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Abstract
The semi-classical regime of static Dirac matter is derived from the Dirac
equation in curved space-time. The leading- and next-to-leading-order contri-
butions to the semi-classical approximation are evaluated. While the leading-
order yields classical equations of motion with relativistic Lorentz and a
geometric forces related to space curvature, the next-to-leading-order gives
a transport-like equation with source terms. We apply the proposed strategy to
the simulation of electron propagation on strained graphene surfaces, as well
as to the dynamics of edge states in photonic graphene.
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1. Introduction

The Dirac equation is at the core of our understanding of matter, being the generalization of the
Schrödinger equation for relativistic spin-1/2 particles. Originally, this equation was applied
to the theoretical description of elementary particles like electrons or quarks, for high energy
physics applications where relativistic effects are important. However, with the advent of some
new materials and their effective low-energy description, the Dirac equation has an even more
widespread field of application which also includes condensed matter physics. Dirac matter
[1, 2] encompasses all quantum systems theoretically described by the Dirac equation such
as relativistic fermions, but now includes many quantum materials such as graphene [3–5],
and more generally topological insulators [6–8], Dirac semimetals [9], some high-temperature
supraconductors [10] and liquid Helium-3 [11]. It also includes exotic structures such as arti-
ficial graphene [12], photonic graphene analogs [13–16], photonic topological insulators [17]
and phononic metamaterials [18]. Many of these materials are in the class of two-dimensional
materials, where the underlying symmetry of the cristal lattice makes for a relativistic-like
description of quasi-particles in the low-energy limit.

Understanding the properties of such systems is a theoretical problem requiring explicit
solutions to the Dirac equation. Numerical and analytical methods have been developed to
achieve such a feat [19–28], but it still remains a challenging task. Assuming the external
potentials are smooth enough, an interesting alternative is to use the semi-classical approx-
imation, in which the problem reduces to the solution of a classical-like system of equations
[29]. This approach has been implemented on the Dirac equation to understand and describe
the relativistic quantum dynamics of fermions under various external fields [29–34].Motivated
by applications such as the Dirac fermion microscope [35], the semi-classical technique has
also been applied to charge carriers in graphene [36–38] for analyzing Veselago lenses [39].
This gave rise to the field of ‘electron optics’ in graphene, where ray-optics can be used to
understand the behavior of electrons in Dirac materials.

In comparison, less work has been performed on the semi-classical limit of the curved
space Dirac equation [40–44], possibly because the coupling to a gravitational field increases
technical complications. Nevertheless, the curved space Dirac equation is also relevant for
the description of systems in condensed matter, such as strained graphene [45–51] or more
generally, for straintonics in Dirac materials. In this approach, electron control can be achieved
by mechanical deformations, permitting the focusing [27, 52] or confinement [28] of charge
carriers.

In this article, the semi-classical limit of static Dirac matter is investigated in the general
case where the quantum system is described by the curved space Dirac equation with a space-
dependent mass gap. Thus, it provides a general framework to investigate the behavior of
fermions in numerous physical systems.

Interestingly, the general form of the Dirac operator studied in this paper is also relevant for
the propagation of edge states in photonic graphene [53]. Edge states are particular solutions to
the Maxwell equations in photonic graphene (an optical analogue to graphene) which propag-
ate along ‘walls/interface’ at some surface boundary. In this setting, the Maxwell equations
can actually be rewritten in the form of a Schrödinger equation with periodic coefficients,
fromwhich it is possible to derive a Dirac equation with space-dependent mass (wall-function)
describing edge states dynamics. The semi-classical limit of the Dirac equation yields a simple
theoretical framework to describe this physical systemwhile keeping the main important prop-
erties of edge state dynamics.
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1.1. Theoretical model of Dirac matter: curved-space Dirac equation

Diracmatter shall be defined here as any quantum systemswhose fermionic degrees of freedom
are characterized by the Dirac equation in curved-space. We are assuming the mostly-plus flat
space metric: ηAB = diag[−1,1,1,1].

In covariant form, the curved-space Dirac equation is given by [47, 54, 55]

[ℏγ̄µ (x)Dµ +mD (x)vD]ψ (x) = 0, (1)

whereψ(x) is the two-component (in 1-D and 2D) or four-component (in 3D) spinor wavefunc-
tion, mD is the (space-dependent) mass of the fermion state, vD is the Dirac velocity, x= (t,x)
is a set of curvilinear coordinates (bold symbols are spatial vectors) and γ̄(x) = (γ̄0(x), γ̄i(x))
are the generalized gamma matrices. A curved-space manifold is associated to such systems
via the generalized gamma matrices isomorphic to the local Clifford algebra such that

{γ̄µ (x) , γ̄ν (x)}= 2gµν (x) , (2)

which can be written in terms of the vielbein as γ̄µ(x) = eµA(x)γ
A, where γA are the standard

flat-space Dirac matrices (uppercase indices are flat space Lorentz indices). As usual, gµν(x)
is the metric of the space-time manifold. Finally, the expression

Dµ = ∂µ +Ωµ − i
q
vDℏ

Aµ (x)

stands for the curved-space covariant derivative where Aµ represents the coupling to a vector
field and

Ωµ (x) =
1
4
ωABµ (x)γAγB, (3)

where the spin connection is

ωABµ (x) = eAν (x)g
νλ (x)

[
∂µe

B
λ (x)−Γσ

µλ (x)e
B
σ (x)

]
. (4)

Here, the Christoffel symbols are given as usual by

Γν
µσ (x) =

gνρ (x)
2

[∂σgρµ (x)+ ∂µgρσ (x)− ∂ρgµσ (x)] . (5)

Specializing this formulation to static manifolds, the most general metric yields a line ele-
ment of the form

ds2 =−
(
dx0

)2
+ dx · dx, (6)

=−v2Ddt2 + gij (x)dxidxj, (7)

where gij are the components of the ‘spatial’ metric tensor. It is possible to write the Dirac
equation (1) in a Schrödinger-like form in Cartesian coordinates for a general geometry char-
acterized by the metric (6). The Dirac equation reads:[

iℏγ̄0D0 + iℏγ̄iDi+ imDvD
]
ψ = 0. (8)
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Using γ̄0 = γ0 in the static case, and the fact that γ0γ0 =−I2 and γ0 =−iβ, we get[
−iℏ

(
∂0 − i

q
ℏvD

A0

)
+ iℏγ0γ̄iDi+ imDvDγ

0

]
ψ = 0. (9)

As

d
dx0

=
dt
dx0

d
dt

=
1
vD

d
dt
,

and A0 = g00A0 =−V, we get[
−i

ℏ
vD

(
∂t+ i

q
ℏ
V
)
+ iℏγ0γ̄iDi+ imDvDγ

0

]
ψ = 0. (10)

Finally, using γ0 =−iβ and γ0γ̄i =−ᾱi, the Dirac equation becomes

iℏ∂tψ (t,x) =
[
−iℏvDᾱi (x)Di+mD (x)v2Dβ+ qV(x)

]
ψ (t,x) , (11)

where V=−A0 is the scalar potential and ᾱi(x) = eia(x)γ
0γa are the generalized Dirac

matrices. A standard representation of Diracmatrices is chosen, withαa = σa (for a= 1,2) and
β = σ3 (σi are Pauli matrices) in 1D or 2D, and αa = σx⊗σa (for a= 1,2,3) and β = σ3 ⊗ I2
in 3D. The gauge field Ai can be an external electromagnetic field or can emerge from the low
energy limit of a more complete model (for example, in strained graphene, this is obtained
from the low-energy limit of the tight-binding model and the gauge field is interpreted as a
pseudo-magnetic field [50]).

