PREPARATION AND SIMULATION FOR GROUND STATES
OF TOPOLOGICAL PHASES OF MATTER
by
Penghua Chen

A Dissertation
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

S

=%
o

¥

(,‘y

Department of Physics and Astronomy

M)
oF

West Lafayette, Indiana
August 2024

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xingshan Cui, Co-Chair

Department of Mathematics

Dr. Yuli Lyanda-Geller, Co-Chair

Department of Physics and Astronomy

Dr. Ruichao Ma
Department of Physics and Astronomy

Dr. Sabre Kais
Department of Chemistry

Approved by:
Dr. Gabor A. Csathy

TABLE OF CONTENTS

LIST OF FIGURES e e e 6
1 INTRODUCTION e e e 8
2 BACKGROUND 15
2.1 Hopfalgebra 15
2.2 Representations of semisimple Hopf algebras 19
2.3 Drinfeld double of Hopf algebras 21
2.4 Generalized Kitaev model based on Hopf algebras 22
2.5 Toriccode 25
2.6 Restricted Boltamann Machines 00000 27
3 RIBBON OPERATORS IN GENERALIZED KITAEV QUANTUM DOUBLE . . 29
3.1 Directed ribbons 30
3.2 Definition of ribbon operators 32
3.3 Local orientation in original Kitaev model 35
3.4 Properties of ribbon operatorso 36
3.5 Conclusion and outlook 42
4 QUANTUM CIRCUITS FOR TORIC CODE AND X-CUBE FRACTON MODEL 43

4.1 Single plaquette 44
4.2 Developing to a surface with boundary 45
4.3 Developing to a surface without boundary 46
4.4 Simulate arbitrary ground stateo L 47
4.5 Quantum circuit deptho 48
4.6 Gluing method for two single plaquettes 49
4.7 Gluing method for an arbitrary lattice 51
4.8 3D toricmodel 54
4.9 X-cubemodel 57
4.10 Gluing method for 3D models oo 60

4.11 Conclusion and outlook 63

5 REPRESENTING ARBITRARY GROUND STATES OF TORIC CODE BY RE-

STRICTED BOLTZMANN MACHINE 64
5.1 Introduction 64
5.2 Further Restricted RBM o 66
5.3 Analytical solutions of FRRBM, .. 67
5.4 Arbitrary ground state of RBMo 68
5.5 Efficiency and Learnability of the RBM 71
5.6 Generalization from Zs to Z,, 72
5.7 Conclusion and further work 74
REFERENCES 75
A SUPPLEMENTAL MATERIAL FOR CHAPTER 3 80
A.1 Straightening equation of A, and By L. 80
A.2 Violation and correction in group algebra L. 81
A.3 Multiplication of ribbon operators on elementary ribbons 83
A.3.1 For locally clockwise ribbons 7, 83
A.3.2 For locally counterclockwise ribbons 7 84

A.4 Proof of Lemma for local operator at ends 86
A.4.1 Equation 3.17a for short ribbons 86
A.4.2 Equation 3.17b for short ribbons 88
A.4.3 Equation 3.17¢ for short ribbons 89
A.4.4 Equation 3.17d for short ribbons 89
A.4.5 Equation 3.18a for short ribbonso 0L 91
A.4.6 Equation 3.18b for short ribbons 91
A.4.7 Equation 3.18c¢ for short ribbons 92
A.4.8 Equation 3.18d for short ribbons 94
A.4.9 Equations 3.17b and 3.17¢ for long ribbons 94

A.5 Proof of Ribbon operator in middle 96

B

C

A5.1 Equation 3.19a 96

A5.2 Equation 3.19b 97
A.6 Fourier transformation of H* L. 98
SUPPLEMENTAL MATERIAL FOR CHAPTER 4 100
B.1 2D toric code on sphere 100
B.2 2D toric code on genus n surface 100
B.3 Local CNOT operation 100
B.4 3D toric model with boundary 0oL 101
B.5 3D toric model without boundary 103
B.6 X-cube model simple exampleo 103
SUPPLEMENTAL MATERIAL FOR CHAPTER 5 106
C.1 Analytical solution of by, wy; in the FRRBM 106
C.2 Analytical solution of b,, w,;in the FRRBM 108
C.3 Machine Learning of the FRRBM 115
C.4 Machine Learning of the RBM, 116
C.5 Python code for 2D the FRRBM 119
C.6 Python code for searching L. 123
C.7 Python code for the RBM oo 126

2.1
2.2
2.3
24
2.5
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
5.1
5.2

LIST OF FIGURES

Generalized Kitaev model on lattices 23
A, in generalized Kitaev modelo 24
B, in generalized Kitaev model00 000000 24
Definition of toric code 26
RBM of Ising model 27
Ribbon operators of two types 29
Ribbon operators of four types L 31
A counter-example 36
Beginning set of ribbon 39
Ending set of ribbon 39
Single plaquette 44
Four plaquettes L 46
Surface without boundary oo 46
Basis of ground state 47
Step size of preparationo 49
Glue two single plaquettes 50
Glue two arbitrary plaquettes L 52
Glue four single plaquettes L 53
Definition of 3D toric modelo 95
Basic structures 55
Ground state on 3D toriccode oL 56
Arbitrary ground state on 3D toric code o7
Definition of X-cube modelo 58
Ground state on X-cube model Lo 60
Gluing in 3D model Lo 61
Membrane operatoro 62
FRRBM of toriccode 66
Training in FRRBM 000 69

5.3
5.4
9.5
5.6

RBM for arbitrary ground state L 70

Efficiency of the choice of configurations 71
Barren plateauso 72
Convention for local operator Lo 73

1. INTRODUCTION

This chapter contains work from the article entitled "Ribbon operators in the generalized
Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,
and Shawn X. Cui published on Journal of Physics A [1], and the article entitled "Quantum
circuits for toric code and X-cube fracton model" written by the author, Bowen Yan, and
Shawn X. Cui published on Quantum [2], and the article entitled "Representing Arbitrary
Ground States of Toric Code by Restricted Boltzmann Machine" written by the author,
Bowen Yan, and Shawn X. Cui preprinted on arXiv [3].

In an era characterized by escalating technological complexity and an ever-increasing de-
mand for computational power, the semiconductor industry confronts a formidable obstacle.
Traditional chip development paradigms, reliant on relentless miniaturization, are increas-
ingly strained by the unyielding physical limits of the atomic scale. At these microscopic
dimensions, atoms themselves define the frontier of computational power, subject to the es-
oteric influences of quantum mechanical effects. Consequently, the quest for next-generation
computing paradigms has taken on an unprecedented urgency. Quantum computing, boast-
ing the potential to eclipse the computational capabilities of classical computers, has emerged
as a promising contender. The shift toward quantum computing represents more than an op-
tion—it is a necessity, offering a vital lifeline for an industry grappling with its own physical
boundaries.

However, the nascent field of quantum computing presents its own unique challenges.
Notably, three promising approaches are currently at the cutting edge: Superconducting
Circuits, Trapped Ions, and Topological Qubits. Superconducting circuits employ supercon-
ducting qubits that function as artificial atoms. Leveraging established silicon chip fabrica-
tion techniques, this approach affords significant scalability and has already demonstrated
successful execution of select quantum algorithms. Yet, this method grapples with relatively
short coherence times and high error rates, limiting the complexity of quantum computations
that can be feasibly executed [4], [5]. The trapped ions approach, on the other hand, utilizes
electromagnetic fields to confine ions, employing lasers to perform quantum operations. Al-

though it offers longer coherence times and lower error rates compared to superconducting

circuits, scaling trapped ion systems to the number of qubits required for practical quantum
computation is a substantial challenge [6]. The topological qubits approach uses anyons in 2D
systems to perform quantum operations. Theoretically, this system could offer the longest
coherence time and the lowest error rate, as the information is stored non-locally, providing
a kind of topological protection. However, as it stands, there are no reported instances of a
successful creation of a topological qubit. Despite this, the robustness of topological states
to local perturbations offers the potential to surmount current limitations, paving the way
for the next generation of computational systems [7], [8].

The subject of topological phases of matter (TPMs) has has seen a surge of intensive re-
search over the past few decades. Unlike conventional states described by Landau’s theory of
spontaneous symmetry breaking and local order parameters, topological phasesgapped spin
liquids at low temperaturesare characterized by a new order, topological order. The ground
states of a topological phase possess stable degeneracy and robust long range entanglement.
Moreover, topological phases in 2D support quasi-particle excitations (aka anyons), and po-
tentially non-Abelian exchange statistics. What sets TPMs apart is the presence of global
degrees of freedom encoded in the ground states. These are resistant to local perturbations
and which can be unitarily changed through non-trivial movements of quasi-particle excita-
tions. These distinctive features position TPMs as ideal media for executing fault-tolerant
quantum computing, namely, topological quantum computing [9], [10]. The theory of 2D
TPMs can be equivalently depicted through either a (24 1) topological quantum field theory
or a unitary modular tensor category.

A large class of Topological Phases of Matter (TPM) in 2D can be realized by spin lattice
models. Among these, the toric code stands out as one of the most recognized examples. This
Abelian topological phase can also be interpreted through a Z, gauge theory. The toric code
is a special case of Kitaev’s quantum double models which associate to each finite group G an
exactly solvable lattice model[9]. When G is Zy, the theory reduces to the toric code, while
a non-Abelian group G leads the model to realize a non-Abelian topological phase. In these
models, the anyon types align with the irreducible representations of the Hopf algebra D(G),
the Drinfeld double (or quantum double) of the group algebra C[G]. The quantum double
model can be generalized by replacing G with a semi-simple C* Hopf algebra H. Given such

a Hopf algebra, the authors in [11] wrote down a frustration-free Hamiltonian consisting of
pairwise commuting local projectors analogous to the original setup. We refer to this model
as the generalized Kitaev quantum double model, which can be further generalized to a semi-
simple weak Hopf algebra [12]. Another class of realizations are the Levin-Wen string-net
models [13], based on unitary fusion categories. There is a close relationship between the
string-net models and the quantum double models. Specifically, for a Hopf algebra H, it
has been shown that the generalized quantum double model based on H is equivalent to the
string-net model based on Rep(H), the category of representations of H [14], [15].

To effectively describe the creation, annihilation, and movement of anyons in the models
mentioned above, the concept of ribbon operators (or string operators) plays a critical role.
In the context of the toric code, these ribbon operators can be represented as either a string
of Pauli Z operators on the lattice or a string of Pauli X operators on the dual lattice.
However, for non-Abelian group G, these two types of string operators become ’entangled’,
necessitating the consideration of a ’thickened’ string of operators, namely, operators on a
ribbon. A ribbon can be broadly visualized as a strip in the lattice, with one side running
along the lattice edges and the other along the dual lattice edges. Within the quantum
double model, operators for two types of elementary ribbons (triangles) are initially defined,
after which the definition is extended to longer ribbons via induction (see [9], [16] for details).
The paper [11] briefly assertswithout offering proofsthat ribbon operators in the generalized
quantum double model can be defined in a similar manner.

In the first part, we rigorously define ribbon operators in the generalized quantum double
model that is based on a semi-simple C* Hopf algebra, and we systematically study their
properties. While we affirm several properties as expectedwhich might not be startling to
expertsthe computations needed for proving these turn out to be considerably more intri-
cate than those involving finite groups. This complexity partly arises from the challenges
associated with dealing with general Hopf algebras rather than simply dealing with group
algebras. Furthermore, we unravel some subtleties in the definition of ribbon operators. The
literature [9], [16] only takes into account two types of elementary ribbons: the direct triangle
and the dual triangle. Our study, however, broadens these into four types, introducing an

extra characteristic, which we refer to as local orientation. This local orientation can also be

10

applied to general ribbons, resulting in two types of ribbons based on their local orientation.
It’s important to note that the definition of ribbon operators must differ for each ribbon
type. Should we fail to differentiate these two types of ribbons, certain expected common
properties will not be upheld. For example, the ribbon operator would fail to commute with
Hamiltonian terms away from the end points. We note that this issue is already present in
the original quantum double model when the input group is non-Abelian, but it appears this
concern hasn’t been addressed in the literature to our best knowledge. Lastly, our ribbon
operators’ definition is explicit, contrasting with those in string-net models, where a set of
consistency equations need to be resolved.

In recent years, there has been intensified investigation into 3D topological phases [17]
and even more exotic 3D structures, known as fracton phases [18]-[20]. Similar to conven-
tional TPMs, fractons possess stable ground state degeneracy and long-range entanglement.
However, unlike TPMs, the ground state degeneracy of fractons is dependent on the system
size and is therefore not a topological invariant. Additionally, the mobility of excitations
within fractons is constrained, either moving within specific subsystems or not at all. No-
table examples of fractons include the Haah code [18] and the X-cube model [20]. While
regular topological phases can be characterized by topological quantum field theories, the
mathematical characterization of fractons remains an open question. Since fractons also
satisfy the conditions of topological order in the sense of [21], we classify the ground states
of a fracton as topologically ordered states, aligning with those of conventional topological
phases.

Realizing topological phases in physical systems continues to be a formidable challenge.
However, we now have access to quantum processors based on a variety of platforms, such as
superconducting qubits [22] and Rydberg atomic arrays[23], etc. These devices can support
physical qubits on the scale of 10?, a number that is projected to surge significantly in the
near future. Therefore, simulating topological phases in quantum processors emerges as both
a feasible and intriguing prospect. Given the inherent robustness of topological phases, such
simulations are relatively immune to noise within current quantum processors. Furthermore,
engineering topological phases in processors could provide us with greater insights. The toric

code ground states have been realized in both superconducting-qubit-based systems [22] and

11

Rydberg-atom systems [24]. In [22], the authors proposed a quantum circuit comprised of
Clifford gates to realize the ground states of the planar toric code (a.k.a. surface code [25]).
Studies have also been conducted on quantum circuits realizing non-Abelian topological
orders, such as the Levin-Wen string-net model and the Kitaev quantum double model. See
for instance [26]-[31], though in these cases, the gates employed are no longer confined to
the Clifford group and measurements are used.

In the second part, we construct quantum circuits that can realize the ground states for
a variety of topological phases. While [22] only considered the planar toric code, where the
lattice is defined on a planar surface, we extend their methodology to a large class of surfaces,
both with and without boundaries, utilizing only Clifford gates. The method commences
with the +1 eigenstate for all vertex terms, and the ground state is subsequently obtained
by projecting this state to the +1 eigenstate of all plaquette operators. This process can be
simulated through an appropriate combination of Hadamard and CNOT gates. The judicious
selection of the sequence for the plaquettes to which quantum gates are applied is of utmost
importance. Given that we are considering lattices on arbitrary surfaces, this issue becomes
quite intricate. We outline an explicit algorithm to determine the sequence in which the
plaquette operators are simulated. Further, we adapt this method to 3D phases including
the 3D toric code and the X-cube fracton model. By comparison, using cluster states and
measurements, the authors in [28] proposed an approzimate realization of the model. Beyond
the method using only quantum gates, we also suggest an alternative approachreferred to as
the gluing methodfor realizing the same states, which offers a shorter circuit depth. Indeed, it
is possible to obtain the ground state for the toric code or X-cube using only measurements.
However, given that frequent measurements in near-term quantum processors can be costly,
our method presents a trade-off between circuit depth and the extent of measurements.

Identifying the eigenstate of a specific Hamiltonian ranks among the most demanding
tasks in condensed matter physics. This task becomes increasingly complex primarily be-
cause of the power scaling of the Hilbert space dimension, which inflates exponentially in
relation to the system’s size [32]. Nonetheless, it is often the case that the system’s inherent
physical properties, e.g. long-range entanglement, restrict the form of the ground states, and

therefore the states corresponding to interesting quantum systems may only occupy a small

12

portion of the exponentially large Hilbert space. This opens up the possibility of efficient
representations of the wave function of many-body systems. Examples of efficient represen-
tations include matrix product states, projected entangled pair states, and more generally
tensor networks.

A recent trend is the study of many-body quantum systems utilizing machine learning
techniques, especially artificial neural networks. Restricted Boltzmann Machines (RBMs) are
a generative stochastic artificial neural network [33]. Unlike other types of neural networks,
RBMs have a unique two-layer architecture that consists of a visible input layer and a
hidden layer. The 'restricted” part in the name refers to the lack of intra-layer connections;
that is, nodes within the same layer do not interact with each other. RBMs have been
used effectively in a variety of machine learning tasks, including dimensionality reduction,
classification, regression, and even solving quantum many-body problems [34]-[39].

In 2017, Carleo and Troyer paved a novel path by applying RBM as a variational ansatz,
utilizing it to represent ground states for Ising model [34]. This groundbreaking achievement
catalyzed the development of numerous explicit RBM representations. Notably, substantial
research efforts have been directed towards the examination of toric code [35], [36], graph
states [37], and stabilizer code [38], [39], which is equivalent to a graph state under local
Clifford operations [40]. While their topological properties and representational power [41],
[42] have been extensively studied, there is still a need to explore feasible algorithms for
specific models.

We start from the RBM representability of the toric code model as the first step, with
the eventual goal of studying that for general topological phases. In [36], Deng and Li
utilized a Further Restricted Restricted Boltzmann Machine (FRRBM), that allows only
local connections, to numerically find a solution of the toric code model. However, toric
code has degeneracy on non-trivial topology, and the ground state derived in the above
manner always corresponds certain specific one. On the other hand, it is possible to achieve
an arbitrary ground state by turning the toric code as a graph state [43] and transforming a
graph state into an RBM [38]. Yet, this approach inevitably introduces non-local connections

within each subgraph which adds to the complexity of the RBM.

13

In the third part, we initially apply stabilizer conditions to several specific configurations
to analytically solve the FRRBM for the toric code, exploring its representational capacity.
We factorize these solutions on square lattices of various sizes and find that different weights
only alter the coefficients of the basis states forming the ground state by factors of £1. We
then extended this approach to obtain an arbitrary ground state by strategically introducing
several non-local connections into the RBM. While this generalization sacrifices the simplicity
of local connections, it remains analytically solvable, enabling the simulation of arbitrary
ground states in a clean manner. Additionally, we developed an efficient machine learning
algorithm to verify the learnability of the models. We further generalize our approach from
Z5 to Z, and outline potential directions for future research.

In this thesis, I focus on the preparation and simulation of ground states of topological
phases of matter, with a particular emphasis on the preparation and simulation of arbitrary
ground states. Typically, researchers are content with any ground state, as these states
are sufficient to support the existence of anyons, which are pivotal for topological quantum
computing. However, the ability to prepare arbitrary ground states is crucial for applications
in quantum memory and error-corrected quantum computing. This work aims to advance
the methods for achieving these states, thereby enhancing the robustness and reliability of

quantum computational systems.

14

2. BACKGROUND

2.1 Hopf algebra

This chapter contains work from the article entitled "Ribbon operators in the generalized
Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,
and Shawn X. Cui published on Journal of Physics A [1], and the article entitled "Quantum
circuits for toric code and X-cube fracton model" written by the author, Bowen Yan, and
Shawn X. Cui published on Quantum [2], and the article entitled "Representing Arbitrary
Ground States of Toric Code by Restricted Boltzmann Machine" written by the author,
Bowen Yan, and Shawn X. Cui preprinted on arXiv [3].

Hopf algebras are important objects in various areas such as representation theory, ten-
sor categories, algebraic topology, topological quantum field theories, etc. There exists an
extensive literature covering different aspects of Hopf algebras. This section provides a brief
review with the primary aim of fixing conventions. For detailed discussions, see for instance
[44] [45]. A Hopf algebra over C is a vector space H endowed with the linear maps (called
structure maps):

w:HoH—-H, A:H—H®H, (2.1)
nC—H, e H—C, S:H—H, (2.2)

satisfying several conditions to be specified in the following. Firstly, (u,n) defines an (asso-

ciative) algebra structure. That is, the multiplication p is associative:

plule®b) @c = pla®pbe)], (2:3)

or briefly written as

(ab)e = a(be). (2.4)

15

The unit 15 for the multiplication y is given by 7(1). Secondly, (A, €) defines a (coassociative)
coalgebra structure with A and e the comultiplication and counit, respectively. We will use

the Sweedler notation for expressions involving comultiplications. For instance, we write
Ala) =) d ®d" (2.5)
(a)
The comultiplication map being coassociative means
(A®id)o A = (id® A)o A, (2.6)

or in Sweedler notation,

®CL” — Za/®
(a)

Z |:Z(a/)/ ® (CL/)”

(a) L(a)

Z(a//)/ ® (a//)//]) (27)

(a)

Due to the above equality, we simply write

(A®id)oAla) =) d ®d" ®@d". (2.8)
(a)
More generally, we use the Sweedler notation for
(A®idyem-=)o--o(A®id)oAla) =Y aV @ - @a™, (2.9)
(a)
The counit € satisfies

de(d)d" = de(d") =a. (2.10)

Thirdly, A and e are both required to be algebra morphisms. In particular, this implies
€ defines a 1-dimensional representation of H. Lastly, S is called the antipode which is

invertible in our consideration satisfying:

> d'S(d") =e€(a)ly =) S(d)d". (2.11)
(a) (a)

16

To emphasize on structure maps, we also denote a Hopf algebra by

(H;p,m, A€, S). (2.12)

In this thesis, we focus solely on finite dimensional semisimple Hopf algebras. Over C,
semisimplicity is equivalent to the condition that S is involutory, namely, S? = id. Certain

identities inherent to a finite dimensional Hopf algebra are implied:

S(ab) = S(b)S(a), S(1y)=1g, ¢€[S(a)]=€(a), (2.13)
Y S @S)= > Sla) ®S(a)". (2.14)
(a) (5(a))

Given a Hopf algebra (H;pu,n, A€, S), there are several ways of constructing new Hopf
algebras out of it. Taking H* to be the linear dual of H, then

(H*5 AT e ut T, sT) (2.15)

defines a Hopf algebra structure on H*, where f7 is the linear dual of map f!. And u? is a

map from H* to H* ® H*:
p (fla®d) = flu(a®b)] = f(ab), (2.16)
where a,b € H, and f € H*. We can also define opposite Hopf algebra by
(HP; i n, A, e, S71), (2.17)
where H? = H acts as a vector space, and u is defined as

p?(a®b) = u(b® a) = ba. (2.18)

4 Another common notation for f7 is f*. Here we use f7 since under appropriate bases, the matrix of f7 is
the transpose of that of f. Another reason is to avoid confusion since we will introduce a * operation below
with a different meaning.

17

Similarly, the co-opposite Hopf algebra H P is defined by
(HP; pu,m, AP e, 571, (2.19)
where H®P = H acts as a vector space, and A°? is defined as
APla) =) d"®d. (2.20)
(a)

What'’s more, (-)*, (-)%, and (-)°” are all involutive. It is direct to check (H*)®P ~ (H")*
and (H*)P ~ (H®P)*.
For a semisimple Hopf algebra H, a (two-sided) integral is an element hy € H such that
for all a € H,
ahg = hoa = €(a)hy. (2.21)

The space of integrals is 1-dimensional subspace, and hg is uniquely defined if we require
hi = hg, or equivalently e(hg) = 1. (2.22)

We call hy the Haar integral of H, which can be proved to be cocommutative, namely

A(ho) = > hy @ hy =Y hy @ hy,. (2.23)
(ho) (ho)

To make a Hopf algebra into Hilbert space, we introduce the x-structure, which is a

conjugate-linear map * : H — H satisfying
(a*)" =a, (ab)" =b"a", 1"=1, (2.24)

d(a) @ (") =) (a") @ (a*)". (2.25)

(a) (a*)

18

A Hopf algebra endowed with s-structure is called C* Hopf algebra. For a Hopf algebra H,
we denote the Haar integral of H* by ¢. Then (-,-) defines a Hermitian inner product on H:

(a,b) = ¢(a’b), for a,b € H. (2.26)

Unless otherwise stated, throughout this thesis we will use letters hgy, ¢ to represent Haar
integrals, a, b, ¢, x, y to denote general elements of H, and f, g, t for general elements

of H*. We adopt the following notation: f(x7?) represents an element of H* such that
F@?)(y) = f(zy).

