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1. Introduction

The ghostly neutrino is the most poorly understood particle within the Standard Model. In the
original formulation of the Standard Model, neutrinos were assumed to be massless and left handed.
Experimental measurements, beginning with the Homestake experiment [1] and its successors [2, 3]
have definitively shown that neutrinos oscillate, necessitating small but nonzero masses for at least
two of the energy eigenstates.

The most straightforward extension to the minimal Standard Model to account for neutrino
masses is to couple the neutrinos to the Higgs boson, analogously to the other massive fermions, as
[4]

LYukawa = −𝑌 𝑒
𝑖 𝑗 𝐿̄

𝑖𝐻𝑒
𝑗

𝑅
− 𝑌 𝜈

𝑖 𝑗 𝐿̄
𝑖𝐻̃𝜈𝑖𝑅 + h.c. (1)

with 𝐿𝑖 =

(
𝜈𝑖

𝑖

)
the lepton doublet for lepton flavour 𝑖, 𝐻 = 1√

2

(
0

𝑣 + ℎ

)
the Higgs doublet with

vacuum expectation value 𝑣 = 251 GeV, and 𝑌 𝑒, 𝑌 𝜈 matrices of Yukawa couplings. Such terms
require the introduction of right-handed neutrinos 𝜈𝑅 neutral under all Standard Model charges.
To produce sub-eV neutrino masses from electroweak-scale physics, however, requires Yukawa
couplings 𝑌 𝜈

𝑖 𝑗
∼ 𝑚𝜈/𝑣 ≲ 10−12, at least six orders of magnitude smaller than that for the electron.

An alternative explanation is to postulate that the right-handed neutrino is Majorana, that is,
𝜈𝑅 = 𝜈̄𝑅, and to introduce a mass term of the form [5]

LMajorana ⊃ −𝑖𝑀𝑖 𝑗

(
𝜈𝑖𝑅

)𝑐
𝜈
𝑗

𝑅
, (2)

which violates none of the charge conservation laws due to the neutrality of 𝜈𝑅. Combining this
with the mass generated by the Yukawa couplings (in a simple 1-flavour model) gives a total mass

Lmass = −𝑚𝜈̄𝐿𝜈𝑅 − 𝑀𝜈̄𝑅𝜈𝑅 + h.c. =

(
0 𝑚

𝑚 2𝑀

)
(3)

with 𝑚 = 𝑦𝑣/
√

2. Diagonalizing the mass matrix gives eigenvalues
√
𝑚2 + 𝑀2 ±𝑀 ∼

{
𝑚2/𝑀, 𝑀

}
when 𝑚 ≪ 𝑀 . With a Yukawa coupling 𝑦 of order 1 so that 𝑚 ∼ 100 GeV and a GUT- or Planck-
scale Majorana mass 𝑀 ≳ 1016 GeV, one naturally obtains sub-eV scale masses for the eigenstate
that overlaps primarily with the left-handed neutrino [4].

The mass term in Eq. (2) violates lepton number by two units, so experimental searches
for its effects are limited to processes involving pairs of neutrinos. Within the Standard Model,
two antineutrinos can be produced in the lepton-number-conserving process of double-beta decay,
involving the simultaneous beta decay of two neutrons into two protons,

𝑛𝑛 → 𝑝𝑝𝑒𝑒𝜈̄𝑒 𝜈̄𝑒 . (4)

As a second-order weak process, the reaction rate for neutrinoful double-beta decay (2𝜈𝛽𝛽) is
extremely slow, with half-lives exceeding the age of the universe by at least ten orders of magnitude.
As such, it is all but impossible to measure in nuclides that undergo the first-order single-beta decay
reaction 𝑛 → 𝑝𝑒𝜈̄𝑒, so experimental observation is limited to nuclides in which single-beta decay
is forbidden.
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To a reasonable approximation, the mass of an nuclide with 𝑍 protons and 𝑁 = 𝐴− 𝑍 neutrons
is given by the semi-empirical mass formula [6]

𝑀 (𝑍, 𝐴) = (𝑚𝑝𝑍 + 𝑚𝑛𝑁) − 𝜀𝑉 𝐴 + 𝜀𝑆𝐴
2/3 + 𝜀𝐶

𝑍2

𝐴1/3 + 𝜀sym
(𝑁 − 𝑍)2

𝐴
+ 𝜂(𝑍, 𝑁) Δ

𝐴1/2 (5)

with positive constants 𝜀𝑉 , 𝜀𝑆 , 𝜀𝐶 , 𝜀sym,Δ fit to experimental data, which at fixed atomic number
𝐴 is quadratic in 𝑍 except for the pairing term

