4.6 Improvements on the forecast error when including E-mode polarisation data.
Constraints from CMB-S4 would improve significantly from addition of the polarisation data.
The improvement is maximised around ® ~ 200 Mpc.

serve as a heuristic explanation for the improvement in forecast error bars from including
polarisation data being maximised around @ = 200, as depicted in Figure 4.6.

4.3.5 Comparison to scale-invariant models

Our pipeline for forecasting flffft also yields forecasts for fni of the constant model, which is

scale-invariant and have a trivial shape; B(k{, k2, k3) o< (kikyks) 2. Forecasts on It follow
from our pipeline by simply setting the oscillation frequency @ = 0 and phase ¢ = /2. Table
4.1 summarises the forecast results for several different CMB-S4 specifications mentioned
before, using both T and E data and in combination with Planck data from the regions of the
sky not covered by CMB-S4. For the 1’ beam and 1uK-arcmin noise setup, the error bar is
expected to be reduced by a factor of 2.3 compared to Planck.

Table 4.1 Forecasts on the estimation errors of fx, for the constant model

Planck SO baseline + Planck SO goal + Planck 1’ beam, 1uK noise + Planck

o(feom) 234 14.9 14.0 10.4

The latest Planck constraints on fni, of some popular bispectrum templates are given by
docal — 95457, f29% — _16470, and f3h° = —34+ 33 [30]. CMB-S4 is expected to
yield better estimates on these as well. Table 4.2 summarises the forecast improvement ratio
given in [25] together with the constant and feature model ratios computed in this work.
Surprisingly, the estimation error for feature models does not improve as much as other

templates. Feature models benefit much more from the inclusion of polarisation data than any
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Fig. 4.7 The maximum amplitude of oscillations detected in fractional variations of the
projected power spectrum C; 7 and CFE, when extra oscillations sin(2wk) and cos(2wk)
were imposed on the primordial power spectrum. Heuristically this shows that E-mode
polarisation is more sensitive to the primordial oscillations, especially in the @ range of 70
to 300. Some peaks near @ = 70 and 140 arise from resonances with Baryonic Acoustic
Oscillations.

other scale-independent shapes; for example, 67 /67 TE = 4.6 for the feature models with
o = 200 in CMB-S4 while the value equals 2.8 for the constant models. Because CMB-S4
would have a significantly enhanced polarisation measurement sensitivity, we originally
expected the feature models to be constrained significantly better than Planck.

In order to investigate this lack of improvement, we performed a breakdown analysis on
the improvements gained from CMB-S4 temperature and polarisation; we computed & ( fnr.)
for the constant and feature models using each of the four combinations of Planck / CMB-S4
noise curves for temperature / polarisation (e.g. Planck T + CMB-S4 E). The results are
summarised in Table 4.3.

We see that the constraints on feature models improve by a factor of 1.7 when swapping
Planck polarisation noises with the CMB-S4 ones. This factor is indeed larger than 1.6 of
the constant model. The difference is however not significant. It seems that the amount
of feature signals in polarisation data left unexplored by Planck is not tremendously large
compared to the constant model. The feature model improves less than the constant model

when the temperature measurements are enhanced. In fact, for feature models, the signal
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Table 4.2 Expected improvement ratios of the fni. estimation errors for the CMB-S4 1’beam,
1uKarcmin setup, for various bispectrum templates. The local, equilateral and orthogonal
results are quoted from [25].

Local Equilateral Orthogonal Constant Feature (@ = 200)

gPlanck /GCMB-S4 3 5 2.1 2.4 2.3 2.0

Table 4.3 Expected improvements on the estimation errors of fni, for each combination of
Planck / CMB-S4 temperature (T) and polarisation (E) data. Here the CMB-S4 assumes 1’
beam and 1y Karcmin noise. The feature model has oscillation frequency @ = 200 and phase
¢ = 0. The sky fraction fg, = 0.4 for all cases except for Planck T + Planck E, for which
fsky = 0.76.

oK™ E o) E

improvements Planck CMB-S4 improvements Planck CMB-S4

Planck 1.0 1.6 T Planck 1.0 1.7
CMB-S4 1.1 2.2 CMB-S4 0.9 2.0

loss from smaller sky fraction fy, eclipses the signal gain from more sensitive temperature
measurements. This lack of improvements from temperature causes the full CMB-S4

constraints on the feature model not to improve as much as the constant model overall.
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Summary

Upcoming CMB Stage-4 experiments will provide an opportunity to measure the CMB
temperature anisotropies and polarisation with ever greater precision. The CMB bispectrum
estimators for constraining primordial non-Gaussianity would greatly benefit from the im-
provement in measurement sensitivity. In this research, we made forecasts on the fnr for
feature models, which have not been done so far despite the growing interest in inflation
models with oscillations in the primordial spectrum. For efficient forecasts we simplified the
bispectrum estimator for fyp by orthonormalising the covariance matrix, further optimising
the computation. When the most sensitive CMB Stage-4 experiment specification of 1’
beam and 1y Karcmin noise is concerned, we expect a factor of 1.7-2.2 times more stringent
constraints compared to Planck. Under the realistic Simons Observatory conditions, the
improvement would be about 1.3-1.6 to Planck.

Although this is not a massive boost in the estimation power, we can hope to verify
the current 40-level signals found in the Planck 2015 analysis. It is also worth noting that
CMB-S4 would allow us to explore the modes with / > 2000 and localised oscillations
on these scales are currently unconstrained. Moreover, though we have only considered
linearly-spaced oscillations in this work, we expect even better improvements on the models
inducing logarithmically-spaced oscillations where small scale modes with higher / would
greatly enhance the constraining power. Lastly, we can expect to cross-validate using these
new statistically independent modes to test current constraints further.

We also extensively studied how the forecasts depend on various parameters. Frequency
dependences of the ratio between the T and T+E forecasts were particularly illuminating; the
improvement from adding polarisation information is maximised around @ = 200. Some
simplified calculations were presented to heuristically address this fact. Even though the
estimation power on feature models massively benefits from the polarisation data, the
expected improvements compared to Planck are quite underwhelming overall. A breakdown
analysis of the temperature and polarisation contribution revealed that the feature models
would indeed improve more than other scale-independent models if only the polarisation
(and not temperature) measurement sensitivity were enhanced to the CMB-S4 standards.
However, boosts in the temperature measurements affect scale-independent models more so
that they gain more information overall.

The KSW estimator utilises separable bispectrum templates to constrain fnr exactly even
for highly oscillatory models but is inherently restrictive in the range of shapes it can handle.
On the other hand, the Modal estimator uses separable basis functions to expand the given
bispectrum shape and thus is able to cover a broad range of non-separable shapes. Due to
limitations such as the basis size, however, its accuracy drops for oscillatory models with
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high frequency. Hence, currently, there is a blind spot in the bispectrum analysis for general
(non-separable) and highly oscillatory models barred by numerical challenges. We address

this in our original research on the high-resolution CMB bispectrum estimator in Chapter 5.






Chapter 5

High-Resolution CMB Bispectrum
Estimator

Despite their major role in constraining a wide range of inflation models, there are only a
few implementations of the CMB bispectrum estimator due to computational challenges.
The Planck collaboration mainly utilised three independent approaches for their bispectrum
analysis [23, 30, 70]: KSW [58], Modal [60], and Binned [61]. Standard bispectrum
templates for Local, Equilateral and Orthogonal shapes have been constrained using all three
methods independently, whilst other more specific ones were covered by only a subset of
them.

Some of the most challenging models to handle are those with oscillatory behaviour.
Numerous theoretically well-motivated models ([88, 94, 109—111] and many more, see e.g.,
[21, 105] for reviews) fall into this category. Feature models, as discussed in the previous
chapter, often predict linearly spaced oscillations in the bispectrum. Resonance models such
as axion monodromy inflation [112, 113] produce log-spaced oscillations modulated with
various envelopes. Constraining such models is difficult since oscillations in the bispectra
degrade the numerical stability of the integrals involved.

Several simple models with oscillations have been studied in the latest Planck analysis
using Modal and a few specific KSW-type estimators introduced in [66]. Modal estimator
covers a wide range of oscillatory models, both with and without envelopes, thanks to the
versatility of its mode expansion. It is however difficult to constrain models with high-
frequency oscillations using generic mode functions. Modal code allows for choosing a more
tailored set of modes for this purpose, but the fact that there are rwo independent sets of
mode functions - primordial and late-time - complicates targeted analyses. For each specific

selection of mode functions in the primordial ‘4> domain, a suitable choice of basis has to
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be made in the late-time ‘I’ space. Rapidly oscillating signals may also get lost during the
projection from one to the other and cause some numerical issues.

On the other hand, adapted KSW-type estimators [66, 114, 115] may probe models with
much faster oscillations in their bispectra. They exploit the separability of specific oscillatory
templates and/or Fourier-type bases to obtain accurate constraints on a model-by-model
basis. However, these methods are not easily applicable for models with more complicated
bispectra, especially the ones that do not depend solely on K = k| + k» + k3. The formalism
is also restricted to certain types of bispectra and requires a separate implementation for
each case. This was one of the main motivations behind the research project; can we have a
bispectrum estimator which has the efficiency and versatility of Modal, whilst also benefiting
from the precision of the KSW formalism for a more specialised analysis?

We developed a novel CMB bispectrum estimation pipeline CMB-BEST. | CMB-
BEST has two main strengths over former methods. First of all, it is implemented for
completely general basis sets, which allows broad analyses of inflationary models. In fact,
the conventional KSW estimator is equivalent to a specific choice of basis in CMB-BEST.
CMB-BEST can cover any model KSW estimator can, and furthermore, it can simultaneously
constrain general bispectrum shapes through primordial mode expansion, just like Modal.

Secondly, CMB-BEST is designed to be able to handle complex and highly oscillatory
signals. It does not require a separate set of basis functions for late-time / space, contrary
to Modal. More diverse and specialised choices of basis can therefore be made. The code
will be used on numerous inflation models with complex oscillations which are yet to be
investigated due to lack of resolution from previous methods. Potential choices of the targeted
basis for this purpose will be discussed in Section 5.1.2.

Every good thing comes at a price. For CMB-BEST, the price is computational cost.
Combining the best of Modal and KSW estimators, CMB-BEST’s formalism is more
numerically demanding than both of them. Naively speaking, running CMB-BEST for one
set of basis functions is equivalent to computing thousands of KSW estimators put together.
It is prohibitively expensive unless properly and thoroughly optimised.

We invested a considerable amount of time and effort in optimising the code. Separable
mode expansions and subsequent algorithm design were studied in detail for a maximal
reduction in computational complexity. We also made full use of parallelisation techniques to
exploit modern computing architecture. Improving data locality for efficient memory access
yielded an order of magnitude speed-up. We illustrate our optimisation procedure in Section
5.2.

!Short for CMB Bispectrum Estimator. The goal of CMB-BEST is to be the best bispectrum estimator with
wide applications and great precision.
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The code was then tested thoroughly both internally and against Planck analysis. We
used CMB maps and simulations from the Planck satellite experiment and checked that
CMB-BEST agrees with previous routines map-by-map for various bispectrum templates.
Different choices of basis functions within CMB-BEST also yielded consistent results. We
dedicate Section 5.3 to presenting the outcome of these consistency checks.

Lastly, we present some applications of the code which serve as a proof of concept. In
particular, we connect CMB-BEST to PRIMODAL, an efficient numerical code for computing
bispectra of primordial perturbations from a given single field model [116]. PRIMODAL uses
separable modes for its computation, which enables template-free, direct model-to-constraint
analysis when combined with CMB-BEST appropriately. Section 5.3.3 highlights some
results from the combined pipeline. We also identify areas where improvements could be
made and discuss directions for future research.

Upcoming surveys will provide major improvements to constraints on primordial non-
Gaussianity. Inflationary models with oscillations would also greatly benefit from the
enhanced sensitivity, as we discussed in the previous chapter. It is therefore crucial to have a
robust and flexible bispectrum estimation routine ready for future surveys, especially one
which can handle high-frequency oscillations. Having another code independent from the
existing ones would also be greatly beneficial for cross-validation. We expect CMB-BEST

to fill this role in the near future.