2.2 Representations of semisimple Hopf algebras

The category of finite dimensional representations over C of a semisimple Hopf algebra

H is a semisimple tensor category with duals. If V, W are two representations such that

pv: H— End(V), (2.27)
pw: H — End(W), (2.28)

then V' ® W is a representation with the action given by
a.(v@w) = ((PV ® /)W)A(a))(v Rw), a€ HwveVweW. (2.29)
And so is V* with the action given by
a.f = fopy(S(a)), a€H, feV" (2.30)

A representation V' of H is irreducible if Endy (V) ~ C. Denote by Irry the set of
isomorphism classes of irreducible representations of H. Consider the regular representation

H with the action given by left multiplication

L(a)(c) := ac, (2.31)

19

or right multiplication using S(-):
R(a)(c) :=cS(a). (2.32)
These two actions commute and hence define an action of H ® H on H as
(a®b).c:=acS(bh). (2.33)
We note that as a representation of H ® H, we have the isomorphism

H~ P pop (2.34)

pElrrgy
An explicit isomorphism is given as follows: For each p € Trry, we fix a basis {|i) | i =
1,---,dim(u)} and denote the matrix of an element a € H under this basis by D*(a). Let
ho € H be the Haar integral, as defined in Equations 2.21, 2.22. We then define the ‘Fourier

transformation’ on H as [15]

dim(v)
ij) = DY (hy)sihg, 2.35
|V1J> dlm(H) (hz (O)J 0 ()
0)
where v € Irry, and i,j = 1,2, -+ ,dim(v). For the sake of self-containedness, we verify in

Appendix A.6 that the action of H ® H on the subspace span{|vij)|i,j =1, .- ,dim(v)} is
given by v* ® v. This thereby defines the isomorphism in Equation 2.34. Lastly, the two

representations L and R each induce a representation of H on H*:

L(a)lf) = [15(a)?]), (2.36)

R(a)lf) = [f(?a)), |f) € H". (2.37)

20

2.3 Drinfeld double of Hopf algebras

The Drinfeld double (or quantum double) D(H) of a Hopf algebra H is a Hopf algebra
D(H) — ((H*>cop®H;ND;7]D7AD7€D;SD)7 (238)

which is constructed as a bicrossed product of H and (H*)*?. For f,g € H* and a,b € H,

wp is defined by
pol(f@a)®(g@b)] =3 fg[S™(a")2d] @d"b, (2.39)
(a)

which is known as the straightening equation, and notice that
fea=(fel)(1®a). (2.40)

The remaining structure maps can be determined by the property that both (H*)®? and
H are sub Hopf algebras of D(H). This is achieved through the inclusions f — f ® 1 and

a — € ® a, respectively. For example, Ap is given by

Ap(f®a)= > (f"®d)a(f ®d), (2.41)
():(a)

where the Sweedler notation to f is applied, treating f as an element of H* rather than
(H*)P. This convention will be used throughout the thesis. Specifically, for a € H®P, we
use A rather than A°? in the context of the Sweedler notation to define a’, a”, and so forth.

The definitions for the remaining structure maps are provided as follows:

np(l) =e®1, (2.42)
ep(f®a) = f(1) ®e(a), (2.43)
Sp(f ®a)=S(a)ST(f). (2.44)

21

2.4 Generalized Kitaev model based on Hopf algebras

In this section, H represents a semisimple C* Hopf algebra. The original Kitaev model,
as presented in [9], is constructed based on the group algebra C[G| of a finite group G. On
the other hand, the generalized Kitaev model is rooted in a semisimple C* Hopf algebra H.
This generalized model was introduced in [11], which we review below.

To simplify our discussion, we establish the model on a square lattice I' = (V, E, P),
where V| E and P denote the set of vertices, (directed) edges, and faces, respectively, as
illustrated in Figure 2.1 (the solid grid)?. We also define the dual lattice T'* = (P*, E*, V*),
where P* corresponds to the vertices in I'* dual to the faces P in I', and £E* and V* have
similar interpretations. For any element x € VUEUP, we use x* to denote the corresponding
element in V* U E* U P*. The direction of the dual edge e* of an edge e € F is determined
by rotating the direction of e counterclockwise by 90°. Lastly, a site s = (v, p) is defined
as a pair comprising a vertex v and an adjacent face p that contains v. We draw a segment
connecting v and the dual vertex p* to represent the site in Figure 2.1.

To each edge e of I', we attach a copy of the Hopf algebra (also a Hilbert space H, := H).
The model’s total Hilbert space is then constructed as the tensor product of these associated

Hilbert spaces over all edges:

H =) He. (2.45)
L% (z) =azx, L%(x)=xS(a). (2.46)
Tl(z) = fla")a!, T!(x)= fIS(z)]2". (2.47)

Upon the establishment of the oriented graph I' = (V| E, P), we can define the edge operators
[11] illustrated in Figure 2.1 and the local operators A,(s) and By(s) on a site s = (v,p)
illustrated in Figure 2.2 and Figure 2.3, respectively. For each edge e of the lattice and
f € H* ae H, edge operators Ti]: and L% act on H, as Equations 2.46-2.47.

To define A,(s) for a € H, we start from the site s, go around the vertex v to apply edge

’ Z " (4) . . .
operators LY, LY, LY , LY~ to each edge adjacent to v in counterclockwise order as shown

24The edges in the lattice can be arbitrarily directed, and the physics of the model will be independent of
those directions.

22

1

1

'

'

'

Y

1
i |

P T
-j\ I , """""""""'DC"f"
1 900 : T_
v :
e It

Figure 2.1. The solid grid connecting all vertices V' represents the square
lattice I', while the dashed grid connecting all dual vertices P* represents the
dual square lattice I'*. A site s = (v, p) is represented by a segment connecting
a vertex v and a dual vertex p*. For f € H*,a € H, the edge operators Ti
and L4 act on the Hilbert space H, of an edge e.

and explained in Figure 2.2. For example, when it is applied to the product state of |z1),

|za), |23), |24), the result is

Aq()]a)|wo)) wa) = > |a'w1)|a"wo)|a" x5) aWzy). (2.48)

A(s) =S 10 1Y o 1" @ 12 (2.49)

To define By(s), f € H*, we start from the site s, go around the dual vertex p* to apply
edge operators Tf, T il , T ", T f4) to the edges on the boundary of p in counterclockwise

order as shown and explained in Figure 2.3. When it is applied to the product state of |z),

|22, |23), |4), the result is 3

By(s)|an)|wo)|ws)|wa) = 3 f (2 wyalal)|a))|2h) o)]a)). (2.50)

Bi(s) =T o T!" o T{" 0 T/ (2.51)

31To derive Equation 2.50, we use the fact that the comultiplication A, in H* is actually u”.

23

Figure 2.2. The convention for the local operator A,(s): for each edge, we

choose + sign for the edge operator L2 if the edge leaves the vertex, and
choose — sign otherwise.

Figure 2.3. The convention for the local operator By(s): for each edge, we

choose + sign for the edge operator T ™ if the direction of the edge coincides
with the counterclockwise orientation of the boundary of p, and choose — sign
otherwise.

We remark that our convention for defining the operators A,(s) and By(s) is opposite
to that in [9] [11]. Explicitly, these operators on a lattice I" will be the same as those of [11]
on a lattice IV obtained from I' by reversing the orientation of all edges. When the Hopf
algebra is a group algebra, our convention is consistent with that in [16].

For each site s = (v, p), we extend the definition of A,(s) and By(s) for the entire Hilbert
space H. This is achieved by taking the tensor product with the identity operator on edges
that are not adjacent to v or p. These local operators at s, denoted A,(s) and By(s), define
a representation of the Drinfeld double D(H), mapping f ® a to ByA,. A significant aspect

24

of this representation is the straightening equation. To ensure the self containedness, we
provide a verification of the equation for local operators in Appendix A.1.

Let hg € H and ¢ € H* represent the Haar integral. For a site s = (v, p), it is verifiable
that Ap,(v) = Ap,(s) solely depends on v and Byg(p) := Byg(s) exclusively relies on p.
Furthermore, the operators in the set {A4,(v) : v € V} U{By(p) : p € P} function as

mutually commuting projectors. The (frustration-free) Hamiltonian of the model is given by

H==3% Apv) = Bs(p), (2.52)

veV peP

and the ground states are simultaneously stabilized by all the terms in the Hamiltonian.
Equivalently, the ground states space can be characterized as the subspace of H correspond-

ing to the trivial representation of D(H) on all sites s.

2.5 Toric code

The toric code represents the most elementary example of Kitaev’s quantum double
models where G = Z,. It is defined on a square lattice, topologically equivalent to a torus as
shown in Figure 2.4. A spin 1/2 is located on each edge e of the lattice, and we also use e to
denote the associated qubit. The lattice componentsvertices, faces, and edgesare denoted as
V., F, and E, respectively. For each face f € F', the set of surrounding edges is denoted by
s(f), and similarly, for each vertex v € V, the set of surrounding edges is s(v). The vertex
operator A, consists of tensor products of Pauli operators 7 acting on the edges e within
s(v). Similarly, the face operator By is formed from tensor products of Pauli operators 67
acting on the edges e within s(f). The Hamiltonian of the toric code is defined as the sum

of all vertex and face operators:

H=-Y4,-YB=-Y [o~ 1] o 2.59)

veV feFr veV e€s(v) feF ees(f)

For a Hamiltonian of the form

H=-3P, (2.54)

25

y

1
1
<

_ &

@------@---q---0-

N

[]
)

Figure 2.4. The torus on the left is cut along the edges E, and Ej to get
the square lattice shown on the right, with opposite edges identified. The
3 x 3 lattice shows stabilizer operators A, within the blue range and By within
the red range, logical operators X, and X} along the vertical and horizontal
dashed loops, respectively, and logical operators Z, and Zj, along the edges F,
and E},.

where each P, is a projector and all projectors are mutually commuting, the ground state

|GS) can be derived from any arbitrary non-zero state |¢):

GS) =TI Pile). (2.55)

This construction ensures that the ground state is the simultaneous eigenvector of all projec-

tors. Given A} = B} = 1 and [A,, Bf] = 0 for allv € V and f € F, it can be confirmed that

1+A

1+B
5 and !

5+ act as projectors. Replacing A, and By in the Hamiltonian with these pro-

jectors yields a equivalent form consistent with Equation 2.54. This equivalence, stemming

from a one-to-one correspondence in their spectra, ensures that the state

68) = T1 5 T~ 79) (2.56)

veV fEF

is a valid ground state as per the earlier defined criteria. Notice that the toric code model is
inherently a stabilizer code, with the local Hamiltonian terms A, and B acting as stabilizer

operators. In the context of error-correcting codes, the ground states function as logical

26

states. The operators that dissolve these ground states are known as logical operators*. As
described in [9], the degeneracy of the ground states for a 2D toric code on a torus is identified
as four distinct states: |00), |01), [10), and |11). The logical operators X, and X, consist of
strings of 67 acting along the vertical and horizontal loops, respectively, transforming |00)
to |01) and |10). Similarly, the logical operators Z, and Zj consist of strings of 7 acting

along F, and E}, respectively, distinguish |00) from |01) and |10).

2.6 Restricted Boltamann Machines

Hidden Layer
bi_o bi_1 b;

aj—2 aj—1 Qj Aj41

Visible Layer

Figure 2.5. This diagram illustrates a RBM with visible neurons colored
gray and hidden neurons colored white. The architecture ensures there are no
intra-layer connections; instead, each hidden neuron is connected to all visible
neurons. Each neuron and each connection is assigned a weight.

In the literature [34], Carleo and Troyer employ an Restricted Boltamann Machines
(RBM) as a variational ansatz for the spin-half Ising model, as illustrated in Figure 2.5. The
neural network consists of a layer of visible neurons corresponding to /N physical spins in the
configuration S = (07,03,...,0%) °, and a single hidden layer containing M auxiliary spins
represented as M = (hq, ha, ..., hy). The wave function for the configuration is expressed

in the variational form:

Tas(S W) = 37 e e s (2.57)
{hi}

417), and X, as well as Z, and X}, serve as pairs of logical X and Z operators for the two logical qubits,
and are thus named as the logical operators.
54Throughout this paper, we use % for operators and use o for classical variables, 0% = +1.

27

where {h;} = {—1,1}* represents all possible configurations of the hidden auxiliary spins.

The network weights W = (a;, bj, w;;) can then be trained to optimize

W)= 5 U (SWIS) (2.58)

to best represent the ground state |GS). As RBM restricts intralayer interactions, we may

trace out all hidden variables according to the chosen preferred basis to simplify the wave

function:

\I’M<S, W) = ezi ajajz H 2 COSh(bi -+ Zwi’jajz). (259)
i J

28

3. RIBBON OPERATORS IN GENERALIZED KITAEV
QUANTUM DOUBLE

This chapter contains work from the article entitled "Ribbon operators in the generalized
Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,
and Shawn X. Cui published on Journal of Physics A [1].

In this chapter, we rigorously define ribbon operators in the generalized Kitaev quan-
tum double model based on a semi-simple C* Hopf algebra. We systematically study their
properties and demonstrate that the ribbon operators can be interpreted as representations
of D(H)* or D(H)*°, where D(H) represents the Drinfeld double of H. Additionally, we
provide an explicit proof that when a ribbon is given, the ribbon operators on it commute
with all terms in the Hamiltonian, except for those associated with the two ends of the rib-
bon. Consequently, ribbon operators create excitations exclusively at their ends. For a given
ribbon 7, we denote by V. the space of states obtained by applying ribbon operators on 7
to the ground state. The space V, represents the collection of 2-point excitations, wherein
the excitations are localized at the ends of 7. It is shown that V, is naturally isomorphic
to D(H)*. Furthermore, local operators situated at the ends of 7 act on V, through regular
representations of D(H). As a result, we establish a one-to-one correspondence between

elementary excitation types and irreducible representations of D(H).

i AN 3
SR RRREEE B 5 e e R
R R

3 v |

Figure 3.1. An illustration of elementary ribbons (dark solid triangles). The
solid grid represents the lattice and the dashed grid represents the dual lattice.

29

Furthermore, we unravel some subtleties in the definition of ribbon operators. In the
literature (e.g., [9], [16]), only two types of elementary ribbons are taken into account: the
direct triangle and the dual triangle. For instance, in Figure 3.1, I and III are direct triangles,
while IT and IV are dual triangles. However, we show in Section 3.2 that I and III have to
be treated differently when defining operators on them, and so do II and IV. The key aspect
to note is that each pair of triangles possesses a distinguishing property, which we call
local orientation. For instance, II is locally clockwise while IV is locally counterclockwise.
Furthermore, the concept of local orientation can be extended to ribbons in a more general
context as shown in Section 3.3. For a more comprehensive understanding of the technical
intricacies, readers can refer to the appendices, where many of the detailed explanations can

be found.

3.1 Directed ribbons

Let so = (vo, po) and s1 = (v, p1) be two distinct sites that share a common vertex (i.e.,
vo = v1) or a common dual vertex (i.e., pg = p1). There is a unique triangle 7 whose sides
are given by sg, s1, and an edge e, in the lattice or the dual lattice. See the bottom left two
examples in Figure 3.2. The triangle 7 is said to be of dual (resp. direct) type if e, is an edge
in the dual (resp. direct) lattice, or equivalently, if vg = vy (resp. po = p1). We also assign a
direction to 7, indicated by a double arrow inside the triangle, so that it points from sg to
s1. Denote by s; = 0y7, i =0, 1. A ribbon is a sequence of mutually non-overlapping directed
triangles 7 = 179 - - - 7, such that oyy = Oy1iyq, i = 1,--- ,n — 1. Note that 7 inherits a
direction from its components, also indicated by a double arrow, and we call 9y7 := Jy7; the
initial site and 0,7 := 017, the terminal site of 7. See Figure 3.2 for an illustration of several
ribbons. By default, all ribbons are directed. A closed ribbon is one for which the initial
site and terminal site coincide. Unless otherwise stated, ribbons considered in this thesis are
not closed. Triangles are called elementary ribbons. We introduce a property, called local
orientation, of directed ribbons which seems to be missing in the literature, but will turn

out to be critical to coherently define ribbon operators.

30

l l l l l
l 7. ! ! IT l
g | SNV VAR
S0 T = 7"3 — ! —
— Th and T 81: So %L :
! ! | |
| | : o
| | | |
I N~ |
7777777\ 7777777\ | 7777ﬂ11\ \777777
S0 /TR \51 | — | | — N\S1
— ENZE N
| | | | |
| | | | |

Figure 3.2. A ribbon 7 is composed of triangles 7 (i = 1,2---n) with a
direction from sy to s;. A triangle is a component of a ribbon with inherited
direction and also the shortest ribbon.

Let 7 be a directed triangle (of dual or direct type) with initial site so = dy7 = (vg, po).
Then 7 has clockwise (resp. counterclockwise) local orientation if a clockwise (resp. counter-
clockwise) rotation of sy around pjj immediately swipes through the interior of 7. We draw a
clockwise/counterclockwise arrow around pj to denote the local orientation of 7 (See Figure
3.2).

An intuitive motivation for introducing local orientation is as follows. We can see that
for a triangle of a given type, a choice of direction is not sufficient to uniquely determine the
shape of the triangle. For example, the triangles II and IV in Figure 3.2 are both of dual
type and directed to the right, but IV is an ‘upside down’ version of II, and as will be shown
later, they have to be treated differently when we define ribbon operators on them. Local
orientation can be used to distinguish those two since triangle II is locally clockwise while
IV is locally counterclockwise.

It is straightforward to see that changing the direction of a triangle will also change its
local orientation. We note that a choice of direction is a structure on the triangle, while
the type and local orientation are each a property of a directed triangle (though only the
later depends on the direction). Thus, there are four classes of directed triangles according

to different combinations of local orientation and type. In Figure 3.2, the triangles [-IV in

31

increasing order are, respectively, clockwise direct, clockwise dual, counterclockwise direct,
and counterclockwise dual.

Now let 7 be a general directed ribbon. Clearly, its composite triangles can have different
types (direct or dual). However, an important observation is that all of the triangles of 7
must have the same local orientation. Hence, we can extend the notion of local orientation
from triangles to general ribbons. Intuitively, if a ribbon aligns horizontally and directs from
left to right, then turning it upside down will change its local orientation while keeping its
direction. Reversing the direction alone will flip its local orientation as well. As a notation,
we also denote a directed ribbon by 7, if it is locally clockwise and by 75 if it is locally

counterclockwise (This notation is motivated by the left /right hand rule).

3.2 Definition of ribbon operators

For a directed ribbon 7 and h® f € H® H*, we will define the ribbon operator F"®/(7),
also written as F(»f) (7). The operators will act on the whole Hilbert space H, but the
action is non-trivial only on the edges contained in 7. Explicitly, for an elementary ribbon
7, let H, := H,, if 7 is direct, and H, := He: otherwise. For a general ribbon 7, decompose
T =7 U7 so that ;71 = 9y, and define inductively H, := H,, @ H,,. Then F") (1) will
only act non-trivially on the space H,. The definition of ribbon operators below is motivated
by [9] [16] for group algebras and by [11] for Hopf algebras. However, none of the above
references addresses the critical issue of local orientation, as to be discussed later.

First, assume 7 is an elementary directed ribbon, i.e., a triangle. There are four cases
depending on its type and local orientation. Also, recall that the edges in the lattice as well
as those in the dual lattice are directed. The direction of the edge e, and that of 7 can
be either parallel or opposite. Taking this into consideration, we distinguish eight cases in
Equations 3.1a-3.1h, where Equations (a) — (d) correspond to locally clockwise triangles and

(e) — (h) locally counterclockwise triangles.

32

FUI (1) |z) = e(f)|zS(h)) (3.1c)

FUD(r)|e) = e(f)lhe) (3.1d)

FD(rp)|z) = 3" e(h) f[S(2)]]a")

—
8
N2

(3.1e)

33

FD(rp)|z) = 3 e(h) f(a")]a')

(3.1f)

FUD(1R)|z) = e(f)[S(h)z) (3.1g)

F" I (1g)|z) = e(f)leh) (3.1h)

For ribbons other than elementary triangles, we define the ribbon operators inductively.
Let 7 be an arbitrary ribbon. Decompose 7 as 7 = 7 L 73, where the terminal site of 7

matches the initial site of 7, and they are disjoint otherwise. For h® f € H ® H*, define

F (1) .= > 591 () PSEONTLFGTD (7)) (3.2)

i,(1),(h)
where {i} is an orthogonal complete basis of H, and ¢; = (i,) is the corresponding functional
in H*. The above definition is explicit, but a more intuitive way is as follows. For an element

h® f € D(H)* ~ H® H* where the isomorphism denotes a linear isomorphism between

vector spaces,

Aho f)= > (hef)® e f). (3.3)

(h®f)

34

We apply the expansion to the construction of ribbon operators as

Fhef(r) = > F(h®f)/(7'1)F(h®f)”(7'2). (3.4)
(h®f)

It can be checked that Equations 3.2 and 3.4 are equivalent. The ribbon operators do

not depend on how the ribbon is partitioned into shorter ones due to the coassociativity of

the comultiplication in Hopf algebras.

3.3 Local orientation in original Kitaev model

In this subsection, we show that the distinction of local orientation is already necessary
in the orignal Kitaev model. Note that, from Equations 3.1, F"/)(7) does not distinguish
local orientations on direct triangles if H is cocommutative, and it does not distinguish local
orientations on dual triangles if H is commutative. In particular, if H is the group algebra
of an Abelian group (e.g., toric code), then local orientations are redundant. On the other
hand, for the group algebra of a non-Abelian group in the original Kitaev model, the two
local orientations on a dual triangle should support different ribbon operators according to
our definitions. This distinction, however, has not been addressed in the literature, to the
best of our knowledge. In [9], [16], the definition of ribbon operators on triangles coincide
with that presented in Equations 3.1a-3.1d corresponding to locally clockwise orientation.
We show below with an explicit example that ignoring local orientations can cause certain
properties to fail.

For the rest of the subsection, let H = C[G] be the group algebra of a non-Abelian group
G. Equation 3.5 is a commutation relation that is expected to hold between ribbon operators
and plaquette operators, where sq is the initial site of a ribbon 7 (see Equation (B42) in
[16]), and ¢, h, g € G.

By(s0)F™9(7) = F™9(7) By (s0). (3.5)

In fact, we just need the above identity to hold when both sides act on the ground state.
Take 7 to be the ribbon shown in Figure 3.3, which is a dual triangle and has locally

counterclockwise orientation. In Appendix A.2, we show in detail that Equation 3.5 fails for

35

7 and any other ribbon that starts with 7 if we use the old definition of ribbon operators
on them. By recognizing 7 with locally counterclockwise orientation and using the new
definition (Equation 3.1g), we can resolve the issue, and obtain the following commutation
relation,

By(s0)F"9(1) = F™(7) Bu(s0), (3.6)
which is equivalent to Equation 3.5 when acting on the ground state since dpse = dipe-

xT3
V]
N

S0

=
—_

Figure 3.3. A counter-example of a ribbon for which Equation 3.5 fails in
the original Kitaev model.

3.4 Properties of ribbon operators

In this section, we establish a few properties of ribbon operators. Recall that the ribbon
operators F"/(7) only act non-trivially on the Hilbert space H.,. Let 77, and 7z be a locally

clockwise and a locally counterclockwise ribbon, respectively:
Fhl’fl(TL) . FhQ’fQ(TL) — Fhiha.f2f1 (TL), (3.7>

Froli(7g) « P02 (rg) = FRbufile (7). (3.8)

In another words, the operators F»/(7) define a representation of D(H)** on H, if 7 is

locally clockwise, and a representation of D(H)* if 7 is locally counterclockwise.

36

Proof. In Appendix A.3, we show in details that the above two equations hold for elementary
ribbons. Then it can be proved inductively that they also hold for general ribbons using
the compatibility condition between multiplication and comultiplication in a Hopf algebra.
Notice that D(H)*°? and D(H)* share the same comultiplication. Below we only give the
proof for 7 since that of the other case is similar.

