
New J. Phys. 27 (2025) 013010 https://doi.org/10.1088/1367-2630/ada4d0

OPEN ACCESS

RECEIVED

25 August 2024

REVISED

28 November 2024

ACCEPTED FOR PUBLICATION

2 January 2025

PUBLISHED

21 January 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Multi-pulse Fourier codes for bit transmission at the quantum limit
Matteo Rosati
Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Universitá Roma Tre, Via Vito Volterra 62, I-00146
Rome, Italy

E-mail: matteo.rosati@uniroma3.it

Keywords: quantum communication, optical communication, joint-detection-receiver, quantum advantage,
quantum information processing

Abstract
Bit-transmission can be enhanced by the use of quantum detection techniques, realizing a
joint-detection receiver (JDR) that is able to decode transmitted signals via a collective operation
and achieve the Holevo channel capacity. Explicit JDR designs proposed so far employ the
Hadamard or Fourier transform to perform a phase-to-intensity translation of the information
encoding, effectively falling in the class of on-off-keying (OOK) modulation techniques; they
improve over classical decoders but fall short of the Holevo capacity, particularly at large signal
mean photon number n≳ 1. Here we introduce new families of decoders based on multi-pulse and
multi-level codes. We compute the rate of these codes exactly, and provide a comprehensive study
of their performance. We show that multi-pulse codes can approach the rate of OOK closely,
providing a simplified design for quantum-enhanced communication in the photon-starved
regime; furthermore, multi-level codes can approach generalized-OOK strategies with multiple
pulse types, thus they can be employed in the larger photon-number regime.

1. Introduction

Quantum information theory aims at establishing the ultimate limits of information-processing tasks, based
on a quantum-mechanical description of the employed physical systems. In communication, Holevo [1]
established a seminal theorem that determines the maximum amount of bits transmittable on a quantum
channel, i.e. the classical capacity of said channel, encompassing the use of quantum correlations among
multiple signals both at the encoding and decoding stage. More recently, it was shown that the class of
phase-insensitive bosonic quantum Gaussian channels, modelling the effects of loss, additive noise, and
amplification in optical-fiber and free-space communication via continuous-variable optical quantum
systems, does not require entanglement at the encoding stage [2, 3]. However, to the best of our knowledge, a
decoder achieving the Holevo capacity still requires an optimal joint-detection receiver (JDR), that analyses
the received signals in a coherent and collective way [4–16]. Despite much work on the subject, only few
sub-optimal designs of JDR have been proposed to date, based either on discrete transforms (DTs),
e.g. Hadamard and Fourier [17–20], or on general linear-optical interactions [16]. Furthermore, these
designs perform well only in the regime where the number of received photons is small (n≲ 1).

One common feature of the DT-JDR designs is that the information is initially encoded into the phases of
a sequence of coherent-states of the electromagnetic field, keeping the mean-photon-number constant for
each symbol in the sequence, and ensuring that different messages are encoded into sequences that are
orthogonal in phase-space. The decoder performs a DT on the signal sequences aimed at translating the
phase-modulation into an intensity-modulation; in this way, different messages are identified by the presence
of a single pulse in a different symbol position, easily read-out via photo-detection. From this perspective,
DT schemes can be seen as a sub-class of on-off-keying (OOK) ones, characterized by the transmission of iid
symbols, each of which can be either vacuum, with high probability, or a high-photon-number pulse, with
low probability. Indeed, by optimizing the pulse probability it is always possible to outperform DT via OOK.

On the other hand, the general linear-optical schemes discovered in [16] took a step beyond the
single-pulse regime, producing sequences where multiple pulses of different mean-photon-numbers can be
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detected after the decoding operation. Such schemes surpass the communication rate of DT ones in the
region of 0.1≲ n≲ 1 photons. Unfortunately, given the numerical nature of [16], it is difficult to extrapolate
a systematic coding/decoding method from there.

In light of these reasons, here we introduce multi-pulse and multi-level codes based on the Fourier
transform, in an effort to take the best of both JDR design methods known to date. The rationale behind our
new codes is that, thanks to the linearity of the decoding operations in phase-space, one can combine signal
sequences corresponding to different messages, giving rise to new sequences after decoding, which contain
multiple pulses with potentially different mean photon number levels. Multi-pulse sequences effectively
realize a higher-order approximation of sequences generated by iid repetitions of OOK, while multi-level
ones can in principle approximate generalizations of OOK using more than one pulse type. The latter are
also known to provide an optimal modulation for the classical discrete-time Poisson channel capacity [21,
22], which can be related to the quantum channels under study via the photo-detection process [23, 24].

Finally, while here we show the approximate equivalence of complex multi-symbol JDR schemes with
simpler single-symbol OOK ones (see also [10]), we stress that the use of JDR techniques is nevertheless
favorable in communication scenarios where a peak-energy constraint is present. This is a motivated
assumption in most practical settings, e.g. due to effective limits to the maximum power that can be
produced and/or that the transmission medium can support before the onset of capacity-limiting effects, or
due to the use of low-brightness signals for security purposes.

