
PREPARATION AND SIMULATION FOR GROUND STATES
OF TOPOLOGICAL PHASES OF MATTER

by

Penghua Chen

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Physics and Astronomy

West Lafayette, Indiana

August 2024

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Xingshan Cui, Co-Chair

Department of Mathematics

Dr. Yuli Lyanda-Geller, Co-Chair

Department of Physics and Astronomy

Dr. Ruichao Ma

Department of Physics and Astronomy

Dr. Sabre Kais

Department of Chemistry

Approved by:

Dr. Gabor A. Csathy

2

TABLE OF CONTENTS

LIST OF FIGURES . 6

1 INTRODUCTION . 8

2 BACKGROUND . 15

2.1 Hopf algebra . 15

2.2 Representations of semisimple Hopf algebras 19

2.3 Drinfeld double of Hopf algebras . 21

2.4 Generalized Kitaev model based on Hopf algebras 22

2.5 Toric code . 25

2.6 Restricted Boltamann Machines . 27

3 RIBBON OPERATORS IN GENERALIZED KITAEV QUANTUM DOUBLE . . 29

3.1 Directed ribbons . 30

3.2 Definition of ribbon operators . 32

3.3 Local orientation in original Kitaev model 35

3.4 Properties of ribbon operators . 36

3.5 Conclusion and outlook . 42

4 QUANTUM CIRCUITS FOR TORIC CODE AND X-CUBE FRACTON MODEL 43

4.1 Single plaquette . 44

4.2 Developing to a surface with boundary . 45

4.3 Developing to a surface without boundary 46

4.4 Simulate arbitrary ground state . 47

4.5 Quantum circuit depth . 48

4.6 Gluing method for two single plaquettes . 49

4.7 Gluing method for an arbitrary lattice . 51

4.8 3D toric model . 54

4.9 X-cube model . 57

4.10 Gluing method for 3D models . 60

3

4.11 Conclusion and outlook . 63

5 REPRESENTING ARBITRARY GROUND STATES OF TORIC CODE BY RE-

STRICTED BOLTZMANN MACHINE . 64

5.1 Introduction . 64

5.2 Further Restricted RBM . 66

5.3 Analytical solutions of FRRBM . 67

5.4 Arbitrary ground state of RBM . 68

5.5 Efficiency and Learnability of the RBM . 71

5.6 Generalization from Z2 to Zn . 72

5.7 Conclusion and further work . 74

REFERENCES . 75

A SUPPLEMENTAL MATERIAL FOR CHAPTER 3 80

A.1 Straightening equation of Aa and Bf . 80

A.2 Violation and correction in group algebra . 81

A.3 Multiplication of ribbon operators on elementary ribbons 83

A.3.1 For locally clockwise ribbons τL . 83

A.3.2 For locally counterclockwise ribbons τR 84

A.4 Proof of Lemma for local operator at ends 86

A.4.1 Equation 3.17a for short ribbons . 86

A.4.2 Equation 3.17b for short ribbons . 88

A.4.3 Equation 3.17c for short ribbons . 89

A.4.4 Equation 3.17d for short ribbons . 89

A.4.5 Equation 3.18a for short ribbons . 91

A.4.6 Equation 3.18b for short ribbons . 91

A.4.7 Equation 3.18c for short ribbons . 92

A.4.8 Equation 3.18d for short ribbons . 94

A.4.9 Equations 3.17b and 3.17c for long ribbons 94

A.5 Proof of Ribbon operator in middle . 96

4

A.5.1 Equation 3.19a . 96

A.5.2 Equation 3.19b . 97

A.6 Fourier transformation of H∗ . 98

B SUPPLEMENTAL MATERIAL FOR CHAPTER 4 100

B.1 2D toric code on sphere . 100

B.2 2D toric code on genus n surface . 100

B.3 Local CNOT operation . 100

B.4 3D toric model with boundary . 101

B.5 3D toric model without boundary . 103

B.6 X-cube model simple example . 103

C SUPPLEMENTAL MATERIAL FOR CHAPTER 5 106

C.1 Analytical solution of bf , wf,j in the FRRBM 106

C.2 Analytical solution of bv, wv,j in the FRRBM 108

C.3 Machine Learning of the FRRBM . 115

C.4 Machine Learning of the RBM . 116

C.5 Python code for 2D the FRRBM . 119

C.6 Python code for searching . 123

C.7 Python code for the RBM . 126

5

LIST OF FIGURES

2.1 Generalized Kitaev model on lattices . 23

2.2 Av in generalized Kitaev model . 24

2.3 Bp in generalized Kitaev model . 24

2.4 Definition of toric code . 26

2.5 RBM of Ising model . 27

3.1 Ribbon operators of two types . 29

3.2 Ribbon operators of four types . 31

3.3 A counter-example . 36

3.4 Beginning set of ribbon . 39

3.5 Ending set of ribbon . 39

4.1 Single plaquette . 44

4.2 Four plaquettes . 46

4.3 Surface without boundary . 46

4.4 Basis of ground state . 47

4.5 Step size of preparation . 49

4.6 Glue two single plaquettes . 50

4.7 Glue two arbitrary plaquettes . 52

4.8 Glue four single plaquettes . 53

4.9 Definition of 3D toric model . 55

4.10 Basic structures . 55

4.11 Ground state on 3D toric code . 56

4.12 Arbitrary ground state on 3D toric code . 57

4.13 Definition of X-cube model . 58

4.14 Ground state on X-cube model . 60

4.15 Gluing in 3D model . 61

4.16 Membrane operator . 62

5.1 FRRBM of toric code . 66

5.2 Training in FRRBM . 69

6

5.3 RBM for arbitrary ground state . 70

5.4 Efficiency of the choice of configurations . 71

5.5 Barren plateaus . 72

5.6 Convention for local operator . 73

7

1. INTRODUCTION

This chapter contains work from the article entitled "Ribbon operators in the generalized

Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,

and Shawn X. Cui published on Journal of Physics A [1], and the article entitled "Quantum

circuits for toric code and X-cube fracton model" written by the author, Bowen Yan, and

Shawn X. Cui published on Quantum [2], and the article entitled "Representing Arbitrary

Ground States of Toric Code by Restricted Boltzmann Machine" written by the author,

Bowen Yan, and Shawn X. Cui preprinted on arXiv [3].

In an era characterized by escalating technological complexity and an ever-increasing de-

mand for computational power, the semiconductor industry confronts a formidable obstacle.

Traditional chip development paradigms, reliant on relentless miniaturization, are increas-

ingly strained by the unyielding physical limits of the atomic scale. At these microscopic

dimensions, atoms themselves define the frontier of computational power, subject to the es-

oteric influences of quantum mechanical effects. Consequently, the quest for next-generation

computing paradigms has taken on an unprecedented urgency. Quantum computing, boast-

ing the potential to eclipse the computational capabilities of classical computers, has emerged

as a promising contender. The shift toward quantum computing represents more than an op-

tion—it is a necessity, offering a vital lifeline for an industry grappling with its own physical

boundaries.

However, the nascent field of quantum computing presents its own unique challenges.

Notably, three promising approaches are currently at the cutting edge: Superconducting

Circuits, Trapped Ions, and Topological Qubits. Superconducting circuits employ supercon-

ducting qubits that function as artificial atoms. Leveraging established silicon chip fabrica-

tion techniques, this approach affords significant scalability and has already demonstrated

successful execution of select quantum algorithms. Yet, this method grapples with relatively

short coherence times and high error rates, limiting the complexity of quantum computations

that can be feasibly executed [4], [5]. The trapped ions approach, on the other hand, utilizes

electromagnetic fields to confine ions, employing lasers to perform quantum operations. Al-

though it offers longer coherence times and lower error rates compared to superconducting

8

circuits, scaling trapped ion systems to the number of qubits required for practical quantum

computation is a substantial challenge [6]. The topological qubits approach uses anyons in 2D

systems to perform quantum operations. Theoretically, this system could offer the longest

coherence time and the lowest error rate, as the information is stored non-locally, providing

a kind of topological protection. However, as it stands, there are no reported instances of a

successful creation of a topological qubit. Despite this, the robustness of topological states

to local perturbations offers the potential to surmount current limitations, paving the way

for the next generation of computational systems [7], [8].

The subject of topological phases of matter (TPMs) has has seen a surge of intensive re-

search over the past few decades. Unlike conventional states described by Landau’s theory of

spontaneous symmetry breaking and local order parameters, topological phasesgapped spin

liquids at low temperaturesare characterized by a new order, topological order. The ground

states of a topological phase possess stable degeneracy and robust long range entanglement.

Moreover, topological phases in 2D support quasi-particle excitations (aka anyons), and po-

tentially non-Abelian exchange statistics. What sets TPMs apart is the presence of global

degrees of freedom encoded in the ground states. These are resistant to local perturbations

and which can be unitarily changed through non-trivial movements of quasi-particle excita-

tions. These distinctive features position TPMs as ideal media for executing fault-tolerant

quantum computing, namely, topological quantum computing [9], [10]. The theory of 2D

TPMs can be equivalently depicted through either a (2+1) topological quantum field theory

or a unitary modular tensor category.

A large class of Topological Phases of Matter (TPM) in 2D can be realized by spin lattice

models. Among these, the toric code stands out as one of the most recognized examples. This

Abelian topological phase can also be interpreted through a Z2 gauge theory. The toric code

is a special case of Kitaev’s quantum double models which associate to each finite group G an

exactly solvable lattice model[9]. When G is Z2, the theory reduces to the toric code, while

a non-Abelian group G leads the model to realize a non-Abelian topological phase. In these

models, the anyon types align with the irreducible representations of the Hopf algebra D(G),

the Drinfeld double (or quantum double) of the group algebra C[G]. The quantum double

model can be generalized by replacing G with a semi-simple C∗ Hopf algebra H. Given such

9

a Hopf algebra, the authors in [11] wrote down a frustration-free Hamiltonian consisting of

pairwise commuting local projectors analogous to the original setup. We refer to this model

as the generalized Kitaev quantum double model, which can be further generalized to a semi-

simple weak Hopf algebra [12]. Another class of realizations are the Levin-Wen string-net

models [13], based on unitary fusion categories. There is a close relationship between the

string-net models and the quantum double models. Specifically, for a Hopf algebra H, it

has been shown that the generalized quantum double model based on H is equivalent to the

string-net model based on Rep(H), the category of representations of H [14], [15].

To effectively describe the creation, annihilation, and movement of anyons in the models

mentioned above, the concept of ribbon operators (or string operators) plays a critical role.

In the context of the toric code, these ribbon operators can be represented as either a string

of Pauli Z operators on the lattice or a string of Pauli X operators on the dual lattice.

However, for non-Abelian group G, these two types of string operators become ’entangled’,

necessitating the consideration of a ’thickened’ string of operators, namely, operators on a

ribbon. A ribbon can be broadly visualized as a strip in the lattice, with one side running

along the lattice edges and the other along the dual lattice edges. Within the quantum

double model, operators for two types of elementary ribbons (triangles) are initially defined,

after which the definition is extended to longer ribbons via induction (see [9], [16] for details).

The paper [11] briefly assertswithout offering proofsthat ribbon operators in the generalized

quantum double model can be defined in a similar manner.

In the first part, we rigorously define ribbon operators in the generalized quantum double

model that is based on a semi-simple C∗ Hopf algebra, and we systematically study their

properties. While we affirm several properties as expectedwhich might not be startling to

expertsthe computations needed for proving these turn out to be considerably more intri-

cate than those involving finite groups. This complexity partly arises from the challenges

associated with dealing with general Hopf algebras rather than simply dealing with group

algebras. Furthermore, we unravel some subtleties in the definition of ribbon operators. The

literature [9], [16] only takes into account two types of elementary ribbons: the direct triangle

and the dual triangle. Our study, however, broadens these into four types, introducing an

extra characteristic, which we refer to as local orientation. This local orientation can also be

10

applied to general ribbons, resulting in two types of ribbons based on their local orientation.

It’s important to note that the definition of ribbon operators must differ for each ribbon

type. Should we fail to differentiate these two types of ribbons, certain expected common

properties will not be upheld. For example, the ribbon operator would fail to commute with

Hamiltonian terms away from the end points. We note that this issue is already present in

the original quantum double model when the input group is non-Abelian, but it appears this

concern hasn’t been addressed in the literature to our best knowledge. Lastly, our ribbon

operators’ definition is explicit, contrasting with those in string-net models, where a set of

consistency equations need to be resolved.

In recent years, there has been intensified investigation into 3D topological phases [17]

and even more exotic 3D structures, known as fracton phases [18]–[20]. Similar to conven-

tional TPMs, fractons possess stable ground state degeneracy and long-range entanglement.

However, unlike TPMs, the ground state degeneracy of fractons is dependent on the system

size and is therefore not a topological invariant. Additionally, the mobility of excitations

within fractons is constrained, either moving within specific subsystems or not at all. No-

table examples of fractons include the Haah code [18] and the X-cube model [20]. While

regular topological phases can be characterized by topological quantum field theories, the

mathematical characterization of fractons remains an open question. Since fractons also

satisfy the conditions of topological order in the sense of [21], we classify the ground states

of a fracton as topologically ordered states, aligning with those of conventional topological

phases.

Realizing topological phases in physical systems continues to be a formidable challenge.

However, we now have access to quantum processors based on a variety of platforms, such as

superconducting qubits [22] and Rydberg atomic arrays[23], etc. These devices can support

physical qubits on the scale of 102, a number that is projected to surge significantly in the

near future. Therefore, simulating topological phases in quantum processors emerges as both

a feasible and intriguing prospect. Given the inherent robustness of topological phases, such

simulations are relatively immune to noise within current quantum processors. Furthermore,

engineering topological phases in processors could provide us with greater insights. The toric

code ground states have been realized in both superconducting-qubit-based systems [22] and

11

Rydberg-atom systems [24]. In [22], the authors proposed a quantum circuit comprised of

Clifford gates to realize the ground states of the planar toric code (a.k.a. surface code [25]).

Studies have also been conducted on quantum circuits realizing non-Abelian topological

orders, such as the Levin-Wen string-net model and the Kitaev quantum double model. See

for instance [26]–[31], though in these cases, the gates employed are no longer confined to

the Clifford group and measurements are used.

In the second part, we construct quantum circuits that can realize the ground states for

a variety of topological phases. While [22] only considered the planar toric code, where the

lattice is defined on a planar surface, we extend their methodology to a large class of surfaces,

both with and without boundaries, utilizing only Clifford gates. The method commences

with the +1 eigenstate for all vertex terms, and the ground state is subsequently obtained

by projecting this state to the +1 eigenstate of all plaquette operators. This process can be

simulated through an appropriate combination of Hadamard and CNOT gates. The judicious

selection of the sequence for the plaquettes to which quantum gates are applied is of utmost

importance. Given that we are considering lattices on arbitrary surfaces, this issue becomes

quite intricate. We outline an explicit algorithm to determine the sequence in which the

plaquette operators are simulated. Further, we adapt this method to 3D phases including

the 3D toric code and the X-cube fracton model. By comparison, using cluster states and

measurements, the authors in [28] proposed an approximate realization of the model. Beyond

the method using only quantum gates, we also suggest an alternative approachreferred to as

the gluing methodfor realizing the same states, which offers a shorter circuit depth. Indeed, it

is possible to obtain the ground state for the toric code or X-cube using only measurements.

However, given that frequent measurements in near-term quantum processors can be costly,

our method presents a trade-off between circuit depth and the extent of measurements.

Identifying the eigenstate of a specific Hamiltonian ranks among the most demanding

tasks in condensed matter physics. This task becomes increasingly complex primarily be-

cause of the power scaling of the Hilbert space dimension, which inflates exponentially in

relation to the system’s size [32]. Nonetheless, it is often the case that the system’s inherent

physical properties, e.g. long-range entanglement, restrict the form of the ground states, and

therefore the states corresponding to interesting quantum systems may only occupy a small

12

portion of the exponentially large Hilbert space. This opens up the possibility of efficient

representations of the wave function of many-body systems. Examples of efficient represen-

tations include matrix product states, projected entangled pair states, and more generally

tensor networks.

A recent trend is the study of many-body quantum systems utilizing machine learning

techniques, especially artificial neural networks. Restricted Boltzmann Machines (RBMs) are

a generative stochastic artificial neural network [33]. Unlike other types of neural networks,

RBMs have a unique two-layer architecture that consists of a visible input layer and a

hidden layer. The ’restricted’ part in the name refers to the lack of intra-layer connections;

that is, nodes within the same layer do not interact with each other. RBMs have been

used effectively in a variety of machine learning tasks, including dimensionality reduction,

classification, regression, and even solving quantum many-body problems [34]–[39].

In 2017, Carleo and Troyer paved a novel path by applying RBM as a variational ansatz,

utilizing it to represent ground states for Ising model [34]. This groundbreaking achievement

catalyzed the development of numerous explicit RBM representations. Notably, substantial

research efforts have been directed towards the examination of toric code [35], [36], graph

states [37], and stabilizer code [38], [39], which is equivalent to a graph state under local

Clifford operations [40]. While their topological properties and representational power [41],

[42] have been extensively studied, there is still a need to explore feasible algorithms for

specific models.

We start from the RBM representability of the toric code model as the first step, with

the eventual goal of studying that for general topological phases. In [36], Deng and Li

utilized a Further Restricted Restricted Boltzmann Machine (FRRBM), that allows only

local connections, to numerically find a solution of the toric code model. However, toric

code has degeneracy on non-trivial topology, and the ground state derived in the above

manner always corresponds certain specific one. On the other hand, it is possible to achieve

an arbitrary ground state by turning the toric code as a graph state [43] and transforming a

graph state into an RBM [38]. Yet, this approach inevitably introduces non-local connections

within each subgraph which adds to the complexity of the RBM.

13

In the third part, we initially apply stabilizer conditions to several specific configurations

to analytically solve the FRRBM for the toric code, exploring its representational capacity.

We factorize these solutions on square lattices of various sizes and find that different weights

only alter the coefficients of the basis states forming the ground state by factors of ±1. We

then extended this approach to obtain an arbitrary ground state by strategically introducing

several non-local connections into the RBM. While this generalization sacrifices the simplicity

of local connections, it remains analytically solvable, enabling the simulation of arbitrary

ground states in a clean manner. Additionally, we developed an efficient machine learning

algorithm to verify the learnability of the models. We further generalize our approach from

Z2 to Zn and outline potential directions for future research.

In this thesis, I focus on the preparation and simulation of ground states of topological

phases of matter, with a particular emphasis on the preparation and simulation of arbitrary

ground states. Typically, researchers are content with any ground state, as these states

are sufficient to support the existence of anyons, which are pivotal for topological quantum

computing. However, the ability to prepare arbitrary ground states is crucial for applications

in quantum memory and error-corrected quantum computing. This work aims to advance

the methods for achieving these states, thereby enhancing the robustness and reliability of

quantum computational systems.

14

2. BACKGROUND

2.1 Hopf algebra

This chapter contains work from the article entitled "Ribbon operators in the generalized

Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,

and Shawn X. Cui published on Journal of Physics A [1], and the article entitled "Quantum

circuits for toric code and X-cube fracton model" written by the author, Bowen Yan, and

Shawn X. Cui published on Quantum [2], and the article entitled "Representing Arbitrary

Ground States of Toric Code by Restricted Boltzmann Machine" written by the author,

Bowen Yan, and Shawn X. Cui preprinted on arXiv [3].

Hopf algebras are important objects in various areas such as representation theory, ten-

sor categories, algebraic topology, topological quantum field theories, etc. There exists an

extensive literature covering different aspects of Hopf algebras. This section provides a brief

review with the primary aim of fixing conventions. For detailed discussions, see for instance

[44] [45]. A Hopf algebra over C is a vector space H endowed with the linear maps (called

structure maps):

µ : H ⊗ H → H, ∆: H → H ⊗ H, (2.1)

η : C → H, ε : H → C, S : H → H, (2.2)

satisfying several conditions to be specified in the following. Firstly, (µ, η) defines an (asso-

ciative) algebra structure. That is, the multiplication µ is associative:

µ [µ(a ⊗ b) ⊗ c] = µ [a ⊗ µ(b ⊗ c)] , (2.3)

or briefly written as

(ab)c = a(bc). (2.4)

15

The unit 1H for the multiplication µ is given by η(1). Secondly, (∆, ε) defines a (coassociative)

coalgebra structure with ∆ and ε the comultiplication and counit, respectively. We will use

the Sweedler notation for expressions involving comultiplications. For instance, we write

∆(a) =
∑
(a)

a′ ⊗ a′′. (2.5)

The comultiplication map being coassociative means

(∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆, (2.6)

or in Sweedler notation,

∑
(a)

∑
(a′)

(a′)′ ⊗ (a′)′′

⊗ a′′ =
∑
(a)

a′ ⊗

∑
(a′′)

(a′′)′ ⊗ (a′′)′′

 . (2.7)

Due to the above equality, we simply write

(∆ ⊗ id) ◦ ∆(a) =
∑
(a)

a′ ⊗ a′′ ⊗ a′′′. (2.8)

More generally, we use the Sweedler notation for

(∆ ⊗ idH⊗(n−2)) ◦ · · · ◦ (∆ ⊗ id) ◦ ∆(a) =
∑
(a)

a(1) ⊗ · · · ⊗ a(n). (2.9)

The counit ε satisfies ∑
(a)

ε(a′)a′′ =
∑
(a)

a′ε(a′′) = a. (2.10)

Thirdly, ∆ and ε are both required to be algebra morphisms. In particular, this implies

ε defines a 1-dimensional representation of H. Lastly, S is called the antipode which is

invertible in our consideration satisfying:

∑
(a)

a′S(a′′) = ε(a)1H =
∑
(a)

S(a′)a′′. (2.11)

16

To emphasize on structure maps, we also denote a Hopf algebra by

(H; µ, η, ∆, ε, S). (2.12)

In this thesis, we focus solely on finite dimensional semisimple Hopf algebras. Over C,

semisimplicity is equivalent to the condition that S is involutory, namely, S2 = id. Certain

identities inherent to a finite dimensional Hopf algebra are implied:

S(ab) = S(b)S(a), S(1H) = 1H , ε[S(a)] = ε(a), (2.13)

∑
(a)

S(a′′) ⊗ S(a′) =
∑

(S(a))
S(a)′ ⊗ S(a)′′. (2.14)

Given a Hopf algebra (H; µ, η, ∆, ε, S), there are several ways of constructing new Hopf

algebras out of it. Taking H∗ to be the linear dual of H, then

(H∗; ∆T , εT , µT , ηT , ST) (2.15)

defines a Hopf algebra structure on H∗, where fT is the linear dual of map f

1
 . And µT is a

map from H∗ to H∗ ⊗ H∗:

µT (f)(a ⊗ b) = f [µ(a ⊗ b)] = f(ab), (2.16)

where a, b ∈ H, and f ∈ H∗. We can also define opposite Hopf algebra by

(Hop; µop, η, ∆, ε, S−1), (2.17)

where Hop = H acts as a vector space, and µop is defined as

µop(a ⊗ b) = µ(b ⊗ a) = ba. (2.18)
1

 ↑ Another common notation for fT is f∗. Here we use fT since under appropriate bases, the matrix of fT is
the transpose of that of f . Another reason is to avoid confusion since we will introduce a ∗ operation below
with a different meaning.

17

Similarly, the co-opposite Hopf algebra Hcop is defined by

(Hcop; µ, η, ∆cop, ε, S−1), (2.19)

where Hcop = H acts as a vector space, and ∆cop is defined as

∆cop(a) =
∑
(a)

a′′ ⊗ a′. (2.20)

What’s more, (·)∗, (·)op, and (·)cop are all involutive. It is direct to check (H∗)cop ' (Hop)∗

and (H∗)op ' (Hcop)∗.

For a semisimple Hopf algebra H, a (two-sided) integral is an element h0 ∈ H such that

for all a ∈ H,

ah0 = h0a = ε(a)h0. (2.21)

The space of integrals is 1-dimensional subspace, and h0 is uniquely defined if we require

h2
0 = h0, or equivalently ε(h0) = 1. (2.22)

We call h0 the Haar integral of H, which can be proved to be cocommutative, namely

∆(h0) =
∑
(h0)

h′
0 ⊗ h′′

0 =
∑
(h0)

h′′
0 ⊗ h′

0. (2.23)

To make a Hopf algebra into Hilbert space, we introduce the ∗-structure, which is a

conjugate-linear map ∗ : H → H satisfying

(a∗)∗ = a, (ab)∗ = b∗a∗, 1∗ = 1, (2.24)

∑
(a)

(a′)∗ ⊗ (a′′)∗ =
∑
(a∗)

(a∗)′ ⊗ (a∗)′′. (2.25)

18

A Hopf algebra endowed with ∗-structure is called C∗ Hopf algebra. For a Hopf algebra H,

we denote the Haar integral of H∗ by φ. Then 〈·, ·〉 defines a Hermitian inner product on H:

〈a, b〉 = φ(a∗b), for a, b ∈ H. (2.26)

Unless otherwise stated, throughout this thesis we will use letters h0, φ to represent Haar

integrals, a, b, c, x, y to denote general elements of H, and f , g, t for general elements

of H∗. We adopt the following notation: f(x?) represents an element of H∗ such that

f(x?)(y) = f(xy).

