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Abstract: I will show how the flow triggered by deforming two-dimensional conformal field theories
on a torus by the TT̄ operator is identical to the evolution generated by the (radial) quantum Shape
Hamiltonian in 2 + 1 dimensions. I will discuss how the gauge invariances of the Shape Dynamics,
i.e., volume-preserving conformal invariance and diffeomorphism invariance along slices of constant
radius are realized as Ward identities of the deformed quantum field theory. I will also comment
about the relationship between the reduction to shape space on the gravity side and the solvability of
the irrelevant operator deformation of the conformal field theory
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1. Introduction

Shape Dynamics [1] trades the gauge invariance of re-foliation invariance of general
relativity for volume preserving Weyl invariance of space. In effect, it is a theory of
the dynamics of the conformal geometry of space. Local classical gravitational physics
described by shape dynamics is identical to what general relativity describes and in this
sense the two theories are dual to each other. There are significant and interesting global
differences between the two theories, however, which is most clearly evident in the novel
physics discovered in the shape dynamical approach to modeling the universe’s origins [2].

The expectation is that the two theories arise as classical limits of different quantum
theories. Specifically, the criterion for physical states in canonical quantum general rel-
ativity is that said states satisfy the Wheeler de Witt equation in addition to the spatial
momentum constraint. In Shape Dynamics, the physical states satisfy the constraint that
encodes local volume preserving Weyl invariance in addition to the spatial diffeomorphism
constraint. Additionally, there is a global reparameterization constraint physical states
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in shape dynamics must satisfy. The classical equivalence, from this perspective is the
local matching matching of a certain special class of states of either theory that exhibit
semi-classical behavior. In this article, I will report on a peculiar connection between
quantum shape dynamics in 2 + 1 dimensions and irrelevant operator deformations of
two-dimensional conformal field theories. The connection to quantum general relativity in
fact arises from the classical equivalence of shape dynamics with general relativity.

I will begin by describing the flow on the space of two-dimensional quantum field
theories triggered by deforming a conformal field theory by the TT̄ operator [3,4]. Specif-
ically, I will describe the flow of the energy levels of the theory on a cylinder under the
deformation. Then, I will show how the resulting equation defines a flow equation for the
partition sum or the torus partition function. I will then relate this flow equation to the
global constraint equation that the physical wavefunction of quantum shape dynamics
has to satisfy. This is a refinement to the original holographic correspondance between 3D
general relativity in a space of negative cosmological constant and the TT̄ deformation of
the dual conformal field theory that now inhabits a finite radial cutoff surface put forward
in [5], which was a refinement of the observation made earlier in [6]. It does sharpen
the correspondence proposed in [7] relating the renormalization group of quantum field
theories in one lower dimension and shape dynamics.

The connection to three-dimensional gravity is just one facet of the TT̄ deformation.
Others include (but are not limited to) the relationship between it and two-dimensional
quantum field theories coupled to random geometry [8], Jackiw–Teitelboim gravity [9,10],
ghost free massive gravity [11], and non critical string theory [12]. A more detailed review
of the literature around the TT̄ deformation and its cousins can be found in [13].

Summary of Main Results

The key point of this article is the following: when we identify shape dynamics in
2 + 1 dimensions as dual to the TT̄ deformation of a CFT, we can explain the latter’s
solvability. In other words, our ability to write down simple differential equations for
the energy levels and the torus partition function and solve them exactly can be seen as
arising from the imposition of the volume preserving conformal constraint of the dual
quantum 2 + 1 shape dynamics theory. This constraint freezes the inhomogenous modes
of the metric in the partition function and renders it a function only of the zero modes of
the metric components. This condition cannot be imposed as a constraint when we do the
Dirac quantization of general relativity fixed in Constant Mean Curvature gauge.