𝜂(𝑍, 𝑁) =


+1 𝑍, 𝑁 both odd
−1 𝑍, 𝑁 both even
0 otherwise

(6)

that favours nuclides with even numbers of protons and neutrons. As a result, while odd-𝐴 isobars
(functions of constant 𝐴) are convex functions of 𝑍 with a single minimum, masses of even-𝐴
nuclides oscillate as a function of 𝑍 between two parabolas split by a couple MeV, leading to non-
monotonic behaviour in 𝑍 and multiple local minima (see Fig. 1). As the single-𝛽 decay process is
energetically forbidden, double-𝛽 decay offers the only route from the metastable local minimum to
the true global minimum. The 2𝜈𝛽𝛽 reaction in Eq. (4) was hypothesised by Maria Goppert-Meyer
in 1935 [7], discovered in 1950 from geological analysis [8], and directly observed in laboratory
settings in 1987 in 82

34Se [9] and more recently in about a dozen other nuclides [10].

Figure 1: (Left) For an odd-𝐴 isobar, the semi-empirical mass formula in Eq. (5) predicts the mass is a
quadratic function of 𝑍 with a single minimum-mass nuclide (here 121

51Sb) towards which all others 𝛽 decay.
(Right) for an even-𝐴 isobar, the pairing term in Eq. (6) introduces oscillations in 𝑍 between higher-energy
odd-odd and lower-energy even-even parabolas, leading to non-convex and even non-monotonic behaviour.
As a result, there can be multiple local minima stable against single 𝛽 decay. However, the higher-energy
local minimum 122

50Sn is unstable against the double-beta decay reaction in Eq. (4), which would transition
it to the lower-energy global minimum 122

52Te, which is absolutely stable. Figure adapted from Ref. [6] after
Ref. [11].
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If the neutrino is Majorana, the antineutrinos produced in Eq. (4) can mutually annihilate,
leaving just two electrons and two protons in the final state,

𝑛𝑛 → 𝑝𝑝𝑒𝑒 . (7)

In this neutrinoless double-beta decay (0𝜈𝛽𝛽) reaction, the entire decay energy is carried by the
electrons (and, to a much lesser extent, by the recoiling nucleus) and can be observed in an
experimental detector as a monoenergetic spike at the tail of the 2𝜈𝛽𝛽 spectrum. Experimental
searches for 0𝜈𝛽𝛽 have been carried out with a variety of nuclides [12–14], placing increasingly
stringent bounds on 0𝜈𝛽𝛽 half-lives 𝑇0𝜈

1/2, the longest being 3.8 × 1026 years from KamLAND-Zen
[14, 15]. Next-generation 0𝜈𝛽𝛽 experiments to refine this bound and to place stringent bounds on
other nuclides have been identified as one of the highest priorities in the United States Department
of Energy’s Long-Range Plan for Nuclear Science [16].

In the minimal extension to the Standard Model given by Eq. (2) above, the experimental
constraints can be related to the effective double-beta neutrino mass

𝑚𝛽𝛽 =

�����∑︁
𝑘

𝑈2
𝑒𝑘𝑚𝑘

����� , (8)

where 𝑚𝑘 are the three light neutrino mass eigenstates and𝑈𝑒𝑘 is the Pontecorvo-Maki-Nakagawa-
Sakata matrix [17, 18], by (

𝑇0𝜈
1/2

)−1
= |𝑚𝛽𝛽 |2𝐺0𝜈 |𝑀0𝜈 |2 , (9)

where 𝐺0𝜈 is a known kinematical factor depending on the decay energy and 𝑀0𝜈 is the nuclear
matrix element encoding the structure of the parent and daughter nuclides. Estimates for 𝑀0𝜈 are
made using various nuclear models and, for a given nuclide, vary by a factor of several (see Fig. 2).
This model uncertainty introduces a corresponding uncertainty in the extracted value of 𝑚𝛽𝛽 and
is the primary challenge for interpreting experimental half-lives.

If neutrino masses obey the so-called inverted ordering, where a single mass eigenstate is
substantially lighter than the other two — a question that should be answered by upcoming oscillation
experiments such as DUNE [19] and Hyper-Kamiokande [20] — then measurements of neutrino
mass differences and mixing angles make it possible to bound 𝑚𝛽𝛽 from below. This raises the
tantalising possibility that any result, positive or negative, from next-generation 0𝜈𝛽𝛽 experiments,
will provide a definitive answer to whether the Majorana mass term in Eq. (2) is present in the
Lagrangian of nature. However, this relies on improving theoretical constraints on the relevant
nuclear matrix elements in order to properly constrain 𝑚𝛽𝛽 from 0𝜈𝛽𝛽 searches.

Nuclear effective field theory (EFT) offers a solution to this problem by providing a model-
independent solution of nuclear physics. Treating nucleons as the effective degrees of freedom
of the problem and integrating out high-energy quark and gluon interactions gives rise to a set of
couplings among nucleons (and, depending on the energy range being examined, possibly pions
as well). Quark-level interactions with electroweak fields give rise to single- and multi-nucleon
interactions with axial and vector external currents.