1.2. Organization of the paper

The semi-classical limit of the Dirac equation in curved-space that models Dirac matter is
derived in section 2. The methodology developed in this paper is applied to the propagation of
wavepackets on strained graphene surfaces in section 3, and then to the evolution of edge states
in photonic graphene in section 4. Some mathematical properties and numerical experiments
will also be proposed. Finally, we conclude in section 5.

2. Semi-classical limit

To simplify the notation, we now introduce the relevant functional spaces, assuming that d is
the number of spatial dimensions. We recall that the Sobolev space H1(Ω;Csd) represents the
Hilbert space of L2(Ω;Csd)-functions, with derivatives which also belong to L2(Ω;Csd). The
Hilbert space of H1-functions which are null at the boundary of Ω, is denoted by H1

0(Ω;Csd).
We set X= H1

0(Ω;Csd), Y0 = C1(Ω;R), Y1 = C1(Ω;Rsd), Y2 = C1(Ω;Csd×sd), where Ω⊂ Rd

is the (semi-)bounded domain and where sd = 2 for d= 1,2, or sd = 4 for d= 3. IfΩ= Rd, we
set X= H1(R2;Csd), Y0 = C1

b(Rd;R), Y1 = C1
b(Rd;Rsd), Y2 = C1

b(Rd;Csd×sd), where C1
b is the

set of continuously differential functions with compact support (that is with non-zero values
only within a bounded region). We denote (·, ·)X the inner product on X, such that for any u
and v in X

(u,v)X =
ˆ
Ω

u(x)v∗ (x)dx+
d∑

i=1

ˆ
Ω

∂iu(x)∂iv∗ (x)dx .
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Potential V will be assumed to belong to Y or Z0 = H1(Ω;Rsd).
The starting point of the derivation is the Dirac equation in Schrödinger-like form given

by equation (11). Then, this equation is adimensionalized by introducing scaled coordinates
t ′ = t/ts and x ′ = x/xs, where ts,xs are arbitrary time and space scales. The potentials are also
scaled as Ai(x) = AsÃi(x ′) and V(x) = AsṼ(x ′), where As is the unit potential scale. Then, the
Dirac equation becomes

iε∂tψ (t,x) =
{
−iεᾱi (x) [∂i+Ωi (x)]− ᾱi (x) Ãi (x)

+m̃D (x)β+ Ṽ(x)I2
}
ψ (t,x) , (12)

where we set the time scale to ts = xs/vD and the adimensional mass to m̃D(x) = v2DmD(x)/qAs.
The semi-classical parameter is then defined as

ε=
ℏvD
xsqAs

. (13)

The semi-classical limit hence corresponds to ε→ 0. In the following, an asymptotic expansion
in this regime will be derived. For this purpose, we insert the ansatz

ψ (t,x) = exp

(
i
S(t,x)
ε

) ∞∑
n=0

( ε
i

)n
un (t,x) , (14)

into equation (12), where the amplitudes un are spinors and S ∈ R is the phase [29]. Then, we
define the following operators:

G (t,x) = ∂tS(t,x)+ ᾱi (x)πi+βm̃D (x)+ Ṽ(x) , (15)

H (x) = ∂t+ ᾱi (x) [∂i+Ωi (x)] . (16)

Order by order, the semi-classical expansion is then written as (for n⩾ 1)

Gu0 = 0, (17)

Gun =−Hun−1, (18)

where the kinematic momentum is defined as πi := ∂iS− Ãi.
In the following, we will denote ᾱ= [ᾱk]Tk=1,··· ,d and X ·Y=

∑d
i,j=1 gijX

iYj for arbitrary X

and Y. We denote∇xᾱ= {∂iᾱj}ij, andΓ= {Γk}k where the Christophel symbols Γk = {Γjki}ij
are defined in (5).

The semi-classical limit is summarized in the following theorem.

Theorem 2.1. Consider a smooth domain Ω (with C1-boundary if Ω bounded), and we denote
by g the corresponding smooth metric tensor. For ε> 0, we consider the adimensionalized
Dirac equation on Ω× [0,T]

iε∂tψ (t,x) =
{
−iεᾱ(x) · [∇+Ω(x)]− ᾱ(x) · Ã(x)+ m̃D (x)β+ Ṽ(x)I2

}
ψ (t,x) , (19)

with i) ψ0 ∈ X, ii) m̃D ∈ C1((0,T];Y0), Ã ∈ C1((0,T];Y1), ᾱ ∈ C1((0,T];Y2 ⊗Y2) and Ṽ ∈ Z.
Considering the solution in the form

ψ (t,x) = exp

(
i
S(t,x)
ε

) ∞∑
n=0

( ε
i

)n
un (t,x) ,
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with ε→ 0, we deduce from the leading-order (LO) and next-to-leading-order (NLO) asymp-
totic expansion, the following equations:

• Equation of motion.

dx
dt

=±π (t,x)
λ(t,x)

,

dπ
dt

= Fmass +Fgeom +Fmass ,

where π =∇xS−A, λ(t,x) =
√
(g−1(x)π)π+ m̃2

D(x) and

Fgeom = πI2 (Γẋ) ,
Florentz = E(x)+ ẋ×B(x) ,

Fmass =∓∇xm̃2
D (x)

λ(t,x)
,

where E=−∇xV− ∂tA,B=∇x×A are respectively the electric and magnetic fields asso-
ciated to A.

• Eikonal equation.

∂tS
± (t,x)±λ(t,x)+ Ṽ(x) = 0.

• Transport equations. The set of uncoupled transport equations is given by[
∂t+ω±∇x+ ᾱ ·Ω− 1

λ
ω±∇xλ±

1
2λ

((ᾱ ·∇xm̃D)β+ω±∇xm̃Dβ)+

± 1
2λ

(ᾱ ·∇x)(ᾱ ·π)± 1
2λ

ω±∇xπ
Tω± ± 1

2λ

(
∇xᾱ

TMπ
)
· ω̄±

]
u0,± = 0 ,

where ω± =±π/λ and M= (I2,I2) ∈ R4×2.

Proof. The derivation of the eikonal and motion equations is obtained from the zeroth order
expansion in ε, while the transport equation is derived from the first order expansion.

LO in ε. At LO in ε, a dynamical equation for S can be obtained by noticing that equation (17)
is a homogeneous system of linear equations (G is a matrix in spinor space) having a non-
trivial solution only if the determinant in spinor space is zero [56]. As (∂tS+ m̃D+ Ṽ)I2 and
σaπ̄a commute, detG is given by

detG = det

[(
∂tS+ m̃D+ Ṽ

)
I2 σaπ̄a

σaπ̄a
(
∂tS− m̃D+ Ṽ

)
I2

]
= det

[(
∂tS+ m̃D+ Ṽ

)(
∂tS− m̃D+ Ṽ

)
I2 −σaσbπ̄aπ̄b

]
.