5.1 Formalism

5.1.1 CMB-BEST formalism

Recall that the optimal CMB bispectrum estimator for a given template can be written as

A 1 Z%fil%f3mb111 G G
N =+ T3 T2 [a11m1a12m2a13m3 — <<al o Ao >al3m3 +2 cyc.)} . (5.1
N o GGG R
Here we omit superscripts X for temperature and polarisation for notational convenience.
Even though the formalism in this section will be presented for CMB temperature data only,
the method is general and can easily be extended to include polarisation. For estimation of
the full covariance matrix Cy,, y7,y needed for the linear term, we use an ensemble average

from Gaussian simulations, as denoted by superscripts G and the bracket (-).
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The normalisation factor is given by

2 2
N = hlllzl3blllzl3

— . (5.2)
7 Cllclzcls

The core part of our estimation routine is the separable mode expansion of the shape

function;

S(ky,ka,k3) == (kikaks)*B(ky,k2,k3) = Y 0y popsdp, (K1 )y (k2) s (K3). (5.3)
v

Choices for the basis functions g, (k) are detailed in the next section. Due to the separability,

the reduced bispectrum reduces to a compact form of

bl11213 :Zaplpzps/drqm (11,I’)C]pz(lz,r)c]m(lg,r), (5.4)
pPj

where the projected mode functions are defined as

ap(t.r) = 2 [ dkay ()0 (801 k). 5.

Radiative transfer functions A;(k) and spherical Bessel functions j;(kr) are denoted the same
way as in the previous chapter.

Every term appearing in (5.1) except the Gaunt integral is now separable. Using the
definition %f{]lﬁ,@m = [d®nY),;y,(n)Y),,(n)Y},,, (), we can render it separable at the cost of
introducing an extra integral.

We define the filtered maps as

i Gp(L,r) (i
M (n,r) =Y qp(c, r) ¥, (), (5.6)

(i)

where a Im

’s are represent the spherical harmonic transform of the ith CMB map. For later
convenience, we use a convention where i = 0 corresponds to the observed CMB map. Maps
number 1-Ngjns are Gaussian simulations. Note that without the factors involving ¢ and C;’s,
M is simply equal to the original map in real space. Each mode extracts different anisotropy

scales present on the map.
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The bispectrum estimator (5.1) reduces to
o 1 cub,( lin, (
- ]T[ Z Opipaps ﬁmmm 3[3171192173) (5.7)
Pj

where most of the computation required is now contained in the ‘3’s, given by

b,(
I(?::]Pzpa . /dr/dzn MP] n,r)M, ()( )Més)(n r), (5.8)
lin(0) / dr / &*n MY (n,\MY) (n,r) M) (n, r) (5.9)
Pip2p3 = P1 P2 p3 ’ . ‘
31ms
Here we evaluate fy estimates for each of the Gaussian simulations i = 1,- - - , Njms. Natu-

rally, they are normally distributed with a mean of zero. Under the null hypothesis that the
initial fluctuations are purely Gaussian, the value of fni. estimated from the observed CMB
map is also drawn from the same normal distribution. Any statistically significant deviations
from zero would therefore allow us to reject the null hypothesis.

It is important to note that the 8 matrices depend only on the choice of mode functions
and input map data, and are independent of the theoretical bispectrum considered. Once 3P
and B'" are computed and stored, we may constrain any model of interest by decomposing
the template to get . The fnr. estimate is then a simple dot product: ¢ - /N.

The normalisation can also be obtained in a similar fashion;

N = Z %1 p2psL py paps.p 1 Phpy Cp phply s (5.10)
pPj 7PJ

or equivalently, N = o' T'ar. We exploit separability once again to compute the I" matrix;

Fplpzps,p’lp’ng ::/dr/a’,w@plp/1 (,u,r,r/)@mpg(,u,r,r’)@p3pg(u,r,r/), (5.11)
" 20+1 5 ,
Do (W,11) ':ZI‘,W‘]#(Z,’”)‘IP(I,”)PI(U% (5.12)

where P;(1t)’s are the Legendre polynomials.

In summary, CMB-BEST computes the main quantities: f°, B!, and I". The most
computationally expensive part is the linear term B'" by a couple of orders of magnitude
in most cases. Considerable effort has been made to optimise the corresponding part of the

code, which will be detailed in the following sections.
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5.1.2 Basis functions

One of the greatest strengths of CMB-BEST lies in its flexibility with the choice of mode
functions. We decompose a given shape as a linear combination mode function in three-
dimensional space. Hence, we shall refer to them as ‘basis’ functions. Adopting a specialised
basis set provides optimised results to specific models of interest, whilst a more general
construction of basis allows us to simultaneously constrain a wide range of models.

The main difference between CMB-BEST and the conventional Modal estimator [59]
is that CMB-BEST has a single set of mode functions while Modal requires two; one in
each of the primordial and late-time space (see section 3.3.3). While the Modal approach
can accurately express a wide range of bispectra [60, 67, 70], the two-step modal expansion
becomes less accurate for highly oscillatory shapes since the oscillations often get lost during
the projection to late-time space [23, 95]. CMB-BEST avoids these issues in the second
mode expansion by evaluating an exact analytical form analogous to the KSW estimator
[58]. The results obtained from CMB-BEST is therefore as accurate as the primordial basis
expansion.

We observe that the KSW estimator [58] is derived from a simple monomial basis in our

notation;
ap(k)=k'"', p=0,1,2,3. (5.13)

All three standard templates - local, equilateral, and orthogonal - can be expressed as a sum of
separable terms in the form g, (k1)gp,(k2)qp, (k3). The shape function of the local template,

for example, is given by
6 B &
koks  ksky  kikp

=2A%[g3(k1)qo(k2)qo(k3) + g0 (k1)q3(k2)qo(k3) + qo (k1) qo(k2) g3 (k3)]
(5.15)

stocal (g koks) :=2A2 (5.14)

where A is the primordial power spectrum amplitude. Decomposition coefficients 0, p, p;
have three non-zero components: 03g9 = 030 = Opo3 = 2A2. Coefficients for the equilateral
and orthogonal templates can similarly be found.

We set the scalar spectral index as ng = 1 above for simplicity. For a non-unit ng, we

modify the basis as follows;

, o\ (4-m)/3] 773
qp(k) =K |ky | — , p=0,1,2,3. (5.16)
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The pivot scale &, 1s defined such that the power spectrum evaluates to A at k = k... Including
k. here ensures that the g, (k)’s have the right units. Note that the prefactor k? comes from
the definition of the shape function and is therefore unaffected by ns. We will refer to this
choice of mode functions to be the ‘KSW’ basis.

For studying models with linearly spaced, high-frequency oscillation, a Fourier-like basis
qo(k) = sin(@k), q1(k) = cos(wk), (5.17)

for a fixed w is an appropriate choice. This is in fact equivalent to the method we used to study
feature models in Chapter 4. The small size of the basis lets us efficiently constrain theoretical
models with given characteristic scale @. By scanning over a range of w, or including modes
with different values of ® in the basis, we may also perform a more comprehensive analysis
of oscillatory features.

Lastly, for investigating a wide variety of models simultaneously, we construct large basis
sets suitable for decomposing general shape functions. One such example is the following
basis which consists of Legendre polynomials;

qp(k) = P,(k), where k= 2k = Kimin = Kimax. (5.18)

kmax - kmin

Here we linearly map the range from k € [kmin, kmax| to k € [—1,1], which is the interval
where Legendre polynomials are defined. The number of modes are not bounded; the larger
the basis, the more complete coverage of theory k space we get.

The Legendre basis functions are inherently orthogonal, so that [, dkP;(k)Py (k) = 0
whenever [ # I'. Orthogonality is essential for this class of basis sets since it allows us
to greatly simplify the way of decomposing theoretical templates. We elaborate on the
decomposition method in Section 5.1.3.

The Legendre basis also enables direct connection to PRIMODAL, a fast numerical
code for computing primordial bispectra from general single-field inflation models [116].
PRIMODAL utilises the inherent separability present in the in-in formalism to efficiently
compute the bispectrum using a separable basis. Using the Legendre polynomials for the
basis is optimal for this step, but the methodology is not restricted to any particular choice
of basis. The code then outputs the expansion coefficients of the primordial bispectrum
with respect to the Legendre polynomials. Hence, the result can be plugged in directly to
CMB-BEST, creating one fluid pipeline from the model Lagrangian to fxr. estimation.

As noted in [116], we may augment the base set of Legendre polynomials with one or

more extra functions for a better description of some bispectrum templates. One solid choice
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is to add a mode g(k) = k">~2, orthogonalised with respect to the rest of the basis. This
significantly boosts the performance of decomposing local-type bispectra.

Ideally, we would like the k range used in the definition (5.18) to be as wide as possible
so that more information from different scales is incorporated in the estimation process. A
wider k range, however, also results in lower resolving power because the interval can fit
more oscillations of a given frequency. Polynomials of higher degrees are necessary to handle
the same bispectra. We found that kpax /kmin = 1000 is an overall sweet spot for analysing
Planck data.

Throughout the rest of this thesis, we refer to a basis with the k"s—2 mode and the first
29 Legendre polynomials, totalling 30 modes, defined in the k range with (kpin,kmax) =
(2.09 x 1074,2.09 x 10~ 1), as the ‘Legendre’ basis. Any deviation from this set of parameters
will be stated explicitly. Note that this is for our convenience during testing only; the code
may take any choice of basis.

5.1.3 Primordial basis expansion

Our formalism assumes that the bispectrum shape of interest can be accurately represented

as a linear combination of a chosen basis set;

S(kl,kz,k3) = Zapl,me QP1P2P3 (klak27k3)v (519)
pj

where the three-dimensional mode functions are defined as

Opipaps (ki ko, k3) == qp, (k1) qp, (k2) gps (k3). (5.20)

For some models, the coefficients @, ,,, are obtained analytically. The local shape function
with respect to the KSW basis is a simple example; 0300 = Q30 = g3 = 2A2 and zero
otherwise. For other models, the shape function needs to be expanded with respect to the
chosen basis.

Shape functions are defined on the same domain as bispectra: (ky,k»,k3) € R3 where k;,
ks, and k3 form a triangle. We cannot observe scales smaller than a certain size in practice,
which places an upper bound on k: k < kpyax. The resulting domain in three dimensions is
shown in Figure 5.1.

We follow [59] and denote this domain consisting of two tetrahedrons glued together
as the ‘tetrapyd’. Note that all shape functions of interest are symmetric in the k’s, so we
may restrict our interest to a region where k; > k» > k3 (right of Figure 5.1). We dub the

resulting tetrahedron with one-sixth the original volume the ‘sliced’ tetrapyd, somewhat
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Fig. 5.1 Tetrapyd domain in which the shape functions are defined. Left: the full region
specified by triangle inequalities and an upper bound kp,x. Right: one-sixth slice of the
tetrapyd from which shape functions are uniquely determined by symmetry in the k’s. Edges
representing the equilateral, flattened and squeezed configurations are annotated.

unoriginally. The three main types of triangle configurations correspond to three edges
of the sliced tetrapyd: equilateral (k; = k» = k3), flattened (k; = k» + k3), and squeezed
(ky = ky > k3). 2 Figure 5.2 shows some of the Legendre basis functions plotted in three
dimensions.

Let Vi be the subset of R? representing the sliced tetrapyd. By choosing a natural inner
product

($1,82) = | 4’k S (k)S>(k), (5.21)
k
we restrict our attention to an L? space defined on Vi: a vector space consisting of square-
integrable functions. 3 A set of three-dimensional basis functions Op with size N spans a
subspace Ug C L*(Vk) of dimension at most N.
Using this notation, expanding a given shape function S with respect to a basis set Q is
equivalent to finding its orthogonal projection into Up;

s=gll + S8+, where (5.22)
sletp and (54,0')=0,v0 € Up. (5.23)

2To be precise, the edges for flattened represent ki /2 = k = k3, and the squeezed one is defined as k; = k,
ks = 0. The edges by themselves are unphysical, but points near these lines correspond to the limits described.

