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Abstract. The existence of mass of neutrino can explain neutrino oscillations. The paper presents a
pioneering classical approach to unravel vacuum neutrino oscillations in curved spacetime. The framework
explores transition probabilities, even mass fluctuations, offering a roadmap for predicting neutrino oscillations
in diverse spacetime contexts. Neutrinos, usually quantum entities, are portrayed as classical particles following
geodesic paths, particularly around massive objects like black holes and neutron stars. The exploration extends
into various spacetime models, revealing neutrino behaviors in Schwarzschild, Kerr, and Kerr-like spacetimes,
as well as the challenging non-separable domains of γ-metric and Hartle-Thorne metric. Canonical phase
formulas for neutrinos are derived, showcasing their interplay with gravitational backgrounds. Overall, this
study sheds light on neutrino oscillations in the captivating arena of curved spacetime, aiming to enrich cosmic
comprehension.
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I. INTRODUCTION

Neutrino oscillation is a phenomenon observed in neutrino physics, where neutrinos change from one flavor to another as
they travel through space. This oscillation is caused by the mixing of the three known neutrino flavors, namely electron neutrino
νe, muon neutrino νµ, and tau neutrino ντ . The theory of neutrino oscillation was first proposed by Pontecorvo [1]. It implies
that neutrinos have a non-zero mass, which was initially believed to be zero. The discovery of neutrino oscillation was made
possible by several experiments, including the Super-Kamiokande experiment [2, 3], the Sudbury Neutrino Observatory (SNO)
experiment [4], and the MINOS experiment [5, 6]. These experiments observed the disappearance and appearance of different
types of neutrinos as they traveled through the Earth’s atmosphere or through matter. The discovery of neutrino oscillation has
been recognized with several awards, including the 2015 Nobel Prize in Physics, which was awarded to Takaaki Kajita and
Arthur B. McDonald for their contributions to the Super-Kamiokande and SNO experiments.

Neutrino oscillation can be described mathematically using the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [7]. This
matrix relates the neutrino flavor states to the mass eigenstates and contains four parameters: three mixing angles and one phase.
The mixing angles determine the probability of a neutrino changing from one flavor to another, while the phase affects the
relative probabilities of oscillation between different flavors. Neutrino oscillation has important implications for astrophysics,
particle physics, and cosmology. It can help us understand the properties of neutrinos and their role in the universe, such as
their contribution to dark matter [8]. It is is a fascinating phenomenon that has opened up new avenues of research in particle
physics and astrophysics. The discovery of neutrino oscillation has challenged our understanding of neutrino properties and has
provided important insights into the nature of the universe.

The mass hierarchy of neutrinos refers to the relative ordering of the three different masses of neutrinos. There are three types
of neutrinos: electron neutrinos, muon neutrinos, and tau neutrinos. Each type of neutrino has a corresponding antineutrino.
According to the current understanding of neutrino physics, neutrinos have non-zero masses, but these masses are very small
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compared to the masses of other fundamental particles. The neutrino mass hierarchy can be either normal or inverted. In
the normal hierarchy, the masses of the three neutrinos are arranged as m1 < m2 < m3, where m1, m2, and m3 are the
masses of the lightest, second lightest, and heaviest neutrinos, respectively. In the inverted hierarchy, the masses are arranged
as m3 < m1 < m2. The determination of the neutrino mass hierarchy is an important question in neutrino physics, and
it has implications for many astrophysical and cosmological phenomena. The current experimental evidence for the neutrino
mass hierarchy comes from the observation of neutrino oscillations. The phenomenon of neutrino oscillation is based on the
fact that neutrinos can change their flavor as they propagate through space, due to the quantum mechanical mixing between
the three different types of neutrinos. The oscillation probabilities depend on the differences between the squared masses of
the three neutrino types, as well as on the mixing angles between them. The neutrino oscillation experiments, such as the
Super-Kamiokande and Daya Bay experiments, have provided important information about the neutrino mass differences and
the mixing angles. The data from these experiments suggest that the neutrino mass hierarchy is most likely normal [9]. However,
future experiments, such as the Deep Underground Neutrino Experiment (DUNE), will provide more precise measurements of
the neutrino mass differences and the mixing angles, which will allow for a definitive determination of the mass hierarchy.