1.1. Radial Quantization in Conformal Field Theory

Let us consider a Euclidean Conformal Field Theory on a plane R2, on which we
consider the following coordinates:

ds2 = dR2 + R2dθ2. (1)

This line element describes the foliation of the plane by circles of radii R. The dilatation
operator D̂ generates radial development R→ R + δR that expands the circles uniformly.
We will be interested in the eigenstates of this operator. Much like how eigenstates of the
Hamiltonian are defined on surfaces of constand time, the eigenstates of the dilatation
operator are defined on the circles we are foliating the plane by:

D̂|∆〉 = i∆|∆〉. (2)

The main point idea behind the state operator map is to take the analogy between the
dilatation operator and a Hamiltonian very literally.

In particular, note that the plane can be related to the cylinder through the following
Weyl transformation:

dr2 + r2dθ2 = e2τ(dτ2 + dθ2) (3)
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where τ = log r. Another consequence of conformal symmetry is that the dynamics of the
CFT are not sensitive to the difference between (3) and (1). Note that, under the coordinate
transformation we consider, the radial development on the plane maps to the development
along the height of the cylinder, which we interpret as time—in other words, it describes
the evolution of the state of a CFT on a spatial circle. Therefore, the Hamiltonian for the
conformal field theory quantized on a circle (× time) is the dilatation operator. In other
words, the evolution operator on the cylinder is given by

Û = eiĤτ = eD̂τ . (4)

The eigenstates we identified before evolve according to

Û|∆〉 = e−τ∆|∆〉 = R−∆|∆〉. (5)

On the plane, we can define the vacuum state that we define on a circle of vanishing
radius—i.e., the origin. The other states of the theory are defined by acting with operators
Oδ on the vacuum [14]:

O∆(0)|0〉 = |∆〉. (6)

We can then associate this state to an eigenstate of the generator of time translations
along the cylinder. This is the state-operator map.

In a unitary conformal field theory, the spectrum of dilatation eigenvalues, or confor-
mal weights, is given by discrete, positive real numbers ∆n. The formula for the energy
associated with the nth weight is given by:

En =
1
R

(
∆n −

c
12

)
. (7)

The constant c is known as the central charge of the confromal field theory, and
this negative contribution to the energy is the Casimir energy born through putting the
conformal field theory on a circle. Note that the Casimir energy accounts entirely for the
energy of the ground state:

Eo = −
c

12R
. (8)

In the following section, we will study what happens to the energy spectrum of the
CFT on a cylinder under the TT̄ deformation.

1.2. The TT̄ Operator

The TT̄ operator is the following composite operator formed from the energy momen-
tum tensor Tµν:

TT̄(x) :=
1
8

(
gµ(αgβ)νTµν(x)Tαβ(x)− (Tσ

σ (x))2
)

. (9)

This operator evaluated in a conformal field theory is the product of the holomorphic
and anti-holomorphic stress tensor components Tzz = T, Tz̄z̄ = T̄, and thus the name. I will
continue to use TT̄ as a stand in for the right-hand side of (9) throughout this article.

Note that this operator is irrelevant in the renormalization group sense: the energy
momentum tensor has scaling dimension 2. On account of being a conserved current, its
scaling dimension is protected from quantum corrections. Furthermore, Zamolodchkov
showed that the OPE between the stress tensor components in (9) defines a local operator
with definite scaling dimension 4. However, we can in fact follow the energy levels of the
CFT under the flow triggered by this irrelevant operator. This is the sense in which it is a
“solvable” irrelevant operator deformation.
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The main property we will exploit is that the expectation value of the TT̄ operator
on spaces with translation invariance factorized when computed in translation invariant
states. The proof of this property was first found in [15]. In other words:

〈n|TT̄|n〉 = 1
8

(
〈n|Tµν|n〉〈n|Tµν|n〉 − (〈n|Tµ

µ |n〉)2
)

(10)

Here, |n〉 denotes translation invariant, which on the cylinder are just the energy
eigenstates. The reason why the above factorization formula is a simplification is that the
expectation value of the TT̄ operator can now be computed from just knowing the diagonal
matrix elements of the stress tensor Tµν in energy eigenstates.