3Note that the local shape function S(ki,k2,k3) = (k} /koks +2 cyc.) is not in fact square-integrable due to
its divergence as k; — 0. We work around this problem by prescribing a lower bound k > kp,in, which is also
the case in numerical calculations.
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(a) Z \ : @
(d) g? Z: ! ?
Fig. 5.2 Examples of our Legendre basis functions, evaluated on the sliced tetrapyd domain
shown in Figure 5.1. Functions are defined as Qp, p, p; (k1,k2,k3) 1= Py, (k1) Py, (k2) Py, (k3),
where P;(k) are Legendre polynomials. Here we plot p; = py = p3 = p, where p equals (a)

0, () 1, (c)2,(d) 3, (e) 4, and (f) 5. A single colour map is used across the plots: red and
blue correspond to +1 and —1, respectively.
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As long as ||S*|| < ||S]|, we may approximate

S~ SI=Y ap0p. (5.24)
P
The decomposition coefficients & are obtained by taking inner product with Qp, on both sides.

(S,0p) = (0p, Op') O (5.25)

From above, we can compute ap by inverting the matrix I'p, = <Qp, Qp/>. Alternatively,
orthonormalising the basis with respect to the inner product (,) turns I" to an identity matrix,
trivialising the inversion process.

We rewrote the formalism using linear analysis language here to emphasize two aspects
of our primordial basis expansion. First, even though we chose a simple inner product (5.21)
for now, the method is completely general and we may freely choose a different inner product.
For example, non-unit weights w(k) can be included in the integrand and/or the domain of
integration may be changed. Doing so alters how we decompose shape functions in terms of
our basis.

Second, we highlight the fact that basis expansion is in essence a minimisation problem
with respect to the chosen inner product, which is often oblivious of late-time physics.
The orthogonal projection of § to subspace Uy is a point in Ug which has the minimal
distance to S: HS — gl H is minimised. The obtained S/! , however, is not necessarily the best
description of S when we consider their late-time counterparts in / space. Some errors with
small norm ||AS|| might get enhanced when convolved with transfer functions, yielding large
reduced bispectrum Aby ;,;,. Meanwhile, sometimes large differences in § are completely
unobservable late-time and provide mostly identical constraints on fnr .

With these points in mind, we define the following metrics to compare shape functions in
primordial space;

<Sl752>
Corr(S1,$5) == 5.26
orr(51,52) VS1,81) ($2,52)° (520
€2(S1,8,) == (51— 52,51 = 52) (5.27)

VS1,81) (52,852)

Corr(S1,S2) measures correlation between the two shapes and is independent of the normalisa-

tion. £(81,S2) is the distance between the two shapes, which reduces to /2 —2 Corr(S;,5,)
when S and S, have equal amplitude. We use both of these values to test if our primordial

basis expansion has converged to the target shape function.
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Inverting the matrix Iy = <Qp, Qp/> in (5.25) can be tricky in practice. The p3... X pi..
matrix is not only large in size for high pnax, but also near singular. Some of the three-
dimensional mode functions Qp, become linearly dependent within tetrapyd even if they are
constructed from independent modes in one dimension. The presence of such degenerate
modes introduces severe numerical instability during inversion.

For our Legendre basis, we use a small trick to get around this problem. Motivated by the
fact that Legendre polynomials form an orthogonal basis in one dimension, we extend the
domain of integral in the inner product (5.21) to a cube containing the tetrapyd instead. Most
template shape functions have an analytic form and can easily be extended in this region. As

long as [ dk q,(k)q,y (k) = §,,/, the decomposed coefficients for a given S can be found by

Ao = [ s [k [dks SOk ko k) (k1) () Ks). (528)

Note that the three-dimensional integral can now be split into three separate one-dimensional
integrals in range [kmin,kmax|. By performing the three integrals one by one, we obtain
a numerically stable algorithm that is fast and memory efficient. Decomposing a shape
evaluated on 1000° k grid points with respect to 30° Legendre basis functions only takes a
few seconds in our C code.

After we obtain coefficients from (5.28), we evaluate the accuracy of the expansion using
the inner product defined in tetrapyd because it is the only physical region where our shape
function matters. Since the cube includes tetrapyd, good convergence in the cube guarantees
a small error within the tetrapyd in most cases. The only exception is when the target shape

function blows up outside the tetrapyd. We will see such examples in later sections.

5.2 Implementation and optimisation

CMB bispectrum estimation is a numerically challenging task. All existing approaches exploit
the separability of multi-dimensional integrals to reduce computational complexity because
it is practically impossible otherwise. Planck analysis provided constraints to primordial
non-Gaussianity from various bispectrum templates, but having limited computing resources
was what stopped us from exploring further. Numerous shapes such as complex oscillatory
models have been outside our reach, despite being theoretically well-motivated.

The CMB-BEST formalism significantly reduces the amount of computation needed
for CMB bispectrum estimation. Obtaining the linear term [3““ in (5.9), however, is still

prohibitively expensive unless thoroughly optimised. Performance is especially crucial here
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since it directly affects the breadth of models we can cover; the faster the code, the higher
number of modes we can have, and so the more shapes we can expand in our basis accurately.

In this section, we provide details for various aspects of our optimisation process: algo-
rithm design, parallel computing, and data locality improvements. The final specifications
and data files used are outlined at the end.

Throughout this section, we will treat the functions of interest as discrete arrays. Our
notation for indices and their limits are summarised in Table 5.1. We adopt a simple
trapezoidal rule for most numerical integrals. For the u integral in (5.11), however, we use
the Gauss-Legendre quadrature computed from the public code QUADPTS [108] due to the
highly oscillatory and unstable nature of the integral. Multi-dimensional arrays are stored in
the row-major order following the C convention for efficiency. We use the HEALPIX library
[117] for pixelisation of the sky, which includes the LIBSHARP [118] library for Spherical
Harmonic Transforms (SHTSs).

Table 5.1 Our index conventions for discretised arrays and their sizes.

Index Range Description

r [0,N;) Line-of-sight integral r grid index.

PDj [0, pmax) Mode number. p; is a shorthand for (py, p2, p3).

i 10, Nej] Ma.p ngmber. Index z =0 correspon('is to the observed CMB map,
while 7 > 0 are for simulated Gaussian maps.

n [0,Npix)  Map pixel number.

l,m [0,/max)  Spherical harmonic multipole moments. Note — < m < [.

u [0,Ny) Gauss-Legendre quadrature p grid index.

5.2.1 Algorithm

Our goal is to compute three key quantities: I (5.11), BP (5.8), and B! (5.9). The matrix
I" allows us to find the normalisation factor N for a given theoretical template, while the
two fB’s provide the amplitude of fxr for each of the CMB maps and simulations used up to
normalisation.

In most cases of interest, the bottleneck point of our pipeline is computing the linear term
B'". Even though the I" matrix computation through (5.11) grows more rapidly with the
number of basis functions (e< p8 . ) than the B’s (o< p...), it does not involve operations with
high-definition maps and remains subdominant in terms of the total cost.
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We dedicate this section to explaining our algorithm design for B computation in detail.

The discretised versions of (5.8-5.9) are given by

BCUb<iap17p27p3> - ZZ M(r7i7p17n) 'M(r7i7p27n) 'M(r7i7p37n)7 (529)
Blin(iaplap27p3) = ZZZ M(rajaplan) 'M(I’,j,pz,n) -M(r,i,p3,n). (5.30)
T

The order of indices is chosen such that later calculations have optimal memory layouts.
Some integral weights and factors are absorbed into arrays for brevity.

Note that the data arrays for different values of r are completely independent of each other.
This provides us with a natural way to distribute tasks. We compute and save contributions
to B’s for each r separately. The summation over r is performed at the end. Therefore,
throughout the rest of this chapter, we assume that r is fixed and drop the r dependence in
the descriptions of our algorithms.

The filtered map arrays M(i,p,n) are obtained as follows. A given map i is first
transformed into spherical harmonic coefficients a'? (I,m)s via SHT. We then compute
Gp,1) *a(i,l,m)/C(l) from (5.6), which is fed into reverse SHT to synthesise the filtered
maps.

As arough guide to the size of each summation, we typically have N, ~ 150 simulations,
Pmax = 30 modes, and N,ix = 50,331,648 pixels. 4 Considering the fact that one double-
precision array of size ~ 50 million pixels takes about 400MB of memory space, this is
indeed a task for supercomputers.

Our first and most straightforward method of computing s is outlined in Algorithm 1.
The computational complexity of each innermost loop is annotated on the right-hand side.

Here, we first obtain the filtered maps M (i, p,n) via SHT for each map and mode. The
full results are stored in memory. Next, we iterate through each map and set of modes
(p1,p2, p3) and sum over each of the map pixels to obtain 3? and B'". Symmetries in the
indices are respected; we only loop over (p1, p2, p3) satisfying p; > p, for the linear terms,

and p| > p» > p3 for the cubic ones.

3
max>

SHT typically scales as o< [ where [nax 1S the maximum degree of spherical harmonic
functions used. The total number of pixels Npix grows o I2.. when chosen appropriately
for resolution, hence the SHT costs O(Ngims * Pmax -Nsif). The most expensive part of this
algorithm is still the loop where we calculate the linear term, which scales as O(stimS P

Npix)-

4This value corresponds to Nz, = 2048 in Healpix. Npjx = 12stid .
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Algorithm 1 Computing f3s: the naive method

[\ T NG TN NG TN NG T NG T NG S SO S T T T e T e S Serupp Sy
AR e A U i Al

e N T

Allocate M (i, p,n) > Memory ~ Ngims - Pmax - Npix
for each map i do
3/2
for each mode p do > O(Nsims * Pmax -Npiéc )
compute M (i, p,n) by SHT
end for
end for > M(i, p,n) ready
for each map i do
for each set of modes (p1, p2, p3) do
for each pixel n do > O(Ngims - P ox “ Npix)
BCUb(iap17p27p3) += M(i7p17n) 'M(i7p27n> 'M(i>p37n)
end for
end for
: end for

: for each map i do

for each map j # i do
for each set of modes (p1, p2, p3) do
for each pixel n do > O(NZs - Poax - Npix)
B (i, p1,p2, p3) +=M(j,p1,n)-M(j,p2,n)-M(i,p3,n)
end for
end for
end for

- end for
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Our first major optimisation comes from the observation that we may swap the order
of summations to reduce the computation. By precomputing C(p1, p2,n) = ¥ ;M(j,p1,n) -
M(j, p2,n), we require one fewer loop over maps for B''", leading to a factor of Ngjps ~ 150
improvement. Algorithm 2 shows a pseudocode for this method.

Algorithm 2 Computing f3s: optimised for computation

1: Allocate M (i, p,n) > Memory ~ Nims - Pmax - Npix
2: Allocate C(p1, p2,n) > Memory ~ p2_ - Npix
3:
4: for each map i do
5: for each mode p do > O(Ngims * Pmax ~N§i£2)
6: compute M (i, p,n) by SHT
7: end for
8: end for > M(i, p,n) ready
9:
10: for each map j do
11: for each pair of modes (p1, p>) do
12: for each pixel n do > O(Ngims * Prax “Npix)
13: C(p1,p2,n) +=M(j,p1,n)-M(j, p2,n)
14: end for
15: end for
16: end for > C(py, p2,n) ready
17:
18: for each map i do
19: for each set of modes (p1, p2, p3) do
20: for each pixel n do > O(Nsims * Danax. * Npix)
21; B (i, p1, p2, p3) += M(i, p1,n) - M(i, pa,n) - M(i, p3,n)
22: Blln(i7p17p2ap3) += C(pl,pz,n)-M(i,p3,n)
23: end for
24: end for
25: end for

Note that the resulting sum of B™ includes an unwanted contribution from the case
where j = i, since C(p1, pa,n) is obtained by summing over all maps. Thankfully, this extra
contribution is exactly equal to the cubic term. We just have to subtract 3 from the total
sum to get the correct value of Blin,

We shaved off a whole loop at the cost of extra memory usage. For our purposes
Nsims ~ 150 > pmax = 30, so the additional space required for C(p, p2,n) is relatively small
compared to M(i, p,n). The symmetry in p; and p; also means that we only need to store
Pmax(Pmax + 1)/2 maps instead of p2,,, for C.
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Our next challenge is the amount of memory required to save M (i, p,n). For the pa-
rameters mentioned above, this is ~ 1.8TB, which is quite significant. Although it is not
impossible to find supercomputing systems which can accommodate such large arrays, re-
ducing the memory usage would be highly beneficial. We seek to achieve this whilst keeping
the overall computational complexity to be O(Nsims - pfnax -Npix) as before.