Let 7 be a locally counterclockwise ribbon. Assume Equation 3.8 holds for any ribbon

whose length is shorter than that of 7z. Decompose 7 as T = 7 L5 such that 0,71 = Oy7o:

FR@h (1) . Fh2®F (1) (3.9)

> Fmen) (rypmeh)” 5,y . 3 Fhe®f) (1) pha®f2)" (7)) (3.10)
(h1®f1) (h2®f2)

_ Z Z F(h1®f1)'(7-1)F(h2®f2)'(7-1) F(h1®f1)”(TQ)F(h2®f2)”(7'2) (3.11)
(h1®f1) (h2®f2)

-y ¥ Fmen) (heef) (1) pluef)" (o) 1)) (3.12)
(h1®f1) (h2®f2)

_ Z F(h2h1®f1f2)'<7-1) F(h2h1®f1f2)”(7-2) (3.13)
(h2h1®f1 f2)

_ phatis (), (314

In the above derivation, the first and the last equality are due to Equation 3.4, the third by
induction, the fourth by the compatibility condition between multiplication and comultipli-
cation in D(H)*, and the second by the commutativity between ribbon operators on 7, and

those on 7. O

Next, we examine the commutation relation between ribbon operators and local opera-
tors. Let |GS) € H be the ground state’. Then at any site s, the local operators act on
|GS) as follows,

A (5)|GS) = |GS), (3.15)
By(s)|GS) = f(1)|GS), a€H,feH" (3.16)

4To the interest of the current thesis, we can assume the lattice is defined on the sphere or the infinite
plane, and so there is a unique ground state.

37

Let 7 be a ribbon with initial site s = Jy7 and terminal site s; = d;7. Assume the length
of 7, i.e., the number of triangles contained in 7, is greater than one. The following is a
technical lemma concerning the commutation relation between ribbon operators on 7 and
local operators on its ends.

Lemma. Let 7, and 7 be a locally clockwise and a locally counterclockwise ribbon,

respectively, as described above.

1. At sg, we have

Au(s0) FBD () = 3 FRRS@OIS@M (1) A) (s9), (3.17a)
(@)
Aa(s0) F0D (73) = S° FehS@OLS@ (1) A (s0), (3.17b)
(@)
By(so)F f) (11.) ZF W, TL) Bizsny (50), (3.17¢)
By(so)F ZF WD) (7R) By (s0)- (3.17d)
2. At sy, we have
Au(s1)F"D (1) =3 FICO) (1) A (s1), (3.18a)
(a)
Au(s1)F"D () = 37 FICN (1) A (1), (3.18b)
(@)
By(s)F"D(r) = S f({")F™ 9 (71) Bysompmnio) (s1), (3.18c)
(i),(h),i
Bi(s1)F"D(rp) = 3= fE)F"9) (1) Byppsommmin (51)- (3.18d)

(i),(h)i

In the above, {i} is an orthogonal complete basis of H, and ¢; = (i,) is the corre-

sponding functional in H*.

Proof. For a detailed proof, see Appendix A.4. The idea is that we first prove the above
equations for ribbons with shortest possible length, and then extend the equality to longer

ribbons using the decomposition formula in Equation 3.4. The shortest possible ribbons

38

for the equalities in Equation 3.17 are illustrated in Figure 3.4, and those in Equation 3.18

illustrated in Figure 3.5. [
x4y 33?
—
, (a > 1 d)
3 o (Y s0
AT2 .%
1

Figure 3.4. Ribbons marked with (a)-(d) correspond the Equation 3.17 a-d.

TaY¥ x?
s1 /(@ T4y AZ2
—
((b) N N (9
I3 T) 51
AT2 %
1

Figure 3.5. Ribbons marked with (a)-(d) correspond the Equation 3.18 a-d.

Using the lemma, we can also deduce that ribbon operators commute with all terms in
the Hamiltonian except for those associated with the ends of the ribbon.

Let 7 be a ribbon and s be a site on 7 such that s has no overlap with 0;7. Denote the
terms associated to s in the Hamiltonian by A(s) = Ap,(s), B(s) = By(s) where hg € H is
the Haar integral of H and ¢ € H* is the Haar integral of H*. Then,

A(s)FD (1) = F®™D (1) A(s), (3.19a)
B(s)F"D (1) = F"H(1)B(s). (3.19b)
Proof. See Appendix A.5 for a proof. m

39

The commutation relation between ribbon operators and local operators at the ends in
the lemma may look complicated. However, if we restrict ribbon operators on the ground
state, then those relations reduce to more compact formulas. Let V. be the Hilbert space of

ribbon operators on 7 acting on the ground state,
V, = spanc{|h ® f) = F"*/(1)|GS) : h® f € D(H)"}. (3.20)

Then, V; is naturally identified with the space D(H)*. Recall from Equations 2.36 and 2.37,
D(H), as a Hopf algebra, has two natural representations on D(H)* denoted by L and R,
where L is induced from the left multiplication of D(H) on itself and R is induced from the
right multiplication (precomposed by the antipode). Apparently, these two actions commute
with each other.

Let 7 be a ribbon of either local orientation with s; = 7. Identify V, with D(H)*. Then
the local operators By(so)A4(so) define a representation of D(H) on V; isomorphic to L, and

Bi(s1)Au(s1) define a representation isomorphic to R.

Proof. The statement can be proved by restricting the identities in Equations 3.17 and 3.18
on the ground state. It is straightforward to see that, at sg, the two identities in Equations

3.17a and 3.17b corresponding to the two cases of local orientations both reduce to,
Aa(s0)lh @ f) =3 _|a’'hS(a"), f[S(a")7]), (3.21)
(a)
which agrees with Equation 2.36, the action L on D(H)*:
L(a)|(h® f)) = (h® f)(S(a)?)) = >_la’hS(a") ® f[S(a")7]). (3.22)

(a)

Similarly, at s1, for either local orientation we have

Aa(s))lh @ f) = [h, f(7a)), (3.23)

40

which agrees with Equation 2.37, the action R on D(H)*:

R(a)lh® f) = [(h® [)(?a)) = [h @ f(?a)). (3.24)

We leave the verification for the actions of B(sg) and Bf(s1) as an exercise. O

To summarize, ribbon operators on a sufficiently long ribbon 7 commute with all terms
in the Hamiltonian except those associated with the ends of 7. Hence, ribbon operators
create excitations only at the ends of a ribbon. When acting on the ground state, the space
of ribbon operators on 7 is naturally identified with D(H)*. The action of local operators on
oy preserve D(H)*. Thus, D(H)* can be thought of as the space of elementary excitations.
More specifically, the action on dy7 define a representation of D(H) on D(H)* coinciding
with L, and that on 0;7 a representation of D(H) on D(H)* coinciding with R. These
two actions commute. By standard representation theory (see Equation 2.34), we have the

decomposition,

DH) ~ P pou, (3.25)

pELT (g1
where L acts on the first factor and R acts on the second factor. Therefore, the local operators
on the ends of 7 can map a state in a sector u* ® u to any other state within the same sector,
but cannot permute states of different sectors. This implies that the types of elementary ex-
citations are labelled by irreducible representations of D(H). Using Fourier transformation,
it is not hard to find a specific basis {(vab| : v € Irrpy,a,b=1,--- ,dim(v)} of D(H)* so
that L acts only on the a index and R acts only on the b index (See Appendix A.6). That
is, for m € D(H),

L(m)({vabl) = > D" (m)g(vkb|, (3.26)
k

R(m)((vabl) =>_ D" (m)w(vak|. (3.27)
k

41

3.5 Conclusion and outlook

In this chapter, we provided a concrete definition of ribbon operators in the generalized
Kitaev quantum double model, which is constructed over a semisimple Hopf algebra. We
introduced the notion of local orientation on ribbons which we must distinguish in defin-
ing the operators on them. It was shown that even in the original Kitaev model based on
non-Abelian groups, the issue of local orientation has to be addressed. Otherwise, certain
properties of ribbon operators that are expected to hold would fail. We derived some prop-
erties of ribbon operators in the generalized model. For instance, they create quasi-particle
excitations only at the end of the ribbon, and the types of the quasi-particles correspond
to irreducible representations of the Drinfeld double of the input Hopf algebra. While these
properties are a folklore, their derivations are technically complicated.

There are several future directions to proceed. Firstly, since this Hopf-algebra-model can
be further replaced by a weak Hopf algebra (or quantum groupoid) [12], it will be interesting
to define and study ribbon operators in that case. Secondly, the generalized Kitaev model
may find applications in topological quantum computing. For example, which Hopf algebras
support universal quantum computing? Lastly, the authors in [46] gave a Hamiltonian
formulation for gapped boundaries in the original Kitaev model. It will be interesting to

generalize the formulation to the case of Hopf algebras.

42

4. QUANTUM CIRCUITS FOR TORIC CODE AND X-CUBE
FRACTON MODEL

This chapter contains work from the article entitled "Quantum circuits for toric code and
X-cube fracton model" written by the author, Bowen Yan, and Shawn X. Cui published on
Quantum [2].

In toric code, the Hamiltonian consists of two types of operators, the term A, for each
vertex v and the term B, for each plaquette p. The key idea of constructing the ground state
in [22] is as follows. Start with the product state |¢g) = ®|0) which is the +1 eigenstate for
all vertex terms. The ground state is then obtained by projecting |¢g) to the +1 eigenstate
of all plaquette operators, that is,

G8) ~ T2 60, (4.1)

The effect of % acting on certain states can be simulated by an appropriate combination
of the Hadamard gate and the CNOT gate. For this method to work, the control qubit for
CNOT has to be in the |0) state prior to applying the Hadamard and CNOT. Hence, it is
critical to choose the right sequence for the plaquettes so that, immediately before simulating
the term corresponding to each plaquette p, there is always at least one edge on the boundary
of p with the state |0).

Moreover, we also adapt this method to 3D phases including the 3D toric code and the
X-cube fracton model. For the X-cube model, we again initialize the state to the product
of |0) state and simulate the projectors corresponding to cube terms. A similar issue arises
that we need to choose the correct sequence to simulate the cube terms. We note that the
circuit we provide here realizes an ezact ground state of the X-cube model. By comparison,
using cluster states and measurements, the authors in [28] gave an approzimate realization

of the model.

43

4.1 Single plaquette

To systematically introduce our ground state simulation method, we initiate with the
most elementary scenario: applying ﬂ on a single plaquette, which is the basic structure
in 2D toric code. A Hadamard gate H is naturally described by X +Z , and CNOT gate Ci;
is defined as

-7, 1+%

Cisilij) = (—5—X; + 5

. i), (12)

where i is the control qubit and j is the target qubit.

H,\l C —2 C —3 C —4
! / \

2 4 °® [

Figure 4.1. Initially, a qubit in the state |0) is situated at each gray dot.
As quantum gates are applied to these qubits, their color changes to black.
A circle positioned on a dot signifies the application of a Hadamard gate to
the corresponding qubit, while an arrow indicates a CNOT gate, with the
arrowhead pointing from the control qubit to the target qubit.

In the single plaquette shown in Figure 4.1, four qubits labeled 1,2, 3, and 4 are initialized
to the state |0). Subsequently, we will systematically implement Hadamard and CNOT gates
in a specific sequence, as outlined in the figure. After the application of H; and C}_.5, we

have

1-2Z 1+ 2, X\ + 2
<1%Hmmm=c—?i&+ 5 UlJ_l

X1 Xo+1

V2

10000) = 10000). (4.3)

+

2 into the equation as £Z|0) = |0):

Explicitly, we can insert a

1- 7, 1+72, X1+ 72,1+ 2,

X 4.4
(5 T) V2 2 (44)
1 1+ 7, 1- 7, 1- 7, 1+ 7, 1+ 27,

— (X, X, + X X 45
¢#(5 X+ Xi—)+ (5 X2+)} 5 (4.5)
1 1+ 7,

- (X, X, +1 4.6
¢? 1 Xo + 1) 5 (4.6)

44

Notice % survives within { } in Equation 4.5. After reverting to the original expression

and substituting % with 1, we verified the accuracy of Equation 4.3. Importantly, this

equation holds for any quantum state |¢):

X1 Xo+1

CiooH1|0) ® |¢) = /2

0) ® |9), (4.7)
since the key step only requires that the initial state must be the eigenstate of Z; with an

eigenvalue +1. Finally, applying the other CNOT gates results in

X1 XoX3Xs + 1
V2

1+ B,

V2

0000) =

4
T[] C1-:H10000) = 10000), (4.8)
i=2

which is the desired ground state. It is important to observe that this procedure remains
effective as long as a qubit from B,(p) is initially in the state |0). We term such qubits
as free qubits, and their presence is pivotal when considering scenarios involving multiple

plaquettes.

4.2 Developing to a surface with boundary

Given a complicated lattice I' in the state |¢o), we need to find a path (termed permissible
order in [26]) through all plaquettes p;, such that U;p; = P, using a sequence of edges
e; € Bo(p;) where ¢; ¢ U};{ p;. Each e; is then utilized as a free qubit to apply the introduced

basic structure, resulting in the accumulation of [[; 1;%’1 over [0---0), which represents

the ground state of the toric code on lattice I'. To illustrate the procedure, we take four
plaquettes as an example depicted in Figure 4.2. A path featuring four free qubits e; to ey4
has been chosen, where ¢; starts in the state |0) at the onset of every step. Upon completing

the path, the desired ground state is eventually obtained.

45

AL L NANAL

Figure 4.2. The procedure on the basics structure is applying Hadamard
gate on any qubit at |0) first and CNOT gates to other qubits in any order.

4.3 Developing to a surface without boundary

The scenario shifts when dealing with a surface without boundary. While the initial state
remains |¢g), it becomes impossible to locate a path with sufficient free qubits to cover the

entire lattice. Fortunately, as every edge sides two plaquettes, the equation holds:

H B, =1, (4.9)

peEP

which implies that we can intentionally choose a specific B, as redundant. Consequently,
we can select the final plaquette as the redundant one, effectively terminating the path. To
illustrate, consider the lattices on a torus shown in Figure 4.3, there is no need to apply
Hadamard and CNOT gates to the bottom left plaquette, as we have previously simulated

the toric code’s ground state.

yaEalus

R N A

v

Figure 4.3. Boundaries with the same color are identified to represent a torus.

46

This method remains applicable to more intricate 2D surfaces with or without boundary,
provided a suitable path can be identified. Additional examples are provided in Appendices
B.1 and B.2. Furthermore, the gluing method detailed later empowers us to simulate ground

states on arbitrary planar lattices.

4.4 Simulate arbitrary ground state

As stated in [9], the degeneracy of ground states for 2D toric code on torus is four: |00),
|01), |10) and |11). The ground state |00), presented in Section 4.3, is simulated from the
initial state ¢g. Due to the properties of logical operators, which can interchange ground
states and commute with B, it is feasible to apply them to ¢y to obtain the remaining

ground states.

[O N R e N R O D

e

__I_J __(b_J __(bI_J __(b_J

Figure 4.4. A qubit |0) is placed at each gray dot and the color changes to
black when operator X flips the qubit from |0) to |1).

[ustrated in Figure 4.4, a vertical loop and a horizontal loop of X represent the two
logical operators. They are capable of transforming ¢ into ¢g;, ¢19 and ¢11, which correspond
to the initial states of |01), [10) and |11), respectively. Subsequently, we can repeat the same
procedure detailed in Section 4.3, but with a modification: utilize X;C;_,;X; instead of Ci_;
when encountering a flipped qubit e;.

One step further, in order to obtain an arbitrary ground state ® = ae|00) + bei?%|01) +
ce?10) + de'%¢|11), we can implement the unitary operator U outlined in Equation 4.10 on
an adjacent pair of vertical and horizontal edges of ¢y and subsequently utilize CNOT gates

to transmit vertically and horizontally to get ¢. From there, we can proceed by repeating the

47

aforementioned method and we must avoid qubits that have already been utilized, opting

instead for free qubits.

a —b 0 0

a2+4b2 y/a2402
b a

0 0 Va2+b2 0 —Vc2+d? 0
U, — \ aZ+b2 4/a2+b2 0 Vaz+b2 0 VT2
1 0 0 o —d VETE 0 Va0 ’

\ e2+d2 4/ c2+d? 0 Ve2+dz 0 Va2+b2

0 0 d c
A /c2+d2 2442
elfa 0 0 0
— 0 €% 0 0 —
U2 = 0 0 elfe 0 and U= U2U1. (410)

0 0 0 &%

4.5 Quantum circuit depth

To simulate a toric code with length L, using local unitary gates requires at least linear
size O(L) depth circuits [47], and constant depth is achievable if measurement operations
are allowed [29]. A recent work provided a systematic method to simulate an unknown toric
code in 3L + 2 depth [48], [49]. In comparison, on a L x L square lattice over a torus, we
can simulate a known toric code state like |00) in 2L + 2 depth and an unknown toric code
® in [2L + 2 + loga(d) + %] depth. Here, the quantum circuit is local and the CNOT gate
is restricted to be applied on two qubits with a distance d.

To simulate the state |00), we initiate the process with ¢q and designate the plaquette
at the bottom right corner as redundant. Subsequently, we proceed the quantum gates step
by step, following the instructions outlined on the left side of Figure 4.5. On the other
hand, as elaborated upon in Section 4.4, an unknown toric code state ® can be attained
by substituting ¢g with ¢, which is obtained from two logical qubits through a sequence
of CNOT gates. This procedure demands [loga(d) + %] steps !, where d represents the
maximum distance between the two qubits that CNOT gate could apply without breaking
locality. Additionally, a slight variation in the order, as demonstrated on the right side of

Figure 4.5, is essential to initiate with ¢.

1For detailed discussion on the local CNOT gate, see Section B.3.

48

gans

Hi

L
L

I

Figure 4.5. Opposite boundaries are identified and the case of L=3 is pro-
vided as an example. In both figures, the prescribed order for gate application
is as follows: 1 Apply Hadamard gates to the qubits encircled by circles; 2
Execute CNOT gates, indicated by green arrows, followed by those with blue
arrows; 3 Implement CNOT gates denoted by red arrows, following their nu-
merical order. In the right figure, orange dots signify qubits that hold the
information of ®.

|00)

4.6 Gluing method for two single plaquettes

The method introduced in the preceding sections is efficient; however, it hinges on the
selection of a suitable path. This choice could prove challenging for intricate surfaces. To
address this concern, we propose a gluing method designed to overcome this complexity.
To exemplify the essence of the gluing approach, we will commence with a straightforward
example. To simulate the ground state of toric code on the two plaquettes in Figure 4.6,
we can employ an ancilla qubit to partition it into two independent plaquettes p; and p,.
The edges within Bo(p;) are denoted by 1,2, 3,4, while those within Bo(p,) are denoted by
5,6,7,8. We initiate the process with ¢y and ignore the overall normalization constant to
simplify subsequent calculations.

First apply 1+ B, and 1+ B,, independently to get

(1+ X, X0 X5X4) (1 4 X5X6X7X5)[00...0). (4.11)

49

e °
b1 D2 ® D1 % D2 ®
2 4 5 7
e)
3 6

Figure 4.6. The lattice of two plaquettes is divided into two independent
plaquettes by introducing the ancilla qubit in red.

Then apply C4_,5 and notice this operator commutes with 1 + B,,:

1-Z 1+ Z
(— 21X+ +2 (14 X1 X5 X5X,) (1 4 X5X6X7X5)[00...0)

Finally, make a measurement over the ancilla qubit with basis |[+) = % and |—) = ‘0>\;§|l>.

If we get +1, it is equivalent to applying % and thus

1+ X
] XX X XX (1 + X5 X6 X7 Xs)[00...0)

2
1+X
=(—5 (14 X1 X5 X5X5) (1 4+ X5X6X7X5)[00...0). (4.13)

The ancilla qubit is disentangled, leaving us with the ground state of the two plaquettes.
Observing that, when two boundaries e; and e; are glued together, all plaquettes terms
commute with each other and Ci_,; commutes with all plaquette terms except 1+ B, where
e; € Bo(py). This observation underscores that the resultant combination remains a ground
state even when multiple plaquettes are fused together concurrently.

On the other hand, if we get -1, it is equivalent to applying % and thus

1-Xy
2

= (

(1+ X1 X5 X3X:X5)(1 4+ X5X6X7X5)|00...0)
1- X,

)1 — X1 X5 X5X5)(1 + X5X6X7X5)[00...0), (4.14)

20

which is not the expected ground state. It is worth noting that the resulting state is an
excited state if a magnetic charge exists at p;. Fortunately, we can correct it by applying 21,
Zy or Zs, each of which is a short dual ribbon operator. In the subsequent section, we will
establish a proof demonstrating that a correcting operator invariably exists for any planar
lattice.

Our method, can be naturally extended to more general scenarios where projectors only
involve tensor products of Pauli X (given that tensor products of Pauli Z operators are
automatically satisfied by the state |00...0)), such as 3D toric model or X cube model to be
addressed below. For instance, let us consider two edges from different lattices, labeled as
m and n (note that we abuse the notation referring to both edges and lattices). The state
of these two lattices can be expressed as [T 222(0),, ® [0) e, or [T+22]0),, @ |0);es,. Here,
T€S,(n) signifies the remaining system of lattice m(n), and H,,,) denotes the projector onto

lattice m(n). Given that C,,_,, only relies on |m), expanding the product of H,, yields

1+ H,
2

|0>m|0>n|0>resm

Crsn > (X ®1@A+101® B)[] 0 resns (4.15)

where A; and B; acts only on res,,, and we have not expanded H, since it has a trivial

impact on m. Upon applying C,,_,,, we obtain

H,

1+
Z(X RX® Ai +1®1& Bi) H T|O>m‘0>n|0>resm‘0>resn- (4'16)

1

Essentially, this signifies that the CNOT gate transfers all actions from m to n after disen-
tangling m. Akin to Equation 4.13 and 4.14, we count the excitations and employ correction
operators to obtain the ground state. Consequently, we can attain the expected ground state
of the glued lattice by gluing the edges correspondingly , as long as the projectors consist of

tensor products of Pauli X operators .

4.7 Gluing method for an arbitrary lattice

When transitioning from the gluing method’s application on two single plaquettes to the

broader context of numerous arbitrary plaquettes, our focus should not be on the edges mea-

o1

sured 41, but rather on establishing a systematic method to correct address edges measured
-1.

In the instance presented in Figure 4.7, if we apply Ci; to glue two boundaries and
get -1 after measuring qubit e;, the correcting operator must anti-commute with B, and
2

exhibit commutativity with everything else One intuitive approach is to apply a dual

string operator starting at p; and ending crossing a z-boundary.

At

\
\
\

correcting ogerat\or
\

Figure 4.7. Correcting procedure after gluing two arbitrary plaquettes.

Expanding upon this notion, let us consider a situation involving any connected planar
lattice v = UL, p; with z-boundary e;. For a series T = pj, Bo(pi)ﬁLJJi.::ll Bo(p;) # ©
for any i € [2,n], we can insert ancilla qubits to separate T into multiple plaquettes and
subsequently glue them back. To illustrate this idea, let us delve into an example consist of
four plaquettes, as depicted in Figure 4.8.

First, we initiate by utilizing ancilla qubits to fragment the lattice into single plaquettes.
For 7(ej) containing p; and p;, where 1 <i < j < n according to the series T, insert an ancilla
edge e}, into p; while retaining e in p;. Then we apply 1+ B,, to every single plaquette p € P.
Subsequently, glue them together piece by piece. For p;,1 < i < n, it becomes necessary
to apply Cu_, to all pairs of ¢ € Uj-;% Bo(p;) and e € Bo(p;). Finally, we measure and
disentangle €’. If we get -1, apply a dual string operator connecting p; and the z-boundary of
p1 to correct it. It is noteworthy that all plaquettes can be glued simultaneously, allowing a
dual string operator to annihilate two magnetic charges by connecting them. In this example,
if we get -1 for €] and €} concurrently, the correcting operator will effectively nullify their

impact.

211t is worth noting that this correcting operator effortlessly commutes with all vertex terms.

52

ey, e | 1
ey . € D1 et D2
b1 b2 e Cei—)%zl e
€9)
€4
e e
D4 e D3 4 2
4 3
p es eg p
€0 | | |eo |
b1 b2 y4! P2
/ / /
€4 |) ‘ I €4 L |
!
2

—eo Ceilae

; D3

€4 (ﬂ e e |
|

P4 €3 Ceé—)eg

Figure 4.8. ¢ is a z-boundary and ¢’ in red represents an ancilla qubit.