Using the fact that σaσb = δab+ iεabc σc, we get

σaσbπ̄aπ̄b =
(
δab+ iεabc σc

)
π̄aπ̄b (20)

= ηabπ̄aπ̄b = gijπiπj. (21)
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Thus we get detG = det[((∂tS+ Ṽ)2)I2 −m2
D− gijπiπj], then

detG = det
[((

∂tS+ Ṽ
)2)I2 −m2

D− gijπiπj
]2
. (22)

This yields two 2-fold degenerate solutions denoted by the index ±:

∂tS± + h± = 0 , (23)

where we defined the classical Hamiltonian

h± =±λ+ Ṽ ,

λ=−
√
gijπiπj+ m̃2

D .

The superscript ± is the band index that stands for positive or negative energy bands. The
classical Hamiltonian is the one for a classical relativistic particle in curved space immersed
in an electromagnetic field.

Particle-like trajectories can be obtained from the eikonal equation via the method of char-
acteristics. These equations are important physically as trajectories are orthogonal to wave-
fronts of the wavefunction [57] and thus, are directly related to wave propagation. Letting
pk = ∂kS, the equations of motion are written as

dxk

dt
=
∂h±
∂pk

,
dpk
dt

=−∂h±
∂xk

. (24)

Explicitly, we have

∂h±
∂pk

=± ∂

∂pk

√
gij

(
pi− Ãi

)(
pj− Ãj

)
+ m̃2

D (25)

=± 1
2λ

∂

∂pk

[
gijpipj− gijpjÃi− gijpiÃj

]
(26)

=± 1
2λ

[
gijδki pj+ gijpiδ

k
j − gijδkj Ãi− gijδki Ãj

]
(27)

=± 1
2λ

[
gkjpj+ gikpi− gikÃi− gkjÃj

]
(28)

=±π
k

λ
, (29)

where 2πk = gkjπj+ gikπi. Then we have

∂h±
∂xk

=± ∂

∂xk

√
gijπiπj+ m̃2

D (30)

=± 1
2λ

∂

∂xk
[
gijπiπj+ m̃2

D

]
(31)

=± 1
2λ

[(
∂kg

ij
)
πiπj+ gij (∂kπi)πj+ gijπi (∂kπj)+ 2m̃D (∂km̃D)

]
(32)

=± 1
2λ

[
−
(
Γiklg

lj+Γjklg
il
)
πiπj− gij

(
∂kÃi

)
πj

−gijπi
(
∂kÃj

)
+ 2m̃D (∂km̃D)

]
(33)
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=± 1
λ

[
−Γiklπiπ

l−
(
∂kÃi

)
πi+ m̃D (∂km̃D)

]
(34)

=−Γiklπi
dxl

dt
−
(
∂kÃi

) dxi
dt

± 1
λ
m̃D (∂km̃D) , (35)

where we used the property of the metric ∂kgij =−Γiklg
lj−Γjklg

il. The equations of motion are
given by

dxk

dt
=±π

k

λ
, (36)

dpk
dt

= Γiklπi
dxl

dt
+
(
∂kÃi

) dxi
dt

∓ 1
λ
m̃D (∂km̃D) . (37)

As d/dt is a total derivative, we get

dπk
dt

=
dpk
dt

− dÃk
dt

(38)

=
dpk
dt

− dÃk
dxi

dxi

dt
(39)

= Γiklπi
dxl

dt
+
(
∂kÃi− ∂iÃk

) dxi
dt

∓ 1
λ
m̃D (∂km̃D) (40)

= Γiklπi
dxl

dt
+Fki

dxi

dt
∓ 1
λ
m̃D (∂km̃D) . (41)

Thus, we get the Lorentz equation in curved space:

dπk
dt

= Fgeom
k +Florentz

k +Fmass
k . (42)

Equation (42) corresponds to the relativistic Lorentz force equation for a particle immersed
in an electromagnetic field with added forces: the geometric gravitational-like force due to
geometry of the curved-space and an inertial force related to the space variation of the particle
mass:

Fgeom
k = Γikjπiẋ

j, (43)

Florentz
k = Fkν ẋ

ν , (44)

Fmass
k =∓ m̃D∂km̃D

λ
, (45)

where Fµν = ∂µÃν − ∂ν Ãµ is the electromagnetic tensor. Equation (42) implies that the LO
semi-classical approximation yields a theoretical description in terms of classical relativistic
trajectories characterized by the Lorentz force equation in curved spacetime (42) with addi-
tional force terms and a space-dependent particle velocity. These features of the classical-like
trajectories are obviously not present for relativistic particles in flat space and thus, are dir-
ect consequences of the space curvature. When the space is flat, the general metric becomes
Minkowskian and one recovers equations of motion given in [36, 37].

NLO in ε. At NLO in ε, a dynamical equation can be obtained for the spinor u0.
Denoting G = G(x), we consider

Gu1± =−Hu0±,

8
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where G andH are defined in (15) and (16), respectively. Let us notice that the eigenvalues of
the matrix G(x) for x= (t,x) ∈ [0,T]×Ω are given by

µ± (x) = ∂tS(x)+ Ṽ(x)∓
√
m̃2
D (x)+ gij (x)πi (x)πj (x) .

For any fixed t ∈ [0,T], we assume that u0(t, ·) andHu0(t, ·) ∈ X and x 7→ G(t,x) belongs to Y.
In order to derive the transport equation, within the semi-classical limit, the starting point is
the following lemma. By abuse of notation we denote hereafter G = G(t, ·).

Lemma 2.1. For any fixed t ∈ [0,T], G : X→ X is a Fredholm operator, and

(Hu0±,u0±)X = 0 .

Proof. Let us sketch the proof which is relatively standard. In the following, we assume that
t ∈ [0,T] is fixed.

• Π±u ∈ Ker(G) for u ∈ Ker(G). This is a consequence of the commutation of Π± and G.
• Operator G is continuous. As G(t, ·) ∈ Y, we deduce from Cauchy-Schwarz the existence of
c= c(t)> 0 such that

‖Gu‖X ⩽ c‖u‖X .

• G is a compact operator. For any B⊂ X bounded set of X, G(B) is relatively compact that is
G(B) is compact. Equicontinuity and pointwise boundness of the family of operators {Gu :
u ∈ B} come from the global Lipschitz continuity of G(t, ·) ∈ Y.

• Ker(G) is finite dimensional. We consider a sequence {un}n ∈ Ker(G)∩BX such that
‖un‖X ⩽ 1. As X is reflexive, the ball is weakly relatively compact, and there exists a sub-
sequence {uϕ(n)}n weakly convergent to u ∈ X. As G is compact Guϕ(n) is strongly conver-
gent to Gu. As Guϕ(n) = 0, u ∈ Ker(G).

• Im(G⊥) is finite dimensional. For any u ∈ Im(G⊥), (u,Gv)X = 0, for any v ∈ X. As G is
self-adjoint (Gu,v) = 0 for any v ∈ X, so that Gu= 0. Hence Im(G⊥)⊂ Ker(G) is finite
dimensional.

This concludes the proof.

Let us notice that for u0 ∈ X, and decomposing u0 =Π+u0 +Π−u0,

(Hu0,u0)X = (HΠ±u0,Π±u0)X+(HΠ±u0,Π∓u0)X .

