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Abstract
Pairs in involution are a Hopf algebraic structure with applications to category theory,
cyclic homology and knot theory. In the present dissertation we will answer the
question whether every finite-dimensional Hopf algebra admits such pairs, construct
and investigate their categorical analogues, and develop, based on our previous
findings, the theory of pairs in involutions for Hopf monads.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Hopf algebras are the central structure on which the dissertation at hand is based.
They can roughly be described as generalisations of groups with a comultiplication
taking the role of the diagonal map and a non-necessarily involutive operator, called
an antipode, replacing taking inverses. For any Hopf algebra a pair in involution
consists of an element living in a canonical subgroup of that algebra together with
a character such that this pair implements the square of the antipode of the Hopf
algebra. These pairs give rise to trace-like operations on certain morphism spaces
over Hopf algebras. However, in general the cyclicity condition holds only up to scalar
multiplication. Pairs in involution for which that scalar is one are called modular.
They take the role of one-dimensional coefficients in Hopf-cyclic cohomology as
defined by Connes and Moscovici. Amongst other things, this application prompted
Hajac to ask whether every finite-dimensional Hopf algebra admits a (modular) pair
in involution.

To answer this question, we consider a class of finite-dimensional Hopf algebras,
called generalised Taft algebras. These arise from the theory of (small) quantum
groups and can be thought of as ‘quantum planes’. For a generalised Taft algebra
(modular) pairs in involution correspond to solutions of a system of linear Diophan-
tine equations whose coefficients are derived from the defining structure parameters
of the Hopf algebra. One of our main results is stating necessary and sufficient
criteria for the existence of solutions to these systems of equations. From this we
can draw two conclusions. First, there are finite-dimensional Hopf algebras that
have pairs in involution but these cannot satisfy the modularity condition. Second,
there are, moreover, finite-dimensional Hopf algebras without such pairs altogether.

A more conceptual perspective on pairs in involution is given by the means
of representation theory. An essential step in establishing this connection is the
following observation: the modules over a Hopf algebra admit the categorical
analogue of a monoid structure. That is, there exists a multiplication, given by the
tensor product, and a unit, the trivial module, such that associativity and unitality
hold weakly. This analogy suggests that one can furthermore consider the centre
of this ‘monoid’. As is typical in categorification, it is not required that the tensor
product is strictly commutative in the centre. Rather, one considers isomorphisms,
so-called half-braidings, which revert the order of the ‘multiplication’. In the case
of Hopf algebras, the centre construction is intimately related to the Yang–Baxter
equation. In his seminal work on quantum groups1, Drinfeld obtained canonical

1V. G. Drinfeld. Quantum groups. Proc. Int. Congr. Math., 1987.
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solutions to this equation by associating to any finite-dimensional Hopf algebra its
Drinfeld double. Its modules can be identified with the so-called Yetter–Drinfeld
modules. These in turn are equivalent to the centre of the category of modules
of the underlying Hopf algebra. Hajac, Khalkhali, Rangipour and Sommerhäuser
observed that a slight variation in the definition of these modules leads to a category,
which they called the anti-Yetter–Drinfeld modules. It serves as a rich source of
coefficients for Hopf-cyclic cohomology. The similarity between these two types of
modules is reflected in the fact that an alteration of the multiplication of the Drinfeld
double leads to another algebra, the anti-Drinfeld double, which parametrises the
anti-Yetter–Drinfeld modules. The role of pairs in involution in this setting was
established by Hajac and Sommerhäuser. They proved that these pairs correspond
to anti-Yetter–Drinfeld modules whose underlying vector space is the ground field.
Furthermore, they showed that such ‘one-dimensional’ modules correspond to algebra
isomorphisms between the Drinfeld and anti-Drinfeld double.

Our aim is to extend the theory of pairs in involution to general rigid monoidal
categories; a far reaching generalisation of modules over Hopf algebras. These are
categories which have a weakly associative and unital tensor product in the sense
sketched above and a notion of duality that parallels that of finite-dimensional
representations of groups.

