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Photon Number Splitting Attack – Proposal and Analysis of
an Experimental Scheme

Ariel Ashkenazy, Yuval Idan, Dor Korn, Dror Fixler, Barak Dayan, and Eliahu Cohen*

Photon-number-splitting (PNS) is a well-known theoretical attack on quantum
key distribution (QKD) protocols that employ weak coherent states produced
by attenuated laser pulses. However, beyond the fact that it has not yet been
demonstrated experimentally, its plausibility and effect on quantum bit error
rate are questioned. In this work, an experimental scheme is presented for
PNS attack employing demonstrated technological capabilities, specifically a
single-photon Raman interaction (SPRINT) in a cavity-enhanced three-level
atomic system. Several aspects of the proposed implementation are
addressed, analytically and simulatively, and the eavesdropper’s information
gain by the attack is calculated. Furthermore, it is analytically shown that the
scheme results in a small (yet non-zero) quantum bit error rate, and a
comparison to purely theoretical analyses in the literature is presented. It is
believed that the inherent nonlinearity of the PNS attack unavoidably affects
the optical modes sent to the receiver, and accordingly will always result in
some error rate.

1. Introduction

Quantum key distribution (QKD), offering a provably secure
communication,[1] is one of the most developed quantum tech-
nologies to date. Many QKD protocols utilize single photons as
information carriers, with BB84[2] being the first and probably
most famous among them. In BB84, also known as the four-state
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protocol,[3] the information is encoded us-
ing any degree of freedom with two mu-
tually unbiased bases (where measuring
one property completely randomizes the
other[4]). For each bit, the sender, usually re-
ferred to as Alice, randomly chooses the en-
coding basis. Then, the receiver, Bob, also
randomly chooses the basis in which to
measure. Afterwards, Bob publishes (pub-
licly) which bases he had used, and Al-
ice and Bob discard any measurement
where their bases were different (half of the
measurements, on average), producing the
sifted key. Then, Alice and Bob select a ran-
dom string of bits from the sifted key and
compare their values. This process allows
them to detect any eavesdropping attempt,
since it inevitably introduces some quan-
tum bit error rate (QBER).
With current technology, however,

the use of single photons is impractical.
Instead, QKD experiments use the same setup but with weak co-
herent states (WCS), i.e., laser pulses attenuated such that the
average photon number, 𝜇, is low.[4] The use of WCS for QKD
opens the gate to the photon-number-splitting (PNS) attack,[3]

where Eve (the eavesdropper) performs quantumnon-demolition
(QND) measurements of the number of photons contained in
each pulse, and from any multi-photon pulse she extracts a sin-
gle photon (or more) while forwarding the rest to Bob. She keeps
her photons (in a quantummemory) until Alice and Bob publicly
announce their bases, and thenmeasures her photons in the cor-
rect basis.
In theory, it has been suggested that this attack will allow Eve

to extract full information from all multi-photon pulses without
introducing any QBER that can expose her attack to Alice and
Bob.[5] In fact, even if we assume that Eve is not in possession of a
quantummemory, she still benefits from a PNS attack since it al-
lows her to gain information about the key whenever she guesses
the correct basis. More advanced QKD protocols were invented
to protect against PNS attack, notably the SARG04,[6,7] the decoy-
state,[8,9] and the coherent one-way (COW)[10] protocols.
Even though the theoretical aspects of the attack were re-

searched extensively,[5,11–13] an experimental demonstration of
it has proved to be highly challenging and is still missing. To
date, only a modified version of the PNS attack had been real-
ized (in part) in a proof-of-principle experiment,[14] while some
researchers deem the full-scale implementation of the PNS at-
tack to be “unrealistic or even unphysical”.[15] Undoubtedly,
even detailed theoretical analyses of realistic physical implemen-
tations of a PNS attack are important since they can reveal
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Figure 1. a) A schematic diagram of the device employed for preparation of the states used in time-bin encoded BB84. The x-basis states are prepared
using optical switches that combine the early and late modes onto a single spatial mode. b) Detection in the z-basis is done simply by measuring
time-of-arrival, while for detection in the x-basis a reversed version of the preparation device is used.

inherent limitations on its feasibility and price in QBER to Bob’s
channel.
In this work, we present an implementation of the PNS at-

tack using single-photon Raman interaction (SPRINT) with a
single, cavity-enhanced atom. The SPRINT mechanism is well-
established both theoretically and experimentally,[16–18] capable of
extracting a single photon from an optical pulse.[19]

We give a full description of the proposed attack and present
an analytical analysis of the detection statistics at Bob’s and Eve’s
detectors. From the analysis, we extract Eve’s information gain
by the attack, as well as the QBER it introduces, as a function of
the mean photon number in the pulse. Eve’s information gain
is shown to be close (and in some cases equal) to the theoret-
ical limit, and thus the security of basic QKD protocols imple-
mented with WCS is indeed vulnerable to this realization of the
PNS attack. However, in contrary to the theoretical assumptions,
our results show that some QBER is introduced by the attack. We
believe that this is a consequence of the inherent nonlinearity of
any PNS attack, which unavoidably changes the (in our case tem-
poral) properties of the mode sent to Bob. These results demon-
strate the significance of such realistic and detailed theoretical
analyses of physical systems that can be harnessed for PNS at-
tack, and can also serve to advance the debate regarding the gen-
eral plausibility of this attack.
The rest of the paper is structured as follows. In the next sec-

tion, we discuss some necessary preliminaries regarding time-
bin encoded BB84 and SPRINT. In Section 3, we present our
proposal for SPRINT-based PNS attack, including a full mathe-
matical description of the attack, as well as the assumptions that
we make in this initial analysis. Then, in Section 4, we describe
our analysis results of the detection statistics following such an
attack, as well as the QBER it introduces and Eve’s information
gain. A comprehensive discussion of the results and a compari-
son with the theoretical works on PNS attack is then presented
in Section 5, followed by some concluding remarks.

2. Theoretical Background

2.1. Time-Bin Encoded BB84

In this work, we employ the time-bin encoded BB84 protocol,
but we believe the results are quite general. The implementation
of such a protocol with a single-photon source will serve as the

benchmark for all of our analyses. In this implementation, the
qubit is made up of two time-bins with the z-basis states being|0⟩ ≡ |1⟩e |0⟩l for a photon in the early time-bin and |1⟩ ≡ |0⟩e |1⟩l
for being in the late time-bin, and the x-basis is comprised of the
superposition states |±⟩ ≡ 1√

2

(|1⟩e |0⟩l ± |0⟩e |1⟩l), as described,
for instance, in ref. [20]. Using this encoding scheme, the z-basis
is usually referred to as the “time basis” while the x-basis is the
“phase basis”.[21] The states {|0⟩ , |+⟩} correspond to a bit value
of ‘0’, while a bit value of ‘1’ is assigned to the {|1⟩ , |−⟩} states.
As shown in Figure 1a, preparation of the z-basis states is done
using a delay line, while the x-basis states are prepared using op-
tical switches that first connect to the early mode and then to the
late mode,[22] thus combining the two temporal modes onto a
single spatial mode. Detection in the z-basis is done simply by
measuring the time-of-arrival of the photon, while for measure-
ment in the x-basis, a reversed version (up to an irrelevant global
phase) of the preparation device is used, as depicted in Figure 1b.
Note that, in realistic scenarios, Bob may get clicks in both detec-
tors, due to dark current. These bits cannot be discarded, as this
will allow Eve to perform an attack (in which she sends pulses
with large photon number after her eavesdropping). Instead, we
assume Bob assigns random bit values to these cases of double
detection, see ref. [11].
Without the presence of an eavesdropper, it is simple to ver-

ify that Bob’s probability to detect a state x, given that Alice has
prepared a state y, p (x|y), is:
p(0|0) = p(1|1) = p(+|+) = p(−|−) = 1

p(0|1) = p(1|0) = p(+|−) = p(−|+) = 0
(1)

And it is also simple to verify that if they use different bases, then:

p(0|±) = p(1|±) = p(±|0) = p(±|1) = 0.5 (2)

But of course, since after their public communication Alice and
Bob completely discard all instances where they have used differ-
ent bases, the sifted key consists of only the cases for which their
bases agree. Therefore, the QBER, defined as the probability that
Bob gets an incorrect bit value, is zero.
Now, if we assume Eve is present, she can perform an

intercept-resend (I-R) attack, i.e., she detects either in the z-basis
or the x-basis (using the scheme described in Figure 1b), and re-
sends to Bob a state that corresponds to her detection result. With
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probability half, Eve’s detection is in the wrong basis, and so Bob
gets a state in a basis that is different from Alice’s, resulting in a
QBER of 0.25 (i.e., probability half that Eve’s detection is inwrong
basis times probability half of getting the wrong bit value when
measuring in the wrong basis, Equation (2)).
Nowadays, the protocol is often implemented with WCS in-

stead of a single-photon source. A coherent state is defined as:

|𝛼⟩ = e−
|𝛼|2
2

∞∑
n=0

𝛼n√
n!

|n⟩ (3)

where 𝛼 ∈ ℂ. A coherent state is a superposition of number
states, and the probability of detecting n photons is:

p𝜇(n) = e−𝜇
𝜇n

n!
(4)

where 𝜇 ≡ |𝛼|2 is the average photon number.[23]

Alice’s preparation (using the same setup as in Figure 1a, but
with WCS input) results in the following z-basis states:

|0⟩ = |𝛼⟩e |0⟩l|1⟩ = |0⟩e |𝛼⟩l (5)

and x-basis states:

|±⟩ = | 𝛼√
2
⟩
e

| ±𝛼√
2
⟩
l

(6)

A simple analysis (see Appendix A) shows the statistics at Bob’s
side to be:

p(0|0) = p(1|1) = p(+|+) = p(−|−) = p𝜇(n ≥ 1)

p(0|1) = p(1|0) = p(+|−) = p(−|+) = 0
(7)

while detection in the wrong basis yields:

p(0|±) = p(1|±) = p(±|0) = p(±|1) = 1
2
p𝜇(n ≥ 1) (8)

So, for the sifted key, i.e., only the cases where Alice and Bob use
the same basis, the QBER is zero.
If now Eve performs an I-R attack on the communication, she

will introduce some QBER. The exact expression will depend on
her strategy for cases of no-detection or double detection. For the
cases of a single detection, Eve will resend aWCS in a state corre-
sponding to her measurement result. There is a 50% chance that
her detection is in the correct basis, in which case her measure-
ment result is the correct bit value and so the state she sends out
is the same as the original one and noQBER is introduced by her.
In the other half of the cases, she sends out a WCS state in the
wrong basis, and so Bob has a probability of error that is equal to
1
2
p𝜇(n ≥ 1), according to the above analysis. Thus, normalized by

the detection probability at Bob’s side (p𝜇(n ≥ 1)), a single detec-
tion event at Eve’s side, results in a QBER of 0.25. In principle,
Eve may utilize some more advanced techniques as explored, for
instance, in ref. [24, 25] or even attacks that affect directly Alice
and Bob’s setups, such as ref. [26, 27]. In addition, there is the
risk of Trojan-horse attacks.[28] In a recent work,[29] a new vari-
ant of the beamsplitter attack[30,31] was proposed in the context

of phase-matching QKD protocols.[32] In contrast to these beam-
splitter attacks, the method analyzed herewith relies on active,
nonlinear operations at Eve’s side, and thus has fundamentally
different properties and unique ramifications for the transmitted
quantum states of light.