2.2 Representations of semisimple Hopf algebras

The category of finite dimensional representations over C of a semisimple Hopf algebra

H is a semisimple tensor category with duals. If V, W are two representations such that

ρV : H → End(V), (2.27)

ρW : H → End(W), (2.28)

then V ⊗ W is a representation with the action given by

a.(v ⊗ w) :=
(
(ρV ⊗ ρW)∆(a)

)
(v ⊗ w), a ∈ H, v ∈ V, w ∈ W. (2.29)

And so is V ∗ with the action given by

a.f := f ◦ ρV (S(a)), a ∈ H, f ∈ V ∗. (2.30)

A representation V of H is irreducible if EndH(V) ' C. Denote by IrrH the set of

isomorphism classes of irreducible representations of H. Consider the regular representation

H with the action given by left multiplication

L(a)(c) := ac, (2.31)

19

or right multiplication using S(·):

R(a)(c) := cS(a). (2.32)

These two actions commute and hence define an action of H ⊗ H on H as

(a ⊗ b).c := acS(b). (2.33)

We note that as a representation of H ⊗ H, we have the isomorphism

H '
⊕

µ∈IrrH

µ∗ ⊗ µ. (2.34)

An explicit isomorphism is given as follows: For each µ ∈ IrrH , we fix a basis {|i〉 | i =

1, · · · , dim(µ)} and denote the matrix of an element a ∈ H under this basis by Dµ(a). Let

h0 ∈ H be the Haar integral, as defined in Equations 2.21 , 2.22 . We then define the ‘Fourier

transformation’ on H as [15]

|νij〉 =

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν(h′
0)ijh

′′
0, (2.35)

where ν ∈ IrrH , and i, j = 1, 2, · · · , dim(ν). For the sake of self-containedness, we verify in

Appendix A.6 that the action of H ⊗ H on the subspace span{|νij〉|i, j = 1, · · · , dim(ν)} is

given by ν∗ ⊗ ν. This thereby defines the isomorphism in Equation 2.34 . Lastly, the two

representations L and R each induce a representation of H on H∗:

L(a)|f〉 = |f [S(a)?]〉, (2.36)

R(a)|f〉 = |f(?a)〉, |f〉 ∈ H∗. (2.37)

20

2.3 Drinfeld double of Hopf algebras

The Drinfeld double (or quantum double) D(H) of a Hopf algebra H is a Hopf algebra

D(H) =
(
(H∗)cop ⊗ H; µD, ηD, ∆D, εD, SD

)
, (2.38)

which is constructed as a bicrossed product of H and (H∗)cop. For f, g ∈ H∗ and a, b ∈ H,

µD is defined by

µD [(f ⊗ a) ⊗ (g ⊗ b)] =
∑
(a)

f g
[
S−1(a′′′)?a′

]
⊗ a′′b, (2.39)

which is known as the straightening equation, and notice that

f ⊗ a = (f ⊗ 1)(1 ⊗ a). (2.40)

The remaining structure maps can be determined by the property that both (H∗)cop and

H are sub Hopf algebras of D(H). This is achieved through the inclusions f 7→ f ⊗ 1 and

a 7→ ε ⊗ a, respectively. For example, ∆D is given by

∆D(f ⊗ a) =
∑

(f),(a)
(f ′′ ⊗ a′) ⊗ (f ′ ⊗ a′′), (2.41)

where the Sweedler notation to f is applied, treating f as an element of H∗ rather than

(H∗)cop. This convention will be used throughout the thesis. Specifically, for a ∈ Hcop, we

use ∆ rather than ∆cop in the context of the Sweedler notation to define a′, a′′, and so forth.

The definitions for the remaining structure maps are provided as follows:

ηD(1) = ε ⊗ 1, (2.42)

εD(f ⊗ a) = f(1) ⊗ ε(a), (2.43)

SD(f ⊗ a) = S(a)ST (f). (2.44)

21

2.4 Generalized Kitaev model based on Hopf algebras

In this section, H represents a semisimple C∗ Hopf algebra. The original Kitaev model,

as presented in [9], is constructed based on the group algebra C[G] of a finite group G. On

the other hand, the generalized Kitaev model is rooted in a semisimple C∗ Hopf algebra H.

This generalized model was introduced in [11], which we review below.

To simplify our discussion, we establish the model on a square lattice Γ = (V, E, P),

where V , E and P denote the set of vertices, (directed) edges, and faces, respectively, as

illustrated in Figure 2.1 (the solid grid)

2
 . We also define the dual lattice Γ∗ = (P ∗, E∗, V ∗),

where P ∗ corresponds to the vertices in Γ∗ dual to the faces P in Γ, and E∗ and V ∗ have

similar interpretations. For any element x ∈ V ∪E∪P , we use x∗ to denote the corresponding

element in V ∗ ∪ E∗ ∪ P ∗. The direction of the dual edge e∗ of an edge e ∈ E is determined

by rotating the direction of e counterclockwise by 90◦. Lastly, a site s = (v, p) is defined

as a pair comprising a vertex v and an adjacent face p that contains v. We draw a segment

connecting v and the dual vertex p∗ to represent the site in Figure 2.1 .

To each edge e of Γ, we attach a copy of the Hopf algebra (also a Hilbert space He := H).

The model’s total Hilbert space is then constructed as the tensor product of these associated

Hilbert spaces over all edges:

H :=
⊗
e∈E

He. (2.45)

La
+(x) = ax, La

−(x) = xS(a). (2.46)

T f
+(x) = f(x′′)x′, T f

−(x) = f [S(x′)]x′′. (2.47)

Upon the establishment of the oriented graph Γ = (V, E, P), we can define the edge operators

[11] illustrated in Figure 2.1 and the local operators Aa(s) and Bf (s) on a site s = (v, p)

illustrated in Figure 2.2 and Figure 2.3 , respectively. For each edge e of the lattice and

f ∈ H∗, a ∈ H, edge operators T f
± and La

± act on He as Equations 2.46 - 2.47 .

To define Aa(s) for a ∈ H, we start from the site s, go around the vertex v to apply edge

operators La′
± , La′′

± , La′′′
± , La(4)

± to each edge adjacent to v in counterclockwise order as shown
2

 ↑ The edges in the lattice can be arbitrarily directed, and the physics of the model will be independent of
those directions.

22

90◦

p∗

v
s

T f
−

T f
+

La
−

La
+

Figure 2.1. The solid grid connecting all vertices V represents the square
lattice Γ, while the dashed grid connecting all dual vertices P ∗ represents the
dual square lattice Γ∗. A site s = (v, p) is represented by a segment connecting
a vertex v and a dual vertex p∗. For f ∈ H∗, a ∈ H, the edge operators T f

±
and La

± act on the Hilbert space He of an edge e.

and explained in Figure 2.2 . For example, when it is applied to the product state of |x1〉,

|x2〉, |x3〉, |x4〉, the result is

Aa(s)|x1〉|x2〉|x3〉|x4〉 =
∑

|a′x1〉|a′′x2〉|a′′′x3〉|a(4)x4〉. (2.48)

Aa(s) =
∑

La′

+ ⊗ La′′

+ ⊗ La′′′

+ ⊗ La(4)

+ (2.49)

To define Bf (s), f ∈ H∗, we start from the site s, go around the dual vertex p∗ to apply

edge operators T f ′

± , T f ′′

± , T f ′′′

± , T f (4)

± to the edges on the boundary of p in counterclockwise

order as shown and explained in Figure 2.3 . When it is applied to the product state of |x1〉,

|x2〉, |x3〉, |x4〉, the result is

3

Bf (s)|x1〉|x2〉|x3〉|x4〉 =
∑

f(x′′
1x′′

2x′′
3x′′

4)|x′
1〉|x′

2〉|x′
3〉|x′

4〉. (2.50)

Bf (s) =
∑

T f ′

+ ⊗ T f ′′

+ ⊗ T f ′′′

+ ⊗ T f (4)

+ (2.51)
3

 ↑ To derive Equation 2.50 , we use the fact that the comultiplication ∆∗ in H∗ is actually µT .

23

x1

x2

x3

x4v

s

Figure 2.2. The convention for the local operator Aa(s): for each edge, we
choose + sign for the edge operator La(n) if the edge leaves the vertex, and
choose − sign otherwise.

x1

x2

x3

x4 p∗

s

Figure 2.3. The convention for the local operator Bf (s): for each edge, we
choose + sign for the edge operator T f (n) if the direction of the edge coincides
with the counterclockwise orientation of the boundary of p, and choose − sign
otherwise.

We remark that our convention for defining the operators Aa(s) and Bf (s) is opposite

to that in [9] [11]. Explicitly, these operators on a lattice Γ will be the same as those of [11]

on a lattice Γ′ obtained from Γ by reversing the orientation of all edges. When the Hopf

algebra is a group algebra, our convention is consistent with that in [16].

For each site s = (v, p), we extend the definition of Aa(s) and Bf (s) for the entire Hilbert

space H. This is achieved by taking the tensor product with the identity operator on edges

that are not adjacent to v or p. These local operators at s, denoted Aa(s) and Bf (s), define

a representation of the Drinfeld double D(H), mapping f ⊗ a to BfAa. A significant aspect

24

of this representation is the straightening equation. To ensure the self containedness, we

provide a verification of the equation for local operators in Appendix A.1 .

Let h0 ∈ H and φ ∈ H∗ represent the Haar integral. For a site s = (v, p), it is verifiable

that Ah0(v) := Ah0(s) solely depends on v and Bφ(p) := Bφ(s) exclusively relies on p.

Furthermore, the operators in the set {Ah0(v) : v ∈ V } ∪ {Bφ(p) : p ∈ P} function as

mutually commuting projectors. The (frustration-free) Hamiltonian of the model is given by

H = −
∑
v∈V

Ah0(v) −
∑
p∈P

Bφ(p), (2.52)

and the ground states are simultaneously stabilized by all the terms in the Hamiltonian.

Equivalently, the ground states space can be characterized as the subspace of H correspond-

ing to the trivial representation of D(H) on all sites s.

2.5 Toric code

The toric code represents the most elementary example of Kitaev’s quantum double

models where G = Z2. It is defined on a square lattice, topologically equivalent to a torus as

shown in Figure 2.4 . A spin 1/2 is located on each edge e of the lattice, and we also use e to

denote the associated qubit. The lattice componentsvertices, faces, and edgesare denoted as

V , F , and E, respectively. For each face f ∈ F , the set of surrounding edges is denoted by

s(f), and similarly, for each vertex v ∈ V , the set of surrounding edges is s(v). The vertex

operator Av consists of tensor products of Pauli operators σ̂x
e acting on the edges e within

s(v). Similarly, the face operator Bf is formed from tensor products of Pauli operators σ̂z
e

acting on the edges e within s(f). The Hamiltonian of the toric code is defined as the sum

of all vertex and face operators:

H = −
∑
v∈V

Av −
∑
f∈F

Bf = −
∑
v∈V

∏
e∈s(v)

σ̂x
e −

∑
f∈F

∏
e∈s(f)

σ̂z
e . (2.53)

For a Hamiltonian of the form

H = −
∑

i
Pi, (2.54)

25

Figure 2.4. The torus on the left is cut along the edges Ev and Eh to get
the square lattice shown on the right, with opposite edges identified. The
3×3 lattice shows stabilizer operators Av within the blue range and Bf within
the red range, logical operators Xv and Xh along the vertical and horizontal
dashed loops, respectively, and logical operators Zv and Zh along the edges Ev

and Eh.

where each Pi is a projector and all projectors are mutually commuting, the ground state

|GS〉 can be derived from any arbitrary non-zero state |φ〉:

|GS〉 =
∏

i
Pi|φ〉. (2.55)

This construction ensures that the ground state is the simultaneous eigenvector of all projec-

tors. Given A2
v = B2

f = 1 and [Av, Bf] = 0 for all v ∈ V and f ∈ F , it can be confirmed that
1+Av

2 and 1+Bf

2 act as projectors. Replacing Av and Bf in the Hamiltonian with these pro-

jectors yields a equivalent form consistent with Equation 2.54 . This equivalence, stemming

from a one-to-one correspondence in their spectra, ensures that the state

|GS〉 =
∏
v∈V

1 + Av

2
∏
f∈F

1 + Bf

2 |φ〉 (2.56)

is a valid ground state as per the earlier defined criteria. Notice that the toric code model is

inherently a stabilizer code, with the local Hamiltonian terms Av and Bf acting as stabilizer

operators. In the context of error-correcting codes, the ground states function as logical

26

states. The operators that dissolve these ground states are known as logical operators

4
 . As

described in [9], the degeneracy of the ground states for a 2D toric code on a torus is identified

as four distinct states: |00〉, |01〉, |10〉, and |11〉. The logical operators Xv and Xh consist of

strings of σ̂x
e acting along the vertical and horizontal loops, respectively, transforming |00〉

to |01〉 and |10〉. Similarly, the logical operators Zv and Zh consist of strings of σ̂z
e acting

along Ev and Eh, respectively, distinguish |00〉 from |01〉 and |10〉.

2.6 Restricted Boltamann Machines

· · · · · ·

· · · · · ·hi−2 hi−1 hi

bi−2 bi−1 bi

σz
j−2 σz

j−1 σz
j σz

j+1

aj−2 aj−1 aj aj+1

wi−2,j−2 wi,j+1

Hidden Layer

Visible Layer

Figure 2.5. This diagram illustrates a RBM with visible neurons colored
gray and hidden neurons colored white. The architecture ensures there are no
intra-layer connections; instead, each hidden neuron is connected to all visible
neurons. Each neuron and each connection is assigned a weight.

In the literature [34], Carleo and Troyer employ an Restricted Boltamann Machines

(RBM) as a variational ansatz for the spin-half Ising model, as illustrated in Figure 2.5 . The

neural network consists of a layer of visible neurons corresponding to N physical spins in the

configuration S = (σz
1, σz

2, . . . , σz
N)

5
 , and a single hidden layer containing M auxiliary spins

represented as M = (h1, h2, . . . , hM). The wave function for the configuration is expressed

in the variational form:

ΨM(S; W) =
∑
{hi}

e
∑

j ajσz
j +
∑

i bihi+
∑

ij hiwi,jσz
j , (2.57)

4
 ↑ Zh and Xv, as well as Zv and Xh, serve as pairs of logical X and Z operators for the two logical qubits,

and are thus named as the logical operators.
5

 ↑ Throughout this paper, we use σ̂z for operators and use σz for classical variables, σz = ±1.

27

where {hi} = {−1, 1}M represents all possible configurations of the hidden auxiliary spins.

The network weights W = (ai, bj, wi,j) can then be trained to optimize

|Ψ〉 =
∑
S

ΨM(S; W)|S〉 (2.58)

to best represent the ground state |GS〉. As RBM restricts intralayer interactions, we may

trace out all hidden variables according to the chosen preferred basis to simplify the wave

function:

ΨM(S; W) = e
∑

j ajσz
j
∏

i
2 cosh(bi +

∑
j

wi,jσ
z
j). (2.59)

28

3. RIBBON OPERATORS IN GENERALIZED KITAEV

QUANTUM DOUBLE

This chapter contains work from the article entitled "Ribbon operators in the generalized

Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,

and Shawn X. Cui published on Journal of Physics A [1].

In this chapter, we rigorously define ribbon operators in the generalized Kitaev quan-

tum double model based on a semi-simple C∗ Hopf algebra. We systematically study their

properties and demonstrate that the ribbon operators can be interpreted as representations

of D(H)∗ or D(H)∗,op, where D(H) represents the Drinfeld double of H. Additionally, we

provide an explicit proof that when a ribbon is given, the ribbon operators on it commute

with all terms in the Hamiltonian, except for those associated with the two ends of the rib-

bon. Consequently, ribbon operators create excitations exclusively at their ends. For a given

ribbon τ , we denote by Vτ the space of states obtained by applying ribbon operators on τ

to the ground state. The space Vτ represents the collection of 2-point excitations, wherein

the excitations are localized at the ends of τ . It is shown that Vτ is naturally isomorphic

to D(H)∗. Furthermore, local operators situated at the ends of τ act on Vτ through regular

representations of D(H). As a result, we establish a one-to-one correspondence between

elementary excitation types and irreducible representations of D(H).

I
II

III
IV

Figure 3.1. An illustration of elementary ribbons (dark solid triangles). The
solid grid represents the lattice and the dashed grid represents the dual lattice.

29

Furthermore, we unravel some subtleties in the definition of ribbon operators. In the

literature (e.g., [9], [16]), only two types of elementary ribbons are taken into account: the

direct triangle and the dual triangle. For instance, in Figure 3.1 , I and III are direct triangles,

while II and IV are dual triangles. However, we show in Section 3.2 that I and III have to

be treated differently when defining operators on them, and so do II and IV. The key aspect

to note is that each pair of triangles possesses a distinguishing property, which we call

local orientation. For instance, II is locally clockwise while IV is locally counterclockwise.

Furthermore, the concept of local orientation can be extended to ribbons in a more general

context as shown in Section 3.3 . For a more comprehensive understanding of the technical

intricacies, readers can refer to the appendices, where many of the detailed explanations can

be found.

3.1 Directed ribbons

Let s0 = (v0, p0) and s1 = (v1, p1) be two distinct sites that share a common vertex (i.e.,

v0 = v1) or a common dual vertex (i.e., p0 = p1). There is a unique triangle τ whose sides

are given by s0, s1, and an edge eτ in the lattice or the dual lattice. See the bottom left two

examples in Figure 3.2 . The triangle τ is said to be of dual (resp. direct) type if eτ is an edge

in the dual (resp. direct) lattice, or equivalently, if v0 = v1 (resp. p0 = p1). We also assign a

direction to τ , indicated by a double arrow inside the triangle, so that it points from s0 to

s1. Denote by si = ∂iτ, i = 0, 1. A ribbon is a sequence of mutually non-overlapping directed

triangles τ = τ1τ2 · · · τn such that ∂1τi = ∂0τi+1, i = 1, · · · , n − 1. Note that τ inherits a

direction from its components, also indicated by a double arrow, and we call ∂0τ := ∂0τ1 the

initial site and ∂1τ := ∂1τn the terminal site of τ . See Figure 3.2 for an illustration of several

ribbons. By default, all ribbons are directed. A closed ribbon is one for which the initial

site and terminal site coincide. Unless otherwise stated, ribbons considered in this thesis are

not closed. Triangles are called elementary ribbons. We introduce a property, called local

orientation, of directed ribbons which seems to be missing in the literature, but will turn

out to be critical to coherently define ribbon operators.

30

s0
s1

τ

τ1 τ2
τ3 τ4

s0 s1τR τL s0s1

I
II

III
IV

s0

s1

s1

τL

τR

Figure 3.2. A ribbon τ is composed of triangles τi (i = 1, 2 · · · n) with a
direction from s0 to s1. A triangle is a component of a ribbon with inherited
direction and also the shortest ribbon.

Let τ be a directed triangle (of dual or direct type) with initial site s0 = ∂0τ = (v0, p0).

Then τ has clockwise (resp. counterclockwise) local orientation if a clockwise (resp. counter-

clockwise) rotation of s0 around p∗
0 immediately swipes through the interior of τ . We draw a

clockwise/counterclockwise arrow around p∗
0 to denote the local orientation of τ (See Figure

 3.2).

An intuitive motivation for introducing local orientation is as follows. We can see that

for a triangle of a given type, a choice of direction is not sufficient to uniquely determine the

shape of the triangle. For example, the triangles II and IV in Figure 3.2 are both of dual

type and directed to the right, but IV is an ‘upside down’ version of II, and as will be shown

later, they have to be treated differently when we define ribbon operators on them. Local

orientation can be used to distinguish those two since triangle II is locally clockwise while

IV is locally counterclockwise.

It is straightforward to see that changing the direction of a triangle will also change its

local orientation. We note that a choice of direction is a structure on the triangle, while

the type and local orientation are each a property of a directed triangle (though only the

later depends on the direction). Thus, there are four classes of directed triangles according

to different combinations of local orientation and type. In Figure 3.2 , the triangles I-IV in

31

increasing order are, respectively, clockwise direct, clockwise dual, counterclockwise direct,

and counterclockwise dual.

Now let τ be a general directed ribbon. Clearly, its composite triangles can have different

types (direct or dual). However, an important observation is that all of the triangles of τ

must have the same local orientation. Hence, we can extend the notion of local orientation

from triangles to general ribbons. Intuitively, if a ribbon aligns horizontally and directs from

left to right, then turning it upside down will change its local orientation while keeping its

direction. Reversing the direction alone will flip its local orientation as well. As a notation,

we also denote a directed ribbon by τL if it is locally clockwise and by τR if it is locally

counterclockwise (This notation is motivated by the left/right hand rule).

3.2 Definition of ribbon operators

For a directed ribbon τ and h ⊗ f ∈ H ⊗ H∗, we will define the ribbon operator F h⊗f (τ),

also written as F (h,f)(τ). The operators will act on the whole Hilbert space H, but the

action is non-trivial only on the edges contained in τ . Explicitly, for an elementary ribbon

τ , let Hτ := Heτ if τ is direct, and Hτ := He∗
τ

otherwise. For a general ribbon τ , decompose

τ = τ1 t τ2 so that ∂1τ1 = ∂0τ2 and define inductively Hτ := Hτ1 ⊗ Hτ2 . Then F (h,f)(τ) will

only act non-trivially on the space Hτ . The definition of ribbon operators below is motivated

by [9] [16] for group algebras and by [11] for Hopf algebras. However, none of the above

references addresses the critical issue of local orientation, as to be discussed later.

First, assume τ is an elementary directed ribbon, i.e., a triangle. There are four cases

depending on its type and local orientation. Also, recall that the edges in the lattice as well

as those in the dual lattice are directed. The direction of the edge eτ and that of τ can

be either parallel or opposite. Taking this into consideration, we distinguish eight cases in

Equations 3.1 a- 3.1 h, where Equations (a)− (d) correspond to locally clockwise triangles and

(e) − (h) locally counterclockwise triangles.

32

x

F (h,f)(τL)|x〉 =
∑
(x)

ε(h)f [S(x′′)]|x′〉

(3.1a)

x

F (h,f)(τL)|x〉 =
∑
(x)

ε(h)f(x′)|x′′〉

(3.1b)

x
F (h,f)(τL)|x〉 = ε(f)|xS(h)〉 (3.1c)

x
F (h,f)(τL)|x〉 = ε(f)|hx〉 (3.1d)

x

F (h,f)(τR)|x〉 =
∑
(x)

ε(h)f [S(x′)]|x′′〉

(3.1e)

33

x

F (h,f)(τR)|x〉 =
∑
(x)

ε(h)f(x′′)|x′〉

(3.1f)

x

F (h,f)(τR)|x〉 = ε(f)|S(h)x〉 (3.1g)

x

F (h,f)(τR)|x〉 = ε(f)|xh〉 (3.1h)

For ribbons other than elementary triangles, we define the ribbon operators inductively.

Let τ be an arbitrary ribbon. Decompose τ as τ = τ1 t τ2, where the terminal site of τ1

matches the initial site of τ2, and they are disjoint otherwise. For h ⊗ f ∈ H ⊗ H∗, define

F h,f (τ) :=
∑

i,(i),(h)
F h′,gi(τ1)F S(i′′′)h′′i′,f(i′′?)(τ2), (3.2)

where {i} is an orthogonal complete basis of H, and gi = 〈i, 〉 is the corresponding functional

in H∗. The above definition is explicit, but a more intuitive way is as follows. For an element

h ⊗ f ∈ D(H)∗ ' H ⊗ H∗ where the isomorphism denotes a linear isomorphism between

vector spaces,

∆(h ⊗ f) =
∑

(h⊗f)
(h ⊗ f)′ ⊗ (h ⊗ f)′′. (3.3)

34

We apply the expansion to the construction of ribbon operators as

F h⊗f (τ) :=
∑

(h⊗f)
F (h⊗f)′(τ1)F (h⊗f)′′(τ2). (3.4)

It can be checked that Equations 3.2 and 3.4 are equivalent. The ribbon operators do

not depend on how the ribbon is partitioned into shorter ones due to the coassociativity of

the comultiplication in Hopf algebras.

3.3 Local orientation in original Kitaev model

In this subsection, we show that the distinction of local orientation is already necessary

in the orignal Kitaev model. Note that, from Equations 3.1 , F (h,f)(τ) does not distinguish

local orientations on direct triangles if H is cocommutative, and it does not distinguish local

orientations on dual triangles if H is commutative. In particular, if H is the group algebra

of an Abelian group (e.g., toric code), then local orientations are redundant. On the other

hand, for the group algebra of a non-Abelian group in the original Kitaev model, the two

local orientations on a dual triangle should support different ribbon operators according to

our definitions. This distinction, however, has not been addressed in the literature, to the

best of our knowledge. In [9], [16], the definition of ribbon operators on triangles coincide

with that presented in Equations 3.1 a- 3.1 d corresponding to locally clockwise orientation.

We show below with an explicit example that ignoring local orientations can cause certain

properties to fail.

For the rest of the subsection, let H = C[G] be the group algebra of a non-Abelian group

G. Equation 3.5 is a commutation relation that is expected to hold between ribbon operators

and plaquette operators, where s0 is the initial site of a ribbon τ (see Equation (B42) in

[16]), and t, h, g ∈ G.

Bt(s0)F h,g(τ) = F h,g(τ)Bth(s0). (3.5)

In fact, we just need the above identity to hold when both sides act on the ground state.

Take τ to be the ribbon shown in Figure 3.3 , which is a dual triangle and has locally

counterclockwise orientation. In Appendix A.2 , we show in detail that Equation 3.5 fails for

35

τ and any other ribbon that starts with τ if we use the old definition of ribbon operators

on them. By recognizing τ with locally counterclockwise orientation and using the new

definition (Equation 3.1 g), we can resolve the issue, and obtain the following commutation

relation,

Bt(s0)F h,g(τ) = F h,g(τ)Bht(s0), (3.6)

which is equivalent to Equation 3.5 when acting on the ground state since δht,e = δth,e.

x1

x2

x3

x4
s0

Figure 3.3. A counter-example of a ribbon for which Equation 3.5 fails in
the original Kitaev model.