The first step for us is to establish a dictionary that translates Hopf algebraic
concepts into categorical terms. In accordance with our previous considerations, the
(Drinfeld) centre of a rigid monoidal category replaces the Yetter–Drinfeld modules.
Mutatis mutandis, anti-Yetter–Drinfeld modules have been generalised to anti-
Drinfeld centres. Again, these are categories with a type of commutativity encoded
by half-braidings. Accounting for the slight differences between the definitions of
Yetter–Drinfeld and anti-Yetter–Drinfeld modules, the half-braidings of the anti-
Drinfeld centre flip the order of the tensor product and replace one of its factors by
its bidual. The categorical pendant of being one-dimensional is to be ‘invertible’
under the multiplication given by the tensor product. To complete our dictionary,
we show that pairs in involution translate to quasi-pivotal structures. That is, tensor
product preserving natural isomorphisms between objects and ‘conjugates’ of their
biduals.

In order to generalise the Hajac–Sommerhäuser characterisation of pairs in
involution to the setting of rigid monoidal categories we prove that there is a
canonical (left) action of the Drinfeld centre on the anti-Drinfeld centre. Furthermore,
this module admits a dual. Hereof, we can deduce that the equivariant equivalences
of categories between the Drinfeld and anti-Drinfeld centre are parametrised by the
‘invertible’ objects in the anti-Drinfeld centre. Additionally, a direct computation
shows that these objects equate to quasi-pivotal structures. This establishes the
categorical version of the Hajac–Sommerhäuser description of pairs in involution.

The language of rigid monoidal categories offers an abstraction of many concepts
of the representation theory of (finite) groups. We have already outlined that it
allows for suitable notions of taking tensor products and forming duals. However,
in general one important concept is missing: traces of endomorphisms. Their well-
definedness is tied to the existence of a pivotal structure, i.e. a monoidal natural
isomorphism between each object and its bidual. Due to results by Barrett and
Westbury it can be deduced that the pivotal structures on the finite-dimensional
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Yetter–Drinfeld modules over a Hopf algebra are in bijection with its pairs in in-
volution. Parallel to work of Shimizu, we show that, the ‘invertible’ objects of the
anti-Drinfeld centre lead to pivotal structures on the Drinfeld centre. In addition,
we answer his question whether this assignment is always surjective in the neg-
ative by constructing a counterexample. It is based on the category of ribbon tangles.

In the last part of this dissertation, we unify our Hopf algebraic findings with
the categorical ones by studying Hopf monads. To roughly explain what monads
are, we consider the following example. Any representation of a group can be seen
as a vector space together with an action. This leads to a canonical functor from
the category of representations of a group to the category of vector spaces which
‘forgets’ the action on objects and the equivariance of morphisms. Conversely, any
vector space can be lifted to a free representation (by considering its tensor product
with the group algebra). These ‘free’ and ‘forgetful’ functors form what is called an
adjunction. In a sense, monads are ‘shadows’ of such adjoint pairs of functors. They
are algebraic objects which we can study by the means of representation theory. As
with finite-dimensional Hopf algebras, a monad is Hopf if and only if its modules
are a rigid monoidal category. This can be made more concrete in terms of certain
structure morphisms on the monad which implement the tensor product and taking
duals.

Our aim is to define and investigate the anti-Drinfeld double of a Hopf monad.
The approach we take is based of the construction of the Drinfeld double of a
Hopf monad due to Day and Street as well as Bruguières and Virelizier. Their
starting point is a ‘free’ functor, adjoint to the canonical ‘forgetful’ functor from
the Drinfeld centre to its underlying category. Its definition is based on a certain
colimit construction. The universal property of these colimits leads to an illustrative
description of the Hopf monad structure associated to this adjunction. We adopt
these techniques to the anti-Drinfeld centre by introducing a special type of action
of monads on functors. In this manner, we obtain the anti-Drinfeld double of a Hopf
monad. Just like the Drinfeld double parametrises the Drinfeld centre, the modules
of the anti-Drinfeld double are isomorphic to the anti-Drinfeld centre. The action of
the Drinfeld centre on the anti-Drinfeld centre is accounted for by a coaction of the
Drinfeld double on the anti-Drinfeld double.