2.2. SPRINT

First proposed in ref. [33], SPRINT-based systems were in-
vestigated theoretically and experimentally for single-photon
routing,[16] photon-atom qubit swapping,[17,18] and for determin-
istic extraction of a single photon from an optical pulse,[19] the
latter being the basis for the SPRINT-based PNS attack proposed
herein. The SPRINTmechanism occurs in a three-level system in
a Λ configuration, where each transition is coupled to a different
photonic mode. As depicted in Figure 2, the transition |R⟩ → |e⟩
is coupled to onemode, in our case the one propagating from left
to right in a waveguide, while the transition |T⟩ → |e⟩ is coupled
to another mode - here the opposite direction in the waveguide.
Starting in the |R⟩ state, a photon incident from the left will be re-
flected by the system due to destructive interference in the trans-
mitted direction.[16] This reflection results in the system transi-
tioning to the |T⟩ state. Any additional photons incident from
the left will be transmitted through the system without any dis-
turbance, since the |T⟩ state is not coupled to their propagation
direction. Experimental realizations of SPRINT use a 87Rb atom
coupled to a microresonator to which light is coupled via a ta-
pered nanofiber, and an extraction of a single photon out of coher-
ent states of different intensities (with average photon number of
0.2 − 11) was demonstrated. For further details of the theoretical
and experimental aspects of SPRINT the reader is referred to ref.
[17, 19] and references therein. In this paper, we focus on theo-
retical, rather than experimental, aspects underlying a possible
realization of PNS using SPRINT and the ensuing implications
for QKD.

3. SPRINT-Based PNS Attack

3.1. Description and Assumptions

With the theoretical background presented above, the proposal
of SPRINT-based PNS attack is straightforward – Eve places a
SPRINT-based system on the quantum communication chan-
nel, with the reflection output arm of the system directed to Bob,
and the transmission output arm connected to Eve’s detectors (or
quantum memory, if exists). For each qubit (which is comprised
of two time-bins, early and late), Eve initializes the system in the|R⟩ state. Thus, for single-photon pulses the photon is reflected
to Bob, while for multi-photon pulses a single photon is reflected
to Bob and the rest are transmitted to Eve. Note that in this im-
plementation of the PNS attack, from all multi-photon pulses Eve
steals all but one of the photons.
For the sake of this initial analysis of the attack, wemake some

conservative assumptions. First, we assume that the coupling
to the SPRINT-system does not introduce any losses or phase-
shifts, and it does not shift a photon from one time-bin (temporal
mode) to another. It only separates a single photon from multi-
photon pulses. We also assume perfect coupling, i.e., whenever

Adv. Quantum Technol. 2024, 7, 2300437 2300437 (3 of 16) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202300437, W

iley O
nline L

ibrary on [12/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 2. A schematic description of the SPRINT effect on a pulse containing n photons. The system is initially in the |R⟩ state, and a destructive
interference effect in the transmitted direction causes one photon (red) from the pulse to be reflected while the system transitions to the |T⟩ state. The|T⟩ state is a dark state in the sense that it is uncoupled to the incoming pulse, and accordingly the remaining n − 1 photons (blue) are transmitted
without interacting with the system.

the SPRINT-system starts in the |R⟩ state, the first incident pho-
ton is reflected and the rest (if any) are transmitted, with certainty.
In addition, we assume that Eve has full knowledge of the pro-
tocol that Alice and Bob are using and is able to optimize her
attack accordingly. For simplicity, we assume that the losses in
the quantum communication channel are negligible, and that
Bob’s and Eve’s detectors are perfect, i.e., 100% quantum yield,
no dark counts and no dead-time. Finally, we use the common
assumption that Bob does not have a photon number resolving
detector.[5] As for Eve’s quantummemory, we do not assume any-
thing but rather analyze the attack both with and without quan-
tum memory.
We note that a different configurationmay be proposed for the

implementation of PNS attack with SPRINT-system, namely one
in which Eve’s detectors are placed at the reflection output arm,
allowing her to block all incident single photon pulses, while
stealing a single photon out of every multi-photon pulse. How-
ever, this scheme adds a significant loss into the channel, since
in this configuration Bob will get a photon only when the original
pulse contains two or more photons, p𝜇(n ≥ 2). Therefore, this
configuration is less suitable for the present analysis in which
the losses in the quantum communication channel are assumed
to be negligible, and such a major increase of the loss will expose
Eve’s eavesdropping attempt.
As our analysis results show below, the QBER introduced by

SPRINT-based PNS attack is not zero. It is reasonable to assume
that Eve might want to limit the QBER she introduces into the
system below a certain threshold. Therefore, we assume that Eve
couples the quantum communication channel to the SPRINT-
system only for a part 0 ≤ 𝜁 ≤ 1 of the communicated qubits, and
that Eve is non-aggressive, i.e., Eve does not block or perform an

I-R attack on the single-photon pulses or on the (1 − 𝜁 ) part of
qubits that are not coupled to the system, so the QBER for these
cases is zero.

3.2. Mathematical Description

For each optical spatial mode in the system, we have two tempo-
ral modes, early (e) and late (l). The whole system is described
by the combined state of the early and late modes of the inci-
dent/transmitted spatial mode (T), the SPRINT-system (S), and
the early and late modes of the reflected spatial mode (R). The
SPRINT-system is initially in the reflecting state |R⟩, and upon
reflecting a single photon it transitions to the transmitting state,|T⟩, which keeps the following incident photons in the same spa-
tial mode. For the description of the state of the whole system, we
will use the following notation:

|𝜓⟩ = | ⟩T,e ⊗ | ⟩R,e ⊗ | ⟩S ⊗ | ⟩T,l ⊗ | ⟩R,l (9)

This notation and the assumptions above correspond to the de-
scription of the coupling of the incident photons to the SPRINT-
system, when acting on the subspace of the early temporal mode
(i.e., acting on | ⟩T,e ⊗ | ⟩R,e ⊗ | ⟩S subspace only), as the operator:
ŝe = IT,e ⊗ IR,e ⊗ |T⟩ ⟨T| + |0, 0, R⟩ ⟨0, 0, R|

+
∞∑
n=1

|n − 1, 1, T⟩ ⟨n, 0, R| (10)

Adv. Quantum Technol. 2024, 7, 2300437 2300437 (4 of 16) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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and, when acting on the late temporal mode (i.e., acting on | ⟩S ⊗| ⟩T,l ⊗ | ⟩R,l subspace only):
ŝl = |T⟩ ⟨T|⊗ IT,l ⊗ IR,l + |R, 0, 0⟩ ⟨R, 0, 0|

+
∞∑
n=1

|T, n − 1, 1⟩ ⟨R, n, 0| (11)

extending the description given in ref. [19]. In these expres-
sions for the operators, we do not describe the effect of the
coupling to the SPRINT-system on a general |n⟩ state at the
reflected mode, since such an operation is never realized, as
the reflected mode (for each temporal mode) is always assumed
to initially be in the vacuum state, i.e. IR = |0⟩ ⟨ 0|. This argu-
ment verifies that the operators are unitary, as ŝ†e ŝe = IT,e ⊗ IR,e ⊗|T⟩ ⟨T| + |0, 0, R⟩ ⟨0, 0, R| +∑∞

n=1 |n, 0, R⟩ ⟨n, 0, R| which is in-
deed the identity operator for all the possible initial states of the
system for the subspace of the early modes (the same can be eas-
ily verified for ŝl).
Thus, we can write the transformation for a coherent state

(Equation (3)) in the early temporal mode as:

ŝe |𝛼, 0, R⟩ = e−
|𝛼|2
2

(|0, 0, R⟩ + ∞∑
n=1

𝛼n√
n!

|n − 1, 1, T⟩) (12)

and for a coherent state in the late temporal mode:

ŝl |R, 𝛼, 0⟩ = e−
|𝛼|2
2

(|R, 0, 0⟩ + ∞∑
n=1

𝛼n√
n!

|T, n − 1, 1⟩) (13)

As for the mathematical description of other components of
the system – A 𝜑 phase shift is described by the unitary trans-
formation Û = exp [i𝜑n̂], and its effect for a coherent state is|𝛼⟩ → |𝛼ei𝜑⟩. A mirror introduces a phase shift of 𝜋

2
.[23]

A beamsplitter, with reflectance r and transmittance t, trans-
forms input annihilation operators to output operators according
to âout = tâin + irb̂in and b̂out = irâin + tb̂in, or equivalently âin =
tâout − irb̂out and b̂in = −irâout + tb̂out.

[34]

Remembering that a general photon number state can be writ-
ten as |n⟩ = (â†)n√

n!
|0⟩, the effect of a beamsplitter on a general in-

put state |n,m⟩ is:
|n,m⟩ → (tâ†out + irb̂†out)

n(irâ†out + tb̂†out)
m√

n!m!
|0, 0⟩ (14)

which, for a balanced beamsplitter (r = t = 1√
2
) can be written as:

(2n+mn!m!)−
1
2

n∑
ka=0

m∑
kb=0

(
n
ka

)(
m
kb

)
ika+kb

⋅
√
(n − ka + kb)!(m − kb + ka)! |n − ka + kb,m − kb + ka⟩ (15)

where ka (kb) is the number of photons, out of the initial n (m)
photons, reflected from the first (second) input mode.[35]

As described in Figure 1, early and late modes propagating in
two different spatial modes can be combined into a single spatial

mode using a simple optical switch that first connects the output
fiber to the short arm (early bin) and later connects it to the long
arm (late bin), thus getting both temporal modes on the same
spatial mode without any loss. The opposite operation can also
be implemented, separating two temporal modes propagating in
the same spatial mode into two different spatial modes, by revers-
ing the process.[22] Shifting between time-bins in the same spatial
mode, i.e., transforming the quantum state of an early mode into
a late mode, is just straightforward delay-line with integer multi-
ples of the time-bin separation, it introduces no relative phase.[36]

When analyzing the detection statistics in the transmitted (re-
flected)mode, we trace over the SPRINT-system and the reflected
(transmitted) modes to get the reduced density matrix, 𝜌T (𝜌R),
describing the transmitted (reflected) mode only. For that, the re-
lation tr(|B⟩ ⟨A|) = ⟨A|B⟩ is very useful.
Finally, a detector in some mode x is represented as a projec-

tion onto occupied states, Px = Ix − |0⟩x ⟨0|x, in the appropriate
mode. The expectation value of such a projector thus gives the
probability for a click in this mode’s detector. Double clicks are
assigned random bit values, as discussed above.