Such couplings can be computed from lattice QCD or fit to experimental data from light nuclei,
such as deuterium and tritium. Nuclear EFT, combined with various many-body methods, then
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Figure 2: Various models used to predict the 0𝜈𝛽𝛽matrix elements 𝑀0𝜈 for experimentally relevant nuclides.
Figure taken from Ref. [21].

allows predictions of masses and single-𝛽 decay rates in larger nuclei in reasonable agreement
(often 10–20%) with direct experimental measurements [22, 23].

At the level of nuclear EFT, two diagrams contribute to neutrinoless double-beta decay, as
shown in Fig. 3. The process can occur via two weak current insertions with a soft neutrino
propagating between them. However, to handle reactions where the neutrino energy is large relative
to the cutoff scale of the EFT (typically taken as 𝑚𝜋 for pionless EFT), then a four-nucleon contact
interaction must be added to the EFT, and this term must be promoted to leading order in the EFT
power counting [24, 25].

The first diagram in the EFT can be computed from nucleon axial and vector couplings, which
can be fit to single-𝛽 decay rates. The second diagram, however, is unique to 0𝜈𝛽𝛽, and its coefficient
𝑔𝜈
𝑁𝑁

cannot be determined experimentally since 0𝜈𝛽𝛽 decay has never been observed. The best
estimates on its magnitude in the literature come from dispersive relations [26] that generalize the
Cottingham formula for electromagnetic corrections to nuclear masses [27] and are likely correct
to within about 40% but require model assumptions. Work is ongoing to refine these calculations
[28], but to date there is no fully model-independent calculation of 𝑔𝜈

𝑁𝑁
. Lattice QCD offers the

possibility of such a computation using a small nuclear system (namely, the 𝑛𝑛 → 𝑝𝑝 transition),
and this work will present progress that has been made toward this goal. Sect. 2 will survey the
double-beta computations performed in lattice QCD, Sect. 3 will detail future challenges and sketch
a roadmap of where progress will hopefully be made in coming years, and Sect. 4 will conclude.
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Figure 3: The diagrams contributing to 0𝜈𝛽𝛽 in nuclear EFT. (Left) 0𝜈𝛽𝛽 can proceed via two widely
separated electroweak current insertions exchanging a low-energy Majorana neutrino. This can be calculated
from single-𝛽 decay rates with no additional EFT parameters. (Right) There is also a contribution from a
four-nucleon contact interaction that arises from exchange of a high-energy neutrino with momentum above
the cutoff for the EFT validity. This contribution is also leading-order, and the interaction strength of this
vertex is a free parameter in the EFT that must be determined by matching onto lattice QCD or some model
of nuclear interactions.

2. Lattice QCD Calculations

The lattice QCD community has risen to the challenge of computing double-beta matrix
elements in simple systems toward the goal of extracting 𝑔𝜈

𝑁𝑁
. Pionic systems, while being

useful constraints on EFT predictions in their own right, are cleaner systems in order to perform
full analyses of all statistical and systematic uncertainties involved in a physical-point calculation.
Multi-nucleon systems, even with 𝐴 = 2, are more challenging, so only single-ensemble studies
have been performed to date. While an extraction of 𝑔𝜈

𝑁𝑁
from lattice QCD is not yet possible,

these studies have laid the groundwork for future calculations that will be able to compute this EFT
coefficient.

2.1 0𝜈𝛽𝛽 in 𝜋− → 𝜋+

Pion interactions can be explicitly included in nuclear calculations using chiral effective field
theory (𝜒EFT), improving the accuracy of the theory and extending the range of energies over
which the EFT is valid at the cost of introducing additional low-energy constants. Of particular
interest is the constant 𝑔𝜈𝜋 𝜋 , the analogue of 𝑔𝜈

𝑁𝑁
for the 𝜋− → 𝜋+𝑒𝑒 transition.

In lattice QCD, the correlation function corresponding to this transition is [29, 30]

𝐶𝜋−→𝜋+ (𝑡+, 𝑡, 𝑡−) =
∑︁
x,y

∫
𝑑4𝑞

(2𝜋)4
𝑒𝑖𝑞 · (𝑥−𝑦)

𝑞2 ⟨O𝜋+ (𝑡+)𝐽𝜇 (𝑥)𝐽𝜇 (𝑦)O†
𝜋− (𝑡−)⟩ , (10)

where𝑂 𝜋 (𝑡) is the pion interpolating operator at timeslice 𝑡, 𝐽𝜇 (𝑥) = [𝑢̄(1−𝛾5)𝛾𝜇𝑑] (𝑥) is the weak
current insertion at spacetime position 𝑥, and 𝑡 = 𝑥 − 𝑦. This gives rise to two diagram topologies
— one connected and one disconnected — shown in Fig. 4. In both calculations of this quantity,

6
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the correlation functions were computed by constructing wall sources and sinks at all timeslices
and contracting them at the operator insertion points 𝑥 and 𝑦.