We observe that most summations are done for a single map i. The array C(py, p2,n) is
required to be computed before the main loop for B, but otherwise there are no ‘mixing’
between the maps. We exploited this fact to develop Algorithm 3.

Algorithm 3 Computing f3s: fast and memory efficient

1: Allocate m(p,n) > Memory ~ pmax - Npix
2: Allocate C(py, p2,n) > Memory ~ pa., - Npix
3:
4: for each map i do
5 for each mode p do > O(Ngims * Pmax 'Nsiiz)
6: compute M (i, p,n) by SHT and store in m(p,n)
7 end for
8
9 for each pair of modes (p1, p2) do
10: for each pixel n do > O(Nsims * Dnax * Npix)
11: C(p1,p2,n) +=m(py,n)-m(p2,n)
12: end for
13: end for
14: end for > C(p1, p2,n) ready
15:
16: for each map i do
17: for each of mode p do > O(Ngims * Pmax 'Nsif)
18: compute M (i, p,n) by SHT and store in m(p,n)
19: end for
20:
21: for each set of modes (p1, p2, p3) do
22: for each pixel n do > O(Nsims * Panax. * Npix)
23: B (i, p1, p2, p3) += m(p1,n) -m(pa,n) -m(p3,n)
24: B (i, p1, p2, p3) +=C(p1, pa,n) - m(p3,n)
25: end for
26: end for
27: end for

Algorithm 3 dramatically reduces the amount of memory required, at the cost of doubling
the SHTs for computing M (i, p,n)s. The first time through, SHT results from each map are
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used to find C(py, p2,n). After a full loop over maps we have C(py, pa,n) ready, another set
of SHTs for each map allows us to obtain the 3’s.

SHTs have a subdominant contribution to the total computation time even after becoming
doubled in number. One of the main strengths of Algorithm 3 is that both the memory
and computation time scale linearly with the number of simulations used, Ngjys. In the
future when a larger number of Gaussian simulations are required to acquire a more accurate
estimate of the linear term, it is straightforward to adapt our method accordingly.

We choose Algorithm 3 to be our main method of computing 3’s for CMB-BEST.

5.2.2 Parallel computing

In order to fully benefit from modern computer architecture, parallel computing is essential.
In this section, we outline how CMB-BEST was parallelised for optimal performance on
supercomputers.

Following [119], we discuss parallelisation at three different levels: domain, thread, and
data. They mostly correspond to nodes, cores, and registers in modern computer clusters.
Each level has distinct characteristics which make them ideal for different parallelisation
techniques. We make full use of each level in our methodology.

Domain parallelism refers to dividing the task into many domains where each domain
entails heavy computation while having limited data communication between them. Since
the domains are largely independent, Message Passing Interface (MPI) [120] is a suitable
tool for parallelisation. MPI is a communication protocol where many instances (‘ranks’)
of the same code may transfer data while running separately from each other A perfect
example of domain parallelism in CMB-BEST would be our line-of-sight integration over r.
Almost no data is shared between different rs, despite the heavy computational cost from
map operations within each domain. CMB-BEST therefore scales well with the number of
MPI ranks and requires minimal effort to parallelise using MPI.

Thread parallelism opportunities arise when there are many independent computational
tasks on a single set of data. Most modern supercomputers use multi-core processors. Each
core, Or processing unit, can run one or more threads, executing instructions independently
from each other while sharing memory space. Note that MPI would not be as effective here
due to a large amount of data sharing needed; ranks have to either continuously communicate
with each other, or store individual copies of the data. This type of parallelism is extremely
common in many applications, including SHTs and map integrations in CMB-BEST. Open
Multi-Processing (OpenMP) [121] is one of the most popular implementations of multi-
threading publicly available. We utilise the C OpenMP interface in our code.
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Data parallelism applies when the same arithmetic operations are applied to multiple
data items, ideally adjacent in memory space. This type of parallel processing is called
SIMD: Single Instruction, Multiple Data. Many procedures involving large arrays fall into
this category. We use Advanced Vector Extensions (AVX) supported by Intel processors
to exploit data parallelism in CMB-BEST, especially for the operations involving large
(filtered) map arrays. In particular, Intel’s Xeon Phi series implement AVX-512, where
512-bit registers hold up to 8 double-precision floating numbers [119]. A single instruction
can be applied to all of them at once in a single clock cycle, providing a major boost to the
computation speed. We explicitly align large arrays in memory for optimal vectorisation
performance.

Table 5.2 summarises the discussions in this section.

Table 5.2 Three levels of parallelism utilised in CMB-BEST. The levels and characteristics
are chosen based on [119].

Characteristics Methods Utilisation

¢ Limited data communication

_ between domains * Line of sight r integra-
Domain MPI tion split into indepen-
Parallelism ¢ Heavy computation within the dent tasks

domain
* Data sharing between threads  SHT
Thread
reac * High proportion of indepen- OpenMP * Map patches divided
Parallelism
dent tasks across threads
* Map pixel integration vec-
torised using AVX-512
Data e Same operation applied to o
Parallelism mu]tip]e data items SIMD * Data vectors exphcltly

aligned in memory for op-
timal performance




122 High-Resolution CMB Bispectrum Estimator

5.2.3 Data locality

We implemented Algorithm 3 and profiled it using the Intel VTune Amplifier. Our program
was found to be memory-bound, which means that its speed is limited mainly by the amount
of memory available and the speed of memory access. The CPU speed, rate of the file
I/0, and MPI communication all have subdominant contributions in comparison. This is
somewhat expected since our method deals with large map arrays. The number of operations
on each data element is small compared to the size of data, causing the CPUs to be ‘starved’
for data to work on most of the time. Our final set of optimisation focusses on improving
memory access patterns.

CPUs of most modern computers contain a small amount of memory attached to them
called cache. Recently used data and instructions are stored in cache memory so that reusing
them is more efficient; accessing them is much faster than loading from the main, larger
memory often shared with other CPUs. A cache is often divided into multiple levels. The
smallest and fastest is the L1 cache, which is the first level a CPU checks for data. When
the required data is not stored in the L1 cache, a cache miss occurs. The system then has to
look further down the cache levels to fetch the wanted data, incurring a large time loss. It is
therefore crucial to reuse data as many times as possible before it is lost from the cache.

Furthermore, the cache ‘caches’ memory locations in units of cache lines, or chunks of
memory containing multiple data elements. Accessing memory locally therefore significantly
increases the chance of cache hits, boosting overall performance. Array operations, for
example, are optimised when they are stored in consecutive memory locations due to this
fact.

CMB-BEST has been modified in two ways to improve data locality and memory
performance. The first one was simple yet effective; we made sure to initialise large arrays
within the same OpenMP construct as the main computation loop. This guarantees the
physical memory of array elements to be allocated near the cores where they are going to
be used. Memory access during the main computation loop is therefore much faster than it
would be otherwise. Systems with non-uniform memory access (NUMA) especially benefit
from this method. For CMB-BEST, we gained a two times speed-up compared to when a
single master thread initialised the entire array.

The second optimisation centres around cache blocking, a technique used to maximise

data reuse. Let us focus on the main computation loop in Algorithm 3:
for each set of modes (p1, p2, p3) do
for each pixel n do
B (i, p1, p2,p3) +=m(p1,n) -m(pa,n) -m(p3,n)
B"(i, p1,p2, p3) +=C(p1,p2,n) - m(p3.n)
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end for
end for

In every loop over the set of modes (p1, p2, p3), four large arrays are read from memory:
m(p1,-), m(pa,-), m(ps,-), and C(py,p2,-). Each of them takes up around 400MB of
memory. Since their size is greater than the cache storage capacity, data in front of them are
gone from the cache by the time a loop over n completes. All four arrays will then have to be
loaded from the main memory again when the next iteration starts.

Suppose that the map arrays had smaller sizes and all of them fit in one of the cache
levels instead. After one loop iteration over n for (py, p2, p3), the arrays now remain in the
cache. Then the next loop on (p1, pa, p3 + 1) begins, and the arrays m(py,-), m(py,-), and
C(p1,p2,-) are required again for computation. They can now be accessed from the cache,
which saves a significant amount of time. We see that each data element is reused multiple
times before being discarded from the cache in this case.

Motivated by these facts, we divide the map array into equally sized blocks so that each

patch can now fit inside the cache memory. We restructure the loop as follows.

for each block b do
for each set of modes (p1, p2, p3) do
for each pixel ' in block do
B (i, p1, p2, p3) +=m(p1,n') -m(pa,n') -m(p3,n’)
B (i, p1,p2, p3) +=C(p1,p2,n’) -m(p3,n’)
end for
end for
end for

New pixel numbers are calculated as n’ = B - b+ n, where B is the size of each block and
0 < n < B. We have not changed the total number of arithmetic operations required, so the
computational complexity remains constant. Meanwhile, data locality within each block is
greatly improved, as each of the blocked arrays is now small enough to fit in the cache. Each
data element is accessed in closer succession temporarily as well.

One caveat here is that having too many blocks may degrade the overall performance.
There exists a non-negligible overhead coming from an extra for loop and the OpenMP
construct used over n’. The block size divided by the number of cores should not be smaller
than the size of cache lines either. The optimal size of cache blocks depends on the memory
architecture of the processor used. This often needs to be found empirically.

Figure (5.3) shows how the runtime of a small test code varies with the number of cache
blocks used. The code was run on the Intel Gold 6154 processor, which is an 18-core
high-performance chip with total L1, L2, and L3 cache memory sizes of 1.125MiB, 18MiB,
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and 24.74MiB, respectively [122]. Even though some parameters such as Ngjy,¢ are tuned

down for faster testing, this is representative of the full computation.
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Fig. 5.3 Cache block optimisation. The total wall time of a test code for computing s was
measured while varying the number of cache blocks used. Having 128 blocks is optimal for
the 18-core Intel Gold 6154 processor.

We find a significant improvement in performance moving from 32 to 48 blocks when
the block size drops from 12MiB to 8MiB. This is precisely when three blocks are allowed to
fit in the L3 cache (24.7MiB) at the same time. Improved data locality dramatically reduces
time spent on memory access as we expected. The optimal number of blocks was found to be
128; each segment contains about 400,000 elements and takes up 3MiB of memory, which
is 1/6 and 1/8 of L2 and L3 cache size, respectively. We gain roughly three times speed-up
compared to the original code without cache blocking.

Algorithm 4 summarises our final implementation of B computation code, now with

cache blocking and OpenMP construct indicators.