4. Analysis Results

4.1. Detection Statistics Following a SPRINT-Based PNS Attack

Using the above description of the SPRINT-based PNS attack, we
analyzed the detection statistics in Bob’s and Eve’s sides.
The detection probabilities obtained in the reflected arm

(Bob’s side) are (detailed calculations are presented in Ap-
pendix B):

pR(0|0) = pR(1|1) = p𝜇(n ≥ 1)

pR(1|0) = pR(0|1) = 0
(16)

pR(+|0) = pR(−|0) = pR(+|1) = pR(−|1) = 1
2
p𝜇(n ≥ 1) (17)

for z-basis states, and for x-basis states:

pR(0|+) = pR(0|−) = p 𝜇

2
(n ≥ 1)

pR(1|+) = pR(1|−) = p 𝜇

2
(n = 0) ⋅ p 𝜇

2
(n ≥ 1)

(18)

pR(+|+) = pR(−|−) = 1
2
p𝜇(n ≥ 1) + e−𝜇

∞∑
n=1

𝜇n
√
n

2nn!
(19)

pR(−|+) = pR(+|−) = 1
2
p𝜇(n ≥ 1) − e−𝜇

∞∑
n=1

𝜇n
√
n

2nn!
(20)

For the transmitted arm (Eve’s side), we obtain the follow-
ing detection statistics (detailed calculations are presented in Ap-
pendix C):

pT (0|0) = pT (1|1) = p𝜇(n ≥ 2)

pT (1|0) = pT (0|1) = 0
(21)

pT (+|0) = pT (−|0) = pT (+|1) = pT (−|1) = 1
2
p𝜇(n ≥ 2) (22)

Adv. Quantum Technol. 2024, 7, 2300437 2300437 (5 of 16) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 3. Ratio of correct bit detections at Eve’s side, for x-basis states,
following a SPRINT-based PNS attack.

for z-basis states, and for x-basis states:

pT (0|+) = pT (0|−) = (
1 + e

𝜇

2

)
A

pT (1|+) = pT (1|−) = (
1 + e

𝜇

2

)
A + p 𝜇

2
(n = 1) − 1

2
p𝜇(n = 1)

(23)

pT (+|+) = pT (−|−) = A + Bm−1−KA+KB
+ C (24)

pT (−|+) = pT (+|−) = A + Bn+j−m−KB+KA
+ C̃ (25)

where the definitions of A, BX , C, and C̃ are given in Appendix C.
The expressions for the detection probabilities of the x-basis

states are rather complex. To gain some insight into these expres-
sions, we have simulated pT (+|+)

pT (+|+)+pT (−|+) , i.e., the ratio of correct bit
detections to the total detection events at Eve’s side, by truncat-
ing the sums (appearing in the definitions of A, BX , C and C̃ to
n, j ≤ 10. This simulation result is given in Figure 3, showing that
at least 85% of Eve’s detections in the x-basis are correct, and the
percentage increases with increasing the average photon num-
ber, 𝜇.

4.2. QBER and Eve’s Information Gain

The analytic results presented in the previous section can be used
to calculate various interesting quantities. First, we look at the
QBER introduced by the attack. Comparing Equation (7) with
Equation (16), it is clear that the SPRINT-based attack has no ef-
fect on Bob’s detection statistics for z-basis states, and the QBER
for these states is zero. However, Equation (20) shows that for
x-basis states there is a non-zero probability that Bob will get a
wrong detection. Assuming Alice chooses between z-basis and
x-basis with equal probability of 0.5, the QBER introduced by the
SPRINT-based PNS attack is thus:

QBER = 1
2
𝜁

pR(−|+) + pR(+|−)
pR(+|+) + pR(−|+) + pR(+|−) + pR(−|−) (26)

where we have taken into account that the QBER is introduced
only for the ratio 𝜁 of bits for which Eve couples the SPRINT-
system to the quantum communication channel, as discussed in

Figure 4. QBER introduced by SPRINT-based PNS attack, as a function of
the average photon number, 𝜇, for different values of 𝜁 (the ratio of bits
for which Eve couples the SPRINT-system to the quantum communication
channel). In theoretical studies of the PNS attack, the QBER is usually
assumed to be zero for all 𝜇.

Section 3.1. A graph of the QBER as a function of 𝜇 is presented
in Figure 4. We note that the linear-like trend of Figures 3 and 4
is a bit deceiving – the behavior is only approximately linear for
small values of 𝜇 because of the involved exponents. It can be
readily verified that the linear approximation ceases to be valid
for larger 𝜇 values, eventually taking the plot in Figure 3 to 1,
and the 𝜁 = 1 plot in Figure 4 to 0.25 as expected.
We now move to the detection statistics at Eve’s side. Here

also, we see that for z-basis states (Equation (21)) Eve gets full
information whenever there is a multi-photon pulse, as was pre-
viously assumed in theoretical studies of PNS,[5] but for x-basis
states she may sometime get a wrong detection (as shown in
Figure 3). We are thus interested to calculate the probability for
Eve to obtain the correct bit value given that Bob got a detec-
tion at his side for that bit. We call this quantity Eve’s informa-
tion gain, denote it with G, and it is clear that 0.5 ≤ G ≤ 1, with
the information gain obtained by simple I-R attack being 0.75.
Note that in our implementation, Bob gets a detection whenever
the pulse is not empty, p𝜇(n ≥ 1), and out of these cases, Eve
will get a detection only if there are two or more photons in the
pulse, p𝜇(n ≥ 2), and the SPRINT-system is coupled to the quan-
tum communication channel. As mentioned above, we assume
that Eve is non-aggressive, and so for the cases of single-photon
pulses or when the SPRINT-system is not coupled to the channel,
she just guesses the bit value.
The calculation of Eve’s information gain depends on whether

Eve has a quantummemory or not. Assuming she has a quantum
memory, then for every pulse she manages to split she keeps her
photons until Alice and Bob announce their bases and then she
measures her photons in the correct basis. The expression for
Eve’s information gain in that case is:

GM =

1
2
p𝜇(n = 1) + 1

2
(1 − 𝜁 )p𝜇(n ≥ 2)

+ 1
4
𝜁
[
pT (+|+) + pT (−|−) + pT (0|0) + pT (1|1)]

p𝜇(n ≥ 1)
(27)
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Figure 5. Solid line - Eve’s information gain, (a) with and (b) without quantummemory, as a function of the average photon number 𝜇, for different values
of coupling ratio 𝜁 . Dashed line - The theoretical limit of the information gain. In (b) we assume Eve randomly chooses the basis for her measurements.

where we assume that Alice prepares the states with equal prob-
ability of 0.25.
If Eve does not have a quantum memory, she randomly

chooses the basis for her measurements. As can be seen from
Equations (22) and (23), whenever Eve’s detection is in the wrong
basis she gets no information about the original state. Thus we
assume that after the announcement of the bases by Alice, Eve
chooses a random bit value for the bits she measured in the
wrong basis (half of the cases, on average). Therefore, the expres-
sion for her information gain is:

GNM =

1
2
p𝜇(n = 1) + 1

2
(1 − 𝜁 )p𝜇(n ≥ 2) + 1

4
𝜁p𝜇(n ≥ 2)

+ 1
8
𝜁
[
pT (+|+) + pT (−|−) + pT (0|0) + pT (1|1)]

p𝜇(n ≥ 1)
(28)

Figure 5a,b shows Eve’s information gain with and without quan-
tummemory, respectively, as a function of 𝜇. In theoretical stud-
ies of the PNS attack, it is assumed that Eve gets full information
whenever she is successful in extracting a photon (𝜁p𝜇(n ≥ 2)).
Thus, the maximal theoretical information gain is given by Equa-
tions (27) and (29) by inserting pT (+|+) = pT (−|−) = p𝜇(n ≥ 2).
We show the theoretical limit, for both GM and GNM, as a dashed
line in Figure 5.
Further investigation of Eve’s detection statistics reveals that,

if Eve is not in possession of a quantum memory, she can adopt
a different strategy – Instead of randomly choosing the basis for
her measurements, she measures all of the qubits in the z-basis.
For half of the qubits, the z-basis is the correct basis, and so for
half of the qubits Eve will get full information (Equation (21)),
making it an optimal strategy, reaching the theoretical limit of

Eve’s information gain without quantum memory. The expres-
sion for Eve’s information gain with that strategy is:

Gz−basis
NM =

1
2
p𝜇(n = 1) + 1

2
(1 − 𝜁 )p𝜇(n ≥ 2)

+ 1
4
𝜁p𝜇(n ≥ 2) + 1

4
𝜁
[
pT (0|0) + pT (1|1)]

p𝜇(n ≥ 1)
(29)

and a graph of it, as a function of 𝜇, is presented in Figure 6.

5. Discussion

The detection statistics at Bob’s side following a SPRINT-based
PNS attack, Equations (16)–(20), show that z-basis states are un-

Figure 6. Eve’s information gain when measuring in the z-basis only, as a
function of the average photon number 𝜇, for different values of coupling
ratio 𝜁 . Evidently, this is the optimal strategy for Eve if she does not possess
a quantum memory, with her information gain reaching the theoretical
limit (plotted as ×marks).