In the case of a lattice without boundary, we can choose a specific plaquette p to be
redundant, effectively transforming Bo(p) into z-boundaries. Subsequently,this situation
mirrors the scenario depicted in the lattice with boundaries, and further details are left for
readers to explore. If the lattice solely contains x-boundaries, a viable solution is to consider
the dual lattice of it. The process remains unchanged, except for the inversion of plaquette
and vertex operators. Thus we can confidently assert that our method is universally capable
of simulating the ground state of a toric code on any planar lattice configuration.

In the case of the 2D toric code, the gluing method might initially resemble a simple
measurement process, especially when we break down the lattice into pieces, attach ancilla
qubits, and then fuse them to obtain the ground state for the entire lattice. However, its
capabilities extend significantly when we consider scenarios like 3D models, as discussed
thoroughly in Section 4.10, or when we have two lattices in their ground states to be joined.
In such cases, a stabilizer measurement can not glue two lattice and get the ground state of

the glued lattice.

23

4.8 3D toric model

The 3D toric model bears strong resemblance to the 2D toric code and is established on
an arbitrary 3D lattice. To enhance clarity, a cubic lattice is adopted, as depicted in Figure
4.9. Within this lattice, V represents the set of all vertices, while P corresponds to the set of
all plaquettes; each edge accommodates a single qubit. Moreover, for the sake of convenience,
we have affixed labels to each edge, denoting them as z, y, or z based on their alignment
with the respective axis (i.e., parallel to the x, y, or z axis). Notice this labeling maintains

consistency even when applied to a 3-dimensional torus. The Hamiltonian is defined as

H=-Y A4,-Y B, (4.17)

veV peP

where A, pertains to the application of the Pauli operator X over six edges connected to
the vertex v, and B, pertains to the application of the Pauli operator Z over the four edges
encompassing the plaquette p. It is straightforward to see these new-defined A, and B,
operators also satisfy A2 = B2 = 1 and [A,, B,] = 0. So this 3D toric Hamiltonian is
equivalent to the equation expressed as a summation of local projectors. We get the ground

state

G5 =TT+ 1o0) (1.18)

v

where |¢g) = [00...0), and we drop +£°%s since its action on |¢g) is +1. It is important
to highlight that the constancy of ground state degeneracy endures with fluctuations in
system size, a pivotal characteristic of topological phases of matter. Additionally, Figure
4.9 presents a comprehensive depiction of a pair of conjugate logical operators. Notice that,
the definition of logical operators only depends on the nontrivial loop or non-cotractable
planes. Consequently, we have three pairs of conjugate logical operators, each acting on
edges labeled by x, y, or z respectively.

We can extend the method of 2D toric code to 3D toric model with boundary directly
utilizing a plaquette as the basic structure. It is complicated yet straightforward, so its
details are outlined in Section B.4. However, applying this approach to the 3D toric model

without boundaries presents challenges, as the absence of free edges in the final step poses an

o4

Figure 4.9. The left sub-figure illustrates the definitions of A, and B, op-
erators. Meanwhile, the right sub-figure displays a pair of conjugate logical
operators composed of edges labeled by x. The red string is a nontrivial circle
parallel to z axis, and a logical Z operator is to apply Pauli Z over edges along
the string. Conversely, the blue plane is a non-contractable plane perpendic-
ular to x axis, and a logical X operator is to apply Pauli X over edges within
the plane.

issue. To circumvent this challenge, we must adopt a basic structure, illustrated in Figure

4.10. We still initiate the process with |¢g). Then we execute the quantum circuits as

illustrated in the figure to achieve the action of %.

¥ a

Figure 4.10. Comparison of two different basic structures: An example con-
sisting of eight cubes with boundary is shown in Section B.4 and a similar
example without boundary is shown in Section B.5.

Using this basic structure to develop the lattice vertex by vertex, we will end with a

redundant vertex as

1A =1 (4.19)

veV

95

In Section B.5, we present a straightforward example comprising eight cubes to illustrate the
method. To address the general case, we delineate the procedures required for constructing a
quantum circuit for the 3D toric model on an L x L x L lattice over a 3-dimensional torus in
Figure 4.11. The process consists of several carefully orchestrated steps to efficiently realize
the circuit, amounting to a total of 3L+ 8 steps. The quantum circuit is purely local since all
applied quantum gates are either acting on a single qubit or on nearest two qubits. Certain
non-interacting gates offer the potential for further parallelization, but this would only result
in a constant difference in circuit depth.

In a manner akin to the procedure detailed in Section 4.4, we employ certain qubits
to generate a particular initial state that encodes information about the logical qubits, as
depicted in Figure 4.12. However, it is important to note that these selected qubits are
unnecessary when we opt for free qubits during the ground state preparation. In conclusion,

our method can prepare an arbitrary ground state of the 3D toric model with linear depth.

[]
!
1N

.9
|Ar
LS|

Figure 4.11. We initiate with slicing the 3D torus into layers along the x-
direction and applying H gates to all the colored dots. Subsequently, we apply
all CNOT gates from red dots to non-red dots simultaneously and between
adjacent red dots layer by layer, which requires L+3 steps. The last layer needs
special treatment, which simplifies into a 2D problem after applying 2 CNOT
gates from all green and blue dots. Further progression involves applying
CNOT gates concurrently from green dots to non-green dots and between
adjacent green dots row by row, necessitating L + 1 steps. Similarly, another
L+ 1 steps applying CNOT gates from blue dots completes the procedure and
leaves a redundant vertex in the yellow cube.

26

N

NN N NN
|
N

IJ\RH
N

N N N NS

—
NSNS N

e ® r

A

=S

Figure 4.12. The left sub-figure highlights the employed qubits (indicated by
violet edges) that are utilized for the specific initial state within the ground
state preparation process. Meanwhile, the right sub-figure sketches all em-
ployed edges within a cubic lattice of size L = 5. All edges labeled by z in
the back layer, x in the right layer, and y in the top layer are employed to
encode arbitrary ground states. Importantly, the procedure we introduced
earlier remains uninterrupted since we do not designate any of these edges as
free qubits.

4.9 X-cube model

The X-cube model is a fracton model defined on a 3D cubic lattice, as visually depicted
in Figure 4.13. Within this lattice, V' represents the set of all vertices, while C' corresponds
to the set of all cubes; each edge accommodates a single qubit. For the sake of convenience,
we also affixed labels to each edge, denoting them as x, y, or z based on their alignment

with the respective axis. The Halmitonian is defined as

H=—Y A"+ AV + A> - Y B, (4.20)

veV ceC

where Al i = z,y, 2 is defined to implement Pauli operator Z across the four edges oriented

vertically to the i axis and attached to vertex v, and B, is designated to effectuate Pauli

27

operator X across the twelve edges associated with cube ¢. Again these Als and B.s operators

satisfy (Al)? = B2 =1 and [Al, B.] = 0. We get the ground state

1+ B,
2

GS) =11

C

where |¢9) = |00...0), and we drop % since its action on |¢g) is +1. It is important
to emphasize, however, that the ground state degeneracy experiences exponential growth
alongside the system size. Additionally, Figure 4.13 presents a comprehensive depiction of a
pair of logical operators of type W and 7. Similarly, we have three types of logical operator
pairs, each acting on edges labeled by x, y, or z respectively. Notably, distinct non-trivial
loops exhibit identical homotopy while differ in terms of logical operators. This distinction

is a crucial hallmark distinguishing the fracton model from conventional topological orders.

’

Figure 4.13. The left sub-figure illustrates the definitions of A, and B,
operators. Meanwhile, the right sub-figure displays a pair of conjugate logical
operators composed of edges labeled by x. The red string is of type W, a
nontrivial circle parallel to z axis, and we apply Pauli X over edges along the
string. Conversely, the blue string is of type T', a nontrivial circle perpendicular
to x axis, and we apply Pauli Z over edges along the string.

To simulate the ground state for the X-cube model, we outline* the procedures required
to construct a quantum circuit for the X-cube model on an L x L x L lattice, over a 3-

dimensional torus, in Figure 4.14. The initial state is |¢g), and our target is to find quantum

31The complete set of logical operators are given in [50], but we only use two types of them, which are not

conjugate to each other.
41We also present a straightforward example comprising eight cubes to illustrate the method, as elaborated
in Section B.6.

o8

14+ B,
2

circuit to implement []. . We identify the redundancy by specifically selecting certain
cubes, namely the three edges of the cubes in yellow, resulting from the requirement [[B, = 1
of the involved layer of cubes. Given that layers can be independently sliced in three distinct

® is achieved. To start,

directions, this selective arrangement of yellow-colored structures
we strategically partition the cube into distinct components: a central (L — 1) x (L — 1) X
(L — 1) cube (colored gray), three (L — 1) x (L — 1) x 1 layers of cubes (colored blue), and
three rows of redundant cubes (colored yellow). Then we further slice the central cube into
(L—1) x (L —1) x 1 layers. Notice each gray and blue layer has the same boundaries up
to rotation. This occurs because those yellow cubes are redundant, and the blue cubes are
intended for the application of projectors in other layers. Neither of them interferes with the
preparation of the layer structure. Consequently, we treat each layer of cubes as having the
same structure, and their corresponding quantum circuits are outlined in Figure 4.14.
After the initial 9 steps, we apply CNOT from (i,j) to (i — 1,j) in the (3k + 10)-th step,
apply CNOT from (i,j) to (i,j — 1) in the (3k + 11)-th step, and apply CNOT from (i,j) to
(i—1,j—1) in the (3k+12)-th step, where i+j = k4 2. This allows us to complete the layer
structure in a total of 6L + 6 steps. These carefully orchestrated steps efficiently realize the
circuit, requiring a total of 12L + 11 steps and the quantum circuit is purely local, similarly
to the 3-dimensional toric code case. Certain non-interacting gates offer the potential for
further parallelization, reducing the circuit depth by 2[22-2|. It is worth noting that this
method can be readily extended to the X-cube model on a lattice of dimensions L X Ly X L.
The ground state degeneracy can be resolved by the complete set of logical operators
[50]. We can readily attain all bases of the ground space of the X-cube model by replacing
the initial product state, as demonstrated in Section 4.4 and 4.8. However, it is not straight-
forward to see whether our method can be applied to prepare arbitrary ground states of the
X-cube model. The comprehensive encoding of arbitrary ground states still remains an open

question and is left as a topic for future research directions.

51While there may exist more redundant cubes, our focus is solely on the chosen ones.

29

Figure 4.14. Treating each layer of cubes as the same structure with bound-
aries, we initiate H gates along the edges in the z-direction of each cube and
apply CNOT gates from these edges to the others in the x and y directions,
which requires 9 steps. Then we apply CNOT gates diagonally, row by row
in different colors, necessitating 6L — 3 steps. All gray layers are prepared
simultaneously, followed by blue layers, leaving behind redundant cubes.

4.10 Gluing method for 3D models

Similar to the scenario in 2D toric code case, we can simulate the ground state of 3D
toric model by breaking the lattice into basic structures, simulating on and gluing them
back. This results in one redundant vertex term and the excitations are quasi-particles that
are able to move freely. The situation is exactly the same as 2D toric code, so we can find
correcting operators to annihilate all of the excitations, which is left to readers.

Different methods for gluing in the X-cube model exist, and an intuitive one is shown in
Figure 4.15. In this method, the quantum circuits are applied to each of the individual pieces
to obtain their respective ground states. Subsequently, CNOT gates are employed along the
gluing plane to glue them together. It is essential to note that this process is not a simple
measurement, as each edge is influenced by two cube terms. Disentanglement necessitates
the implementation of measurements on all red edges and correction operators to eliminate

potential excitations based on the measurement outcomes. However, the X-cube model poses

60

Figure 4.15. Following the preparation of ground states on the individual
lattices, we designate all qubits on one side of the gluing plane as ancilla
qubits (represented by red edges). Subsequently, we apply CNOT gates in
parallel from these ancilla qubits to the opposite side. This process allows us
to obtain the ground state of the fused lattice after appropriately disentangling
the ancilla qubits.

greater complexity as the excitations are fractons. A systematic approach to find correcting
operators is based on the following two facts:

1. There are three columns of redundant cubes as shown in Figure 4.14.

2. The excitation betraying cube terms is a fracton that are not able to move freely. While
a membrane operator (see [51] for details) creates fractons on four corners of a rectangular.

llustrated in Figure 4.16, each cube in the n? cubic lattice, underlying the 3D torus
topology, is assigned Cartesian coordinates (i,j, k), where 1 < i,j,k < n. Redundant cubes
are positioned along three columns, namely (i,1,1), (1,i,1), and (1,1,i) fori=1---n. A
membrane operator M|(i,j, k), (i, j’, k")], consists of Z operators in the rectangle from (i, j, k)
to (i,j', k') creates excitations at the four corners. For instance, when addressing an excita-
tion at (i,j, 1), applying M[(1,1,1), (i,], 1)] leads to the annihilation of the excitation and the
creation of excitations at redundant cubes, which are inconsequential. When dealing with a
general excitation at (i, j, k), with i, j, k # 1, a multi-step procedure comes into play. Initially,
M](1,j,1),(i,j, k)] is applied to eliminate the excitation, generating three additional excita-
tions at (1,j,1), (1,j, k), and (i,j, 1). Disregarding the one at the redundant cube, the other
two are subsequently eliminated by M|(1,1, 1), (1,j, k)] and M[(1,1,1), (i,j, 1)], respectively.

61

—<

i1 i, 1) (W,§,)
(]7j’}/‘) 1’j’)
mo o T
—
2 (0,1, k) (3. %)

Figure 4.16. A membrane operator consisting of Z operators on green edges
creates fractons at four corners; The correcting operator is a product of three
membrane operators.

In essence, the product operator M[(1,1,1), (1,j, k)] M[(1,1,1),(i,j, 1)] M[(1,],1), (i,], k)]

is capable of annihilating general excitations.

62

4.11 Conclusion and outlook

In this paper, we propose a method to prepare the ground state of a Hamiltonian consist-
ing of local commuting projectors composed solely of Pauli X and Pauli Z operators. Our
approach involves finding an appropriate initial state that serves as the ground state of these
projectors and applying a quantum circuit composed solely of Clifford gates to achieve the
Hamiltonian’s ground state. We demonstrate the effectiveness of our method on 2D toric
codes with various surface conditions, both with and without boundaries, as well as on the
3D toric model and the X-cube model. Our method enables the preparation of arbitrary
ground states for 2D and 3D toric model with a linear-depth circuit, meeting the lower
bound for preparing ground states in topological phases. It also works for any basis of the
ground state in the X-cube model using a linear-depth quantum circuit. We present these
results on specific lattices, such as the 2D square lattice or 3D cubic lattice, and introduce
a gluing method to facilitate ground state preparation on general 2D and 3D lattices. This
gluing method provides a trade-off between measurement usage and circuit depth and can be
applied to obtain the ground state of larger lattices by assembling ground states of smaller
components.

There are several future directions to proceed from this work. One natural progression
involves extending our method to other 3D models of interest. Furthermore, the applicabil-
ity of our approach to the non-abelian Kitaev model presents a straightforward extension,

offering the potential to broaden the scope of its application.

63

5. REPRESENTING ARBITRARY GROUND STATES OF
TORIC CODE BY RESTRICTED BOLTZMANN MACHINE

This chapter contains work from the article entitled "Representing Arbitrary Ground States
of Toric Code by Restricted Boltzmann Machine" written by the author, Bowen Yan, and
Shawn X. Cui preprinted on arXiv [3].

5.1 Introduction

The research on topological phases of matter (TPMs) has significantly intensified in
recent decades. These phases are characterized by topological order, setting them apart
from conventional states. Topological phases feature ground states with stable degeneracy
and robust long-range entanglement. In two dimensions, they support anyons and show
resilience to local disruptions. These unique attributes render TPMs highly suitable for
fault-tolerant quantum computing [9], [10]. In two dimensions, the underlying structure of
TPMs can be described by either a (2+1)-dimensional topological quantum field theory or
a unitary modular tensor category. Many topological phases can be realized on spin lattice
models, with the toric code model standing out as one of the most notable examples. More
generally, associated with each finite group G, Kitaev’s quantum double model defines an
exactly solvable lattice model realizing possibly non-Abelian anyons. When G = Z,, the
theory simplifies to the toric code.

Identifying the eigenstates of the Hamiltonian of a topological phase, and more generally
that of a many-body quantum system, ranks among the most demanding tasks in condensed
matter physics. This task becomes increasingly complex primarily because of the power
scaling of the Hilbert space dimension, which inflates exponentially in relation to the system’s
size [32]. Nonetheless, it is often the case that the system’s inherent physical properties,
e.g. long-range entanglement, restrict the form of the ground states, and therefore the
states corresponding to interesting quantum systems may only occupy a small portion of the

exponentially large Hilbert space. This opens up the possibility of efficient representations

64

of the wave function of many-body systems. Examples of efficient representations include
matrix product states, projected entangled pair states, and more generally tensor networks.

A recent trend is the study of many-body quantum systems utilizing machine learning
techniques, especially artificial neural networks. Restricted Boltzmann Machines (RBMs) are
a generative stochastic artificial neural network [33]. Unlike other types of neural networks,
RBMs have a unique two-layer architecture that consists of a visible input layer and a
hidden layer. The ’restricted” part in the name refers to the lack of intra-layer connections;
that is, nodes within the same layer do not interact with each other. RBMs have been
used effectively in a variety of machine learning tasks, including dimensionality reduction,
classification, regression, and even solving quantum many-body problems [34]-[39].

In 2017, Carleo and Troyer paved a novel path by applying RBM as a variational ansatz,
utilizing it to represent ground states for Ising model [34]. This groundbreaking achievement
catalyzed the development of numerous explicit RBM representations. Notably, substantial
research efforts have been directed towards the examination of toric code [35], [36], graph
states [37], and stabilizer code [38], [39], which is equivalent to a graph state under local
Clifford operations [40]. While their topological properties and representational power [41],
[42] have been extensively studied, there is still a need to explore feasible algorithms for
specific models.

We start from the RBM representability of the toric code model as the first step, with
the eventual goal of studying that for general topological phases. In [36], Deng and Li
utilized a Further Restricted Restricted Boltzmann Machine (FRRBM), that allows only
local connections, to numerically find a solution of the toric code model. However, toric
code has degeneracy on non-trivial topology, and the ground state derived in the above
manner always corresponds certain specific one. On the other hand, it is possible to achieve
an arbitrary ground state by turning the toric code as a graph state [43] and transforming a
graph state into an RBM [38]. Yet, this approach inevitably introduces non-local connections
within each subgraph which adds to the complexity of the RBM.

In this work, we initially apply stabilizer conditions to several specific configurations to
analytically solve the FRRBM for the toric code, exploring its representational capacity. We

factorize these solutions on square lattices of various sizes and find that different weights

65

only alter the coefficients of the basis states forming the ground state by factors of £1. We
then extended this approach to obtain an arbitrary ground state by strategically introducing
several non-local connections into the RBM. While this generalization sacrifices the simplicity
of local connections, it remains analytically solvable, enabling the simulation of arbitrary
ground states in a clean manner. Additionally, we developed an efficient machine learning
algorithm to verify the learnability of the models. We further generalize our approach from

Z5 to Z, and outline potential directions for future research.

5.2 Further Restricted RBM

Figure 5.1. The right diagram results from collapsing the two layers shown
in the left diagram. It illustrates a translation-invariant FRRBM with visible
neurons colored gray and hidden neurons colored red and blue, corresponding
to faces and vertices, respectively. The architecture ensures that each hidden
neuron is connected only to the nearest visible neurons. Each neuron and each
connection is assigned a weight.

To simulate the ground state of the 2D toric code, Deng and Li utilized a translation-
invariant Further Restricted RBM (FRRBM), illustrated in Figure 5.1. This model, designed
to permit only local connections, was employed to numerically find a solution [36]. For the
physical spins {07} on the square lattice, a vertex-type hidden neuron h, was assigned to

each vertex and a face-type hidden neuron hy to each face, with connections limited to the

66

nearest visible neurons. Given the two types of hidden neurons, the wave function, as shown

in Equation (2.59), is reformulated as follows:

Uy (S; W) = 2% [To(S; W) [T Tr(S; W), (5.1)
veV fer
[y (S; W) = 2cosh(b, + Y wyjo7), (5.2)
j€s(v)
L4(S;W) = 2cosh(by + > wyyo7). (5.3)
jes(f)

They set weight a; = 0 for every visible neuron, choose (b, wy;) = (0, §i). Using the stabi-
lizer conditions, they train the FRRBM to get the isotropic solution numerically, resulting
in (by,wy;) = (0,%i). This FRRBM also naturally supports excited states if translation-
invariant symmetry is broken and string operators are applied. Furthermore, this solution

can be directly generalized to the 3D toric code.

5.3 Analytical solutions of FRRBM

However, the solution derived above is limited to describing only one specific ground
state. To fully explore the representational capacity of the FRRBM, we aim to analytically
solve it to identify all possible solutions. We begin with the translation-invariant wave
function described above and also set a; = 0 for every visible neuron. Then we solve W =

(by,wf1—a,by, wy1-4) using the stabilizer conditions:

BGS) = T[61GS) = [GS), ¥f € F; (5.4)
e€s(f)

A,|GS) = [6%GS) = [GS), Vv e V. (5.5)
e€s(v)

Solving the face stabilizer condition is straightforward, as the operator 62 does not alter
the state of the qubit e. By substituting Equation (5.1) into Equation (2.58) and treating
|W) as the ground state |GS), we solve for |¥) under the constraints imposed by Equation

(5.4). This process is applied within any single face to determine: by = 0(modm) and

67

wyj = i, 2% (mod), where an even number of the four wy; must be the same. Further
calculation details are provided in Appendix C.1.

Unlike the face stabilizer condition, solving the vertex stabilizer condition is more com-
plex. The operator 67 flips the state of qubit e. As shown in Figure 5.2, applying vertex
operator to any vertex vy € V alters the configuration from [S) to |ho(S)). Notably, applying
the vertex operator twice will restore the original configuration. Applying the constraints

outlined in Equation (5.5), we derive the following result:

SOOI To(S:W) T TA(S; W) ho(S)) = 3= T Tu(S: W) TT T (S; W)|S). (5.6)

S vev fer S weV feF

By applying it twice, we can remove the sum to get

I To(ho(S); W) T] Ts(ho(S) = [[Tu(S;W) T] Ls(S; W) (5.7)

veV feF veV fer

for any possible configuration S. However, there are many equal factors on both sides of
the Equation (5.7). Canceling out them will reduce the configuration of interest from S to
S” which only contains 16 qubits, giving a series of 2! equations. Directly solving these
equations is impossible. We can pick up particular configurations and apply one or more
vertex operators on it to get independent restrictions. Full calculation details are provided
in Appendix C.2, solving them out, we get ': b, = 0 (mod) and w,; = 0, §i (mod m), where
an even number of the four w,; must be the same; Otherwise b, = 0 (mod) and any three

of the four w,; are equal to Oor 7 (mod) while the other one is free.

5.4 Arbitrary ground state of RBM

To further elucidate the analytical solutions derived in the last section, we numeri-
cally factorize them on a 3 x 3 square lattice, as detailed in Appendix C.3). Setting
(a3, b5, Wy, by, wog) = (0,0, F
|01) 4 [10) — |11). Conversely, if we change w,; = 0,0, %

, 11,0, 1) isotropically results in the ground state |G.S) = —|00) +

, 51, 51 for the respective directions,

the ground state becomes |GS) = +]00) + [01) + [10) + |11). Different settings of w,; can

4We take b, = 0 as b, € C will introduce superfluous freedom, discussed in Appendix C.2.

68

[
[J
o
®
7 @ N
N
AN R4

Figure 5.2. The left diagram presents a partial view of a configuration on a
larger square lattice. The right diagram is obtained by applying a vertex oper-
ator to the vertex vy. Green nodes indicate qubits that have flipped states, and
the red dashed lines encircle nodes considered in the subsequent calculation.

alter the coefficients of the basis states forming the ground state, although these changes are
confined to factors of £1. This limitation underscores the representational capacity of the
FRRBM. Consequently, it prompts a natural question: how can one prepare an arbitrary
ground state?