Neutrino oscillation is a quantum phenomenon that occurs in flat spacetime, but it is also expected to occur in curved space-
time. In fact, the gravitational field of massive objects, such as stars and black holes, can affect the propagation of neutrinos and
modify their oscillation behavior. The study of neutrino oscillation in curved spacetime is an active area of research, and it has
important implications for astrophysics and cosmology. The investigation of neutrino lensing caused by gravitational sources
reveals a fascinating phenomenon: a novel contribution that links the oscillation probabilities to the individual masses of neu-
trinos. This relationship is explicitly demonstrated by analyzing the effects of weak lensing induced by a Schwarzschild mass.
The study delves into the implications of gravitationally modified neutrino oscillations within the context of realistic two and
three flavor scenarios in [10]. For example, the gravitational field of a supernova can affect the propagation of neutrinos emitted
during the explosion, leading to potentially observable effects on the neutrino signal [11]. The propagation of neutrinos in a
strong gravitational field regime including electromagnetic interactions is studied within the WKB approximation [12, 13]. Sim-
ilarly, neutrino oscillations in the Schwarzschild spacetime including spin precession in the presence of a magnetic field [14, 15],
particular the radial propagation and the nonradial propagation of neutrino in the Schwarzschild spacetime are investigated [16].
The effect of expansion of the Universe and the torsion in the neutrino oscillation has been studied [17].

Neutrino oscillations have been extensively studied in the context of a rotating spacetime under the weak gravity limit, specif-
ically for neutrino trajectories confined to the equatorial plane. By utilizing the asymptotic form of the Kerr metric, it has
been demonstrated that the gravitational source’s rotation introduces noteworthy modifications to the neutrino phase. Notice,
when neutrinos are generated in close proximity to a black hole with non-zero angular momentum and subsequently detected
on the same side, i.e., the non-lensed neutrino, the oscillation probabilities exhibit significant deviations from the corresponding
outcomes observed in the Schwarzschild spacetime [18]. In Ref.[19], it is studied the impact of gravitational lensing on neu-
trino oscillations within the γ-spacetime framework. By employing a quantum-mechanical approach to relativistic neutrinos,
the phase of neutrino oscillations in this particular spacetime, accounting for both radial and non-radial propagation has been
explored. Similarly, the presence of massive objects in the universe can affect the neutrino oscillation probabilities, which can
impact the predictions for the cosmic neutrino background [20].

The theoretical framework for studying neutrino oscillation in curved spacetime is based on the quantum field theory of neu-
trinos coupled to gravity. The oscillation probabilities depend on the neutrino energy, the neutrino mass-squared differences, and
the curvature of spacetime. The curvature of spacetime is described by the metric tensor, which is a function of the gravitational
field and the distribution of matter and energy. Several studies have investigated the impact of curved spacetime on neutrino
oscillation probabilities, including the effects of the gravitational redshift and the curvature-induced potential [13, 14, 16, 18].
These studies have shown that the oscillation probabilities can be modified by the gravitational field, leading to potentially
observable effects. The study of neutrino oscillation in curved spacetime is an active area of research that has important impli-
cations for astrophysics and cosmology [17, 21]. Theoretical models have been developed to describe the quantum field theory
of neutrinos coupled to gravity, and several studies have investigated the impact of curved spacetime on neutrino oscillation
probabilities See. e.g. [21, 22].

The article is structured as follows: In Sect. II, we give a very brief review of neutrino oscillation in flat and curved space-
times. In Sect. III, we show calculation of the canonical phase for neutrino oscillations using separable equations in the curved
spacetime. In Sect. IV, we show calculation of the canonical phase for neutrino oscillations in the spacetime where non-
separable equation of motion. Finally, in Sect. V we summarize and comment on our results. Throughout the paper, we employ
(−,+,+,+) signature for the line element and adopt geometrical units setting G = c = ℏ = 1.