3.4 Properties of ribbon operators

In this section, we establish a few properties of ribbon operators. Recall that the ribbon

operators F h,f (τ) only act non-trivially on the Hilbert space Hτ . Let τL and τR be a locally

clockwise and a locally counterclockwise ribbon, respectively:

F h1,f1(τL) · F h2,f2(τL) = F h1h2,f2f1(τL), (3.7)

F h1,f1(τR) · F h2,f2(τR) = F h2h1,f1f2(τR). (3.8)

In another words, the operators F h,f (τ) define a representation of D(H)∗,op on Hτ if τ is

locally clockwise, and a representation of D(H)∗ if τ is locally counterclockwise.

36

Proof. In Appendix A.3 , we show in details that the above two equations hold for elementary

ribbons. Then it can be proved inductively that they also hold for general ribbons using

the compatibility condition between multiplication and comultiplication in a Hopf algebra.

Notice that D(H)∗,op and D(H)∗ share the same comultiplication. Below we only give the

proof for τR since that of the other case is similar.

Let τR be a locally counterclockwise ribbon. Assume Equation 3.8 holds for any ribbon

whose length is shorter than that of τR. Decompose τR as τR = τ1 t τ2 such that ∂1τ1 = ∂0τ2:

F h1⊗f1(τR) · F h2⊗f2(τR) (3.9)

=
∑

(h1⊗f1)
F (h1⊗f1)′(τ1)F (h1⊗f1)′′(τ2) ·

∑
(h2⊗f2)

F (h2⊗f2)′(τ1)F (h2⊗f2)′′(τ2) (3.10)

=
∑

(h1⊗f1)

∑
(h2⊗f2)

F (h1⊗f1)′(τ1)F (h2⊗f2)′(τ1) F (h1⊗f1)′′(τ2)F (h2⊗f2)′′(τ2) (3.11)

=
∑

(h1⊗f1)

∑
(h2⊗f2)

F (h1⊗f1)′(h2⊗f2)′(τ1) F (h1⊗f1)′′(h2⊗f2)′′(τ2) (3.12)

=
∑

(h2h1⊗f1f2)
F (h2h1⊗f1f2)′(τ1) F (h2h1⊗f1f2)′′(τ2) (3.13)

= F h2h1,f1f2(τR). (3.14)

In the above derivation, the first and the last equality are due to Equation 3.4 , the third by

induction, the fourth by the compatibility condition between multiplication and comultipli-

cation in D(H)∗, and the second by the commutativity between ribbon operators on τ1 and

those on τ2.

Next, we examine the commutation relation between ribbon operators and local opera-

tors. Let |GS〉 ∈ H be the ground state

1
 . Then at any site s, the local operators act on

|GS〉 as follows,

Aa(s)|GS〉 = |GS〉, (3.15)

Bf (s)|GS〉 = f(1)|GS〉, a ∈ H, f ∈ H∗. (3.16)

1
 ↑ To the interest of the current thesis, we can assume the lattice is defined on the sphere or the infinite

plane, and so there is a unique ground state.

37

Let τ be a ribbon with initial site s0 = ∂0τ and terminal site s1 = ∂1τ . Assume the length

of τ , i.e., the number of triangles contained in τ , is greater than one. The following is a

technical lemma concerning the commutation relation between ribbon operators on τ and

local operators on its ends.

Lemma. Let τL and τR be a locally clockwise and a locally counterclockwise ribbon,

respectively, as described above.

1. At s0, we have

Aa(s0)F (h,f)(τL) =
∑
(a)

F {a′hS(a′′′),f [S(a′′)?]}(τL)Aa(4)(s0), (3.17a)

Aa(s0)F (h,f)(τR) =
∑
(a)

F {a′′hS(a(4)),f [S(a′′′)?]}(τR)Aa′(s0), (3.17b)

Bt(s0)F (h,f)(τL) =
∑
(h)

F (h′′,f)(τL)Bt[?S(h′)](s0), (3.17c)

Bt(s0)F (h,f)(τR) =
∑
(h)

F (h′′,f)(τR)Bt[S(h′)?](s0). (3.17d)

2. At s1, we have

Aa(s1)F (h,f)(τL) =
∑
(a)

F [h,f(?a′′)](τL)Aa′(s1), (3.18a)

Aa(s1)F (h,f)(τR) =
∑
(a)

F [h,f(?a′)](τR)Aa′′(s1), (3.18b)

Bt(s1)F (h,f)(τL) =
∑

(i),(h),i
f(i′′)F (h′,gi)(τL)Bt[S(i′′′)h′′i′?](s1), (3.18c)

Bt(s1)F (h,f)(τR) =
∑

(i),(h),i
f(i′′)F (h′,gi)(τR)Bt[?S(i′′′)h′′i′](s1). (3.18d)

In the above, {i} is an orthogonal complete basis of H, and gi = 〈i, 〉 is the corre-

sponding functional in H∗.

Proof. For a detailed proof, see Appendix A.4 . The idea is that we first prove the above

equations for ribbons with shortest possible length, and then extend the equality to longer

ribbons using the decomposition formula in Equation 3.4 . The shortest possible ribbons

38

for the equalities in Equation 3.17 are illustrated in Figure 3.4 , and those in Equation 3.18

illustrated in Figure 3.5 .

x1
x2

x3

x4

(a)
(b)s0

x1

x2

x3

x4

(c)
(d)

s0

Figure 3.4. Ribbons marked with (a)-(d) correspond the Equation 3.17 a-d.

x1
x2

x3

x4

(a)
(b)

s1

x1

x2

x3

x4

(c)
(d) s1

Figure 3.5. Ribbons marked with (a)-(d) correspond the Equation 3.18 a-d.

Using the lemma, we can also deduce that ribbon operators commute with all terms in

the Hamiltonian except for those associated with the ends of the ribbon.

Let τ be a ribbon and s be a site on τ such that s has no overlap with ∂iτ . Denote the

terms associated to s in the Hamiltonian by A(s) = Ah0(s), B(s) = Bφ(s) where h0 ∈ H is

the Haar integral of H and φ ∈ H∗ is the Haar integral of H∗. Then,

A(s)F (h,f)(τ) = F (h,f)(τ)A(s), (3.19a)

B(s)F (h,f)(τ) = F (h,f)(τ)B(s). (3.19b)

Proof. See Appendix A.5 for a proof.

39

The commutation relation between ribbon operators and local operators at the ends in

the lemma may look complicated. However, if we restrict ribbon operators on the ground

state, then those relations reduce to more compact formulas. Let Vτ be the Hilbert space of

ribbon operators on τ acting on the ground state,

Vτ = spanC{|h ⊗ f〉 ≡ F h⊗f (τ)|GS〉 : h ⊗ f ∈ D(H)∗}. (3.20)

Then, Vτ is naturally identified with the space D(H)∗. Recall from Equations 2.36 and 2.37 ,

D(H), as a Hopf algebra, has two natural representations on D(H)∗ denoted by L and R,

where L is induced from the left multiplication of D(H) on itself and R is induced from the

right multiplication (precomposed by the antipode). Apparently, these two actions commute

with each other.

Let τ be a ribbon of either local orientation with si = ∂iτ . Identify Vτ with D(H)∗. Then

the local operators Bt(s0)Aa(s0) define a representation of D(H) on Vτ isomorphic to L, and

Bt(s1)Aa(s1) define a representation isomorphic to R.

Proof. The statement can be proved by restricting the identities in Equations 3.17 and 3.18

on the ground state. It is straightforward to see that, at s0, the two identities in Equations

 3.17a and 3.17b corresponding to the two cases of local orientations both reduce to,

Aa(s0)|h ⊗ f〉 =
∑
(a)

|a′hS(a′′′), f [S(a′′)?]〉, (3.21)

which agrees with Equation 2.36 , the action L on D(H)∗:

L(a)|(h ⊗ f)〉 = |(h ⊗ f)(S(a)?)〉 =
∑
(a)

|a′hS(a′′′) ⊗ f [S(a′′)?]〉. (3.22)

Similarly, at s1, for either local orientation we have

Aa(s1)|h ⊗ f〉 = |h, f(?a)〉, (3.23)

40

which agrees with Equation 2.37 , the action R on D(H)∗:

R(a)|h ⊗ f〉 = |(h ⊗ f)(?a)〉 = |h ⊗ f(?a)〉. (3.24)

We leave the verification for the actions of Bf (s0) and Bf (s1) as an exercise.

To summarize, ribbon operators on a sufficiently long ribbon τ commute with all terms

in the Hamiltonian except those associated with the ends of τ . Hence, ribbon operators

create excitations only at the ends of a ribbon. When acting on the ground state, the space

of ribbon operators on τ is naturally identified with D(H)∗. The action of local operators on

∂iτ preserve D(H)∗. Thus, D(H)∗ can be thought of as the space of elementary excitations.

More specifically, the action on ∂0τ define a representation of D(H) on D(H)∗ coinciding

with L, and that on ∂1τ a representation of D(H) on D(H)∗ coinciding with R. These

two actions commute. By standard representation theory (see Equation 2.34), we have the

decomposition,

D(H)∗ '
⊕

µ∈IrrD(H)

µ ⊗ µ∗, (3.25)

where L acts on the first factor and R acts on the second factor. Therefore, the local operators

on the ends of τ can map a state in a sector µ∗ ⊗µ to any other state within the same sector,

but cannot permute states of different sectors. This implies that the types of elementary ex-

citations are labelled by irreducible representations of D(H). Using Fourier transformation,

it is not hard to find a specific basis {〈νab| : ν ∈ IrrD(H), a, b = 1, · · · , dim(ν)} of D(H)∗ so

that L acts only on the a index and R acts only on the b index (See Appendix A.6). That

is, for m ∈ D(H),

L(m)(〈νab|) =
∑

k

Dν(m)ka〈νkb|, (3.26)

R(m)(〈νab|) =
∑

k

Dν∗(m)kb〈νak|. (3.27)

41

3.5 Conclusion and outlook

In this chapter, we provided a concrete definition of ribbon operators in the generalized

Kitaev quantum double model, which is constructed over a semisimple Hopf algebra. We

introduced the notion of local orientation on ribbons which we must distinguish in defin-

ing the operators on them. It was shown that even in the original Kitaev model based on

non-Abelian groups, the issue of local orientation has to be addressed. Otherwise, certain

properties of ribbon operators that are expected to hold would fail. We derived some prop-

erties of ribbon operators in the generalized model. For instance, they create quasi-particle

excitations only at the end of the ribbon, and the types of the quasi-particles correspond

to irreducible representations of the Drinfeld double of the input Hopf algebra. While these

properties are a folklore, their derivations are technically complicated.

There are several future directions to proceed. Firstly, since this Hopf-algebra-model can

be further replaced by a weak Hopf algebra (or quantum groupoid) [12], it will be interesting

to define and study ribbon operators in that case. Secondly, the generalized Kitaev model

may find applications in topological quantum computing. For example, which Hopf algebras

support universal quantum computing? Lastly, the authors in [46] gave a Hamiltonian

formulation for gapped boundaries in the original Kitaev model. It will be interesting to

generalize the formulation to the case of Hopf algebras.

42

4. QUANTUM CIRCUITS FOR TORIC CODE AND X-CUBE

FRACTON MODEL

This chapter contains work from the article entitled "Quantum circuits for toric code and

X-cube fracton model" written by the author, Bowen Yan, and Shawn X. Cui published on

Quantum [2].

In toric code, the Hamiltonian consists of two types of operators, the term Av for each

vertex v and the term Bp for each plaquette p. The key idea of constructing the ground state

in [22] is as follows. Start with the product state |φ0〉 = ⊗|0〉 which is the +1 eigenstate for

all vertex terms. The ground state is then obtained by projecting |φ0〉 to the +1 eigenstate

of all plaquette operators, that is,

|GS〉 ∼
∏
p

1 + Bp

2 |φ0〉. (4.1)

The effect of 1+Bp

2 acting on certain states can be simulated by an appropriate combination

of the Hadamard gate and the CNOT gate. For this method to work, the control qubit for

CNOT has to be in the |0〉 state prior to applying the Hadamard and CNOT. Hence, it is

critical to choose the right sequence for the plaquettes so that, immediately before simulating

the term corresponding to each plaquette p, there is always at least one edge on the boundary

of p with the state |0〉.

Moreover, we also adapt this method to 3D phases including the 3D toric code and the

X-cube fracton model. For the X-cube model, we again initialize the state to the product

of |0〉 state and simulate the projectors corresponding to cube terms. A similar issue arises

that we need to choose the correct sequence to simulate the cube terms. We note that the

circuit we provide here realizes an exact ground state of the X-cube model. By comparison,

using cluster states and measurements, the authors in [28] gave an approximate realization

of the model.

43

4.1 Single plaquette

To systematically introduce our ground state simulation method, we initiate with the

most elementary scenario: applying 1+Bp

2 on a single plaquette, which is the basic structure

in 2D toric code. A Hadamard gate H is naturally described by X+Z√
2 , and CNOT gate Ci→j

is defined as

Ci→j|ij〉 = (1 − Zi

2 Xj + 1 + Zi

2)|ij〉, (4.2)

where i is the control qubit and j is the target qubit.

H1

1
2

3
4

C1→2 C1→3 C1→4

Figure 4.1. Initially, a qubit in the state |0〉 is situated at each gray dot.
As quantum gates are applied to these qubits, their color changes to black.
A circle positioned on a dot signifies the application of a Hadamard gate to
the corresponding qubit, while an arrow indicates a CNOT gate, with the
arrowhead pointing from the control qubit to the target qubit.

In the single plaquette shown in Figure 4.1 , four qubits labeled 1, 2, 3, and 4 are initialized

to the state |0〉. Subsequently, we will systematically implement Hadamard and CNOT gates

in a specific sequence, as outlined in the figure. After the application of H1 and C1→2, we

have

C1→2H1|0000〉 = (1 − Z1

2 X2 + 1 + Z1

2)X1 + Z1√
2

|0000〉 = X1X2 + 1√
2

|0000〉. (4.3)

Explicitly, we can insert a 1+Z
2 into the equation as 1+Z

2 |0〉 = |0〉:

(1 − Z1

2 X2 + 1 + Z1

2)X1 + Z1√
2

1 + Z1

2 (4.4)

= 1√
2

{(X1
1 + Z1

2 X2 + X1
1 − Z1

2) + (1 − Z1

2 X2 + 1 + Z1

2)}1 + Z1

2 (4.5)

= 1√
2

(X1X2 + 1)1 + Z1

2 (4.6)

44

Notice 1+Z1
2 survives within { } in Equation 4.5 . After reverting to the original expression

and substituting 1+Z1
2 with 1, we verified the accuracy of Equation 4.3 . Importantly, this

equation holds for any quantum state |φ〉:

C1→2H1|0〉 ⊗ |φ〉 = X1X2 + 1√
2

|0〉 ⊗ |φ〉, (4.7)

since the key step only requires that the initial state must be the eigenstate of Z1 with an

eigenvalue +1. Finally, applying the other CNOT gates results in

4∏
i=2

C1→iH1|0000〉 = X1X2X3X4 + 1√
2

|0000〉 = 1 + Bp√
2

|0000〉, (4.8)

which is the desired ground state. It is important to observe that this procedure remains

effective as long as a qubit from Bo(p) is initially in the state |0〉. We term such qubits

as free qubits, and their presence is pivotal when considering scenarios involving multiple

plaquettes.

4.2 Developing to a surface with boundary

Given a complicated lattice Γ in the state |φ0〉, we need to find a path (termed permissible

order in [26]) through all plaquettes pi, such that ⋃i pi = P , using a sequence of edges

ei ∈ Bo(pi) where ei /∈ ⋃i−1
j=1 pj. Each ei is then utilized as a free qubit to apply the introduced

basic structure, resulting in the accumulation of ∏i
1+Bpi√

2 over |0 · · · 0〉, which represents

the ground state of the toric code on lattice Γ. To illustrate the procedure, we take four

plaquettes as an example depicted in Figure 4.2 . A path featuring four free qubits e1 to e4

has been chosen, where ei starts in the state |0〉 at the onset of every step. Upon completing

the path, the desired ground state is eventually obtained.

45

e1 e2

e3e4

e1 e2

e3e4

e1 e2

e3e4

e1 e2

e3e4

Figure 4.2. The procedure on the basics structure is applying Hadamard
gate on any qubit at |0〉 first and CNOT gates to other qubits in any order.

4.3 Developing to a surface without boundary

The scenario shifts when dealing with a surface without boundary. While the initial state

remains |φ0〉, it becomes impossible to locate a path with sufficient free qubits to cover the

entire lattice. Fortunately, as every edge sides two plaquettes, the equation holds:

∏
p∈P

Bp = 1, (4.9)

which implies that we can intentionally choose a specific Bp as redundant. Consequently,

we can select the final plaquette as the redundant one, effectively terminating the path. To

illustrate, consider the lattices on a torus shown in Figure 4.3 , there is no need to apply

Hadamard and CNOT gates to the bottom left plaquette, as we have previously simulated

the toric code’s ground state.

e1 e2

e3

e1 e2

e3

e1 e2

e3

Figure 4.3. Boundaries with the same color are identified to represent a torus.

46

This method remains applicable to more intricate 2D surfaces with or without boundary,

provided a suitable path can be identified. Additional examples are provided in Appendices

 B.1 and B.2 . Furthermore, the gluing method detailed later empowers us to simulate ground

states on arbitrary planar lattices.

4.4 Simulate arbitrary ground state

As stated in [9], the degeneracy of ground states for 2D toric code on torus is four: |00〉,

|01〉, |10〉 and |11〉. The ground state |00〉, presented in Section 4.3 , is simulated from the

initial state φ0. Due to the properties of logical operators, which can interchange ground

states and commute with Bp, it is feasible to apply them to φ0 to obtain the remaining

ground states.

φ0 φ01 φ10 φ11

Figure 4.4. A qubit |0〉 is placed at each gray dot and the color changes to
black when operator X flips the qubit from |0〉 to |1〉.

Illustrated in Figure 4.4 , a vertical loop and a horizontal loop of X represent the two

logical operators. They are capable of transforming φ0 into φ01, φ10 and φ11, which correspond

to the initial states of |01〉, |10〉 and |11〉, respectively. Subsequently, we can repeat the same

procedure detailed in Section 4.3 , but with a modification: utilize XiCi→jXi instead of Ci→j

when encountering a flipped qubit ei.

One step further, in order to obtain an arbitrary ground state Φ = aeiθa |00〉 + beiθb|01〉 +

ceiθc |10〉 + deiθd|11〉, we can implement the unitary operator U outlined in Equation 4.10 on

an adjacent pair of vertical and horizontal edges of φ0 and subsequently utilize CNOT gates

to transmit vertically and horizontally to get φ. From there, we can proceed by repeating the

47

aforementioned method and we must avoid qubits that have already been utilized, opting

instead for free qubits.

U1 =



a√
a2+b2

−b√
a2+b2

0 0

b√
a2+b2

a√
a2+b2

0 0

0 0 c√
c2+d2

−d√
c2+d2

0 0 d√
c2+d2

c√
c2+d2




√
a2+b2 0 −

√
c2+d2 0

0
√

a2+b2 0 −
√

c2+d2
√

c2+d2 0
√

a2+b2 0
0

√
c2+d2 0

√
a2+b2

 ,

U2 =
(eiθa 0 0 0

0 eiθb 0 0
0 0 eiθc 0
0 0 0 eiθd

)
and U = U2U1. (4.10)

4.5 Quantum circuit depth

To simulate a toric code with length L, using local unitary gates requires at least linear

size O(L) depth circuits [47], and constant depth is achievable if measurement operations

are allowed [29]. A recent work provided a systematic method to simulate an unknown toric

code in 3L + 2 depth [48], [49]. In comparison, on a L × L square lattice over a torus, we

can simulate a known toric code state like |00〉 in 2L + 2 depth and an unknown toric code

Φ in d2L + 2 + log2(d) + L
2d

e depth. Here, the quantum circuit is local and the CNOT gate

is restricted to be applied on two qubits with a distance d.

To simulate the state |00〉, we initiate the process with φ0 and designate the plaquette

at the bottom right corner as redundant. Subsequently, we proceed the quantum gates step

by step, following the instructions outlined on the left side of Figure 4.5 . On the other

hand, as elaborated upon in Section 4.4 , an unknown toric code state Φ can be attained

by substituting φ0 with φ, which is obtained from two logical qubits through a sequence

of CNOT gates. This procedure demands dlog2(d) + L
2d

e steps

1
 , where d represents the

maximum distance between the two qubits that CNOT gate could apply without breaking

locality. Additionally, a slight variation in the order, as demonstrated on the right side of

Figure 4.5 , is essential to initiate with φ.
1

 ↑ For detailed discussion on the local CNOT gate, see Section B.3 .

48

|00〉

1

1

1

2

2

2
3 4

3 5

Φ

2

2

2

1

1

1

3 4

3 5

Figure 4.5. Opposite boundaries are identified and the case of L=3 is pro-
vided as an example. In both figures, the prescribed order for gate application
is as follows: 1 Apply Hadamard gates to the qubits encircled by circles; 2
Execute CNOT gates, indicated by green arrows, followed by those with blue
arrows; 3 Implement CNOT gates denoted by red arrows, following their nu-
merical order. In the right figure, orange dots signify qubits that hold the
information of Φ.

4.6 Gluing method for two single plaquettes

The method introduced in the preceding sections is efficient; however, it hinges on the

selection of a suitable path. This choice could prove challenging for intricate surfaces. To

address this concern, we propose a gluing method designed to overcome this complexity.

To exemplify the essence of the gluing approach, we will commence with a straightforward

example. To simulate the ground state of toric code on the two plaquettes in Figure 4.6 ,

we can employ an ancilla qubit to partition it into two independent plaquettes p1 and p2.

The edges within Bo(p1) are denoted by 1, 2, 3, 4, while those within Bo(p2) are denoted by

5, 6, 7, 8. We initiate the process with φ0 and ignore the overall normalization constant to

simplify subsequent calculations.

First apply 1 + Bp1 and 1 + Bp2 independently to get

(1 + X1X2X3X4)(1 + X5X6X7X8)|00...0〉. (4.11)

49

p1 p2
4 52

1

3

7

8

6

p1 p2
C4→5

Figure 4.6. The lattice of two plaquettes is divided into two independent
plaquettes by introducing the ancilla qubit in red.

Then apply C4→5 and notice this operator commutes with 1 + Bp2 :

(1 − Z4

2 X5 + 1 + Z4

2)(1 + X1X2X3X4)(1 + X5X6X7X8)|00...0〉

= (1 + X1X2X3X4X5)(1 + X5X6X7X8)|00...0〉. (4.12)

Finally, make a measurement over the ancilla qubit with basis |+〉 = |0〉+|1〉√
2 and |−〉 = |0〉−|1〉√

2 .

If we get +1, it is equivalent to applying 1+X4
2 and thus

1 + X4

2 (1 + X1X2X3X4X5)(1 + X5X6X7X8)|00...0〉

= (1 + X4

2)(1 + X1X2X3X5)(1 + X5X6X7X8)|00...0〉. (4.13)

The ancilla qubit is disentangled, leaving us with the ground state of the two plaquettes.

Observing that, when two boundaries ei and ej are glued together, all plaquettes terms

commute with each other and Ci→j commutes with all plaquette terms except 1 + Bpk
where

ei ∈ Bo(pk). This observation underscores that the resultant combination remains a ground

state even when multiple plaquettes are fused together concurrently.

On the other hand, if we get -1, it is equivalent to applying 1−X4
2 and thus

1 − X4

2 (1 + X1X2X3X4X5)(1 + X5X6X7X8)|00...0〉

= (1 − X4

2)(1 − X1X2X3X5)(1 + X5X6X7X8)|00...0〉, (4.14)

50

which is not the expected ground state. It is worth noting that the resulting state is an

excited state if a magnetic charge exists at p1. Fortunately, we can correct it by applying Z1,

Z2 or Z3, each of which is a short dual ribbon operator. In the subsequent section, we will

establish a proof demonstrating that a correcting operator invariably exists for any planar

lattice.

Our method, can be naturally extended to more general scenarios where projectors only

involve tensor products of Pauli X (given that tensor products of Pauli Z operators are

automatically satisfied by the state |00...0〉), such as 3D toric model or X cube model to be

addressed below. For instance, let us consider two edges from different lattices, labeled as

m and n (note that we abuse the notation referring to both edges and lattices). The state

of these two lattices can be expressed as ∏ 1+Hm

2 |0〉m ⊗ |0〉resm or ∏ 1+Hn

2 |0〉n ⊗ |0〉resn . Here,

resm(n) signifies the remaining system of lattice m(n), and Hm(n) denotes the projector onto

lattice m(n). Given that Cm→n only relies on |m〉, expanding the product of Hm yields

Cm→n

∑
i

(X ⊗ 1 ⊗ Ai + 1 ⊗ 1 ⊗ Bi)
∏ 1 + Hn

2 |0〉m|0〉n|0〉resm|0〉resn , (4.15)

where Ai and Bi acts only on resm, and we have not expanded Hn since it has a trivial

impact on m. Upon applying Cm→n, we obtain

∑
i

(X ⊗ X ⊗ Ai + 1 ⊗ 1 ⊗ Bi)
∏ 1 + Hn

2 |0〉m|0〉n|0〉resm|0〉resn . (4.16)

Essentially, this signifies that the CNOT gate transfers all actions from m to n after disen-

tangling m. Akin to Equation 4.13 and 4.14 , we count the excitations and employ correction

operators to obtain the ground state. Consequently, we can attain the expected ground state

of the glued lattice by gluing the edges correspondingly , as long as the projectors consist of

tensor products of Pauli X operators .