Adv. Quantum Technol. 2024, 7, 2300437 2300437 (7 of 16) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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affected by the attack, but for x-basis states some QBER is intro-
duced. As presented in Figure 4, the resulting QBER is rather
small (about 4% for 𝜇 ≈ 1), compared to the 25% QBER intro-
duced by a simple I-R attack. The fact that the QBER increases
with 𝜇 is expected, since as 𝜇 increases, so does the probability of
Eve successfully splitting the pulse (p𝜇(n ≥ 2)) and affecting the
state reaching Bob’s side.
In theoretical studies of PNS attack it was usually assumed that

the attack introduces noQBER at all.[3,5,11] However, this assump-
tion was challenged by some researchers,[37] claiming that, ac-
cording to the laws of quantum mechanics, any unitary operator
capable of (deterministically) extracting a photon out of a z-basis
state without altering the state of the remaining photons, will nec-
essarily be unable to do so for x-basis states.While, obviously, our
results cannot be seen as a proof for this claim, they are surely
supporting it, since they show that our implementation indeed
fails to split x-basis states without affecting them, even though it
does it perfectly for z-basis states.
The detection statistics at Bob’s side reveal another interest-

ing point, namely the breaking of symmetry between pR(0|±) and
pR(1|±) (Equation (18)). This asymmetry is expected since an oc-
cupied early pulse changes the state of the SPRINT-system so
that photons from the late pulse will not be reflected, and so the
probability of Bob getting a detection is higher for the early time-
bin. We note that this feature can be exploited by Alice and Bob
to check the security of their communication against SPRINT-
based PNS attack – Instead of immediately discarding all of the
measurements where their bases were different, they keep all of
the cases where an x-basis state was sent and a z-basis measure-
ment was done. For these cases, they calculate the ratio of ‘0’ de-
tections to ‘1’ detections. This ratio should be close to 1, as im-
plied by Equation (8), and if it is higher than 1 it might be an
indication that a PNS attack was carried out, causing the asym-
metry in detections. Mathematically, the expected ratio following
a SPRINT-based PNS attack is:

R = #‘0’
#‘1’

= (1 − 𝜁 ) + 𝜁
pR(0|±)
pR(1|±) (30)

This ratio is shown in Figure 7, as a function of 𝜇.
To avoid this breaking of symmetry, Eve can try to reset the

SPRINT-system to the reflecting state |R⟩ by sending a strong
pulse propagating from right to left, in between the early and late
time-bins. That way the symmetry is restored since regardless
of whether the early time-bin was occupied or not, the SPRINT-
system gets back to the |R⟩ state before the late time-bin arrives.
However, in Appendix D we analyze this possibility and show
that resetting the SPRINT-system in between the time-bins com-
pletely destroys the coherence of the x-basis states, resulting in
pR(+|±) = pR(−|±) = 1

2
p𝜇(n ≥ 1), yielding a QBER of 25% (like a

simple I-R attack) which will clearly be detected by Alice and Bob.
This result also implies the robustness of the COWprotocol[10]

against our suggested implementation of the PNS attack. The key
point in COW is that the coherence is checked not only between
the early and late time-bins, but also between the late time-bin of
the previous qubit and the early time-bin of the current one. Since
for the SPRINT-based PNS attack Eve must reset the system be-
fore each qubit, she inevitably destroys the coherence between

Figure 7. R, the ratio of ‘0’ and ‘1’ detections at Bob’s side, following a
SPRINT-based PNS attack, for all the cases where an x-basis state was sent
and a z-basis measurement was done. The ratio is shown as a function of
the average photon number 𝜇, for different values of coupling ratio 𝜁 .

the late time-bin of the previous qubit and the early time-bin of
the current one, and that will be detected by Alice and Bob.
Looking at Eve’s detection statistics, Equations (21)–(25), we

again see that the attack works perfectly in the z-basis, with Eve
getting full information whenever there is a multi-photon pulse
(p𝜇(n ≥ 2)), while for x-basis state Eve has some non-zero proba-
bility of getting the wrong result, supporting the claim of ref. [37]
discussed earlier. Nevertheless, the information gain, Figure 5,
is not too far from the theoretical limit, and for the case where
Eve has no quantum memory, she can in fact obtain the opti-
mal theoretical limit (Figure 6) by measuring only in the z-basis,
as explained in Section 4.2. For 𝜇 ≈ 1 we have GM ≈ 0.7 and
Gz−basis

NM ≈ 0.6, and as 𝜇 increases Eve’s information gain also in-
creases, since the probability for a multi-photon pulse that can
be split is higher. This should be compared to the information
gain obtained in a simple I-R attack, 0.75, but is accompanied by
a QBER of 25%. We note that Eve’s information gain can be used
for calculating the mutual information between her and Alice,
see Appendix E.
To complete our discussion of the discrepancies between our

suggested implementation and previous theoretical works, we
point out two more differences – First, our implementation of
the PNS attack is done in a single step, unlike the common the-
oretical description of the attack in which two steps are needed,
i.e., a QND measurement of the number of photons followed by
splitting of the pulse.[5] Second, in our proposed implementation,
from all multi-photon pulses Eve steals all but one of the pho-
tons, as suggested by some theoretical studies of PNS,[38] while
others assumed that Eve steals only a single photon.[5] We note
that extracting more than a single photon can be advantageous
for Eve, especially if she has no quantum memory – She can use
another SPRINT-system to split all multi-photon pulses in her
side andmeasure in both bases, such that after the classical com-
munication between Alice and Bob she knows which basis was
the correct one and obtain the information.

Adv. Quantum Technol. 2024, 7, 2300437 2300437 (8 of 16) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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6. Conclusion

In this paper, we addressed a time-bin encodedQKDprotocol and
proposed an implementation of a PNS attack using the already-
demonstrated SPRINT-system, under the assumptions that it is
loss-free and perfectly coupled to the quantum communication
channel. While, to the best of our knowledge, current experimen-
tal SPRINT-systems are yet to achieve these high standards, their
imperfections are not fundamental, and it is reasonable to expect
nearly perfect SPRINT-systems with the advancement of cavity
quantum electrodynamics technologies.[19] Therefore, an under-
standing of the vulnerability of QKD to SPRINT-based PNS at-
tack is highly desirable.
To that end, we presented a comprehensive analysis of the

attack. We calculated Eve’s information gain, proving that the
SPRINT-system effectively separates each multi-photon pulse,
granting Eve access to the information contained in it. Unlike
previous theoretical studies of the PNS attack, our results show
that for x-basis states Eve’s information gain is not complete, and
the QBER introduced by the attack is small but not zero. More
generally, we postulate that the presence of non-zeroQBER stems
from the nonlinearity of the PNS attack, and is thus expected to be
inherent to the attack, regardless of the specific implementation.
These results raise new questions regarding the relationship be-
tween the separation of photons in an unknown quantum state
and the information they contain. In future research, it could also
be instructive to examine possible connections of PNSwith quan-
tum erasure[39–41] and quantum oblivion.[42,43] In all these effects,
one refrains from recording all the available quantum informa-
tion in order to allow for interference to occur.
It should be emphasized that in this initial analysis of SPRINT-

based PNS attack, we assumed Alice and Bob’s implementation
of the QKD protocol to be perfect, i.e., using a nearly lossless
quantum communication channel and perfect detectors. For real-
world security analysis these elements should be taken into con-
sideration. Specifically, if the original quantum communication
channel is lossy, Eve can replace it with a lossless one, and then
use the accessible loss[12] to block some of the single-photon
pulses, increasing her overall information gain beyond what we
have described herein.
Our results imply that an almost ideal PNS attack is in fact

plausible with contemporary technologies. However, there are
several known ways to defend against PNS attack, either by us-
ing more advanced QKD protocols,[6–10] or by using advanced
technologies such as photon-number-resolving detectors. Rather,
our results underscore the importance of adopting these counter-
measures against PNS attacks to uphold the security of QKD sys-
tems.

Appendix A: Time-Bin Encoded BB84 with WCS

Here, we present the calculations of the detection statistics of time-bin
encoded BB84 implemented with WCS, without the presence of an eaves-
dropper.

Replacing the single-photon source in Figure 1 with WCS, the state en-
tering the preparation device is thus |𝛼⟩e |0⟩l. It is straightforward to verify
that Alice’s preparation results in the following z-basis states:

|0⟩ = |𝛼⟩e |0⟩l|1⟩ = |0⟩e |𝛼⟩l (A1)

and x-basis states:

|±⟩ = | 𝛼√
2
⟩
e

| ±𝛼√
2
⟩
l

(A2)

Then, if Bob chooses to detect in the z-basis, we get the following prob-
abilities:

p(0|0) = ⟨𝛼|e ⟨0|l (Pe ⊗ |0⟩l ⟨0|l + 1
2
Pe ⊗ Pl

) |𝛼⟩e |0⟩l = 1 − e−𝜇 = p(1|1)
p(1|0) = ⟨𝛼|e ⟨0|l (|0⟩e ⟨0|e ⊗ Pl +

1
2
Pe ⊗ Pl

) |𝛼⟩e |0⟩l = 0 = p(0|1)
(A3)

and:

p(0|±) = ⟨ 𝛼√
2
|e⟨ ±𝛼√

2
|l(Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl

)| 𝛼√
2
⟩
e
| ±𝛼√

2
⟩
l

=
(
1 − e−

𝜇

2

)
e−

𝜇

2 + 1
2

(
1 − e−

𝜇

2

)2
= 1

2

(
1 − e−

𝜇

2

)(
1 + e−

𝜇

2

)
= 1

2
(1 − e−𝜇) = p(1|±)

(A4)

where Px = (Ix − |0⟩x ⟨0|x) is the description of the detector as a projection
on the occupied states of themode x, and where double clicks are assigned
random bit values (as discussed in the main text).

If Bob detects in the x-basis, the evolution of the states prepared by
Alice through the measuring device is:

|0⟩ → | 𝛼√
2
⟩
+
| i𝛼√

2
⟩
−|1⟩ → | 𝛼√

2
⟩
+
|−i𝛼√

2
⟩
−|+⟩ → |𝛼⟩+ |0⟩−|−⟩ → |0⟩+ |i𝛼⟩−

(A5)

and so we get:

p(+|+) = ⟨𝛼|+ ⟨0|− (
P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−

) |𝛼⟩+ |0⟩−
= 1 − e−𝜇 = p(−|−)

p(−|+) = ⟨𝛼|+ ⟨0|− (|0⟩+ ⟨0|+ ⊗ P− + 1
2
P+ ⊗ P−

) |𝛼⟩+ |0⟩−
= 0 = p(+|−)

(A6)

and:

p(+|0) = ⟨ 𝛼√
2
|+⟨ i𝛼√

2
|−(P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−

)| 𝛼√
2
⟩
+
| i𝛼√

2
⟩
−

= 1
2
(1 − e−𝜇) = p(+|1)

p(−|0) = ⟨ 𝛼√
2
|+⟨ i𝛼√

2
|−(|0⟩+ ⟨0|+ ⊗ P− + 1

2
P+ ⊗ P−

)| 𝛼√
2
⟩
+
| i𝛼√

2
⟩
−

= 1
2
(1 − e−𝜇) = p(−|1)

(A7)

Appendix B: Detection Statistics in the Reflected
Arm

Here, we calculate the detection statistics in the reflected arm (Bob’s side)
for the case of time-bin encoded BB84 under SPRINT-based PNS attack.
The analysis steps are – i) Alice’s preparation of the state, ii) the SPRINT-
system operates on the early time-bin, ŝe, iii) the SPRINT-system operates
on the late time-bin, ŝl, iv) the SPRINT-system and the transmission output
arm are traced over to obtain 𝜌R, and finally v) detection in z-basis or x-
basis.