Inspired by the action of the logical operators Z, and Zj,, we introduce three additional
hidden neurons (h,, hy, and h,) to the FRRBM, enabling it to encapsulate the topological
information of ground states in a 2D toric code. These neurons have non-local connections
as depicted in Figure 5.3. We demonstrate that the inclusion of h,, h,, and h, allows for the
simulation of any arbitrary ground state. The wave function in Equation (5.1) is modified

as follows:

Uy ($; W) =2 [Te(S;W) [ITu(S$;W) TIT4(S; W), (5.8)
ee{z,y,z} veV fEF
Le(S; W) =2 cosh(be+) weo?). (5.9)
i

69

If we set the parameters (aj, by, wyj, by, Wy, Wsy-) to (0,0, 7,0, 71, 7i), the unnormalized

ratio of the ground state on a 3 x 3 square lattice can be analytically derived:

(GS]00) = — cosh(b, + gl) cosh(b, + gl) cosh(b, + gi), (5.10)
(GS]01) = cosh(b, — gl) cosh(b, + 21) cosh(b,), (5.11)
(GS]10) = cosh(b, + gl) cosh(b, — 21) cosh(b,), (5.12)
(GS|11) = — cosh(b, — gl) cosh(b, — gl> cosh(b, — g1) (5.13)
For example, we can select the degeneracy state |00) by setting (b, by, b.) to (2, 2%, i).

Arbitrary ground states with amplitude ratios like (GS|00): (GS|01) : (GS|10) : (GS|11) =
1:2:3:4 can be exactly solved. While an exact solution for certain ratios containing 0 may
not exist, we can approximate these by setting the zeros to extremely small values. Further
details are provided in Appendix C.4. While this generalization sacrifices the simplicity of
local connections, it remains analytically solvable and enables the simulation of all possible
ground states in a clean manner. It also retains the ability to manipulate string operators
and has demonstrated both efficient and accurate performance when applied with machine

learning techniques.

Figure 5.3. Three hidden neurons (h,, h,, h,) are introduced into the FR-
RBM to simulate an arbitrary ground state. h, connects to visible neurons
along a horizontal loop, h, connects along a vertical loop, and h, connects
to all neurons connected by h, and h,. Each connection type from a specific
hidden neuron is uniformly weighted (w,, wy, w,).

70

5.5 Efficiency and Learnability of the RBM

In the literature [36], Deng and Li analytically derived a solution for the face terms and
then trained the FRRBM using a vertex stabilizer condition on a portion of a larger square
lattice, employing a large number of configurations. In contrast, our study analytically
derives both face and vertex terms and numerically verifies their learnability on square
lattices of various sizes using a significantly reduced set of only 50 configurations20 selected
for the degeneracy basis and 30 random configurations. This approach is both efficient
and accurate compared to approaches that use large numbers of random configurations, as

demonstrated in Figure 5.4.

10! 1
10] 4
1071 p

100 4 1073

10-5 4 —— 5000 configurations — 1.28e-12

. —— 1000 configurations — 3.77e-04
107" A

cost function
cost function

10-7 4 —— 20+30 configurations — 1.47e-12

1079
1072 4
—— 1000 configurations — 5.44e-03 11
10 b
—— 20+30 configurations — 3.39e-03
1073 T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
train cycles train cycles

Figure 5.4. On a 3 x 3 square lattice, we separately train the face terms and
vertex terms using face stabilizer and vertex stabilizer conditions, respectively.
The left plot compares the training efficiencies of different configurations for
face terms, while the right plot does the same for vertex terms.

As learnability is influenced by the initial settings, we randomly select 10,000 settings
for b, € C and w, € C to numerically search for solutions. Despite this extensive search,
the presence of Barren Plateaus, illustrated in Figure 5.5, limited us to only 20 solutions.
Although the search parameters b, and w, were complex, we found solutions only where
both b, and w, are purely imaginary. Barren plateaus are regions in the optimization land-
scape where gradients vanish, impeding any significant learning progress. This phenomenon

explains why our search procedure, with limited training time, only yielded a few solutions.

71

final cost = 7.16e-12

E T I A — by - -0.0000 + -1.5708i
1 wy,1 —+ -0.0000 + -1.5708i
1071 4 K
2 — Wy,2 —+ 0.0000 + -1.5708i
3 , —— Wy,3 - 0.0000 + 3.1416i
10 hmmmm e)
g —— W,z — -0.0000 + 1.5708i
0
€ 1051 W(|00>) = 1.0000 + 0.0000i £ 17
5 . =
2 W(|01>) = 1.0000 + 0.0000i g
§ 10-7 1 W(|10>) = -1.0000 + 0.0000i 0
W(|11>) = -1.0000 + 0.0000i
1079 4
14
107114
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
train cycles train cycles

Figure 5.5. On a 3 x 3 square lattice, this example demonstrates the exis-
tence of barren plateaus, characterized by a sudden drop in performance after
prolonged training.

5.6 Generalization from Z, to 7Z,

In previous sections, we determined the weights of the RBMs analytically and numerically
to assess their representational capabilities. Notably, B¢ selects configurations with trivial

flux, while A, ensures all configurations have uniform weight across a logical state. Among

T

,1,0,0) emerged, where

the solutions we found, a ’trivial solution’ (by,wy;, by, wy;) = (0
each survived configuration possess equal weight. By foregoing the manipulation of string
operators, this solution can be generalized to implement the Kitaev quantum double model
associated with the group Zx?. The model, set on an oriented lattice with a |G|-dimensional
qudit on each edge labeled by a group element g, follows the convention in [1]. Though the

Hamiltonian resembles Equation (2.53), A, and By are defined in a different manner. As

shown in Figure 5.6, we focus exclusively on the action of By:

Bf”l)l Vg VU3 U4> = 5;09,19‘”1 Vg U3 ’U4>, (514)

where 1, is the identity element of the group G, and p, is the group product of states on each

edge bordering the face counterclockwise®. If an edges direction aligns with the orientation,

21For N = 2, the model corresponds to the toric code with a basis change to represent qubits.
31We need to pick up a start-up vertex, though it turns out to be insignificant.

72

we include v;; otherwise, we use v, !. Thus, pg = I1;v{", where a; = 1 reflects this alignment.
Specifically, for G = Zy, the state of the N-dimensional qudit is labelled by 0,1,... N — 1.
In this setting, the group product is arithmetic summation, the identity element 1, is 0, and

each element is its own inverse. Then the action of By is significantly simplified:

Bylvy vy v3 v4) = 521%0]1}1 Vg Vg Vy). (5.15)
U3
<
vaY Q 402
>
U1

Figure 5.6. Convention for the local operator: Edges are ordered counter-
clockwise as vy, v, v3, vy, With directions indicated by arrows on each edge.

We utilize a natural RBM to implement the above action, corresponding to the condition
> v; = 0 (mod N). This is achieved using an N-dimensional invisible qudit u with the setting

of isotropic weights (b, w;) = (0, &):

N-1 1 — exp(2mi(b + X, 1)) N ifb+Y;v =0(modN).
Z% xp(b+ 2 uits) = T o+ 5 /) .
u= ! ! 0 otherwise.

(5.16)
The action of A, is safely neglected here, as the RBM already simulates a ground state
that is an equal superposition of all logical bases. And this expression explicitly ensures
the flux-free requirement. It offers a natural method for creating fluxions by setting b # 0,
though such creation is not arbitrary on a closed manifold due to global constraints. They
are elementary magnetic excitations, since each element of Zy represents a unique conjugacy

class. Furthermore, a complete basis of the ground state can be found in the same manner

as illustrated in Figure 5.3.

73

This method can be generalized to other lattice model with frustration-free Hamiltonian
composed of two types of terms: one constraining local flux and the other enabling gauge
transformations. Applying the flux-free RBM achieves an equal superposition of all flux-
free configurations, automatically satisfying gauge transformation terms and resulting in the
superposition of all logical states. For instance, this approach is applicable to Kitaev model
associated with abelian group, X-cube model, checkerboard model, Haar-A and Haar-B
codes and so on. However, the generalization to Kitaev quantum double model associated

with a non-abelian group remains unclear.

5.7 Conclusion and further work

We analytically resolved the FRRBM proposed for the toric code, determining all possible
ground states to assess the model’s capabilities. We then modified this model to support
arbitrary ground states through the integration of non-local connections. This enhanced
model remains analytically solvable and can also be efficiently solved using machine learning
techniques. We then extend our work to Kitaev quantum double model associated with
abelian group Zy. Our ongoing research aims to investigate feasible RBM implementations
for more specific codes, including those for the Double Semion [13], Fibonacci Anyon [13],

[52], and Kitaev quantum double model associated with a non-abelian group.

74

[10]

[11]

REFERENCES

B. Yan, P. Chen, and S. X. Cui, “Ribbon operators in the generalized kitaev quan-
tum double model based on hopf algebras,” Journal of Physics A: Mathematical and
Theoretical, vol. 55, no. 18, p. 185201, 2022.

P. Chen, B. Yan, and S. X. Cui, “Quantum circuits for toric code and x-cube fracton
model,” Quantum, vol. 8, p. 1276, 2024.

P. Chen, B. Yan, and S. X. Cui, “Representing arbitrary ground states of toric code
by restricted boltzmann machine,” arXiv preprint arXiv:2407.01451, 2024.

F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505-510, 2019.

Y. Kim, A. Eddins, S. Anand, et al., “Evidence for the utility of quantum computing
before fault tolerance,” Nature, vol. 618, no. 7965, pp. 500-505, 2023.

C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quan-
tum computing: Progress and challenges,” Applied Physics Reviews, vol. 6, no. 2,
p- 021 314, 2019.

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, “Non-abelian anyons
and topological quantum computation,” Reviews of Modern Physics, vol. 80, no. 3,
p. 1083, 2008.

D. I. Pikulin, B. van Heck, T. Karzig, et al., “Protocol to identify a topological
superconducting phase in a three-terminal device,” arXiv preprint arXiv:2105.12217,
2021.

A.Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics,
vol. 303, no. 1, pp. 2-30, 2003.

M. H. Freedman, M. Larsen, and Z. Wang, “A modular functor which is universal for
quantum computation,” Communications in Mathematical Physics, vol. 227, no. 3,
pp. 605-622, 2002.

O. Buerschaper, J. M. Mombelli, M. Christandl, and M. Aguado, “A hierarchy of
topological tensor network states,” Journal of Mathematical Physics, vol. 54, no. 1,
p- 012201, 2013.

5

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

L. Chang, “Kitaev models based on unitary quantum groupoids,” Journal of Mathe-
matical Physics, vol. 55, no. 4, p. 041703, 2014.

M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for
topological phases,” Physical Review B, vol. 71, no. 4, p. 045110, 2005.

O. Buerschaper and M. Aguado, “Mapping Kitaev’s quantum double lattice models
to Levin and Wen'’s string-net models,” Physical Review B, vol. 80, no. 15, p. 155136,
2009.

O. Buerschaper, M. Christandl, L. Kong, and M. Aguado, “Electric-magnetic duality
of lattice systems with topological order,” Nuclear Physics B, vol. 876, no. 2, pp. 619—
636, 2013.

H. Bombin and M. Martin-Delgado, “Family of non-Abelian Kitaev models on a
lattice: Topological condensation and confinement,” Physical Review B, vol. 78, no. 11,
p- 115421, 2008.

K. Walker and Z. Wang, “(3+ 1)-TQFTs and topological insulators,” Frontiers of
Physics, vol. 7, no. 2, pp. 150-159, 2012.

J. Haah, “Local stabilizer codes in three dimensions without string logical operators,”
Physical Review A, vol. 83, no. 4, p. 042330, 2011.

S. Vijay, J. Haah, and L. Fu, “A new kind of topological quantum order: A dimen-
sional hierarchy of quasiparticles built from stationary excitations,” Physical Review
B, vol. 92, no. 23, p. 235136, 2015.

S. Vijay, J. Haah, and L. Fu, “Fracton topological order, generalized lattice gauge
theory, and duality,” Physical Review B, vol. 94, no. 23, p. 235157, 2016.

S. Bravyi, M. B. Hastings, and S. Michalakis, “Topological quantum order: Stability
under local perturbations,” Journal of mathematical physics, vol. 51, no. 9, p. 093 512,
2010.

K. Satzinger, Y.-J. Liu, A. Smith, et al., “Realizing topologically ordered states on a
quantum processor,” Science, vol. 374, no. 6572, pp. 1237-1241, 2021.

S. Ebadi, T. T. Wang, H. Levine, et al., “Quantum phases of matter on a 256-atom
programmable quantum simulator,” Nature, vol. 595, no. 7866, pp. 227-232, 2021.

76

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. Verresen, M. D. Lukin, and A. Vishwanath, “Prediction of toric code topological
order from Rydberg blockade,” Physical Review X, vol. 11, no. 3, p. 031 005, 2021.

S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,”
arXiv preprint quant-ph/9811052, 1998.

Y .-J. Liu, K. Shtengel, A. Smith, and F. Pollmann, “Methods for simulating string-net
states and anyons on a digital quantum computer,” arXiv:2110.02020, 2021.

N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and R. Verresen, “Long-range
entanglement from measuring symmetry-protected topological phases,” arXiv:2112.
01519, 2021.

R. Verresen, N. Tantivasadakarn, and A. Vishwanath, “Efficiently preparing
Schrodingers cat, fractons and non-Abelian topological order in quantum devices,”
arXiv:2112.03061, 2021.

S. Bravyi, I. Kim, A. Kliesch, and R. Koenig, “Adaptive constant-depth circuits for
manipulating non-Abelian anyons,” arXiv:2205.01933, 2022.

N. Tantivasadakarn, R. Verresen, and A. Vishwanath, “The shortest route to non-
Abelian topological order on a quantum processor,” arXiv:2209.03964, 2022.

N. Tantivasadakarn, A. Vishwanath, and R. Verresen, “A hierarchy of topological
order from finite-depth unitaries, measurement and feedforward,” arXiv:2209.06202,
2022.

T. J. Osborne, “Hamiltonian complexity,” Reports on progress in physics, vol. 75,
no. 2, p. 022001, 2012.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.

G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial
neural networks,” Science, vol. 355, no. 6325, pp. 602-606, 2017.

D.-L. Deng, X. Li, and S. D. Sarma, “Quantum entanglement in neural network
states,” Physical Review X, vol. 7, no. 2, p. 021021, 2017.

D.-L. Deng, X. Li, and S. D. Sarma, “Machine learning topological states,” Physical
Review B, vol. 96, no. 19, p. 195145, 2017.

7

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[47]

[48]

X. Gao and L.-M. Duan, “Efficient representation of quantum many-body states with
deep neural networks,” Nature communications, vol. 8, no. 1, p. 662, 2017.

S. Lu, X. Gao, and L.-M. Duan, “Efficient representation of topologically ordered
states with restricted boltzmann machines,” Physical Review B, vol. 99, no. 15,
p- 155136, 2019.

Z.-A. Jia, Y.-H. Zhang, Y.-C. Wu, L. Kong, G.-C. Guo, and G.-P. Guo, “Efficient
machine-learning representations of a surface code with boundaries, defects, domain
walls, and twists,” Physical Review A, vol. 99, no. 1, p. 012307, 2019.

M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description of the action
of local clifford transformations on graph states,” Physical Review A, vol. 69, no. 2,
p. 022316, 2004.

N. Le Roux and Y. Bengio, “Representational power of restricted boltzmann machines
and deep belief networks,” Neural computation, vol. 20, no. 6, pp. 1631-1649, 2008.

Y. Huang, J. E. Moore, et al., “Neural network representation of tensor network and
chiral states,” Physical Review Letters, vol. 127, no. 17, p. 170601, 2021.

P. Liao and D. L. Feder, “Graph-state representation of the toric code,” Physical
Review A, vol. 104, no. 1, p. 012432, 2021.

D. E. Radford, Hopf algebras. World Scientific, 2011, vol. 49.

C. Kassel, Quantum groups. Springer Science & Business Media, 2012, vol. 155.

I. Cong, M. Cheng, and Z. Wang, “Hamiltonian and algebraic theories of gapped
boundaries in topological phases of matter,” Communications in Mathematical
Physics, vol. 355, no. 2, pp. 645-689, 2017.

S. Bravyi, M. B. Hastings, and F. Verstraete, “Lieb-robinson bounds and the genera-
tion of correlations and topological quantum order,” Physical review letters, vol. 97,
no. 5, p. 050401, 2006.

O. Higgott, M. Wilson, J. Hefford, et al., “Optimal local unitary encoding circuits for
the surface code,” Quantum, vol. 5, p. 517, 2021.

78

[49]

[50]

[51]

[52]

M. Aguado and G. Vidal, “Entanglement renormalization and topological order,”
Physical review letters, vol. 100, no. 7, p. 070404, 2008.

K. Slagle and Y. B. Kim, “Quantum field theory of x-cube fracton topological order
and robust degeneracy from geometry,” Physical Review B, vol. 96, no. 19, p. 195139,
2017.

A. Prem, J. Haah, and R. Nandkishore, “Glassy quantum dynamics in translation
invariant fracton models,” Physical Review B, vol. 95, no. 15, p. 155133, 2017.

C.-H. Lin, M. Levin, and F. J. Burnell, “Generalized string-net models: A thorough
exposition,” Physical Review B, vol. 103, no. 19, p. 195155, 2021.

79

A. SUPPLEMENTAL MATERIAL FOR CHAPTER 3

This chapter contains work from the article entitled "Ribbon operators in the generalized

Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,

and Shawn X. Cui published on Journal of Physics A [1].

A.1 Straightening equation of A, and B;

L4
y
':B4\(/\.'];2 K" T
Vi A\ 1 TaY
s X < KJ 7 y
yl 5 S
N

Te A

This equation holds no matter how the edges are oriented. We check the case above:

Aa(s)Bf(s)|x1 Ty T3 Ty Ty Tg)
(5) Y2 Falaeelle o a @) s o)
(1)
= Y J@lealas) g o 1S() o'z 2pS(a")
(21),(a)
S 718 aatayS)]
(21),(a)
1a©2) zf ol 450" aPal 165 (a®))
= Y Biisa®ya(s (s)|a®xzy 9 23 24S(a") x5 26S(a?))
(z1),(a)
Bf a’) 7a’] A /(S)|ZL’1 To T3 Ty Ty IL'6>

(a)

This is exactly the straightening equation.

80

(A1)
(A.2)

(A.3)
(A.4)

(A.5)
(A.6)

(A7)

A.2 Violation and correction in group algebra

S
AN

S0

F(h,g)<7-)|x> — 5g7e\xl71> F(hﬁg)(7)|x> = g,e|hx>

We show Equation 3.5 is violated for the ribbon 7 in the first figure above for the original
Kitaev model where H is taken to be the group algebra of a non-Abelian group G. In [16],
only two formulas are provided for dual triangles as shown in the second and third figure

above. However, we can not get the desired commutation relation using either of them:

By (s0) F"9(7) |1 @3 w5 4) (A.8)
= Bh/(so)égﬁlxli_z To T3 Tq) (A.9)
= Opr o haazswy Ogie| V1R T2 T3 24) (A.10)
59,65hh’,z1x2m3$4|wlh To T3 $4> (A-H)
= F(h’g)(T)éhh/,mlmzmgm|x1 To T3 Tq) (A.12)
= F9 (1) B (s0)|21 2 T3 24) (A.13)

(A.14)

Bu(50)F"9) (7)1 29 23 24) (A.15)
= B/(50)0g.e|hx1 T2 T3 T4) (A.16)
= O/ haraawswaOg,e|RT1 T2 T3 T4) (A.17)
F 0g.eOnh 21 wowsns |RT1 T2 Ty Ta) (A.18)
= FU) (1) ayapgana | T1 T2 T3 T4) (A.19)
= F9 (1) B (s0)|21 2 T3 4) (A.20)

81

Moreover, the issue can not be removed by making 7 longer. Roughly, this is because
for the current 7, the initial site and terminal site already lie in different plaquettes, and
thus lengthening it will not affect the action of the plaquette operator at the initial site. To
resolve the issue, we recognize that 7 has locally counterclockwise orientation, and hence we

need to apply the following formulas for the ribbon operators:

FR9(7)|z) = 6, | ha) F®9(7)||z) = §,.|zh)

With the new formula above, we have

By (50) FP9 (7)1 24 5 24)
= Bh/(so)ég@]i_ml To T3 Tq)
= O hsasnasOg.el DT1 T2 T3 T4)
= 59,65hh’,z1x2m3x4|ﬁx1 To I3 354)

= F"9 (1) Sh v wmmses |T1 T T3 T4)

= F"9(7) By (s0) |1 w2 23 4)

82

A.3 Multiplication of ribbon operators on elementary ribbons

A.3.1 For locally clockwise ribbons 7,

F(h17f1)<7—L)F(h27f2) (71)|)

= Y F" I (rp)e(hy) foS(2")]|2)

—_— (=)

= D e(ha)e(h) L[S A[S(")]|2")

(z)

= Y _elhha)(f2 ® fi, A[S(z")])]2")
(x)

— F(h1h27f2f1)(7-L)|x>

AR

Fhud) () plhaf) (0| o)

= > FUI(7)e(hs) fo(a')|2")

—_— (=)

= Z e(ho)e(hy) fo(a”) fr(z")]2™)

(z)

— Z e(hihe){fo @ f1, A(z"))]z")
(z
F(hth,fol)(TL>|x>

s

~

83

F(hlvfl)(TL)F(hQ’fQ)(TL)|x>
= FUI(rp)e(fo)|2S(hy))
= e(fo)e(f1)|xS(ha)S(hy))
= e(fof1)|zS(hihz))

_ F(h1h27f2f1)<7—L)|x>

F(ha.fr) (TL)F(hQ’fQ)(TL) |z)
= FMI)(rp)e(fo) | ho)
= e(f)e(f)|mhaz)

_ F(hlhz,fzfl) (TL> ’x>

A.3.2 For locally counterclockwise ribbons 75

Ftdd) () P2 2) (7))

= Y FUI(r)e(hy) fo(2")|2")

()
- = > e(ho)e(hy) f2(z") f1(z")|2)
3 ()
* = Zﬁ(h2h1)<f1 ® fa2, A(z"))]2")
(z)

_ F(thl’fle)(TR>|x>

84

F0uld) () FO282) ()|)

S FMI) (7R)e(ho) fo[S ()] |2")
(z)

> e(ha)e(h) f2[S fi[S (2")]|2")
()

% e(hahy)(f1 ® fa, A[S(2")])]2")

F(hzhl,flfQ) (TR) ’:C)

FOI) () F022) ()|)
= FU I (R)e(f)[S(ha))
= e(f2)e(f1)]5(h1)S(he)z)
= €(/1/2)|S(h2h1)z)

— F(h2h17f1f2)(7-R>|x>

F0ufD) () P82 (1))
= FUI (rp)e(fo)|whs)
= e(fo)e(f1)|zhahn)

= e(fifz)|rhohy)
— F(h2h1,f1f2) (TR) |$>

85

A.4 Proof of Lemma for local operator at ends

The idea is to first prove the equations in the lemma for ribbons as short as possible, and
then extend them to longer ribbons. It turns out that the shortest ribbon for some of the
equations to hold is a triangle (direct or dual), while for others is a 2-triangle. For example,
see the ribbon in Subsection A.4.1. Equation 3.17a does not hold for the rightmost triangle
alone. This is roughly because for that triangle, its initial site and terminal site share the
same vertex so that A,(sy) would also act on s;, which is unexpected. As will be shown
below, the equation does hold as long as we make the triangle a bit longer. This is not a
problem since we are only interested in properties of sufficiently long ribbons.

Subsections A.4.1-A.4.8 each addresses an identity in Equations 3.17a - 3.18d for the
shortest possible ribbon. For each of the eight equations, there are two types of triangles
(direct or dual) to consider. To avoid lengthy calculations, we only present the details for
one of the two types for each equation. The proof for the other cases is similar. If a triangle
does not work, then we lengthen it to a 2-triangle. In Subsection A.4.9 we extend the results
to longer ribbons for Equations 3.17b and 3.17¢ while leave the other six cases as an exercise

(whose proof is similar as well).