2. Bit-transmission at the quantum limit

We consider a bit-transmission protocol that encodes information onM modes of the electromagnetic field.
For the purpose of describing the protocol and computing its rate, for simplicity we make the assumption
that the modes have fixed frequency ν, and hence they are either time- or spatially- separated; nevertheless,
our results are equally applicable to frequency-separated modes. We describe the signal as a quantum-
mechanical state of the field: each mode is supported on an infinite-dimensional Hilbert spaceHi and the
corresponding field amplitude can be written in terms of the photon-creation and -annihilation operators
ai,a

†
i , which obey the bosonic commutation relations [ai,a

†
j ] = δi,j1. The mean number of photons is nin for

each signal i = 1, · · · ,M. The communication line is modelled by a pure-loss bosonic quantum Gaussian
channel, characterized by its attenuation coefficient τ ; hence, the received signal photon number and energy
per mode is given by n= τ nin. Since there is no added noise, without loss of generality in the rest of the
article we employ the received mean-number of photons n as independent variable, rather than the input
one. We also note that our results are equally applicable to other phase-insensitive channels, including effects
of additive-noise and amplification.

For bit-transmission on a phase-insensitive Gaussian channel with a mean photon-number constraint n,
the optimal encoding employs iid coherent states |αi⟩i = D(αi)|0⟩i, whose two quadrature mean-values
xi =

√
2Reαi and pi =

√
2Imαi are chosen from a Gaussian distribution, like in classical communication [2,

25]. Here, the ket |0⟩ represents the vacuum state of the field, while

D(α) = exp
(
−αa† −α∗a

)
(1)

is an optical displacement operator with complex mean-value α ∈ C. Using the optimal encoding and
performing heterodyne detection on each mode at the receiver, the resulting number of bits transmitted per
channel use is given by the Shannon capacity of the additive-white-Gaussian-noise channel with1

Csh = log(1+ n) , (2)

where a 1-photon-noise contribution is present due to the shot-noise limited detection process. On the other
hand, Holevo [1] provided a capacity formula that is optimized over all potential receivers, including those
employing quantum processing to improve the detection process. In particular, for a Gaussian modulation
we have

Cho = g(n) = (n+ 1) log(n+ 1)− n logn. (3)

It is well-known [25] that Cho ⩾ Csh, and the advantage is particularly evident for long transmission distance,
where the received signal carries few or even less than one photon on average, or in the medium distance in
the presence of amplification [26].

1 Throughout the text we use base-2 logarithms.
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Figure 1. Depiction of the FM scheme forM= 4 and n= 1. the transmitted codewords are shown in the columns on the left, with
the ith entry corresponding to the coherent-state complex amplitude on the ith mode. After applying the optical Fourier DT, the
codewords are mapped to those on the right.

In the setting of low received photon number and zero added noise, that we consider here, the Gaussian
modulation can be substituted with a simpler binary-phase-shift-keying (BPSK) modulation. At the receiver,
the signal can take two equiprobable values, αi =±

√
E and, employing the best quantum single-symbol

detector, i.e. the Dolinar detector achieving the Helstrom bound for these two states [27–29], we obtain a rate

Rbpsk
hel = 1−H2

(
1+

√
1− e−4n

2

)
. (4)

Thus, unlocking the advantage predicted by Holevo (3) requires the design of a quantum receiver, that is
capable of processing multiple symbols at once and extract collective information about the transmitted
sequence.

In [17], the Green–Hadamard machine (GHM) was proposed, relying on a linear-optical implementation
of the Hadamard DT to encode and decode the message, followed by threshold photo-detection. Importantly,
the GHM outperforms single-symbol receivers such as (4) at received mean photon number n≲ 0.1.

Finally, let us note that, in the low-received-photon-number region one is interested to transmit a large
number of bits per received photon. This is encapsulated by the photon-information-efficiency (PIE), which
can be computed for a generic capacity or rate R as

PIE=
R

n
. (5)

2.1. Fourier protocol and its relation with OOK
In [17], the GHM was proposed, relying on a linear-optical implementation of the Hadamard DT of order
M= 2i to encode and decode the message, followed by threshold photo-detection. In [20], a similar Fourier
machine (FM) based on the Fourier DT was proposed; We will base our multi-pulse and multi-level codes on
the FM, as it works for any integer orderM, allowing more freedom for the code parameters. Hence, here we
briefly sum up the protocol based on FM (an example of which is shown in figure 1).

For any positive integerM ∈ N let F(M) be a Fourier matrix of elements

F(M)
jℓ =

1√
M
ωj·ℓ, (6)

with ω = exp(−i2π/M) theMth root of unity; for ease of notation, we omit the indexM when clear from
the context. The linear-optical Fourier DT of orderM is represented by a unitary operator UF that acts on a
coherent-state sequence as

UF|α⟩= |Fα⟩, (7)

where α ∈ CM and |α⟩=
⊗M−1

i=0 |αi⟩i. The unitary UF can be decomposed into basic beam-splitter and
phase-shift gates as a general multi-port interferometer via standard methods [30–33]. The code then
consists ofM inverse-Fourier coherent-state sequences of mean photon number n

C =
{
|α( j)⟩ :αi ( j) = ω−i·j√n, ∀i, j = 0, · · · ,M− 1

}
. (8)

The Fourier decoder then applies the Fourier DT to the received codeword |α( j)⟩, mapping it to an output
codeword |β( j)⟩= UF|α( j)⟩ such that

βi ( j) =
M−1∑
ℓ=0

Fiℓαℓ ( j) =
1√
M

M−1∑
ℓ=0

ωℓ(i−j)√n= δi j
√
Mn, (9)
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i.e. after the Fourier DT the codewords are in the format of a pulse-position-modulation, with a single pulse
havingM times more photons than the transmitted pulses, placed in one ofM possible positions in the
sequence. This conversion of phase-to-intensity information makes the single high-photon-number pulse
more distinguishable from the vacuum, increasing the photodetector’s effective sensitivity in settings with
low received photon number. Indeed, in the absence of background or detection noise, the unpopulated
positions will never produce a photocount, whereas the probability of detecting one or more photons from
the populated position, and hence correctly identifying the codeword, is

p0 = 1− e−Mn. (10)

The resulting rate using soft-decoding on the photodetection outcomes is

Rfm =
1

M

[
h(1− p0)+M · h

(p0
M

)
−H2 (p0)

]
=

logM

M
p0, (11)

where we have defined h(x) =−x logx and used the property h(x · y) = xh(y)+ yh(x). Observe that this
coincides with the rate of a GHM but, unlike the latter, it is valid for anyM ∈ N.