II. NEUTRINO OSCILLATION

Neutrino are produced and detected in different flavor eigenstates denoted by |να⟩, and the flavour eigenstates are linear
superposition of mass eigenstates denoted by |νi⟩. So a flavor eigenstates can be written in the terms of mass eigenstates as
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[16, 23]

|να⟩ =
∑
i

U∗
αi|νi⟩ , (1)

where U is neutrino flavor mixing unitary matrix, α = {e, µ, τ} and i = {1, 2, 3}. As, in a general curved spacetime, a neutrino
wave-function can have contribution from multiple geodesics which connect the neutrino source and the detector, therefore, a
neutrino flavor state propagation from source S to detector D, located at rS and rD respectively, considering all the paths, is
given as [10, 13]

|να(tD, rD)⟩ =
∑
i

e−iΦi(rD,rS)U∗
αi|νi(tS , rS)⟩ , (2)

where Φi(rD, rS) is the covariant phase of neutrino. The neutrino flavour transition probability from initial produced α flavor at
the detection points is obtained as [13, 14]

Pαβ = |⟨νβ |να(tB , xB)⟩|2 =
∑
i,j

UβiU
∗
βjUαjU

∗
αie

−i∆Φij . (3)

Further, for the two flavor case, the neutrino flavor transition probability from the initially produced flavor e and to the flavour µ
is given as [15, 19]

Pαβ = sin2 2Θ sin2
(
∆Φij

2

)
, (4)

where Θ mixing angle and ∆Φij = Φi−Φj is difference of canonical phases. Finally, the generalized covariant phase is defined
as [18]

Φi =

∫ rS

rD

p(i)µ dxµ = −mi

∫ rS

rD

ds , (5)

where p
(i)
µ is the canonical conjugate momentum to the coordinate xµ for the ith neutrino mass defined as p

(i)
µ = migµν ẋ

ν .
Here ẋµ is four-velocity of particle normalized as ẋµẋ

µ = −1, it means that pµpµ = −m2. In a flat spacetime the phase can be
derived as [13]

Φi = Ei(tS − tD)− pi · (xS − xD) ≃ (Ei − |pi|)|xS − xD| , (6)

and in the case of relativistic neutrino with following condition mi << Ei, the difference of the energy and momentum is
estimated as Ei − |pi| = Ei −

√
E2

i −m2
i ≃ m2

i /(2Ei). Then difference of the covariant phase in a flat spacetime reads

∆Φij =
∆m2

ij

2E0
|xS − xD| , ∆m2

ij = m2
i −m2

j . (7)

where E0 is the average energy of the relativistic neutrinos produced at the source.

III. SEPARABLE EQUATION OF MOTION

The Hamilton-Jacobi equation for massive particle can be written as

gαβ
∂S

∂xα

∂S

∂xβ
= −m2 , (8)

where m is a mass of particle. Using the definition four-momentum pα = ∂S/∂xα equation (8) can be rewritten as

pαp
α = −m2 , (9)
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A. In Schwarzschild spacetime

Here, we will discuss derivation of the canonical phase in the Schwarzschild spacetime which is described external black hole
solution of mass M and given by metric: ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ, where f(r) = 1 − 2M/r. Due to symmetry
constants of motion, namely, energy and angular momentum can be found as pt = const and pϕ = const. Finally, in the
background of the Schwarzschild spacetime, equation of motion (9) can be separated as

pr =
1

f(r)

√
E2 − f(r)

(
m2 +

K

r2

)
, (10)

pθ =

√
K − L2

sin2 θ
, (11)

pϕ = L , (12)
pt = −E , (13)

where E, L and K are, respectively, constants of motion regarded to the energy, angular momentum and Carter’s separation
constant. Using the following definition of the four-momentum pα = mẋα, one can get

mṙ =

√
E2 − f(r)

(
m2 +

K

r2

)
, (14)

mθ̇ =
1

r2

√
K − L2

sin2 θ
, (15)

mϕ̇ =
L

r2 sin2 θ
, (16)

mṫ =
E

f(r)
. (17)

Using the equations of motion (10)-(17), the canonical phase from point rD to point rS can be determined as

Φi =

∫ rS

rD

p
(i)
t ṫ+ p

(i)
r ṙ + p

(i)
θ θ̇ + p

(i)
ϕ ϕ̇

ṙ
dr (18)