5.3 Validation

CMB bispectrum estimation is not only computationally challenging but also prone to
numerical instabilities unless implemented carefully. We invested a considerable amount
of time after the development of CMB-BEST validating various aspects of the code. We
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Algorithm 4 Computing fs: our final implementation

1: Allocate m(p,n)
2: Allocate C(py, p2,n)
3: > Both initialised within OpenMP construct over n

4: for each map i do
5 for each mode p do
6: compute M (i, p,n) by SHT and store in m(p,n) > OpenMP within SHT
7 end for
8
9 for each block b do
10: for each pair of modes (py,p>) do
11: for each pixel n’ in block do > OpenMP for construct
12: C(p17p27n/) += m(pl,n’)-m(pz,n')
13: end for
14: end for
15: end for
16: end for > C(p1, p2,n) ready
17:
18: for each map i do
19: for each of mode p do
20: compute M (i, p,n) by SHT and store in m(p,n) > OpenMP within SHT
21: end for
22:
23: for each block b do
24: for each set of modes (p1, p2, p3) do
25: for each pixel n’ in block do > OpenMP for construct
26: B (i, p1, pa, p3) +=m(p1,n') -m(pa,n’) - m(p3,n')
27: B (i,p1,p2,p3) +=C(p1,p2,1") -m(p3,n’)
28: end for
29: end for

30: end for
31: end for
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highlight some of our validation efforts in this section, checking consistency within the

program itself (section 5.3.1) and against existing code such as Modal [60] (section 5.3.2).

5.3.1 Internal consistency checks

CMB-BEST is a general code where one can freely choose a set of basis functions. Three
of our main options are the ‘KSW’ basis (5.16), ‘Legendre’ basis (5.18, augmented with
q(k) = k"s~2) as discussed previously in Section 5.1.2, and Fourier basis (5.17). Both KSW
and Legendre basis sets can cover the standard templates: local, equilateral, and orthogonal
(see e.g., [70] for definitions). The KSW basis provides an exact form for the three templates
by choosing appropriate powers of k as its basis elements. On the other hand, the templates
are expanded in terms of separable Legendre polynomials up to some fixed degree ppax for
the Legendre basis. As long as pmax 1s sufficiently large, most smooth bispectrum shapes can
be represented accurately.

Our first consistency check is shown in Figure 5.4, where we compare the fnr estimates
from the Planck 2018 CMB map and 140 full focal plane (FFP10) realistic Gaussian simula-
tions [123]. We use CMB maps obtained through the SMICA component separation method
[76, 124]. On the left-hand side are scatter plots of fni, values obtained using each of the
two basis sets. In an ideal case where the two estimates are identical for every test map, all
the points would lie on a straight line given by y = x. Drawn in dashed red line is the best
linear fit to the data. Its slope, intercept, and the R-squared value are annotated below. On
the right is a more detailed plot of the computed fni. for each map.

We see that results from the two different sets of basis are in good agreement. The
R-squared value of the linear fit is greater than 0.99 for Local, and 0.999 for Equilateral and
Orthogonal shapes. The intercept and sample mean are also near zero. We do not find any
systematic discrepancies across the shapes from individual map estimates either.

The fact that the results from the KSW and Legendre basis are consistent validates
multiple aspects of our pipeline. First of all, we can deduce that the Legendre basis expansion
(5.28) accurately represents the bispectrum shapes of interest, especially since the KSW basis
is designed to be exact for the three standard shapes. Having ppax = 30 modes is more than
sufficient to achieve sub-percent accuracy. Figure 5.5 explicitly compares results obtained
from Legendre bases with ppmax = 29 and 30 while keeping everything else the same. The
two results show close agreement; the largest of the errors is less than O(107°). This further
confirms that our expansion using Legendre polynomials has completely converged.

Secondly, we validated the accuracy of the linear term and lensing-ISW bias calculations
through the sample mean of fni. estimates from lensed simulations. When we exclude either
of the two, we find the sample mean to be far from zero. The error is especially large for the
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Fig. 5.4 A map-by-map comparison of the fni, estimates evaluated using the KSW and
Legendre basis sets for three standard templates. The Planck 2018 CMB map and 140 FFP10
simulations have been used, each representing a single point on the scatter plot (left). Details
of the linear best-fit to data (red) are annotated below. Shown on the right-hand side are
plots of the differences in the fni values for each map, together with the 16 and 20 intervals
shaded in blue. In the ideal case where the two basis sets yield identical results, we should
see all the points lie on the line y = x for the left plot and y = 0 for the right plot. For more
information on each of the three theoretical templates used, see e.g., [70].
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Fig. 5.5 A map-by-map comparison of the fni, estimates for three standard templates eval-
uated using the Legendre basis with different numbers of modes: pmax = 29 and 30. The
two results agree with errors less than O(107>), as can be seen from the scatter plots (left)
and the map-by-map residual plots (right). Shaded in blue are the 10 and 20 levels of the
JnL estimator. This confirms that our expansion using Legendre polynomials has completely
converged for these bispectrum shapes.
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local template. The linear term accounts for the anisotropy introduced by masking parts of
the observed sky. The squeezed limit contribution to the bispectrum comes from couplings
between a pair of small-scale modes and a large-scale one, making it more susceptible to
bias from partial coverage. The presence of sky masks therefore offsets the fni. estimates
from the local shape which has a large squeezed limit. Lensing-ISW bias is also the largest in
squeezed configurations and affects Local fni.. The fact that our lensed Gaussian simulations
have fnis fluctuating around 0 validates our bias subtractions.

Lastly, we check that CMB-BEST accurately preserves the optimality of the CMB
bispectrum estimator. In the weak non-Gaussian limit, the estimator (5.1) saturates the
Cramer-Rao bound. Its expected variance is the lowest amongst all possible unbiased bispec-
trum estimators of fn.. Heuristically speaking, the estimator extracts as much information
about non-Gaussianity as possible from the CMB bispectrum. As we discussed in Chap-
ter 4, this bound only depends on the Fisher information determined from normalisation;
Var[fx ] = F~' = 6/N. We refer to this value as the theoretical variance (the best possible
from theory). Meanwhile, individual fni, estimates from simulated maps and independent
and normally distributed. Sample variance obtained from Ngjy,g simulations should therefore
approach the theoretical variance as Ngj,s — 0. Table 5.3 summarises calculated values of

the two types of variances discussed.

Table 5.3 Comparison of the sample and theoretical variances obtained from fyi estimates
of standard shapes, computed using each of the KSW and Legendre basis sets. Sample
variances are within 10 of theoretical values assuming that the 140 individual fnr’s from
simulated maps are normally distributed. This is statistically consistent with the optimality
of our bispectrum estimator.

Template Basis Sample Variance Theoretical Variance (Sample)/(Theory)
KSW 5.5 53 1.04
Local
Legendre 59 5.7 1.04
. KSW 61.2 67.7 0.90
Equilateral
Legendre 61.7 67.7 0.91
KSW 37.7 33.7 1.12
Orthogonal
Legendre 38.0 33.9 1.12

Note that the numbers do not match up exactly between sample and theoretical variances,
and the results for equilateral template appear to be more optimal than the theory allows. This

is because the sample variance §2 = (¥;( flsfll)2) /Nsims follows a chi-squared distribution with
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Nsims — 1 degrees of freedom under our assumptions. The standard deviation corresponding
to the (normalised) distribution equals /2 /(Nsims — 1), which is 2 0.12 for Ngjps = 140. It is
therefore not surprising to see our sample variances differ by up to 12% from the theoretical
ones.

We performed further checks to ensure that this discrepancy is due to statistical fluctua-
tions rather than systematic errors. The ratio between the sample and theoretical variances
remained nearly constant across the KSW and Legendre basis from CMB-BEST, as well as
Planck’s Modal pipeline on the same set of simulated maps. Meanwhile, sample variances
evaluated from independent sets of simulations do fluctuate around the theoretical value.
A closer check has been done for each of the mode sets (p1, p2, p3) in the Legendre basis.
The decomposition coefficient « is set to be 1 at (py, p2, p3) and its permutations, and then
vanishing everywhere else. Substituting into (5.7) and (5.10), we get

. 1 b.(i Jin. (i
L= | (Boipios —3Bpisshs ) +5 eve (531)
N=6 (FP1P2P37P1P2P3 + FP1P2P37P1P3172 +oe rP1P2P371!73le71 ) : (5.32)

Here we assumed that py, py, p3 are distinct for convenience. Corresponding sample and
theoretical variances have been compared for each of the modes. Overall, they are found to
be statistically consistent as before.

While Figure 5.4 shows excellent agreement between results from the KSW and Legendre
basis sets overall, there are small but noticeable scatters in the plot for the local shape. The
slope of linear best fit is also slightly above 1, meaning that fnr. estimates from the Legendre
routine tend to vary 5% more than the KSW ones. A larger variance means less information
extracted. Our first hypothesis was that the Legendre polynomials are losing a small fraction
of information from the CMB due to their fixed k range in their definition (5.18). We test
this by increasing the range by changing kmax /kmin = 1000 to 2000. The results are shown
in Figure 5.6.

Our main focus of this figure is on the local template results. Estimates from the KSW
and Legendre basis sets match almost perfectly now. When altering the ratio kmax /kmin, We
fixed the kmax and lowered kpi,. Including more small-k, or large-scale modes provides
extra information in the bispectrum. The local shape is especially affected by this since
squeezed configurations including one of these extra large scale modes have a more significant
contribution to the total estimate. Also, note that kmax /kmin = 2000 is comfortably larger
than the equivalent ratio in harmonic space Inax /Imin = 2500/2.

Despite the improvements in the squeezed limit and local template, we may not simply

set kmax/kmin = 2000 as default because it hurts convergence in other shapes of interest. As
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Fig. 5.6 A map-by-map comparison of the fni. estimates for three standard templates from
the KSW and Legendre basis sets, similar to Figure 5.4. Here, the Legendre basis has a wider
k domain: kmax/kmin = 2000 instead of the usual 1000. The number of modes (pmax) has
been reduced to 10 instead of 30 due to limited computational resources. We see that the
additional information gained from large scales (low k) fixes the small scatters present in

local
NL

of the previous plot, however at the cost of increased spread in fe"' and fgithe,
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can be seen from the Equilateral and Orthogonal plots in Figure 5.6, newer estimates of
JNL are less accurate for shapes other than Local. The fact that ppax = 10 here rather than
30 is one of the main causes of the drop in precision, but having smaller k values within
Legendre polynomials” domain also has a negative impact. Shapes with a 1/k scaling in their
expressions vary more dramatically when k is small and tend to be harder to expand in terms
of Legendre polynomials.

For the final check of internal consistency, we inspect how each point in the line of sight
integral (r) contributes to fni, estimates. CMB-BEST’s formalism makes it straightforward
to plot the r integrand since the integral is done at the very end. Figure 5.7 shows plots of
J/NL contributions from different sources and for the three standard bispectrum templates.
Shaded in light blue are the 10 regions obtained from 140 simulations for each point in r.

As illustrated in plots on the right-hand side of Figure 5.7, the vast majority of signal
comes from recombination around » = 14,000Mpc. In fact, its contribution is dominant
enough that neglecting signals from everywhere else would still be a good approximation.
CMB-BEST uses an adaptive r grid which is denser around recombination, following
the works of [65]. Other small but notable contributions to the total estimate come from
reionisation (r ~ 10,000Mpc) and the ISW effect (r < 5,000Mpc).

Zooming in on an interval around recombination, significant contributions from the cubic
term to fni of the Local template is rather prominent (upper left of Figure 5.7). The signal is
sufficiently larger than the expected random fluctuations evaluated from Gaussian simulations,
which could be hinting at non-zero primordial non-Gaussianity. However, contributions from
the linear term (shown orange) completely counterbalance it, bringing the total down to
values consistent with zero. This again validates the accuracy of our methodology; bias to
J/NL generated from anisotropic sky masks are precisely subtracted off using the linear terms.

We do not find any statistically significant signal across the whole r range otherwise,
especially when taking the look-elsewhere effect into account. It is not meaningful to find
a couple of 3-40 values when the other 500 points are simply disregarded. If we detect
primordial non-Gaussianity in the future, however, then these plots of fxi, contributions for

each r will provide valuable insights into where the signal comes from.

5.3.2 Consistency with Planck

In the previous section, we demonstrated how the integrity of CMB-BEST was validated.
The next set of validations involves comparing it against other existing codes for CMB
bispectrum estimation.