1.3. The Deformed Energy Spectrum

To see why being able to calculate the expectation value of TT̄ matters, note that the
definition of the TT̄ flow is that one parameter family of two-dimensional field theories for
which the following equation holds:

∂µ log Z = 〈TT̄(x)〉. (11)

Here, µ is the deformation parameter which carries dimensions of length squared, and
log Z denotes the partition function of the TT̄ deformed theory. The boundary condition
for this differential equation is the specification of the undeformed theory:

log Z(µ = 0) = log ZSeed (12)

In all that is to follow, I will focus on the case where log ZSeed = log ZCFT .
It follows from (11) that the energy levels of the deformed theory on the cylinder

satisfy:
∂µEn(µ, R) = 〈n|TT̄|n〉

= 〈n|Tµν|n〉〈n|Tµν|n〉 − (〈n|Tµ
µ |n〉)2. (13)

The matrix elements of various stress tensor components on the cylinder are given
in terms of the energy En = −R〈n|T00|n〉, momentum jn = −i〈n|T01|n〉 and pressure
∂REn = 〈n|T11|n〉. Thus, we can readily write the right-hand side of the above equation
entirely in terms of these quantities:

∂µEn = En∂REn +
1

R3 j2n. (14)

Note that the deformation preserves Poincare invariance on flat backgrounds, but,
more generally, the covariant conservation of the energy momentum tensor. When we look
at the theory defined on the cylinder, this implies that it is only the energy En that gains µ
dependence while the momenta jn will not flow under the deformation.

Equation (14) has the structure of the Burgers’ equation of hydrodynamics without
the viscosity term (see for instance [16]). This was noticed in [3,4].

Thus far, we have not specified what the seed theory is that we are deforming. I will
now specialize to the case where we deform a conformal field theory, whose spectrum is
given by:

En(µ = 0, R) =
1
R

(
∆n −

c
12

)
(15)

and jn = 1
R Jn, where Jn is an integer.

The solution to the Burgers’ equation reads:

En(R, µ) =
R
2µ

(
−1±

√
1 +

4µ

R2

(
∆n −

c
12

)
+

4µ2 J2
n

R4

)
(16)
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The two signs correspond to whether we choose to deform the theory in the positive or
negative µ direction. Note that this formula depends on µ only though the dimensionless
ratio λ = µ/R2.

Let us take the example of a collection of D free massless bosons in two dimensions as
the seed CFT. The spectrum in such a theory is given by:

ECFT
n =

1
R

(
n + n̄− D

12

)
, Jn = n− n̄, n, n̄ ∈ Z+. (17)

The deformed spectrum is now given by:

En(µ, R) =
R
2µ

(
−1 +

√
1 +

4µ

R2

(
n + n̄− D

12

)
+

4µ2

R4 (n− n̄)2

)
. (18)

This is the energy spectrum that arises from the Nambu Goto action for a string
propagating in dimension D− 2 when taken in static gauge [17]. We see here that the TT̄
deformation bridges the simple quantum field theory of D free bosons to the theory of the
string world-sheet.

In fact, we can cast the entire exercise in terms of dimensionless quantities. Let
me define:

En

(
λ =

µ

R2

)
= REn(µ, R). (19)

Then, we see that the Burgers’ equation implies that En satisfies:

∂λEn = −2λEn∂λEn − E2
n + J2

n. (20)

1.4. Flow Equation for the Partition Function

The partition sum is the following quantity:

Z(β, ω) = Tr exp(−βH + iω J) (21)

Here, β is the inverse temperature and ω is the chemical potential conjugate to the
angular momentum. We interpret this quantity as describing a system living on a torus
whose modulus is given by τ = 1

R (ω + iβ). In other words, the real and imaginary parts of
the torus modulus are given by τ1 = ω/R, τ2 = β/R. The partition function can therefore
be written as

Z(τ1, τ2) = Tr exp
(
− τ2RH + iτ1RJ

)
= ∑

n
e−τ2En+iτ1 Jn (22)

Now, the idea is to obtain the flow equation that determines the λ dependence of the
partition function