On the other hand, we note that, if one employs an OOKmodulation with symbols Cook = {|0⟩, |
√
n/q⟩}

and respective probabilities {1− q,q}, followed by photodetection, the ensuing communication rate is

Rook =H2

(
q
(
1− e−

n
q

))
− qH2

(
1− e−

n
q

)
(12)

=
(
1− e−

n
q

)
· h(q)+ h

(
1− q

(
1− ·e−

n
q

))
− n · e−

n
q . (13)

In the following, we refer to this strategy as a q-OOK protocol. In particular, setting q= 1/M we obtain

Rook

∣∣∣
q= 1

M

= Rfm + h
(
1− p0

M

)
− n(1− p0) , (14)

and, defining the difference∆R(n) = Rook|1/M −Rfm, we find that its derivative is positive:

∆R ′ (n)∝ log
(
1− p0

M

)
+ n=

1

M
log
(
1− p0

M

)M
+ n⩾ 1

M
log(1− p0)+ n= 0, (15)

where we have used that (1− x)c ⩾ 1− cx for x ∈ [0,1], following from Lagrange’s second-order remainder.
Hence we conclude that∆R(n) is an increasing function of n, with the difference between FM and
1/M-OOK being small at small photon number and attaining its maximum at large photon number, i.e.

max
n

∆R(n) = lim
n→∞

∆R(n) = h

(
1− 1

M

)
. (16)

This is evidence that the GHM and FM are a first-order approximation to OOK in the regime of small n
andM. Indeed, if we takeM iid repetitions of OOK with q= 1/M, the resulting sequences will have on
average one pulse of mean-photon-numberMn, i.e. matching the codewords at the output of a FM machine
of orderM.

3. Multi-pulse Fourier protocol

The previous observations motivate us to ask whether there exist other codes that, after decoding, generate
output codewords with more than one pulse, similarly to the sequences that one can expect fromM iid
repetitions of OOK with q> 1/M.

We consider then a strategy which generates K⩾ 1 pulses in each output codeword of lengthM, using the
same FM described above. This can be done by transmitting codewords whose mean-values correspond to
the sum of K single-pulse Fourier codewords of (8):

α(j) =
1√
K

K∑
k=1

α( jk) , (17)

where we have properly normalized the mean-value in order to respect the mean-photon-number constraint
(an example construction is shown in figure 2).
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Figure 2. Construction of the multi-pulse FM codewords forM= 4, n= 1 and K= 2 (lower table). These can be obtained by
summing the complex amplitudes of K single-pulse codewords (upper table) and properly rescaling by

√
K in order to respect the

mean-photon-number constraint. Each column represents a codeword, with the ith entry corresponding to the coherent-state
complex amplitude on the ith mode.

Figure 3. Depiction of the multi-pulse FM protocol forM= 4 and n= 1. The transmitted codewords are shown in the columns
on the left, with the ith entry corresponding to the coherent-state complex amplitude on the ith mode. After applying the optical
Fourier DT, the codewords are mapped to those on the right. In practice, the transmitted codewords can be generated at the

encoder by preparing the output codewords and applying the inverse Fourier DT U†
F .

Here, the vector j ∈ {0, · · · ,M− 1}K effectively encodes K distinct positions of the pulses in the state
|β(j)⟩= UF|α(j)⟩ at the output of the decoder:

βi (j) =
1√
K

K∑
k=1

M−1∑
ℓ=0

Fiℓαℓ ( jk) =
1√
K

K∑
k=1

δi jk
√
Mn. (18)

The total number of such codewords, i.e. the code-size, is
(M
K

)
(see figure 3 for a depiction of the protocol).

In this case, in order to compute the soft-decoding rate we need to consider events with k= 0, · · · ,K total
clicks, corresponding to how many pulses from the output codeword where correctly detected. The
conditional probability of detecting k pulses in specific positions, given any transmitted codeword, is

P(k) = pk · (1− p)K−k
, (19)

5
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where p= 1− e−
Mn
K . If k pulses are detected, these could have come from

(M−k
K−k

)
different codewords.

Therefore, the marginal probability of a k-clicks event is

P̄(k) = P(k)

(M−k
K−k

)(M
K

) . (20)

Furthermore, for each value of k, there are
(M
k

)
different ways in which they can be distributed among theM

positions. The resulting rate then is

Rfm (K) =
1

M

K∑
k=0

(
M

k

)
·

[
h(P̄(k))−

(M−k
K−k

)(M
K

) · h(P(k))

]
(21)

=− 1

M

K∑
k=0

(
K

k

)
· P(k) · log

(M−k
K−k

)(M
K

) (22)

=
1

M

[
log

(
M

K

)
−Ek∼Bin(K,p)

[
log

(
M− k

K− k

)]]
, (23)

where in the second equality we have used the fact that
(M−k
K−k

)(M
k

)
=
(K
k

)(M
K

)
, while in the last one we have

identified
(K
k

)
P(k) as the binomial distribution of k successful trials out of K with success probability p, and

Ek∼P [f(k)] is the expectation with respect to the random variable k sampled from P. Note that for K = 1 we
recover the single-pulse FM rate (11).