The definition of pairs in involution for Hopf algebras can be applied almost
verbatim to the setting of Hopf monads. Using our categorical findings as translations
this leads to a monadic version of the Hajac–Sommerhäuser theorem. We conclude
our investigation by illustrating how the anti-Drinfeld double of a Hopf monad can
be used to detect the existence of pivotal structures.
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Zusammenfassung
Paare in Involution entstammen der Theorie der Hopf-Algebren. Sie finden Anwen-
dungen im Bereich der Kategorientheorie, der Knoteninvarianten und der zyklischen
Kohomologie. In der hier vorliegenden Dissertation wird die Frage beantwortet, ob
alle endlich dimensionalen Hopf-Algebren solche Paare besitzen, ihr kategorielles
Äquivalent definiert und, basierend auf unseren vorausgegangenen Resultaten, die
Theorie von Paaren in Involution für Hopf Monaden entwickelt und untersucht.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Die zentrale Struktur, die der vorliegenden Dissertation zugrunde liegt, sind Hopf-
Algebren. Sie können grob als Verallgemeinerungen von Gruppen beschrieben
werden, wobei eine Komultiplikation die Rolle der Diagonalabbildung übernimmt
und ein nicht notwendigerweise involutiver Operator, der als Antipode bezeichnet
wird, die Inversenbildung ersetzt. Für jede Hopf-Algebra besteht ein Paar in
Involution aus einem Element, das in einer kanonischen Untergruppe dieser Algebra
lebt, zusammen mit einem Charakter, so dass sie das Quadrat der Antipode der Hopf-
Algebra implementieren. In einem vagen Sinne führen diese Paare zu spurähnlichen
Operationen auf bestimmten Morphismusräumen über Hopf-Algebren. Dabei gilt
die Zyklizitätsbedingung im Allgemeinen nur bis auf skalare Vielfache. Paare in
Involution, für die dieser Skalar Eins ist, werden modular genannt. Sie übernehmen
die Rolle eindimensionaler Koeffizienten in der von Connes und Moscovici definierten
Hopf-zyklischen Kohomologietheorie. Unter anderem diese Anwendung veranlasste
Hajac zu der Frage, ob jede endlichdimensionale Hopf-Algebra ein (modulares) Paar
in Involution besitzt.

Zu ihrer Beantwortung, betrachten wir eine Klasse von Hopf-Algebren, die ver-
allgemeinerte Taft-Algebren genannt werden. Diese ergeben sich aus der Theorie
der (kleinen) Quantengruppen und können als “Quantenebenen” betrachtet werden.
Für eine verallgemeinerte Taft-Algebra entsprechen (modulare) Paare in Involution
Lösungen eines Systems linearer diophantischer Gleichungen, deren Koeffizienten
von den Strukturparametern der Algebra abgeleitet sind. Eines unserer Hauptergeb-
nisse ist die Angabe notwendiger und hinreichender Kriterien für die Existenz von
Lösungen dieser Gleichungssysteme. Daraus können wir zwei Schlussfolgerungen
ziehen. Es gibt endlichdimensionale Hopf-Algebren, die Paare in Involution besitzen,
welche jedoch die Modularitätsbedingung nicht erfüllen können. Außerdem existieren
endlichdimensionale Hopf-Algebren ganz ohne solche Paare.