The next step consists in deriving the solvability condition. For this purpose, we introduce
the following operators:

D0 (x,π) = ᾱi (x)πi+βm̃D (x) , (46)

D (x,π) =D0 (x,π)+ Ṽ(x) . (47)

The projection operator Π±, such that u0± =Π±u0 is hence defined as follows:

Π± :=
1
2

[
1± D0

λ

]
. (48)

9
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The properties listed below and proven in appendix, will allow us to derive a transport equation
for u0:

Π2
± =Π±, (49)

Π±Π∓ = 0, (50)

D = h+Π+ + h−Π−, (51)

Π±D = h±Π±, (52)

Π±D0 =±λΠ±, (53)

Π±ᾱ
i (x)Π± = ωi±Π±, (54)

ᾱi (x)Π± =Π∓ᾱ
i (x)+ωi±, (55)

where ωi± =±πi/λ. In addition, it is Hermitian (Π†
± =Π±). The solvability condition then

becomes

u†0±Π±
[
∂t+ ᾱi (∂i+Ωi)

](
Π±u

±
0

)
= 0, (56)

where pi = ∂iS±(t,x) and thus πi = ∂iS±(t,x)− Ãi. This is the basis to derive transport-like
equations.

The first term in (56) is given by

T1 := u†0,±Π±
d
dt

(Π±u0,±) , (57)

= u†0,±Π±

(
d
dt
Π±

)
u0,± + u†0,±

(
d
dt
u0,±

)
. (58)

The time-derivative is a total derivative. Since Π± depends explicitly on the momentum and
position (not on time in our case). Denoting

Fi =
dπi
dt
,

we have

dΠ±

dt
=
∂Π±

∂πi

dπi
dt

+
dΠ±

dxi
dxi

dt
(59)

=
∂Π±

∂πi
Fi+

dΠ±

dxi
ωi±. (60)

On the right-hand-side, the derivatives can be evaluated as

∂Π±

∂πi
=±1

2
∂

∂πi

[
D0

λ

]
, (61)

=± 1
2λ

∂D0

∂πi
± D0

2
∂

∂πi

[
1
λ

]
, (62)

=± ᾱi

2λ
∓ D0

2λ2
∂λ

∂πi
, (63)

=± ᾱi

2λ
∓ D0

4λ3
∂

∂πi

(
gjkπjπk

)
, (64)

10
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=± ᾱi

2λ
∓ D0

2λ3
πi , (65)

=± ᾱi

2λ
− D0

2λ2
ωi± , (66)

and

dΠ±

dxi
=±1

2
d
dxi

[
D0

λ

]
, (67)

=± 1
2λ

dD0

dxi
± D0

2
d
dxi

[
1
λ

]
, (68)

=± 1
2λ

d
dxi

[
ᾱjπj+βm̃D

]
∓ D0

2λ2
dλ
dxi

, (69)

=± 1
2λ

[(
∂iᾱ

j
)
πj+ ᾱj (∂iπj)+β (∂im̃D)

]
∓ D0

2λ2
dλ
dxi

. (70)

Using Π±D0 =±λΠ± (from property 3) and property 4, the first term of T1 becomes

T1,1 := u†0,±Π±

(
d
dt
Π±

)
u0,± , (71)

= u†0,±Π±

[
∂Π±

∂πi
Fi+

dΠ±

dxi
ωi±

]
u0,± , (72)

= u†0,±Π±

{[
± ᾱi

2λ
− D0

2λ2
ωi±

]
Fi ,

+

[
± 1
2λ

[(
∂iᾱ

j
)
πj+ ᾱj (∂iπj)+β (∂im̃D)

]
∓ D0

2λ2
dλ
dxi

]
ωi±

}
u0,± , (73)

=±u†0,±Π±
ωi±
2λ

[(
∂iᾱ

j
)
πj+ωj± (∂iπj)+β (∂im̃D)∓

dλ
dxi

]
u0,± . (74)

The second term in (56) is given by

T2 := u†0,±Π±ᾱ
i d
dxi

(Π±u0,±) , (75)

= u†0,±Π±ᾱ
i

[
dΠ±

dxi
u0,± +Π±∂iu0,±

]
. (76)

The first term of T2 can be written as

T2,1 := u†0,±Π±ᾱ
i dΠ±

dxi
Π±u0,± , (77)

= u†0,±Π±ᾱ
i

{
± 1
2λ

[(
∂iᾱ

j
)
πj+ ᾱj (∂iπj)+β (∂im̃D)

]
∓ D0

2λ2
dλ
dxi

}
Π±u0,± , (78)

=±u†0,±Π±
ᾱi

2λ

{(
∂iᾱ

j
)
πj+ ᾱj (∂iπj)+β (∂im̃D)∓

dλ
dxi

}
Π±u0,± , (79)

=±u†0,±Π±
1
2λ

{
ᾱi
(
∂iᾱ

j
)
πj+ ᾱiᾱj (∂iπj)+ ᾱiβ (∂im̃D)∓ωi±

dλ
dxi

}
Π±u0,± . (80)

11
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while the second term is

T2,2 := u†0,±Π±ᾱ
iΠ±∂iu0,± . (81)

The third term in (56) is given by

T3 := u†0,±Π±ᾱ
iΩiΠ±u0,± . (82)

From the above calculations for T1, T2 and T3, we deduce the transport equation:

u†0,±Π±
[
∂t+ωi±∂i

]
u0,± + u†0,±Π±

{
ᾱiΩi

}
u0,± ,

± u†0,±Π±
1
2λ

[
ᾱi
(
∂iᾱ

j
)
πj+ ᾱiᾱj (∂iπj)+ ᾱiβ (∂im̃D)∓ωi±

dλ
dxi

]
Π±u0,± ,

± u†0,±Π±
1
2λ

[
ωi±

(
∂iᾱ

j
)
πj+ωi±ω

j
± (∂iπj)+ωi±β (∂im̃D)∓ωi±

dλ
dxi

]
u0,± = 0 , (83)

or equivalently

u†0,±Π±
[
∂t+ωi±∂i

]
u0,± + u†0,±Π±

{
ᾱiΩi

}
u0,± ,

± u†0,±Π±
1
2λ

{(
ᾱi+ωi±

)[(
∂iᾱ

j
)
πj+β (∂im̃D)

]
+
(
ᾱiᾱj+ωi±ω

j
±

)
(∂iπj)∓ 2ωi±

dλ
dxi

}
Π±u0,± = 0 . (84)

To simplify this equation, we now evaluate the covariant derivative of ωi±, starting from

dωj±
dxi

=± d
dxi

(
πj

λ

)
, (85)

=± 1
λ
∂iπ

j∓ πj

λ2
dλ
dxi

, (86)

=± 1
λ
∂iπ

j−
ωj±
λ

dλ
dxi

, (87)

=± 1
λ
∂i
(
gjlπl

)
−
ωj±
λ

dλ
dxi

, (88)

=± 1
λ

[(
∂ig

jl
)
πl+ gjl (∂iπl)

]
−
ωj±
λ

dλ
dxi

, (89)

=± 1
λ

[
−
(
Γjikg

kl+Γlikg
jk
)
πl+ gjl (∂iπl)

]
−
ωj±
λ

dλ
dxi

, (90)

=± 1
λ

[
−Γjikπ

k−Γlikg
jkπl+ gjl (∂iπl)

]
−
ωj±
λ

dλ
dxi

, (91)

=−Γjikω
k
± ± 1

λ

[
−Γlikg

jkπl+ gjl (∂iπl)
]
−
ωj±
λ

dλ
dxi

. (92)