4.7 Gluing method for an arbitrary lattice

When transitioning from the gluing method’s application on two single plaquettes to the

broader context of numerous arbitrary plaquettes, our focus should not be on the edges mea-

51

sured +1, but rather on establishing a systematic method to correct address edges measured

-1.

In the instance presented in Figure 4.7 , if we apply Ci→j to glue two boundaries and

get -1 after measuring qubit ei, the correcting operator must anti-commute with Bpi and

exhibit commutativity with everything else

2
 . One intuitive approach is to apply a dual

string operator starting at pi and ending crossing a z-boundary.

z-boundary

correcting operator

pi
pj

ei ej
Ci→j

Figure 4.7. Correcting procedure after gluing two arbitrary plaquettes.

Expanding upon this notion, let us consider a situation involving any connected planar

lattice γ = ⋃n
i=1 pi with z-boundary e0. For a series T = pi, Bo(pi)

⋂⋃i−1
j=1 Bo(pj) 6= �

for any i ∈ [2, n], we can insert ancilla qubits to separate T into multiple plaquettes and

subsequently glue them back. To illustrate this idea, let us delve into an example consist of

four plaquettes, as depicted in Figure 4.8 .

First, we initiate by utilizing ancilla qubits to fragment the lattice into single plaquettes.

For τ(ek) containing pi and pj, where 1 ≤ i < j ≤ n according to the series T , insert an ancilla

edge e′
k into pi while retaining ek in pj. Then we apply 1+Bp to every single plaquette p ∈ P .

Subsequently, glue them together piece by piece. For pi, 1 < i ≤ n, it becomes necessary

to apply Ce′→e to all pairs of e′ ∈ ⋃i−1
j=1 Bo(pj) and e ∈ Bo(pi). Finally, we measure and

disentangle e′. If we get -1, apply a dual string operator connecting pi and the z-boundary of

p1 to correct it. It is noteworthy that all plaquettes can be glued simultaneously, allowing a

dual string operator to annihilate two magnetic charges by connecting them. In this example,

if we get -1 for e′
1 and e′

4 concurrently, the correcting operator will effectively nullify their

impact.
2

 ↑ It is worth noting that this correcting operator effortlessly commutes with all vertex terms.

52

e0 e1

e2

e3

e4

p1 p2

p3p4

p1 p2

p3p4

e0 e1e′
1

e′
3e3

e2

e′
2

e4

e′
4

Ce′
1→e1

p1 p2

p3p4

e0

e2

e′
2

e′
3e3

e4

e′
4

Ce′
2→e2

p1 p2

p3

p4

e0

e′
3

e3

e4

e′
4

Ce′
3→e3

Ce′
4→e4

Figure 4.8. e0 is a z-boundary and e′ in red represents an ancilla qubit.

In the case of a lattice without boundary, we can choose a specific plaquette p to be

redundant, effectively transforming Bo(p) into z-boundaries. Subsequently,this situation

mirrors the scenario depicted in the lattice with boundaries, and further details are left for

readers to explore. If the lattice solely contains x-boundaries, a viable solution is to consider

the dual lattice of it. The process remains unchanged, except for the inversion of plaquette

and vertex operators. Thus we can confidently assert that our method is universally capable

of simulating the ground state of a toric code on any planar lattice configuration.

In the case of the 2D toric code, the gluing method might initially resemble a simple

measurement process, especially when we break down the lattice into pieces, attach ancilla

qubits, and then fuse them to obtain the ground state for the entire lattice. However, its

capabilities extend significantly when we consider scenarios like 3D models, as discussed

thoroughly in Section 4.10 , or when we have two lattices in their ground states to be joined.

In such cases, a stabilizer measurement can not glue two lattice and get the ground state of

the glued lattice.

53

4.8 3D toric model

The 3D toric model bears strong resemblance to the 2D toric code and is established on

an arbitrary 3D lattice. To enhance clarity, a cubic lattice is adopted, as depicted in Figure

 4.9 . Within this lattice, V represents the set of all vertices, while P corresponds to the set of

all plaquettes; each edge accommodates a single qubit. Moreover, for the sake of convenience,

we have affixed labels to each edge, denoting them as x, y, or z based on their alignment

with the respective axis (i.e., parallel to the x, y, or z axis). Notice this labeling maintains

consistency even when applied to a 3-dimensional torus. The Hamiltonian is defined as

H = −
∑
v∈V

Av −
∑
p∈P

Bp, (4.17)

where Av pertains to the application of the Pauli operator X over six edges connected to

the vertex v, and Bp pertains to the application of the Pauli operator Z over the four edges

encompassing the plaquette p. It is straightforward to see these new-defined Av and Bp

operators also satisfy A2
v = B2

p = 1 and [Av, Bp] = 0. So this 3D toric Hamiltonian is

equivalent to the equation expressed as a summation of local projectors. We get the ground

state

|GS〉 =
∏
v

1 + Av

2 |φ0〉, (4.18)

where |φ0〉 = |00...0〉, and we drop 1+Bp

2 s since its action on |φ0〉 is +1. It is important

to highlight that the constancy of ground state degeneracy endures with fluctuations in

system size, a pivotal characteristic of topological phases of matter. Additionally, Figure

 4.9 presents a comprehensive depiction of a pair of conjugate logical operators. Notice that,

the definition of logical operators only depends on the nontrivial loop or non-cotractable

planes. Consequently, we have three pairs of conjugate logical operators, each acting on

edges labeled by x, y, or z respectively.

We can extend the method of 2D toric code to 3D toric model with boundary directly

utilizing a plaquette as the basic structure. It is complicated yet straightforward, so its

details are outlined in Section B.4 . However, applying this approach to the 3D toric model

without boundaries presents challenges, as the absence of free edges in the final step poses an

54

Bp

x
y

z

Av

x
y

z

Figure 4.9. The left sub-figure illustrates the definitions of Av and Bp op-
erators. Meanwhile, the right sub-figure displays a pair of conjugate logical
operators composed of edges labeled by x. The red string is a nontrivial circle
parallel to x axis, and a logical Z operator is to apply Pauli Z over edges along
the string. Conversely, the blue plane is a non-contractable plane perpendic-
ular to x axis, and a logical X operator is to apply Pauli X over edges within
the plane.

issue. To circumvent this challenge, we must adopt a basic structure, illustrated in Figure

 4.10 . We still initiate the process with |φ0〉. Then we execute the quantum circuits as

illustrated in the figure to achieve the action of 1+Av

2 .

1+Bp

2 1+Av

2

Figure 4.10. Comparison of two different basic structures: An example con-
sisting of eight cubes with boundary is shown in Section B.4 and a similar
example without boundary is shown in Section B.5 .

Using this basic structure to develop the lattice vertex by vertex, we will end with a

redundant vertex as ∏
v∈V

Av = 1. (4.19)

55

In Section B.5 , we present a straightforward example comprising eight cubes to illustrate the

method. To address the general case, we delineate the procedures required for constructing a

quantum circuit for the 3D toric model on an L × L × L lattice over a 3-dimensional torus in

Figure 4.11 . The process consists of several carefully orchestrated steps to efficiently realize

the circuit, amounting to a total of 3L+8 steps. The quantum circuit is purely local since all

applied quantum gates are either acting on a single qubit or on nearest two qubits. Certain

non-interacting gates offer the potential for further parallelization, but this would only result

in a constant difference in circuit depth.

In a manner akin to the procedure detailed in Section 4.4 , we employ certain qubits

to generate a particular initial state that encodes information about the logical qubits, as

depicted in Figure 4.12 . However, it is important to note that these selected qubits are

unnecessary when we opt for free qubits during the ground state preparation. In conclusion,

our method can prepare an arbitrary ground state of the 3D toric model with linear depth.

x

y

z x
y

z

Figure 4.11. We initiate with slicing the 3D torus into layers along the x-
direction and applying H gates to all the colored dots. Subsequently, we apply
all CNOT gates from red dots to non-red dots simultaneously and between
adjacent red dots layer by layer, which requires L+3 steps. The last layer needs
special treatment, which simplifies into a 2D problem after applying 2 CNOT
gates from all green and blue dots. Further progression involves applying
CNOT gates concurrently from green dots to non-green dots and between
adjacent green dots row by row, necessitating L + 1 steps. Similarly, another
L+1 steps applying CNOT gates from blue dots completes the procedure and
leaves a redundant vertex in the yellow cube.

56

x

y

z

x

y

z

Figure 4.12. The left sub-figure highlights the employed qubits (indicated by
violet edges) that are utilized for the specific initial state within the ground
state preparation process. Meanwhile, the right sub-figure sketches all em-
ployed edges within a cubic lattice of size L = 5. All edges labeled by z in
the back layer, x in the right layer, and y in the top layer are employed to
encode arbitrary ground states. Importantly, the procedure we introduced
earlier remains uninterrupted since we do not designate any of these edges as
free qubits.

4.9 X-cube model

The X-cube model is a fracton model defined on a 3D cubic lattice, as visually depicted

in Figure 4.13 . Within this lattice, V represents the set of all vertices, while C corresponds

to the set of all cubes; each edge accommodates a single qubit. For the sake of convenience,

we also affixed labels to each edge, denoting them as x, y, or z based on their alignment

with the respective axis. The Halmitonian is defined as

H = −
∑
v∈V

Ax
v + Ay

v + Az
v −

∑
c∈C

Bc, (4.20)

where Ai
v, i = x, y, z is defined to implement Pauli operator Z across the four edges oriented

vertically to the i axis and attached to vertex v, and Bc is designated to effectuate Pauli

57

operator X across the twelve edges associated with cube c. Again these Ai
vs and Bcs operators

satisfy (Ai
v)2 = B2

c = 1 and [Ai
v, Bc] = 0. We get the ground state

|GS〉 =
∏

c

1 + Bc

2 |φ0〉, (4.21)

where |φ0〉 = |00...0〉, and we drop 1+Ai
v

2 since its action on |φ0〉 is +1. It is important

to emphasize, however, that the ground state degeneracy experiences exponential growth

alongside the system size. Additionally, Figure 4.13 presents a comprehensive depiction of a

pair of logical operators of type W and T

3
 . Similarly, we have three types of logical operator

pairs, each acting on edges labeled by x, y, or z respectively. Notably, distinct non-trivial

loops exhibit identical homotopy while differ in terms of logical operators. This distinction

is a crucial hallmark distinguishing the fracton model from conventional topological orders.

x
y

z

Az
v

Bc

x
y

z

Figure 4.13. The left sub-figure illustrates the definitions of Av and Bp

operators. Meanwhile, the right sub-figure displays a pair of conjugate logical
operators composed of edges labeled by x. The red string is of type W , a
nontrivial circle parallel to x axis, and we apply Pauli X over edges along the
string. Conversely, the blue string is of type T , a nontrivial circle perpendicular
to x axis, and we apply Pauli Z over edges along the string.

To simulate the ground state for the X-cube model, we outline

4
 the procedures required

to construct a quantum circuit for the X-cube model on an L × L × L lattice, over a 3-

dimensional torus, in Figure 4.14 . The initial state is |φ0〉, and our target is to find quantum
3

 ↑ The complete set of logical operators are given in [50], but we only use two types of them, which are not
conjugate to each other.
4

 ↑ We also present a straightforward example comprising eight cubes to illustrate the method, as elaborated
in Section B.6 .

58

circuit to implement ∏c
1+Bc

2 . We identify the redundancy by specifically selecting certain

cubes, namely the three edges of the cubes in yellow, resulting from the requirement ∏Bc = 1

of the involved layer of cubes. Given that layers can be independently sliced in three distinct

directions, this selective arrangement of yellow-colored structures

5
 is achieved. To start,

we strategically partition the cube into distinct components: a central (L − 1) × (L − 1) ×

(L − 1) cube (colored gray), three (L − 1) × (L − 1) × 1 layers of cubes (colored blue), and

three rows of redundant cubes (colored yellow). Then we further slice the central cube into

(L − 1) × (L − 1) × 1 layers. Notice each gray and blue layer has the same boundaries up

to rotation. This occurs because those yellow cubes are redundant, and the blue cubes are

intended for the application of projectors in other layers. Neither of them interferes with the

preparation of the layer structure. Consequently, we treat each layer of cubes as having the

same structure, and their corresponding quantum circuits are outlined in Figure 4.14 .

After the initial 9 steps, we apply CNOT from (i, j) to (i − 1, j) in the (3k + 10)-th step,

apply CNOT from (i, j) to (i, j − 1) in the (3k + 11)-th step, and apply CNOT from (i, j) to

(i−1, j−1) in the (3k +12)-th step, where i+ j = k +2. This allows us to complete the layer

structure in a total of 6L + 6 steps. These carefully orchestrated steps efficiently realize the

circuit, requiring a total of 12L + 11 steps and the quantum circuit is purely local, similarly

to the 3-dimensional toric code case. Certain non-interacting gates offer the potential for

further parallelization, reducing the circuit depth by 2b2L−3
2 c. It is worth noting that this

method can be readily extended to the X-cube model on a lattice of dimensions L1 ×L2 ×L3.

The ground state degeneracy can be resolved by the complete set of logical operators

[50]. We can readily attain all bases of the ground space of the X-cube model by replacing

the initial product state, as demonstrated in Section 4.4 and 4.8 . However, it is not straight-

forward to see whether our method can be applied to prepare arbitrary ground states of the

X-cube model. The comprehensive encoding of arbitrary ground states still remains an open

question and is left as a topic for future research directions.

5
 ↑ While there may exist more redundant cubes, our focus is solely on the chosen ones.

59

x

y

z

x
y

z

(0, 0)

Figure 4.14. Treating each layer of cubes as the same structure with bound-
aries, we initiate H gates along the edges in the z-direction of each cube and
apply CNOT gates from these edges to the others in the x and y directions,
which requires 9 steps. Then we apply CNOT gates diagonally, row by row
in different colors, necessitating 6L − 3 steps. All gray layers are prepared
simultaneously, followed by blue layers, leaving behind redundant cubes.

4.10 Gluing method for 3D models

Similar to the scenario in 2D toric code case, we can simulate the ground state of 3D

toric model by breaking the lattice into basic structures, simulating on and gluing them

back. This results in one redundant vertex term and the excitations are quasi-particles that

are able to move freely. The situation is exactly the same as 2D toric code, so we can find

correcting operators to annihilate all of the excitations, which is left to readers.

Different methods for gluing in the X-cube model exist, and an intuitive one is shown in

Figure 4.15 . In this method, the quantum circuits are applied to each of the individual pieces

to obtain their respective ground states. Subsequently, CNOT gates are employed along the

gluing plane to glue them together. It is essential to note that this process is not a simple

measurement, as each edge is influenced by two cube terms. Disentanglement necessitates

the implementation of measurements on all red edges and correction operators to eliminate

potential excitations based on the measurement outcomes. However, the X-cube model poses

60

x
y

z

Figure 4.15. Following the preparation of ground states on the individual
lattices, we designate all qubits on one side of the gluing plane as ancilla
qubits (represented by red edges). Subsequently, we apply CNOT gates in
parallel from these ancilla qubits to the opposite side. This process allows us
to obtain the ground state of the fused lattice after appropriately disentangling
the ancilla qubits.

greater complexity as the excitations are fractons. A systematic approach to find correcting

operators is based on the following two facts:

1. There are three columns of redundant cubes as shown in Figure 4.14 .

2. The excitation betraying cube terms is a fracton that are not able to move freely. While

a membrane operator (see [51] for details) creates fractons on four corners of a rectangular.

Illustrated in Figure 4.16 , each cube in the n3 cubic lattice, underlying the 3D torus

topology, is assigned Cartesian coordinates (i, j, k), where 1 ≤ i, j, k ≤ n. Redundant cubes

are positioned along three columns, namely (i, 1, 1), (1, i, 1), and (1, 1, i) for i = 1 · · · n. A

membrane operator M[(i, j, k), (i′, j′, k′)], consists of Z operators in the rectangle from (i, j, k)

to (i′, j′, k′) creates excitations at the four corners. For instance, when addressing an excita-

tion at (i, j, 1), applying M[(1, 1, 1), (i, j, 1)] leads to the annihilation of the excitation and the

creation of excitations at redundant cubes, which are inconsequential. When dealing with a

general excitation at (i, j, k), with i, j, k 6= 1, a multi-step procedure comes into play. Initially,

M[(1, j, 1), (i, j, k)] is applied to eliminate the excitation, generating three additional excita-

tions at (1, j, 1), (1, j, k), and (i, j, 1). Disregarding the one at the redundant cube, the other

two are subsequently eliminated by M[(1, 1, 1), (1, j, k)] and M[(1, 1, 1), (i, j, 1)], respectively.

61

x

y

z

(i, j, k)(1, j, k)

(1, j, 1) (i, j, 1)

(1, 1, 1)

(1, 1, k)

(i, 1, 1)
(i, j, k)

(i′, j′, k′)

Figure 4.16. A membrane operator consisting of Z operators on green edges
creates fractons at four corners; The correcting operator is a product of three
membrane operators.

In essence, the product operator M[(1, 1, 1), (1, j, k)] M[(1, 1, 1), (i, j, 1)] M[(1, j, 1), (i, j, k)]

is capable of annihilating general excitations.

62

4.11 Conclusion and outlook

In this paper, we propose a method to prepare the ground state of a Hamiltonian consist-

ing of local commuting projectors composed solely of Pauli X and Pauli Z operators. Our

approach involves finding an appropriate initial state that serves as the ground state of these

projectors and applying a quantum circuit composed solely of Clifford gates to achieve the

Hamiltonian’s ground state. We demonstrate the effectiveness of our method on 2D toric

codes with various surface conditions, both with and without boundaries, as well as on the

3D toric model and the X-cube model. Our method enables the preparation of arbitrary

ground states for 2D and 3D toric model with a linear-depth circuit, meeting the lower

bound for preparing ground states in topological phases. It also works for any basis of the

ground state in the X-cube model using a linear-depth quantum circuit. We present these

results on specific lattices, such as the 2D square lattice or 3D cubic lattice, and introduce

a gluing method to facilitate ground state preparation on general 2D and 3D lattices. This

gluing method provides a trade-off between measurement usage and circuit depth and can be

applied to obtain the ground state of larger lattices by assembling ground states of smaller

components.

There are several future directions to proceed from this work. One natural progression

involves extending our method to other 3D models of interest. Furthermore, the applicabil-

ity of our approach to the non-abelian Kitaev model presents a straightforward extension,

offering the potential to broaden the scope of its application.

63

5. REPRESENTING ARBITRARY GROUND STATES OF

TORIC CODE BY RESTRICTED BOLTZMANN MACHINE

This chapter contains work from the article entitled "Representing Arbitrary Ground States

of Toric Code by Restricted Boltzmann Machine" written by the author, Bowen Yan, and

Shawn X. Cui preprinted on arXiv [3].

5.1 Introduction

The research on topological phases of matter (TPMs) has significantly intensified in

recent decades. These phases are characterized by topological order, setting them apart

from conventional states. Topological phases feature ground states with stable degeneracy

and robust long-range entanglement. In two dimensions, they support anyons and show

resilience to local disruptions. These unique attributes render TPMs highly suitable for

fault-tolerant quantum computing [9], [10]. In two dimensions, the underlying structure of

TPMs can be described by either a (2+1)-dimensional topological quantum field theory or

a unitary modular tensor category. Many topological phases can be realized on spin lattice

models, with the toric code model standing out as one of the most notable examples. More

generally, associated with each finite group G, Kitaev’s quantum double model defines an

exactly solvable lattice model realizing possibly non-Abelian anyons. When G = Z2, the

theory simplifies to the toric code.

Identifying the eigenstates of the Hamiltonian of a topological phase, and more generally

that of a many-body quantum system, ranks among the most demanding tasks in condensed

matter physics. This task becomes increasingly complex primarily because of the power

scaling of the Hilbert space dimension, which inflates exponentially in relation to the system’s

size [32]. Nonetheless, it is often the case that the system’s inherent physical properties,

e.g. long-range entanglement, restrict the form of the ground states, and therefore the

states corresponding to interesting quantum systems may only occupy a small portion of the

exponentially large Hilbert space. This opens up the possibility of efficient representations

64

of the wave function of many-body systems. Examples of efficient representations include

matrix product states, projected entangled pair states, and more generally tensor networks.

A recent trend is the study of many-body quantum systems utilizing machine learning

techniques, especially artificial neural networks. Restricted Boltzmann Machines (RBMs) are

a generative stochastic artificial neural network [33]. Unlike other types of neural networks,

RBMs have a unique two-layer architecture that consists of a visible input layer and a

hidden layer. The ’restricted’ part in the name refers to the lack of intra-layer connections;

that is, nodes within the same layer do not interact with each other. RBMs have been

used effectively in a variety of machine learning tasks, including dimensionality reduction,

classification, regression, and even solving quantum many-body problems [34]–[39].

In 2017, Carleo and Troyer paved a novel path by applying RBM as a variational ansatz,

utilizing it to represent ground states for Ising model [34]. This groundbreaking achievement

catalyzed the development of numerous explicit RBM representations. Notably, substantial

research efforts have been directed towards the examination of toric code [35], [36], graph

states [37], and stabilizer code [38], [39], which is equivalent to a graph state under local

Clifford operations [40]. While their topological properties and representational power [41],

[42] have been extensively studied, there is still a need to explore feasible algorithms for

specific models.

We start from the RBM representability of the toric code model as the first step, with

the eventual goal of studying that for general topological phases. In [36], Deng and Li

utilized a Further Restricted Restricted Boltzmann Machine (FRRBM), that allows only

local connections, to numerically find a solution of the toric code model. However, toric

code has degeneracy on non-trivial topology, and the ground state derived in the above

manner always corresponds certain specific one. On the other hand, it is possible to achieve

an arbitrary ground state by turning the toric code as a graph state [43] and transforming a

graph state into an RBM [38]. Yet, this approach inevitably introduces non-local connections

within each subgraph which adds to the complexity of the RBM.

In this work, we initially apply stabilizer conditions to several specific configurations to

analytically solve the FRRBM for the toric code, exploring its representational capacity. We

factorize these solutions on square lattices of various sizes and find that different weights

65

only alter the coefficients of the basis states forming the ground state by factors of ±1. We

then extended this approach to obtain an arbitrary ground state by strategically introducing

several non-local connections into the RBM. While this generalization sacrifices the simplicity

of local connections, it remains analytically solvable, enabling the simulation of arbitrary

ground states in a clean manner. Additionally, we developed an efficient machine learning

algorithm to verify the learnability of the models. We further generalize our approach from

Z2 to Zn and outline potential directions for future research.

5.2 Further Restricted RBM

Visib
le

Laye
r

Hidd
en

Laye
r

hv

hf

σz
j

aj

bv

wv,1

wv,2

wv,3

wv,4

bf

wf,1

wf,2

wf,3

wf,4

Figure 5.1. The right diagram results from collapsing the two layers shown
in the left diagram. It illustrates a translation-invariant FRRBM with visible
neurons colored gray and hidden neurons colored red and blue, corresponding
to faces and vertices, respectively. The architecture ensures that each hidden
neuron is connected only to the nearest visible neurons. Each neuron and each
connection is assigned a weight.

To simulate the ground state of the 2D toric code, Deng and Li utilized a translation-

invariant Further Restricted RBM (FRRBM), illustrated in Figure 5.1 . This model, designed

to permit only local connections, was employed to numerically find a solution [36]. For the

physical spins {σz
j } on the square lattice, a vertex-type hidden neuron hv was assigned to

each vertex and a face-type hidden neuron hf to each face, with connections limited to the

66

nearest visible neurons. Given the two types of hidden neurons, the wave function, as shown

in Equation (2.59), is reformulated as follows:

ΨM(S; W) = e
∑

j ajσz
j
∏
v∈V

Γv(S; W)
∏
f∈F

Γf (S; W), (5.1)

Γv(S; W) = 2 cosh(bv +
∑

j∈s(v)
wv,jσ

z
j), (5.2)

Γf (S; W) = 2 cosh(bf +
∑

j∈s(f)
wf,jσ

z
j). (5.3)

They set weight aj = 0 for every visible neuron, choose (bf , wf,j) = (0, π

4 i). Using the stabi-

lizer conditions, they train the FRRBM to get the isotropic solution numerically, resulting

in (bv, wv,j) = (0, π

2 i). This FRRBM also naturally supports excited states if translation-

invariant symmetry is broken and string operators are applied. Furthermore, this solution

can be directly generalized to the 3D toric code.

5.3 Analytical solutions of FRRBM

However, the solution derived above is limited to describing only one specific ground

state. To fully explore the representational capacity of the FRRBM, we aim to analytically

solve it to identify all possible solutions. We begin with the translation-invariant wave

function described above and also set aj = 0 for every visible neuron. Then we solve W =

(bf , wf,1−4, bv, wv,1−4) using the stabilizer conditions:

Bf |GS〉 =
∏

e∈s(f)
σ̂z

e |GS〉 = |GS〉, ∀f ∈ F ; (5.4)

Av|GS〉 =
∏

e∈s(v)
σ̂x

e |GS〉 = |GS〉, ∀v ∈ V. (5.5)

Solving the face stabilizer condition is straightforward, as the operator σ̂z
e does not alter

the state of the qubit e. By substituting Equation (5.1) into Equation (2.58) and treating

|Ψ〉 as the ground state |GS〉, we solve for |Ψ〉 under the constraints imposed by Equation

(5.4). This process is applied within any single face to determine: bf = 0 (mod π) and

67

wf,j = π

4 i, 3π

4 i (mod π), where an even number of the four wf,j must be the same. Further

calculation details are provided in Appendix C.1 .