3.1. Performance analysis in the low-photon-number regime
For n≪ 1 we have p≃Mn/K and we can approximate the rate at first order as

Rfm (K)≃ 1

M

[
log

(
M

K

)
− (1−Mn) log

(
M

K

)
−Mn log

(
M− 1

K− 1

)]
(24)

= n log

(M
K

)(M−1
K−1

) = n log
M

K
, (25)

which matches OOK in the same limit, provided that we choose q= K/M:

Rook

∣∣∣∣∣
q= K

M

≃ Mn

K
· h
(
K

M

)
= n log

M

K
. (26)

This result is confirmed by figure 4(a), where we plot the FM multi-pulse rate for fixedM and increasing K,
and the corresponding K/M-OOK rate. We can observe that, as K increases, the two rates match in a broader
range of photon-number values, implying that FM’s with larger K make a better approximation of the
corresponding OOK rate. Furthermore, while it is clear that for fixedM and n≪ 1 the best rate is attained by
the standard FM, i.e. K = 1, already for n≳ 0.2 we observe that the use of a multi-pulse FM, i.e. K⩾ 2,
provides an advantage with respect to the standard FM.

On the other hand, we can compare the FM performance with the optimal OOK rate, obtained my
maximizing with respect to the pulse probability q. In the low-photon-number region n≪ 1, an
approximate solution can be found by expanding the rate to second order in n,

Rook ≃

(
n

q
− 1

2

(
n

q

)2
)
· h(q)+ h

(
1− q

(
n

q
− 1

2

(
n

q

)2
))

− n

(
1− n

q

)
(27)

≃
(
−n logq+

n2

2

logq

q

)
+ h

(
1− n+

1

2

n2

q

)
− n

(
1− n

q

)
(28)

≃
(
−n logq+

n2

2

logq

q

)
+ n− 1

2

n2

q
− n2

2
− n

(
1− n

q

)
(29)

where we used that h ′(1− x) = (log(1− x)+ 1) and h ′ ′(1− x) =−1/(1− x), hence h(1− x)≃ x− x2/2 for
x≃ 0. Setting its first derivative equal to 0 we obtain

0≃ n

q

(
−1− n

2q
logq

)
(30)

6
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Figure 4. (a) Plot of the multi-pulse FM PIE (23) vs. the mean-photon-number, for a code of orderM= 32 and varying number
of pulses K as shown by the labels (solid lines). The dashed lines represent the PIE of OOK protocols (13) with q= K/M, while
the blue line is the BPSK PIE (4). (b) Plot of the multi-pulse FM PIE (23) for three values ofM and the corresponding optimal
K= [Mqop(n)] vs. the mean-photon number n. The black curve corresponds to the numerically optimized OOK PIE, while the
blue line is the BPSK PIE (4).

which is solved approximately for qop(n) =
n
2 log

1
n , corresponding to a rate

Rook

∣∣∣
q=qop(n)

≃−n logqop (n)≃ n log
2

n
. (31)

In light of the previous considerations (equations (25) and (26)), we can then obtain a multi-pulse FM
protocol with rate close to optimal OOK (31) by setting K

M = qop(n). As a consequence, for any K and n≪ 1,
there exists a FM protocol with K pulses and close-to-optimal rate, provided that its order can be chosen as
M= [K/qop(n)]. Conversely, for anyM and n≪ 1, there exists a FM protocol of orderM and
close-to-optimal rate, provided that it uses K= [Mqop(n)] pulses. Naturally, these values ofM,K are subject
to the constraints 1⩽ K⩽M, which cannot be met for all n.

In light of these reasons we conclude that, in the low-photon-number regime, our multi-pulse FM can be
used to simplify the design of communication protocols with respect to the single-pulse one. Indeed, a
disadvantage of the single-pulse FM is that it requires to change the orderM, hence building a completely
different encoder/decoder device, depending on the photon-number n; we recall that the latter depends on
the travel distance and input power. On the other hand, one can still attain the optimal rate by fixing a
sufficiently large orderM and varying K, hence effectively employing a single encoder/decoder device but
changing the number of pulses sent through it, depending on n. We provide an illustrative example in
figure 4(b), where we plot the FM PIE for various values ofM and optimal K= [Mqop(n)]; comparing the
curves with the optimal OOK PIE, we observe that it is approachable in the entire photon-number region
n ∈ [3× 10−3,3× 10−1] by, e.g. fixingM= 100 and changing the number of pulses K of the protocol, but
not the FM device itself.

Finally, we compare the performance of a multi-pulse Fourier code with that of previous JDR’s in the
literature: (i) the single-pulse JDR’s, obtained with our notation for K = 1 andM= 2i (Hadamard [17]) or
arbitraryM (Fourier [20]); and (ii) the multi-pulse JDR’s with optimal bit-error-rate (BER), obtained via a
numerical supervised-learning approach in [16]. The results are shown in figure 5 forM= 5, where we also
plot the envelope of the best single or two-pulse codes maximized over all possible values ofM. We observe
that our two-level FM is able to surpass the performance of the best single-pulse FM and approach the
BER-optimal JDR in the region where the latter has an advantage. This suggests that the multi-pulse
characteristic is crucial to surpass Hadamard-like schemes. Still, we observe that the BER-optimal JDR works
with codes of much larger size than that of the single- and two-pulse codes forM= 5 (of code-size
respectively 5 and 10).