Thus, the covariant derivative is given by

∇iω
j
± := ∂iω

j
± +Γjikω

k
± , (93)

=± 1
λ

[
−Γlikg

jkπl+ gjl (∂iπl)
]
−
ωj±
λ

dλ
dxi

. (94)

12
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The transport equation becomes

u†0,±Π±
[
∂t+ωi±∂i

]
u0,± + u†0,±Π±

{
ᾱiΩi

}
u0,±

+ u†0,±Π±

{
± 1
2λ

(
ᾱi+ωi±

)[(
∂iᾱ

j
)
πj+β (∂im̃D)

]
± 1
2λ

(
ᾱiᾱj+ωi±ω

j
±

)
(∂iπj)−

ωi±
λ

dλ
dxi

}
Π±u0,± = 0 . (95)

Using the expression for the covariant derivative, we get

u†0,±Π±
[
∂t+ωi±∂i

]
u0,± + u†0,±Π±

{
ᾱiΩi

}
u0,±

+ u†0,±Π±

{
± 1
2λ

(
ᾱi+ωi±

)[(
∂iᾱ

j
)
πj+β (∂im̃D)

]
± 1
2λ

(
ᾱiᾱj+ωi±ω

j
± − 2gij

)
(∂iπj)+∇iω

i
± ± 1

λ
Γlikg

jkπl

}
Π±u0,± = 0 . (96)

This concludes the proof.

In flat space we recover the traditional result [56]:

Corollary 2.1. In flat-space and with constant mass and no external field, the transport
equation (95) degenerates into

u†0,±Π±
[
∂t+ωi±∂i

]
u0,± = 0 . (97)

3. Applications to strained graphene

In this section, we study some properties of the classical model used in the framework of
strained graphene. The dynamics of electron on graphene surfaces can be modeled by a mass-
less Dirac equation, derived from the low energy limit of tight-binding models (expansion of
the dispersion relation about Dirac points), see [5, 51]. The corresponding Dirac equation on
strained graphene surfaces typically reads as (12) where

• m̃D ≡ 0 (massless Dirac equation) and Ṽ≡ 0.
• In presence of in-plane deformation of a lattice of carbon atoms, the function Ãi refers to a
pseudomagnetic field (mimicking an external field), the function Ω̃ corresponds to the spin-
affine connection, and ᾱi is a space-dependent function.

It is also assumed that the graphene has a perfect crystal structure (no dislocations nor defects),
an infinite extent (no edge effects) and no interaction with external degrees of freedom like
phonons. We also neglect any carrier-carrier interactions via the Coulomb force. We again
refer to [5, 51] for details.

We will present some numerical experiments illustrating those properties, as well as some
comparisons with a standard tight-bindingmodel fromwhich the Dirac equation is derived.We
report the solutions to the corresponding equation in curved space. As we consider here, small
scale deformations the corresponding solutions in Cartesian coordinates are close. The latter
provides a more accurate description of the dynamics but with a much higher computational

13
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cost. From (36) and (42), the model is explicitly rewritten in the following form

dx
dt

=±vD
πx (t,x)
|π (x) |

, (98)

dy
dt

=±vD
πy (t,x)
|π (x) |

, (99)

dπx
dt

= Fgeom
x +Florentz

x , (100)

dπy
dt

= Fgeom
y +Florentz

y , (101)

where the force due to the geometrical deformation explicitly reads

Fgeom
x = Γxxx (x)πx (x)

dx
dt

+Γxxy (x)πx (x)
dy
dt

+Γyxx (x)πx (x)
dx
dt

+Γyxy (x)πx (x)
dy
dt
,

Fgeom
y = Γxyx (x)πx (x)

dx
dt

+Γxyy (x)πx (x)
dy
dt

+Γyyx (x)πx (x)
dx
dt

+Γyyy (x)πx (x)
dy
dt
.

(102)

In the following, we rewrite the classical model in term of displacement fields as proposed in
[51]. More specifically, we define the forces using dispacement fields in the z-direction (resp.
in the (x,y)-plane) defined by a smooth function h (resp. u(x,y)). Then the classical model can
be rewritten as

FLorentz
x =− β

2acc
(∂xεxx− ∂xεyy− 2∂yεxy) ẏ ,

FLorentz
x =

β

2acc
(∂yεxx− ∂yεyy− 2∂xεxy) ẋ ,

where acc the atom-atom distance in pristine graphene, β is the Grünensen parameter [51], and
where

εxx (x) = ∂xux (x)+
1
2
∂xh(x)

2
,

εxy (x) =
1
2
(∂yux (x)+ ∂xuy (x))+

1
2
∂xh(x)∂yh(x) ,

εyy (x) = ∂yuy (x)+
1
2
∂yh(x)

2
.

(103)

In the following, we consider some relatively general strained graphene configurations.

In- and Out-of-plane deformation. We are here interested in numerical experiments for in-
and out-of-plane deformations. More specifically, we assume that

ux (x,y) = 0 ,

uy (x,y) = a0y ,

h(x,y) = h0 exp
(
−Rx (x− xc)

2 −Ry (y− yc)
2
)
.

14
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Figure 1. 20 classical trajectories on strained graphene surface. (Left) a0 = 0. (Right)
a0 = 0.35.

with h0 = 0.85, xc =−6, yc = 0, vD = 1 and Rx = 2/25, Ry = 4/25. We assume that the final
time is T = 12.5 and the physical domain is [−10,10]× [−5,5] in nm. The physical parameters
are β= 3.37,acc = 14.2 Angstrom. We consider 20 electron trajectories with initial positions
between x0 ∈ [−3/2,3/2] and y0 = 0, and the initial velocity set to (5, 0). We report the tra-
jectories in figure 1 with a0 = 0 (Left) and with a0 = 0.35 (Right). A focusing effect due to the
deformation of the surface is observed figure 1(Left), with a focal point behind the top of the
Gaussian. The distance to the focal point is increased by the strain in the y-direction, as shown
in figure 1(Right).

From the trajectories, it is also possible to reconstruct an approximate wavefunction ψapprox

at any time t. More specifically, we consider an initial wavefunction ϕ0(x,y). Hence, at any
(t,x,y), if there exists a trajectory (xx0(t),yy0(t)) such that i) (x(0),y(0)) = (x0,y0) and x,y=
(xx0(t),yy0(t)), then:

|ψapprox (t,x,y) |= ϕ0 (x0,y0) . (104)

It is also possible to include the contribution of the phase exp
(
iS±(t,x,y)/ε

)
. The latter can

be obtained from

∂tS
± (t,x) = S± (0,x)∓ vD

ˆ t

0
|π (s) |ds .

For instance, let us report in figure 2, the graph of |ψapprox| at different times, and reconstructed
from the trajectories with a0 = 0, ux = uy = 0, and with

ϕ0 (x,y) = exp
(
−
(
x2 +(y+ 10)2

)
/2
)
.

We report in figure 2 the solutions at time t= 0, t= 5, t= 10, t= 12.5 from 2500 trajectories
using (104). Close and after the focus, the reconstruction of the wavefunction is not element-
ary anymore as the trajectories are crossing each other. This can also induce the well-known
problem of caustics where the semi-classical approximation breaks down.