We test primordial non-Gaussianity constraints on Local, Equilateral and Orthogonal
templates against the Planck 2018 analysis [23]. Two sets of basis functions, KSW and
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Fig. 5.7 Contributions to the total fni, from each point in the line-of-sight integral over r
for standard templates. On the left-hand side, we plot contributions from the cubic, linear,
and lensing-ISW bias, as well as the total fyr. Shown in blue is the 1o interval obtained
from the corresponding terms in 140 FFP10 Gaussian simulations. We focus on the r interval
around recombination where most of the signal comes from. Plots on the right-hand side
show the fnr. contributions over the whole r range in log scale. The ISW effect, reionisation,
and recombination are responsible for the three most noticeable peaks in all three plots.
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Legendre, have been used to compute fni, from the foreground-cleaned CMB map included
in the final data release. We choose SMICA as the main component separation method since it
was shown to be the most reliable and robust for Planck bispectrum analysis [23, 30, 70, 124].
Table 5.4 summarises the constraints obtained, together with the quoted results from the

Planck team’s own KSW estimator and Modal 2 pipeline.

Table 5.4 Constraints on fnr, for the standard shapes from the KSW and Legendre basis of
CMB-BEST, in comparison with the Planck 2018 analysis [23]. Only the temperature data
from the SMICA foreground-cleaned map and FFP10 simulations were used for the analysis.
Values shown are after the lensing bias subtraction, with uncertainties at 68% CL.

CMB-BEST Planck 2018
Shape KSW Legendre KSW Modal
Local —224+55 -20£59 -05+56 —-06+64
Equilateral 17 + 61 15 + 62 7 £ 66 34 £+ 67
Orthogonal  —7 +£ 38 -9 + 38 —15+36 —26 £43

Note that while the constraints from CMB-BEST are largely consistent with Planck 2018
results, there are discrepancies of up to 0.30. However, there are variations around this level
within the estimates from different pipelines of Planck as well. Equilateral constraints from
Planck’s own KSW and Modal estimators shown here, for example, differ by ~ 0.40. A
similar amount of fluctuation can be found in the full result shown in [23]. In an ideal world,
they should match exactly across different approaches as long as the same dataset is used.
However, the statistical significance of the individual fnr’s is not largely affected by such
variations.

We invested a significant proportion of our time investigating this error. Here we discuss
three potential areas which might account for the discrepancies. First of all, human error
during the implementation and estimation process should not be neglected. Bispectrum
analysis is complex and computationally expensive. Implementing it often involves writing a
long and heavily optimised code. During the development and testing stages, we found and
fixed many mistakes in our 10,000+ lines of C code. Various unit tests were performed in
the process to test individual sections of the code: basis expansion, projection to the / space,
SHTs, parallelisation, and more. Internal consistency checks were then used to verify the
integrity of the combined pipeline. The Planck team also went to great lengths to validate
and cross-check different methods [70]. It therefore seems unlikely that trivial mistakes are

causing the gap in results.
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The next source of error we studied is the parameter set. The cosmological parameters
we used for constraints in Table 5.4 are identical to those of the Planck Modal pipeline.
Small changes in cosmological parameters are also shown to have little effect on fnr [23, 30].
One major difference, however, is the number of Gaussian simulations used. We included
140 simulated maps while Modal has about 300. This number is mainly restricted by
computational resources required for the large Legendre basis in CMB-BEST. While we
found 140 to be sufficient for most cases, sample variance may cause some fluctuation in
the linear term and error bar. A rough estimate for sampling error is ~ /2 /Ngims =~ 0.12, as
calculated in the previous section. Other than N, more internal parameters such as the
grid density of discretised arrays have also been checked to yield consistent results when
varied.

We are left with systematic errors as potential causes for discrepancies. The most
significant bias to fnr, constraints is the lensing-ISW bias discussed in Section 3.3.4. Table 5.5
shows biases from the lensing bispectrum [20] for both CMB-BEST and Planck 2018 analysis.
The numbers vary but are consistent overall. Map-by-map comparisons of constraints from

the Legendre basis and Modal are shown in Figure 5.8.

Table 5.5 Bias to fni of standard shapes originating from the lensing bispectrum. We
compare CMB-BEST’s two different basis sets and the Planck 2018 analysis [23], using
SMICA map and FFP10 simulations.

CMB-BEST Planck 2018

Shape KSW Legendre KSW Modal
Local 7.5 8.2 7.3 6.9
Equilateral —0.7 —0.6 -0.7 4.0
Orthogonal —22 —22 -23 =25

Out of the three templates, the local shape shows the largest scatter between constraints.
Comparing fnr.’s of simulated maps from CMB-BEST and Modal, we find a correlation of
0.916. The intercept value of 0.78 in the linear fit is mainly due to the sample mean present
in Modal. Legendre’s sample mean is 0.069 for Local, while Modal’s is —0.698. Otherwise,
the difference between the two pipelines is distributed such that its sample standard deviation
equals 2.5, skewness is —0.14, and kurtosis is 0.19. Having a low level of small skewness and
kurtosis of less than 1 implies that the distribution is close to a univariate normal, consistent
with random fluctuation. Similarly, we do not find any significant systematic error from the

equilateral and orthogonal shapes either.
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Fig. 5.8 A map-by-map comparison of the fni, estimates obtained from the CMB-BEST’s
Legendre basis set against the Modal estimator results of the Planck 2018 analysis [23]. The
first 140 FFP10 simulations are used here. On the left-hand side are scatter plots where each
simulation is represented by a point according to fni estimates of standard templates. Their
linear best fit lines are shown in red. Differences in the estimates from the two routines are
shown map-by-map on the right-hand side, together with the 10 and 20 levels shaded in blue.
Overall, CMB-BEST and Modal are in good agreement without any significant systematic
erTors.
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Having not found a clear source of error, we conclude that the small gaps between the
JNL estimates in Table 5.4 mainly come from differences in methodology and are consistent
with random fluctuations.

We now move on to constraining models with oscillations. The simplest template for
oscillatory models is the feature model studied in Chapter 4. We use a template shape function
of the form S™(k, ko, k3) = sin(@(k; + k> +k3) + ¢). Figure 5.9 shows fy constraints
obtained from the Legendre basis and compares them with Modal results from the Planck
2018 analysis. The ‘phase’ ¢ is set to zero, while the oscillation ‘frequency’ @ was varied
from 10 Mpc to 350 Mpc. We follow [95] and increase ® in steps of 10 so that correlations

between shapes with different w are kept low.
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Fig. 5.9 The fnr. estimates for the feature models with S(ky,k2,k3) = sin(@(k; + k& +k3), ob-
tained using the Legendre basis (blue) and Planck’s Modal (black). Top: a direct comparison
of fni for different values of . Error bars indicate the expected standard deviations in the
estimator calculated using 140 Gaussian simulations. Bottom: signal-to-noise fNr./0 (fNL),
again for a range of @ values. Shaded in blue are the 10 and 20 levels. We see that the two
approaches yield coherent estimates overall.
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The Legendre basis accurately expands the feature model template using Legendre
polynomials via basis expansion outlined in (5.28). Estimates from the two methods, CMB-
BEST’s Legendre and Planck’s Modal, are mostly compatible. The most notable difference
is at @ = 230Mpc where fnp from Legendre is more than 10 larger compared to Modal.
Even though it is interesting that the new estimate now passes the 20 threshold, having one
such point out of 35 shown here has less statistical significance.

Both the Legendre and Modal approaches involve expanding the shape function with
respect to a polynomial basis. Polynomials are versatile but have limited resolution for
oscillatory signals; it cannot resolve shapes with a number of oscillations greater than
the maximum degree of polynomials (pmax here). For the Legendre basis with k range
[2.09 x 1074,2.09 x 10~ "Mpc~! and ppnax = 30, frequencies greater than 7 pmax/ (kmax —
kmin) = 436Mpc are unresolvable. In reality, numerics start to break before this value. We do
not have a reference analytic value for true fyi s, but evaluating correlations between shapes
is effective for checking our numerics.

Figure 5.10 shows correlations between fni_s from feature models with different frequency
ws. The plots show the correlation between fynp estimates from 140 FFP10 Gaussian
simulations (‘sample’), together with the one evaluated using our ‘late-time’ inner product
(’theoretical’) given by

2 OREAV)

h b b
b(i),b(j)> — hbl"hbl3" bl (5.33)
< ; C, Gl
= Y a0, Y e IR D T (5.34)
k7 €1, CiCiy '
JEj J
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_ o), 536)

where I is defined in (5.11). In the limit Ngjg — oo, the sample correlation can be shown to
approach the theoretical value in the weakly non-Gaussian limit. We see from Figure 5.10
that they indeed display the same qualitative behaviour for Ny, = 140.

The templates with @ < 300 are highly uncorrelated with each other, as can be seen from
small non-diagonal elements. Noticeable correlations on lines @, = @, =+ ¢ for ¢ = 70, 140
arise from resonance between oscillations and transfer functions at the Baryonic Acoustic
Oscillation (BAO) scale, as we observed in Figure 4.7. Faint lines can also be found near
= —;+c, ¢c=70,140,210,--- for similar reasons.



5.3 Validation 139

Sample Theo!
600 p 1.00 600 oy 1.00
0.75 0.75
500 A 500
0.50 0.50
400 4 400 A
0.25 0.25
g 300 0.00 5 300 4 0.00
-0.25 -0.25
200 A 200 A
-0.50 -0.50
100 100 4
00 -0.75 oo -0.75
r - - - - -1.00 - T T T T -1.00
100 200 300 400 500 600 100 200 300 400 500 600
wy w1
Sample
600 1.00 600 1.00
0.75 0.75
500 A 500
0.50 0.50
400 4 400 A
0.25 0.25
3 3001 0.00 3 300 0.00

—0.25 -0.25

200 200

—0.50 -0.50

100 A

100 A

—0.75 -0.75

T : : : : -1.00 . T : . :
100 200 300 400 500 600 100 200 300 400 500 600
w1 w1

-1.00

Fig. 5.10 Correlations between feature model templates S(ky,kz,k3) = sin(@(k; + ko +k3) +
¢) with different @ values, for ¢ = 0 (top two) and ¢ = /2 (bottom two). Results are
from the Legendre basis. ‘Sample’ correlations are obtained from fni, estimates from 140
Gaussian simulations, while ‘theory’ correlations come from the inner product induced by
L'y, paps.pipap; Matrix in (5.11). Large non-diagonal correlations appear around @ ~ 300,
after which oscillations in the shape are no longer resolved by polynomials of degree up to

Pmax-
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When @ > 300, however, large non-diagonal correlations appear. This is about when the
oscillation frequency surpasses the resolution set by the highest degree of polynomials. Our
basis expansion becomes inaccurate after this point. There are interesting linear structures
present, with slopes roughly equal to 2,1/2 and subsequently 4,1/4. These lines come
from aliasing caused by subsampling rapid oscillations; our basis picks up @’ = /2 signal
instead. @, /2 = —; + 70 and other pairs of (®;, @) resonate to give large non-diagonal
correlations.

We verify our claim that numerical inaccuracies at high @s are caused by the lack of
resolution due to a limited number of polynomial modes. Figure 5.11 illustrates how having
a smaller k range allows us to constrain faster oscillations more accurately. Note that we also
change /. correspondingly since smaller scales are neglected. The plot on the right-hand
side uses a Legendre basis with the (kmin,kmax) range rescaled by a factor of 3/4. Fewer
oscillations appear within the k interval and are therefore easier to expand using fewer
polynomials. As we expected, the scale at which non-diagonal correlations blow up is now
shifted to a higher frequency, @ ~ (4/3) - 300.
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Fig. 5.11 Theoretical correlations between feature model templates with different frequency
s, as described in Figure 5.10. The phase ¢ is set to zero in both cases, while the right
plot is obtained from the Legendre basis with a different k range. The maximum [ value is
reduced from 2500 to 2000, shifting (kmin,kmax) by a factor of 2000/2500 = 0.75. Having a
smaller k range means fewer oscillations within the k interval for same @ which provides
better effective resolution. The right plot does indeed show smaller non-diagonal correlations
at high frequencies.