Eine konzeptionellere Perspektive auf Paare in Involution ist durch Darstellungs-
theorie gegeben. Zur Herstellung dieses Zusammenhangs ist folgende Beobachtung
hilfreich: Moduln über einer Hopf-Algebra besitzen eine monoidale Struktur. Das
heißt, es gibt eine Multiplikation, die durch das Tensorprodukt gegeben ist, und
eine Eins, den trivialen Modul, so dass Assoziativität und Neutralität (schwach)
gelten. Diese Analogie legt nahe, dass man das Zentrum dieses “Monoids” betrachten
kann. Dabei ist es allerdings nicht notwendig, zu fordern, dass die Multiplikation
strikt kommutativ ist. Stattdessen betrachtet man natürliche Isomorphismen, die
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die Reihenfolge der Multiplikation umkehren. Im Fall von Hopf-Algebren ist die
Zentrumskonstruktion eng mit der Yang–Baxter-Gleichung verbunden. In seiner
wegweisenden Arbeit über Quantengruppen2 erhielt Drinfeld kanonische Lösungen
für diese Gleichung, indem er jeder endlichdimensionalen Hopf-Algebra ihr Drinfeld-
Doppel zuordnete. Moduln über dem Drinfeld-Doppel einer Hopf-Algebra können
mit den sogenannten Yetter–Drinfeld Moduln identifiziert werden. Auf Hajac,
Khalkhali, Rangipour und Sommerhäuser geht eine kleine Abänderung dieser Defi-
nition zurück, die zu der Kategorie der Anti-Yetter–Drinfeld Moduln führt. Diese,
oder genauer gesagt eine Unterkategorie davon, dient als Quelle für Koeffizienten
der Hopf-zyklischen Kohomologie. Die Ähnlichkeit dieser beiden Arten von Moduln
zeigt sich auch darin, dass der dem Drinfeld-Doppel zugrunde liegende Vektorraum
mit einer zweiten Multiplikation ausgestattet werden kann, sodass die Moduln der
resultierenden Algebra, dem Anti-Drinfeld-Doppel, gleich den Anti-Yetter–Drinfeld
Moduln sind. Die Rolle von Paaren in Involution in diesem Setting wurde durch Ha-
jac und Sommerhäuser herausgearbeitet, welche gezeigt haben, dass diese Paare zwei
zusätzliche äquivalente Charakterisierungen aufweisen. Sie entsprechen den Anti-
Yetter–Drinfeld Moduln, deren zugrunde liegender Vektorraum der Grundkörper
ist. Dies ist gleichbedeutend mit Algebraisomorphismen zwischen dem Drinfeld und
dem Anti-Drinfeld-Doppel.

Unser Ziel ist es, die Theorie der Paare in Involution und ihr Zusammenspiel mit
Anti-Yetter–Drinfeld Moduln sowie dem Anti-Drinfeld-Doppel auf rigid monoidale
Kategorien zu erweitern. Dies sind Kategorien, die ein schwach assoziatives und
unitales Tensorprodukt besitzen und deren Objekte eine Art von Dualität aufweisen,
die der von endlichdimensionalen Darstellungen von Gruppen entspricht.

Der erste Schritt besteht für uns darin, Hopf-algebraische Konzepte in kate-
gorielle Begriffe zu übersetzen. Gemäß unseren bisherigen Überlegungen ersetzt das
(Drinfeld)-Zentrum einer rigid monoidalen Kategorie die Yetter–Drinfeld-Moduln.
Auf ähnliche Weise lassen sich Anti-Yetter–Drinfeld-Moduln zum Anti-Drinfeld-
Zentrum verallgemeinern. Das kategorielle Pendant der Eindimensionalität ist die
“Invertierbarkeit” unter der durch dem Tensorprodukt gegebenen Multiplikation. Wir
zeigen, dass sich in dieser Sprache Paare in Involution in quasipivotale Strukturen
übersetzen lassen. Das heißt, natürliche, mit den Tensorprodukten kompatible,
Isomorphismen zwischen Objekten und “Konjugierten” ihrer Bidualen.