= −
∫ rS

rD

m2
i dr√

E2
i − f(r)

(
m2

i +
Ki

r2

) . (19)

In the radial oscillation i.e. θ = π/2, the angular momentum of neutrino is zero Ki = L2
i = 0 and the canonical phase will

be independent of angle θ which can be written as

Φi = −m2
i

Ei

∫ rS

rD

dr√
1−

(
1− 2M

r

) m2
i

E2
i

=
m2

i

(1− m2
i

E2
i
)E0

[
rD

√
1−

(
1− 2M

rD

)
m2

i

E2
0

− rS

√
1−

(
1− 2M

rS

)
m2

i

E2
0

]

− 2m4
iM

(1− m2
i

E2
i
)3/2E3

0

tanh−1


√
1− m2

i

E2
i

(√
1−

(
1− 2M

rD

)
m2

i

E2
i
−
√
1−

(
1− 2M

rS

)
m2

i

E2
i

)
1− m2

i

E2
i
−
√
1−

(
1− 2M

rD

)
m2

i

E2
i

√
1−

(
1− 2M

rS

)
m2

i

E2
i

 , (20)

While in the weak field approximation, the difference of canonical phase can be determined as

∆Φij =
∆m2

ij

E0
(rS − rD)

[
1 +

m2
i +m2

j

2E2
0

(
1− Rs

rS − rD
log

rS
rD

)]
, (21)
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B. In Kerr spacetimes

Now we consider the canonical phase in the axially-symmetric spacetime. To take account the Kerr spacetime which describes
by the following line element:

ds2 = −∆

Σ

(
dt− a sin2 θdϕ

)2
+

Σ

∆
dr2 +Σdθ2 +

sin2 θ

Σ

[
(r2 + a2)dϕ− adt

]2
, (22)

where ∆ = r2 − 2Mr + a2 and Σ = r2 + a2 cos2 θ, M is the mass and a is spin of black hole. In the Kerr spacetime the
Hamiltonian-Jacobi equation of motion (9) takes a form:

∆p2r + p2θ −
[
(r2 + a2)E − aL

]2
∆

+

(
L

sin θ
− aE sin θ

)2

+m2r2 +m2a2 cos2 θ = 0 , (23)

which can be separated as

pr =

√
[(r2 + a2)E − aL]2 −∆(K +m2r2)

∆
, (24)

pθ =

√
K −

(
L

sin θ
− aE sin θ

)2

−m2a2 cos2 θ , (25)

where K is the Carter constant of motion and other two constants, the energy E and angular momentum L are related to
momentum as pt = −E and pϕ = L. Using the definition of four-momentum of massive test particle, pµ = mẋµ, equations of
motion can be derived as

mṙ =

√
[(r2 + a2)E − aL]2 −∆(K +m2r2)

Σ
, (26)

mθ̇ =
1

Σ

√
K −

(
L

sin θ
− aE sin θ

)2

−m2a2 cos2 θ , (27)

mϕ̇ =
a[(r2 + a2)E − aL]

∆
− L− aE sin2 θ

sin2 θ
, (28)

mṫ =
r2 + a2

∆
[(r2 + a2)E − aL]− a(L− aE sin2 θ) . (29)

Hereafter substituting equations of motion (24)-(29) into the expression (5), the canonical phase for neutrino in Kerr spacetime
takes a form:

Φi =

∫ rS

rD

−m2
iΣdr√

[(r2 + a2)Ei − aLi]2 −∆(Ki +m2
i r

2)
. (30)

Notice that the canonical phase for neutrino in the Kerr-like spacetime is also given by equation (30). In the equatorial plane of
the Kerr black hole, one can get