A.4.1 Equation 3.17a for short ribbons

86

Aa(S())F(h’f)(TL)liL‘l Ty T3 I'2>
= Au(s0) Z F(h/agi)(TI)F[S(i”/)hHi/ S (Tz)\% T4 Ty T)
().1,(h)

= Au(s0) Y. FW(r)e[SA")NT|f(i"xh) |21 24 2)
(h),(i),i,(1'3)

= Au(s0) Z e(g)e[SA"N'T) f(i"25)|z1 2aS(R") % 22)
(h’) .)7i7(x3)

= Aa(s0) D e()e(W)e(e) f (") w1 2aS (M) 25 a2)

—~
—

= Y flexy)|aWay 24S(H)S(d) a"y 225(a"))
(a),(z3),(h)

= Y fle(a")2h]|a®Pzy 24e(a'D)S(R)S () a2y 225 (a'V))

(a),(z3)
= Y fS(a")ea"xy)|a®zy 2,5(h)S(a') aWaly 225 (a'™))
(a),(z3)
= > elge)e{[a"h" (@) 1S (a")i"a)
(1),1,(h),(3),(a)

a2, 2,9(aNS{[a’h'S(aNY a® 2 255(a®
jat! 5
_ Z F{[a/h’s(am)y’gi}(Tl)E{S(iIH) [a/hS(a/,/>]//i/}f[S(a//)i”<a///),xg]
(i)riv(xii):(a)r(x?))
a1 245 (a) ()'z} 2,5(a®))
_ Z F{[a/hS(am)]/’gi}(TI)F{S(im)[a hS(a(S))]//i/,f[S(a”)i//?]}(7_2)
(i),i,(a),(a’hS(a""))
P2y 24S(a?) a® x5 2,5(a®))
= > F{a’hS(a’”),f[S(a”)?]}(TL)’a(7)x1 245(a™) a® 3 2,8(a®))
(i),(a)
a’ a®) a’’)?
— Z Fla’hS(al®), F1S()?]}(TL)AQ<4>(80)|$1 Ty Ty To)
(i),(a)

From the fourth line to the fifth line above, we used €(g;) = gi(e) and

291 =Y d'f(a").

(a)

87

(A.21)
(A.22)

(A.23)
(A.24)
(A.25)
(A.26)
(A.27)
(A.28)
(A.29)

(A.30)
(A.31)

(A.32)
(A.33)

(A.34)
(A.35)

(A.36)

To derive the above equality, note that,

1) = (1 1A = (145 DA (T ()

(a)

A.4.2 Equation 3.17b for short ribbons

T4y 80

Aa(so)F(h’f)(TRﬂxl Ty T3 To)

= Aa(50) Y €(h) f(a)|x] 24 23 72)
(z1)

= Y W) f()]aW] 2iS(@) a'zy 225 (a"))

I
B
2k
IS
G
>
3=
IS
3
@
s
C)
=
-
3
=
=
@/‘\
=
S
&
8
N
™n
—~
N—
L
8
w
8
[N}
N
—~
=
~—

88

(A.37)
(A.38)

(A.39)
(A.40)
(A.41)
(A.42)

(A.43)

A.4.3 Equation 3.17c¢ for short ribbons

By (s0) F") (71) |1 g 23 24) (A.44)
= Bi(so)e(f)|z1 x2 x3 £4S(h)) (A.45)
= Z E(f)t[fvlllxlzl MS(h')]le xz 933 -T4S(h//)> (A-46)

(z1),(h)

S P ()t ahalall S()]|ah o o o)) (A.47)
(z1),(h)
Z F (r" f) TL Bt[?S(h’)](30)|x1 To I3 JI4> (A48)
(h)

A.4.4 Equation 3.17d for short ribbons

T4y A T2

S0

89

B (So)F(h f)<)|I‘1 To XT3 I4>

— Bt(So) Z s 791)(7—1)F[S(iw)h"ilvf(i”?)} (72)‘351 Ty T3 x4)

(h),i,(3)
= By(s0) > F"9(r)e[f(i"?)]|x1 S[SHE")N"{]wg 23 24)
(h)i,(3)
= Bi(so) Y, e(h)g(@) ")z} SE)S(R)" xy x5 24)
(R, (i), (1)
1(s0) Y fz))]z} S (@) S(h)x\Vwy x5 24)
(z1)

= > faMlais@)S (W) wpagalllal S(a)S(0")a\ "y iy)
(h),(1)

= 3 fa\)tle(a) SO ayalal)|ah S(xf)S ()Pl oy o)
(h), (@)

Z flx /// 5515)33/2’35&/3521/”55/1 S(x)S<h//)x1 x2 953 $4>

(h), (@)

= > e(W)g() fANS (R)a{wgayz)]|a) SI)S(R")i"xy x5 o))
(h)r(mi)viv(i)

= Y FY DSl SIS o) o)
(h)v(xi)viv(i)

=T RO SO (S o) o)
(h), (i)

= > P (rp)t[S(h) ahalial)|2) oy f o))
(h), (1)
= Z FOD (TR)Bt[S(h’)?](50)|$1 T2 T3 1174>
(h)

90

(A.49)
(A.50)

(A.51)
(A.52)
(A.53)
(A.54)
(A.55)
(A.56)
(A.57)
(A.58)
(A.59)
(A.60)

(A.61)

A.4.5

A.4.6

Equation 3.18a for short ribbons

S1

Aa(Sl)F(h’f) (TL)|I'1 Ty T3 l‘g)

= Aq(s1) Y e(h) f(a))|x) 24 23 22)

(1)

= > M fISEN)aWa) 245(d') a"wg 225 (a"))
(z1),(a)

= > M fISE))e(@)]jaWay 24S(a') a"ws 225(a™))
(z1),(a)

= > e(h)fS())S(@®)a)aWa] 24S(d') a"x5 225 (a"))
(z1),(a)

=3 [l f(2a™)] (10)|aWay 24S(d) a"x3 225 (a™))
(a)

=> FFCN (Y A (s1) |21 4 3 22)
(a)

Equation 3.18b for short ribbons

1,'4\/

/¥ 51
<
Z3

91

(A.62)
(A.63)

(A.64)
(A.65)
(A.66)
(A.67)

(A.68)

Aa(Sl)F(h’f) (TR>|ZL'1 Ty T3 l'2> (A69)

Z Fa) F[S(ORI (T2)[71 T4 w3 72) (A.70)
(i),1,(h)
s1) ()Z()F(h/’gi)(Tl)E[f(Dl 2aSA")R 5 22) (A.T1)
i),i,(h
=Au(s1) Do e(W)g[S(@y)]f(i") |1 waSE")RT 25 x2) (A.72)
(1),1,(h),(x3)
= 3" Au(s1) fIS (@)1 wayhS () x$ z,) (A.73)
(z3)
(g)f[S(méf)]la o1 s S(2f)S(a') 25 258 (a")) (A.74)
i F1S(25)S(a")a' a2y zaashS(25)S(a") aVas” 258(a®)) (A.T5)
(a),(x3)
= 3 fIs)a')|a® 1 24S(a”)a" 2hS (x2S (D)) a© 2l 2,5(aD)) (A.76)
(a),(zs3)
= " (.)Z(;L) ()6(”)91[5 (a"a)e[f(i"?a)] (A.77)
1a©zy 2,5(a”)SE")R aWxl 155(a)) (A.78)
= Y FW9(r)e[f(i"?d")]|aPzy 24S(a”)SA")R'T @ x5 225 (aV)) (A.79)
(a),(i),1,(R)
= > FWgi) () pISEORTFG0) 0y 0OV gy 2,8 (a”) a5 225 (™)) (A.80)
(a),(1),i,(h)
=> FIC (00D 245(a”) o x5 £,5(a?)) (A.81)
(a)
= 3 FVICON () Ay (s1) [0y w4 w5) (A.82)
(a)

A.4.7 Equation 3.18c for short ribbons

S1

92

B (Sl)F(h f)()|JZ1 To I3 l’4>

—Bt 81

= Bt(Sl)

= Bt(Sl)

F[S(///)hllll f(//f)) (7_2)|x1 xz IS x4>

Z thl

(h)1,(1)

S FUW(m)e[SE T f(i"ah) |2 wo w5 aa)
ORYGNEN

> elg)e@™)e()e(d) f (")] 22S(R') w5 24)
()0, (1)

— Z By(s1) f(x})|x} zoS(h) w3 14))

Z F@OHS (@7)R"S (25) S (5) S (w)|y" 235 (B) x5 xy)

no_n

1)

T3 @

(xi),(h)
= 3 FS(@t)R 2 S () S (ah) S (ah) S ()]t 2y S(R') 2y)
(xi),(h)
)z() \ FE)gi(@HS AR S () S (ah) S (ah) S (a2 2y S(R)
(i)

S FEelg)eiMeth)e (g ("2
(21),1,(1),3,(3), ()

SRS (1) S (w5) S (w3) S (w2 25 S (W) x5)

£V (7)€l S 7R o)

(xi)viv(i)vjv(j)v(h)

tHS ") S (1) S (w5) S (25) S (@) |27 w5 w3)

f (i”) F(h/,gi)(7—1> FLSGR" gi(i"7)] (72)

($1)717(1)7‘]1(J)1(h)

Z

50,
Z

i,(i),(h)

1

HS)RS (1) S (w5) S (w3) S ()] 2 5 w5 x7)
f(”)F(’"‘ D (SRS (1) (23) S (w5) S (a))] o] w5 @

i’ F(h :91) (7) Bysrmnrin) (s1)| 21 @2 23 T4)

93

no_ N

2

3 Ly

)

(A.83)
(A.84)

(A.85)
(A.86)
(A.87)
(A.88)
(A.89)
(A.90)
(A.91)

(A.92)
(A.93)

(A.94)
(A.95)

(A.96)
(A.97)

(A.98)

A.4.8 Equation 3.18d for short ribbons

Z3
T4y AT2
S1
=
Bt(Sl)F(h’f) (TR)|I1 To I3 {E4> (A99)
= Byi(s1)e(f)|z1 xo x3 £4S(h)) (A.100)
= fle)t(zfayagaih”) |z x5 a5 2y) (A.101)
(z1),(h)
= Y f")elg)t[xabalal S)N T](s1)]2) b oy 2y h) (A.102)
(xi 7(h)7i7(i
= > fEFW (r)ta i SRV (s1) 2] 7h 2 7)) (A.103)
(z1),(h),1,(i)
f // F(h 19i) TR)Bt[?S(i’”)h”i/](51)|x1 To X3 ZL‘4> (A104)
(h),1,(1)

A.4.9 Equations 3.17b and 3.17c for long ribbons

€3
———————— <
1‘4\/8
0 7—1 > <
N 7'2 "'U4 /\$2
Vi \ PR P,
A} 7
T3 I ToN <—
oo /< \UT
A T2 L/ S0,
7
€

94

For the left figure above, we have,

Aa(s0)F"D (1R)
Z Aa(S[))F(h/’gi) (7-1)F[S(il”)h//i/,f(i”?)] (7-2)
(h),,(1)
= Y FraWS@O).glS@ N} (1) A (9) FISEORTIE D] (1)
(@),(R),1,(i)

= Y plWS@alS@I () pISEIRTIED] (1)) A, (o)
(@), (1), ()

— Z Frla’h’'S(a®),gi[S(a")i)gi(7)} (7-1)F[S(i’”)h”i’,f(i”?)] (9) Agn(s0)

(a),(h),i,(1).j

_ Z F[a”h’S(a(G)),g]}()F{S(///) ///h/ls(a(S))j/J[S(a(‘l))j//?}}<T2)Aa/(80)

(a),(h).§,(3)

= 3 FlRSEOSE@ I () A, (s0)
(a).(h)

From the forth line to the fifth line in the above equation, we need to use

gi(ad) =g [aZgJ] 291 aj)g;(b

— gi(a?) Zgl aj)g;(?
For the right figure above,

By(s0)F" (1)
Z Bt(SO)F(h,7gi) (7—1)F[S(i///)h/,i,7f(i”?)] (7_2)
(h),1,()

> FU(m) Bypsqwy (so) PO (7y)
(R)5)

Z F h 91 F[S(///)h///ll f(//‘7)] <T2)Bt[?s(h/)] (80)
(h),1,(1)

= Z F(h” TL Bt[VS(h’)]<50>

95

(A.105)
(A.106)

(A.107)
(A.108)
(A.109)
(A.110)

(A.111)

(A.112)

(A.113)

(A.114)
(A.115)

(A.116)
(A.117)

(A.118)

A.5 Proof of Ribbon operator in middle

We are going to talk about Hamiltonian terms where «a is the Haar integral of H and ¢ is
the Haar integral of H* temporarily. Notice that the Haar integral is cocomutative, and so we
can cyclically rotate the components a’, a”, a”, etc. Below we prove the commutation relation
for locally clockwise ribbons, and leave the details for locally counterclockwise ribbons to

the reader.

A.5.1 Equation 3.19a

4 T2
Aa(s)Fh,f(TL) (Allg)

_ Z Aa(S)F(h’,gi)(7-1)F[S(i/”)h”i’yf(i”f’)] (72) (A.120)
(h),1,(1)

— Y FWeC) () A, (s) FISE RS (1) (A.121)
(h),1,(1),(a)

_ Z F[hl,gi(?a<5))] (7-1)F{als(im)hui/‘s(a/”)’f[i/ls(a”)?]} (TQ)AQ(‘l) (3) (A 122)
(h),1,(1),(a)

=Y el () plaSE WS @IS @ (1) A () (A.123)
(h):1,(1),(a).j

_ Z F(hlvgj) (Tl)F{a/S(a(ﬂ)S(j///)h//j/a(5)S(a///)7f[j//a(6)S(a//)?]} (TQ)AQ(@ (S) (A124)
(h),(a),3, ()

— Z F(h”gj)(Tl)F{S(jm)h”j/a(4>S(a//)’f[j//a(5)s(a/)?]}(7’2>Aa,,,(3) (A125)

(h),(a)§,(3)

96

= > F9) () ST INTa@S@) T (1,) A (5) (A.126)

(k) (@),3,(3)

= 3 FW) (7)) FISTINITE Y (7,) A, (5) (A.127)
(R),3,(3)

= FMI (77) Au(s) (A.128)

From the sixth line to the end in the above equation, we used the cocomutative condition of
a € H, the Haar integral of H. So we can rotate a’ to a"=) and a™ to Y for n > 1.

After the rotation, we obtain e(a(”)) to lower the maximum order step by step.

A.5.2 Equation 3.19b

3
x4\/ /\xQ
< 1
T2
S
i3
By(s)F ") (rp) (A.129)
- By(s) P (7)) PISGORT LD () (A.130)
(h)1,(1)
= > (") F" D (1) Bysgrmpryz (S) FEEII) () (A.131)
(h)1,(1).5, ()
— Z gj(j”)F(h,’gj)(7-1)F[S(i(4))h(4>i//’f(i/”?” (7-2) (A.132)
(h)1,(1).3, ()
Bt[S(j”’)h”j'?S(i')S(h”/)iw)}(S) (A133)
! q. : Y31 +(
= Z F(h ’gj)(Tl)F[S(‘](5))h(4 J ’f(“] 4)?)] (7-2)Bt[S(j(7))h”j’?S(j”)S(h”’)j(6)}(8) (A134)

(h):J;(3)

97

= Z F(h,7gj) (7_1)F[S(j(S))h(4>jm’f(j(4)?)} (7—2)Bt[S(j”)S(h”/)j(G)S(j(7))h"j’?} (S) (A 135)
(R).3,33)

= Y W) () FISERTIG D) () B (s) (A.136)
(h)3.0)

= F9) (1) By(s) (A.137)

Similarly, from the last third line to the last second line, we used the cocomutative condition

of t € H*, the Haar integral of H*.

A.6 Fourier transformation of H*

Let H be any finite dimensional C* Hopf algebra. First, we define a Fourier transforma-

tion on H [15]:

dim(v)
dim(H)

lvab) = > D¥(hg)aphg, v ery,ab=1,--- dim(v),

(ho)
where Irry is the set of irreducible representations of H, and DY (h{)a is the matrix entry of
hg for the representation v under a chosen (fixed) basis.

Recall from Section 2.2 that there are two commuting actions, L and R, of H on itself cor-
responding to multiplication on the left and multiplication on the right by S(-), respectively.
We check the form of the two actions under the Fourier basis.

For an element m € H, the action L(m) is

dim(v , y
Lmlvat) = | Gk S Dl (A138)
(ho)

dim(v)

= 8 D" (h}))gom e(m’ R A.139
iy 3 D e (A.130)
dim(y) / / " "

= - DY (hy)aym'elS(m')]hy. A.140
iy X DSt (A.140)

98

As xhy = e(x)ho, we have 3=,y) 7'hy @ 2"hg = €(x) Xy ho @ hg. Applying the above

identity for z = S(m”), we obtain

dim(y) v my 1./ "
L(m)|vab) = | — DY [S(m")hglapm'S(m") hy (A.141)
dim(H) ()T
= ;Zl((?) ;)D”[S (m)holavho (A.142)
ho
= ;Zl((;[)) P D[S (m)]ax D (ho)wvhg (A.143)
= > D¥[S(m)]ak| kD) (A.144)
=Y D" [m]ya|vkb). (A.145)
k

Similarly, we can obtain the action of R(m):

R(m)|vaby =>_ D" (m)w|vak).

k

Now, take the dual basis {(rab|} in H*. L and R each induces a representation on H*, still

denoted by the same letter. Then on the dual basis, the two actions are given by,

L(m)({vabl) Z DY (m) e (vkb, (A.146)

R(m)({vabl) Z DY (m)(vak|. (A.147)

Applying the above dual basis to D(H), we get the basis for Equations 3.26, 3.27.

99

B. SUPPLEMENTAL MATERIAL FOR CHAPTER 4

This chapter contains work from the article entitled "Quantum circuits for toric code and
X-cube fracton model" written by the author, Bowen Yan, and Shawn X. Cui published on

Quantum [2].

B.1 2D toric code on sphere

Similar with the example of genus 1 torus, we identify different qubit pairs to change the
four plaquettes into a sphere as shown in Figure B.1. The bottom right plaquette is chosen

to be redundant and two steps will complete the procedure.

¥ N

AN ® L

¥ v
A
°

A

Figure B.1. Boundary edges are identified according to the double-headed arrows.

B.2 2D toric code on genus n surface

Figure B.2 shows a genus n surface which is a disk enclosed by a ribbon with identified
edges. Beginning with |¢g), we develop a disk from inside and leave the ribbon with all
identified edges undeveloped. Then we choose one edge in the ribbon to apply the method
of basic structure and repeat in clockwise direction. After 2n — 1 steps for a genus n torus,

we will get the ground state of the closed surface.

B.3 Local CNOT operation

In the preparation of arbitrary state of 2D toric code, we use CNOT to transmit the

logical states vertically and horizontally. If we employ non-local CNOT gates, as illustrated

100

L @
®
[[]
1 1
1 1
—o— | —o— [.
I I
® []
L @

Figure B.2. The shaded area represents the developed disk; Boundaries with
the same color are identified to change the plaquettes into a genus n torus.

on the left side of Figure B.3, it takes [logs(L)] steps. However, when CNOT gates are
constrained to constant distances d, this procedure requires [logs(d) + i} steps, as shown
on the right side of Figure B.3. The distance d is defined such that two qubits are considered
to be d apart if the shortest path connecting them contains d — 1 qubits.

B.4 3D toric model with boundary

The generation from 2D toric code to 3D toric model with boundary is complicated but
direct. We can continue to use a plaquette as the basic structure but consider four different
types of cubes. Let us take the eight cubes in Figure B.4 as an example. We begin with
the red cube and develop it into pink cubes. Orange cubes are the next and the yellow cube
completes the model. In the following, we will divide the method into four steps, each step
describes one type of cubes.

To develop the qubits in the beginning red cube, we need to develop five rather than
six faces as the cube is a closed surface with one redundant face. As shown in Figure B.5,
we develop a face first and choose the four qubits on the opposite face to repeat the basic
structure. After that, considering the pink cube shares a face with developed cube, we only
need to develop four more faces as the second cube is also a closed surface. We choose the

four qubits on the face opposite to the developed cube to repeat the basic structure.

101

j
]

_T
T
e

[T 17 171

T
R aE
A
-
-

S
o
.
-
L
F+w%+%

_T
|
*ulﬂ
S
(R R N N S N N N O A A S S N

T
T
T
—

I (N S S

_T
T
-

r
B

Figure B.3. For the case L = 16, we illustrate the utilization of CNOT gates
to vertically transmit the logical states in the sequence: black, red, green, blue,
orange. On the left-hand side, there exists no constraint on the distance d,
permitting the use of non-local CNOT gates, resulting in logy(16) = 4 steps.
On the right-hand side, with the restriction of d = 2, the process requires
logs(2) + 12 = 5 steps.

Similarly, we need to develop three faces for the orange cubes and two faces for the yellow
cube as shown in Figure B.6. The four steps complete the procedure to simulate the ground
state of toric model on the eight cubes lattices. And we are able to develop any size cubes

with boundary using the method described above.

102

Figure B.4. The beginning cube is colored red. The pink, orange and yellow
cube represent the cubes connected with one, two or three faces developed.

Figure B.5. The left two cubes describe the first step to develop the red
cube. The right cubes describes the second step to develop the pink cube.

B.5 3D toric model without boundary

In Figure B.7, the opposite faces are identified together to represent the 3D torus. We
begin with |¢g) and choose four free qubits in the lower layer to take the procedure in basic
structure. After this step and identification of opposite faces, we get the lattice with the
middle untouched. Finally, choose three more free qubits to repeat the basic structure and

leave a vertex redundant.

B.6 X-cube model simple example

To illustrate the method, we take the eight cubes case as a simple example shown in
Figure B.8. Considering the redundant cubes in yellow, we only need to develop four cubes
left. The initial state is |¢g), and we begin with the cube at the right front higher corner to
apply the basic structure. After this step and identifying opposite faces, we get the result

103

<
°
o ° °)
. ° °
° ®
° 1 ¢ —
® o* o*
o ° ° °
. ° °
° ® ®
° ® ® ® ®
* * ° ' ®
° °
° °
° °

Figure B.6. The left figure describes the step of orange cubes, and we need
to develop the face in front first. The right figure describes the final step to
develop the yellow cube, and we need to develop the face above first.

T
-\4‘\-
*
W
4

= ®

s

Figure B.7. A qubit |0) is placed at each gray dot at the beginning. The
color changes to black when a quantum gate is applied on the qubit.

on the right-hand side of Figure B.8. Then we choose three more free qubits from each
cube connecting with the developed cube to repeat the procedure of basic structure and the

ground state is completed.

104

Figure B.8. The left figure is an example of X-cube model with opposite
faces identified. The right figure shows the result after the first step and the
free qubits for next step are circled.

105

C. SUPPLEMENTAL MATERIAL FOR CHAPTER 5

This chapter contains work from the article entitled "Representing Arbitrary Ground States
of Toric Code by Restricted Boltzmann Machine" written by the author, Bowen Yan, and
Shawn X. Cui preprinted on arXiv [3].

C.1 Analytical solution of b, wy; in the FRRBM

To optimize |U) = > g W (S;W)|S) to best represent the ground state |GS), consider

the following expression:

Uy (S; W) = 2%] To(S;W) [T Tr(S; W), (C.1)
veV fer
[y (S; W) = 2cosh(b, + Y wyjo7), (C.2)
jes(v)
T4(S;W) = 2cosh(by + D wyyo7). (C.3)
jes(f)

Setting a; = 0, we treat |U) as |G\S):

GS) = 37X 9%] 2cosh(by+ 3 w,j07)

S veV jes(v)
IT 2cosh(by + > wyio7)[S). (C.4)
fer jes(f)

The stabilizer condition of face operator is examined next:

BylGS) =] 4:1GS) = 1GS), V. (C.5)
e€s(f)

As the configuration |S) remains unchanged by 672, we get:

[T 62257 I Tu(S;W) T] T (S; W)

e€s(f) veV fler
—e2i 9% T[Ty (S;W) I Tp(S; W), Vf, VS. (C.6)
veV fler

106

All irrelevant terms on both sides are then cancelled:

[T 8Zcosh(bs+ > wyjof) = cosh(by + D wyiof), Vf, VS. (C.7)
e€s(f) j€s(f) jes(f)
Due to translation invariance, it is unnecessary to repeat the calculation for all faces. Instead,

the possible configurations in a single face contribute 2* equations, as illustrated in Figure

C.1:

cosh(b — wy + wy + w3 +wy) =0 (C.8)
cosh(b+ w; —we —wg —wy) =0 (C.9)
cosh(b —wy — wa + w3 + wy) # 0 (C.10)
cosh(b — wy — we — w3 —wy) # 0 (C.11)

Solving these equations yields the complete set of solutions for the face terms by, wy;: by =

0 (modm) and wy; = i, 2% (mod), where an even number of the four wy; must be the same.
Since the function of the face terms selectively excludes some configurations, any solution
set is valid and can be chosen without loss of generality. In the main article, we choose the

isotropic solution (by,wy;) = (0, 7i).