Z(τ1, τ2, λ) = ∑
n

e−τ2En(λ)+iτ1 Jn (23)

with initial condition Z(λ = 0, τ1, τ2) = ZCFT(τ1, τ2) knowing the Burgers’ Equation (20).
This is a straightforward algebraic exercise, which results in the equation:(

−τ2

2

(
∂2

τ1
+ ∂2

τ2

)
+

(
1
2
+

λ

τ2

)
∂λ − λ∂λ∂τ2

)
Z(λ, τ1, τ2) = 0. (24)

This equation provides the starting point for the rest of the analysis to follow in this
article. It was first written down in [18].
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1.5. Introducing the Volume

The line element on the torus on which the two-dimensional TT̄ deformed CFT lives
is given by:

ds2 = gT
2

µνdxµdxν = |dx + τdy|2 (25)

The coordinates x, y are periodic with period 2πR. The volume of the torus is given by

V =
∫

d2x
√

gT2 = 4π2R2τ2. (26)

Let us now measure the radius in units of the deformation parameter µ. In these terms,
the volume is given by:

V = 4π2µ
τ2

λ
. (27)

We can now trade the λ dependence of the partition function for V dependence and
re-write the flow equation:

−
τ2

2
2

(
∂2

τ1
+ ∂2

τ2

)
Z(V, τ1, τ2)−

V2

8π2µ

(
∂V − 4π2µ∂2

V

)
Z(V, τ1, τ2) = 0. (28)

The introduction of this variable can be seen merely as a means to decouple λ and τ2
in (24). Alternatively, we can think of the deformation either in terms of varying µ and
keeping the volume of the cylinder fixed, or alternatively, by keeping µ fixed and varying
the volume. To vary the volume and ask how the partition function responds is a more
general means to characterize the RG flow. In fact, (28) can be seen as the Callan–Symanzik
equation for partition function (i.e., the 0 point function). To see this, we rewrite (28) as:

∫
d2x
√

g〈Tµ
µ 〉 =

1
Z

V∂V Z =
4π2µ

Z

(
τ2

2
V

(
∂2

τ1
+ ∂2

τ2

)
Z− ∂2

V Z
)

. (29)

In a pure conformal field theory, the trace of the energy momentum tensor on curved
spaces is given by the conformal anomaly. On a torus, this would be zero. If we deform the
CFT, then, in addition to the conformal anomaly, the expectation value of the deforming
operator itself will contribute to 〈Tµ

µ 〉. In other words, we have the general equation:∫
d2x〈Tµ

µ 〉 =
∫

d2xβI〈OI〉+A (30)

Here, βI is the beta function for the coupling J I of the deforming operator OI ,
and to leading order this is proportional to the source itself βI = (d − ∆O)J I + · · · .
Here, δO is the scaling dimension of the deforming operator. Interpreting the Callan–
Symanzik equation this way is due to Osborn [19], and the approach is known as the local
renormalization group.

This is exactly what happens for the TT̄ deformation on the torus:

∫
d2x〈TT̄〉 = 4π2

Z

(
τ2

2
V
(∂2

τ1
+ ∂2

τ2
)Z− ∂2

V Z
)

. (31)

In other words, the integrated trace of the energy momentum tensor captures the
system’s response to changes of scale, and the above equation shows what happens to a
conformal field theory when it is deformed by the TT̄ operator.

Furthermore, by multiplying Z by a phase, we can define:

ψ(V, τ1, τ2) = e
− V

8π2µ Z(V, τ1, τ2) (32)
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which satisfies the equation

τ2
2 (∂

2
τ1
+ ∂2

τ2
)ψ(V, τ1, τ2)−V2∂2

Vψ(V, τ1, τ2) +
V2

64π4µ2 ψ(V, τ1, τ2) = 0. (33)

The above change of variables was first worked out in [20]. The expression (33) is the
quantization of the global constraint equation of shape dynamics in 2 + 1 dimensions. I
will elaborate on this point in the following section.