Zwei Beobachtungen erlauben es uns, die Hajac–Sommerhäuser-Charakterisierung
von Paaren in Involution für rigid monoidale Kategorien zu verallgemeinern. Erstens
gibt es eine kanonische Wirkung des Drinfeld-Zentrums auf das Anti-Drinfeld-
Zentrum. Zweitens hat dieser Modul ein Duales. Daraus können wir ableiten, dass
die äquivarianten Äquivalenzen von Kategorien zwischen dem Drinfeld- und dem
Anti-Drinfeld-Zentrum durch die “invertierbaren” Objekte im Anti-Drinfeld-Zentrum
parametrisiert werden. Zusätzlich folgt aus einer direkten Rechnung, dass diese
Objekte quasipivotalen Strukturen entsprechen. Dies führt zu der kategoriellen
Version der Hajac-Sommerhäuser-Beschreibung von Paaren in Involution.

Die Sprache rigider monoidaler Kategorien bietet eine Abstraktion vieler Konzepte
der Darstellungstheorie (endlicher) Gruppen. Wir haben bereits skizziert, dass sich
in ihnen über Tensorprodukte und Duale sprechen lässt. Im Allgemeinen fehlt
jedoch ein wichtiger Begriff: Spuren von Endomorphismen. Ihre Wohldefiniertheit
ist an die Existenz einer pivotalen Struktur gebunden, das heißt eines monoidalen

2V. G. Drinfeld. Quantengruppen. Proz. Int. Kongr. Math., 1987.
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natürlichen Isomorphismus zwischen jedem Objekt und seinem Bidual. Aus Arbeiten
von Barrett und Westbury lässt sich ableiten, dass die pivotalen Strukturen auf
den Yetter–Drinfeld-Moduln über einer Hopf-Algebra mit ihren Paaren in Involu-
tion in Bijektion stehen. Parallel zu Arbeiten von Shimizu zeigen wir, dass die
“invertierbaren” Objekte des Anti-Drinfeld-Doppels zu pivotalen Strukturen auf dem
Drinfeld-Doppel führen. Außerdem beantworten wir seine Frage, ob diese Zuordnung
immer surjektiv sei, durch die Konstruktion eines Gegenbeispiels. Es basiert auf der
Kategorie der “Bandschleifen”.

Im letzten Teil dieser Dissertation vereinigen wir unsere Hopf-algebraischen Re-
sultate mit den kategoriellen, indem wir Hopf-Monaden untersuchen. Um den
Begriff der Monaden zu motivieren, betrachten wir das folgende Beispiel. Jede
Darstellung einer Gruppe kann als ein Vektorraum zusammen mit einer Wirkung
verstanden werden. Dies führt zu einem kanonischen Funktor von der Kategorie
der Darstellungen einer Gruppe zur Kategorie der Vektorräume, der die Wirkung
auf Objekten und die Äquivarianz auf Morphismen “vergisst”. Umgekehrt kann
jedem Vektorraum durch Tensorieren mit der zugehörigen Gruppenalgebra eine freie
Darstellung zugeordnet werden. Die “freien” und ”Vergiss-” Funktoren bilden eine
Adjunktion. Monaden sind gewissermaßen “Schatten” solcher adjungierter Funk-
torenpaare. Sie sind algebraische Objekte, die wir mit Hilfe von Darstellungstheorie
untersuchen können. Ähnlich wie bei Hopf-Algebren sind Hopf Monaden dadurch
charakterisiert, dass ihre Moduln eine rigid monoidale Kategorie bilden. Dies lässt
sich anhand bestimmter Strukturmorphismen auf der Monade beschreiben, die das
Tensorieren und Dualenbilden implementieren.