Adv. Quantum Technol. 2024, 7, 2300437 2300437 (9 of 16) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Let us first look at the case where Alice sends out |0⟩. We get:
(i) |0⟩ ⇒ |𝜓⟩ = |𝛼, 0, R, 0, 0⟩ (B1)

(ii), (iii) |𝜓⟩ = e−
𝜇

2

(|0, 0, R, 0, 0⟩ + ∞∑
n=1

𝛼n√
n!

|n − 1, 1, T, 0, 0⟩) (B2)

(iv)𝜌 = |𝜓⟩ ⟨𝜓| = e−𝜇 [|0, 0, R, 0, 0⟩ ⟨0, 0, R, 0, 0|
+
∑∞

n=1

(
𝛼n√
n!
|n − 1, 1, T, 0, 0⟩ ⟨0, 0, R, 0, 0|

+ (𝛼∗)n√
n!

|0, 0, R, 0, 0⟩ ⟨n − 1, 1, T, 0, 0| )
+
∑∞

n,m=1
𝛼n(𝛼∗)m√

n!m!
|n − 1, 1, T, 0, 0⟩ ⟨m − 1, 1, T, 0, 0|]

(B3)

𝜌R = trTe,S,Tl (𝜌) = e−𝜇 [|0, 0⟩ ⟨0, 0| ⟨0, R, 0 | 0, R, 0⟩
+
∑∞

n=1

(
𝛼n√
n!
|1, 0⟩ ⟨0, 0| ⟨0, R, 0|n − 1, T, 0⟩

+ (𝛼∗)n√
n!

|0, 0⟩ ⟨1, 0| ⟨n − 1, T, 0|0, R, 0⟩)
+
∑∞

n,m=1
𝛼n(𝛼∗)m√

n!m!
|1, 0⟩ ⟨1, 0| ⟨m − 1, T, 0|n − 1, T, 0⟩]

⇒ 𝜌R = e−𝜇
(|0, 0⟩ ⟨0, 0| +∑∞

n=1
𝜇n

n! |1, 0⟩ ⟨1, 0|)
= e−𝜇 |0, 0⟩ ⟨0, 0| + (1 − e−𝜇) |1, 0⟩ ⟨1, 0|

(B4)

i.e., in the reflected arm we get a statistical mixture of vacuum (with prob-
ability of e−𝜇) and a single-photon state (with probability of 1 − e−𝜇). As
we could expect.

It follows immediately that:

pR(0|0) = tr
(
𝜌R(Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl)

)
= 1 − e−𝜇

pR(1|0) = tr
(
𝜌R(|0⟩e ⟨0|e ⊗ Pl +

1
2
Pe ⊗ Pl)

)
= 0

(B5)

When measuring in the x-basis, the evolution through the measuring de-
vice is |1, 0⟩ → |1,0⟩+i|0,1⟩√

2
and |0, 1⟩ → |1,0⟩−i|0,1⟩√

2
. Thus, if the reflected arm

is measured in the x-basis, the density matrix evolves in the measuring de-
vice to:

𝜌R = e−𝜇 |0, 0⟩ ⟨0, 0| + (1 − e−𝜇)
(|1, 0⟩ + i |0, 1⟩)(⟨1, 0| − i ⟨0, 1|)

2
(B6)

And so:

pR(+|0) = tr
(
𝜌R(P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−)

)
= 1

2
(1 − e−𝜇)

pR(−|0) = tr
(
𝜌R(|0⟩+ ⟨0|+ ⊗ P− + 1

2
P+ ⊗ P−)

)
= 1

2
(1 − e−𝜇)

(B7)

It is straightforward to generalize the above analysis to the case in which
Alice sends out a |1⟩ state, yielding:
|1⟩ ⇒ |𝜓⟩ = |0, 0, R, 𝛼, o⟩ ⇒ 𝜌Rx

= e−𝜇 |0, 0⟩ ⟨0, 0| + (1 − e−𝜇) |0, 1⟩ ⟨0, 1|
pR(1|1) = 1 − e−𝜇

pR(0|1) = 0

pR(+|1) = pR(−|1) = 1
2
(1 − e−𝜇)

(B8)

We continue by analysing the case in which Alice prepares the state |+⟩.
The evolution of the state is:

(i) |+⟩ ⇒ |𝜓⟩ = | 𝛼√
2
, 0, R, 𝛼√

2
, 0⟩ (B9)

(ii) |𝜓⟩ = e−
𝜇

4

(|0, 0, R, 𝛼√
2
, 0⟩ + ∞∑

n=1

𝛼n√
2nn!

|n − 1, 1, T, 𝛼√
2
, 0⟩) (B10)

(iii) |𝜓⟩ = e−
𝜇

2

(|0, 0, R, 0, 0⟩ + ∞∑
n=1

𝛼n√
2nn!

|0, 0, T, n − 1, 1⟩)

+ e−
𝜇

4

∞∑
n=1

𝛼n√
2nn!

|n − 1, 1, T, 𝛼√
2
, 0⟩ (B11)

(iv)𝜌R = trTe,S,Tl (|𝜓⟩ ⟨𝜓|) = e−𝜇
(|0, 0⟩ ⟨0, 0| +∑∞

n=1
𝜇n

2nn! |0, 1⟩ ⟨0, 1|)
+e−

3𝜇
4
∑∞

n,m=1
𝛼n𝛼∗m√
2n+mn!m!

⟨m − 1, T, 𝛼√
2
|0, T, n − 1⟩ |0, 1⟩ ⟨1, 0|

+e−
3𝜇
4
∑∞

n,m=1
𝛼∗n𝛼m√
2n+mn!m!

⟨0, T, n − 1|m − 1, T, 𝛼√
2
⟩ |1, 0⟩ ⟨0, 1|

+e−
𝜇

2
∑∞

n,m=1
𝛼n𝛼∗m√
2n+mn!m!

⟨m − 1, T, 𝛼√
2
|n − 1, T, 𝛼√

2
⟩ |1, 0⟩ ⟨1, 0|

(B12)

⇒ 𝜌R = e−𝜇
(|0, 0⟩ ⟨0, 0| + (e

𝜇

2 − 1) |0, 1⟩ ⟨0, 1|)
+e−

3𝜇
4
∑∞

n=1
𝛼n𝛼∗√
2n+1n!

⟨ 𝛼√
2
|n − 1⟩ |0, 1⟩ ⟨1, 0|

+e−
3𝜇
4
∑∞

n=1
𝛼∗n𝛼√
2n+1n!

⟨n − 1| 𝛼√
2
⟩ |1, 0⟩ ⟨0, 1|

+e−
𝜇

2
∑∞

n=1
𝜇n

2nn! ⟨ 𝛼√
2
| 𝛼√

2
⟩ |1, 0⟩ ⟨1, 0|

(B13)

⇒ 𝜌R = e−
𝜇

2

(
e−

𝜇

2 |0, 0⟩ ⟨0, 0| + (1 − e−
𝜇

2 ) |0, 1⟩ ⟨0, 1|)
+e−𝜇

∑∞
n=1

𝜇n
√
n

2nn! (|0, 1⟩ ⟨1, 0| + |1, 0⟩ ⟨0, 1|)
+(1 − e−

𝜇

2 ) |1, 0⟩ ⟨1, 0|
(B14)

We can now make sense of this result – the diagonal terms are the cases
where a) both pulses are vacuum (we get |0, 0⟩ ⟨0, 0|), b) first is vacuum
and second is occupied (|0, 1⟩ ⟨0, 1|), and c) first is occupied (|1, 0⟩ ⟨1, 0|),
each case with its respective probability. We also get non-diagonal terms
representing coherence between the early and late modes of the reflected
arm. It is simple to see that 𝜌R is indeed Hermitian and has a trace of 1,
as needed.

It follows that:

pR(0|+) = tr
(
𝜌R(Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl)

)
= 1 − e−

𝜇

2

pR(1|+) = tr
(
𝜌R(|0⟩e ⟨0|e ⊗ Pl +

1
2
Pe ⊗ Pl)

)
= e−

𝜇

2 (1 − e−
𝜇

2 )
(B15)

If the reflected arm is measured in the x-basis, then the density matrix
evolves in the measuring device to:

𝜌R = e−
𝜇

2

(
e−

𝜇

2 |0, 0⟩ ⟨0, 0| + (1 − e−
𝜇

2 ) (|1,0⟩−i|0,1⟩)(⟨1,0|+i⟨0,1|)
2

)
+e−𝜇

∑∞
n=1

𝜇n
√
n

2nn!

(
(|1,0⟩−i|0,1⟩)(⟨1,0|−i⟨0,1|)+(|1,0⟩+i|0,1⟩)(⟨1,0|+i⟨0,1|)

2

)
+(1 − e−

𝜇

2 ) (|1,0⟩+i|0,1⟩)(⟨1,0|−i⟨0,1|)
2

(B16)

We note that 𝜌R is indeed Hermitian and has a trace of 1, as needed.
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And so:

pR(+|+) = tr
(
𝜌R(P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−)

)
= 1

2
e−

𝜇

2 (1 − e−
𝜇

2 ) + e−𝜇
∑∞

n=1
𝜇n

√
n

2nn! + 1
2
(1 − e−

𝜇

2 )

= 1
2
(1 − e−𝜇) + e−𝜇

∑∞
n=1

𝜇n
√
n

2nn!

(B17)

It is obvious to see that p(+|+) ≥ 0, but let us also verify that this proba-
bility is indeed smaller than 1 for all 𝜇. Defining x ≡ 𝜇

2
, we have:

1
2
(1 − e−2x) + e−2x

∑∞
n=1

xn
√
n

n! ≤
1
2
(1 − e−2x)

+e−2x
∑∞

n=1
xnn
n! = 1

2
(1 − e−2x) + e−2xxex

= 1
2
(1 − e−2x) + xe−x ≤ 1

2
(1 − e−2x) + e−1 ≤ 1

2
+ e−1 < 1

(B18)

We also get:

pR(−|+) = tr
(
𝜌R(|0⟩+ ⟨0|+ ⊗ P− + 1

2
P+ ⊗ P−)

)
= 1

2
e−

𝜇

2 (1 − e−
𝜇

2 ) − e−𝜇
∑∞

n=1
𝜇n

√
n

2nn! + 1
2
(1 − e−

𝜇

2 )

= 1
2
(1 − e−𝜇) − e−𝜇

∑∞
n=1

𝜇n
√
n

2nn!