2. Shape Dynamics in 2 + 1 Dimensions

In this section, I will present the theory of shape dynamics in 2 + 1 dimensions
following [21]. Specifically, I will focus on the case of Euclidean signature, and take the
two geometries to have the topology of the sphere. The phase space is spanned by two sets
of conjugate variables, the first pair is the conformal metric

ḡµν =

 1
τ2

τ1
τ2

τ1
τ2

τ2
1 +τ2

2
τ2

, (34)

and its conjugate momentum:

σµν =

√
ḡ

2V

(
(τ2

1 − τ2
2 )pτ2 − 2τ1τ2 pτ1 pτ1 τ2 − pτ2 τ1

pτ1 τ2 − pτ2 τ1 pτ2 .

)
(35)

Here, the pτi are conjugate to the real and imaginary parts of the torus modulus τi.
The second pair of conjugate variables are the volume V and the York time variable

T = trK, where K is the extrinsic curvature.
It helps to introduce the momentum πµν conjugate to the full metric gµν = e2φ ḡµν:

πµν = e−2φ

(
σµν +

1
2

trπḡµν +
√

ḡ
(
∇̄µYν + ∇̄νYµ − ḡµν∇̄γYγ

))
(36)

The reason for doing introducing this quantity is to be able to express the following
constraint:

trπ(x)−√g(x)
∫

d2x trπ

V
= 0. (37)

This constraint encodes the invariance of the theory under Weyl transformations
that preserve the total volume of the torus T2. Imposing this constraint is equivalent to
imposing the constant mean curvature condition

trπ
√

g
= trK = T, ∂µT = 0. (38)

Additionally, the invariance of the theory under diffeomoprhisms of the torus is
captured by the momentum constraint:

Hµ = ∇µπ
µ
ν = 0 (39)

The dynamics of the theory are dictated by the following totally constrained Hamiltonian:

Htot = NHSD + C(ρ) + Hi(ξ
i), (40)

HSD =
τ2

2
2V

(
p2

τ1
+ p2

τ2

)
+

V
2

(
T2 − 4Λ

)
, (41)

Hµ(ξ
µ) =

∫
d2xξν∇µπ

µ
ν , (42)

C(ρ) =
∫

d2xρ(trπ − T
√

g) = 0. (43)
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The first constraint generates global radial reparameterizations, the second generates
diffeomoprhisms along the torus and the third, as discussed already, expresses the volume
preserving conformal invariance of the theory.

2.1. Quantization

Notice that the phase space is really just spanned by the constant variables (τi, pτi ; V, T).
The statement that the reduced phase space involves only V, i.e., just the zero mode of the
conformal factor φ(x), we have met the requirement of the constraint encoding volume
preserving conformal invariance.

The quantization of the theory is straightforward to perform, seeing as how the
reduced phase space is finite dimensional. We will focus on the polarization where the
wavefunction depends on (V, τi), on which the momenta act according to:

T̂ψ(V, τ1, τ2) = −∂Vψ(V, τ1, τ2), (44)

p̂τi ψ(V, τ1, τ2) = −∂τi ψ(V, τ1, τ2). (45)

The lack of is in the above expressions reflect the fact that we are doing radial quanti-
zation of the Euclidean theory.

The quantization of the reparameterization constraint is given by:(
τ2

2 (∂
2
τ1
+ ∂2

τ2
)−V2

(
∂2

V − 4Λ
))

ψ(V, τ1, τ2). (46)

Notice that this matches (33) if we identify Λ = 1
256π2µ2 . In addition, note that the

ordering of the derivative operators in the above constraint is fixed by picking the ordering
that recovers the TT̄ flow equation when we make a change of variables from V back to λ.
The flow equation’s form is entirely fixed by the requirement that the energy levels in the
partition sum should satisfy the Burgers’ equation whose form in turn follows from the
definition of the TT̄ operator on the plane, which is unambiguous.

2.2. Constraints and Ward Identities

We see that the flow equation of the torus partition function maps to the global
reparameterization constraint on the shape dynamics side. We would also like to get a
sense for how the other constraints are represented on the quantum field theory side. The
short answer is that they are all manifestations of Ward Identities.