Unser Ziel ist es, das Anti-Drinfeld-Doppel einer Hopf-Monade zu definieren und
zu untersuchen. Der dabei verfolgte Ansatz basiert auf der Konstruktion des Drinfeld-
Doppel einer Hopf-Monade durch Day und Street sowie Bruguières und Virelizier.
Den Ausgangspunkt bildet ein freier Funktor, der adjungiert zum kanonischen
Vergissfunktor ist. Seine Definition basiert auf bestimmten Kolimites. Deren
Universalität führt zu einer anschaulichen Beschreibung der mit dieser Adjunktion
verbundenen Hopf-Monadenstruktur. Wir übernehmen diese Techniken für das
Anti-Drinfeld-Zentrum, indem wir eine spezielle Art der Wirkung von Monaden auf
Funktoren einführen. Auf diese Weise erhalten wir das Anti-Drinfeld-Doppel einer
Hopf-Monade. So wie das Drinfeld-Doppel das Drinfeld-Zentrum parametrisiert,
sind die Moduln des Anti-Drinfeld-Doppels isomorph zum Anti-Drinfeld-Zentrum.
Der Wirkung des Drinfeld-Zentrums auf dem Anti-Drinfeld-Zentrum wird durch eine
Kowirkung des Drinfeld-Doppels auf dem Anti-Drinfeld-Doppel Rechung getragen.

Die Definition von Paaren in Involution für Hopf-Algebren lässt sich fast wörtlich
auf Hopf-Monaden übertragen. Unter Verwendung unserer kategoriellen Resultate
als Übersetzungen führt dies zu einer monadischen Version des Hajac–Sommerhäuser-
Theorems. Als Anwendung dieser Theorie beweisen wir, dass, wenn die nötigen
Monaden existieren, das Anti-Drinfeld-Doppel verwendet werden kann, um die
Existenz pivotaler Strukturen nachzuweisen.
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1. Introduction

Pairs in involution are a multi-faceted topic in the theory of Hopf algebras. This
is reflected in the breadth of content of the following three papers, published in a six
year period between 1993 and 1999, each of which could be considered as a possible
starting point for the study of such pairs in their own right. Kauffman and Radford
used pairs in involution in [KR93] to determine necessary and sufficient conditions
for the Drinfeld double of a finite-dimensional Hopf algebra to be ribbon. A different
application was given by Connes and Moscovici who utilised them as coefficients for
their formulation of Hopf-cyclic cohomology, see [CM99]. The connection between
such pairs and the spherical Hopf algebras investigated by Barrett and Westbury
[BW99] is less direct; it requires passing to the Drinfeld double, whose spherical
elements equate to pairs in involution as we will prove later. Our approach to pairs
in involution will incorporate, as suggested by this brief outline, different points of
view and utilise tools from various mathematical disciplines.

The subsequent introduction to the theory and applications of pairs in involution
is intended for Hopf algebraists and category theorists.

Hopf algebras and Tannaka–Krein reconstruction. Hopf algebras are a
mathematical structure whose representations resemble those of (finite) groups. A
more precise account of this figure of thought is given in terms of reconstruction
theory. Tannaka([Tan38]) and Krein([Kre49]) proved independently that finite
groups can be recovered from their category of representations. Building on these
results, the idea of considering algebraic structures as ‘coordinate systems’ of
their representations has been expanded into a topic of its own—Tannaka–Krein
reconstruction. A detailed treatment of the Hopf algebraic aspects of this subject
are given for example in [Ulb90] and [Sch92]. While we do not present this theory
in its entirety, we want to succinctly outline parts of it in order to sketch the
above indicated connection between groups and Hopf algebras. In addition, this
will provide us with a natural approach to our generalisation of pairs in involution
to the setting of rigid monoidal categories and monads. To keep our exposition
consistent with our ensuing considerations, we restrict ourselves to the case of
finite-dimensional algebras over an algebraically closed field k of characteristic zero.

