

Transfer reaction for the study of α -cluster states in ^{54}Cr

Biswajit Das^{1,*}, A. Kundu¹, R. Palit¹, P. Dey¹, Vishal Malik¹, U. Garg², D. Negi³, Md. S. R. Laskar⁴, Rajkumar Santra⁵, S.K Jadhav¹, B.S. Naidu¹, and A.T. Vazhappilly¹

¹Department of Nuclear and Atomic Physics,

Tata Institute of Fundamental Research, Mumbai 400005, India

²Department of Physics and Astronomy,

University of Notre Dame, Notre Dame, Indiana 46556, USA

³Department of Physics, Manipal Institute of Technology,

Manipal Academy of Higher Education, Manipal 576104, India

⁴Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano 20133, Italy and

⁵Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India

Introduction

Emergence of α -clustering in nuclei and its impact on their various properties, particularly starting from light nuclei within the nuclear table [1] remains a topic of contemporary interest. The concept of clustering has been observed since the early days of nuclear physics, where an α -particle can serve as the fundamental building block for certain nuclei. The α -cluster model serves as a valuable tool to elucidate significant aspects of nuclear behavior, including electromagnetic transition strength, α -decay width, and α -particle scattering data. Moreover, it simplifies the computationally challenging task by reducing the degrees of freedom. In lighter nuclei with mass numbers less than $A = 40$, α -clustering is a prominent characteristic in numerous states [2–4]. In the fp -shell region, ^{44}Ti has been extensively studied with the interpretation of $\alpha + \text{core}$ (^{40}Ca) configurations. Recently, M. A. Souza and H. Miyake proposed that ^{46}Cr and ^{54}Cr are the most favorable even-even Cr isotopes for the $\alpha + \text{core}$ configuration [5]. Hence the cluster structure study of ^{54}Cr is important with available stable projectile-target combinations.

In this present work, we have populated the excited states in ^{54}Cr via the α -transfer to ^{50}Ti nucleus. The reactions were studied through particle- γ coincidence measure-

ments. Different excited states of ^{54}Cr have been identified with triton gate of $E_t > 17.5$ MeV. Along with the yrast states, several low-lying non-yrast states were found through this reaction. The $\alpha + \text{core}$ spectroscopic factors for the observed excited states have been obtained.

Experimental details

The excited states of ^{54}Cr were populated via an α -transfer reaction, specifically $^{50}\text{Ti}(^7\text{Li}, t)^{54}\text{Cr}$, using 20 MeV beam provided by the 14UD Pelletron Linac accelerator Facility (PLF) at TIFR, Mumbai, India. For this experiment, a self-supporting target of ^{50}Ti with a thickness of approximately 1.48 mg/cm² was employed. The de-exciting γ -rays of residual nuclei were detected by the Indian National Gamma Array (INGA) at TIFR, consisting of 17 Compton-suppressed clover HPGe detectors at different angles with respect to the beamline. To detect outgoing charged particles, we utilized an array of thirteen CsI(Tl) detectors. Additionally, a Si surface barrier detector (monitor) was incorporated to detect scattered beam particles for cross-section calculations. The signals from the individual CsI(Tl) detectors and each crystal of the clover detectors were collected using a total of six 12-bit 100 MHz PIXIE-16 modules. The CsI(Tl) detectors were calibrated using the triton energy spectrum from the reaction $^{12}\text{C}(^7\text{Li}, t)^{16}\text{O}$ at a beam energy of 20 MeV. For the calibration of the clover HPGe detectors, we employed a mixed ^{133}Ba

*Electronic address: biswajit.das@tifr.res.in

^{152}Eu source.