3.2. Performance analysis in the large-photon-number regime
For general n, we can prove that the K/M-OOK rate is not smaller than the FM rate for any K⩾ 1, like in the
single-pulse case. Defining the difference∆R(n,K) = Rook|q=K/M −Rfm(K) and computing its derivative

7
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Figure 5. Plot of PIE vs. the mean-photon-number for several protocols onM= 5 modes: the two-pulse FM (23) introduced in
this paper, the single-pulse FM of [20], and the numerical JDR with optimal bit-error-rate (BER) of [16]. The latter datapoints are
labelled with the size of the code employed by the corresponding numerical JDR. The dashed lines represent the envelope of
single- and two-pulse FM’s with respect toM, and we also plot the single-symbol BPSK rate for reference.

with respect to the photon number we obtain

d∆R(n,K)

dn
= p ′

[
h

(
K

M

)
+

K

M

(
log

(
1− K

M
p

))
+ n

]
− (1− p) (32)

+
1

M

K∑
k=0

(
K

k

)
[k · pk−1 (1− p)K−k (33)

+(K− k) · pk (1− p)K−k−1
] log

(
M− k

K− k

)
. (34)

Considering that p ′ = (1− p)MK we can gather the positive term 1− p; furthermore, in the first-term of the
sum we can change the index to t= k− 1, thus identifying both terms as binomials Bin(K− 1,p). Then, up
to positive factors the derivative is

d∆R(n,K)

dn
∝ log

(
M

K
− p

)
+ n+Et∼Bin(K−1,p)

[
log

K− t

M− t

]
(35)

⩾ log

(
M− p

K−Kp

)
− logEt∼Bin(K−1,p)

[
M− t

K− t

]
= log

1+ 1
K

p
1−p

1+ 1
M

p
1−p

⩾ 0 (36)

where in the first inequality we used n=− log(1− p) and Jensen’s inequality for the concave function
log M−t

K−t .
Hence we conclude that∆R(n,K) is an increasing function of n for all K⩾ 1, with the difference between

FM and K/M-OOK being small at small photon number and attaining its maximum at large photon
number, i.e.

max
n

∆R(n,K) = lim
n→∞

∆R(n,K) =H2

(
K

M

)
− 1

M
log

(
M

K

)
(37)

showing that the FM and K/M-OOK rate have a gap for large-photon number and finiteM, which tends to
zero asM→∞ with K/M finite. Furthermore, it is also clear that, in the large-n limit both rates attain their
maximum value at K=M/2 and they are symmetric about this point.

This limiting behavior is confirmed in the finite-n regime by numerical evidence. In figure 6(a) we plot
the FM rate for all values of K= 1, · · · ,M− 1 , highlighting two facts: (i) the condition of half-filling, i.e.
K= M

2 , is optimal even at finite n> 1, and (ii) in the finite-n regime, there is an asymmetry between FM
rates at K< M

2 and K> M
2 , with the latter being larger then the former. This might be puzzling at first, since

when switching from M
2 − i to M

2 + i, the role of pulses and vacua is simply exchanged; however, note that the
probability p is not symmetric under this exchange. The symmetry is recovered asymptotically, where only
the first term in (23) matters. In figure 6(b) instead we plot the ratio of the multi-pulse FM and the
K/M-OOK rate for optimal K=M/2 and increasingM. We observe that the gap between the two rates,
present at finiteM (37), is slowly reduced, with the ratio saturating to 1 for largeM.
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Figure 6. (a) Plot of the multi-pulse FM rate (23) vs. the mean-photon-number forM= 8 and all possible K values. The black
curves represent the numerically optimized OOK rate (solid) and the 1/2-OOK rate (dashed). (b) Plot of the ratio between the
multi-pulse FM (23) and K/M-OOK rate (13) for the optimal K=M/2 and varyingM.

Finally, we observe that in the large-n limit the optimal OOK rate is obtained for q→ 1/2. In figure 6(a)
we also plot the numerically optimized OOK and 1/2-OOK, showing that the approach to the asymptotically
optimal value of q happens quickly when n> 1. Interestingly, this limiting value corresponds to that of a
multi-pulse FM at half-filling, i.e. K=M/2.

4. Multi-level Fourier protocol

In order to surpass the performance of BPSK, it is possible to go beyond OOK and consider a modulation
with vacuum and a certain number of pulses of successively higher energy, taking place with successively
decreasing probability; for example it is known that a Gamma distribution has good performance for the
discrete-time Poisson channel (induced by photon-counting detection on a quantum signal, in our
setting) [21, 22]. We consider then a strategy which generates K=

∑T
t=1Kt pulses in each output codeword

of lengthM using the FM, with the following property: for each t= 1, · · · ,T, the output codeword has
exactly Kt pulses of mean-photon-number M·n

T·Kt
(an example construction is shown in figure 7).