Let us take the diffeomorphism constraint, which when written locally in the quantum

theory and in terms of Z = e
V

8πµ ψ takes the form:

∇µ
δZ

δgµν = 0 = 〈∇µTµν〉Z = 0. (47)

This is nothing but the covariant conservation of the stress tensor on the background
specified by the metric gµν. In the case of interest, this statement reduces to the conservation
of energy and momentum, i.e.,

∂xoEn = 0 = ∂xo Jn. (48)

The constraint C(ρ) that encodes volume preserving conformal invariance, however,
is harder to interpret. In some sense, it is similar to the trace Ward identity one would have
in a conformal field theory. Namely, on flat space,

δ log ZCFT
δφ(x)

∝ 〈Tµ
µ (x)〉CFT = 0. (49)
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However, in our case, we have all but the zero mode part of this condition holding. In
other words, we have

〈Tµ
µ (x)〉 =

√
g(x)
V

∫
d2y
√

g〈Tµ
µ (y)〉. (50)

This is a slightly peculiar Ward identity. In correlation functions between the trace
of Tµν and other operators, it basically tells us that we should replace every instance of
Tµ

µ with its zero mode part, or in momentum space, it is telling us that the only kinds
of correlations functions of the trace of the stress tensor that are allowed are the zero
momentum ones. Given that the other components of the stress tensor are also spatially
constant (i.e., the energy, pressure, and momentum), we see that in fact the only allowable
correlation functions of any stress tensor components in this theory when taken on T2 are
the ones at zero momentum. This fact is crucial for the solvability of the deformed theory
as we saw in the previous section. In the following section, we see why this Ward identity
is also what distinguishes quantum shape dynamics and the Dirac quantization of general
relativity in the CMC gauge.

3. Discussion: Shape Dynamics vs. General Relativity in CMC Gauge

Thus far, we have discussed the transition from the classical theory to the quantum
theory in terms of the quantization of shape dynamics. We could alternatively interpret
the system evolving on the (V, τi; T, pτi ) phase space as the reduced phase space one lands
on after fixing CMC gauge in General Relativity and partially solving the constraints. The
point made in this section was emphasized previously in Section 4.1 of [21].

However, when we discuss quantization, we see the following difference: the Dirac
quantization of shape dynamics directly leads to the wavefunction ψ(V, τi) satisfying
Equation (46). As discussed at the end of the last section, this is because of the volume
preserving conformal constraint, which I will rewrite as:(

δ

δφ(x)
−
√

g
V

∫
d2y

δ

δφ(y)

)
ψ = 0. (51)

This condition implies that the wavefunction ψ depends on φ through only its zero
mode V, which then immediately simplifies the rest of the analysis, and to re-iterate the
point made several times in this article, renders the TT̄ deformation solvable.

However, in general relativity, the condition C(ρ) = 0 is not a constraint, but a gauge
fixing condition. This in turn means that we ought not to impose it as (51), which means
that the wavefunction depends a priori on φ(x), and not just its zero mode V. In what
follows, I follow the treatment of Dirac quantization presented in [22]. In particular, this
implies that, when we decompose the momentum conjugate to gµν,

πµν = e−2φ

(
σµν +

1
2

trπḡµν +
√

ḡ
(
∇̄µYν + ∇̄νYµ − ḡµν∇̄γYγ

))
. (52)

The vector field Yµ does not decouple and acts on the wave-function as:

Ȳµψ = −1
4

∆̄−1
(

e2φ∇̄µ

(
e−2φ δ

δφ

))
ψ = 0. (53)

Plugging this back into the Wheeler–de Witt equation leads to non local terms, making
it intractable to solve. Thus, the Dirac quantization of GR in CMC gauge does not lead
to a quantum gravitational system that can be mapped to the TT̄ deformation of a CFT,
whereas the Dirac quantization of shape dynamics does.