Figure C.1. This lattice diagram represents a translation-invariant structure
for a face-type hidden neuron, using simplified notation without the subscript

£l

107

C.2 Analytical solution of b,, w,; in the FRRBM

The face terms By typically rule out certain configurations without trivial flux, while the
vertex terms A, ensures all configurations in the same logical state are uniformly weighted.
In this appendix, we continue from Equation (5.7) discussed in the main article, focusing
on the configurations with trivial flux illustrated in Figures C.3 through C.7. We extract
relevant independent equations (C.13) through (C.16) to analytically solve for b, and w,, ;. To
simplify notation further in the calculation, we replace cosh with cos and divide all weights
by i. We treat b, as a redundant parameter, similar to a;, and set b, = 0, as allowing b, € C
would introduce superfluous freedom. Further elaboration on this issue is provided at the

end.

®

N
7 h\
’

®

[]
[]
[] \
[]

Figure C.2. This lattice diagram represents a translation-invariant struc-
ture for a vertex-type hidden neuron, using simplified notation without the
subscript v and (by, wy;) = i* (b,w;). If we flip the four qubits surrounding
the central vertex, qubits contributing to the phase difference are circled for
clarity.

Equation (C.12) defines the often-used phase factor A:

cos(wy + wy + w3 + wy) == A. (C.12)

108

Equation (C.13), the most discussed criterion, is abstracted from Figure C.3:

cos(—wq + wy + w3 + wy) cos(wy — wy + w3 + wy)

cos(wy + wy — w3 + wy) cos(wy 4+ wy + wy — wy) = A, (C.13)

Equations (C.14, C.15, C.16) describe squared conditions, while Equations (C.17, C.18)
specify additional criteria. All these equations are derived from the configurations shown in

Figure C.4 through C.7:

[cos(—wy — wy + w3 + wy) cos(wy + way — ws — wy)]* = A** for any L

= cos®(—w; — wy + w3 + wy) = A% (C.14)

[cos(—wy 4wy + wy — wy) cos(wy — wy — ws + wy)]* = A*L for any L

= cos®(w; — wy — ws + wy) = A”. (C.15)

cOS(—w1 4 Wo — W3+ wy) COS(—wy + Wy + w3+ wy) cos(wy + wy — wy+ wy) = A®

cos(w; — wy -+ w3 — wy) cos(wy — wy+ ws+ wy) cos(wy + wy+ w3 — wy) = A®

= cos?(wy — wy +wz — wy) = A% (C.16)
= cosz(wl — Wy + w3 + wy) cosz(wl + wy + w3z — wy) = A% (C.17)
= cos?(—w; + wy + w3 + wy) cos? (wy + wy — w3 + wy) = A*. (C.18)

109

Next, we need to solve and discuss Equations (C.12) through (C.18):

Equation (C.12)4+(C.14): w; +wy =0 or w3 +wy =0
Equation (C.12)4+(C.15): w; +wy =0 or wy + w3 =0

Equation (C.12)4(C.16): w; +w3 =0 or we +wy =0

T
= —w; = wy = w3 = wy (mod 5) and alternations. (C.19)
T T
or w; =wy=ws=_0or 1 (mod =) and alternations. (C.20)

In the first scenario derived in Equation (C.19), without loss of generality, we can set
wy = —w + 5My, Wy = W + M, w3 = w + 5m3, and wy = w + Fmy, where my, ma, msz, My

€ N. Subsequently, the criteria in Equation (C.13) is rewritten as

cos [4w + g(M — 2my)] cos [g(M — 2my)]
cos [g(M — 2mg)] cos [g(M —2my)] = cos*(2w + gM), (C.21)

where M := m; + mg + mgs + my. And cos [5(M —2my)] # 0 = M is even, thus the terms

with § above could be rearranged as follows:

cos [+ (M —2my)] = cos(4w) cos E(M—zmg} _ sin(4w) sin B(M—2m1)]

= cos(4w) cos [g(M—le)} ,
OT Vvice versa:
T T T
cos [§(M — 2my)] cos [§(M — 2mg)] = cos [5(2M — 2mgy — 2m3)].
Then Equation (C.21) is simplified as
T T
cos(4w) cos [5(4M —2M)] = [cos(2w) cos(gM)]

cos(4w) = cos*(2w). (C.22)

110

Solving Equation (C.22), we get cos(4w) = 1, implying w = 0(mod 7). Considering the
definition of A in Equation (C.12), which is not 0, we conclude: even number of w are
0 (mod7) and the others are 7 (modm). For these solutions, A is either +1 or
—1.

In the second scenario derived in Equation (C.20), without loss of generality, we can set

T
4

wy and ws into Equations (C.13) and (C.17, C.18), we can find the allowed solutions: three

wp = we = w3 =w, w=0or ¥ (mod g) and wy is free. By inserting all possible values of wy,
of w equal to 0 (mod 7) and the other serves as a normalization parameter such
that cos(3w + wy) = A.

In the calculation above, we treat b as a redundant parameter and set b = 0. Reader
can practice by setting b = 7 to obtain another set of solutions, which yields results similar
to those above. To understand how allowing b € C introduces superfluous freedom, one
can abstract Equation (C.23) from Figure C.8 and incorporate b into Equation (C.12). By
re-deriving equations (C.13) through (C.16) and substituting them into Equation (C.23),
one can obtain Equation (C.24), which represents the restriction on b. There are infinite
many possibilities, and above two learnable solutions emerge through the training process

introduced in the next section.

cos(b— w1 —wa+w3+wy) cos(b+wy —wy —wz+wy) cos(b+wy +we —ws—wy)
cos(b—w; +wa+ws —wy) cos? (b+wy —ws —ws —wy) s> (b—w; +wy —ws —wy)

cos? (b—w; —wa + w3 —wy) cos®(b—w; —wy —wsz+w,) = A (C.23)

cos?(b — wy — wy — wy — wy) = cos* (b4 wy + wy + w3 + wy). (C.24)

111

[]
[]
[]
[]
[]
[]
!
[]

[]
[]
[]
[]
[]
<]

<]

[]

Figure C.3. In this configuration, each black dot represents a qubit in state
|—1), while each green dot indicates a qubit in state |+1). Starting with the
initial configuration on the left, a vertex operator is applied at vertex vy to flip
the adjacent four qubits. The resulting configuration, displayed on the right,
features five vertices encircled in red that contribute to the phase difference. By
comparing the phase contributions from these vertices in both configurations,
we derive Equation (C.13), which is a crucial criterion for our calculation.

R

[]
9.
®
[]
[]
<]

<]

[]

2
[
®
®
°
®

Figure C.4. Starting with the initial configuration illustrated on the left, we
apply vertex operators diagonally at vertices vg. The resultant configuration,
showcased on the right, exhibits translational symmetry horizontally. Notably,
the three vertices encircled in red contribute to the phase difference. By ana-
lyzing the phase contributions from these three vertices in both configurations,
we deduce Equation (C.14). This equation represents one of the three pivotal
square conditions essential for our calculation.

112

|
ol
[]

H‘
‘@

-

Figure C.5. Similarly, applying vertex operators diagonally in the perpendic-
ular direction, we obtain Equation (C.15), another pivotal square condition.

Dit1:

®
[
®
®

Figure C.6. This configuration corresponds to the first equation to derive
the Equation (C.16), the last pivotal square condition.

113

[]
[]
[]
[]
[]
[]
!
[]

Figure C.7. This configuration corresponds to the second equation to derive
the Equation (C.16), the last pivotal square condition.

®
®
®
®
[]
[]
[]
!

= = = = = - —b
U1 U2 I

® ® [J [] ® o ® []

\ 4 \ 4 \ 4 @ L 4 > L 2 > —
U3 on I I

®
®
®
®
[]
[]
!
!

Figure C.8. This configuration corresponds to Equation (C.23), the condition
to find the restriction on b,.

114

C.3 Machine Learning of the FRRBM

To further elucidate the analytical solutions derived in the main article for the FRRBM

illustrated in Figure 5.1, we numerically determine the ground state solution from Equations

(2.58) and (5.1) by applying a vertex stabilizer condition on square lattices of various sizes.

Namleluy, Figures C.9 and C.10 show their factorization on 3 x 3 and 4 x 4 square lattices

with different initial settings, where the common setting is (a;, bs, w¢;, b,) = (0,0, 71,0), with

variations in w,; making the difference.

final cost = 1.47e-12

1071 4

1073 4

10-5

107 H

cost function

1077

10711 4

W(|00=) = -1.0000 + -0.00001
W(]01>) = 1.0000 + 0.0000i
W(|10=) = 1.0000 + 0.0000i
Y(]11>) = -1.0000 + -0.0000i

cost function

T T T T
0 100 200 300 400
train cycles

T
500

140

final cost = 1.40e-11

W(]0oo>) = 1.0000 + -0.0000i
W(]o1>) = 1.0000 + -0.0000i
W(]10>) = 1.0000 + 0.0000i
W(]11>) = 1.0000 + -0.0000i

T T T T T
100 200 300 400 500
train cycles

Figure C.9. On a 3 x 3 lattice, the left plot shows the training result for
for the anisotropic setting w,; =

the isotropic setting w,; =
0,0, %4, Zi.

72702

i, and right

115

final cost = 2.32e-11 final cost = 9.70e-10

100 -

10714

10-2 4 W(|00=) = 1.0000 + 0.00001 .
. W(|00=) = 1.0000 + -0.0000i
W(|01=) = 1.0000 + 0.0000i i
o 101 W(|10>) = 1.0000 + 0.0000i L 1071 W(|01>) = 1.0000 + -0.0000i
2 W(|11>) = 1.0000 + 0.0000i .% W(|10=) = 1.0000 + -0.0000i
“
= .
S 108 5 10751 W(|11>) = 1.0000 + -0.0000i
I i
S S
-8
10 1077
10-10
107
T T T T T T T T T T T T
0] 100 200 300 400 500 o] 100 200 300 400 500
train cycles train cycles

Figure C.10. On a 4 x 4 lattice, the left plot shows the training result for

the isotropic setting w,; = 7i, and right for the anisotropic setting w,; =

0,0, 31, 5i. Despite the varied interaction settings, both configurations yield

identical ground states. This outcome contrasts with the results shown in
Figure C.9, where the ground states differ significantly.

C.4 Machine Learning of the RBM

lustrated in Figure 5.3, we pick the isotropic setting (aj, by, wy;, by, wy ;) = (0,0, 31,0, 7i)
and uniformly weighted every new connection (w;,,. = §i). Then three hidden neurons (h,,
hy, h,) are introduced into the FRRBM to simulate an arbitrary ground state. Reader can
verify that the inclusion of h, and h, (inspired by the logical operators Z, and Zj) allows
for the simulation of any specific degeneracy state, while h, enables the representation of
any arbitrary ground state as a linear combination within the degeneracy basis. Then, using
Equations from (5.10) to (5.13), we can analytically solve the weights for arbitrary ground
state.

On the other hand, illustrated in C.11, the configurations Si, Sy, S3, Sy are chosen from
the equi-positioned configurations of the states |00), |01), |10), |11), respectively. Employing
the condition (GS|S1):(GS|S2):(GS|S3):(GS|S4) = (GS]00):(GS|01):(GS|10):(GS|11),
we can numerically train the weights for arbitrary ground state according to the ratio con-

ditions.

116

"Xh

X

-
-
_-=a S

Figure C.11. On the square lattice displayed on the left, we identify four
distinct qubit configurations: S1, where all qubits are in the |—1) state; S2,
with qubits only on the vertical dashed loop in the |1) state, namely |S2) =
X,|S1); similarly |S3) = X,|S1); and [S4) = X,X,|S1). The weights of

interest are illustrated on the right.

Let us consider a straightforward example involving the degeneracy state |00). We employ

the condition (GS|S1):(GS|S2):(GS|S3):(GS]|S4) = 1:0:0:0 to analytically determine the

weights, yielding in (by, by, b.) = (2

3m:
) Zl>

7i). Subsequently, we verify the learnability of the

RBM, as illustrated in Figure C.12, ensuring that it can accurately and efficiently represent

the specified state characteristics.

final cost = 9.82e-14

1072 +
W(|00>) = 1.0000 + 0.0000i
1074 w(|01>) = -0.0000 + 0.0000i
W(|10>) = -0.0000 + -0.0000i
5 10-° - W(]11>) = -0.0000 + -0.0000i
S
=
2 -8
& 1078+
o
o
10-10 4
10-12 4
T " " " ‘ "
0 100 200 300 400 500

train cycles

nonlocal weights

2.5

2.0

1.5

1.0 4

0.5 1

0.04

s
/I,’
/
’
I‘ ____________________________________
7 by —+ -0.0000 + 2.3562i
—— b, — 0.0000 + 2.3562i
b; - -0.0000 + 1.5708i
0 100 200 300 400 500

train cycles

Figure C.12. Training results on a 3 x 3 lattice for |G.S) = |00).

Similarly, another example with amplitude ratios (G\S|00) : (GS|01) : (GS|10) : (GS|11)

117

1:2:3:4 results in the solution (b,,b,,b.) = (coth™"(2,/2/3)+ i, coth™'(1/6) +

4

i, coth™(,/3/2)). We then verify the learnability of the RBM, as illustrated in Figure
C.13. We find that finer results can be achieved with smaller training step sizes, though
extending training time does not lead to significant improvements. Finally, we present an
example that can only be approximated, as shown in Figure C.14. We observe that finer
results are achievable with smaller training step sizes, and unlike the previous case, longer

training times also contribute to better outcomes.

final cost = 2.45e-06

1.2 §
10-2 4 W(|00>) = 1.0000 + 0.0000i —_— —— by~ 07127 +0.7854i
. 1.0 - —— by, - 0.4335 + 0.7854i
W(|01>) = 2.0000 + 0.0000i -
—— by -+ 1.1462 + -0.0000i
1073 4 3.0000 + 0.0001 | | TTTmmeen
9089 ~——e T mmmececmeee
5 W(|11>) = 4.8000 + 0.0001i el
=] ‘T
=
= $ 0.6+
32 1074 I
- =
7] o
S § 0.4+
107° 4 °
0.2
S e [N Bttt P
10 o4 Tt
‘ ‘ ‘ ‘ ‘ T ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ T ‘ ‘ ‘
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
train cycles train cycles

Figure C.13. Training results on a 3 x 3 lattice for |G\S) = |00) + 2|01) + 3|10) + 4|11).

final cost = 1.17e-04 final cost = 5.64e-05
1071 4 10-1 4 _
W(|00>) = -0.0016 + -0.0007i W(]00>) = -0.0007 + -0.0003i
W(|01>) = 1.0000 + -0.0000i Wi|o1>) = 1.0000 + 0.00001
¥(]10>) = 1.0000 + 0.0001i $:|ﬁ>; - gz:z; * 'g'gggg!
. -2 4 >)=0. +-0. i
5 10-2 4 W(|11>) = 1.0000 + 0.0001i c 1072 [
S S
G k¥
< c
=] =l
= L=
@ I
8 S 1073 4
10—3 4
1074
1074 E T T T T T T T T T T T T T T T
0 2000 4000 6000 80DO 10000 12000 14000 0 10000 20000 30000 40000 50000 60000
train cycles train cycles

Figure C.14. Training results on a 3 x 3 lattice for |GS) = |01) + |10) + |11).

118

C.5 Python code for 2D the FRRBM

1

10

11

12

13

14

16

17

18

19

20

21

29

30

31

32

33

34

35

36

37

38

39

40

41

This code trains bv and wv in FRRBM
import torch

import numpy as np

import matplotlib.pyplot as plt

import time

20 selected for the degeneracy basis and 30 random configurations.

S = np.load(’S20_30.npy’)

S$S = np.array([([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[-1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1],
-1, -1, -1, -1, -1, -1, -1, -1, -1, +1, +1, +1, -1, -1, -1, -1, -1, -1],

[-1, +1, -1, -1, -1, -1, -1, +1, -1, +1, +1, +1, -1, +1, -1, -1, -1, -1]1]1)

def pr(b, w, sl, s2, s3, s4):

result = torch.cosh(

(b[0] + 1j * b[1]) + (w[0] + 1j * w[4]) * s1 + (w[1] + 1j * w[B]) * s2 + (

w[2] +

return result

1j * w[6]) * s3 + (w[3] + 1j * w[7]) = s4)

def prr(b, w, sl, s2, s3, s4):

result = torch.cosh(b[0] + 1j * (w[0] * s1 + w[1] * s2 + w[2] * s3 + w[3] * s4))

return result

ph is the phase function.

def ph(bv, wv, bf, wf, s):

result = (pr(bv, wv, s[0], s[3], s[2], s[15]) * pr(bv, wv, s[1], s[4], s[0], s[16])

* pr(bv, wv, s[2], s[5], s[1], s[17]) * pr(bv, wv, s[6], s[9], s[8], s[3])

* pr(bv, wv, s[7], s[10], s[6], s[4]) * pr(bv, wv, s[8], s[11], s[7], s[51)

* pr(bv, wv, s[12], s[158], s[14], s[9]) * pr(bv, wv, s[13], s[16], s[12], s[10])

* pr(bv, wv, s[14], s[17], s[13], s[11]) * prr(bf, wf, s[4], s[6], s[3], s[0])

* prr(bf, wf, s[6], s[7], s[4], s[1]) * prr(bf, wf, s[3], s[8], s[6], s[2])

* prr(bf, wf, s[10], s[12], s[9], s[6]) * prr(bf, wf, s[11], s[13], s[10], s[7])

* prr(bf, wf, s[9], s[14], s[11], s[8]) * prr(bf, wf, s[16], s[0], s[15], s[12])

* prr(bf, wf, s[17], s[1], s[16], s[13]) * prr(bf, wf, s[16], s[2], s[17], s[141))

return result

The 9 vertex operators flip qubits.

119

42

43

44

45

46

47

48

49

50

51

52

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Al
A2
A3
A4
A5
A6
A7
A8
A9
S1
52
S3
sS4
S5
56
s7
S8
S9

np.
np.
.diag([+1,

np

np.
np.
.diag([+1,

np

np.
np.
np.
.dot (S,

np

np.
np.
.dot (S,

np

np.
np.
.dot (S,

np

np.
np.

diag([-1,

diag([-1,

diag([+1,

diag([+1,

diag([+1,

diag([+1,

diag([+1,

dot (S,

dot (S,

dot (S,

dot (S,

dot (S,

dot (S,

Al
A2
A3
A4
A5
A6
A7
A8
A9

)
)
)
)
)
)
)
)
)

+1, +1, -1,
-1, +1, +1,

+1, +1, -1,
+1, +1, +1,
+1, +1, +1,
+1, +1, +1,

+1, +1, +1,

def criterion(bv, wv, bf, wf):

+1,
+1,

+1,

+1,

+1,

+1,

+1,

torch.empty((18 * N,), dtype=torch.complex64)

= torch.empty((N,), dtype=torch.complex64)

k in range(N):

sub = ph(bv, wv, bf, wf, S[k])

nor [k]

sub

V[k] = ph(bv, wv, bf, wf,

V[1 * N + k]
V[2 * N + k]
VI3 * N + k]
V[4 * N + k]
V[5 * N + k]
V[6 * N + k]
VI7 * N + k]
V[8 * N + k]
V[9 * N + k]
V[10 * N + k]
V[11 * N + k]
V[12 * N + k]
V[13 * N + k]
V[14 * N + k]
V[15 * N + k]
V[16 * N + k]

ph(bv, wv,
ph(bv, wv,
ph(bv, wv,
ph(bv, wv,
ph(bv, wv,
ph(bv, wv,
ph(bv, wv,
ph(bv, wv,
(s[k][4] =

= (S[k1[5] * s[k1[7] * S[k1[4] * S[k1[1] - 1) * sub
= (S[k][3] * S[k1[8] * S[kI[5] * S[k1[2] - 1) * sub

S1[k]l) - sub

bf, wf,
bf, wf,
bf, wf,
bf, wf,
bf, wf,
bf, wf,
bf, wf,
bf, wf,
S[k] [e]

S2[k]1)
S3[k1)
S4[kx1)
S5[k]1)
S6[k1)
S7[k1)
S8[k1)
S9lk1)

sub
sub
sub
sub
sub
sub
sub

sub

+1,
+1,
+1,
+1,

+1,

+1,

+1,

* S[k1[3] * s[k][0] - 1) * sub

= (S[kI[10] * S[k1[12] * S[k1[9] * S[kI[6] - 1) * sub

= (S[k][11] * S[k][13] * S[k][10] * S[k][7] - 1) * sub

= (S[k1[9] * s[k1[14] * s[kI1[11] * S[k]1[8] - 1) * sub

= (S[k1[16] * S[k1[0] = S[k]1[16] * S[k]1[12] - 1) * sub

= (8[kI[17] = S[kI[1] * S[kI[16] * S[k][13] - 1) * sub

120

+1,

+1,
+1,
+1,
+1,

+1,

+1,

+1])
+11)
-11)
+11)
+1]1)
+11)
+11)
+11)
-11)

85 V[17 * N + k] = (S[k]1[15] * S[k][2] * S[k1[17] = S[k][14] - 1) * sub

86 v = torch.norm(V, p=2) / torch.norm(nor, p=1)
87 return v

88

89

90 # initial setting

91 (ss, tt, N) = (0.01, 500, len(S))

92 BF = torch.tensor([0.0])

93 WF = torch.tensor([np.pi / 4, np.pi / 4, np.pi / 4, np.pi / 41)

94 BV = torch.tensor([0.2, -0.2], requires_grad=True)

95 WV = torch.tensor([-0.3, -0.1, 0.1, 0.3, 1.2, 1.4, 1.6, 1.8], requires_grad=True)
96 optimizer = torch.optim.Adam([BV, WV], lr=ss)

97

98 # Stochastic gradient descent

99 start_time = time.time()

100 COST = []

[, 01

02 Awv = [[1, (O, 00, 00, 00, 00, 00, (1]

101 ABV

103 for h in range(tt):

104 cost = criterion(BV, WV, BF, WF)
105 COST.append(cost.tolist())

106 for p in range(2):

107 ABV [p] . append (BV[p] . tolist())
108 for q in range(8):

109 AWV [q] .append (WV[q] .tolist())
110 cost.backward()

111 optimizer.step()

112 optimizer.zero_grad()

113 end_time = time.time()

114 execution_time = end_time - start_time

115

116 # Visualize training cycles up to t

117t = (tt - 1)

118 Final = COST[t]

119 BVt = torch.tensor ([ABV[0][t], ABV[1]1[tl1)

120 WVt = torch.tensor([AWV[0][t], AWV[1][t], AwV[2][t], AWV[3][t],
121 Awv[4][t], Awv[5][t], Awv([e]l[t], AwV[7][t]1])
122

123 fig0 = plt.figure(figsize=(6, 4))

124 plt.plot(COST)

125 plt.title("final cost = %.2e" % Final)

126 plt.text(0.6 * t, 0.8 * COST[0], "20+30 configurations")

127 plt.text(0.6 * t, 0.7 * COST[O0], "$b_{f} = 0%, $w_{f} = \pi/4 i$")

121

128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

146

147

148

149

150

151

152

153

154

155

157

158

159

160

161

162

163

164

165

166

167

168

169

plt

plt.
plt.
plt.
plt.

.text (0.6 * t, 0.6 * COST[0], "Adam step size: %.2f" % ss)

text(0.6 * t, 0.5 *x COST[0], "Execution time: %is" % execution_time)
xlabel("train cycles")
ylabel("cost function")

show ()

figl = plt.figure(figsize=(6, 4))

plt

plt.

plt

plt

plt

plt

plt.
plt.

plt

plt.