(B19)

Here also, it is simple to see that p(−|+) ≤ p(+|+) ≤ 1, but let us verify
also that it is non-negative for all 𝜇. Again we define x ≡ 𝜇

2
, thus:

1
2
(1 − e−2x) − e−2x

∑∞
n=1

xn
√
n

n! ≥
1
2
(1 − e−2x)

−e−2x
∑∞

n=1
xnn
n! = 1

2
(1 − e−2x) − xe−x ≥ 0

(B20)

Finally, we can verify that the probabilities sum up to 1, i.e.:

pR(+|+) + pR(−|+) + pR(00|+) = 1
2
(1 − e−𝜇) + e−𝜇

∑∞
n=1

𝜇n
√
n

2nn!

+ 1
2
(1 − e−𝜇) − e−𝜇

∑∞
n=1

𝜇n
√
n

2nn! + e−𝜇 = 1

(B21)

where pR(00) is the probability of getting no detection in both detectors.
Generalizing to the case of |−⟩ = | 𝛼√

2
, −𝛼√

2
⟩:

(i) |−⟩ ⇒ |𝜓⟩ = | 𝛼√
2
, 0, R, −𝛼√

2
, 0⟩ (B22)

(ii) |𝜓⟩ = e−
𝜇

4

(|0, 0, R, −𝛼√
2
, 0⟩ + ∞∑

n=1

𝛼n√
2nn!

|n − 1, 1, T, −𝛼√
2
, 0⟩) (B23)

(iii) |𝜓⟩ = e−
𝜇

2

(|0, 0, R, 0, 0⟩ + ∞∑
n=1

(−𝛼)n√
2nn!

|0, 0, T, n − 1, 1⟩)

+ e−
𝜇

4

∞∑
n=1

𝛼n√
2nn!

|n − 1, 1, T, −𝛼√
2
, 0⟩ (B24)

(iv)𝜌R = trTe,S,Tl (|𝜓⟩ ⟨𝜓|) = e−𝜇
(|0, 0⟩ ⟨0, 0| +∑∞

n=1
𝜇n

2nn! |0, 1⟩ ⟨0, 1|)
+e−

3𝜇
4
∑∞

n,m=1
(−𝛼)n𝛼∗m√
2n+mn!m!

⟨m − 1, T, −𝛼√
2
|0, T, n − 1⟩ |0, 1⟩ ⟨1, 0|

+e−
3𝜇
4
∑∞

n,m=1
(−𝛼∗)n𝛼m√
2n+mn!m!

⟨0, T, n − 1|m − 1, T, −𝛼√
2
⟩ |1, 0⟩ ⟨0, 1|

+e−
𝜇

2
∑∞

n,m=1
𝛼n𝛼∗m√
2n+mn!m!

⟨m − 1, T, −𝛼√
2
|n − 1, T, −𝛼√

2
⟩ |1, 0⟩ ⟨1, 0|

(B25)

⇒ 𝜌R = e−𝜇
(|0, 0⟩ ⟨0, 0| + (e

𝜇

2 − 1) |0, 1⟩ ⟨0, 1|)
+e−

3𝜇
4
∑∞

n=1
(−𝛼)n𝛼∗√
2n+1n!

⟨ −𝛼√
2
|n − 1⟩ |0, 1⟩ ⟨1, 0|

+e−
3𝜇
4
∑∞

n=1
(−𝛼∗)n𝛼√
2n+1n!

⟨n − 1| −𝛼√
2
⟩ |1, 0⟩ ⟨0, 1|

+e−
𝜇

2
∑∞

n=1
𝜇n

2nn! ⟨ −𝛼√
2
| −𝛼√

2
⟩ |1, 0⟩ ⟨1, 0|

(B26)

⇒ 𝜌R = e−
𝜇

2

(
e−

𝜇

2 |0, 0⟩ ⟨0, 0| + (1 − e−
𝜇

2 ) |0, 1⟩ ⟨0, 1|)
−e−𝜇

∑∞
n=1

𝜇n
√
n

2nn! (|0, 1⟩ ⟨1, 0| + |1, 0⟩ ⟨0, 1|)
+(1 − e−

𝜇

2 ) |1, 0⟩ ⟨1, 0|
(B27)

Such that:

pR(0|−) = tr
(
𝜌R(Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl)

)
= 1 − e−

𝜇

2

pR(1|−) = tr
(
𝜌R(|0⟩e ⟨0|e ⊗ Pl +

1
2
Pe ⊗ Pl)

)
= e−

𝜇

2 (1 − e−
𝜇

2 )
(B28)

If the reflected mode is measured in the x-basis, the density matrix evolves
to:

𝜌R = e−
𝜇

2

(
e−

𝜇

2 |0, 0⟩ ⟨0, 0| + (1 − e−
𝜇

2 ) (|1,0⟩−i|0,1⟩)(⟨1,0|+i⟨0,1|)
2

)
−e−𝜇

∑∞
n=1

𝜇n
√
n

2nn!

(
(|1,0⟩−i|0,1⟩)(⟨1,0|−i⟨0,1|)+(|1,0⟩+i|0,1⟩)(⟨1,0|+i⟨0,1|)

2

)
+(1 − e−

𝜇

2 ) (|1,0⟩+i|0,1⟩)(⟨1,0|−i⟨0,1|)
2

(B29)

And so:

pR(+|−) = tr
(
𝜌R(P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−)

)
= 1

2
e−

𝜇

2 (1 − e−
𝜇

2 ) − e−𝜇
∑∞

n=1
𝜇n

√
n

2nn! + 1
2
(1 − e−

𝜇

2 )

= 1
2
(1 − e−𝜇) − e−𝜇

∑∞
n=1

𝜇n
√
n

2nn! = pR(−|+)
(B30)

and:

pR(−|−) = tr
(
𝜌R(|0⟩+ ⟨0|+ ⊗ P− + 1

2
P+ ⊗ P−)

)
= 1

2
e−

𝜇

2 (1 − e−
𝜇

2 ) + e−𝜇
∑∞

n=1
𝜇n

√
n

2nn! + 1
2
(1 − e−

𝜇

2 )

= 1
2
(1 − e−𝜇) + e−𝜇

∑∞
n=1

𝜇n
√
n

2nn! = pR(+|+)
(B31)
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Appendix C: Detection Statistics in the Transmitted
Arm

Here, we calculate the detection statistics in the transmitted arm (Eve’s
side) for the case of time-bin encoded BB84 under SPRINT-based PNS
attack. The analysis steps are – i) Alice’s preparation of the state, ii) the
SPRINT-system operates on the early time-bin, ŝe, iii) the SPRINT-system
operates on the late time-bin, ŝl, iv) the SPRINT-system and the reflection
output arm are traced over to obtain 𝜌T , and finally v) detection in z-basis
or x-basis.

Let us first look at the case where Alice sends out |0⟩. Using the analysis
from Appendix B (Equation (B3)), we get:

(i), (ii), (iii) |0⟩ ⇒ 𝜌 = |𝜓⟩ ⟨𝜓| = e−𝜇 [|0, 0, R, 0, 0⟩ ⟨0, 0, R, 0, 0|
+
∑∞

n,m=1
𝛼n(𝛼∗)m√

n!m!
|n − 1, 1, T, 0, 0⟩ ⟨m − 1, 1, T, 0, 0|] (C1)

The evolution of the state, as seen in the transmitted arm, is thus:

(iv)𝜌T = trRe,S,Rl (𝜌) = e−𝜇 [|0, 0⟩ ⟨0, 0| ⟨0, R, 0 | 0, R, 0⟩
+
∑∞

n=1

(
𝛼n√
n!
|n − 1, 0⟩ ⟨0, 0| ⟨0, R, 0|1, T, 0⟩

+ (𝛼∗)n√
n!

|0, 0⟩ ⟨n − 1, 0| ⟨1, T, 0|0, R, 0⟩)
+
∑∞

n,m=1
𝛼n(𝛼∗)m√

n!m!
|n − 1, 0⟩ ⟨m − 1, 0| ⟨1, T, 0|1, T, 0⟩]

⇒ 𝜌T = e−𝜇
(|0, 0⟩ ⟨0, 0| +∑∞

n,m=1
𝛼n(𝛼∗)m√

n!m!
|n − 1, 0⟩ ⟨m − 1, 0|)

(C2)

Thus:

pT (0|0) = tr
(
𝜌T (Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl)

)
= tr

(
e−𝜇

∑∞
n=1

∑∞
m=2

𝛼n(𝛼∗)m√
n!m!

|n − 1, 0⟩ ⟨m − 1, 0|)
= e−𝜇

∑∞
n=2

𝜇n

n!

pT (1|0) = tr
(
𝜌T (|0⟩e ⟨0|e ⊗ Pl +

1
2
Pe ⊗ Pl)

)
= 0

(C3)

So, as expected, we get a detection in the transmitted arm only if the pulse
contains two or more photons.

If the detection is in the x-basis, the evolution through the measuring
device is:

𝜌T = e−𝜇 |0, 0⟩ ⟨0, 0|
+e−𝜇

∑∞
n=1

𝛼n√
2n−1n

∑n−1
ka=0

ika√
(n−1−ka)!(ka)!

|n − 1 − ka, ka⟩
⋅
∑∞

m=1
(𝛼∗)m√
2m−1m

∑m−1
KA=0

(−i)KA√
(m−1−KA)!(KA)!

⟨m − 1 − KA, KA|
(C4)

where ka, KA represent the number of photons reflected from the original
mode to the other mode. Note that 𝜌T is indeed Hermitian and has a trace
of 1.

And so:

pT (+|0) = tr
(
𝜌T (P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−)

)
= e−𝜇

∑∞
n=1

𝛼n√
2n−1n

∑n−1
ka=0

ika√
(n−1−ka)!(ka)!

⋅
∑∞

m=2
(𝛼∗)m√
2m−1m

1√
(m−1)!

⟨m − 1, 0|n − 1 − ka, ka⟩
+ 1

2
e−𝜇

∑∞
n=1

𝛼n√
2n−1n

∑n−1
ka=0

ika√
(n−1−ka)!(ka)!

⋅
∑∞

m=3
(𝛼∗)m√
2m−1m

⋅
∑m−2

KA=1
(−i)KA√

(m−1−KA)!(KA)!
⟨m − 1 − KA, KA|n − 1 − ka, ka⟩

(C5)

→ pT (+|0) = e−𝜇
[∑∞

n=2
𝜇n

2n−1n! +
1
2

∑∞
n=3

𝜇n

2n−1n

∑n−2
ka=1

1
(n−1−ka)!(ka)!