Unlike the face stabilizer condition, solving the vertex stabilizer condition is more com-

plex. The operator σ̂x
e flips the state of qubit e. As shown in Figure 5.2 , applying vertex

operator to any vertex v0 ∈ V alters the configuration from |S〉 to |h0(S)〉. Notably, applying

the vertex operator twice will restore the original configuration. Applying the constraints

outlined in Equation (5.5), we derive the following result:

∑
S

∏
v∈V

Γv(S; W)
∏
f∈F

Γf (S; W)|h0(S)〉 =
∑
S

∏
v∈V

Γv(S; W)
∏
f∈F

Γf (S; W)|S〉. (5.6)

By applying it twice, we can remove the sum to get

∏
v∈V

Γv(h0(S); W)
∏
f∈F

Γf (h0(S); W) =
∏
v∈V

Γv(S; W)
∏
f∈F

Γf (S; W) (5.7)

for any possible configuration S. However, there are many equal factors on both sides of

the Equation (5.7). Canceling out them will reduce the configuration of interest from S to

S ′ which only contains 16 qubits, giving a series of 216 equations. Directly solving these

equations is impossible. We can pick up particular configurations and apply one or more

vertex operators on it to get independent restrictions. Full calculation details are provided

in Appendix C.2 , solving them out, we get

1
 : bv = 0 (mod π) and wv,j = 0, π

2 i (mod π), where

an even number of the four wv,j must be the same; Otherwise bv = 0 (mod π) and any three

of the four wv,j are equal to 0 or π

2 (mod π) while the other one is free.

5.4 Arbitrary ground state of RBM

To further elucidate the analytical solutions derived in the last section, we numeri-

cally factorize them on a 3 × 3 square lattice, as detailed in Appendix C.3). Setting

(aj, bf , wf,j, bv, wv,j) = (0, 0, π

4 i, 0, π

2 i) isotropically results in the ground state |GS〉 = −|00〉 +

|01〉 + |10〉 − |11〉. Conversely, if we change wv,j = 0, 0, π

2 i, π

2 i for the respective directions,

the ground state becomes |GS〉 = +|00〉 + |01〉 + |10〉 + |11〉. Different settings of wv,j can
1

 ↑ We take bv = 0 as bv ∈ C will introduce superfluous freedom, discussed in Appendix C.2 .

68

v0

Figure 5.2. The left diagram presents a partial view of a configuration on a
larger square lattice. The right diagram is obtained by applying a vertex oper-
ator to the vertex v0. Green nodes indicate qubits that have flipped states, and
the red dashed lines encircle nodes considered in the subsequent calculation.

alter the coefficients of the basis states forming the ground state, although these changes are

confined to factors of ±1. This limitation underscores the representational capacity of the

FRRBM. Consequently, it prompts a natural question: how can one prepare an arbitrary

ground state?

Inspired by the action of the logical operators Zv and Zh, we introduce three additional

hidden neurons (hx, hy, and hz) to the FRRBM, enabling it to encapsulate the topological

information of ground states in a 2D toric code. These neurons have non-local connections

as depicted in Figure 5.3 . We demonstrate that the inclusion of hx, hy, and hz allows for the

simulation of any arbitrary ground state. The wave function in Equation (5.1) is modified

as follows:

ΨM(S; W)=e
∑

jajσz
j

∏
e∈{x,y,z}

Γe(S; W)
∏
v∈V

Γv(S; W)
∏
f∈F

Γf (S; W), (5.8)

Γe(S; W)=2 cosh(be+
∑

j
weσ

z
j). (5.9)

69

If we set the parameters (aj, bf , wf,j, bv, wv,j, wx,y,z) to (0, 0, π

4 i, 0, π

2 i, π

4 i), the unnormalized

ratio of the ground state on a 3 × 3 square lattice can be analytically derived:

〈GS|00〉 = − cosh(bx + π

4 i) cosh(by + π

4 i) cosh(bz + π

2 i), (5.10)

〈GS|01〉 = cosh(bx − π

4 i) cosh(by + π

4 i) cosh(bz), (5.11)

〈GS|10〉 = cosh(bx + π

4 i) cosh(by − π

4 i) cosh(bz), (5.12)

〈GS|11〉 = − cosh(bx − π

4 i) cosh(by − π

4 i) cosh(bz − π

2 i). (5.13)

For example, we can select the degeneracy state |00〉 by setting (bx, by, bz) to (3π

4 i, 3π

4 i, π

2 i).

Arbitrary ground states with amplitude ratios like 〈GS|00〉 : 〈GS|01〉 : 〈GS|10〉 : 〈GS|11〉 =

1:2 :3 :4 can be exactly solved. While an exact solution for certain ratios containing 0 may

not exist, we can approximate these by setting the zeros to extremely small values. Further

details are provided in Appendix C.4 . While this generalization sacrifices the simplicity of

local connections, it remains analytically solvable and enables the simulation of all possible

ground states in a clean manner. It also retains the ability to manipulate string operators

and has demonstrated both efficient and accurate performance when applied with machine

learning techniques.

hx

hy

hzbx

by

bz

wx

wy

wz

Figure 5.3. Three hidden neurons (hx, hy, hz) are introduced into the FR-
RBM to simulate an arbitrary ground state. hx connects to visible neurons
along a horizontal loop, hy connects along a vertical loop, and hz connects
to all neurons connected by hx and hy. Each connection type from a specific
hidden neuron is uniformly weighted (wx, wy, wz).

70

5.5 Efficiency and Learnability of the RBM

In the literature [36], Deng and Li analytically derived a solution for the face terms and

then trained the FRRBM using a vertex stabilizer condition on a portion of a larger square

lattice, employing a large number of configurations. In contrast, our study analytically

derives both face and vertex terms and numerically verifies their learnability on square

lattices of various sizes using a significantly reduced set of only 50 configurations20 selected

for the degeneracy basis and 30 random configurations. This approach is both efficient

and accurate compared to approaches that use large numbers of random configurations, as

demonstrated in Figure 5.4 .

Figure 5.4. On a 3 × 3 square lattice, we separately train the face terms and
vertex terms using face stabilizer and vertex stabilizer conditions, respectively.
The left plot compares the training efficiencies of different configurations for
face terms, while the right plot does the same for vertex terms.

As learnability is influenced by the initial settings, we randomly select 10,000 settings

for bv ∈ C and wv ∈ C to numerically search for solutions. Despite this extensive search,

the presence of Barren Plateaus, illustrated in Figure 5.5 , limited us to only 20 solutions.

Although the search parameters bv and wv were complex, we found solutions only where

both bv and wv are purely imaginary. Barren plateaus are regions in the optimization land-

scape where gradients vanish, impeding any significant learning progress. This phenomenon

explains why our search procedure, with limited training time, only yielded a few solutions.

71

Figure 5.5. On a 3 × 3 square lattice, this example demonstrates the exis-
tence of barren plateaus, characterized by a sudden drop in performance after
prolonged training.

5.6 Generalization from Z2 to Zn

In previous sections, we determined the weights of the RBMs analytically and numerically

to assess their representational capabilities. Notably, Bf selects configurations with trivial

flux, while Av ensures all configurations have uniform weight across a logical state. Among

the solutions we found, a ’trivial solution’ (bf , wf,j, bv, wv,j) = (0, π

4 i, 0, 0) emerged, where

each survived configuration possess equal weight. By foregoing the manipulation of string

operators, this solution can be generalized to implement the Kitaev quantum double model

associated with the group ZN

2
 . The model, set on an oriented lattice with a |G|-dimensional

qudit on each edge labeled by a group element g, follows the convention in [1]. Though the

Hamiltonian resembles Equation (2.53), Av and Bf are defined in a different manner. As

shown in Figure 5.6 , we focus exclusively on the action of Bf :

Bf |v1 v2 v3 v4〉 = δpg ,1g |v1 v2 v3 v4〉, (5.14)

where 1g is the identity element of the group G, and pg is the group product of states on each

edge bordering the face counterclockwise

3
 . If an edges direction aligns with the orientation,

2
 ↑ For N = 2, the model corresponds to the toric code with a basis change to represent qubits.

3
 ↑ We need to pick up a start-up vertex, though it turns out to be insignificant.

72

we include vi; otherwise, we use v−1
i . Thus, pg = ∏

i vai
i , where ai = ±1 reflects this alignment.

Specifically, for G = ZN , the state of the N -dimensional qudit is labelled by 0, 1, . . . N − 1.

In this setting, the group product is arithmetic summation, the identity element 1g is 0, and

each element is its own inverse. Then the action of Bf is significantly simplified:

Bf |v1 v2 v3 v4〉 = δ∑
i vi,0|v1 v2 v3 v4〉. (5.15)

v1

v2

v3

v4

Figure 5.6. Convention for the local operator: Edges are ordered counter-
clockwise as v1, v2, v3, v4, with directions indicated by arrows on each edge.

We utilize a natural RBM to implement the above action, corresponding to the condition∑
vi = 0 (mod N). This is achieved using an N -dimensional invisible qudit u with the setting

of isotropic weights (b, wi) = (0, 2πi
N

):

N−1∑
u=0

exp(b +
∑

i
uwivi) = 1 − exp(2πi(b +∑

i vi))
1 − exp (2πi(b +∑

i vi)/N) =


N if b +∑

i vi = 0 (mod N).

0 otherwise.
(5.16)

The action of Av is safely neglected here, as the RBM already simulates a ground state

that is an equal superposition of all logical bases. And this expression explicitly ensures

the flux-free requirement. It offers a natural method for creating fluxions by setting b 6= 0,

though such creation is not arbitrary on a closed manifold due to global constraints. They

are elementary magnetic excitations, since each element of ZN represents a unique conjugacy

class. Furthermore, a complete basis of the ground state can be found in the same manner

as illustrated in Figure 5.3 .

73

This method can be generalized to other lattice model with frustration-free Hamiltonian

composed of two types of terms: one constraining local flux and the other enabling gauge

transformations. Applying the flux-free RBM achieves an equal superposition of all flux-

free configurations, automatically satisfying gauge transformation terms and resulting in the

superposition of all logical states. For instance, this approach is applicable to Kitaev model

associated with abelian group, X-cube model, checkerboard model, Haar-A and Haar-B

codes and so on. However, the generalization to Kitaev quantum double model associated

with a non-abelian group remains unclear.

5.7 Conclusion and further work

We analytically resolved the FRRBM proposed for the toric code, determining all possible

ground states to assess the model’s capabilities. We then modified this model to support

arbitrary ground states through the integration of non-local connections. This enhanced

model remains analytically solvable and can also be efficiently solved using machine learning

techniques. We then extend our work to Kitaev quantum double model associated with

abelian group ZN . Our ongoing research aims to investigate feasible RBM implementations

for more specific codes, including those for the Double Semion [13], Fibonacci Anyon [13],

[52], and Kitaev quantum double model associated with a non-abelian group.

74

REFERENCES

[1] B. Yan, P. Chen, and S. X. Cui, “Ribbon operators in the generalized kitaev quan-
tum double model based on hopf algebras,” Journal of Physics A: Mathematical and
Theoretical, vol. 55, no. 18, p. 185 201, 2022.

[2] P. Chen, B. Yan, and S. X. Cui, “Quantum circuits for toric code and x-cube fracton
model,” Quantum, vol. 8, p. 1276, 2024.

[3] P. Chen, B. Yan, and S. X. Cui, “Representing arbitrary ground states of toric code
by restricted boltzmann machine,” arXiv preprint arXiv:2407.01451, 2024.

[4] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[5] Y. Kim, A. Eddins, S. Anand, et al., “Evidence for the utility of quantum computing
before fault tolerance,” Nature, vol. 618, no. 7965, pp. 500–505, 2023.

[6] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quan-
tum computing: Progress and challenges,” Applied Physics Reviews, vol. 6, no. 2,
p. 021 314, 2019.

[7] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, “Non-abelian anyons
and topological quantum computation,” Reviews of Modern Physics, vol. 80, no. 3,
p. 1083, 2008.

[8] D. I. Pikulin, B. van Heck, T. Karzig, et al., “Protocol to identify a topological
superconducting phase in a three-terminal device,” arXiv preprint arXiv:2103.12217,
2021.

[9] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics,
vol. 303, no. 1, pp. 2–30, 2003.

[10] M. H. Freedman, M. Larsen, and Z. Wang, “A modular functor which is universal for
quantum computation,” Communications in Mathematical Physics, vol. 227, no. 3,
pp. 605–622, 2002.

[11] O. Buerschaper, J. M. Mombelli, M. Christandl, and M. Aguado, “A hierarchy of
topological tensor network states,” Journal of Mathematical Physics, vol. 54, no. 1,
p. 012 201, 2013.

75

[12] L. Chang, “Kitaev models based on unitary quantum groupoids,” Journal of Mathe-
matical Physics, vol. 55, no. 4, p. 041 703, 2014.

[13] M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for
topological phases,” Physical Review B, vol. 71, no. 4, p. 045 110, 2005.

[14] O. Buerschaper and M. Aguado, “Mapping Kitaev’s quantum double lattice models
to Levin and Wen’s string-net models,” Physical Review B, vol. 80, no. 15, p. 155 136,
2009.

[15] O. Buerschaper, M. Christandl, L. Kong, and M. Aguado, “Electric–magnetic duality
of lattice systems with topological order,” Nuclear Physics B, vol. 876, no. 2, pp. 619–
636, 2013.

[16] H. Bombin and M. Martin-Delgado, “Family of non-Abelian Kitaev models on a
lattice: Topological condensation and confinement,” Physical Review B, vol. 78, no. 11,
p. 115 421, 2008.

[17] K. Walker and Z. Wang, “(3+ 1)-TQFTs and topological insulators,” Frontiers of
Physics, vol. 7, no. 2, pp. 150–159, 2012.

[18] J. Haah, “Local stabilizer codes in three dimensions without string logical operators,”
Physical Review A, vol. 83, no. 4, p. 042 330, 2011.

[19] S. Vijay, J. Haah, and L. Fu, “A new kind of topological quantum order: A dimen-
sional hierarchy of quasiparticles built from stationary excitations,” Physical Review
B, vol. 92, no. 23, p. 235 136, 2015.

[20] S. Vijay, J. Haah, and L. Fu, “Fracton topological order, generalized lattice gauge
theory, and duality,” Physical Review B, vol. 94, no. 23, p. 235 157, 2016.

[21] S. Bravyi, M. B. Hastings, and S. Michalakis, “Topological quantum order: Stability
under local perturbations,” Journal of mathematical physics, vol. 51, no. 9, p. 093 512,
2010.

[22] K. Satzinger, Y.-J. Liu, A. Smith, et al., “Realizing topologically ordered states on a
quantum processor,” Science, vol. 374, no. 6572, pp. 1237–1241, 2021.

[23] S. Ebadi, T. T. Wang, H. Levine, et al., “Quantum phases of matter on a 256-atom
programmable quantum simulator,” Nature, vol. 595, no. 7866, pp. 227–232, 2021.

76

[24] R. Verresen, M. D. Lukin, and A. Vishwanath, “Prediction of toric code topological
order from Rydberg blockade,” Physical Review X, vol. 11, no. 3, p. 031 005, 2021.

[25] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,”
arXiv preprint quant-ph/9811052, 1998.

[26] Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann, “Methods for simulating string-net
states and anyons on a digital quantum computer,” arXiv:2110.02020, 2021.

[27] N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and R. Verresen, “Long-range
entanglement from measuring symmetry-protected topological phases,” arXiv:2112.
01519, 2021.

[28] R. Verresen, N. Tantivasadakarn, and A. Vishwanath, “Efficiently preparing
Schrödingers cat, fractons and non-Abelian topological order in quantum devices,”
arXiv:2112.03061, 2021.

[29] S. Bravyi, I. Kim, A. Kliesch, and R. Koenig, “Adaptive constant-depth circuits for
manipulating non-Abelian anyons,” arXiv:2205.01933, 2022.

[30] N. Tantivasadakarn, R. Verresen, and A. Vishwanath, “The shortest route to non-
Abelian topological order on a quantum processor,” arXiv:2209.03964, 2022.

[31] N. Tantivasadakarn, A. Vishwanath, and R. Verresen, “A hierarchy of topological
order from finite-depth unitaries, measurement and feedforward,” arXiv:2209.06202,
2022.

[32] T. J. Osborne, “Hamiltonian complexity,” Reports on progress in physics, vol. 75,
no. 2, p. 022 001, 2012.

[33] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[34] G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial
neural networks,” Science, vol. 355, no. 6325, pp. 602–606, 2017.

[35] D.-L. Deng, X. Li, and S. D. Sarma, “Quantum entanglement in neural network
states,” Physical Review X, vol. 7, no. 2, p. 021 021, 2017.

[36] D.-L. Deng, X. Li, and S. D. Sarma, “Machine learning topological states,” Physical
Review B, vol. 96, no. 19, p. 195 145, 2017.

77

[37] X. Gao and L.-M. Duan, “Efficient representation of quantum many-body states with
deep neural networks,” Nature communications, vol. 8, no. 1, p. 662, 2017.

[38] S. Lu, X. Gao, and L.-M. Duan, “Efficient representation of topologically ordered
states with restricted boltzmann machines,” Physical Review B, vol. 99, no. 15,
p. 155 136, 2019.

[39] Z.-A. Jia, Y.-H. Zhang, Y.-C. Wu, L. Kong, G.-C. Guo, and G.-P. Guo, “Efficient
machine-learning representations of a surface code with boundaries, defects, domain
walls, and twists,” Physical Review A, vol. 99, no. 1, p. 012 307, 2019.

[40] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description of the action
of local clifford transformations on graph states,” Physical Review A, vol. 69, no. 2,
p. 022 316, 2004.

[41] N. Le Roux and Y. Bengio, “Representational power of restricted boltzmann machines
and deep belief networks,” Neural computation, vol. 20, no. 6, pp. 1631–1649, 2008.

[42] Y. Huang, J. E. Moore, et al., “Neural network representation of tensor network and
chiral states,” Physical Review Letters, vol. 127, no. 17, p. 170 601, 2021.

[43] P. Liao and D. L. Feder, “Graph-state representation of the toric code,” Physical
Review A, vol. 104, no. 1, p. 012 432, 2021.

[44] D. E. Radford, Hopf algebras. World Scientific, 2011, vol. 49.

[45] C. Kassel, Quantum groups. Springer Science & Business Media, 2012, vol. 155.

[46] I. Cong, M. Cheng, and Z. Wang, “Hamiltonian and algebraic theories of gapped
boundaries in topological phases of matter,” Communications in Mathematical
Physics, vol. 355, no. 2, pp. 645–689, 2017.

[47] S. Bravyi, M. B. Hastings, and F. Verstraete, “Lieb-robinson bounds and the genera-
tion of correlations and topological quantum order,” Physical review letters, vol. 97,
no. 5, p. 050 401, 2006.

[48] O. Higgott, M. Wilson, J. Hefford, et al., “Optimal local unitary encoding circuits for
the surface code,” Quantum, vol. 5, p. 517, 2021.

78

[49] M. Aguado and G. Vidal, “Entanglement renormalization and topological order,”
Physical review letters, vol. 100, no. 7, p. 070 404, 2008.

[50] K. Slagle and Y. B. Kim, “Quantum field theory of x-cube fracton topological order
and robust degeneracy from geometry,” Physical Review B, vol. 96, no. 19, p. 195 139,
2017.

[51] A. Prem, J. Haah, and R. Nandkishore, “Glassy quantum dynamics in translation
invariant fracton models,” Physical Review B, vol. 95, no. 15, p. 155 133, 2017.

[52] C.-H. Lin, M. Levin, and F. J. Burnell, “Generalized string-net models: A thorough
exposition,” Physical Review B, vol. 103, no. 19, p. 195 155, 2021.

79

A. SUPPLEMENTAL MATERIAL FOR CHAPTER 3

This chapter contains work from the article entitled "Ribbon operators in the generalized

Kitaev quantum double model based on Hopf algebras" written by Bowen Yan, the author,

and Shawn X. Cui published on Journal of Physics A [1].

A.1 Straightening equation of Aa and Bf

x1

x2

x3

x4

x5

x6

s

x4

x5

x6

x1
s

x1

x2

x3

x4
s

This equation holds no matter how the edges are oriented. We check the case above:

Aa(s)Bf (s)|x1 x2 x3 x4 x5 x6〉 (A.1)

= Aa(s)
∑
(xi)

f(x′′
1x′′

2x′′
3x′′

4)|x′
1 x′

2 x′
3 x′

4 x5 x6〉 (A.2)

=
∑

(xi),(a)
f(x′′

1x′′
2x′′

3x′′
4)|a(4)x′

1 x′
2 x′

3 x′
4S(a′) a′′x5 x6S(a′′′)〉 (A.3)

=
∑

(xi),(a)
f [S(a(8))a(7)x′′

1x′′
2x′′

3x′′
4S(a′′)a′] (A.4)

|a(6)x′
1 x′

2 x′
3 x′

4S(a′′′) a(4)x′
5 x6S(a(5))〉 (A.5)

=
∑

(xi),(a)
Bf [S(a(6))?a′](s)|a(5)x1 x2 x3 x4S(a′′) a′′′x5 x6S(a(4))〉 (A.6)

=
∑
(a)

Bf [S(a′′′)?a′](s)Aa′′(s)|x1 x2 x3 x4 x5 x6〉 (A.7)

This is exactly the straightening equation.

80

A.2 Violation and correction in group algebra

x1

x2

x3

x4
s0

x

F (h,g)(τ)|x〉 = δg,e|xh̄〉

x

F (h,g)(τ)|x〉 = δg,e|hx〉

We show Equation 3.5 is violated for the ribbon τ in the first figure above for the original

Kitaev model where H is taken to be the group algebra of a non-Abelian group G. In [16],

only two formulas are provided for dual triangles as shown in the second and third figure

above. However, we can not get the desired commutation relation using either of them:

Bh′(s0)F (h,g)(τ)|x1 x2 x3 x4〉 (A.8)

= Bh′(s0)δg,e|x1h̄ x2 x3 x4〉 (A.9)

= δh′,x1h̄x2x3x4δg,e|x1h̄ x2 x3 x4〉 (A.10)

6= δg,eδhh′,x1x2x3x4|x1h̄ x2 x3 x4〉 (A.11)

= F (h,g)(τ)δhh′,x1x2x3x4|x1 x2 x3 x4〉 (A.12)

= F (h,g)(τ)Bhh′(s0)|x1 x2 x3 x4〉 (A.13)

(A.14)

Bh′(s0)F (h,g)(τ)|x1 x2 x3 x4〉 (A.15)

= Bh′(s0)δg,e|hx1 x2 x3 x4〉 (A.16)

= δh′,hx1x2x3x4δg,e|hx1 x2 x3 x4〉 (A.17)

6= δg,eδhh′,x1x2x3x4|hx1 x2 x3 x4〉 (A.18)

= F (h,g)(τ)δhh′,x1x2x3x4|x1 x2 x3 x4〉 (A.19)

= F (h,g)(τ)Bhh′(s0)|x1 x2 x3 x4〉 (A.20)

81

Moreover, the issue can not be removed by making τ longer. Roughly, this is because

for the current τ , the initial site and terminal site already lie in different plaquettes, and

thus lengthening it will not affect the action of the plaquette operator at the initial site. To

resolve the issue, we recognize that τ has locally counterclockwise orientation, and hence we

need to apply the following formulas for the ribbon operators:

x

F (h,g)(τ)|x〉 = δg,e|h̄x〉

x

F (h,g)(τ)||x〉 = δg,e|xh〉

With the new formula above, we have

Bh′(s0)F (h,g)(τ)|x1 x2 x3 x4〉

= Bh′(s0)δg,e|h̄x1 x2 x3 x4〉

= δh′,h̄x1x2x3x4δg,e|h̄x1 x2 x3 x4〉

= δg,eδhh′,x1x2x3x4|h̄x1 x2 x3 x4〉

= F (h,g)(τ)δhh′,x1x2x3x4|x1 x2 x3 x4〉

= F (h,g)(τ)Bhh′(s0)|x1 x2 x3 x4〉

82

A.3 Multiplication of ribbon operators on elementary ribbons

A.3.1 For locally clockwise ribbons τL

x

F (h1,f1)(τL)F (h2,f2)(τL)|x〉

=
∑
(x)

F (h1,f1)(τL)ε(h2)f2[S(x′′)]|x′〉

=
∑
(x)

ε(h2)ε(h1)f2[S(x′′′)]f1[S(x′′)]|x′〉

=
∑
(x)

ε(h1h2)〈f2 ⊗ f1, ∆[S(x′′)]〉|x′〉

= F (h1h2,f2f1)(τL)|x〉

x

F (h1,f1)(τL)F (h2,f2)(τL)|x〉

=
∑
(x)

F (h1,f1)(τL)ε(h2)f2(x′)|x′′〉

=
∑
(x)

ε(h2)ε(h1)f2(x′)f1(x′′)|x′′′〉

=
∑
(x)

ε(h1h2)〈f2 ⊗ f1, ∆(x′)〉|x′′〉

= F (h1h2,f2f1)(τL)|x〉

83

x

F (h1,f1)(τL)F (h2,f2)(τL)|x〉

= F (h1,f1)(τL)ε(f2)|xS(h2)〉

= ε(f2)ε(f1)|xS(h2)S(h1)〉

= ε(f2f1)|xS(h1h2)〉

= F (h1h2,f2f1)(τL)|x〉

x

F (h1,f1)(τL)F (h2,f2)(τL)|x〉

= F (h1,f1)(τL)ε(f2)|h2x〉

= ε(f2)ε(f1)|h1h2x〉

= F (h1h2,f2f1)(τL)|x〉

A.3.2 For locally counterclockwise ribbons τR

x

F (h1,f1)(τR)F (h2,f2)(τR)|x〉

=
∑
(x)

F (h1,f1)(τR)ε(h2)f2(x′′)|x′〉

=
∑
(x)

ε(h2)ε(h1)f2(x′′′)f1(x′′)|x′〉

=
∑
(x)

ε(h2h1)〈f1 ⊗ f2, ∆(x′′)〉|x′〉

= F (h2h1,f1f2)(τR)|x〉

84

x

F (h1,f1)(τR)F (h2,f2)(τR)|x〉

=
∑
(x)

F (h1,f1)(τR)ε(h2)f2[S(x′)]|x′′〉

=
∑
(x)

ε(h2)ε(h1)f2[S(x′)]f1[S(x′′)]|x′′′〉

=
∑
(x)

ε(h2h1)〈f1 ⊗ f2, ∆[S(x′)]〉|x′′〉

= F (h2h1,f1f2)(τR)|x〉

x

F (h1,f1)(τR)F (h2,f2)(τR)|x〉

= F (h1,f1)(τR)ε(f2)|S(h2)x〉

= ε(f2)ε(f1)|S(h1)S(h2)x〉

= ε(f1f2)|S(h2h1)x〉

= F (h2h1,f1f2)(τR)|x〉

x

F (h1,f1)(τR)F (h2,f2)(τR)|x〉

= F (h1,f1)(τR)ε(f2)|xh2〉

= ε(f2)ε(f1)|xh2h1〉

= ε(f1f2)|xh2h1〉

= F (h2h1,f1f2)(τR)|x〉

85

A.4 Proof of Lemma for local operator at ends

The idea is to first prove the equations in the lemma for ribbons as short as possible, and

then extend them to longer ribbons. It turns out that the shortest ribbon for some of the

equations to hold is a triangle (direct or dual), while for others is a 2-triangle. For example,

see the ribbon in Subsection A.4.1 . Equation 3.17a does not hold for the rightmost triangle

alone. This is roughly because for that triangle, its initial site and terminal site share the

same vertex so that Aa(s0) would also act on s1, which is unexpected. As will be shown

below, the equation does hold as long as we make the triangle a bit longer. This is not a

problem since we are only interested in properties of sufficiently long ribbons.