Figure 4: The two Feynman diagrams contributing to the neutrinoless double-beta decay reaction 𝜋− →
𝜋+𝑒𝑒. The first diagram is fully connected, but the second has no connected quark propagators connecting
the source and sink, which are coupled only by the neutrino. Figure taken from Ref. [29].

At a fixed set of times, this naïvely costs𝑂 (𝑉2) = 𝑂 (𝐿6) to perform the double sum over spatial
positions. A key insight in Ref. [31] is that the double sum is a convolution, which the Fourier
convolution theorem allows one to write as a product of fast Fourier transforms [32], decreasing the
contraction cost to the more tractable 𝑂 (𝐿3 log 𝐿). One can then compute 𝐶𝜋−→𝜋+ as a function of
the various separation times between source, sink, and operators.

The second diagram topology in Fig. 4 contains an intermediate state (the QCD vacuum
and a massless neutrino) with lower energy than the initial and final states, so its contribution
to a Euclidean-space correlation function grows exponentially rather than decaying with operator
separation time 𝑡. This is an artifact of Euclidean time rather than a physically diverging amplitude,
so this must be corrected before a meaningful matrix element can be extracted from the correlation
function. In this case, the divergent contribution can be written in terms of the pion-to-vacuum
matrix element and computed in terms of the pion decay constant 𝑓𝜋 , allowing this to be removed
prior to integration over 𝑡. The removal of this contribution can then be corrected after the conversion
to Minkowski space.

The computations in Refs. [29, 30] were both performed with domain wall quarks and a range
of lattice spacings and volumes, as well as a quark mass tuned to the physical point (Ref. [30]) or
over a wide enough range of pion masses to allow for a physical-point extrapolation (Ref. [29]).
Chiral perturbation theory relates the computed matrix element 𝑀0𝜈 to the EFT coefficient 𝑔𝜋𝜋

𝜈 via

𝑀0𝜈

𝑀0𝜈
(0)

= 1 + 𝑚2
𝜋

8𝜋2 𝑓 2
𝜋

(
3 log

𝜇2

𝑚2
𝜋

+ 6 + 5
6
𝑔𝜋𝜋
𝜈 (𝜇)

)
(11)

where 𝑀0𝜈
(0) is the analytically calculable contribution from the second diagram in Fig. 3, 𝑓𝜋 ≈ 130

MeV is the pion decay constant, and 𝜇 is the renormalization scale. At a scale of 𝜇 = 𝑚𝜌 = 770
MeV, 𝑔𝜋𝜋

𝜈 (𝜇) was computed as −10.9(8) in Ref. [30] and −10.8(5) in Ref. [29], where the errors
include all statistical and systematic uncertainties.

2.2 Dimension-Nine Matrix Elements

The preceding sections have focused on the minimal way to include a Majorana neutrino
mass into the Standard Model, namely, by combining Eq. (2) with Standard Model left-handed
electroweak interactions. While Eq. (2) is universal and appears in any theory in which the neutrino is

7
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⟨𝜋+ |O|𝜋−⟩ (GeV4) CalLat NPLQCD
O1 −1.91(13) × 10−2 −1.27(16) × 10−2

O2 −3.68(31) × 10−2 −2.45(22) × 10−2

O3 1.85(10) × 10−4 0.87(8) × 10−4

O1′ −7.22(49) × 10−2 −5.35(48) × 10−2

O2′ 1.16(10) × 10−2 0.76(8) × 10−2

Table 1: Dimension-nine (short-distance) matrix elements for the 𝜋− → 𝜋+𝑒𝑒 transition, from the CalLat
[40] and NPLQCD [41] collaborations. Results are listed in the MS scheme at a renormalisation scale of
𝜇 = 3 GeV.

Majorana, some beyond-the-Standard-Model theories postulate additional lepton-number-violating
interactions above the electroweak scale, which can be integrated out to give four-quark dimension-
nine interaction vertices of the form

O = (𝑑Γ𝑖𝑢) (𝑑Γ 𝑗𝑢) (𝑒Γ𝑘𝑒
𝐶) (12)

at the electroweak scale and below. Note that, unlike the EFT contact operator on the right-hand
side of Fig. 3, which is short-distance at nuclear scales but long-distance at quark scales, the contact
interaction in Eq. (12) is short-distance even at the quark level.

Using various Fierz relations, one can show that there are nine possible operators of the general
form in Eq. (12), of which five are scalar operators (canonically indexed O1,O2,O3,O′

1,O
′
2) and

four are vector operators (V1,V2,V3,V4) depending on whether Γ𝑘 carries a free Lorentz index
[33–35]. Predictions from general BSM models can be written as linear combinations of these nine
operators.