The starting point of the variant of Tannaka–Krein reconstruction we are about
to illustrate here is a category H-Modfin of finite-dimensional modules over a finite-
dimensional Hopf algebra H . It admits a canonical forgetful functor to vector spaces
from which the underlying vector space and algebra structure of H can be retrieved
up to an isomorphism. Additionally, H-Modfin is a monoidal category. That is, there
exists a weakly associative and unital ‘multiplication’ on it, which in the present case
is given by an extension of the tensor product of vector spaces to H-Modfin. This
determines the comultiplication and counit of H—an abstraction of the diagonal
map and trivial module over a group. Monoidal categories whose objects have duals
in a fashion similar to finite-dimensional representations over groups are called
rigid. The rigidity of H-Modfin establishes an anti-algebra, anti-coalgebra morphism
S : H → H, the antipode of H. It is the Hopf algebraic variant of taking inverses in
a group. Since H was supposed to be finite-dimensional, its antipode is invertible
but not necessarily involutory. In contrast with the group case, this leads to two,
possibly distinct, actions on the dual vector space of any finite-dimensional left
module over H. On the categorical side this equates to a concept of left and right
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duality in H-Modfin. In a sense, the present dissertation is about the disparity
between left and right duals. However, not in the category modules over H but a
close relative thereof which is related to solutions of the Yang–Baxter equation.

Yetter–Drinfeld modules. The finite-dimensional Yetter–Drinfeld modules over
a Hopf algebra H are simultaneously finite-dimensional modules and comodules
over H with a compatibility between action and coaction, [Mon93, Chapter 10].
They again form a rigid monoidal category H

HYDfin whose tensor product can be
thought of as ‘commutative’. This is implemented by a braiding, i.e. a natural
isomorphism which flips the order in which terms a tensored together. For a finite-
dimensional Hopf algebra H the Yetter–Drinfeld modules can be realised as the
modules over the Drinfeld double D(H) over H. This construction, proposed by
Drinfeld in 1987 in [Dri87], equips the tensor product H◦ ⊗H of H with its the dual
with a new multiplication derived from the multiplications of H◦ and H as well as
the compatibility condition of the Yetter–Drinfeld modules. The braiding of the
Yetter–Drinfeld modules over H can be translated to a quasitriangular structure on
the Drinfeld double which in turn leads to solutions of the Yang–Baxter equation.

Later, we will exemplify how pairs in involution are reconstructions of certain
natural isomorphisms between Yetter–Drinfeld modules and their (left) biduals.

Pairs in involution. Before we elaborate this somewhat abstract perspective on
pairs in involution, we want to discuss a more direct approach going back to work
of Connes and Moscovici, see [CM99, CM00].

In order to understand what these pairs are and why they are needed in various
algebraic contexts, let us for now suppose that H is a Hopf algebra with involutory
antipode S, in formulas S2 = idH . We want to consider a trace-like operation arising
in Hopf-cyclic cohomology. Suppose n ∈ N to be a natural number and let X be
a finite-dimensional left module over H. We write Cn(X) := HomH(X⊗n+1, k) for
the space of H-linear maps between the n+ 1-fold tensor product of X with itself
and the trivial module over H, which we denote by k. There exists a well-defined
isomorphism of vector spaces

τ : Cn(X) → Cn(X), τ(f)(x0 ⊗ x1 ⊗ · · · ⊗ xn) = f(x1 ⊗ · · · ⊗ xn ⊗ x0).
The compatibility between the cyclic permutation of the inputs of f ∈ Cn(X)
induced by τ and the action of H is proved using that S = S−1 or, equivalently,
that the left and right dual of X coincide.

Motivated by finding an analogue to Lie algebra cohomology in the setting of
noncommutative geometry, Connes and Moscovici observed that even if the antipode
of H is not involutory a trace-like map τ : Cn(X) → Cn(X) exists, provided H
admits modular pairs in involution, see [CM99, CM00]. To state their definition
we use reduced Sweedler notation and write h(1) ⊗ h(2) := ∆(h) ∈ H ⊗H for the
comultiplication of an element h ∈ H.