.plot (COST[0:t])

title("final cost = %.2e" % Final)

.text (200, 10 ** (-2), "Ψ(]00>) = %.4f + %.4fi" % (

ph(BVt, WVt, BF, WF, SS[0]).data.item().real, ph(BVt, WVt, BF, WF, SS[0]).data.item().

.text (200, 10 *x (-3), "Ψ(l01>) = %.4f + %.4fi" % (

ph(BVt, WVt, BF, WF, SS[1]).data.item().real, ph(BVt, WVt, BF, WF, SS[1]).data.item().

.text (200, 10 ** (-4), "Ψ(110>) = %.4f + %.4fi" % (

ph(BVt, WVt, BF, WF, SS[2]).data.item().real, ph(BVt, WVt, BF, WF, SS[2]).data.item().

.text (200, 10 *x (-5), "Ψ(l11>) = .4f + %.4fi" % (

ph(BVt, WVt, BF, WF, SS[3]).data.item().real, ph(BVt, WVt, BF, WF, SS[3]).data.item().
xlabel("train cycles")

ylabel("cost function")

.yscale(’log’)

show ()

fig2 = plt.figure(figsize=(6, 4))

plt.

plt

plt.

plt

plt.

plt
plt

plt.

plt

plt

plt.
plt.
plt.

plt.

plot (ABV[0] [0:t], color=’tab:red’, label=r"b_v \rightarrow %.4f + %.4fi" % (
ABV[01[t], ABV[1]1[tl1))

.plot (AWV[0] [0:t], color=’tab:orange’, label=r"$w_{v,1}$ \rightarrow 7.4f + 7.4fi" ¥

AWV[O][t], AWV[4][t]))
plot (AWV[1][0:t], color=’tab:green’, label=r"$w_{v,2}$ \rightarrow %.4f + %.4fi" % (
AWV[1] [t], AwV[5][t]1))

.plot (AWV[2] [0:t], color=’tab:blue’, label=r"$w_{v,3}$ \rightarrow %.4f + %.4fi" ¥ (

Awv[2][t], Awv([e6][tl))
plot (AWV[3] [0:t], color=’tab:purple’, label=r"$w_{v,4}$ \rightarrow %.4f + %.4fi" 7
AWV[3] [t], AWV[7][t]1))

.plot (ABV[1][0:t], ’--’, color=’tab:red’)

.plot (AWV[4][0:t], ’--’, color=’tab:orange’)

plot (AWV[5][0:t], ’--’, color=’tab:green’)

.plot (AWV[6][0:t], ’--’, color=’tab:blue’)

.plot (AWV[7][0:t], ’--’, color=’tab:purple’)

xlabel("train cycles")
ylabel("weights")
legend ()

show ()

122

imag))

imag))

imag))

imag))

(

(

C.6 Python code for searching

1 # This code search solutions from random bv and wv for FRRBM
2 import torch
3 import numpy as np

4 import time

6 # 20 selected for the degeneracy basis and 30 random configurations.
7 S = np.load(’S20_30.npy’)

8 SS = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

9 [-1, +#1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1],
10 [-1, -1, -1, -1, -1, -1, -1, -1, -1, +1, +1, +1, -1, -1, -1, -1, -1, -1],
11 [-1, +1, -1, -1, -1, -1, -1, +1, -1, +1, +1, +1, -1, +1, -1, -1, -1, -111)
12

13 # 10k sets of variables for 10 variables.
14 Variables = np.load(’Variables10_10k.npy’)
15

16

17 # pr is the shortcut for cosh function.

18 def pr(b, w, sl, s2, s3, s4):

19 result = torch.cosh((b[0] + 1j * b[1]) + 1j * ((w[0] + 1j * w[4]) * s1 + (

20 wl1]l + 1j * w[b]) * s2 + (w[2] + 1j * w[6]) * s3 + (w[3] + 1j * w[7]) * s4))
21 return result

22

23

24 def prr(b, w, s1, s2, s3, s4):

25 result = torch.cosh(b[0] + 1j * (w[0] * s1 + w[1] * s2 + w[2] * s3 + w[3] * s4))
26 return result

27

28

29 # ph is the phase function.

30 def ph(bv, wv, bf, wf, s):

31 result = (pr(bv, wv, s[0], s[3], s[2], s[15]) * pr(bv, wv, s[1], s[4], s[0], s[161)

32 * pr(bv, wv, s[2], s[5], s[1], s[17]) * pr(bv, wv, s[6], s[9], s[8], s[3])

33 * pr(bv, wv, s[7], s[10], s[6], s[4]) * pr(bv, wv, s[8], s[11], s[7], s[56])

34 * pr(bv, wv, s[12], s[156], s[14], s[9]) * pr(bv, wv, s[13], s[16], s[12], s[10])
35 * pr(bv, wv, s[14], s[17], s[13], s[11]) * prr(bf, wf, s[4], s[6], s[3], s[0])
36 * prr(bf, wf, s[5], s[7], s[4], s[1]) * prr(bf, wf, s[3], s[8], s[5], s[2])

37 * prr(bf, wf, s[10], s[12], s[9], s[6]) * prr(bf, wf, s[11], s[13], s[10], s[7])
38 * prr(bf, wf, s[9], s[14], s[11], s[8]) * prr(bf, wf, s[16], s[0], s[15], s[12])
39 * prr(bf, wf, s[17], s[1], s[16], s[13]) * prr(bf, wf, s[15], s[2], s[17], s[14]))
40 return result

41

123

42

43

45

46

47

48

49

50

51

52

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

nor is the normalize function.

def nor(bv, wv, bf, wf):

The 9

Al
A2
A3
A4
A5
A6
A7
A8
A9
S1
S2
S3
sS4
S5
S6
S7
S8
S9

lam is the multiplier to amplify the choice of ground state

def criterion(bv, wv, bf, wf):

v

np

np.

np

np.
np.

np

np.
np.
np.
np.

np

np.
np.
np.
np.

np

np.
np.

result

for i in range(len(S)):

result += abs(ph(bv, wv, bf, wf, S[i]))

return result

vertex operators flip
.diag([-1, +1, -1, -1,
diag([-1, -1, +1, +1,
.diag([+1, -1, -1, +1,
diag([+1, +1, +1, -1,
diag([+1, +1, +1, +1,
.diag([+1, +1, +1, +1,
diag([+1, +1, +1, +1,
diag([+1, +1, +1, +1,
diag([+1, +1, +1, +1,
dot (S, A1)
.dot (S, A2)
dot (S, A3)
dot (S, A4)
dot (S, A5)
dot (S, A6)
.dot (S, A7)
dot (S, A8)
dot (S, A9)

qubits.

+1,
-1,
+1,
+1,
-1,
+1,
+1,
+1,

+1,

+1,
+1,

+1,

+1,

+1,

+1,

+1,

torch.empty((18 * N,), dtype=torch.complex64)

sub = ph(bv, wv, bf, wf, S[k])

for k in range(N):

V[k] = ph(bv, wv, bf, wf,

V[1 * N + k]
V[2 * N + k]
VI3 * N + k]
V[4 * N + k]
V[5 * N + k]
V[6 * N + k]
VI7 * N + k]

ph(bv,
ph(bv,
ph(bv,
ph(bv,
ph(bv,
ph(bv,
ph(bv,

wv,

wv,

wv,

wv,

wv,

wv,

wv,

S1[k]) - sub

s2[k])
$3[k1)
S4[k]1)
S5[k1)
S6(k])
S7[k1)
S8[k1)

sub
sub
sub
sub
sub
sub

sub

124

+1,

+1,
+1,
+1,
+1,

+1,

+1,

+1])
+11)
-11)
+11)
+11)
+1])
+11)
+11)
-11)

85 V[8 * N + k] = ph(bv, wv, bf, wf, S9[k]) - sub

86 V[9 * N + k] = (S[k][4] * s[k1[6] * S[k1[3] * S[kI[0] - 1) * sub

87 V[10 * N + k] = (S[k][5] * S[kI[7] * S[k][4] * S[k][1] - 1) * sub

88 V[11 = N + k] = (S[kI[3] * S[kI[8] * S[kI[5] * S[k1[2] - 1) * sub

89 V[12 * N + k] = (S[k]1[10] * S[k][12] * S[k1[9] * S[k]1[6] - 1) * sub
90 V[13 * N + k] = (S[k][11] * S[kI[13] * S[kI[10] * S[kI[7] - 1) * sub
91 V[14 * N + k] = (S[k][9] * S[k][14] * S[kI[11] * S[kI[8] - 1) * sub
92 V[15 * N + k] = (S[k][16] * S[k][0] * S[k][15] * S[k][12] - 1) * sub
93 V[16 * N + k] = (S[k]1[17] * S[k1[1] * S[k1[16] * S[kI[13] - 1) * sub
94 V[17 » N + k] = (S[kI[15] = S[k][2] * S[kI[17] * S[k][14] - 1) * sub
95 v = torch.norm(V) / nor(bv, wv, bf, wf)

96 return v

97

98

99 start_time = time.time()

100 (ss, tt, lam, N) = (0.02, 50, 1.0, len(S))

101 BF = torch.tensor([0.0])

102 WF = torch.tensor([np.pi / 4, np.pi / 4, np.pi / 4, np.pi / 4]1)
103 A1l = []

104 Select = []

105 for k in range(0, 100):

106 IN = Variables[k]

107 BV = torch.tensor ([IN[0], IN[1]], requires_grad=True)

108 WV = torch.temsor ([IN[2], IN[3], IN[4], IN[5], IN[6], IN[7], IN[8], IN[9]], requires_grad=True)
109 optimizer = torch.optim.Adam([BV, WV], lr=ss)

110 for h in range(tt):

111 cost = criterion(BV, WV, BF, WF)

112 cost.backward()

113 optimizer.step()

114 optimizer.zero_grad()

115 All.append(IN.tolist())

116 print(

117 wud: (%.2f,%.2F,%.2F,%. 28 ,%. 2F,%. 2F , % . 2F ,%. 2F , % . 2F ,%. 2£) =>"

118 "Ch.2f,%.2f,%.2F,%.2F ,%.2F,%.2f 0. 2F ,%.2f .2 ,%.2f) , cost=Y,.2e" % (

119 k, IN[O].tolist(), IN[1].tolist(), IN[2].tolist(), IN[3].tolist(),

120 IN[4].tolist(), IN[5].tolist(), IN[6].tolist(), IN[7].tolist(),

121 IN[8].tolist(), IN[9].tolist(), BV[0].tolist(), BV[1].tolist(),

122 WV[0].tolist(), WV[1].tolist(), WV[2].tolist(), WV[3].tolist(),

123 WV[4].tolist(), WV[5].tolist(), WV[6].tolist(), WV[7].tolist(), cost))
124 if cost < 0.01:

125 Select.append (k)

126 end_time = time.time()

127 execution_time = end_time - start_time

125

128 print(f"Execution time: {execution_time} seconds")

129 print(f"Select:{Select}")

C.7 Python code for the RBM

1 # This code trains RBM to get basis ratios 1:2:3:4
2 import torch

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import time

7 # 20 selected for the degeneracy basis and 30 random configurations.
8 S = np.load(’S20_30.npy’)
9 8S = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

10 [-1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1],
11 [-1, -1, -1, -1, -1, -1, -1, -1, -1, +1, +1, +1, -1, -1, -1, -1, -1, -1],
12 [-1, +1, -1, -1, -1, -1, -1, +1, -1, +1, +1, +1, -1, +1, -1, -1, -1, -111)
13
14

15 def pr(b, w, sl, s2, s3, s4):

16 result = torch.cosh(

17 (b[0] + 1j * b[1]) + (w[0] + 1j * w[4]) * s1 + (w[1] + 1j * w[B]) * s2 + (
18 wl2] + 1j * w[6]) * s3 + (w[3] + 1j * w[7]) * s4)

19 return result

20

21

22 def prr(br, bi, sl1, s2, s3):

23 result = torch.cosh((br + 1j * bi) + 1j * (np.pi / 4) * (sl + s2 + s3))
24 return result

25

26

27 def prrr(br, bi, sl, s2, s3, s4, sb, s6):

28 result = torch.cosh((br + 1j * bi) + 1j * (np.pi / 4) * (sl + s2 + s3 + s4 + sb + s6))
29 return result

30

31

32 def ph(gl, nl, bv, wv, bf, wf, s):

33 result = (np.exp(gl[0] + 1j * gl[1])

34 * prr(nl[0], nl[3], s[0], s[1], s[2]) * prr(nl[1], n1[4], s[3], s[9], s[15])
35 * prrr(nl[2], nl1[5], s[0], s[1], s[2], s[3], s[9], s[15])

36 * pr(bv, wv, s[0], s[3], s[2], s[15]) * pr(bv, wv, s[1], s[4], s[0], s[16])
37 * pr(bv, wv, s[2], s[5], s[1], s[17]) * pr(bv, wv, s[6], s[9], s[8], s[3])

126

38

39

40

41

42

43

44

45

46

47

48

49

50

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

*

*

pr(vv, wv, s[7], s[10], s[6], s[4]) * pr(bv, wv, s[8], s[11], s[7], s[5])
pr(bv, wv, s[12], s[15], s[14], s[9]) * pr(bv, wv, s[13], s[16], s[12], s[10])
pr(bv, wv, s[14], s[17], s[13], s[11]) * pr(bf, wf, s[4], s[6], s[3], s[0])

pr(vf, wf, s[5], s[7], sl[4], s[1]) * pr(bf, wf, s3], s[8], s[5], s[2])

pr(vf, wf, s[10], s[12], s[9], s[6]) * pr(bf, wf, s[11], s[13], s[10], s[71)
pr(bf, wf, s[9], s[14], s[11], s[8]) * pr(bf, wf, s[16], s[0], s[15], s[12])
pr(bf, wf, s[17], s[1], s[16], s[13]) * pr(bf, wf, s[15], s[2], s[17], s[14]1))

return result

The 9

Al
A2
A3
A4
A5
A6
A7
A8
A9
S1
S2
s3
sS4
S5
56
s7
S8
S9

= np.

np

np.
np.
.diag([+

np

np.
np.
np.
.diag([+

np

np.
np.
.dot (S,

np

np.
np.
.dot (S,

np

np.
np.
.dot (S,

np

vertex operators flip

diag([-

.diag([-

diag([+

diag([+

diag([+
diag([+

diag([+

dot (S,
dot (S,

dot (S,

dot (S,

dot (S,
dot (S,

1,
1,
1,
1,
1,
1,
1,
1,
1,
A1)
A2)
A3)
A4)
A5)
A6)
AT)
A8)
A9)

-1, -1,
+1, +1,
-1, +1,
+1, -1,
+1, +1,
+1, +1,
+1, +1,
+1, +1,

+1, +1,

qubits.
+1, +1,
-1, +1,
+1, -1,
+1, +1,
-1, +1,
+1, -1,
+1, +1,
+1, +1,

+1, +1,

, 1, 1, 41, +1, +1,
+1, +1, +1, +1, +1, +1,

+1, +1, +1, +1, +1, +1,

-1, -1, 41, 4, -1, 4,
1, -1, -1, 41, 4, -1,

+1, +1, +1, +1, -1, +1,

H, 41, 41, 4L, 4L -1,

lam is the multiplier to amplify the choice of ground state

def criterion(gl, nl, bv, wv, bf, wf):

vV =
nor

for

torch.empty((18 * N + 3,), dtype=torch.complex64)

= torch.empty((N,), dtype=torch.complex64)

k in range(N):

one = ph(gl, nl, bv, wv, bf, wf, SS[0])

sub = ph(gl,

nor [k]

= sub

V[k] = ph(gl,

V[1 * N + k]

V[2 * N + k]

VI3 * N + k]

nl, bv, wv, bf, wf, S[kl)

nl, bv,
= ph(gl,
= ph(gl,
= ph(gl,

wv, bf,
nl, bv,
nl, bv,

nl, bv,

wf, S1[k]) - sub
wv, bf, wf, S2[k]) - sub
wv, bf, wf, S3[k]) - sub

wv, bf, wf, S4[k]) - sub

127

+1,

+1,
+1,
+1,
+1,

+1,

+1,

+11)
+11)
-11)
+11)
+11)
+11)
+11)
+11)
-11)

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

V[4 * N + k] = ph(gl, nl, bv, wv,
V[5 * N + k] = ph(gl, nl, bv, wv,
V[6 * N + k] = ph(gl, nl, bv, wv,
V[7 * N + k] = ph(gl, nl, bv, wv,
V[8 * N + k] = ph(gl, nl, bv, wv,
VI9 * N + k] = (S[k]1[4] * S[k][6]

V[10 * N + k] =

V[11 * N + k] =

V[12 * N + k] =

V[13 * N + k] =

V[14 * + k] =

V[15 * N + k] =

V[17 * N + k] =

V[18 * N + 0] = lam * (ph(gl, nl,

N

N

N

N
V[16 * N + k] =

N

N
V[18 = N + 1] = lam = (ph(gl, nl,
N + 2] = lam * (ph(gl, nl,

v = torch.norm(V,

return v

(S[k1[16] = S[k][0] *
(8[kI[17] = S[k][1] *
(S[k] [15] * S[k][2] =*

bf, wf, S5[k]) - sub
bf, wf, S6[k]) - sub
bf, wf, S7[k]) - sub
bf, wf, S8[k]) - sub
bf, wf, S9[k]) - sub

* S[kI[3] * s[x][0] - 1) * sub

(S[k1 (6] * S[kI[7] * S[k]1[4] * S[kI[1] - 1) * sub
(S[k1[3] * s[k][8] * S[k1[5] * S[kI[2] - 1) * sub
(8[k][10] * S[kI[12] * S[kI[9] = s[k1[6] - 1) * sub
(S[k][11] * S[k][13] * S[kI[10] * S[k][7] - 1) * sub
(S[k1[9] * S[k][14] * S[kI[11] * S[kI[8] - 1) * sub

S[kI[15] * S[k]1[12] - 1) * sub

S[k][16] * S[k][13] - 1) * sub

S[kI[17] * S[k][14] - 1) * sub

bv, wv, bf, wf, SS[1]) - (bb / aa) * one)

bv, wv, bf, wf, SS[2]) - (cc / aa) * one)

bv, wv, bf, wf, SS[3]) - (dd / aa) * one)

p=2) / torch.norm(nor, p=1)

initial setting with the basis ratio (aa, bb, cc, dd)

(aa, bb, cc, dd, lam) = (1, 2, 3, 4, 1.0)

(ss, tt, N) = (0.0001, 2000, len(S))
BF = torch.tensor([0.0, 0.0])

WF =

BV = torch.tensor([0.0, 0.0])

wv =

global constant GL

GL = torch.tensor([0.7135588, -1.570752])

torch.tensor([0.0, 0.0, 0.0, 0.0, np.pi / 4, np.pi / 4, np.pi / 4, np.pi / 41)

torch.tensor([0.0, 0.0, 0.0, 0.0, np.pi / 2, np.pi / 2, np.pi / 2, np.pi / 21)

change the overall phase to modify aa, bb, cc, dd

NL stores all nonlocal weights bx, by, bz in C, wx=wy=wz=pi/4 i

NL = [Re(bx),Re(by),Re(bz),Im(bx),Im(by),Im(bz)]

NL =
optimizer = torch.optim.Adam([NL], lr=ss)
Stochastic gradient descent

start_time = time.time()
COST = []
ANL = [[1, (1, 01,

for h in range(tt):

o, 0, nl
cost =

COST.append(cost.tolist())

for p in range(6):

torch.tensor([0.7, 0.4, 1.1, 0.9, 0.8, 0.1], requires_grad=True)

criterion(GL, NL, BV, WV, BF, WF)

128

124 ANL [p] . append (NL [p] . tolist ())

125 cost.backward()
126 optimizer.step()
127 optimizer.zero_grad()

128 end_time = time.time()

129 execution_time = end_time - start_time

130

131 # Visualize training cycles up to t

132t = (tt - 1)

133 Final = COST[t]

134 NLt = torch.temnsor ([ANL[O] [t], ANL[1][t], ANL[2][t], ANL[3]([t], ANL[4][t], ANL[5][t]1)
135

136 fig0 = plt.figure(figsize=(6, 4))

137 plt.plot(COST[0:t])

138 plt.title("final cost = %.2e" % Final)

139 plt.text(0.6 * t, 0.85 * COST[0], "GL: %.4f + %.4fi" % (GL[0], GL[11))
0%, $w_{f} = \pi/4 i$")
0%, $w_{v} = \pi/2 i$")
142 plt.text(0.6 * t, 0.67 * COST[0], "$w_{x,y,z} = \pi/4 i$")

140 plt.text(0.6 * t, 0.79 * COST[0], "$b_{f}
141 plt.text(0.6 * t, 0.73 * COST[0], "$b_{v}

143 plt.text(0.6 * t, 0.61 * COST[0], "Execution time: %is" % execution_time)
144 plt.xlabel("train cycles")

145 plt.ylabel("cost function")

146 plt.show()

147

148 figl = plt.figure(figsize=(6, 4))

149 plt.plot(COST[0:t])

150 plt.title("final cost = %.2e" 7 Final)

151 plt.text(0.4 * t, 10 *x (-2), "Ψ(]100>) = %.4f + J.4fi" % (
152 ph(GL, NLt, BV, WV, BF, WF, SS[0]).data.item().real,

153 ph(GL, NLt, BV, WV, BF, WF, SS[0]).data.item().imag))

154 plt.text(0.4 * t, 10 ** (-2.5), "Ψ(|01>) = %.4f + %.4fi" % (
155 ph(GL, NLt, BV, WV, BF, WF, SS[1]).data.item().real,

156 ph(GL, NLt, BV, WV, BF, WF, SS[1]).data.item().imag))

157 plt.text(0.4 * t, 10 ** (-3), "Ψ([10>) = %.4f + J.4fi" % (
158 ph(GL, NLt, BV, WV, BF, WF, SS[2]).data.item().real,

159 ph(GL, NLt, BV, WV, BF, WF, SS[2]).data.item().imag))

160 plt.text(0.4 * t, 10 *x (-3.5), "Ψ(|11>) = %.4f + %.4fi" % (
161 ph(GL, NLt, BV, WV, BF, WF, SS[3]).data.item().real,

162 ph(GL, NLt, BV, WV, BF, WF, SS[3]).data.item().imag))

163 plt.xlabel("train cycles")

164 plt.ylabel("cost function")

165 plt.yscale(’log’)

166 plt.show()

129

167

168

170

171

172

174

175

176

178

179

180

181

fig2 = plt.figure(figsize=(6, 4))

plt

plt

plt

plt.

plt

plt

plt.
plt.
plt.
plt.

.plot (ANL[0] [0:t], color=’tab:red’, label=r"b_x \rightarrow %.4f + 7%.4fi"

% (ANL[O] [t], ANL[3][t1))

.plot (ANL[1][0:t], color=’tab:blue’, label=r"b_y \rightarrow %.4f + %.4fi"

% (ANL[1][t], ANL[4][tI1))

.plot (ANL[2] [0:t], color=’tab:green’, label=r"b_z \rightarrow 7.4f + J,.4fi"

% (ANL[2][t], ANL[5][t]))
plot(ANL[3][0:t], ’--’, color=’tab:red’)

.plot (ANL[4][0:t], ’--’, color=’tab:blue’)

.plot (ANL[5][0:t], ’--’, color=’tab:green’)

xlabel("train cycles")
ylabel("nonlocal weights")
legend ()

show ()

130

	TITLE PAGE
	COMMITTEE APPROVAL
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	RIBBON OPERATORS IN GENERALIZED KITAEV QUANTUM DOUBLE
	QUANTUM CIRCUITS FOR TORIC CODE AND X-CUBE FRACTON MODEL
	REPRESENTING ARBITRARY GROUND STATES OF TORIC CODE BY RESTRICTED BOLTZMANN MACHINE
	REFERENCES
	SUPPLEMENTAL MATERIAL FOR CHAPTER 3
	SUPPLEMENTAL MATERIAL FOR CHAPTER 4
	SUPPLEMENTAL MATERIAL FOR CHAPTER 5