In the 𝜋− → 𝜋+𝑒𝑒 transition, only the scalar operators contribute meaningfully (with the vector
operators suppressed by 𝑂 (𝑚𝑒/𝑚𝜋) < 10−2). Weinberg power counting [36–38] predicts that 𝜋
exchange, and therefore the 𝜋− → 𝜋+𝑒𝑒 subprocess, dominates 0𝜈𝛽𝛽 in nuclear systems as well
[39], although this prediction is less certain due to theoretical difficulties with Weinberg power
counting.

The matrix elements of these five scalar operators have been computed in the 𝜋− → 𝜋+𝑒𝑒

transition by both the CalLat [40] and NPLQCD [41] collaborations. As with their long-distance
counterpart, these matrix elements have been extrapolated to the physical point with all lattice
artifacts controlled. The corresponding values are tabulated in Tab. 1.

Whilst there is some tension between the results, there is qualitative agreement in the mag-
nitudes of the various matrix operators. In particular, O3 is smaller than the others by a factor of
about 102. This agrees with predictions from 𝜒PT, which suggest that O3 is suppressed by a factor
of 𝑚2

𝜋/(4𝜋 𝑓𝜋)2.

2.3 Neutrinoful Double-Beta Decay

Nuclear systems pose several challenges avoided by the pionic calculations. First, baryons
— and especially nuclei with multiple baryons — suffer from exponentially bad signal-to-noise
degredation at large source-sink separations. Additionally, the number of contractions grows

8
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factorially with the number of quarks in the system, and even for two-baryon systems, the contraction
cost can rival that of propagator inversion.

The first problem can be mitigated, although not altogether avoided, by working with larger-
than-physical quark masses. At 𝑚𝜋 ≈ 800 MeV, it is mild enough to have enabled spectroscopy
calculations of light nuclei for over a decade [42–49]. While this unphysical mass means that the
result cannot be directly compared to nature, it is a useful starting point for a campaign of computing
double-beta decay matrix elements that will eventually be extrapolated to physical quark masses.

The problem of nuclear contractions is simplified if one instead studies the neutrinoful double-
beta decay reaction in Eq. (4). Without the Majorana neutrino propagating between the two
electroweak currents, these two current insertions decouple and can be computed more easily.

In particular, the background field method [50–52] can be used to compute electroweak matrix
elements. Propagators are computed both in pure QCD and also in the presence of a background
field with strength proportional to 𝜆. The derivative of the two-point correlation function with
respect to 𝜆 is proportional to the forward matrix element corresponding to the background field
(e.g. the electric or axial charge, depending on the specific field used).

This method can be generalized to multiple current insertions, and, in particular, to 2𝜈𝛽𝛽
matrix elements. Here, for a second-order weak process, one seeks the second derivative with
respect to 𝜆. At the cost of computing propagators at several values of 𝜆 to compute the second
derivative numerically, this reduces the problem of computing four-point correlation functions to
that of two-point correlation functions. In particular, one does not need to construct propagators
coming from the sink (as was done in the pionic calculations), nor does one need to contract
propagators at various operator separations and momenta. As a result, the 2𝜈𝛽𝛽 matrix element
can be computed to high (few-percent) statistical precision.

As with its neutrinoless counterpart, the nuclear EFT includes contributions from two well-
separated electroweak insertions as well as a contact operator with a low-energy constant H2,𝑆 that
is unknown a priori [53]:

𝑀2𝜈 = −
|𝑀𝑝𝑝→𝑑 |2

Δ
+
𝑀𝑔2

𝐴

4𝛾2
𝑠

− H2,𝑆 (13)

where |𝑀𝑝𝑝→𝑑 | is the single-𝛽 decay matrix element, Δ = 𝐸𝑛𝑛 − 𝐸𝑑 is the deuteron-dineutron
mass splitting, 𝑔𝐴 is the single-nucleon axial charge, and 𝛾𝑠 is the dineutron binding momentum.
Unlike in 0𝜈𝛽𝛽, however, the contact operator in 2𝜈𝛽𝛽 is next to leading order in the EFT power
counting. The high-precision calculation of 𝑀2𝜈 in Ref. [53] resolved the full matrix element
from the leading-order EFT prediction, finding H2,𝑆 to be about a 5% correction to the full matrix
element at the lattice spacing and pion mass considered in that work.

2.4 0𝜈𝛽𝛽 for 𝑛𝑛 → 𝑝𝑝

The success of pionic calculations and of 2𝜈𝛽𝛽 in nuclear systems motivates the more compu-
tationally demanding calculation of 0𝜈𝛽𝛽 in the 𝑛𝑛 → 𝑝𝑝𝑒𝑒 reaction. As in the 2𝜈𝛽𝛽 calculation
in the previous section, the signal-to-noise problem favours performing this computation at unphys-
ically heavy quark masses.