There is a subtlety around the fnr estimates obtained from inaccurate primordial basis
expansions. CMB-BEST computes s and I's with respect to a fixed Legendre basis, which
has been shown to be accurate for each and every polynomial mode. Therefore, even when

the primordial basis is unable to resolve rapid oscillations, the fni. estimates we obtain are
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nevertheless meaningful; they are simply probing a different model. The constraints are not
for the given shape function, but rather its projection to the vector subspace spanned by the
basis functions as shown in (5.24). Detecting a non-zero fnr here can still have significant
implications.

Another popular template for models with oscillations is the ‘resonance’ shape parametrised
as S(ky,ky,k3) = sin(wlog(k; + k2 + k3) + ¢). Log-spaced oscillations are numerically
harder to deal with since the oscillation frequency diverges as k — 0. Note also that
any scaling factors to the k’s can be absorbed into the phase via log(c(ky +k, +k3)) =
log(ky +kp +k3) +1og(c). For our Legendre basis with kmax /kmin fixed to 1000, the full k
range includes ~ 1.1 oscillations. Any frequency larger than ~ 27 therefore cannot be
expanded using pmax = 30 polynomials. We still explore shapes with higher ws, however,
since the basis can pick up slower oscillations in higher k£ values. Corresponding constraints
should be taken with a grain of salt; they probe bispectrum shapes similar to the resonance
template. Low-k oscillations are especially likely to be wiped out from these shapes.

Figure 5.12 compares fni. constraints for the resonance template over a range of @s. As
can be seen from the top two plots, the signal-to-noise values obtained from the Legendre
basis and Modal are relatively consistent up until @ =~ 35, after which the two results start
diverging significantly. The threshold is about the same for ‘sinlog’ (¢ = 0) and ‘coslog’
(¢ = m/2) shapes.

Recall that the sample o from fxi, estimates of Gaussian simulations should converge to
the theoretical value calculated from the Fisher information as Ng,s — o, since the CMB
bispectrum estimator is optimal. We have checked that the sample and theoretical variances
are consistent for standard templates in Section 5.3.1, using both KSW and Legendre basis
sets. The bottom two plots in Figure 5.9 show the equivalent results for the resonance
template with varying .

Similarly to the feature models studied in Chapter 4, uncertainty in the estimated fnrs
increases as we raise ®, exploring more rapid oscillations in the bispectrum. Both the Modal
and Legendre methods lose their ability to resolve shapes with ws larger than 35. The
constraints are then no longer for the precise resonance shape but rather an approximation
to it. A notable difference between Modal and CMB-BEST’s Legendre basis is their
behaviour at high @. Modal’s numerical accuracy is completely lost after @ ~ 50, leading to
disproportionately large bispectra and small . On the other hand, Legendre retains stability
in its basis expansion, yielding constraints for approximate bispectrum shapes closest to the
true, high-frequency ones.

A detailed comparison between the sample and theoretical variances is depicted in Figure

5.13. This serves as a useful consistency check within the CMB-BEST pipeline. Sample
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Fig. 5.12 Constraints for the resonance shape S(ky,k2,k3) = sin(wlog(k; + ka +k3) + ¢)
with varying frequency ws, while the phase ¢ is set to 0 (‘SinLog’) and /2 (‘CosLog’).
Results are obtained using CMB-BEST’s Legendre basis (blue) and Planck’s Modal estimator
(black). Top two: signal-to-noise significance of the estimated fnps with their 16 and 20
levels shaded in blue. Bottom two: standard deviations of the fnp estimates against @
calculated from fnis of 140 Gaussian simulations (sample) and the I" matrix (theory).
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Fig. 5.13 Ratios between the sample and theoretical variances obtained from the Legendre
basis for resonance shapes. The sample variance is calculated from the fni. estimates of
140 Gaussian simulations. The 16 and 20 intervals (shaded in blue) are chosen based on
a y’-distribution, which accurately describes the statistics of the sample variance as long
as the fnrs are Gaussian distributed. The results are statistically consistent with random
fluctuations except potentially at @ = 20, as discussed in the main text.
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variances are calculated from a finite number of fni, samples from simulations. We test if
these estimates are compatible with the underlying distribution: y? with Ny, — 1 degrees
of freedom in this case. We achieve the desired consistency for both ¢ =0 and ¢ = /2.
One potentially meaningful outlier is at @ = 20 and ¢ = 0, where the sample estimate is
below 60% of the expected level. This anomaly is not likely to be a numerical error specific
to CMB-BEST since a similar dip can be found from Modal results in Figure 5.12. No
significant irregularity is found for different phases at the same frequency. We classify this
point as a random fluctuation for now, but a further investigation using an independent set of
Gaussian simulations is required to be certain.

As with the feature models before, we plot the correlation matrix between the templates
with different ws in Figure 5.14. Shapes with similar @s are naturally correlated, but most
off-diagonal terms of the matrix vanish. Even for @ > 35 where the basis expansion becomes
less accurate, cross-correlations tend to remain small until @ ~ 75. We verify the stability
of CMB-BEST’s Legendre basis expansion; best approximations to the highly oscillatory
template are found, allowing us to continue exploring independent bispectrum shapes with

the characteristic log-spaced oscillations.

5.3.3 Proof of concept

PRIMODAL is a fast and efficient numerical code for computing bispectra of primordial
perturbations given a single field inflation Lagrangian using in-in formalism [116]. The com-
puted bispectrum is expressed as coefficients of a separable basis expansion in PRIMODAL,
as opposed to a grid of discrete points like other in-in codes. Choosing an equivalent basis set
for CMB-BEST therefore creates a direct link between the two codes. The combined pipeline
is capable of constraining specific inflation models directly without the use of approximate
templates. Such template-free bispectrum analysis also enables a fast and extensive scan of
theory parameters.

Collaborating closely with the main author of PRIMODAL, Philip Clarke, we verified
the integrity of the combined PRIMODAL + CMB-BEST routine. We thoroughly tested the
consistency of basis functions, their orthogonalisation, and convergence. Both PRIMODAL
and CMB-BEST are now in the exploitation phase. We present a working example of the
combined pipeline as a proof of concept.

DBI inflation [125-128] is a well-studied single-field inflation model inspired by string

theory. Its action follows the general form (3.15), with a non-canonical kinetic term given by

PX.9) =~ [VIZ2F@X ~1] - V(o). (537)
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Fig. 5.14 Correlations between the resonance model templates of shape given by
S(ky, ko, k3) = sin(wlog(k; + kz + k3) + ¢) with different @ values, for (a) ¢ = 0 and (b)
¢ = m/2. ‘Sample’ correlations are obtained from the Legendre basis fyr, estimates from
140 Gaussian simulations. ‘Theory’ correlations come from the inner product induced by I'
as shown in (5.36).
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where X = —%gﬂvamavq) as before. f(¢) is an arbitrary function called the warp factor.
We choose

ADBI

e

for some theory parameters Apgy, Vp, and Bir. The sound speed can then be obtained from

V(0)=Vo—2n20®,  m=/Bw H. (5.38)

7(9) = ;

(3.16), which evaluates to c]S)BI ~ 3/ BirN, under some slow-roll approximations [127]. Here,
N, denotes the number of e-folds until the end of inflation.

DBI inflation generates non-Gaussianity with its shape similar to the equilateral template
(3.11). The latest constraints on the model come from the Planck CMB bispectrum analysis

using an approximate template

6A% —~3/7
(k1k2k3) (lq +ky + k3

BRBY(ky ko, k3) = ZkS +Y( 2k§‘kj—3k,.3k§)

i#]

+ Y (Kkjk -4k Kk) | (5.39)
i# j#l

We switched to a convention where the potential ® is used instead of {. On superhorizon
scales at the end of inflation, they differ by a constant factor: ® = (3/5){. With respect to

this template, the theoretical bispectrum from DBI inflation has an amplitude equal to

DBI _ﬁ
NL 108

L~ 1] : (5.40)

2
(cPP)

an approximation which is accurate as long as the DBI sound speed cPB! < 1. Constraints
on DBI therefore place limits on c¢g. Planck 2018 analysis [23] found fl\?fl =46 + 58 with
a 68% confidence level from CMB temperature data. The corresponding bound on the speed
of sound is ¢?B! > 0.079.

We reproduce the DBI sound speed constraint from Planck 2018 analysis using the
PRIMODAL+CMB-BEST routine. Unlike the Planck analysis, our method does not require
templates to connect inflationary predictions to CMB data. Instead of using a single estimate
from an approximate template, we scan over DBI theory parameters and constrain the
individual primordial bispectrum directly. A given parameter set can be ruled out if the
corresponding constraint on fyr, excludes fni = 1 with high confidence.

One notable limitation in the current implementation of PRIMODAL is that the details of
how inflation ends are not prescribed. This means that the scales during inflation and what

we observe cannot be mapped directly, which restricts our ability to translate the results into
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a constraint on more fundamental parameters such as Bigr. Our work here still serves as a
useful validation of the combined pipeline. For the DBI sound speed scan, the approximate
relation (5.40) is used to relate the output c¢;—sound speed at some pivot scale during
horizon crossing—from PRIMODAL with the physical DBI sound speed cPB!. Numerous
other validation tests we performed such as convergence tests with respect to the basis size
Pmax are unaffected by this caveat and still serve as a proof of concept for our combined
pipeline.

The parameter PR is varied within the interval [0.1885,0.58] while fixing other param-
eters as Appr = 2.00475 x 10'5, Vy = 5.2 x 10~ 12My, and @y = 0.46042My,, where My is
the Planck mass. Further details of the scan will be included in [31]. The results are depicted
in Figure 5.15.

First of all, we check that our Legendre basis with py,x = 30 has converged and accurately
represents the primordial bispectrum from DBI inflation. Values of the fxi estimates obtained
from pmax = 30 were tested against the equivalent result with pp,x = 29 and shown to differ
by less than 0.01%, as can be seen in Figure 5.15. In order to thoroughly investigate the
degree of convergence, we studied a late-time equivalent of € in (5.27) used to compare
primordial bispectrum shapes;

Naw /400
2(f1,6) = — (fl

Nsim i=1

M\ 2
S ) , (5.41)

where fl(i) and fz(i) denote the fni estimates for the ith Gaussian simulated map from the two
routines. £2 measures the mean squared error in the two sets of fxr. signal-to-noises for Ngjm
simulations. Comparing results from the Legendre basis with ppa,x = 30 and 25 across the
scan, we confirmed that € < 0.01 in the full range and € ~ 0.002 for the majority. A plot
with the full result will be provided in [31].

Secondly, we constrain the DBI sound speed as ¢ £, 0.056 with 95% confidence using
CMB temperature data from Planck. Each of the points in Figure 5.15 is normalised to some
/NL such that fyp. = 1 corresponds to the bispectrum predicted by the model. Estimates
from the Planck 2018 map take negative values with error bars small enough to exclude
/L = 1 with 20 confidence level when ¢y < 0.056. Our constraint is similar but not
identical to the result from Planck 2018 analysis which reads ¢ > 0.079. The discrepancy
stems from differences in the constraints for the DBI template (5.39): fl%]f’l =27 +£58 for
PRIMODAL+CMB-BEST whereas fﬁfl =46 £ 58 for Planck. This ~ 0.32¢ gap in signal
to noise is mainly because the Modal expansion is incomplete and the correlation between
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Fig. 5.15 Constraints on the DBI model with varying sound speed cs. Primordial bispectrum
computed from PRIMODAL is fed directly into CMB-BEST in the form of coefficients o, », ,
appearing in Legendre basis expansion. Constraints from the Legendre basis with ppa,x = 30
(black +) are shown in comparison with pn.x = 29 (black x). 1o and 20 confidence
intervals around 0 are shaded in blue and represent the uncertainty in the estimated fnis.
Bispectrum shapes are normalised so that fn;p = 1 corresponds to the DBI model under
consideration. Our constraint on DBI sound speed is ¢PB! > 0.056 with 95% confidence
level. Equivalent results from an approximate DBI bispectrum template (5.39) (blue dashed)
give the ¢PB! bound which is identical up to two significant figures.
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the expanded and full DBI template equals r ~ 0.95. As discussed in Appendix B of [70],
this level of correlation causes an expected scatter in fnis approximately equal to 0.30.