This can be attained by transmitting a codeword whose mean-value vector corresponds to the sum of T
codewords, each with Kt pulses for t= 1, · · · ,T;

α(j1, · · · , jT) =
1√
T

T∑
t=1

α(jt)√
Kt

, (38)

where α(jt) is a Kt-pulse codeword (17) and we have properly normalized the mean-value vector to respect
the mean-photon-number constraint. Consequently, the FM decodes this input sequence by producing the
output codeword |β(j1, · · · , jT)⟩= UF|α(j1, · · · , jT)⟩ with

β (j1, · · · , jT) =
1√
T

T∑
t=1

1√
Kt

Kt∑
k=1

M−1∑
ℓ=0

Fiℓαℓ

(
jt,k

)
(39)

=
1√
T

T∑
t=1

1√
Kt

Kt∑
k=1

M−1∑
ℓ=0

δi,jt,k
√
Mn, (40)

where, for each t= 1, · · · ,T, the vector jt encodes the position of t-type pulses in the output codeword.
Furthermore, if we define K= (K1, · · · ,KT,M−K) as the vector containing the number of pulses of each
type, and the number of vacua, the code-size is given by the multinomial coefficient(

M

K,M−K

)
=

M!

K1! · · · ,KT! (M−K)!
. (41)

Finally, since we are now using more than one pulse type, in order to distinguish them the receiver needs to
count photons. Let us then suppose that the receiver uses photon-number-resolving detectors, with
resolution up to L photons, i.e. aggregating in the largest outcome all photon-counts larger than or equal to
L. Figure 8 shows a depiction of the protocol.
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Figure 7. Construction of the multi-level FM codewords forM= 4, n= 1 and K= (1,2) (lower table). These can be obtained by
summing the complex amplitudes of a single-pulse codeword (upper left table) with those of a K2 = 2 multi-pulse codeword
(upper right table), each properly rescaled by

√
Kt in order to respect the mean-photon-number constraint. A further constraint

requires that the pulse positions in both original codewords are distinct. Each column represents a codeword, with the ith entry
corresponding to the coherent-state complex amplitude on the ith mode.

Figure 8. Depiction of the multi-pulse FM protocol forM= 4, n= 1 and K= (1,2). The transmitted codewords are shown in the
columns on the left, with the ith entry corresponding to the coherent-state complex amplitude on the ith mode. After applying
the optical Fourier DT, the codewords are mapped to those on the right. In practice, the transmitted codewords can be generated

at the encoder by preparing the output codewords and applying the inverse Fourier DT U†
F .

Now, in order to compute the soft-decoding rate we need to characterize the outcomes via a vector
m ∈ [K]×L

0 , whose ℓth entry counts the number of positions where ℓ= 1, · · · ,L photons were detected; we
definem= ||m||1 ⩽ K as the total number of detection events. For each possible codeword, we also
introduce a matrix κ of size L×T, where the row index identifies how many photons were detected, while
the column index quantifies which type of pulse produced the given detection event; e.g. κℓ,t is the number
of ℓ-photon-detection events due to a t-type pulse. We indicate the ℓth row as κℓ and the tth column as κt;
with this notation, it holds that ||κℓ||1 =mℓ is the total number of ℓ-photon detection events and
||κt||1 = kt ⩽ Kt is the total number of t-type pulses that gave rise to a detection event. The conditional
probability of observingm clicks given a k-type codeword then is

P(m|κ) =
L∏

ℓ=1

(
T∏

t=1

TP(ℓ|nt,L)κℓ,t

)
·

T∏
t=1

TP(0|nt,L)Kt−kt , (42)

where we have defined the truncated Poisson distribution as

TP(ℓ|λ,L) =

{
e−λ λℓ

ℓ! ℓ < L,

1−
∑L−1

ℓ=0 TP(ℓ|λ,L) ℓ= L.
(43)
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Furthermore, a given κ is compatible with

C(κ,L) =
L∏

ℓ=1

(
mℓ

κℓ

)
·
(

M−m

K1 − k1, · · · ,KT − kT,M−K

)
(44)

codewords. Hence, the marginal probability of observingm clicks in specific positions is

P̄(m) =
1( M

K,M−K

) ∑
κ∈K(m)

C(κ,L)P(m|κ) , (45)

where

K (m) =
{
κ L×Tmatrix : ||κℓ||1 =mℓ ∀ℓ= 1, · · · ,L, ||κt||1 ⩽ Kt∀t= 1, · · · ,T

}
(46)

is the set of all matrices κ compatible withm clicks of K types. Finally, note that for a given number of clicks
m, there are

( M
m,M−m

)
different ways in which they can be distributed among theM positions of the sequence

of quantum states transmitted on the channel. Using the fact that

C(κ)

(
M

m,M−m

)
=

(
M

K,M−K

) T∏
t=1

(
Kt

κt,Kt − kt

)
, (47)

we can then express the marginal probability as

P̄(m) =
1( M

m,M−m

) ∑
κ∈K(m)

T∏
t=1

[(
Kt

κt,Kt − kt

)( L∏
ℓ=1

TP(ℓ|nt,L)κℓ,t

)
TP(0|nt,L)Kt−kt

]
(48)

=
Pr(S=m)( M
m,M−m

) . (49)

Here we identified the distribution of a random variable S ∈ [K]×L
0 given by S=

∑K
i=1Yi, where each

Yi,ℓ = δXi,ℓ for ℓ= 1, · · · ,L is a random variable that is non-zero only when the event Xi = ℓ takes place.
Furthermore, each random variable Xi ∈ [L]0 corresponds to the result of a (L+ 1)-outcome trial; these
variables are divided into T groups of size Kt for t= 1, · · · ,T, such that the random variables in group t have
the same probability mass function TP(ℓ|nt,L) for ℓ= 0, · · · ,L. It is straightforward to see that Yi is
supported on L+ 1 points and distributed as follows