Unlike in the 2𝜈𝛽𝛽 calculation where the background field method could be utilised, the four-
point correlation function for 0𝜈𝛽𝛽 must be computed explicitly. Two stategies have emerged for
doing so:

9
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1. Compute propagators coming from both source and sink and contract them at the operator
insertion points, as was done in the 𝜋− → 𝜋+𝑒𝑒 calculations in Sect. 2.1. However, the wall
source/sink combination works substantially better for pions than for nucleons, and volume-
averaged point (or smeared) sinks commonly used in two-point correlation functions would
here require a separate inversion from every sink point. This necessitates some cost-reduction
strategy at the sink, either sparsening [54] or distillation [55–57].

2. Compute sequential propagators through the operator insertion points. The primary difficulty
here is that the intermediate neutrino energy must be integrated over, naïvely requiring
separate sequential inversions for every possible choice of p𝜈 . A stochastic propagator for
the neutrino dramatically reduces this number of inversions at the cost of adding additional
noise to the correlation function.

In Ref. [58], the first option was chosen, with a sparse grid of 43 propagators computed at
the sink. Ideally, one would use an identical sparse grid of propagators at the source to obtain
a symmetric correlation function, as has been done in recent nuclear spectroscopy calculations
[46, 48, 49]. However, the computational cost of computing 4-point functions substantially exceeds
that of the 2-point correlation functions used in spectroscopy: propagators are needed that originate
over a range of source and sink timeslices, increasing inversion costs by an order of magnitude or
more, and contractions must be computed over all combinations of source, sink, and operator times,
of which there can be several hundred. As a cost-saving measure, wall sources were used, requiring
only one additional inversion when changing the source-sink separation. Furthermore, unlike the
bi-local operators used in spectroscopy calculations, the computationally cheaper local hexaquark
operator was used at the sink.

In spite of these simplifications, performing the nuclear contractions efficiently is a challenging
computational problem. For fixed operator and sink positions, the number of quark contractions
required for the 𝑛𝑛 → 𝑝𝑝𝑒𝑒matrix element is roughly𝑁𝑐!4𝑁𝑢!𝑁𝑑! ≈ 106, and naïvely this cost must
be repeated at each of the operator positions, contributing an additional factor of 𝑉2. Additional
multiplicative factors arise from varying the sink spatial position and the temporal positions of
operators and source.

The Fourier convolution trick used in the pionic calculations reduces the cost of the operator
sum to 𝑉 log𝑉 times the number of nuclear contractions. One might attempt to further reduce this
cost by sparsening at the operator positions as is done at the sink. However, sparsening effectively
truncates the spectrum in momentum space, leading to a distortion of high-momentum modes. At
source and sink, such high-momentum modes correspond to excited states that are removed by
time evolution, but in four-point functions where the neutrino momentum must be integrated over,
operator sparsening gives an incorrect result (shown in preliminary testing to be wrong by a factor
of several).

However, it is possible to decouple the volume sum for operator insertions from the 𝑂 (106)
nuclear contractions. If 𝑆

𝜁 𝛽

𝑐𝑏
(𝑥 |𝑥𝑖) is the propagator from source to operator, 𝑆𝛼𝛿

𝑎𝑒 (𝑥 𝑓 |𝑥) is the
analogous propagator originating at the sink, and (𝐽𝜇) 𝛿𝜁 is the weak current insertion, then one
can compute sequential propagators

𝑆
𝛼𝛽,𝜇

𝑎𝑏
(𝑥) = 𝑆𝛼𝛿

𝑎𝑒 (𝑥 𝑓 |𝑥) (𝐽𝜇) 𝛿𝜁 𝑆𝜁 𝛽𝑒𝑏 (𝑥 |𝑥𝑖) (14)

10
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and convolve the two Fourier-transformed sequential propagators for the two electroweak insertions
with the neutrino propagator 𝐷 (𝑥 − 𝑦) to obtain

𝑇
𝛼𝛽𝛾𝛿

𝑎𝑏𝑐𝑑
=

𝑎3

𝐿3

∑︁
p

F [𝑆𝛼𝛽,𝜇

𝑎𝑏
] (p; 𝑡𝑥)F [𝐷] (𝑝; 𝑡𝑥 − 𝑡𝑦)F [𝑆𝛾𝛿,𝜇

𝑐𝑑
] (−p, 𝑡𝑦) (15)

which has four free spin-color indices but is independent of the nuclear contractions at source and
sink. If all quarks in the source and sink interpolating operators are projected to positive parity, e.g. if
O 𝛿

𝑝 = 𝜀𝑎𝑏𝑐 [𝑢𝛼
𝑎 (𝑃+𝐶𝛾5)𝛼𝛽𝑑𝛽𝑏 ] (𝑃+) 𝛿𝛾𝑢𝛾𝑐 , then the cost of computing 𝑇

𝛼𝛽𝛾𝛿

𝑎𝑏𝑐𝑑
is 𝑂 (64𝑉 log𝑉 + 106),

substantially faster than 𝑂 (106𝑉 log𝑉).
A final challenge is the power-law fall-off of the neutrino propagator 𝐷 (𝑥 − 𝑦) ∼ 𝑡−2 at large

operator separations, which is much slower than the exponential signal degredation at large 𝑡. This
can be ameliorated by considering a zero-mode-subtracted version of the propagator [59]