Φi =

∫ rS

rD

−m2
i dr√[

Ei − a(Li−aEi)
r2

]2
− ∆

r2

[
m2

i +
(Li−aEi)2

r2

] , (31)

while in particular case, Li = aEi, the canonical phase for neutrino yields

Φi =
m2

i

(√
r2SE

2
i −m2

i∆S −
√
r2DE2

i −m2
i∆D

)
E2

i −m2
i

− m4
iM

(E2
i −m2

i )
3/2

[
tanh−1

(
E2

i rS −m2
i (rS −M)√

E2
i −m2

i

√
r2Se

2 −m2
i∆S

)
− tanh−1

(
E2

i rD −m2
i (rD −M)√

E2
i −m2

i

√
r2De2 −m2

i∆D

)]
. (32)
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C. In Johannsen spacetime

Now we focus on to test the Johannsen spacetime by determining the fundamental frequencies of test particle. It is the general
form of the Kerr spacetime described the following metric [24]:

ds2 =− Σ̃∆

B2

[
A3(θ)dt− aA4(θ) sin

2 θdϕ
]2

+
Σ̃

∆A5(r)
dr2 +

Σ̃

A6(θ)
dθ2

+
Σ̃ sin2 θ

B2

[
A1(r)(r

2 + a2)dϕ− aA2(r)dt
]2

, (33)

where B = A1(r)A3(θ)(r
2 + a2) − A2(r)A4(θ)a

2 sin2 θ and Σ̃ = Σ + f(r) + g(θ). Notice that ∆ function is the same as in
Kerr spacetime. In general it is impossible to find the stationary points of the function V (r, θ) in the background geometry (33).
However, for specific choice of the profile functions

A1(r) = 1 +

∞∑
n=3

α1n

(
M

r

)n

, A2(r) = 1 +

∞∑
n=2

α3n

(
M

r

)n

, (34)

A5(r) = 1 +

∞∑
n=2

α5n

(
M

r

)n

, f(r) = r2
∞∑

n=3

ϵn

(
M

r

)n

, (35)

A3(θ) = A4(θ) = A6(θ) = 1 , g(θ) = 0 , (36)

one can find that the stationary points of the function V (r, θ) is located at the equatorial plane θ0 = π/2. One has to emphasise
that the Johannsen spacetime is characterized by series of parameters, α1n, α3n, α5n, and ϵn along the mass and spin of the
black hole and it is applicable in the phenomenological calculations in black hole astrophysics.

In Johannsen spacetime, the Hamiltonian-Jacobi equation of motion (33) can be written as

∆A5(r)p
2
r +A6(θ)p

2
θ −

[
(r2 + a2)A1(r)E − aA2(r)L

]2
∆

+m2
(
r2 + f(r)

)
+

+

(
A3(θ)L

sin θ
− aA4(θ)E sin θ

)2

+m2
(
a2 cos2 θ + g(θ)

)
= 0 , (37)

which can be separated as

pr =
1

∆

√√√√ 1

A5(r)

[
[(r2 + a2)A1(r)E − aA2(r)L]2 −∆(K +m2r2 +m2f(r))

]
, (38)

pθ =

√√√√ 1

A6(θ)

[
K −

(
A3(θ)L

sin θ
− aA4(θ)E sin θ

)2

−m2a2 cos2 θ −m2g(θ)

]
, (39)

where K is the Carter constant of motion and other two constants, the energy E and angular momentum L are related to
momentum as pt = −E and pϕ = L. Using the definition of four-momentum of massive test particle, pµ = mẋµ, equations of
motion can be derived as

mṙ =

√
A5(r)

Σ̃

√
[(r2 + a2)A1(r)E − aA2(r)L]

2 −∆(K +m2r2 +m2f(r)) , (40)

mθ̇ =

√
A6(θ)

Σ̃

√
K −

(
A3(θ)L

sin θ
− aA4(θ)E sin θ

)2

−m2a2 cos2 θ −m2g(θ) , (41)

mϕ̇ =
aA2(r)

∆Σ̃

[
(r2 + a2)A1(r)E − aA2(r)L

]
− A3(θ)

Σ̃

(
aA4(θ)E − A3(θ)L

sin2 θ

)
, (42)

mṫ =
(r2 + a2)A1(r)

∆Σ̃

[
(r2 + a2)A1(r)E − aA2(r)L

]
− aA4(θ)

Σ̃

(
A3(θ)L− aA4(θ)E sin2 θ

)
. (43)
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Using equations of motion (38)-(43), the canonical phase for neutrino in Johannsen spacetime can be expressed as