Qualitative comparison with tight-binding model. We here propose a qualitative compar-
ison between the classical model presented in this paper and a standard tight-binding model
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Figure 2. (x,y)⇒ |ψapprox(t,x,y)|. From left to right t= 0 ,5, 7.5, 10, 12.5.

for strained graphene [5, 47, 58–61]. We recall that from the tight-binding model, a Dirac
equation can be derived in the low energy limit (in the vicinity of the so-called Dirac point);
from the latter model, we have derived in this paper a (semi-)classical model describing elec-
tron trajectories. A rigorous quantitative comparison would require very fine investigation and
will be proposed in a forthcoming paper, including in particular a rigorous comparison with a
Dirac model. The simulations proposed below are performed using the libraries pybinding
and kwant. We refer to [62, 63] for details.

The chosen surface is parameterized as follows: h(x,y) = h0 exp
(
−Rx(x− xc)2 −Ry(y−

yc)2
)
with xc = 6, yc = 0, h0 = 0.85, Rx = 2/25, Ry = 4/25. We first assume that there is no

straining in the x,y-directions (ux = uy = 0). The hopping is defined as

t(x,y) = t0 exp(−β (ℓ(x,y,z)/acc − 1)) ,

where t0 is the hopping energy for pristine graphene, β= 3.37 controls the strength of the
hopping modulation and ℓ is the distance between two atoms with acc = 1.42 Angstrom.
The physical domain is [−20,20]× [−15,15] and the initial wavefunction is a Gaussian
function centered at (−6,0) is of the form ψ0(x,y) = exp

(
− (x+ 10)2/9− y2/9

)
exp(iy).

The final computational time is T = 25. We report in figure 3 the wavefunction at time
t= 5,10,15,20,25 showing the focusing effect occuring for the deformed surface, which is
qualitatively similar to the ones obtained with the classical model, at least before and right after
the focusing. We perform the same test when the graphene surface is strained in the y-direction
(as in the classical case) with a deformation uy(x,y) = 0.35y and Rx = 2/25, Ry = 4/25, see
figure 5. We display in figure 4, hexagonal cells (Left), the full domain (Middle) without
strain, and the hexagonal cell with strain in y-direction.

We observe that the wavefunction is focused in both cases as it was observed in the clas-
sical models. When the width of the Gaussian is increased, we also observe a splitting of the
wavefunction.

4. Applications to edge states dynamics in photonic graphene

The semi-classical analysis developed in section 2 is applied here to the evolution of edge
states in photonic graphene. This topological material, made of an array of coupled waveguides
arranged in a honeycomb configuration, share many properties with graphene. In particular,
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Figure 3. Without strain in x,y-directions. From left to right: tight-bindingwavefunction
at t= 5, t= 10, t= 15, t= 20, t= 25.

Figure 4. (Left) Hexagonal cell (no strain), (Middle) Hexagonal cell with strain in y-
direction.

Figure 5. With strain in x,y-directions. From left to right: tight-binding wavefunction
at t= 5, t= 10, t= 15, t= 20, t= 25.

light propagation in these complex structures is characterized by the presence of Dirac points at
low energy. The dynamics of photonic graphene edge states in a slowly modulated honeycomb
media can be described by a Dirac equation with a space-dependent mass-term [53] in the form
of equation (11). We are specifically interested in the dynamics of edge states along domain-
walls which breaks the CP-symmetry of photonic graphene (see [53, 64]). Physically, these
systems are reminiscent of Dirac materials with line-defects and one of their main properties
is the existence of robust quantum states close to the edge. In this section, the latter will be
explored dynamically using the semi-classical formalism developed in previous sections.
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4.1. A classical model for photonic graphene

In the following, we consider the classical model (corresponding to LO in ε) for photonic
graphene (an optical analogue to graphene) in flat space, where the space-dependent mass
term m models a wall-function/interface accounting for a line-defect between two domains.
The Dirac equation modeling the dynamics of edge states in photonic graphene is derived from
Maxwell’s equations (rewritten in the form a Schrödinger equation with periodic coefficients)
on a hexagonal lattice. As proven in [53], in its low energy limit it degenerates into a Dirac-like
equation (12) such that

• m̃D as a positive function.
• Ṽ≡ 0.
• Ãi ≡ 0.
• ᾱi ≡ αi are constant and correspond to the standard Pauli’s matrices.

In this case, based on theorem 2.1 and setting m= mD and π = p, the system of equations for
the classical modelling of edge states is reduced to:

dx
dt

= vD
p√

p2 +m2 (x)v2D
,

dp
dt

=− v3D
2
√
p2 +m2 (x)v2D

∇xm
2 (x) .

(105)

The objective of this section is to study the propagation of edge states described semi-
classically by (105). The interest of using this model is i) its simplicity, and ii) its ability
to consider in parallel a very large number of trajectories to model the wave propagation.

We assume that the material under consideration is a photonic graphene sheet with a 2D
domain Ω, large enough to avoid boundary effects. The domain is separated in two subdo-
mains by an interface parameterized by x2 = f(x1) where f is a smooth function. From this
parameterization of the interface it is possible to define a mass-term. Following [65], we use
an interface-function given by

m(x) = tanh(ν ( f(x1)− x2)) , (106)

where ν is a large parameters which characterizes the sharp transition between the 2 regions.
The interface-function is displayed in figure 6 with f(x) = 0.2cos(x).

4.2. Analysis

This section is dedicated to the analysis of the classical model (105). The following proposition
shows its relative accuracy.

Proposition 4.1. Assuming that f is not an affine function, then for any (x0,p0) ∈ Ω\I ×R2,
the solution (x,p) to (105) is such that the function t 7→ x2(t)− f(x1(t)) does not converge to
0, when t goes to infinity.

In other words, according to (105), the edge states never follow the interface exactly,
even asymptotically at large times. Rather, they are oscillating around the interface with a
bounded amplitude (demonstrated in proposition 4.2 and numerically). Hereafter, these solu-
tions to (105) will be referred as quasi-edge states.
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Figure 6. Graph of the interface-function m(x), x ∈ R2.

Proof. The proof of proposition 4.1 is straightforward. Indeed assuming x2(t)− f(x1(t)) =
0 (for some t> 0), implies that i) m(x(t)) = 0, so that ṗ(t) = 0 and ẋ(t) = 0 and ii) ẋ2(t) =
ẋ1f ′(x1(t)). In this case, for any t> 0

(x(t) ,p(t)) =
(
x(0)+ ν

p(0)
|p(0) |

t,p(0)
)
∈ I .

If x(t) ∈ I, then

x2 (0)+
p2 (0)
|p(0) |

νt= f

(
x1 (0)+

p1 (0)
|p(0) |

νt

)
.

In particular, as ẋ2(t) = ẋ1f ′(x1(t)) for any t> 0, we get

p2 (0)
|p(0) |

ν = f ′
(
x1 (0)+

p1 (0)
|p(0) |

νt

)
p1 (0)
|p(0) |

ν .

That is, for any t> 0

f ′
(
x1 (0)+

p1 (0)
|p(0) |

νt

)
=
p2 (0)
p1 (0)

.