𝐷 (𝑥, 𝑦) = 1
2𝐿3

|q | ≤𝜋/𝑎∑︁
q∈ 2𝜋

𝐿
Z3{0}

1
|q| 𝑒

𝑖q· (x−y)𝑒−|q | |𝑡 | (16)

that decays exponentially in 𝑡 in finite volume. The lattice QCD matrix element is then matched to
an EFT computed with the same neutrino propagator in order to extract 𝑔𝜈

𝑁𝑁
.

Using this propagator, the matrix element A0𝜈 (proportional to 𝑀0𝜈 in Eq. (9) above) is
computed by first extrapolating the ratio 𝑅(𝑡snk, 𝑡, 𝑡src) of 4-point to 2-point correlation functions
to large source-operator and sink-operator separations 𝑡src and 𝑡snk in order to remove excited state
contamination to obtain 𝑅(𝑡) = lim𝑡src→∞

𝑡snk→∞
𝑅(𝑡snk, 𝑡, 𝑡src). Then integrating over operator separation

times 𝑡 gives

A0𝜈 = 2𝐸0

∫ ∞

−∞
𝑑𝑡 𝑅(𝑡) . (17)

In practice, the large-𝑡 behaviour of 𝑅(𝑡) is poorly constrained due to the signal-to-noise problem,
so 𝑅(𝑡) is fit to an exponential in 𝑡 that can be integrated analytically. At a fixed lattice spacing and
pion mass, Ref. [58] used this procedure to determine A0𝜈 to about 20% precision.

More recently, a preliminary study has been undertaken using stochastic neutrino propagators
in order to avoid the additional cost of having propagators sourced at both source and sink [60].
After computing these stochastic sequential propagators through the operator insertion points, the
nuclear contractions are done in a similar way to standard two-point correlation functions. In
particular, a setup with symmetric bi-local interpolating operators at source and sink becomes
feasible, reducing excited state contamination at the cost of the additional noise from the stochastic
neutrino propagator.

While this work is still unpublished, preliminary results have been presented at this conference,
indicating reasonable (≲ 10%) statistical noise over moderate operator separations. Perhaps more
importantly, this study was performed using quark masses corresponding to 𝑚𝜋 = 432 MeV,
about half the pion mass used in the previous study. This represents important progress toward
physical-point simulations.
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3. Remaining Challenges and Future Work

In order to make contact with experimental results, the lattice QCD community must be able
to provide 𝑔𝜈

𝑁𝑁
at the physical point with all uncertainties fully controlled. Whilst much work

has already been completed toward this goal, much work remains to be done in the coming years,
ideally in time to interpret results from next-generation 0𝜈𝛽𝛽 experiments.

3.1 EFT Matching

From an EFT perspective, the matrix element A0𝜈 for the 0𝜈𝛽𝛽 reaction computed in the
previous section originates as the sum of the long-distance and contact-term diagrams shown in
Fig. 3. More concretely, one can write [59]

A0𝜈

2𝑚𝑛𝑛

1
R(𝐸)M(𝐸) = (1 + 3𝑔2

𝐴) (𝐽
∞ + 𝛿𝐽𝑉 ) − 𝑚2

𝑛

8𝜋2 𝑔̃
𝑁𝑁
𝜈 (18)

where M(𝐸) is the 𝑁𝑁 scattering amplitude, R(𝐸) is the Lellouch-Lüscher residue, 𝐽∞ is the
contribution of the first diagram in Fig. 3, 𝑔𝐴 is the axial charge of the nucleon, 𝛿𝐽𝑉 is a finite-
volume correction [59, 61], and 𝑔̃𝑁𝑁

𝜈 is 𝑔𝑁𝑁
𝜈 rescaled by normalisation factors. The functional

forms of these functions are well known in the literature, but they have free parameters that must be
determined from 𝑁𝑁 interactions. For example, the effective-range expansion for the 𝑁𝑁 scattering
amplitude,

M(𝐸) = − 4𝜋
𝑚𝑁

1
1/𝑎 − 𝑟 𝑝2/2 + 𝑖𝑝

(19)

depends on the scattering length 𝑎, the effective range 𝑟, and the finite-volume energy shift 𝐸 =

𝑝2/2𝑚𝑁 .
In lattice QCD, these values are also calculable in principle by precisely determining the

spectrum of two nucleons within a finite volume and computing the energy shifts of the spectrum
relative to non-interacting energy levels. An important challenge in such a calculation is difficult-
to-control systematic effects arising from excited-state contamination. In particular, computations
of the ground state energy of the ensemble used in the 0𝜈𝛽𝛽 calculation in Ref. [59, 61] differ by
several standard deviations depending on whether one uses asymmetric correlation functions (which
find a deep bound state dineutron [42–45, 47]) or variational methods using symmetric correlation
functions (which do not provide evidence of a bound state [46, 48, 49]). The difference between the
values of 𝑔̃𝜈

𝑁𝑁
computed using inputs from these two methods far exceeds the uncertainty arising

from the 0𝜈𝛽𝛽 matrix element computed in Ref. [58], and assessing the validity of the various
spectroscopic calculations is beyond the scope of this work.

