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The Hawking temperature for the Schwarzschild black hole is divergent when the mass
of the black hole vanishes; however, the corresponding geometry becomes the Minkowski
spacetime whose intrinsic temperature is zero. In connection with this issue, we con-
struct a nonsingular temperature which follows the Hawking temperature for the large
black hole, while it vanishes when the black hole is completely evaporated. For the
thermodynamic significances of this modified temperature, we calculate thermodynamic
quantities and study phase transitions. It turns out that even the small black hole can
be stable below a certain temperature, and the hot flat space is always metastable so
that it decays into the stable small black hole or the stable large black hole.

Hawking has shown that there is radiation from the black hole through the analysis

for the origin of the entropy from the point of view of quantum field theory.1 The

Hawking temperature could be defined generically as TH = �κH/(2π), where κH

is the surface gravity at the horizon. However, it shows that the temperature is

proportional to the inverse of the mass, and it is divergent when the mass of the

black hole vanishes, although the black hole disappears and its metric becomes

the Minkowski spacetime. In this work, we would like to present a nonsingular

temperature without resort to the cutoff in the UV region. And then, in order for

studying phase transition based on the newly defined temperature, the free energies

will be considered for the hot flat space, the small black hole, and the large black

hole, respectively. Then, we find a Hawking-Page-type phase transition2–4 between

the small black hole and the large black hole.

Let us assume that the Hawking temperature can be modified in such a way

that the temperature of the black hole vanishes when the mass of the black hole

goes to zero while it follows the behavior of the well-known Hawking temperature

for the large black hole.

T =
1

8πGM

∑n
i=0 ai

(
M
MP

)1+αi

∑n
i=0 bi

(
M
MP

)1+βi

+ C

, (1)

where T → 0 for M → 0 and T → 1/(8πGM) for M → ∞, and αi, βi, and C are

positive constants with αn = βn. Additionally, αi < αj , βi < βj for i < j, and

an = bn.

∗This is based on Phys. Rev. D 91, no. 4, 044037 (2015).
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(b) Free energy based on the modified tem-
perature

Fig. 1. The constants of both graphs are chosen as G = 1, α = 1/2, and, in Fig. 1(b), the
cavaty size is set as r = 10. The temperature in Fig. 1(a) follows the Hawking temperature
asymptotically and vanishes at M → 0. The maximum temperature appears at the Planck mass.
The phase transition appears between the hot flat space and the stable small black hole, and it
happens between the stable small black hole and the stable large black hole in Fig. 1(b).

Then, the entropy calculated from the first law of thermodynamics still respects

the Bekenstein-Hawking entropy for the large black hole as S ∼ 4πGM2. On the

other hand, the entropy for the small mass can be calculated as

S =
8πGMPC

a0

∫ (
MP

M

)α0

dM ∼
⎧⎨⎩
− 1

Mα0−1 for α0 > 1,

lnM for α0 = 1,

M1−α0 for 0 < α0 < 1,

(2)

where we neglected the subleading terms. Note that the entropy is negative diver-

gent for α0 ≥ 1, and it vanishes for 0 < α0 < 1 when M → 0. As a result, we obtain

the additional condition of 0 < α0 < 1 in order for the positive entropy.

The most simple form of the modified temperature (1) without loss of generality

corresponds to n = 0, which is written as

T =
1

8πGM

[
1 +

1

α

(
MP

M

)1+α
]−1

, (3)

where, all constraints are simplified as 0 < α < 1. The behavior of the temper-

ature (3) is illustrated in Fig. 1(a). The entropy corresponding to the modified

temperature (3) is calculated as

S = 4πGM2 +
8π

α(1− α)

(
M

MP

)1−α

. (4)

As a result, the temperature and entropy vanish at the end state of the black hole.

In connection with the modified temperature (3), we are going to investigate

thermodynamic phase transitions. Let us consider the cavity as a boundary with
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a radius r to study quasilocal thermodynamics along the line of the procedure.4

Then, the local temperature measured at the boundary is given as

Tloc =
1

8πGM
√
1− 2GM/r

[
1 +

1

α

(
MP

M

)1+α
]−1

. (5)

The free energy of the black hole is calculated in order to study phase transition

between the black holes and the hot flat space as,

F bh
on =

r

G
− r

G

√
1− 2GM

r
−

4πGM2 +
8πGM2

P

α(1−α)

(
M
MP

)1−α

8πGM
√
1− 2GM

r

(
1 + 1

α

(
MP

M

)1+α
) . (6)

Note that for the limit of MP/M → 0, Eq. (6) is reduced to the well-known free

energy of the black hole in the conventional thermodynamics of the Schwarzschild

black hole.4

As seen in Fig. 1, it turns out that there is a single state of the stable small

black hole for T < T0 or the stable large black hole for T > T1. For T0 < T < T1,

there are three black hole states which consist of the two small black holes and one

large black hole. Apart from the existence of the stable small black hole, the most

interesting thing to be distinguished from the standard thermodynamics is that the

flat space is no longer a stable state thermodynamically in any temperature since it

should always decay into the stable small black hole or the stable large black hole,

so that the final state becomes a black hole state.

Finally, the method for the present regular temperature requires an explanation

about the limitations of the present approach since we assumed a certain modifica-

tion of the Hawking temperature as a function of the black hole mass but did not

discuss the origin of such a modification. First of all, the temperature (3) derived

from the polynomial expansion of the black hole mass is, indeed, not unique even in

spite of the plausibility of reproducing the conventional Hawking temperature; for

example, another type of temperature such as T = 1/(8πGM)(1− e−k(M/Mp)
1+α

),

where k is an arbitrary positive constant also satisfies the two boundary conditions

mentioned. To fix the physically meaningful temperature uniquely and figure out

what happens at the end state of evaporation of the black hole, the complete theory

of quantum gravity covering the trans-Planckian regime should be defined. The sec-

ond limitation of our approach is that we employed the classical metric for the local

Tolman temperature as seen from Eq. (5), which is a temporary expedient. In par-

ticular, one can expect that such a modified temperature (3) comes from a change in

the spacetime geometry, so that the local temperature (5) changes accordingly. Note

that modifications in the geometry could have a nontrivial effect on our analysis and

an impact on the physics of small black holes. Using the one-to-one correspondence

between the GUP and the GUP temperature, a corresponding modified uncertainty

relation, which is written as ΔxΔp+(2
p/α)(2
p/Δx)αΔp ≥ 1, can also be derived

straightforwardly from Eq. (3). This modified uncertainty relation will modify the
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classical geometry so that the local temperature will be changed somehow near the

horizon and, consequently, the thermodynamic behaviors of small black holes may

be different from the the present results. This deserves further study, which we

hope will appear in the future.
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