Pr(Yi) =

{
Pr(Xi = ℓ) Yi,ℓ = 1, Yi,ℓ ′ ̸=ℓ = 0,

Pr(Xi = 0) Yi = 0.
(50)

Then the probability generating function of S is simply given by the product of the generating functions of
each Yi:

GS (z) =
K∏
i=1

GYi (z) =
K∏
i=1

(
Pr(Xi = 0)+

L∑
ℓ=1

Pr(Xi = ℓ) · zℓ

)
, (51)

where z= (z1, · · · ,zL) is the multi-dimensional argument of the generating function and the corresponding
probability mass function can be easily obtained from the coefficients of GS(z).

The resulting rate then is

Rfm (K,L) =
1

M

∑
m

(
M

m,M−m

)
·

h(P̄(m))−
∑

κ∈K(m)

C(κ)( M
K,M−K

) · h(P(m|κ))

 (52)

=
1

M

[
−
∑
m

Pr(S=m) log P̄(m) (53)

+
∑
κ

T∏
t=1

[(
Kt

κt,Kt − kt

)( L∏
ℓ=1

TP(ℓ|nt,L)κℓ,t

)
TP(0|nt,L)Kt−kt

]
logP(m|κ)

]
(54)

=
1

M

[
H(S)+Em∼Pr(S)

[
log

(
M

m,M−m

)]
(55)
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+
T∑

t=1

Eκt∼Mult(Kt,TP(·|nt,L))

[
L∑

ℓ=1

κℓ,t logTP(ℓ|nt,L)+ (Kt − kt) logTP(0|nt,L)

]]
(56)

=
1

M

[
H(S)+Em∼Pr(S)

[
log

(
M

m,M−m

)]
−

T∑
t=1

KtH(TP(·|nt,L))

]
(57)

where in the second term of the second equality we have written the sum overm and κ ∈ K(m) as an
unconstrained sum over all allowed κ values, and in the third one we have observed that κt follows a
multinomial distribution with a success probability TP(ℓ|nt,L) for each event ℓ= 0, · · · ,L and total number
of trials Kt. Note that for T= L= 1 we recover the single-level multi-pulse FM rate (23).

We compare the performance of multi-level FM with a multi-level OOK strategy, where T pulses with
probability pt and mean-photon-number nt are used, such that

∑T
t=1 ptnt = n, while with probability

p0 = 1−
∑T

t=1 pt the vacuum is sent; in the following, we call this a multi-level (p,n)-OOK strategy. For a
T-pulse protocol, counting up to L photons we obtain a rate

Rook (p,n,T) =
L∑

ℓ=0

[
h

(
δℓ,0p0 +

T∑
t=1

ptTP(ℓ|nt,L)

)
−

T∑
t=1

pt · h(TP(ℓ|nt,L))

]
. (58)

In the small-n limit it holds

TP(ℓ|nt,L)≃

1− Mn
TKt

ℓ= 0,

1
ℓ!

(
Mn
TKt

)ℓ
0< ℓ⩽ L,

(59)

and

Pr(S=m)≃


1−Mn m= 0,

Mn m1 = 1,mℓ>1 = 0,

0 otherwise,

(60)

i.e. only events where up to 1 photon was counted survive at first order in n. Therefore, we can approximate
the multi-level FM rate as

Rfm (K,L)≃ 1

M

[
H2 (Mn)+Mn logM−

T∑
t=1

KtH2

(
Mn

TKt

)]
(61)

≃ 1

M

[
Mn logM+Mn log

1

Mn
−

T∑
t=1

Mn

T
log

TKt

Mn

]
(62)

≃ n log
M

T
∏T

t=1K
1/T
t

. (63)

where we used that H2(x)≃ h(x) = x log 1
x at x≃ 0. Comparing (63) with (25), we observe that one can

obtain similar behavior to the single-level case with a multi-level protocol of suitable K, such that its
geometric mean is T times smaller than the number of pulses in the single-level protocol. For example,
simply choosing Kt = K/T effectively introduces different pulse types while maintaining the total number of

pulses constant. Furthermore, using the AM-GM inequality we have that
∏T

t=1K
1/T
t ⩽

∑T
t=1Kt/T, which

implies in this limit

Rfm (K,L)⩾ Rfm (K) ∀K : ||K||1 = K, (64)

i.e. in the small-n limit the multi-level FM rate cannot be smaller than the single-level FM rate with the same
total number of pulses. Let us also note that these small-n rates do not depend on the number of counted
photons L, as long as L⩾ 1, hence they can be attained with simple threshold photodetectors. Note also that
the AM-GM inequality is attained by a vector K with equal components, implying that the optimal choice of
the number of pulses of each type is non-uniform.
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Figure 9. (a) (Solid curves) Plot of the multi-level FM PIE (57) forM= 16, T= 2 pulse types and L= 4; different colors
correspond to different numbers of pulses K= (K1,K2) for each type, fixing the total number of pulses to K= 8; the black curve
corresponds to a single-level K= 8-pulse FM. (dashed lines) Matching T= 2-pulse OOK PIE (58) for nt = n/(Tpt) for all t= 1,2
and p= K/M. (b) (solid curves) Plot of the multi-level FM rate (57) forM= 10, T= 2 pulse types and L= 4; different colors
correspond to different K with K= 5; the black curve corresponds to a single-level K= 5-pulse FM. (dashed lines) Matching
T= 2-pulse OOK rate (58) for nt = n/(Tpt) for all t= 1,2 and p= K/M.