Subsections A.4.1 - A.4.8 each addresses an identity in Equations 3.17a - 3.18d for the

shortest possible ribbon. For each of the eight equations, there are two types of triangles

(direct or dual) to consider. To avoid lengthy calculations, we only present the details for

one of the two types for each equation. The proof for the other cases is similar. If a triangle

does not work, then we lengthen it to a 2-triangle. In Subsection A.4.9 we extend the results

to longer ribbons for Equations 3.17b and 3.17c while leave the other six cases as an exercise

(whose proof is similar as well).

A.4.1 Equation 3.17a for short ribbons

x1

x2

x3

x4

s0

86

Aa(s0)F (h,f)(τL)|x1 x4 x3 x2〉 (A.21)

= Aa(s0)
∑

(i),i,(h)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)|x1 x4 x3 x2〉 (A.22)

= Aa(s0)
∑

(h),(i),i,(x3)
F (h′,gi)(τ1)ε[S(i′′′)h′′i′]f(i′′x′

3)|x1 x4 x′′
3 x2〉 (A.23)

= Aa(s0)
∑

(h),(i),i,(x3)
ε(gi)ε[S(i′′′)h′′i′]f(i′′x′

3)|x1 x4S(h′) x′′
3 x2〉 (A.24)

= Aa(s0)
∑

(e),(x3),(h)
ε(e′′′)ε(h′′)ε(e′)f(e′′x′

3)|x1 x4S(h′) x′′
3 x2〉 (A.25)

=
∑

(a),(x3),(h)
f(ex′

3)|a(4)x1 x4S(h′)S(a′) a′′x′′
3 x2S(a′′′)〉 (A.26)

=
∑

(a),(x3)
f [ε(a′′)x′

3]|a(5)x1 x4ε(a(6))S(h)S(a′) a′′′x′′
3 x2S(a(4))〉 (A.27)

=
∑

(a),(x3)
f [S(a′′)ea′′′x′

3]|a(6)x1 x4S(h)S(a′) a(4)x′′
3 x2S(a(5))〉 (A.28)

=
∑

(i),i,(h),(x3),(a)
ε(gi)ε(i′′′)ε{[a′′h′′S(a(4))]}ε(i′)f [S(a′′′)i′′a(7)x′

3] (A.29)

|a(10)x1 x4S(a(6))S{[a′h′S(a(5))]} a(8)x′′
3 x2S(a(9))〉 (A.30)

=
∑

(i),i,(x3),(a),(x3)
F {[a′hS(a′′′)]′,gi}(τ1)ε{S(i′′′)[a′hS(a′′′)]′′i′}f [S(a′′)i′′(a′′′)′x′

3] (A.31)

|a(7)x1 x4S(a(4)) (a(5))′′x′′
3 x2S(a(6))〉 (A.32)

=
∑

(i),i,(a),(a′hS(a′′′))
F {[a′hS(a′′′)]′,gi}(τ1)F {S(i′′′)[a′hS(a(3))]′′i′,f [S(a′′)i′′?]}(τ2) (A.33)

|a(7)x1 x4S(a(4)) a(5)x3 x2S(a(6))〉 (A.34)

=
∑

(i),(a)
F {a′hS(a′′′),f [S(a′′)?]}(τL)|a(7)x1 x4S(a(4)) a(5)x3 x2S(a(6))〉 (A.35)

=
∑

(i),(a)
F {a′hS(a(3)),f [S(a′′)?]}(τL)Aa(4)(s0)|x1 x4 x3 x2〉 (A.36)

From the fourth line to the fifth line above, we used ε(gi) = gi(e) and

∑
(i),i

gi(a)i′f(i′′) =
∑
(a)

a′f(a′′).

87

To derive the above equality, note that,

∑
(a)

a′f(a′′) = (Id ⊗ f)∆(a) = (Id ⊗ f)∆
(∑

i
gi(a)i

)
.

A.4.2 Equation 3.17b for short ribbons

x1

x2

x3

x4 s0

Aa(s0)F (h,f)(τR)|x1 x4 x3 x2〉 (A.37)

= Aa(s0)
∑
(x1)

ε(h)f(x′′
1)|x′

1 x4 x3 x2〉 (A.38)

=
∑

(x1),(a)
ε(h)f(x′′

1)|a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.39)

=
∑

(x1),(a)
ε(a(6))ε(h)ε(a(8))f [S(a(7))a(5)x′′

1]|a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.40)

=
∑

(x1),(a)
ε[a(5)hS(a(7))]f [S(a(6))(a(4)x1)′′]|(a(4)x1)′ x4S(a′) a′′x3 x2S(a′′′)〉 (A.41)

=
∑
(a)

F {a(5)hS(a(7)),f [S(a(6))?]}(τR)|a(4)x1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.42)

=
∑
(a)

F {a′′hS(a(4)),f [S(a′′′)?]}(τR)Aa′(s0)|x1 x4 x3 x2〉 (A.43)

88

A.4.3 Equation 3.17c for short ribbons

x1

x2

x3

x4

s0

Bt(s0)F (h,f)(τL)|x1 x2 x3 x4〉 (A.44)

= Bt(s0)ε(f)|x1 x2 x3 x4S(h)〉 (A.45)

=
∑

(xi),(h)
ε(f)t[x′′

1x′′
2x′′

3x′′
4S(h′)]|x′

1 x′
2 x′

3 x′
4S(h′′)〉 (A.46)

=
∑

(xi),(h)
F (h′′,f)(τL)t[x′′

1x′′
2x′′

3x′′
4S(h′)]|x′

1 x′
2 x′

3 x′
4〉 (A.47)

=
∑
(h)

F (h′′,f)(τL)Bt[?S(h′)](s0)|x1 x2 x3 x4〉 (A.48)

A.4.4 Equation 3.17d for short ribbons

x1

x2

x3

x4

s0

89

Bt(s0)F (h,f)(τR)|x1 x2 x3 x4〉 (A.49)

= Bt(s0)
∑

(h),i,(i)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)|x1 x2 x3 x4〉 (A.50)

= Bt(s0)
∑

(h),i,(i)
F (h′,gi)(τ1)ε[f(i′′?)]|x1 S[S(i′′′)h′′i′]x2 x3 x4〉 (A.51)

= Bt(s0)
∑

(h),i,(i),(x1)
ε(h′)gi(x′′

1)f(i′′)|x′
1 S(i′)S(h′′)i′′′x2 x3 x4〉 (A.52)

= Bt(s0)
∑
(x1)

f(x′′′
1)|x′

1 S(x′′
1)S(h)x(4)

1 x2 x3 x4〉 (A.53)

=
∑

(h),(xi)
f(x(5)

1)t[x′′
1S(x′′′

1)S(h′)x(7)
1 x′′

2x′′
3x′′

4]|x′
1 S(x(4)

1)S(h′′)x(6)
1 x′

2 x′
3 x′

4〉 (A.54)

=
∑

(h),(xi)
f(x(4)

1)t[ε(x′′
1)S(h′)x(6)

1 x′′
2x′′

3x′′
4]|x′

1 S(x′′′
1)S(h′′)x(5)

1 x′
2 x′

3 x′
4〉 (A.55)

=
∑

(h),(xi)
f(x′′′

1)t[S(h)x(5)
1 x′′

2x′′
3x′′

4]|x′
1 S(x′′

1)S(h′′)x(4)
1 x′

2 x′
3 x′

4〉 (A.56)

=
∑

(h),(xi),i,(i)
ε(h′′)gi(x′′

1)f(i′′)t[S(h′)x′′
1x′′

2x′′
3x′′

4]|x′
1 S(i′)S(h′′′)i′′′x′

2 x′
3 x′

4〉 (A.57)

=
∑

(h),(xi),i,(i)
F (h′′,gi)(τ1)ε[f(i′′?)]t[S(h′)x′′

1x′′
2x′′

3x′′
4]|x′

1 S[S(i′′′)h′′′i′]x′
2 x′

3 x′
4〉 (A.58)

=
∑

(h),(xi),i,(i)
F (h′′,gi)(τ1)F [S(i′′′)h′′′i′,f(i′′?)](τ2)t[S(h′)x′′

1x′′
2x′′

3x′′
4]|x′

1 x′
2 x′

3 x′
4〉 (A.59)

=
∑

(h),(xi)
F (h′′,f)(τR)t[S(h′)x′′

1x′′
2x′′

3x′′
4]|x′

1 x′
2 x′

3 x′
4〉 (A.60)

=
∑
(h)

F (h′′,f)(τR)Bt[S(h′)?](s0)|x1 x2 x3 x4〉 (A.61)

90

A.4.5 Equation 3.18a for short ribbons

x1

x2

x3

x4

s1

Aa(s1)F (h,f)(τL)|x1 x4 x3 x2〉 (A.62)

= Aa(s1)
∑
(x1)

ε(h)f(x′′
1)|x′

1 x4 x3 x2〉 (A.63)

=
∑

(x1),(a)
ε(h)f [S(x′′

1)]|a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.64)

=
∑

(x1),(a)
ε(h)f [S(x′′

1)ε(a(5))]|a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.65)

=
∑

(x1),(a)
ε(h)f [S(x′′

1)S(a(5))a(6)]|a(4)x′
1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.66)

=
∑
(a)

F [h,f(?a(5))](τL)|a(4)x1 x4S(a′) a′′x3 x2S(a′′′)〉 (A.67)

=
∑
(a)

F [h,f(?a′′)](τL)Aa′(s1)|x1 x4 x3 x2〉 (A.68)

A.4.6 Equation 3.18b for short ribbons

x1

x2

x3

x4

s1

91

Aa(s1)F (h,f)(τR)|x1 x4 x3 x2〉 (A.69)

= Aa(s1)
∑

(i),i,(h)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)|x1 x4 x3 x2〉 (A.70)

= Aa(s1)
∑

(i),i,(h)
F (h′,gi)(τ1)ε[f(i′?)]|x1 x4S(i′′′)h′′i′ x3 x2〉 (A.71)

= Aa(s1)
∑

(i),i,(h),(x3)
ε(h′)gi[S(x′

3)]f(i′′)|x1 x4S(i′′′)h′′i′ x′′
3 x2〉 (A.72)

=
∑
(x3)

Aa(s1)f [S(x′′
3)]|x1 x4x

′
3hS(x′′′

3) x
(4)
3 x2〉 (A.73)

=
∑

(a),(x3)
f [S(x′′

3)]|a(4)x1 x4x
′
3hS(x′′′

3)S(a′) a′′x
(4)
3 x2S(a′′′)〉 (A.74)

=
∑

(a),(x3)
f [S(x′′

3)S(a′′)a′]|a(6)x1 x4x
′
3hS(x′′′

3)S(a′′′) a(4)x
(4)
3 x2S(a(5))〉 (A.75)

=
∑

(a),(x3)
f [S(a(4)x′′

3)a′]|a(8)x1 x4S(a′′)a′′′x′
3hS(x′′′

3)S(a(5)) a(6)x
(4)
3 x2S(a(7))〉 (A.76)

=
∑

(a),(i),i,(h),(x3)
ε(h′)gi[S(a′′′x′

3)]ε[f(i′′?a′)] (A.77)

|a(6)x1 x4S(a′′)S(i′′′)h′′i′ a(4)x′′
3 x2S(a(5))〉 (A.78)

=
∑

(a),(i),i,(h)
F (h′,gi)(τ1)ε[f(i′′?a′)]|a(5)x1 x4S(a′′)S(i′′′)h′′i′ a′′′x3 x2S(a(4))〉 (A.79)

=
∑

(a),(i),i,(h)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?a′)](τ2)|a(5)x1 x4S(a′′) a′′′x3 x2S(a(4))〉 (A.80)

=
∑
(a)

F [h,f(?a′)](τR)|a(5)x1 x4S(a′′) a′′′x3 x2S(a(4))〉 (A.81)

=
∑
(a)

F [h,f(?a′)](τR)Aa′′(s1)|x1 x4 x3 x2〉 (A.82)

A.4.7 Equation 3.18c for short ribbons

x1

x2

x3

x4

s1

92

Bt(s1)F (h,f)(τL)|x1 x2 x3 x4〉 (A.83)

= Bt(s1)
∑

(h),i,(i)
F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)|x1 x2 x3 x4〉 (A.84)

= Bt(s1)
∑

(h),i,(i),(x1)
F (h′,gi)(τ1)ε[S(i′′′)h′′i′]f(i′′x′

1)|x′′
1 x2 x3 x4〉 (A.85)

= Bt(s1)
∑

(h),i,(i),(x1)
ε(gi)ε(i′′′)ε(h′′)ε(i′)f(i′′x′

1)|x′′
1 x2S(h′) x3 x4〉 (A.86)

=
∑
(x1)

Bt(s1)f(x′
1)|x′′

1 x2S(h) x3 x4)〉 (A.87)

=
∑

(xi),(h)
f(x′

1)t[S(x′′
1)h′′S(x′

2)S(x′
3)S(x′

4)]|x′′′
1 x′′

2S(h′) x′′
3 x′′

4〉 (A.88)

=
∑

(xi),(h)
f(x′′′

1)t[S(x(4)
1)h′′x′′

1S(x′
1)S(x′

2)S(x′
3)S(x′

4)]|x
(5)
1 x′′

2S(h′) x′′
3 x′′

4〉 (A.89)

=
∑

(xi),i,(i),(h)
f(i′′)gi(x′′

1)t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)]|x′′′
1 x′′

2S(h′) x′′
3 x′′

4〉 (A.90)

=
∑

(xi),i,(i),j,(j),(h)
f(i′′)ε(gi)ε(j′′′)ε(h′′)ε(j′)gi(j′′x′′

1) (A.91)

t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)]|x′′′
1 x′′

2S(h′) x′′
3 x′′

4〉 (A.92)

=
∑

(xi),i,(i),j,(j),(h)
f(i′′)F (h′,gi)(τ1)ε[S(j′′′)h′′j′]gi(j′′x′′

1) (A.93)

t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)]|x′′′
1 x′′

2 x′′
3 x′′

4〉 (A.94)

=
∑

(xi),i,(i),j,(j),(h)
f(i′′)F (h′,gi)(τ1)F [S(j′′′)h′′j′,gi(j′′?)](τ2) (A.95)

t[S(i′′′)h′′i′S(x′
1)S(x′

2)S(x′
3)S(x′

4)]|x′′
1 x′′

2 x′′
3 x′′

4〉 (A.96)

=
∑

(xi),i,(i),(h)
f(i′′)F (h′,gi)(τL)t[S(i′′′)h′′i′S(x′

1)S(x′
2)S(x′

3)S(x′
4)]|x′′

1 x′′
2 x′′

3 x′′
4〉 (A.97)

=
∑

i,(i),(h)
f(i′′)F (h′,gi)(τL)Bt[S(i′′′)h′′i′?](s1)|x1 x2 x3 x4〉 (A.98)

93

A.4.8 Equation 3.18d for short ribbons

x1

x2

x3

x4

s1

Bt(s1)F (h,f)(τR)|x1 x2 x3 x4〉 (A.99)

= Bt(s1)ε(f)|x1 x2 x3 x4S(h)〉 (A.100)

=
∑

(xi),(h)
f(e)t(x′′

1x′′
2x′′

3x′′
4h′′)|x′

1 x′
2 x′

3 x′
4h

′〉 (A.101)

=
∑

(xi),(h),i,(i)
f(i′′)ε(gi)t[x′′

1x′′
2x′′

3x′′
4S(i′′′)h′′i′](s1)|x′

1 x′
2 x′

3 x′
4h

′〉 (A.102)

=
∑

(xi),(h),i,(i)
f(i′′)F (h′,gi)(τR)t[x′′

1x′′
2x′′

3x′′
4S(i′′′)h′′i′](s1)|x′

1 x′
2 x′

3 x′
4〉 (A.103)

=
∑

(h),i,(i)
f(i′′)F (h′,gi)(τR)Bt[?S(i′′′)h′′i′](s1)|x1 x2 x3 x4〉 (A.104)

A.4.9 Equations 3.17b and 3.17c for long ribbons

x1
x2

x3

x4 τ1 τ2
...s0

x1

x2

x3

x4

τ1
τ2... s0

94

For the left figure above, we have,

Aa(s0)F (h,f)(τR) (A.105)

=
∑

(h),i,(i)
Aa(s0)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) (A.106)

=
∑

(a),(h),i,(i)
F {a′′h′S(a(4)),gi[S(a′′′)?]}(τ1)Aa′′(s0)F [S(i′′′)h′′i′,f(i′′?)](τ2) (A.107)

=
∑

(a),(h),i,(i)
F {a′′h′S(a(4)),gi[S(a′′′)?]}(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)Aa′(s0) (A.108)

=
∑

(a),(h),i,(i),j
F {a′′h′S(a(4)),gi[S(a′′′)j]gj(?)}(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2)Aa′′(s0) (A.109)

=
∑

(a),(h),j,(j)
F [a′′h′S(a(6)),gj](τ1)F {S(j′′′)a′′′h′′S(a(5))j′,f [S(a(4))j′′?]}(τ2)Aa′(s0) (A.110)

=
∑

(a),(h)
F {a′′hS(a(4)),f [S(a′′′)?]}(τR)Aa′(s0) (A.111)

From the forth line to the fifth line in the above equation, we need to use

gi(a b) = gi

a
∑

j
gj(b)j

 =
∑

j
gi(a j)gj(b) (A.112)

=⇒ gi(a ?) =
∑

j
gi(a j)gj(?). (A.113)

For the right figure above,

Bt(s0)F (h,f)(τL) (A.114)

=
∑

(h),i,(i)
Bt(s0)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) (A.115)

=
∑

(h),i,(i)
F (h′′,gi)(τ1)Bt[?S(h′)](s0)F [S(i′′′)h′′′i′,f(i′′?)](τ2) (A.116)

=
∑

(h),i,(i)
F (h′′,gi)(τ1)F [S(i′′′)h′′′i′,f(i′′?)](τ2)Bt[?S(h′)](s0) (A.117)

=
∑
(h)

F (h′′,f)(τL)Bt[?S(h′)](s0) (A.118)

95

A.5 Proof of Ribbon operator in middle

We are going to talk about Hamiltonian terms where a is the Haar integral of H and t is

the Haar integral of H∗ temporarily. Notice that the Haar integral is cocomutative, and so we

can cyclically rotate the components a′, a′′, a′′′, etc. Below we prove the commutation relation

for locally clockwise ribbons, and leave the details for locally counterclockwise ribbons to

the reader.

A.5.1 Equation 3.19a

x1

x2

x3

x4

s
τ1 ...τ2

...

Aa(s)F h,f (τL) (A.119)

=
∑

(h),i,(i)
Aa(s)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) (A.120)

=
∑

(h),i,(i),(a)
F [h′,gi(?a′′)](τ1)Aa′(s)F [S(i′′′)h′′i′,f(i′′?)](τ2) (A.121)

=
∑

(h),i,(i),(a)
F [h′,gi(?a(5))](τ1)F {a′S(i′′′)h′′i′S(a′′′),f [i′′S(a′′)?]}(τ2)Aa(4)(s) (A.122)

=
∑

(h),i,(i),(a),j
F [h′,gi(ja(5))gj(?)](τ1)F {a′S(i′′′)h′′i′S(a′′′),f [i′′S(a′′)?]}(τ2)Aa(4)(s) (A.123)

=
∑

(h),(a),j,(j)
F (h′,gj)(τ1)F {a′S(a(7))S(j′′′)h′′j′a(5)S(a′′′),f [j′′a(6)S(a′′)?]}(τ2)Aa(4)(s) (A.124)

=
∑

(h),(a),j,(j)
F (h′,gj)(τ1)F {S(j′′′)h′′j′a(4)S(a′′),f [j′′a(5)S(a′)?]}(τ2)Aa′′′(s) (A.125)

96

=
∑

(h),(a),j,(j)
F (h′,gj)(τ1)F {S(j′′′)h′′j′a(3)S(a′),f [j′′?]}(τ2)Aa′′(s) (A.126)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F {S(j′′′)h′′j′,f [j′′?]}(τ2)Aa(s) (A.127)

= F h,f (τL)Aa(s) (A.128)

From the sixth line to the end in the above equation, we used the cocomutative condition of

a ∈ H, the Haar integral of H. So we can rotate a′ to a(nmax) and a(n) to a(n−1) for n > 1.

After the rotation, we obtain ε(a(n)) to lower the maximum order step by step.

A.5.2 Equation 3.19b

x1

x2

x3

x4

s

τ1 ...τ2
...

Bt(s)F (h,f)(τL) (A.129)

=
∑

(h),i,(i)
Bt(s)F (h′,gi)(τ1)F [S(i′′′)h′′i′,f(i′′?)](τ2) (A.130)

=
∑

(h),i,(i),j,(j)
gi(j′′)F (h′,gj)(τ1)Bt[S(j′′′)h′′j′?](S)F [S(i′′′)h′′′i′,f(i′′?)](τ2) (A.131)

=
∑

(h),i,(i),j,(j)
gi(j′′)F (h′,gj)(τ1)F [S(i(4))h(4)i′′,f(i′′′?)](τ2) (A.132)

Bt[S(j′′′)h′′j′?S(i′)S(h′′′)i(5)](s) (A.133)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F [S(j(5))h(4)j′′′,f(j(4)?)](τ2)Bt[S(j(7))h′′j′?S(j′′)S(h′′′)j(6)](s) (A.134)

97

=
∑

(h),j,(j)
F (h′,gj)(τ1)F [S(j(5))h(4)j′′′,f(j(4)?)](τ2)Bt[S(j′′)S(h′′′)j(6)S(j(7))h′′j′?](s) (A.135)

=
∑

(h),j,(j)
F (h′,gj)(τ1)F [S(j′′′)h′′j′,f(j′′?)](τ2)Bt(s) (A.136)

= F (h,f)(τL)Bt(s) (A.137)

Similarly, from the last third line to the last second line, we used the cocomutative condition

of t ∈ H∗, the Haar integral of H∗.

A.6 Fourier transformation of H∗

Let H be any finite dimensional C∗ Hopf algebra. First, we define a Fourier transforma-

tion on H [15]:

|νab〉 =

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν(h′
0)abh

′′
0, ν ∈ IrrH , a, b = 1, · · · , dim(ν),

where IrrH is the set of irreducible representations of H, and Dν(h′
0)ab is the matrix entry of

h′
0 for the representation ν under a chosen (fixed) basis.

Recall from Section 2.2 that there are two commuting actions, L and R, of H on itself cor-

responding to multiplication on the left and multiplication on the right by S(·), respectively.

We check the form of the two actions under the Fourier basis.

For an element m ∈ H, the action L(m) is

L(m)|νab〉 =

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν(h′
0)abmh′′

0 (A.138)

=

√√√√ dim(ν)
dim(H)

∑
(h0),(m)

Dν(h′
0)abm

′ε(m′′)h′′
0 (A.139)

=

√√√√ dim(ν)
dim(H)

∑
(h0),(m)

Dν(h′
0)abm

′ε[S(m′′)]h′′
0. (A.140)

98

As xh0 = ε(x)h0, we have ∑(x),(h0) x′h′
0 ⊗ x′′h′′

0 = ε(x)∑(h0) h′
0 ⊗ h′′

0. Applying the above

identity for x = S(m′′), we obtain

L(m)|νab〉 =

√√√√ dim(ν)
dim(H)

∑
(h0),(m)

Dν [S(m′′′)h′
0]abm

′S(m′′)h′′
0 (A.141)

=

√√√√ dim(ν)
dim(H)

∑
(h0)

Dν [S(m)h′
0]abh

′′
0 (A.142)

=

√√√√ dim(ν)
dim(H)

∑
(h0),k

Dν [S(m)]akDν(h′
0)kbh

′′
0 (A.143)

=
∑

k

Dν [S(m)]ak|νkb〉 (A.144)

=
∑

k

Dν∗ [m]ka|νkb〉. (A.145)

Similarly, we can obtain the action of R(m):

R(m)|νab〉 =
∑

k

Dν(m)kb|νak〉.