Furthermore, it was noted in [21] that any solution ψ of the quantum shape dynamics
constraint equations satisfies the following property:

−V∂Vψ±(V, τi) = ±2
√

ΛVψ±(V, τi), as V → ∞. (54)
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This is a sheer reflection of the fact that, as V → ∞, the deformation parameter λ→ 0
and

Z(λ = 0, τi) = ZCFT(τi). (55)

Since
Z = e±2

√
ΛVψ,

the above condition implies that, as λ→ 0, the only dependence of ψ(V, τi) on the volume
is through the phase exp±2

√
ΛV and thus follows the scaling property (54). The sign

in front of the exponent comes from noting that
√

Λ ∝ 1
µ and µ can either be positive or

negative. Demanding that V be positive implies that we redefine µ so that it is always
positive as well and change the overall sign in front of wherever it appears accordingly.

Thus, we conclude that (54) anticipated that there is a connection between the solution
to the quantum SD constraint equations at large volume and the partition function of
a CFT.

4. Speculation

We saw how quantum shape dynamics in 2 + 1 dimensions is related by a change of
variables to the TT̄ deformation of a CFT on a torus. In order to notice this equivalence, we
needed to know beforehand what the flow equation was for the torus partition function of
a TT̄ deformed CFT. We saw that, to derive this equation, we needed to know the Burgers’
equation that implicitly required the factorization property of the expectation value of TT̄
on the cylinder. On the side, the flow equation was mapped to the residual radial constraint
equation, which in principle we can derive on any Riemann surface (provided we know
how to solve the Lichnerowicz York equation). However, in the case of Riemann surfaces
of higher genus, we cannot utilize the factorization property of the TT̄ operator on the
cylinder in any useful way to derive a flow equation. As such, we do not know what the
flow equation should be for a TT̄ deformed CFT on a higher genus Riemann surface at all.
This is where Shape Dynamics can help.

If we take to heart the equivalence between TT̄ deformed CFTs and Shape dynamics,
then we conjecture that the following equivalence holds on any Riemann surface:

ψ(V, mi) = exp− V
8π2µ

Z(V, mi), (56)

where mi denotes the moduli of the higher genus Riemann surface; then, we know that the
shape dynamics Hamiltonian on the Riemann surface is given by [21]:

HSD = −V
2

(
T2 − 4Λ

)
− R̄ +

1
V2

∫
d2xe−2µ ḡµρ ḡνγσµν(mi)σ

ργ(mi). (57)

Here, the curvature is given by

R̄ = −8π(g− 1), (58)

and λ solves a modified version of the Lichnerowicz equation. Note that this is still a
somewhat implicit definition of the Hamiltonian, and therefore we do not expect to be able
to solve the constraint equations as we can in the case of the torus.

Now, if we proceed to quantize this Hamiltonian, we obtain the following equation
for ψ(V, mi):

−
(

V
2

∂2
V − 4Λ

)
ψ(V, mi) + 8π(g− 1)ψ(V, mi) +

1
V2

∫
d2x e−2λ ḡµρ ḡνρ

δ2ψ(V, mi)

δḡµν(mi)δḡρσ(mi)
= 0. (59)

Then, the equation for the trace of the energy momentum tensor on the TT̄ side of the
duality is given by:

V∂V Z(V, mi) = 4π2µ

(
− ∂2

V Z +
∫

d2xe−2λ ḡµρ ḡνσ
δ2Z

δḡµν(mi)δḡρσ(mi)

)
. (60)
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Despite the fact that this equation also requires us to solve the Lichnerowicz equation,
and as such, it is not solvable in the same way that the torus partition function is, but what
we have now that we did not before is the definition of the expectation value of the TT̄
operator on a higher genus Riemann surface:

〈TT̄〉 = 4π2µ

Z

(
−∂2

V Z +
∫

d2x e−2λ ḡµρ ḡνσ
δ2Z

δḡµν(mi)δḡρσ(mi)

)
. (61)

What we can say is that this operator also depends only on the zero momentum part
of the stress tensor two point function. Note that this method of defining the expectation
value of TT̄ on curved spaces is different from alternatives in the literature like in [23,24].
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