A computation of A0𝜈 directly at the physical point would not suffer from this difficulty, as the
scattering length and effective range are well known experimentally (to few-percent precision), and
the finite-volume energy shift can be computed from these inputs. However, if A0𝜈 is computed at
various unphysical quark masses such that 𝑔̃𝜈

𝑁𝑁
can be extracted and extrapolated to the physical

point, then corresponding spectroscopic calculations on the various ensembles are needed to perform
the EFT matching.

12
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3.2 Towards Physical Point Calculations

At lighter quark masses, lattice QCD calculations become more challenging for several reasons,
most saliently higher costs for propagator inversions and a worsened signal-to-noise problem in
baryonic systems. Much work has been done to ameliorate the first of these challenges — in
particular, the use of algebraic multigrid preconditioners in solvers [62–64] — but the second
remains an open challenge. For two-baryon systems, this is especially challenging, with the
signal-to-noise ratio expected to fall off asymptotically twice as fast in time as in the single-
baryon case [65, 66]. Four-point correlation functions are more challenging still, as computing the
matrix element requires access to a range of source-operator, operator-operator, and operator-sink
separations before the signal is lost to noise.

The range of operator-operator separations over which one must scan is a physically relevant
length scale dictated by the rate of the neutrino propagator decay, but separations from the source
and sink are only needed to control excited state contamination whose fall-off depends on the
choice of interpolating operators. Thus, the choice of interpolating operators with minimal excited
state contamination will become even more important with light quarks. In particular, the trade-off
between computational cost of an interpolating operator and control over its overlap with excitations
becomes tilted more heavily toward the latter when near-physical masses are used.

Two-point spectroscopic calculations can be informative in this regard. Variational analyses,
which solve the generalised eigenvalue problem (GEVP) among a class of interpolating operators,
can determine the coefficients of the optimal linear combination of these operators that minimises
excited state contamination. This linear combination can then be used in computing four-point
functions for 0𝜈𝛽𝛽, and operators with sufficiently small coefficients in the GEVP can be excluded
in order to reduce computational costs.

Recently, variational calculations of the two-nucleon spectrum at near-physical masses have
begun using various bi-local interpolating operators for the dineutron and deuteron with different
relative momenta. The precision of such calculations is not yet sufficient to resolve finite-volume
energy shifts, but preliminary results show optimism for such resolution with increased statistics,
hopefully within timescales of a year or two. The work in Ref. [60] has shown one method for
incorporating bi-local interpolating operators into 0𝜈𝛽𝛽 calculations. Future work will hopefully
explore whether the method of performing 0𝜈𝛽𝛽 contractions at the operator insertion points can
be sufficiently optimised so as to be compatible with these bi-local interpolating operators as well.

4. Conclusion

The scientific community is at an exciting juncture in the study of neutrinoless double-beta
decay. Next-generation experiments with the potential to probe the entire inverted hierarchy of
neutrino masses will come online within the next decade and are scheduled to release results within
a decade following that, if not earlier. Within such a timescale, it is incumbent on the theory
community to resolve the large uncertainties in nuclear matrix elements that currently limit the
interpretability of experimental results.

Computing such matrix elements with controlled uncertainties will take a concerted effort of
the nuclear theory community, including advances in nuclear many-body calculations that will use
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inputs from nuclear effective field theory to make predictions about the medium and large nuclei that
are experimentally relevant. The main role of lattice QCD practitioners is to provide the necessary
low-energy constants of the EFT, in particular the coefficient of the four-nucleon contact interaction
𝑔𝜈
𝑁𝑁

, in time to be useful as an input.
Physical-point nuclear spectroscopy calculations are currently ongoing and optimistically will

observe a loosely bound deuteron within the next year or two. In parallel to this, it would be beneficial
to perform a comparative study of the relative cost and signal quality of the various possible methods
for computing the necessary four-point correlation functions for 0𝜈𝛽𝛽. With these prerequisites,
the first 0𝜈𝛽𝛽 calculation at near-physical quark masses is optimistically possible within a three-to-
five-year timescale, with a controlled continuum extrapolation a couple years after that. Combined
with advances in many-body calculations over a similar timescale, nuclear theory could proved
these matrix elements on an experimentally relevant timescale.
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