Now, take the dual basis {〈νab|} in H∗. L and R each induces a representation on H∗, still

denoted by the same letter. Then on the dual basis, the two actions are given by,

L(m)(〈νab|) =
∑

k

Dν(m)ka〈νkb|, (A.146)

R(m)(〈νab|) =
∑

k

Dν∗(m)kb〈νak|. (A.147)

Applying the above dual basis to D(H), we get the basis for Equations 3.26 , 3.27 .

99

B. SUPPLEMENTAL MATERIAL FOR CHAPTER 4

This chapter contains work from the article entitled "Quantum circuits for toric code and

X-cube fracton model" written by the author, Bowen Yan, and Shawn X. Cui published on

Quantum [2].

B.1 2D toric code on sphere

Similar with the example of genus 1 torus, we identify different qubit pairs to change the

four plaquettes into a sphere as shown in Figure B.1 . The bottom right plaquette is chosen

to be redundant and two steps will complete the procedure.

Figure B.1. Boundary edges are identified according to the double-headed arrows.

B.2 2D toric code on genus n surface

Figure B.2 shows a genus n surface which is a disk enclosed by a ribbon with identified

edges. Beginning with |φ0〉, we develop a disk from inside and leave the ribbon with all

identified edges undeveloped. Then we choose one edge in the ribbon to apply the method

of basic structure and repeat in clockwise direction. After 2n − 1 steps for a genus n torus,

we will get the ground state of the closed surface.

B.3 Local CNOT operation

In the preparation of arbitrary state of 2D toric code, we use CNOT to transmit the

logical states vertically and horizontally. If we employ non-local CNOT gates, as illustrated

100

Figure B.2. The shaded area represents the developed disk; Boundaries with
the same color are identified to change the plaquettes into a genus n torus.

on the left side of Figure B.3 , it takes dlog2(L)e steps. However, when CNOT gates are

constrained to constant distances d, this procedure requires dlog2(d) + L
2d

e steps, as shown

on the right side of Figure B.3 . The distance d is defined such that two qubits are considered

to be d apart if the shortest path connecting them contains d − 1 qubits.

B.4 3D toric model with boundary

The generation from 2D toric code to 3D toric model with boundary is complicated but

direct. We can continue to use a plaquette as the basic structure but consider four different

types of cubes. Let us take the eight cubes in Figure B.4 as an example. We begin with

the red cube and develop it into pink cubes. Orange cubes are the next and the yellow cube

completes the model. In the following, we will divide the method into four steps, each step

describes one type of cubes.

To develop the qubits in the beginning red cube, we need to develop five rather than

six faces as the cube is a closed surface with one redundant face. As shown in Figure B.5 ,

we develop a face first and choose the four qubits on the opposite face to repeat the basic

structure. After that, considering the pink cube shares a face with developed cube, we only

need to develop four more faces as the second cube is also a closed surface. We choose the

four qubits on the face opposite to the developed cube to repeat the basic structure.

101

Figure B.3. For the case L = 16, we illustrate the utilization of CNOT gates
to vertically transmit the logical states in the sequence: black, red, green, blue,
orange. On the left-hand side, there exists no constraint on the distance d,
permitting the use of non-local CNOT gates, resulting in log2(16) = 4 steps.
On the right-hand side, with the restriction of d = 2, the process requires
log2(2) + 16

4 = 5 steps.

Similarly, we need to develop three faces for the orange cubes and two faces for the yellow

cube as shown in Figure B.6 . The four steps complete the procedure to simulate the ground

state of toric model on the eight cubes lattices. And we are able to develop any size cubes

with boundary using the method described above.

102

Figure B.4. The beginning cube is colored red. The pink, orange and yellow
cube represent the cubes connected with one, two or three faces developed.

Figure B.5. The left two cubes describe the first step to develop the red
cube. The right cubes describes the second step to develop the pink cube.

B.5 3D toric model without boundary

In Figure B.7 , the opposite faces are identified together to represent the 3D torus. We

begin with |φ0〉 and choose four free qubits in the lower layer to take the procedure in basic

structure. After this step and identification of opposite faces, we get the lattice with the

middle untouched. Finally, choose three more free qubits to repeat the basic structure and

leave a vertex redundant.

B.6 X-cube model simple example

To illustrate the method, we take the eight cubes case as a simple example shown in

Figure B.8 . Considering the redundant cubes in yellow, we only need to develop four cubes

left. The initial state is |φ0〉, and we begin with the cube at the right front higher corner to

apply the basic structure. After this step and identifying opposite faces, we get the result

103

Figure B.6. The left figure describes the step of orange cubes, and we need
to develop the face in front first. The right figure describes the final step to
develop the yellow cube, and we need to develop the face above first.

Figure B.7. A qubit |0〉 is placed at each gray dot at the beginning. The
color changes to black when a quantum gate is applied on the qubit.

on the right-hand side of Figure B.8 . Then we choose three more free qubits from each

cube connecting with the developed cube to repeat the procedure of basic structure and the

ground state is completed.

104

Figure B.8. The left figure is an example of X-cube model with opposite
faces identified. The right figure shows the result after the first step and the
free qubits for next step are circled.

105

C. SUPPLEMENTAL MATERIAL FOR CHAPTER 5

This chapter contains work from the article entitled "Representing Arbitrary Ground States

of Toric Code by Restricted Boltzmann Machine" written by the author, Bowen Yan, and

Shawn X. Cui preprinted on arXiv [3].

C.1 Analytical solution of bf , wf,j in the FRRBM

To optimize |Ψ〉 = ∑
S ΨM(S; W)|S〉 to best represent the ground state |GS〉, consider

the following expression:

ΨM(S; W) = e
∑

j ajσz
j
∏
v∈V

Γv(S; W)
∏
f∈F

Γf (S; W), (C.1)

Γv(S; W) = 2 cosh(bv +
∑

j∈s(v)
wv,jσ

z
j), (C.2)

Γf (S; W) = 2 cosh(bf +
∑

j∈s(f)
wf,jσ

z
j). (C.3)

Setting aj = 0, we treat |Ψ〉 as |GS〉:

|GS〉 =
∑
S

e
∑

j ajσz
j
∏
v∈V

2 cosh(bv +
∑

j∈s(v)
wv,jσ

z
j)

∏
f∈F

2 cosh(bf +
∑

j∈s(f)
wf,jσ

z
j)|S〉. (C.4)

The stabilizer condition of face operator is examined next:

Bf |GS〉 =
∏

e∈s(f)
σ̂z

e |GS〉 = |GS〉, ∀f. (C.5)

As the configuration |S〉 remains unchanged by σ̂z
e , we get:

∏
e∈s(f)

σ̂z
e e
∑

j ajσz
j
∏
v∈V

Γv(S; W)
∏

f ′∈F

Γf ′(S; W)

=e
∑

j ajσz
j
∏
v∈V

Γv(S; W)
∏

f ′∈F

Γf ′(S; W), ∀f, ∀S. (C.6)

106

All irrelevant terms on both sides are then cancelled:

∏
e∈s(f)

σ̂z
e cosh(bf +

∑
j∈s(f)

wf,jσ
z
j) = cosh(bf +

∑
j∈s(f)

wf,jσ
z
j), ∀f, ∀S. (C.7)

Due to translation invariance, it is unnecessary to repeat the calculation for all faces. Instead,

the possible configurations in a single face contribute 24 equations, as illustrated in Figure

 C.1 :

cosh(b − w1 + w2 + w3 + w4) = 0 (C.8)

cosh(b + w1 − w2 − w3 − w4) = 0 (C.9)

cosh(b − w1 − w2 + w3 + w4) 6= 0 (C.10)

cosh(b − w1 − w2 − w3 − w4) 6= 0 (C.11)
...

Solving these equations yields the complete set of solutions for the face terms bf , wf,j: bf =

0 (mod π) and wf,j = π

4 i, 3π

4 i (mod π), where an even number of the four wf,j must be the same.

Since the function of the face terms selectively excludes some configurations, any solution

set is valid and can be chosen without loss of generality. In the main article, we choose the

isotropic solution (bf , wf,j) = (0, π

4 i).

b

w1
w2

w3

w4

Figure C.1. This lattice diagram represents a translation-invariant structure
for a face-type hidden neuron, using simplified notation without the subscript
f .

107

C.2 Analytical solution of bv, wv,j in the FRRBM

The face terms Bf typically rule out certain configurations without trivial flux, while the

vertex terms Av ensures all configurations in the same logical state are uniformly weighted.

In this appendix, we continue from Equation (5.7) discussed in the main article, focusing

on the configurations with trivial flux illustrated in Figures C.3 through C.7 . We extract

relevant independent equations (C.13) through (C.16) to analytically solve for bv and wv,j. To

simplify notation further in the calculation, we replace cosh with cos and divide all weights

by i. We treat bv as a redundant parameter, similar to aj, and set bv = 0, as allowing bv ∈ C

would introduce superfluous freedom. Further elaboration on this issue is provided at the

end.

b
w1

w2
w3

w4

Figure C.2. This lattice diagram represents a translation-invariant struc-
ture for a vertex-type hidden neuron, using simplified notation without the
subscript v and (bv, wv,j) = i ∗ (b, wj). If we flip the four qubits surrounding
the central vertex, qubits contributing to the phase difference are circled for
clarity.

Equation (C.12) defines the often-used phase factor A:

cos(w1 + w2 + w3 + w4) := A. (C.12)

108

Equation (C.13), the most discussed criterion, is abstracted from Figure C.3 :

cos(−w1 + w2 + w3 + w4) cos(w1 − w2 + w3 + w4)

cos(w1 + w2 − w3 + w4) cos(w1 + w2 + w3 − w4) = A4. (C.13)

Equations (C.14 , C.15 , C.16) describe squared conditions, while Equations (C.17 , C.18)

specify additional criteria. All these equations are derived from the configurations shown in

Figure C.4 through C.7 :

[cos(−w1 − w2 + w3 + w4) cos(w1 + w2 − w3 − w4)]L = A2L for any L

⇒ cos2(−w1 − w2 + w3 + w4) = A2. (C.14)

[cos(−w1 + w2 + w3 − w4) cos(w1 − w2 − w3 + w4)]L = A2L for any L

⇒ cos2(w1 − w2 − w3 + w4) = A2. (C.15)

cos(−w1+ w2− w3+ w4) cos(−w1+ w2+ w3+ w4) cos(w1+ w2− w3+ w4) = A3

cos(w1− w2+ w3− w4) cos(w1− w2+ w3+ w4) cos(w1+ w2+ w3− w4) = A3

⇒ cos2(w1 − w2 + w3 − w4) = A2. (C.16)

⇒ cos2(w1 − w2 + w3 + w4) cos2(w1 + w2 + w3 − w4) = A4. (C.17)

⇒ cos2(−w1 + w2 + w3 + w4) cos2(w1 + w2 − w3 + w4) = A4. (C.18)

109

Next, we need to solve and discuss Equations (C.12) through (C.18):

Equation (C.12)+(C.14): w1 + w2 = 0 or w3 + w4 = 0

Equation (C.12)+(C.15): w1 + w4 = 0 or w2 + w3 = 0

Equation (C.12)+(C.16): w1 + w3 = 0 or w2 + w4 = 0

⇒ −w1 = w2 = w3 = w4 (mod π

2) and alternations. (C.19)

or w1 = w2 = w3 = 0 or π

4 (mod π

2) and alternations. (C.20)

In the first scenario derived in Equation (C.19), without loss of generality, we can set

w1 = −w + π

2m1, w2 = w + π

2m2, w3 = w + π

2m3, and w4 = w + π

2m4, where m1, m2, m3, m4

∈ N. Subsequently, the criteria in Equation (C.13) is rewritten as

cos [4w + π

2(M − 2m1)] cos [π2(M − 2m2)]

cos [π2(M − 2m3)] cos [π2(M − 2m4)] = cos4(2w + π

2M), (C.21)

where M := m1 + m2 + m3 + m4. And cos [π

2(M − 2m2)] 6= 0 ⇒ M is even, thus the terms

with π

2 above could be rearranged as follows:

cos [4w+ π

2(M −2m1)] = cos(4w) cos
[

π

2(M −2m1)
]
−sin(4w) sin

[
π

2(M −2m1)
]

= cos(4w) cos
[

π

2(M −2m1)
]

,

or vice versa:

cos [π2(M − 2m2)] cos [π2(M − 2m3)] = cos [π2(2M − 2m2 − 2m3)].

Then Equation (C.21) is simplified as

cos(4w) cos [π2(4M − 2M)] = [cos(2w) cos(π

2M)]4

cos(4w) = cos4(2w). (C.22)

110

Solving Equation (C.22), we get cos(4w) = 1, implying w = 0 (mod π

2). Considering the

definition of A in Equation (C.12), which is not 0, we conclude: even number of w are

0 (mod π) and the others are π

2 (mod π). For these solutions, A is either +1 or

−1.

In the second scenario derived in Equation (C.20), without loss of generality, we can set

w1 = w2 = w3 = w, w = 0 or π

4 (mod π

2) and w4 is free. By inserting all possible values of w1,

w2 and w3 into Equations (C.13) and (C.17 , C.18), we can find the allowed solutions: three

of w equal to 0 (mod π

2) and the other serves as a normalization parameter such

that cos(3w + w4) = A.

In the calculation above, we treat b as a redundant parameter and set b = 0. Reader

can practice by setting b = π

2 to obtain another set of solutions, which yields results similar

to those above. To understand how allowing b ∈ C introduces superfluous freedom, one

can abstract Equation (C.23) from Figure C.8 and incorporate b into Equation (C.12). By

re-deriving equations (C.13) through (C.16) and substituting them into Equation (C.23),

one can obtain Equation (C.24), which represents the restriction on b. There are infinite

many possibilities, and above two learnable solutions emerge through the training process

introduced in the next section.

cos(b−w1−w2+w3+w4) cos(b+w1−w2−w3+w4) cos(b+w1+w2−w3−w4)

cos(b−w1+w2+w3−w4) cos2(b+w1−w2−w3−w4) cos2(b−w1+w2−w3−w4)

cos2(b−w1−w2+w3−w4) cos2(b−w1−w2−w3+w4) = A12. (C.23)

cos4(b − w1 − w2 − w3 − w4) = cos4(b + w1 + w2 + w3 + w4). (C.24)

111

v0

Figure C.3. In this configuration, each black dot represents a qubit in state
|−1〉, while each green dot indicates a qubit in state |+1〉. Starting with the
initial configuration on the left, a vertex operator is applied at vertex v0 to flip
the adjacent four qubits. The resulting configuration, displayed on the right,
features five vertices encircled in red that contribute to the phase difference. By
comparing the phase contributions from these vertices in both configurations,
we derive Equation (C.13), which is a crucial criterion for our calculation.

vi−1

vi

vi+1

Figure C.4. Starting with the initial configuration illustrated on the left, we
apply vertex operators diagonally at vertices v0. The resultant configuration,
showcased on the right, exhibits translational symmetry horizontally. Notably,
the three vertices encircled in red contribute to the phase difference. By ana-
lyzing the phase contributions from these three vertices in both configurations,
we deduce Equation (C.14). This equation represents one of the three pivotal
square conditions essential for our calculation.

112

vi−1

vi

vi+1

Figure C.5. Similarly, applying vertex operators diagonally in the perpendic-
ular direction, we obtain Equation (C.15), another pivotal square condition.

vi−1

vi

vi+1

Figure C.6. This configuration corresponds to the first equation to derive
the Equation (C.16), the last pivotal square condition.

113

vi−1 vi vi+1

Figure C.7. This configuration corresponds to the second equation to derive
the Equation (C.16), the last pivotal square condition.

v1 v2

v3 v4

Figure C.8. This configuration corresponds to Equation (C.23), the condition
to find the restriction on bv.

114

C.3 Machine Learning of the FRRBM

To further elucidate the analytical solutions derived in the main article for the FRRBM

illustrated in Figure 5.1 , we numerically determine the ground state solution from Equations

(2.58) and (5.1) by applying a vertex stabilizer condition on square lattices of various sizes.

Namleluy, Figures C.9 and C.10 show their factorization on 3 × 3 and 4 × 4 square lattices

with different initial settings, where the common setting is (aj, bf , wf,j, bv) = (0, 0, π

4 i, 0), with

variations in wv,j making the difference.

Figure C.9. On a 3 × 3 lattice, the left plot shows the training result for
the isotropic setting wv,j = π

2 i, and right for the anisotropic setting wv,j =
0, 0, π

2 i, π

2 i.

115

Figure C.10. On a 4 × 4 lattice, the left plot shows the training result for
the isotropic setting wv,j = π

2 i, and right for the anisotropic setting wv,j =
0, 0, π

2 i, π

2 i. Despite the varied interaction settings, both configurations yield
identical ground states. This outcome contrasts with the results shown in
Figure C.9 , where the ground states differ significantly.

C.4 Machine Learning of the RBM

Illustrated in Figure 5.3 , we pick the isotropic setting (aj, bf , wf,j, bv, wv,j) = (0, 0, π

4 i, 0, π

2 i)

and uniformly weighted every new connection (wx,y,z = π

4 i). Then three hidden neurons (hx,

hy, hz) are introduced into the FRRBM to simulate an arbitrary ground state. Reader can

verify that the inclusion of hx and hy (inspired by the logical operators Zv and Zh) allows

for the simulation of any specific degeneracy state, while hz enables the representation of

any arbitrary ground state as a linear combination within the degeneracy basis. Then, using

Equations from (5.10) to (5.13), we can analytically solve the weights for arbitrary ground

state.

On the other hand, illustrated in C.11 , the configurations S1, S2, S3, S4 are chosen from

the equi-positioned configurations of the states |00〉, |01〉, |10〉, |11〉, respectively. Employing

the condition 〈GS|S1〉 : 〈GS|S2〉 : 〈GS|S3〉 : 〈GS|S4〉 = 〈GS|00〉 : 〈GS|01〉 : 〈GS|10〉 : 〈GS|11〉,

we can numerically train the weights for arbitrary ground state according to the ratio con-

ditions.

116

Xh

Xv bx

by

bz

w

w

w

Figure C.11. On the square lattice displayed on the left, we identify four
distinct qubit configurations: S1, where all qubits are in the |−1〉 state; S2,
with qubits only on the vertical dashed loop in the |1〉 state, namely |S2〉 =
Xv|S1〉; similarly |S3〉 = Xh|S1〉; and |S4〉 = XhXv|S1〉. The weights of
interest are illustrated on the right.

Let us consider a straightforward example involving the degeneracy state |00〉. We employ

the condition 〈GS|S1〉 :〈GS|S2〉 :〈GS|S3〉 :〈GS|S4〉 = 1:0 :0 :0 to analytically determine the

weights, yielding in (bx, by, bz) = (3π

4 i, 3π

4 i, π

2 i). Subsequently, we verify the learnability of the

RBM, as illustrated in Figure C.12 , ensuring that it can accurately and efficiently represent

the specified state characteristics.

Figure C.12. Training results on a 3 × 3 lattice for |GS〉 = |00〉.

Similarly, another example with amplitude ratios 〈GS|00〉 : 〈GS|01〉 : 〈GS|10〉 : 〈GS|11〉

= 1 : 2 : 3 : 4 results in the solution (bx, by, bz) = (coth−1(2
√

2/3) + π

4 i, coth−1(
√

6) +

117

π

4 i, coth−1(
√

3/2)). We then verify the learnability of the RBM, as illustrated in Figure

 C.13 . We find that finer results can be achieved with smaller training step sizes, though

extending training time does not lead to significant improvements. Finally, we present an

example that can only be approximated, as shown in Figure C.14 . We observe that finer

results are achievable with smaller training step sizes, and unlike the previous case, longer

training times also contribute to better outcomes.

Figure C.13. Training results on a 3 × 3 lattice for |GS〉 = |00〉 + 2|01〉 + 3|10〉 + 4|11〉.

Figure C.14. Training results on a 3 × 3 lattice for |GS〉 = |01〉 + |10〉 + |11〉.

118

C.5 Python code for 2D the FRRBM

1 # This code trains bv and wv in FRRBM

2 import torch

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import time

6

7 # 20 selected for the degeneracy basis and 30 random configurations.

8 S = np.load(’S20_30.npy’)

9 SS = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

10 [-1, +1, -1, -1, - 1, -1, -1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1],

11 [-1, -1, -1, -1, -1, -1, -1, -1, -1, +1, +1, +1, -1, -1, -1, -1, -1, -1],

12 [-1, +1, -1, -1, -1, -1, -1, +1, -1, +1, +1, +1, -1, +1, -1, -1, -1, -1]])

13

14

15 def pr(b, w, s1, s2, s3, s4):

16 result = torch.cosh(

17 (b[0] + 1j * b[1]) + (w[0] + 1j * w[4]) * s1 + (w[1] + 1j * w[5]) * s2 + (

18 w[2] + 1j * w[6]) * s3 + (w[3] + 1j * w[7]) * s4)

19 return result

20

21

22 def prr(b, w, s1, s2, s3, s4):

23 result = torch.cosh(b[0] + 1j * (w[0] * s1 + w[1] * s2 + w[2] * s3 + w[3] * s4))

24 return result

25

26

27 # ph is the phase function.

28 def ph(bv, wv, bf, wf, s):

29 result = (pr(bv, wv, s[0], s[3], s[2], s[15]) * pr(bv, wv, s[1], s[4], s[0], s[16])

30 * pr(bv, wv, s[2], s[5], s[1], s[17]) * pr(bv, wv, s[6], s[9], s[8], s[3])

31 * pr(bv, wv, s[7], s[10], s[6], s[4]) * pr(bv, wv, s[8], s[11], s[7], s[5])

32 * pr(bv, wv, s[12], s[15], s[14], s[9]) * pr(bv, wv, s[13], s[16], s[12], s[10])

33 * pr(bv, wv, s[14], s[17], s[13], s[11]) * prr(bf, wf, s[4], s[6], s[3], s[0])

34 * prr(bf, wf, s[5], s[7], s[4], s[1]) * prr(bf, wf, s[3], s[8], s[5], s[2])

35 * prr(bf, wf, s[10], s[12], s[9], s[6]) * prr(bf, wf, s[11], s[13], s[10], s[7])

36 * prr(bf, wf, s[9], s[14], s[11], s[8]) * prr(bf, wf, s[16], s[0], s[15], s[12])

37 * prr(bf, wf, s[17], s[1], s[16], s[13]) * prr(bf, wf, s[15], s[2], s[17], s[14]))

38 return result

39

40

41 # The 9 vertex operators flip qubits.