Results and discussion

The collected experimental data have been sorted by a MultipARameter time-stamped based COincidence Search (MARCOS) code, developed at TIFR. The particle- γ matrix files and ROOT NTuple with two- and higher-fold coincidence events have been generated. From each raw pulse of the CsI(Tl), the QDC-short and QDC-long have been calculated. The 2D particle identification spectrum has been generated in coincidence with any of the clover detectors. A two-dimensional spectrum of QDC-short vs QDC-long for 34° CsI(Tl) detectors has been shown in Fig. 1. Proton-, triton-, and alpha-band have been identified in the spectrum. The γ spectrum of the clover detectors has been obtained and cleaned by applying the 2d gate to the particle spectrum. In the present heavy-ion collisions, various re-

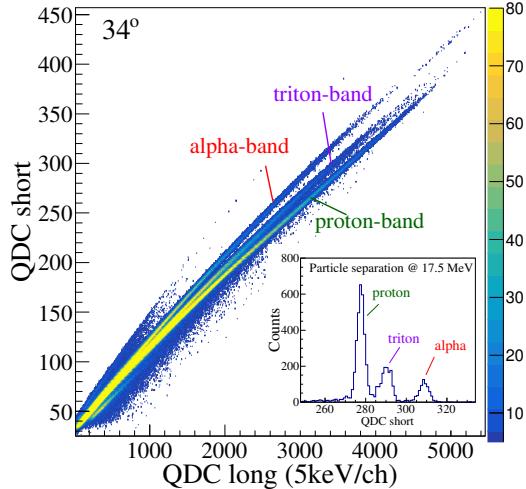


FIG. 1: The calibrated particle spectrum from a CsI(Tl) detector positioned at $\theta_{\text{lab}} = 34^\circ$ reveals distinct bands of light-charged particles, including protons, tritons, and α -particles, as observed in the current measurement. Insets demonstrate a sharp differentiation between these particle types at an energy of 17.5 MeV.

action channels become energetically favored. The complete fusion evaporation reaction has a dominant cross-section. Specifically, nu-

clei such as $^{54,55}\text{Mn}$ and $^{53-55}\text{Cr}$ are substantially populated through different pathways, including $(3n)$, $(2n)$, $(p3n)$, $(p2n)$, and (pn) complete fusion evaporation channels. Moreover, the nucleus ^{54}Cr can also be generated through the α -cluster transfer to ^{50}Ti . In the incomplete fusion channel, the ^{54}Cr compound nucleus will be formed which subsequently undergoes de-excitation processes, leading to the production of $^{51-53}\text{Cr}$ through multi-neutron (xn)-evaporation and $^{51-53}\text{V}$ via (pxn) channels. In this work, along with yrast state (up to 8^+), multiple low-lying non-yrast 2^+ and 4^+ states of ^{54}Cr have been populated which are typically challenging to access through fusion evaporation reactions. The integrated transfer cross-sections for both the observed yrast and non-yrast states have been measured. We have then compared these measurements with calculations performed using Coupled Reaction Channels in the FRESCO framework, allowing us to extract α -core spectroscopic factors [6]. Our findings suggest moderate α -cluster structure for the yrast states of ^{54}Cr and the clustering effect reduces for the non-yrast states.

Acknowledgments

The authors would like to acknowledge the TIFR-BARC PLF for providing a stable beam, and the Center for Accelerator Target Science at ANL for providing the ^{50}Ti target. This work is partly supported by the DAE, Government of India, under Project No. RTI4002 and the U.S. National Science Foundation (Grant No. PHY-2011890).

References

- [1] D. Bai and Z. Ren, Phys. Lett. B **786** 5 (2018).
- [2] T. Madhusoodhanan *et al.*, J. Phys. G: Nucl. Part. Phys. **25** 1897 (1999).
- [3] M.E. Cobern *et al.*, Phys. Rev. C **14** 491 (1976).
- [4] F.D. Becchetti *et al.*, Nuclear Physics A **305** 293 (1978).
- [5] M.A. Souza and H. Miyake, Eur. Phys. J. A **53**, 146 (2017).
- [6] Biswajit Das *et al.*, (Submitted to PRC).