This implies that f ′ is a constant function, more specifically given by f(x) = xp2(0)/p1(0).
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In the following, it will be useful to introduce the function ϵ := f(x1)− x2, so that (105) can
be rewritten as follows

ẋ1 =
p1ν√

p2 +m2 (x)ν2
,

ϵ̇= ν
p1f ′ (x1)− p2√
p2 +m2 (ϵ)ν2

,

ṗ1 = ν4
f ′ (x1)m(ϵ)

(
1−m2 (ϵ)

)√
p2 +m2 (x)ν2

,

ṗ2 =−ν4
m(ϵ)

(
1−m2 (ϵ)

)√
p2 +m2 (x)ν2

.

(107)

Notice in particular that ṗ1(t)+ f ′(x1(t))ṗ2(t) = 0 for all t, with initial condition
(x10, ϵ0,p10,p20) such that x20 = f(x10)− ϵ0.

As proven above, ϵ can be small but not zero. Hereafter, we will hence also assume that
νm(ϵ) is large, for ν large. For the sake of simplicity, we will also assume in the following
proposition that the interface is flat, and more specifically f ′(x) = 1. We then show that the
trajectory of the quasi edge-state is oscillatory, at least for small times. Using continuity argu-
ments, we deduce that this result remains true from non-flat smooth interfaces.

Proposition 4.2. We assume that i) f ′(x) = 1 and that ii) initially the solution to (107) is close
enough to the interface. For ν large enough, the solution to (107) is oscillatory about the
interface, at least for t small enough.

Proof. First let us rewrite (105), as follows

ẋ1 =
p1ν√

p2 +m2 (x)ν2
,

ϵ̇= ν
p1 − p2√

p2 +m2 (ϵ)ν2
,

ṗ1 = ν4
m(ϵ)

(
1−m2 (ϵ)

)√
p2 +m2 (x)ν2

,

ṗ2 =−ν4
m(ϵ)

(
1−m2 (ϵ)

)√
p2 +m2 (x)ν2

.

(108)

Notice in particular that ṗ1(t)+ ṗ2(t) = 0 for all t> 0 with initial condition is denoted
(x10, ϵ0,p10,p20), with in particular x20 = f(x10)− ϵ0. Let us now introduce a new variable
Y= (x1, ϵ,p1,p2)T and a function H such that

H (ϵ,p,ν) :=
ν√

p2 +m2 (ϵ)ν2
.
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We get for ν large, m(ϵ)∼ν→+∞ ±
(
1− e−2ϵν

)
. For p2 negligible compared to m2ν2, which

is a reasonable assumption for mν large, we get

p1ν√
p2 +m2 (ϵ)(x)ν2

∼ν→+∞
p1√
m2 (ϵ)

,

ν
p1 − p2√

p2 +m2 (ϵ)ν2
∼ν→+∞

p1 − p2√
m2 (ϵ)

,

ν4
m(ϵ)

(
1−m2 (ϵ)

)√
p2 +m2 (ϵ)(x)ν2

∼ν→+∞ ν3
m(ϵ)

(
1−m2 (ϵ)

)√
m2 (ϵ)

,

−ν4
m(ϵ)

(
1−m2 (ϵ)

)√
p2 +m2 (ϵ)(x)ν2

∼ν→+∞ −ν3
m(ϵ)

(
1−m2 (ϵ)

)√
m2 (ϵ)

.

We then consider the following system Ż= G(Z), where Z= (z1,e,q1,q2)T and

G(Z) =
(
q1/

√
m2 (ϵ),(q1 − q2)/

√
m2 (ϵ) ,

− ν3m(ϵ)
(
1−m2 (ϵ)

)
/
√
m2 (ϵ) ,

ν3m(ϵ)
(
1−m2 (ϵ)

)
/
√
m2 (ϵ)

)T

.

(109)

Let us consider the following initial condition: Z(0) = (x10, ϵ0,p10,p20)T with ϵ0 = f(x10)−
x20, non-zero. We intend to prove that the solution to (109) has an oscillatory behavior. For
this purpose, we compute

q̈2 =−2ν4
m4 (ϵ)−m2 (ϵ) ė

(m2 (ϵ))
3/2 ,

= 2ν4
(
m2 (ϵ)− 1

)
q2 ,

(110)

where we have used that q̇1 =−q̇2 and ϵ̇= (q1 − q2)/
√
m2(ϵ). Using that m(ϵ)< 1 close to

the interface (see (106)), we deduce that the coefficient in front q2 on the right hand side
of (110) is negative for all t, which implies that the solution is oscillatory. The same argument
naturally applies for q1. Moreover, as ż1 = p1/

√
m2(ϵ) with m2(ϵ) non-zero, we also deduce

that at least for short times, z1 is also oscillatory, as well as ε.
Next, we set W := Y−Z with W(0) = 0. Formally Ẇ= F(Y)−G(Z). For ν large

F(Y)∼ν→+∞ G(Y)+H(Y). As

1√
p2 +m2ν2

− 1√
m2ν2

=− p
m2ν2

+O
(
ν−4

)
,

we deduce that H(X) = O(G(X)ν−2). Then for some ξ, we have

Ẇ= G(Y)−G(Z)+H(X)

=∇G(ξ)W+H(W) .

withW(0) = 0 and ‖∇G‖∞ ⩽M for some finite number M> 0; there also exists υ> 0 small
for ν large, such that ‖H‖∞ ⩽ υ. We conclude from Grönwall, that for ν large, the trajectory
to the full system are close to those of the simplified one which were proven to be oscillatory,
at least for small times.
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4.3. Numerical experiments

We propose a set of numerical experiments to illustrate the above analysis. To solve the set of
equations of motion, we use the second order Störmer-Verlet symplectic scheme [66].

Experiment 0. Flat interface. In this first experiment, we are interested in illustrating pro-
positions 4.1 and 4.2 by taking f(x1) = x1. We consider the initial data (x10,x20,p10,p20) =
(0,0,0,1) and ν= 10. We report in figure 7(Top), the corresponding trajectory of the edge
state along the interface

{
(x1(t),x2(t)), t ∈ [0,T]

}
with T= π/32 as x(0) ∈ I. We also report

in figure 7(Bottom) the first component of the momentum t 7→ p1(t) for t ∈ [0,T]. On the same
graph we report a trajectory if initially x(0) /∈ I, (x10,x20,p10,p20) = (0,−0.1,0,1). In this
case, we see that the edge state trajectory does not converge to the interface but oscillates
about it, as expected from proposition 4.2.

Experiment 1. Sinusoidal interface. We propose the following experiment f(x1) = αcos(x1)
with α= 0.2. We consider the initial data (x10,x20,p10,p20) = (−0.1,0,1,0.1) and ν= 10. We
report in figure 8(Top) the corresponding trajectory of the quasi-edge state oscillating along the
interface

{
(x1(t),x2(t)), t ∈ [0,T]

}
with T= π. We also report in figure 8(Middle) t 7→ ϵ(t) and

the momentum t 7→ p(t). As expected the trajectory again does not converge to the interface
and oscillates about it.

Experiment 2. The phase of the oscillatory solution to (107) is dependent on the initial con-
dition, it is natural to compute the average of many classical trajectories to model a quantum
trajectory; it is expected that an average process will be more accurate to model edge states
close to the interface. To verify this, we propose the following experiment. We consider a
sequence of initial data: (x(k)0 ,p0) := (x(k)1 (0),x2(0),p1(0),p2(0)), where k ∈ {1, · · · ,K}, for
some large integer K, where x(k)1 (0) = (k− 1)/32, y0 =−0.1, p1(0) = p2(0) = 1. We denote

by (x(k)1 , ϵk,p(k)1 ,p(k)2 ) the corresponding solution to (107), and we compute

x1;K =
1
K

K∑
k=1

x(k)1 , ϵK =
1
K

K∑
k=1

ϵ(k) .