119

42 A1 = np.diag([-1, +1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, +1])

43 A2 = np.diag([-1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1])

44 A3 = np.diag([+1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1])

45 A4 = np.diag([+1, +1, +1, -1, +1, +1, -1, +1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1])

46 A5 = np.diag([+1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1])

47 A6 = np.diag([+1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1])

48 A7 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, +1, -1, +1, -1, -1, +1, +1])

49 A8 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1])

50 A9 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1])

51 S1 = np.dot(S, A1)

52 S2 = np.dot(S, A2)

53 S3 = np.dot(S, A3)

54 S4 = np.dot(S, A4)

55 S5 = np.dot(S, A5)

56 S6 = np.dot(S, A6)

57 S7 = np.dot(S, A7)

58 S8 = np.dot(S, A8)

59 S9 = np.dot(S, A9)

60

61

62 def criterion(bv, wv, bf, wf):

63 V = torch.empty((18 * N,), dtype=torch.complex64)

64 nor = torch.empty((N,), dtype=torch.complex64)

65 for k in range(N):

66 sub = ph(bv, wv, bf, wf, S[k])

67 nor[k] = sub

68 V[k] = ph(bv, wv, bf, wf, S1[k]) - sub

69 V[1 * N + k] = ph(bv, wv, bf, wf, S2[k]) - sub

70 V[2 * N + k] = ph(bv, wv, bf, wf, S3[k]) - sub

71 V[3 * N + k] = ph(bv, wv, bf, wf, S4[k]) - sub

72 V[4 * N + k] = ph(bv, wv, bf, wf, S5[k]) - sub

73 V[5 * N + k] = ph(bv, wv, bf, wf, S6[k]) - sub

74 V[6 * N + k] = ph(bv, wv, bf, wf, S7[k]) - sub

75 V[7 * N + k] = ph(bv, wv, bf, wf, S8[k]) - sub

76 V[8 * N + k] = ph(bv, wv, bf, wf, S9[k]) - sub

77 V[9 * N + k] = (S[k][4] * S[k][6] * S[k][3] * S[k][0] - 1) * sub

78 V[10 * N + k] = (S[k][5] * S[k][7] * S[k][4] * S[k][1] - 1) * sub

79 V[11 * N + k] = (S[k][3] * S[k][8] * S[k][5] * S[k][2] - 1) * sub

80 V[12 * N + k] = (S[k][10] * S[k][12] * S[k][9] * S[k][6] - 1) * sub

81 V[13 * N + k] = (S[k][11] * S[k][13] * S[k][10] * S[k][7] - 1) * sub

82 V[14 * N + k] = (S[k][9] * S[k][14] * S[k][11] * S[k][8] - 1) * sub

83 V[15 * N + k] = (S[k][16] * S[k][0] * S[k][15] * S[k][12] - 1) * sub

84 V[16 * N + k] = (S[k][17] * S[k][1] * S[k][16] * S[k][13] - 1) * sub

120

85 V[17 * N + k] = (S[k][15] * S[k][2] * S[k][17] * S[k][14] - 1) * sub

86 v = torch.norm(V, p=2) / torch.norm(nor, p=1)

87 return v

88

89

90 # initial setting

91 (ss, tt, N) = (0.01, 500, len(S))

92 BF = torch.tensor([0.0])

93 WF = torch.tensor([np.pi / 4, np.pi / 4, np.pi / 4, np.pi / 4])

94 BV = torch.tensor([0.2, -0.2], requires_grad=True)

95 WV = torch.tensor([-0.3, -0.1, 0.1, 0.3, 1.2, 1.4, 1.6, 1.8], requires_grad=True)

96 optimizer = torch.optim.Adam([BV, WV], lr=ss)

97

98 # Stochastic gradient descent

99 start_time = time.time()

100 COST = []

101 ABV = [[], []]

102 AWV = [[], [], [], [], [], [], [], []]

103 for h in range(tt):

104 cost = criterion(BV, WV, BF, WF)

105 COST.append(cost.tolist())

106 for p in range(2):

107 ABV[p].append(BV[p].tolist())

108 for q in range(8):

109 AWV[q].append(WV[q].tolist())

110 cost.backward()

111 optimizer.step()

112 optimizer.zero_grad()

113 end_time = time.time()

114 execution_time = end_time - start_time

115

116 # Visualize training cycles up to t

117 t = (tt - 1)

118 Final = COST[t]

119 BVt = torch.tensor([ABV[0][t], ABV[1][t]])

120 WVt = torch.tensor([AWV[0][t], AWV[1][t], AWV[2][t], AWV[3][t],

121 AWV[4][t], AWV[5][t], AWV[6][t], AWV[7][t]])

122

123 fig0 = plt.figure(figsize=(6, 4))

124 plt.plot(COST)

125 plt.title("final cost = %.2e" % Final)

126 plt.text(0.6 * t, 0.8 * COST[0], "20+30 configurations")

127 plt.text(0.6 * t, 0.7 * COST[0], "$b_{f} = 0$, $w_{f} = \pi/4 i$")

121

128 plt.text(0.6 * t, 0.6 * COST[0], "Adam step size: %.2f" % ss)

129 plt.text(0.6 * t, 0.5 * COST[0], "Execution time: %is" % execution_time)

130 plt.xlabel("train cycles")

131 plt.ylabel("cost function")

132 plt.show()

133

134 fig1 = plt.figure(figsize=(6, 4))

135 plt.plot(COST[0:t])

136 plt.title("final cost = %.2e" % Final)

137 plt.text(200, 10 ** (-2), "Ψ(|00>) = %.4f + %.4fi" % (

138 ph(BVt, WVt, BF, WF, SS[0]).data.item().real, ph(BVt, WVt, BF, WF, SS[0]).data.item().imag))

139 plt.text(200, 10 ** (-3), "Ψ(|01>) = %.4f + %.4fi" % (

140 ph(BVt, WVt, BF, WF, SS[1]).data.item().real, ph(BVt, WVt, BF, WF, SS[1]).data.item().imag))

141 plt.text(200, 10 ** (-4), "Ψ(|10>) = %.4f + %.4fi" % (

142 ph(BVt, WVt, BF, WF, SS[2]).data.item().real, ph(BVt, WVt, BF, WF, SS[2]).data.item().imag))

143 plt.text(200, 10 ** (-5), "Ψ(|11>) = %.4f + %.4fi" % (

144 ph(BVt, WVt, BF, WF, SS[3]).data.item().real, ph(BVt, WVt, BF, WF, SS[3]).data.item().imag))

145 plt.xlabel("train cycles")

146 plt.ylabel("cost function")

147 plt.yscale(’log’)

148 plt.show()

149

150 fig2 = plt.figure(figsize=(6, 4))

151 plt.plot(ABV[0][0:t], color=’tab:red’, label=r"b_v \rightarrow %.4f + %.4fi" % (

152 ABV[0][t], ABV[1][t]))

153 plt.plot(AWV[0][0:t], color=’tab:orange’, label=r"$w_{v,1}$ \rightarrow %.4f + %.4fi" % (

154 AWV[0][t], AWV[4][t]))

155 plt.plot(AWV[1][0:t], color=’tab:green’, label=r"$w_{v,2}$ \rightarrow %.4f + %.4fi" % (

156 AWV[1][t], AWV[5][t]))

157 plt.plot(AWV[2][0:t], color=’tab:blue’, label=r"$w_{v,3}$ \rightarrow %.4f + %.4fi" % (

158 AWV[2][t], AWV[6][t]))

159 plt.plot(AWV[3][0:t], color=’tab:purple’, label=r"$w_{v,4}$ \rightarrow %.4f + %.4fi" % (

160 AWV[3][t], AWV[7][t]))

161 plt.plot(ABV[1][0:t], ’--’, color=’tab:red’)

162 plt.plot(AWV[4][0:t], ’--’, color=’tab:orange’)

163 plt.plot(AWV[5][0:t], ’--’, color=’tab:green’)

164 plt.plot(AWV[6][0:t], ’--’, color=’tab:blue’)

165 plt.plot(AWV[7][0:t], ’--’, color=’tab:purple’)

166 plt.xlabel("train cycles")

167 plt.ylabel("weights")

168 plt.legend()

169 plt.show()

122

C.6 Python code for searching

1 # This code search solutions from random bv and wv for FRRBM

2 import torch

3 import numpy as np

4 import time

5

6 # 20 selected for the degeneracy basis and 30 random configurations.

7 S = np.load(’S20_30.npy’)

8 SS = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

9 [-1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1],

10 [-1, -1, -1, -1, -1, -1, -1, -1, -1, +1, +1, +1, -1, -1, -1, -1, -1, -1],

11 [-1, +1, -1, -1, -1, -1, -1, +1, -1, +1, +1, +1, -1, +1, -1, -1, -1, -1]])

12

13 # 10k sets of variables for 10 variables.

14 Variables = np.load(’Variables10_10k.npy’)

15

16

17 # pr is the shortcut for cosh function.

18 def pr(b, w, s1, s2, s3, s4):

19 result = torch.cosh((b[0] + 1j * b[1]) + 1j * ((w[0] + 1j * w[4]) * s1 + (

20 w[1] + 1j * w[5]) * s2 + (w[2] + 1j * w[6]) * s3 + (w[3] + 1j * w[7]) * s4))

21 return result

22

23

24 def prr(b, w, s1, s2, s3, s4):

25 result = torch.cosh(b[0] + 1j * (w[0] * s1 + w[1] * s2 + w[2] * s3 + w[3] * s4))

26 return result

27

28

29 # ph is the phase function.

30 def ph(bv, wv, bf, wf, s):

31 result = (pr(bv, wv, s[0], s[3], s[2], s[15]) * pr(bv, wv, s[1], s[4], s[0], s[16])

32 * pr(bv, wv, s[2], s[5], s[1], s[17]) * pr(bv, wv, s[6], s[9], s[8], s[3])

33 * pr(bv, wv, s[7], s[10], s[6], s[4]) * pr(bv, wv, s[8], s[11], s[7], s[5])

34 * pr(bv, wv, s[12], s[15], s[14], s[9]) * pr(bv, wv, s[13], s[16], s[12], s[10])

35 * pr(bv, wv, s[14], s[17], s[13], s[11]) * prr(bf, wf, s[4], s[6], s[3], s[0])

36 * prr(bf, wf, s[5], s[7], s[4], s[1]) * prr(bf, wf, s[3], s[8], s[5], s[2])

37 * prr(bf, wf, s[10], s[12], s[9], s[6]) * prr(bf, wf, s[11], s[13], s[10], s[7])

38 * prr(bf, wf, s[9], s[14], s[11], s[8]) * prr(bf, wf, s[16], s[0], s[15], s[12])

39 * prr(bf, wf, s[17], s[1], s[16], s[13]) * prr(bf, wf, s[15], s[2], s[17], s[14]))

40 return result

41

123

42

43 # nor is the normalize function.

44 def nor(bv, wv, bf, wf):

45 result = 0

46 for i in range(len(S)):

47 result += abs(ph(bv, wv, bf, wf, S[i]))

48 return result

49

50

51 # The 9 vertex operators flip qubits.

52 A1 = np.diag([-1, +1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, +1])

53 A2 = np.diag([-1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1])

54 A3 = np.diag([+1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1])

55 A4 = np.diag([+1, +1, +1, -1, +1, +1, -1, +1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1])

56 A5 = np.diag([+1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1])

57 A6 = np.diag([+1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1])

58 A7 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, +1, -1, +1, -1, -1, +1, +1])

59 A8 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1])

60 A9 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1])

61 S1 = np.dot(S, A1)

62 S2 = np.dot(S, A2)

63 S3 = np.dot(S, A3)

64 S4 = np.dot(S, A4)

65 S5 = np.dot(S, A5)

66 S6 = np.dot(S, A6)

67 S7 = np.dot(S, A7)

68 S8 = np.dot(S, A8)

69 S9 = np.dot(S, A9)

70

71

72 # lam is the multiplier to amplify the choice of ground state

73 def criterion(bv, wv, bf, wf):

74 V = torch.empty((18 * N,), dtype=torch.complex64)

75 for k in range(N):

76 sub = ph(bv, wv, bf, wf, S[k])

77 V[k] = ph(bv, wv, bf, wf, S1[k]) - sub

78 V[1 * N + k] = ph(bv, wv, bf, wf, S2[k]) - sub

79 V[2 * N + k] = ph(bv, wv, bf, wf, S3[k]) - sub

80 V[3 * N + k] = ph(bv, wv, bf, wf, S4[k]) - sub

81 V[4 * N + k] = ph(bv, wv, bf, wf, S5[k]) - sub

82 V[5 * N + k] = ph(bv, wv, bf, wf, S6[k]) - sub

83 V[6 * N + k] = ph(bv, wv, bf, wf, S7[k]) - sub

84 V[7 * N + k] = ph(bv, wv, bf, wf, S8[k]) - sub

124

85 V[8 * N + k] = ph(bv, wv, bf, wf, S9[k]) - sub

86 V[9 * N + k] = (S[k][4] * S[k][6] * S[k][3] * S[k][0] - 1) * sub

87 V[10 * N + k] = (S[k][5] * S[k][7] * S[k][4] * S[k][1] - 1) * sub

88 V[11 * N + k] = (S[k][3] * S[k][8] * S[k][5] * S[k][2] - 1) * sub

89 V[12 * N + k] = (S[k][10] * S[k][12] * S[k][9] * S[k][6] - 1) * sub

90 V[13 * N + k] = (S[k][11] * S[k][13] * S[k][10] * S[k][7] - 1) * sub

91 V[14 * N + k] = (S[k][9] * S[k][14] * S[k][11] * S[k][8] - 1) * sub

92 V[15 * N + k] = (S[k][16] * S[k][0] * S[k][15] * S[k][12] - 1) * sub

93 V[16 * N + k] = (S[k][17] * S[k][1] * S[k][16] * S[k][13] - 1) * sub

94 V[17 * N + k] = (S[k][15] * S[k][2] * S[k][17] * S[k][14] - 1) * sub

95 v = torch.norm(V) / nor(bv, wv, bf, wf)

96 return v

97

98

99 start_time = time.time()

100 (ss, tt, lam, N) = (0.02, 50, 1.0, len(S))

101 BF = torch.tensor([0.0])

102 WF = torch.tensor([np.pi / 4, np.pi / 4, np.pi / 4, np.pi / 4])

103 All = []

104 Select = []

105 for k in range(0, 100):

106 IN = Variables[k]

107 BV = torch.tensor([IN[0], IN[1]], requires_grad=True)

108 WV = torch.tensor([IN[2], IN[3], IN[4], IN[5], IN[6], IN[7], IN[8], IN[9]], requires_grad=True)

109 optimizer = torch.optim.Adam([BV, WV], lr=ss)

110 for h in range(tt):

111 cost = criterion(BV, WV, BF, WF)

112 cost.backward()

113 optimizer.step()

114 optimizer.zero_grad()

115 All.append(IN.tolist())

116 print(

117 "%d: (%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f)->"

118 "(%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f), cost=%.2e" % (

119 k, IN[0].tolist(), IN[1].tolist(), IN[2].tolist(), IN[3].tolist(),

120 IN[4].tolist(), IN[5].tolist(), IN[6].tolist(), IN[7].tolist(),

121 IN[8].tolist(), IN[9].tolist(), BV[0].tolist(), BV[1].tolist(),

122 WV[0].tolist(), WV[1].tolist(), WV[2].tolist(), WV[3].tolist(),

123 WV[4].tolist(), WV[5].tolist(), WV[6].tolist(), WV[7].tolist(), cost))

124 if cost < 0.01:

125 Select.append(k)

126 end_time = time.time()

127 execution_time = end_time - start_time

125

128 print(f"Execution time: {execution_time} seconds")

129 print(f"Select:{Select}")

C.7 Python code for the RBM

1 # This code trains RBM to get basis ratios 1:2:3:4

2 import torch

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import time

6

7 # 20 selected for the degeneracy basis and 30 random configurations.

8 S = np.load(’S20_30.npy’)

9 SS = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

10 [-1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1, -1, +1, -1, -1, -1, -1],

11 [-1, -1, -1, -1, -1, -1, -1, -1, -1, +1, +1, +1, -1, -1, -1, -1, -1, -1],

12 [-1, +1, -1, -1, -1, -1, -1, +1, -1, +1, +1, +1, -1, +1, -1, -1, -1, -1]])

13

14

15 def pr(b, w, s1, s2, s3, s4):

16 result = torch.cosh(

17 (b[0] + 1j * b[1]) + (w[0] + 1j * w[4]) * s1 + (w[1] + 1j * w[5]) * s2 + (

18 w[2] + 1j * w[6]) * s3 + (w[3] + 1j * w[7]) * s4)

19 return result

20

21

22 def prr(br, bi, s1, s2, s3):

23 result = torch.cosh((br + 1j * bi) + 1j * (np.pi / 4) * (s1 + s2 + s3))

24 return result

25

26

27 def prrr(br, bi, s1, s2, s3, s4, s5, s6):

28 result = torch.cosh((br + 1j * bi) + 1j * (np.pi / 4) * (s1 + s2 + s3 + s4 + s5 + s6))

29 return result

30

31

32 def ph(gl, nl, bv, wv, bf, wf, s):

33 result = (np.exp(gl[0] + 1j * gl[1])

34 * prr(nl[0], nl[3], s[0], s[1], s[2]) * prr(nl[1], nl[4], s[3], s[9], s[15])

35 * prrr(nl[2], nl[5], s[0], s[1], s[2], s[3], s[9], s[15])

36 * pr(bv, wv, s[0], s[3], s[2], s[15]) * pr(bv, wv, s[1], s[4], s[0], s[16])

37 * pr(bv, wv, s[2], s[5], s[1], s[17]) * pr(bv, wv, s[6], s[9], s[8], s[3])

126

38 * pr(bv, wv, s[7], s[10], s[6], s[4]) * pr(bv, wv, s[8], s[11], s[7], s[5])

39 * pr(bv, wv, s[12], s[15], s[14], s[9]) * pr(bv, wv, s[13], s[16], s[12], s[10])

40 * pr(bv, wv, s[14], s[17], s[13], s[11]) * pr(bf, wf, s[4], s[6], s[3], s[0])

41 * pr(bf, wf, s[5], s[7], s[4], s[1]) * pr(bf, wf, s[3], s[8], s[5], s[2])

42 * pr(bf, wf, s[10], s[12], s[9], s[6]) * pr(bf, wf, s[11], s[13], s[10], s[7])

43 * pr(bf, wf, s[9], s[14], s[11], s[8]) * pr(bf, wf, s[16], s[0], s[15], s[12])

44 * pr(bf, wf, s[17], s[1], s[16], s[13]) * pr(bf, wf, s[15], s[2], s[17], s[14]))

45 return result

46

47

48 # The 9 vertex operators flip qubits.

49 A1 = np.diag([-1, +1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, +1])

50 A2 = np.diag([-1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1])

51 A3 = np.diag([+1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1])

52 A4 = np.diag([+1, +1, +1, -1, +1, +1, -1, +1, -1, -1, +1, +1, +1, +1, +1, +1, +1, +1])

53 A5 = np.diag([+1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1, +1])

54 A6 = np.diag([+1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1, +1, +1, +1, +1, +1])

55 A7 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, +1, -1, +1, -1, -1, +1, +1])

56 A8 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1, +1])

57 A9 = np.diag([+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, -1, +1, -1, -1, +1, +1, -1])

58 S1 = np.dot(S, A1)

59 S2 = np.dot(S, A2)

60 S3 = np.dot(S, A3)

61 S4 = np.dot(S, A4)

62 S5 = np.dot(S, A5)

63 S6 = np.dot(S, A6)

64 S7 = np.dot(S, A7)

65 S8 = np.dot(S, A8)

66 S9 = np.dot(S, A9)

67

68

69 # lam is the multiplier to amplify the choice of ground state

70 def criterion(gl, nl, bv, wv, bf, wf):

71 V = torch.empty((18 * N + 3,), dtype=torch.complex64)

72 nor = torch.empty((N,), dtype=torch.complex64)

73 for k in range(N):

74 one = ph(gl, nl, bv, wv, bf, wf, SS[0])

75 sub = ph(gl, nl, bv, wv, bf, wf, S[k])

76 nor[k] = sub

77 V[k] = ph(gl, nl, bv, wv, bf, wf, S1[k]) - sub

78 V[1 * N + k] = ph(gl, nl, bv, wv, bf, wf, S2[k]) - sub

79 V[2 * N + k] = ph(gl, nl, bv, wv, bf, wf, S3[k]) - sub

80 V[3 * N + k] = ph(gl, nl, bv, wv, bf, wf, S4[k]) - sub

127

81 V[4 * N + k] = ph(gl, nl, bv, wv, bf, wf, S5[k]) - sub

82 V[5 * N + k] = ph(gl, nl, bv, wv, bf, wf, S6[k]) - sub

83 V[6 * N + k] = ph(gl, nl, bv, wv, bf, wf, S7[k]) - sub

84 V[7 * N + k] = ph(gl, nl, bv, wv, bf, wf, S8[k]) - sub

85 V[8 * N + k] = ph(gl, nl, bv, wv, bf, wf, S9[k]) - sub

86 V[9 * N + k] = (S[k][4] * S[k][6] * S[k][3] * S[k][0] - 1) * sub

87 V[10 * N + k] = (S[k][5] * S[k][7] * S[k][4] * S[k][1] - 1) * sub

88 V[11 * N + k] = (S[k][3] * S[k][8] * S[k][5] * S[k][2] - 1) * sub

89 V[12 * N + k] = (S[k][10] * S[k][12] * S[k][9] * S[k][6] - 1) * sub

90 V[13 * N + k] = (S[k][11] * S[k][13] * S[k][10] * S[k][7] - 1) * sub

91 V[14 * N + k] = (S[k][9] * S[k][14] * S[k][11] * S[k][8] - 1) * sub

92 V[15 * N + k] = (S[k][16] * S[k][0] * S[k][15] * S[k][12] - 1) * sub

93 V[16 * N + k] = (S[k][17] * S[k][1] * S[k][16] * S[k][13] - 1) * sub

94 V[17 * N + k] = (S[k][15] * S[k][2] * S[k][17] * S[k][14] - 1) * sub

95 V[18 * N + 0] = lam * (ph(gl, nl, bv, wv, bf, wf, SS[1]) - (bb / aa) * one)

96 V[18 * N + 1] = lam * (ph(gl, nl, bv, wv, bf, wf, SS[2]) - (cc / aa) * one)

97 V[18 * N + 2] = lam * (ph(gl, nl, bv, wv, bf, wf, SS[3]) - (dd / aa) * one)

98 v = torch.norm(V, p=2) / torch.norm(nor, p=1)

99 return v

100

101

102 # initial setting with the basis ratio (aa, bb, cc, dd)

103 (aa, bb, cc, dd, lam) = (1, 2, 3, 4, 1.0)

104 (ss, tt, N) = (0.0001, 2000, len(S))

105 BF = torch.tensor([0.0, 0.0])

106 WF = torch.tensor([0.0, 0.0, 0.0, 0.0, np.pi / 4, np.pi / 4, np.pi / 4, np.pi / 4])

107 BV = torch.tensor([0.0, 0.0])

108 WV = torch.tensor([0.0, 0.0, 0.0, 0.0, np.pi / 2, np.pi / 2, np.pi / 2, np.pi / 2])

109 # global constant GL change the overall phase to modify aa, bb, cc, dd

110 GL = torch.tensor([0.7135588, -1.570752])

111 # NL stores all nonlocal weights bx, by, bz in C, wx=wy=wz=pi/4 i

112 # NL = [Re(bx),Re(by),Re(bz),Im(bx),Im(by),Im(bz)]

113 NL = torch.tensor([0.7, 0.4, 1.1, 0.9, 0.8, 0.1], requires_grad=True)

114 optimizer = torch.optim.Adam([NL], lr=ss)

115

116 # Stochastic gradient descent

117 start_time = time.time()

118 COST = []

119 ANL = [[], [], [], [], [], []]

120 for h in range(tt):

121 cost = criterion(GL, NL, BV, WV, BF, WF)

122 COST.append(cost.tolist())

123 for p in range(6):

128

124 ANL[p].append(NL[p].tolist())

125 cost.backward()

126 optimizer.step()

127 optimizer.zero_grad()

128 end_time = time.time()

129 execution_time = end_time - start_time

130

131 # Visualize training cycles up to t

132 t = (tt - 1)

133 Final = COST[t]

134 NLt = torch.tensor([ANL[0][t], ANL[1][t], ANL[2][t], ANL[3][t], ANL[4][t], ANL[5][t]])

135

136 fig0 = plt.figure(figsize=(6, 4))

137 plt.plot(COST[0:t])

138 plt.title("final cost = %.2e" % Final)

139 plt.text(0.6 * t, 0.85 * COST[0], "GL: %.4f + %.4fi" % (GL[0], GL[1]))

140 plt.text(0.6 * t, 0.79 * COST[0], "$b_{f} = 0$, $w_{f} = \pi/4 i$")

141 plt.text(0.6 * t, 0.73 * COST[0], "$b_{v} = 0$, $w_{v} = \pi/2 i$")

142 plt.text(0.6 * t, 0.67 * COST[0], "$w_{x,y,z} = \pi/4 i$")

143 plt.text(0.6 * t, 0.61 * COST[0], "Execution time: %is" % execution_time)

144 plt.xlabel("train cycles")

145 plt.ylabel("cost function")

146 plt.show()

147

148 fig1 = plt.figure(figsize=(6, 4))

149 plt.plot(COST[0:t])

150 plt.title("final cost = %.2e" % Final)

151 plt.text(0.4 * t, 10 ** (-2), "Ψ(|00>) = %.4f + %.4fi" % (

152 ph(GL, NLt, BV, WV, BF, WF, SS[0]).data.item().real,

153 ph(GL, NLt, BV, WV, BF, WF, SS[0]).data.item().imag))

154 plt.text(0.4 * t, 10 ** (-2.5), "Ψ(|01>) = %.4f + %.4fi" % (

155 ph(GL, NLt, BV, WV, BF, WF, SS[1]).data.item().real,

156 ph(GL, NLt, BV, WV, BF, WF, SS[1]).data.item().imag))

157 plt.text(0.4 * t, 10 ** (-3), "Ψ(|10>) = %.4f + %.4fi" % (

158 ph(GL, NLt, BV, WV, BF, WF, SS[2]).data.item().real,

159 ph(GL, NLt, BV, WV, BF, WF, SS[2]).data.item().imag))

160 plt.text(0.4 * t, 10 ** (-3.5), "Ψ(|11>) = %.4f + %.4fi" % (

161 ph(GL, NLt, BV, WV, BF, WF, SS[3]).data.item().real,

162 ph(GL, NLt, BV, WV, BF, WF, SS[3]).data.item().imag))

163 plt.xlabel("train cycles")

164 plt.ylabel("cost function")

165 plt.yscale(’log’)

166 plt.show()

129

167

168 fig2 = plt.figure(figsize=(6, 4))

169 plt.plot(ANL[0][0:t], color=’tab:red’, label=r"b_x \rightarrow %.4f + %.4fi"

170 % (ANL[0][t], ANL[3][t]))

171 plt.plot(ANL[1][0:t], color=’tab:blue’, label=r"b_y \rightarrow %.4f + %.4fi"

172 % (ANL[1][t], ANL[4][t]))

173 plt.plot(ANL[2][0:t], color=’tab:green’, label=r"b_z \rightarrow %.4f + %.4fi"

174 % (ANL[2][t], ANL[5][t]))

175 plt.plot(ANL[3][0:t], ’--’, color=’tab:red’)

176 plt.plot(ANL[4][0:t], ’--’, color=’tab:blue’)

177 plt.plot(ANL[5][0:t], ’--’, color=’tab:green’)

178 plt.xlabel("train cycles")

179 plt.ylabel("nonlocal weights")

180 plt.legend()

181 plt.show()

130

	TITLE PAGE
	COMMITTEE APPROVAL
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	RIBBON OPERATORS IN GENERALIZED KITAEV QUANTUM DOUBLE
	QUANTUM CIRCUITS FOR TORIC CODE AND X-CUBE FRACTON MODEL
	REPRESENTING ARBITRARY GROUND STATES OF TORIC CODE BY RESTRICTED BOLTZMANN MACHINE
	REFERENCES
	SUPPLEMENTAL MATERIAL FOR CHAPTER 3
	SUPPLEMENTAL MATERIAL FOR CHAPTER 4
	SUPPLEMENTAL MATERIAL FOR CHAPTER 5