]
= e−𝜇

[∑∞
n=2

𝜇n

2n−1n! +
1
2

∑∞
n=3

𝜇n

n!
∑n−2

ka=1
(n−1)!

2n−1(n−1−ka)!(ka)!

]
= e−𝜇

[∑∞
n=2

𝜇n

2n−1n! +
1
2

∑∞
n=3

𝜇n

n!

(
1 − 2

2n−1

)] (C6)

→ pT (+|0) = e−𝜇
[
𝜇2

4
+ 1

2

∑∞
n=3

𝜇n

n!

]
= 1

2
e−𝜇

∑∞
n=2

𝜇n

n! (C7)

i.e., whenever the pulse contains two or more photons, there is a proba-
bility half of getting a + result. As expected. Also, it is obvious to see we

get pT (−|0) = tr
(
𝜌T (|0⟩+ ⟨0|+ ⊗ P− + 1

2
P+ ⊗ P−)

)
= pT (+|0).

Generalizing the analysis to the case in which Alice sends out |1⟩, we
immediately get:

pT (0|1) = 0

pT (1|1) = e−𝜇
∑∞

n=2
𝜇n

n!

pT (+|1) = p(−|1) = 1
2
e−𝜇

∑∞
n=2

𝜇n

n!

(C8)

Now, for the case in which a |+⟩ state is prepared by Alice, we get (using
the analysis in Appendix B, Equation (B11)):

(iii) |𝜓⟩ = e−
𝜇

2

(|0, 0, R, 0, 0⟩ + ∞∑
n=1

𝛼n√
2nn!

|0, 0, T, n − 1, 1⟩)

+ e−
𝜇

4

∞∑
n=1

𝛼n√
2nn!

|n − 1, 1, T, 𝛼√
2
, 0⟩ (C9)

(iv)𝜌T = trRe,S,Rl (|𝜓⟩ ⟨𝜓|) = e−𝜇 |0, 0⟩ ⟨0, 0|
+e−𝜇

∑∞
n,m=1

𝛼n(𝛼∗)m√
2n+mn!m!

|0, n − 1⟩ ⟨0, m − 1|
+e−

𝜇

2
∑∞

n,m=1
𝛼n(𝛼∗)m√
2n+mn!m!

|n − 1, 𝛼√
2
⟩ ⟨m − 1, 𝛼√

2
|

(C10)

and so:

pT (0|+) = tr
(
𝜌T (Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl)

)
= e−

3𝜇
4
∑∞

n=1
∑∞

m=2
𝛼n(𝛼∗)m√
2n+mn!m!

⟨m − 1, 0|n − 1, 𝛼√
2
⟩

+ 1
2
e−

𝜇

2
∑∞

n=1
∑∞

m=2
𝛼n(𝛼∗)m√
2n+mn!m!

⋅
(⟨m − 1, 𝛼√

2
|n − 1, 𝛼√

2
⟩ − e−

𝜇

4 ⟨m − 1, 0|n − 1, 𝛼√
2
⟩)

(C11)
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⇒ pT (0|+) = (
e−

𝜇

2
∑∞

n=2
𝜇n

2nn!

)
e−

𝜇

2 + 1
2
e−

𝜇

2
∑∞

n=2
𝜇n

2nn!

(
1 − e−

𝜇

2

)
(C12)

i.e., we get the result of a ‘0’ detection if (first term) the early pulse contains
two or more photons and the late pulse is empty, or (second term) if the
early pulse contains two or more photons and the late pulse is non-empty
and the randomly assigned bit value is ‘0’ (probability 1

2
).

The probability pT (1|+) is:
pT (1|+) = tr

(
𝜌T (|0⟩e ⟨0|e ⊗ Pl +

1
2
Pe ⊗ Pl)

)
= e−𝜇

∑∞
n=1

∑∞
m=2

𝛼n(𝛼∗)m√
2n+mn!m!

⟨0, m − 1|0, n − 1⟩
+e−

𝜇

2
∑∞

n=1
𝛼n𝛼∗√
2n+1n!

(⟨0, 𝛼√
2
|n − 1, 𝛼√

2
⟩ − e−

𝜇

4 ⟨0, 0|n − 1, 𝛼√
2
⟩)

+ 1
2
e−

𝜇

2
∑∞

n=2
𝜇n

2nn!

(
1 − e−

𝜇

2

)
(C13)

⇒ pT (1|+) = e−
𝜇

2

(
e−

𝜇

2
∑∞

n=2
𝜇n

2nn!

)
+ e−

𝜇
2 𝜇

2

(
1 − e−

𝜇

2

)
+ 1

2
e−

𝜇

2
∑∞

n=2
𝜇n

2nn!

(
1 − e−

𝜇

2

) (C14)

i.e., a result of ‘1’ is obtained if (first term) the early pulse is empty and
the late pulse contains two or more photons, or if (second term) the early
pulse contains a single photon (changing the state of the SPRINT-system)
and the late pulse is non-empty, or if (third term) the early pulse contains
two or more photons and the late pulse is non-empty and the randomly
assigned bit value is ‘1’ (probability 1

2
). One can also verify that indeed

pT (0|+) + pT (1|+) + pT (00|+) = 1.
The above can be straightforwardly adapted to the case in which Alice

sends out a |−⟩ state, yielding:
pT (0|−) = pT (0|+)
pT (1|−) = pT (1|+) (C15)

If the transmitted arm is measured in the x-basis, then, for the case of
a sent |+⟩ state, the density matrix at the input of the beamsplitter of the
measuring device is:

𝜌T = (I)e−𝜇 |0, 0⟩ ⟨0, 0| +(II) e−𝜇

⋅
∑∞

n,m=1
(−i)n−1𝛼nim−1(𝛼∗)m√

2n+mn!m!
|0, n − 1⟩ ⟨0, m − 1|

+(III)e−
𝜇

2
∑∞

n,m=1
𝛼n(𝛼∗)m√
2n+mn!m!

|n − 1, −i𝛼√
2
⟩ ⟨m − 1, −i𝛼√

2
|

(C16)

At the output of the beamsplitter we will treat each term from the density
matrix separately. We get for the first term:

𝜌
(I)
T → e−𝜇 |0, 0⟩ ⟨0, 0|

⇒ p(I)T (+|+) = tr
(
𝜌
(I)
T (P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−)

)
= 0 = p(I)T (−|+)

(C17)

For the second term:

𝜌
(II)
T → e−𝜇

∑∞
n,m=1

2(−i)n−1𝛼nim−1(𝛼∗)m

2n+m
√
n
√
m

⋅
∑n−1

kb=0
ikb√

(n−1−kb)!kb!
|kb, n − 1 − kb⟩

⋅
∑m−1

KB=0
(−i)KB√

(m−1−KB)!KB!
⟨KB,m − 1 − KB|

(C18)

⇒ p(II)T (+|+) = e−𝜇
∑∞

n=2
2𝜇n

4nn! +
1
2
e−𝜇

∑∞
n=3

𝜇n

2nn!

(
1 − 2

2n−1

)
= e−

𝜇

2

(
1
2
e−

𝜇

2
∑∞

n=2
𝜇n

2nn!

)
≡ A

(C19)

which is half the probability that the early pulse is a vacuum and the late
pulse contains two or more photons. As expected. It also straightforward
to see that p(II)T (−|+) = p(II)T (+|+)

As for the third term:

𝜌
(III)
T = e−𝜇

∑∞
n=1

√
2n𝛼n

2nn!
∑∞

j=0
(−i)j𝛼j

2j j!
∑n−1

ka=0
∑j

kb=0
(n−1
ka

)( j
kb

)
ika+kb

⋅
√
(n − 1 − ka + kb)!(j − kb + ka)! |n − 1 − ka + kb, j − kb + ka⟩

⋅
∑∞

m=1

√
2m(𝛼∗)m

2mm!
∑∞

J=0
iJ(𝛼∗)J

2J J!
∑m−1

KA=0
∑J

KB=0
(m−1

KA

)( J
KB

)
(−i)KA+KB

⋅
√
(m − 1 − KA + KB)!(J − KB + KA)! ⟨m − 1 − KA + KB, J − KB + KA|

(C20)

Note that P+ ⊗ |0⟩− ⟨0|− + 1
2
P+ ⊗ P− = P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ (I− −|0⟩− ⟨0|−)) = 1

2
P+ ⊗ (I− + |0⟩− ⟨0|−)). And so we get, after some tedious

work:

p(III)T (+|+) = Bm−1−KA+KB + C (C21)

and:

p(III)T (−|+) = BJ−KB+KA + C̃ (C22)

where:

BX ≡ e−𝜇
∑∞

n=1

√
n𝛼n

2nn!
∑∞

j=0
(−i)j𝛼j

2j j!
∑n−1

ka=0
∑j

kb=0
(n−1
ka

)( j
kb

)
ika+kb

⋅(n − 1 − ka + kb)!(j − kb + ka)!
∑∞

m=1

√
m(𝛼∗)m

2mm!
∑∞

J=0
iJ(𝛼∗)J

2J J!

⋅
∑m−1

KA=0
∑J

KB=0
(m−1

KA

)( J
KB

)
(−i)KA+KB

⋅𝛿n−ka+kb,m−KA+KB𝛿j−kb+ka,J−KB+KA (1 − 𝛿X,0)

(C23)

C ≡ e−𝜇
∑∞

n=1

√
n

n!
∑∞

j=0
𝜇n+j

4n+j j!
∑n+j

m=1
1√
m

(n−1+j
m−1

)
(1 − 𝛿n−1+j,0) (C24)

C̃ ≡ e−𝜇
∑∞

n=1

√
n

n!
∑∞

j=0
𝜇n+j

4n+j j!
∑n+j

m=1
(−1)n+m√

m

(n−1+j
m−1

)
(1 − 𝛿n−1+j,0) (C25)

where 𝛿X,Y is 1 only if X = Y , and is zero otherwise, such that in BX the
summation is only over terms for which X ≠ 0 and n − ka + kb = m − KA +
KB and j − kb + ka = J − KB + KA, and for C and C̃ the summation is only
over terms for which n − 1 + j ≠ 0. The difference betweenC and C̃ is typed
in boldface.