We then report in figure 9, the average quasi-edge state trajectories t 7→ ϵK(t), for K=
1,4,16,1024,4096 and T= π/16. This test shows that the average over many trajectories can
provide a good estimate of edge state dynamics.

All the numerical experiments are consistent with propositions 4.1 and 4.2. They demon-
strate clearly the oscillating behaviour of edge states around the domain wall interface. This
property is reminiscent of a waveguide, allowing for effective transmission of waves along the
line-defect between the two domains.

5. Conclusion

In this article, the semi-classical approximation for Dirac materials described by the Dirac
equation in curved space-time was obtained to zeroth and first order. Compared to the case
in flat space, a geometric force appears in the classical equations of motion. This force can
have a significant effect on electron dynamics, as was demonstrated using specific examples
in strained graphene. We also demonstrated that the spin dynamics is governed by a transport-
like equation when the second order approximation is taken into account. This part of our
formalism was not studied numerically, but this will be the topic of future investigations. The
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Figure 7. Experiment 0. (Top) Trajectory
{
(x1(t),x2(t)), t ∈ [0,T]

}
. (Bottom) First

component of momentum t 7→ p1(t).
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Figure 8. Experiment 1. (Top) Trajectory
{
(x1(t),x2(t)), t ∈ [0,T]

}
. (Middle) t 7→

ϵ(t). (Bottom) Momentum t 7→ p(t).
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Figure 9. Experiment 2. Graph of t 7→ ϵK(t), to t ∈ [0,π/16] and K=
1,4,16,1024,4096.

approximation scheme was then applied to model and simulate the dynamics of edge states
in photonic graphene. In this case, the presence of a domain interface was modelled by a
space-dependent mass term. According to our theoretical framework, such terms also give
rise to an effective force that controls electron trajectories. We demonstrated analytically and
numerically that the latter oscillates about the interface, thus forming quasi-edge states.

In the future, the technique developed in this article will be used to design structures aim-
ing at the control of electrons in Dirac matter. Indeed, evaluating the classical trajectories is
more efficient and sometimes, leads to more insights into the electron behavior than a full
numerical solution of the Dirac equation in curved space, as long as the conditions for the
semi-classical approximation are fulfilled. Also, as the electromagnetic field is included in our
theoretical description, our approach could be used to study the electromagnetic response of
strained materials. Therefore, our work may have implications for important applications in
nanoelectronics and photonics.
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Appendix. Properties of the projection operator

In this appendix, we present some intermediate technical results allowing for the derivation
of the semi-classical limit of the Dirac equation. It is convenient to define the following
operators.

D (x,π) := ᾱi (x)πi+βm̃D (x)+ Ṽ(x) , (A1)

D0 (x,π) := ᾱi (x)πi+βm̃D (x) , (A2)

Π± (x,π) :=
1
2

[
1± D0 (x,π)

λ(x,π)

]
, (A3)

where

h± (x,π) :=±λ(x,π)+ Ṽ(x) , (A4)

λ(x,π) :=
√
gijπiπj+ m̃2

D (x) , (A5)

ω± (x,π) :=± π

λ(x,π)
=∇ph± (x,π) , (A6)

and the Dirac matrices in the mostly-minus metric is related to those in the mostly-plus metric
as ᾱi := ᾱi+−−− =−ᾱi−+++. The following properties will be proven hereafter

Π2
± =Π±, (A7)

Π±Π∓ = 0, (A8)

D = h+Π+ + h−Π−, (A9)

Π±D = h±Π±, (A10)

Π±ᾱ
i (x)Π± = ωi±Π±, (A11)

ᾱi (x)Π± =Π∓ᾱ
i (x)+ωi±. (A12)

We first have.

Property 1. D2
0 = λ2I.

Proof. We have

D2
0 =

[
ᾱiπi+ m̃Dβ

][
ᾱjπj+ m̃Dβ

]
,

= ᾱiᾱjπiπj+ m̃2
DI+ ᾱiπim̃Dβ+ m̃Dβᾱ

jπj,

= αaαbeiae
j
bπiπj+ m̃2

DI+mπie
i
a (βα

a+αaβ) .

= αaαbπ̄aπ̄b+ m̃2
DI.

The last term is zero using anticommutation of Dirac matrices. For the first term, we use

αaαb = δabI+ 2iϵabcSc. (A13)

We get
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D2
0 =

(
π̄aπ̄

a+ m̃2
D

)
I,

=
(
gijπiπj+ m̃2

D

)
I= λ2I.

This concludes the proof.

Then, we can show that Π± are projection operators:

Property 2. Π2
± =Π± and Π±Π∓ = 0.

Proof. We have

Π2
± =

1
4

[
1± D0

λ

][
1± D0

λ

]
,

=
1
4

[
1+

D2
0

λ2
± 2

D0

λ

]
,

=
1
2

[
1± D0

λ

]
=Π±.

Moreover we have:

Π±Π∓ =
1
4

[
1± D0

λ

][
1∓ D0

λ

]
,

=
1
4

[
1− D2

0

λ2
± D0

λ
∓ D0

λ

]
= 0.

This concludes the proof.

We now demonstrate two other important properties:

Property 3. Π±D = h±Π±.

Proof. We start from

Π±D =Π±D0 +Π±Ṽ,

=
1
2

[
1± D0

λ

]
D0 +Π±Ṽ,

=
1
2
[D0 ±λ] +Π±Ṽ,

=±λ1
2

[
1± D0

λ

]
+Π±Ṽ= h±Π±.

Incidently, we also have that Π±D0 =±λΠ±. This concludes the proof.

Property 4. Π±ᾱ
iΠ± = ωi±Π±.

Proof. We start from

Π±ᾱ
iΠ± =

1
4

[
1± D0

λ

]
ᾱi
[
1± D0

λ

]
,

=
1
4

[
ᾱi± ᾱi

D0

λ
± D0

λ
ᾱi+

D0ᾱ
iD0

λ2

]
.
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We have that

ᾱiD0 = αbeib [α
aπ̄a+ m̃Dβ] , (A14)

= eib
[
αbαaπ̄a− m̃Dβα

b
]
, (A15)

= 2eibπ̄aδ
abI−D0ᾱ

i = 2πi−D0ᾱ
i. (A16)

Then, we have

ᾱiD0 +D0ᾱ
i = 2πi,

D0ᾱ
iD0 = 2D0π

i−λ2ᾱi.

Hence

Π±ᾱ
iΠ± =

πi

2λ

[
±1+

D0

λ

]
,

=± πi

2λ

[
1± D0

λ

]
= ωi±Π±.

This concludes the proof.

Property 5. ᾱiΠ± =Π∓ +ωi±.

Proof. Using (A14), we get

ᾱiΠ± = ᾱi
1
2

[
1± D0

λ

]
,

=
1
2

[
ᾱi± 2πi−D0ᾱ

i

λ

]
,

=
1
2

[
1∓ D0ᾱ

i

λ

]
ᾱi± πi

λ
=Π∓ᾱ

i+ωi±.

This concludes the proof.
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