Φi =

∫ rS

rD

−m2
i Σ̃dr√√√√A5(r)

[
[(r2 + a2)A1(r)Ei − aA2(r)Li]

2 −∆(Ki +m2
i r

2 +m2
i f(r))

] , (44)

while in the equatorial plane (θ = π/2), one obtains

Φi =

∫ rS

rD

−m2
i

(
1 + f(r)

r2

)
dr√√√√A5(r)

[(
A1(r)Ei − a[A2(r)Li−aA1(r)Ei]

r2

)2
− ∆

r2

[
m2

i

(
1 + f(r)

r2

)
+ (Li−aEi)2

r2

] ] . (45)

In general relativity and quantum field theory, investigating of neutrino oscillation in curved spacetimes important and interest-
ing. Understanding the canonical phase for neutrinos necessitates an examination of their interaction with gravitational fields,
which varies according to the specific geometry of the spacetime. While it is often feasible to analytically derive the canonical
phase for neutrinos in separable spacetimes like Schwarzschild and Kerr, where metric components can be expressed as inde-
pendent functions of coordinates, the task becomes more formidable in more general spacetimes lacking separability. So far, we
have successfully demonstrated the straightforward derivation of the canonical phase for neutrinos in Schwarzschild and Kerr
spacetimes. However, in the case of generalized Kerr spacetime, one must integrate it considering the particular form of lapse
functions such as ∆, Ai, and others. In the following section, we will illustrate the derivation of the canonical phase for neutrinos
in spacetimes that lack separability. To derive the canonical phase for neutrinos in such non-separable spacetimes, it is typically
necessary to solve the pertinent equations of motion and account for the influence of spacetime geometry on neutrino propaga-
tion. This process may involve numerical integration of the relevant equations or the utilization of approximation methods. In
the following section, we will explore the canonical phase for neutrinos in spacetimes where variables cannot be separated.

IV. INSEPARABLE EQUATION OF MOTION

It is widely recognized that the separation of variables in the equation of motion is not universally applicable to all spacetimes.
Consequently, deriving the canonical phase for a neutrino in such spacetimes poses a significant challenge. However, in these
scenarios, an alternative approach can be employed by utilizing equation (5) and expressing it in the following form:

Φi = −mi

∫ rS

rD

ds = −mi

∫ rS

rD

1

ṙ
dr , (46)

that means it is enough to derive equation for radial motion for particular angle θ0. Here we focus on certain spacetimes in which
separation of variable is impossible.

A. The γ-metric

Now, we will consider the canonical phase in γ-metric. In Erez-Rosen coordinates, the spacetime is given by the line element
as

ds2 = −fγdt2 + fγ2−γg1−γ2

(
dr2

f
+ r2dθ2

)
+ f1−γr2sin2θdϕ2 , (47)

with

f = 1− 2M

γr
, g = 1− 2M

γr
+

M2sin2θ

γ2r2
. (48)

where M is the mass of the central object and γ is the deformation of the spacetime. To find the canonical phase with using
equation (46), first we should find the expression of ṙ. Using the normalization of the four-velocity, ṙ can be found as

ṙ =

√
1

grr

(
−m2

i −
E2

i

gtt
− L2

i

gϕϕ

)
, (49)
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Substituting Eq. (49) into Eq. (46), the canonical phase for neutrino can be written as

Φi = −
∫ rS

rD

m2
i

√
−gttgrrdr√

gttm2
i +

(
E2

i + gtt
gϕϕ

L2
i

) . (50)

In the equatorial plane (θ = π/2)

Φi = −
∫ rS

rD

m2
i√

E2
i − f2γ−1

r2 L2
i − fγm2

i

dr . (51)

and

Φi =
m2

i

[√
(E2

i −m2
i ) r

2
D − b2 −

√
(E2

i −m2
i ) r

2
S − b2

]
m2

i − E2
i

+
(γ − 1)m2

iMrD√
(E2

i −m2
i ) r

2
D − b2

− (γ − 1)m2
iMrS√
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i −m2

i ) r
2
S − b2

−

− γm4
iM

(m2
i − E2

i )
3/2

ln

(√
b2 + (m2

i − E2
i ) r

2
D −

√
m2

i − E2
i rD√

b2 + (m2
i − E2

i ) r
2
S −

√
m2

i − E2
i rS

)
, (52)

where b = Li/Ei is impact parameter.