So over all we get:

pT (+|+) = A + Bm−1−KA+KB + C (C26)

and:

pT (−|+) = A + BJ−KB+KA + C̃ (C27)

Finally, for the case where a state |−⟩ was prepared by Alice, we can
generalize the last analysis to get:

pT (+|−) = A + B̃m−1−KA+KB + C̃ (C28)

and:

pT (−|−) = A + B̃J−KB+KA + C (C29)
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where:

B̃X ≡ e−𝜇
∑∞

n=1

√
n𝛼n

2nn!
∑∞

j=0
(i)j𝛼j

2j j!
∑n−1

ka=0
∑j

kb=0
(n−1
ka

)( j
kb

)
ika+kb

⋅(n − 1 − ka + kb)!(j − kb + ka)!
∑∞

m=1

√
m(𝛼∗)m

2mm!
∑∞

J=0
(−i)J(𝛼∗)J

2J J!

⋅
∑m−1

KA=0
∑J

KB=0
(m−1

KA

)( J
KB

)
(−i)KA+KB

⋅𝛿n−ka+kb,m−KA+KB𝛿j−kb+ka,J−KB+KA (1 − 𝛿X,0)

(C30)

The expressions can be simplified somewhat. Note that the Kronecker
deltas in B and B̃ imply that n + j = m + J → J = n + j −m, thus we can
write:

BX = e−𝜇
∑∞

n=1
1√
n

∑∞
j=0

𝜇n+j

4n+j
∑n−1

ka=0
∑j

kb=0
(n−1−ka+kb)!(j−kb+ka)!
(n−1−ka)!(ka)!(j−kb)!(kb)!

⋅
∑n+j

m=1
1√
m

∑m−1
KA=0

∑n+j−m
KB=0

⋅[(m − 1 − KA)!(KA)!(n + j −m − KB)!(KB)!]−1(−1)ka−KA

⋅𝛿n−ka+kb,m−KA+KB (1 − 𝛿X,0)

(C31)

and:

B̃X = e−𝜇
∑∞

n=1
1√
n

∑∞
j=0

𝜇n+j

4n+j
∑n−1

ka=0
∑j

kb=0
(n−1−ka+kb)!(j−kb+ka)!
(n−1−ka)!(ka)!(j−kb)!(kb)!

⋅
∑n+j

m=1
1√
m

∑m−1
KA=0

∑n+j−m
KB=0

⋅[(m − 1 − KA)!(KA)!(n + j −m − KB)!(KB)!]−1(−1)kb−KB

⋅𝛿n−ka+kb,m−KA+KB (1 − 𝛿X,0)

(C32)

where the difference between the two expressions is typed in boldface.
Moreover, it can be shown numerically (and possibly, with non-negligible
effort, analytically) that Bm−1−KA+KB = B̃n+j−m−KB+KA and Bn+j−m−KB+KA =
B̃m−1−KA+KB , resulting in the expected symmetry:

pT (+|+) = pT (−|−) = A + Bm−1−KA+KB + C

pT (−|+) = pT (+|−) = A + Bn+j−m−KB+KA + C̃
(C33)

To verify the validity of these rather complicated expressions, we ran
a numerical simulation of the total probability, i.e., pT (+|+) + pT (−|+) +
pT (00|+), with pT (00|+) = e−𝜇(1 + 𝜇), as can be verified easily. In our sim-
ulation, we truncated the sums to n, j ≤ 10. The result of this simulation
is shown in Figure C1, proving that indeed the total probability sums to
1, up to a negligible difference attributed to the truncation of the analyti-
cal expressions.

Appendix D: Detection Statistics in the Reflected
Arm, with Reset

The process of resetting the SPRINT-system (which can be thought of as
projecting the SPRINT-system, regardless of its current state, onto the
reflecting state, |R⟩ (⟨R| + ⟨T|)) is described by tracing over the SPRINT-
system since all the information contained in its state is lost.

Here, we want to calculate the detection statistics in the reflected arm
(Bob’s side) for the case of time-bin encoded BB84 under SPRINT-based
PNS attack, assuming that Eve resets the SPRINT-system in between the
early and late time-bins. We will describe it “mathematically” as if there
are two SPRINT-systems, Se and Sl, with Se (Sl) coupled only to the early
(late) time-bin, using an optical switch. The notation we will use is:

|𝜓⟩ = | ⟩T,e ⊗ | ⟩R,e ⊗ | ⟩Se ⊗ | ⟩T,l ⊗ | ⟩R,l ⊗ | ⟩Sl (D1)

Figure C1. Simulation of the total detection probability in the transmitted
arm (Eve’s side), for x-basis states, as a function of the average photon
number, 𝜇. The total probability sums up to 1, as expected.

The analysis steps are – i) Alice’s preparation of the state, ii) the early
SPRINT-system operates on the early time-bin with ŝe, iii) the late SPRINT-
system operates on the late time-bin with, ŝl, iv) the SPRINT-systems and
the transmission output arm are traced over to obtain 𝜌R, and finally v)
detection in z-basis or x-basis.

It is obvious that the detection statistics might be affected by the reset
only if the state sent by Alice is in the x-basis. Let us first look at the case
where Alice sends out |+⟩. We get:
(i) |+⟩ ⇒ |𝜓⟩ = | 𝛼√

2
, 0, R, 𝛼√

2
, 0, R⟩ (D2)

(ii) |𝜓⟩ = e−
𝜇

4

(|0, 0, R, 𝛼√
2
, 0, R⟩ + ∞∑

n=1

𝛼n√
2nn!

|n − 1, 1, T, 𝛼√
2
, 0, R⟩)

(D3)

(iii) |𝜓⟩ = e−
𝜇

2

(|0, 0, R, 0, 0, R⟩ +∑∞
n=1

𝛼n√
2nn!

|0, 0, R, n − 1, 1, T⟩)
+e−

𝜇

2

(∑∞
n=1

𝛼n√
2nn!

|n − 1, 1, T, 0, 0, R⟩ +∑∞
n=1

𝛼n√
2nn!

⋅
∑∞

m=1
𝛼m√
2mm!

|n − 1, 1, T,m − 1, 1, T⟩)
(D4)

(iv)𝜌R = trTe,Se,Tl ,Sl (|𝜓⟩ ⟨𝜓|)
= e−𝜇

[|0, 0⟩ ⟨0, 0| +∑∞
n=1

𝜇n

2nn!
(|0, 1⟩ ⟨0, 1| + |1, 0⟩ ⟨1, 0|)]

+e−𝜇
(∑∞

n=1
𝜇n

2nn!
∑∞

m=1
𝜇m

2mm! |1, 1⟩ ⟨1, 1|)
(D5)

⇒ 𝜌R = e−
𝜇

2 e−
𝜇

2 |0, 0⟩ ⟨0, 0| + e−
𝜇

2

(
1 − e−

𝜇

2

)
⋅(|0, 1⟩ ⟨0, 1| + |1, 0⟩ ⟨1, 0|)
+
(
1 − e−

𝜇

2

)2 |1, 1⟩ ⟨1, 1|
(D6)

which is a statistical mixture of the cases where both pulses are vacuum
(first term), only one pulse is occupied (second and third terms), and both
pulses are occupied (last term).
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It follows immediately that:

pR(0|+) = tr
(
𝜌R(Pe ⊗ |0⟩l ⟨0|l + 1

2
Pe ⊗ Pl)

)
= e−

𝜇

2

(
1 − e−

𝜇

2

)
+ 1

2

(
1 − e−

𝜇

2

)2
= 1

2
(1 − e−𝜇)

(D7)

and that pR(0|+) = pR(1|+).
Note that an input state |1, 1⟩ = a†b† |0, 0⟩ to a beamsplitter results in

1
2
(a† + ib†)(ia† + b†) |0, 0⟩ = i√

2
(|2, 0⟩ + |0, 2⟩). Thus, if the detection is

in the x-basis, the evolution through the detection apparatus is:

𝜌R = e−
𝜇

2 e−
𝜇

2 |0, 0⟩ ⟨0, 0|
+ 1

2
e−

𝜇

2

(
1 − e−

𝜇

2

)
⋅[(|1, 0⟩ − i |0, 1⟩)(⟨1, 0| + i ⟨0, 1|) + (|1, 0⟩ + i |0, 1⟩)(⟨1, 0| − i ⟨0, 1|)]
+ 1

2

(
1 − e−

𝜇

2

)2
(|2, 0⟩ + |0, 2⟩)(⟨2, 0| + ⟨0, 2|)

(D8)

And so:

pR(+|+) = tr
(
𝜌R(P+ ⊗ |0⟩− ⟨0|− + 1

2
P+ ⊗ P−)

)
= e−

𝜇

2

(
1 − e−

𝜇

2

)
+ 1

2

(
1 − e−

𝜇

2

)2
= 1

2
(1 − e−𝜇)

(D9)

and pR(+|+) = pR(−|+). It is also straightforward to generalize the analy-
sis to the case in which Alice sends out a |−⟩ state, obtaining:
pR(0|−) = pR(1|−) = pR(+|−) = pR(−|−) = 1

2
(1 − e−𝜇) (D10)

Appendix E: Mutual Information

Here, we show how Eve’s information gain can be used to calculate the
mutual information between Alice and her. The mutual information that
Alice shares with Eve is defined as:

I(A; E) =
∑

a∈{0,1}

∑
e∈{0,1}

p(a, e) log
(

p(a, e)
p(a)p(e)

)

=
∑

e∈{0,1}

(
p(0)p(e|0) log( p(e|0)

p(e)

)
+ p(1)p(e|1) log( p(e|1)

p(e)

))
(E1)

where the logarithm is taken to base 2.
Because Alice generates a random string, we know that for any a the

marginal probability is p(a) = 1∕2. That is also true for Eve, i.e., for any e
the marginal probability is p(e) = 1∕2. Thus:

I(A; E) = 1
2

∑
e∈{0,1} (p(e|0) log(2p(e|0)) + p(e|1) log(2p(e|1)))

= 1
2
[p(0|0) log(2p(0|0)) + p(1|0) log(2p(1|0))

+p(0|1) log(2p(0|1)) + p(1|1) log(2p(1|1))]
(E2)

Due to symmetry, we have p(0|0) = p(1|1) and p(0|1) = p(1|0). Also, we
note that p(0|0) is the probability that Eve gets the correct bit value, which
is given by the information gain GM calculated in Section 4.2. The com-

Figure E1. Alice and Eve’s mutual information, Equation (E3), as a func-
tion of 𝜇 with different 𝜁 values.

plement probability, p(1|0), is therefore given by 1 − GM. And so we get:

I(A; E) = [p(0|0) log(2p(0|0)) + p(1|0) log(2p(1|0))]
= GM log(2GM) + (1 − GM) log(2 − 2GM)

(E3)

Now, we can calculate the mutual information between Alice and Eve as
a function of 𝜇 as plotted in Figure E1. These expressions for the mutual
information can be helpful for various prospective security analyses.
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