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The Hawking temperature for the Schwarzschild black hole is divergent when the mass
of the black hole vanishes; however, the corresponding geometry becomes the Minkowski
spacetime whose intrinsic temperature is zero. In connection with this issue, we con-
struct a nonsingular temperature which follows the Hawking temperature for the large
black hole, while it vanishes when the black hole is completely evaporated. For the
thermodynamic significances of this modified temperature, we calculate thermodynamic
quantities and study phase transitions. It turns out that even the small black hole can
be stable below a certain temperature, and the hot flat space is always metastable so
that it decays into the stable small black hole or the stable large black hole.

Hawking has shown that there is radiation from the black hole through the analysis
for the origin of the entropy from the point of view of quantum field theory.! The
Hawking temperature could be defined generically as Ty = hrp/(27), where ki
is the surface gravity at the horizon. However, it shows that the temperature is
proportional to the inverse of the mass, and it is divergent when the mass of the
black hole vanishes, although the black hole disappears and its metric becomes
the Minkowski spacetime. In this work, we would like to present a nonsingular
temperature without resort to the cutoff in the UV region. And then, in order for
studying phase transition based on the newly defined temperature, the free energies
will be considered for the hot flat space, the small black hole, and the large black
hole, respectively. Then, we find a Hawking-Page-type phase transition?* between
the small black hole and the large black hole.

Let us assume that the Hawking temperature can be modified in such a way
that the temperature of the black hole vanishes when the mass of the black hole
goes to zero while it follows the behavior of the well-known Hawking temperature
for the large black hole.
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where T'— 0 for M — 0 and T — 1/(87GM) for M — oo, and «, f3;, and C are
positive constants with o, = B,. Additionally, a; < «;, 8; < B; for i < j, and

an = by,.

*This is based on Phys. Rev. D 91, no. 4, 044037 (2015).
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(a) The modified temperature (b) Free energy based on the modified tem-
perature

Fig. 1. The constants of both graphs are chosen as G = 1, a = 1/2, and, in Fig. 1(b), the
cavaty size is set as r = 10. The temperature in Fig. 1(a) follows the Hawking temperature
asymptotically and vanishes at M — 0. The maximum temperature appears at the Planck mass.
The phase transition appears between the hot flat space and the stable small black hole, and it
happens between the stable small black hole and the stable large black hole in Fig. 1(b).

Then, the entropy calculated from the first law of thermodynamics still respects
the Bekenstein-Hawking entropy for the large black hole as S ~ 4rGM?2. On the
other hand, the entropy for the small mass can be calculated as

o S — fOI' (%)) > 1
0 Mao—1 9

In M for ap =1, (2)
@0 M M1t—eo for 0 < ap < 1,

where we neglected the subleading terms. Note that the entropy is negative diver-
gent for ag > 1, and it vanishes for 0 < ap < 1 when M — 0. As a result, we obtain
the additional condition of 0 < g < 1 in order for the positive entropy.

The most simple form of the modified temperature (1) without loss of generality
corresponds to n = 0, which is written as

L1 (Me e
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where, all constraints are simplified as 0 < « < 1. The behavior of the temper-

ature (3) is illustrated in Fig. 1(a). The entropy corresponding to the modified
temperature (3) is calculated as
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As a result, the temperature and entropy vanish at the end state of the black hole.
In connection with the modified temperature (3), we are going to investigate
thermodynamic phase transitions. Let us consider the cavity as a boundary with
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a radius 7 to study quasilocal thermodynamics along the line of the procedure.*
Then, the local temperature measured at the boundary is given as

-1

Tloe = 87TGM\/W[ (MP) 1 ' )

The free energy of the black hole is calculated in order to study phase transition

between the black holes and the hot flat space as,
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Note that for the limit of Mp/M — 0, Eq. (6) is reduced to the well-known free
energy of the black hole in the conventional thermodynamics of the Schwarzschild
black hole.*

As seen in Fig. 1, it turns out that there is a single state of the stable small
black hole for T' < Tj or the stable large black hole for T > Ty. For Ty, < T < T7,
there are three black hole states which consist of the two small black holes and one
large black hole. Apart from the existence of the stable small black hole, the most
interesting thing to be distinguished from the standard thermodynamics is that the
flat space is no longer a stable state thermodynamically in any temperature since it
should always decay into the stable small black hole or the stable large black hole,
so that the final state becomes a black hole state.

Finally, the method for the present regular temperature requires an explanation
about the limitations of the present approach since we assumed a certain modifica-
tion of the Hawking temperature as a function of the black hole mass but did not
discuss the origin of such a modification. First of all, the temperature (3) derived
from the polynomial expansion of the black hole mass is, indeed, not unique even in
spite of the plausibility of reproducing the conventional Hawking temperature; for
example, another type of temperature such as T = 1/(87GM)(1 — e~ FM/Mp)"™),
where k is an arbitrary positive constant also satisfies the two boundary conditions
mentioned. To fix the physically meaningful temperature uniquely and figure out
what happens at the end state of evaporation of the black hole, the complete theory
of quantum gravity covering the trans-Planckian regime should be defined. The sec-
ond limitation of our approach is that we employed the classical metric for the local
Tolman temperature as seen from Eq. (5), which is a temporary expedient. In par-
ticular, one can expect that such a modified temperature (3) comes from a change in
the spacetime geometry, so that the local temperature (5) changes accordingly. Note
that modifications in the geometry could have a nontrivial effect on our analysis and
an impact on the physics of small black holes. Using the one-to-one correspondence
between the GUP and the GUP temperature, a corresponding modified uncertainty
relation, which is written as AxAp + (26, /a)(2¢,/Ax)*Ap > 1, can also be derived
straightforwardly from Eq. (3). This modified uncertainty relation will modify the



The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/25/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3756

classical geometry so that the local temperature will be changed somehow near the
horizon and, consequently, the thermodynamic behaviors of small black holes may
be different from the the present results. This deserves further study, which we
hope will appear in the future.
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