B. The Hartle-Thorne spacetime

Now we concentrate the canonical phase for neutrino in the the Hartle-Thorne spacetime which is given by the metric [25]:

ds2 = −
(
1− 2M

r

)[
1 + 2k1P2(cos θ)−

2J2

r2

(
1− 2M

r

)−1

(2 cos2 θ − 1)

]
dt2

+

(
1− 2M

r

)−1
[
1− 2

(
k1 −

6J2

r2

)
P2(cos θ)−

2J2

r2

(
1− 2M

r

)−1
]
dr2

+ r2 [1− 2k2P2(cos θ)] (dθ
2 + sin2θdϕ2)− 4J

r
sin2 θdtdϕ , (53)

where

k1 =
J2

Mr3

(
1 +

M

r

)
+

5

8

(
Q

M3
− J2

M4

)
Q2

2

( r

M
− 1
)

, (54)

k2 = k1 +
J2

r4
+

5

4

(
Q

M2r
− J2

M3r

)(
1− 2M

r

)−1/2

Q1
2

( r

M
− 1
)

, (55)

and Q1
2(x) and Q2

2(x) are the associated Legendre functions of the second kind. Here M is the mass, J is the angular momentum
and Q is the quadruple moment of the neutron star. Using the normalization of the four-velocity, we can the expression of ṙ as

ṙ =

√
1

grr

(
−m2

i +
E2

i

gtt
− L2

i

gϕϕ
+ 2gtϕEiLi

)
, (56)

Plugging Eq (56) into Eq (46) give us the expression of canonical phase for neutrino in Hartle-Thorne spacetime

Φi = −
∫ rS

rD

m2
i

√
gttgrrdr√

E2
i + 2gtϕgttLiEi − gtt

gϕϕ
L2
i − gttm2

i

. (57)

In the equatorial plane (θ = π/2), the phase expression can be simplified as

Φi = −m2
i

∫ rS

rD

√
1− 2M

r − 4J2

r4√
E2

i

(
1− 2M

r
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i +
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i
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) [
2J2

r2
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r

)2
+
(
1− 2M
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+ 8EiLiJ

r
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1− 2M

r

)dr . (58)
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V. CONCLUSIONS AND FUTURE OUTLOOK

We have undertaken a thorough exploration of the classical approach, aiming to unveil the complex domain of vacuum
neutrino oscillations set against the intriguing background of curved spacetime. Our framework explores transition probabilities,
shedding light on their intricate dynamics even in the face of oscillations in mass representation. Through a diligent charting
of our course ahead, we offer a clear and coherent roadmap for computing canonical phase transitions and forecasting neutrino
oscillations across the boundless stretches of arbitrary curved spacetime.

We have determined canonical phase of neutrino in several spacetimes in general relativity, for instances, the Schwarzschild
and Kerr spacetime which leads separable equations of motion for neutrino behavior. We have shown that this approach are
satisfied in arbitrary static and rotating spacetime. Further, we have also treated this approach to Kerr-like spacetime known as
Johannsen metric.

Yet, not all cosmic stages unveil their secrets so readily. Our voyage takes us to the captivating domain of non-separable
spacetimes, where the γ-metric and Hartle-Thorne metric challenge our every step. Even here, we remain undaunted, deriving
canonical phase formulas for the intrepid neutrino, a testament to the power of our approach. These formulas shimmer with
promise, revealing a tantalizing interplay between neutrino motion and the enigmatic gravitational background an interplay that
sculpts the very essence of neutrino mixing.

In summation, our work stands as a beacon of theoretical rigor, illuminating the intricate tango of neutrino oscillations within
the captivating theater of curved spacetime. As the cosmic saga unfolds, it is our hope that the seeds sown in our theoretical
garden will bear fruit, enriching our understanding of the cosmos and the neutrinos physics.
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