Note that, in the same limit, the multi-level OOK rate for nt = n/(Tpt) can be written as

Rook (p,n,T)

∣∣∣∣∣
nt=n/(Tpt)∀t

≃ h

(
p0 +

T∑
t=1

pt

(
1− n

Tpt

))
−

T∑
t=1

pt h

(
1− n

Tpt

)
(65)

+ h

(
T∑

t=1

pt
n

Tpt

)
−

T∑
t=1

pt h

(
n

Tpt

)
(66)

≃ h(n)+
n

T

T∑
t=1

log
n

Tpt
≃ n log

1

T
∏T

t=1 p
1/T
t

, (67)

where we used h(1− x)≃−x for x≃ 0. In particular, picking also p= K/M, we have that the corresponding
OOK rate is attained at first order in n by the multi-level FM rate:

Rook (p,n,T)

∣∣∣∣∣ p=K/M,
nt=n/(Tpt)∀t

≃ n log
M

T
∏T

t=1K
1/T
t

. (68)

4.1. Performance analysis in the large-photon-number regime
Similarly, in the large-n limit we have at leading order TP(ℓ|nt,L)≃ δℓ,L, implying Pr(S=m) = δm,K and

Rfm (K,L) =
1

M
log

(
M

K,M−K

)
⩾ Rfm (K) . (69)

Hence, also in this limit it can be seen clearly that increasing the types of pulses while keeping their total
number fixed results in an increased rate, i.e. the multi-level FM is superior to the single-level one with the
same total number of pulses. Furthermore, at variance with the small-n case, the advantage is present also for
a uniform K. In the same limit, the multi-level OOK rate with nt = n/(Tpt)∀t, p= K/M reads

Rook (p,n,T)

∣∣∣∣∣ p=K/M,
nt=n/(Tpt)∀t

≃H2 (p0) =H2

(
K

M

)
, (70)

matching the single-level OOK expression.
These results are confirmed by numerics in figure 9, where we plot the FM PIE for T= 2 pulse types,

fixing the total number of pulses K and varying the number of pulses of each type. In the small-n region,
figure 9(a), we observe that the best rate is obtained for the most uneven pulse-type distribution K= (1,7)
even at finite n. Notice that the FM curves quickly approach their limiting OOK rates, with n and p chosen as
in (68) as n< 1. In the large-n region, figure 9(b), we also observe that the most uneven K distributions are
superior, but there remains a gap with the corresponding OOK limit.
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Figure 10. (a): (solid lines) Plot of the multi-level FM rate (57) forM= 8, T= 2, K= (1,3) and varying photon-number
resolution L; (dashed lines) Corresponding multi-level OOK rates nt = n/(Tpt) for all t= 1,2 and p= K/M. (b): (solid lines)
Plot of the multi-level FM rate (57) forM= 8, T= 2, K= (1,3), L= 3 and varying the photo-detection efficiency η; (dashed
lines) Corresponding multi-level OOK rates nt = n/(Tpt) for all t= 1,2 and p= K/M.

4.2. Impact of imperfect photon-counting detection
Finally, since we have shown that multi-level codes require the use of photon-counting detectors to fully take
advantage of the code structures, here we study the impact of typical limiting factors in such devices: finite
photo-detection resolution and efficiency.

In figure 10(a) we study the effect of finite photo-detector resolution L, plotting the T= 2-level FM rate
for fixedM, K and varying L. We observe that small values of L have a significant impact on the rate
performance of a multi-level FM protocol: increasing the photo-detector resolution L gives rise to a marked
increase in the rate, even when L> K= 4, i.e. when we are able to distinguish more photon number than
there are pulses. It is also clear from the plot that larger values of L are necessary to maintain a large rate as n
increases.

In figure 10(b) we study the effect of finite photo-detector efficiency η, which can be obtained from (57)
and (58) by rescaling the photon-number of each pulse-type nt as ηnt, which effectively changes the mean of
the truncated-Poisson distribution. We then plot the T= 2-level FM rate for fixedM, K, L and varying η. We
observe that values of η < 0.8 have a significant impact on the rate performance of both the multi-level FM
protocol and its OOK counterpart, making the performance of these two schemes approximately similar as η
decreases.

5. Conclusions

In this article we introduced generalization of single-pulse JDR’s based on the Fourier transform and the use
of multiple pulses (multi-pulse FM) and multiple pulse types (multi-level FM). We computed the
information-transmission rate attainable with these new code families, showing that they allow to approach
the rate of generalized-OOK strategies. The main takeaways are that: (i) using a multi-pulse FM it is possible
to use a single Fourier-transform device of fixed orderM for a wide range of signal photon-number values, at
variance with the single-pulse case; (ii) using a multi-level FM it is possible to study joint-detection at larger
photon-numbers, where the introduction of multiple pulse types can surpass the performance of protocols
based on binary modulation.

In light of these reasons, we believe that our results on multi-pulse codes will simplify the design of
JDR-assisted protocols in the photon-starved regime, facilitating their practical implementation. Further
studies might also focus on the application of multi-level codes in the presence of phase-noise, where OOK
based on squeezed states is known to provide an advantage with respect to classical coherent-state strategies.
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