Lastly, we verify that the DBI template (5.39) accurately approximates the full numerical
result obtained from PRIMODAL. Drawn in blue-dashed on Figure 5.15, the difference
between the fni constraints obtained using PRIMODAL and the DBI template differ by
0(0.010).

We extend the PRIMODAL+CMB-BEST pipeline to study DBI models with resonance.
The primordial bispectrum appears similar to the DBI template but has extra log-spaced
oscillations superimposed. The Planck analysis covered the DBI shape and the resonance
templates independently [23] but has not constrained the combination of the two. Our
method studies the bispectrum obtained directly from inflation without using approximate
templates. We vary the effective frequency @ of the oscillations while keeping other DBI
theory parameters fixed. Figure 5.16 summarises the results of the scan.

T T T T T
0.0 0.5 1.0 1.5 20 25 3.0 35 40
Effective Frequency w

Fig. 5.16 Constraints on the DBI model with oscillations imposed on the inflationary potential,
causing resonance-type bispectra approximately parametrised as sin(@log(k; +kz +k3)+ ¢@).
The primordial bispectrum computed from PRIMODAL for various oscillation frequency @
has been fed directly to CMB-BEST. The results (black line) are shown together with the
ones obtained from a smaller basis where pmax = 29 (blue x). The blue regions in the plot
represent 10 and 20 confidence intervals.

We find no significant detection of non-Gaussianity in the parameter range we study.
Note also that our fnr. estimates become unreliable after @ = 2.0 as the Legendre basis fails

to represent rapid oscillations accurately. This can be seen by comparing the estimates from
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the bases of size pmax = 30 and 29 in the figure. Augmenting the Legendre basis with specific
functions or choosing an alternative set of basis [116] can improve the convergence up to
o ~ 5 (to be included in [31]), which is a significant improvement but still rather restrictive
compared to the viable parameter range of @ < 35 for the ‘vanilla’ resonance models shown
in Figure 5.12.

Investigating the lack of convergence has revealed a more fundamental issue with the
primordial basis expansion. Earlier in this chapter, we discussed how the tetrapyd domain
of the primordial bispectrum can be extended to the cube given by [kmin, kmax] such that
the decomposition coefficients can be computed accurately and efficiently via (5.28). By
doing so, we are expanding the given bispectrum in a cube which contains the tetrapyd while
analytically continuing the function in between the two. Having good convergence in the
cube then implies good convergence in the tetrapyd inside it. However, in cases where the
target function behaves badly outside the tetrapyd, trying to fit the function in the whole cube
instead of the tetrapyd may be suboptimal.

We demonstrate this issue by computing the fni. constraints using a bispectrum template
S(ky, ko, kz) = el (k) ky, k3) sin(@log(ky + ky +k3)): the equilateral shape with sine-log
oscillations imposed. Figure 5.17 shows two plots analogous to Figure 5.14. The correla-
tions between fnis estimated from different values of @ are computed using two different
approaches for the primordial basis expansion. Shown on the left-hand side is the result
for when we evaluate the given shape function S(k,k>,k3) within the whole cube, as we
have so far. We see that the basis fails to express the given bispectrum template accurately
after @ = 4. Large correlations shown in the plot are simply artefacts of inaccuracy in the
expansion.

On the right-hand side is the result for which the shape function values outside the
tetrapyd were manually set to zero during the primordial basis expansion. The modified
shape function is still continuous within the cubic domain, since the equilateral shape vanishes
on boundaries of the tetrapyd despite its divergence outside of it. We see that this simple
trick has dramatically improved the basis’ ability to expand highly oscillatory bispectrum
templates. The cross-correlations between templates remain small up until @ ~ 75, quite
similar to what we saw for the sine-log templates. We confirm that it is indeed the bad
behaviour of the templates outside the tetrapyd domain during the primordial basis expansion

that causes the lack of convergence. We plan to explore this topic further in the future.
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Fig. 5.17 Correlations between fn. constraints for the enveloped resonance shape
S(ky, ko, k3) = S (k1 ko, k3) sin(wlog(ky + ky 4 k3)) with different ws. Since the given
shape behaves badly in the region outside the tetrapyd but within the cubic domain of (5.28),
we observe large off-diagonal correlations in the original Legendre basis expansion (Left).
Manually setting the shape function to zero at these unphysical configurations therefore
dramatically improves numerical performance (Right).

Summary

In this chapter, we presented a thorough review of our work on the high-resolution bispectrum
estimator CMB-BEST. Starting with the mathematical framework of our pipeline, we
showed that our formalism combines the strengths of conventional approaches to bispectrum
estimation; we can handle highly oscillatory functions as accurately as the KSW estimator
whilst covering a broad range of models like Modal. In order to tackle the computational
complexity, we thoroughly optimised the code at both algorithmic and implementation levels.
The code was then parallelised for maximal utilisation of high-performance computing
clusters.

With the completed code we performed various tests to validate the integrity of CMB-
BEST. We showed that the two different choices of basis functions—monomials and
Legendre polynomials—give consistent constraints for the standard bispectrum shapes.
Furthermore, we compared our results to those from the Modal estimator using the Planck
2018 data and found that they agree on a map-by-map basis. Oscillatory shapes such as
the feature and resonance templates were also constrained; by analysing the correlation
between the templates with different oscillation frequencies, we showed that our basis can
handle oscillatory shapes as accurately as the Planck analysis using the Legendre basis of

size€ pmax = 30.
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Having validated the pipeline, we provided a proof-of-concept example where CMB-
BEST is combined with PRIMODAL to constrain inflation models with non-canonical kinetic
terms. The combined pipeline is capable of constraining inflation models directly without
using approximate templates. We studied the DBI inflation models while varying the speed
of sound parameter to obtain the constraint cIS)BI > 0.056 with 95% confidence. We are

currently preparing to publish the work presented here as [31].



Chapter 6
Conclusion

The standard model of cosmology has been remarkably successful; the CMB power spectrum
from Planck, for example, shows an exquisite fit to the ACDM model with only six free
parameters. Many questions remain unanswered, however, especially regarding early universe
physics. The most widely accepted theory for the early universe is inflation, whose prediction
of the scale-invariant primordial spectra has been tested to be consistent with the observed
data. Inflation also resolves the horizon and flatness problems present in the vanilla Big Bang
cosmology. The simplest scenario of the single-field slow-roll inflation with a canonical
kinetic term can explain the current observations, but numerous other physically well-
motivated scenarios are yet to be ruled out.

The key to distinguishing different models of inflation is primordial non-Gaussianity.
Deviations from the most canonical inflation model leave weak non-Gaussian signatures
in the primordial perturbations. These imprints are best captured in the bispectrum of the
primordial perturbations. Studying the shape and amplitude of the primordial bispectrum,
therefore, allows us to constrain various inflation models directly. The CMB is the ideal
probe for this job since its anisotropy depends linearly on the initial density perturbations.
The CMB bispectrum hence directly relates to the primordial bispectrum and is used to
construct the optimal estimator for the primordial non-Gaussianity parameter fnr .

The most recent Planck analysis has constrained fni, to great precision using the CMB
bispectrum estimator. No primordial source of non-Gaussianity has been found, and fnrs
for the standard shapes are currently consistent with 0. More interesting ‘hints’ of non-
Gaussianity have been found in models with oscillations in the bispectrum. Signals of 3-4¢
significance have been found in these models, but scanning over a large parameter space
meant that these are not yet conclusive detections. A further investigation using independent

and more precise measurements would be extremely beneficial.
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The next generation of CMB experiments is anticipated to measure the polarisation of
the CMB with greatly enhanced sensitivity. Given that the Planck constraints on oscillatory
models benefited much more from the inclusion of polarisation data than other shapes, we
predict that the constraining power would benefit immensely from the future CMB data.
Our work presented in Chapter 4 forecasts that the most sensitive CMB Stage-4 experiment
specification is expected to yield a factor of 1.7-2.2 times more stringent constraints compared
to Planck.

Despite the bright prospects and growing interest in constraining oscillatory models, a
large part of the model and parameter space are currently unconstrained due to numerical and
computational difficulties. The CMB bispectrum estimation is a challenging task where the
naive computation is practically impossible. There are two main approaches to this: KSW
and Modal.

The KSW estimator exploits the inherent separability of the primordial bispectrum
template and can accurately constrain even highly oscillatory shapes but is restrictive in
the type of bispectrum shapes it can handle. On the other hand, the Modal estimator uses
separable mode functions to expand the primordial and late-time bispectra and hence is able
to constrain a wide range of non-separable shapes. However, dealing with high-frequency
oscillations is challenging for Modal because there are two separate basis sets—primordial
and late-time—to consider; high-frequency primordial basis functions lose a lot of their
features during the projection, making it hard to expand them using the late-time basis
functions accurately.

Our novel approach to the CMB bispectrum estimation, CMB-BEST, is designed to com-
bine the strengths of the KSW and Modal estimators, and hence is suitable for constraining
general oscillatory models using future CMB data. We use the primordial basis expansion
to decompose the given bispectrum shape into separable terms like Modal but then apply
a KSW-like method to obtain constraints on each of them. CMB-BEST works for general
basis sets and contains the KSW estimator as a sub-case.

The main strength of CMB-BEST lies in its flexibility and accuracy; the code can take
general basis functions which get projected using an exact analytic form. This would be
especially useful for studying general bispectrum shapes with high-frequency oscillations
that are currently unconstrained due to practical difficulties in numerical calculations.

The CMB-BEST pipeline is, however, computationally more costly than both the KSW
and Modal ones. We therefore invested a significant amount of time optimising the code at
both algorithmic and implementation levels. The code was then parallelised on multiple levels
to fully benefit from the modern computing architecture. The total runtime has improved

many orders of magnitude throughout this process. The completed code has then thoroughly
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tested against the Modal pipeline used in the Planck 2018 analysis. We found that the results
are consistent with Planck map-by-map using 140 simulated maps, for the standard shapes
as well as the feature and resonance templates.

CMB-BEST has been validated and is now in the exploitation phase. Working in col-
laboration with the authors of PRIMODAL, we developed a fluid pipeline where a given
inflationary Lagrangian can be directly constrained without the use of approximate templates.
This allows a fast and accurate constraint to the specific model under consideration. As
a proof-of-concept example, we presented work on constraining the DBI sound speed in
Chapter 5, where we obtained c]S)BI > 0.056 with 95% confidence. The combined PRI-
MODAL+CMB-BEST pipeline can perform similar scans on other theoretical parameters,
which we plan to do in the near future.

We further demonstrated that CMB-BEST can indeed handle high-frequency oscillations
of the resonance-type bispectra more stably compared to Modal. Its resolving power is
limited only by the accuracy in its primordial basis expansion, unlike Modal which also
depends on the late-time counterpart. Our next goal is to develop and utilise specialised basis
sets tailored to highly oscillatory bispectrum shapes of interest.

There are currently two main routes for improvement for CMB-BEST. First, the code
can be generalised to incorporate the E-mode polarisation data. Implementing this should be
straightforward using an orthonormalisation defined in Chapter 4. The additional computa-
tional complexity involved in the extra set of spherical harmonic transforms for polarisation is
expected to be subdominant and have a small impact overall. Second, we plan on improving
the current method used for the decomposition of a given primordial shape function. We
will investigate further the effect of the integration domain, as we saw from the example of
the DBI resonance models in Chapter 5. We note that this concerns only the last step of the
pipeline and the main parts of the bispectrum estimation remain unaffected.

It is truly an exciting time to be researching cosmology. Numerous future experiments
will soon provide us with ever more immense and accurate measurements of the observable
universe. We believe that the work presented here will add to the community’s continued

efforts to better understand the universe we live in.
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