Definition. A pair in involution for a Hopf algebra H over a field k consists of a
group-like l ∈ H and a character β : H → k which satisfy the antipode condition

S2(h) = β(h(3))β−1(h(1))lh(2)l
−1, for all h ∈ H.

If additionally β(l) = 1, we call (l, β) modular.

Given a modular pair in involution (l, β), we write Cn(l,β)(X) := HomH(X⊗n+1, kβ)
for the vector space of H-module morphisms between the (n+1)-fold tensor product
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of X with itself and the representation kβ arising from the character β. Furthermore,
we equip Cn(l,β)(X) with a ‘twisted’ cyclic permutation

τl : Cn(l,β)(X) → Cn(l,β)(X), τl(f)(x0 ⊗ x1 ⊗ · · · ⊗ xn) = f(x1 ⊗ · · · ⊗ xn ⊗ l ▷x0).
The antipode condition of (l, β) implies that we can still ‘relate’ left and right duals
with each other, therefore ensuring the compatibility between the action of H and
the twisted cyclic permutation of inputs τl : Cn(l,β)(X) → Cn(l,β)(X). Moreover, the
modularity β(l) = 1 of the pair (l, β) entails τn+1

l = idCn
(l,β)(X).

If X is a module algebra, the collection (Cn(l,β)(X))n≥0 can be promoted to a
module over Connes’ cyclic category Λ, see [CM99]. A conceptual proof is given in
Theorem 2.2 of [HKRS04a]. The study of such modules arising from Hopf algebras
is the content of Hopf-cyclic cohomology, which, since its initial conception, has been
extended to various contexts beyond Hopf algebras, for example to Hopf algebroids,
see [KK11]. A peculiarity of Hopf-cyclic cohomology is that in the absence of an
involutory antipode there are no canonical coefficients; instead it always depends on
the choice of a modular pair in involution, which motivates the following question.
Question 1: Does every finite-dimensional Hopf algebra admit a pair in involution

and, if so, also a modular one?

Square roots of the distinguished group-likes and Radford’s S4-formula.
Kauffman and Radford gave in [KR93] sufficient conditions for the existence of
pairs in involution in order to determine which Hopf algebras lead to ribbon invari-
ants. Their argument revolves around Radford’s celebrated S4-formula, developed
in [Rad76]. A consequence of the fundamental theorem of Hopf modules, see
[LS69, Proposition 1], is that any finite-dimensional Hopf algebra H admits a one-
dimensional subspace L(H) ⊆ H, called the left integrals of H, whose elements
satisfy hΛ = ε(h)Λ for all h ∈ H and Λ ∈ L(H). Furthermore, there is a unique
character α : H → k, the distinguished character of H, such that Λh = α(h)Λ. In
case α = ε is the counit of H , we refer to H as a unimodular Hopf algebra. Applying
the same considerations to the dual H◦ of H and using that H◦◦ ∼= H, we obtain
the distinguished group-like of H . Radford’s S4-formula states that the fourth power
of the antipode is given by the conjugate actions of the distinguished group-likes
and characters, i.e.

S4(h) = α(h(3))α−1(h(1))g−1h(2)g, for all h ∈ H.

The pairs in involution leading to ribbon invariants are square roots of the dis-
tinguished group-like and character of H, see [KR93, Theorem 3]. The idea of
Kauffman and Radford how to determine their existence relies on two observations.
First, by the Nichols–Zoeller theorem, [NZ89, Theorem 7], the orders of the group
of group-likes as well as the group of characters divide the dimension of the Hopf
algebra. Second, every element of a group of odd order has a unique square root.
This entails that any Hopf algebra H of odd dimension whose square of the antipode
has odd order admits a unique pair in involution (l, β) such that l−2 and β2 are the
distinguished group-like and character, respectively, see [KR93, Corollary 3].

Generalised Taft algebras. We give a complete answer of Question 1 in our
articles [HK19] and [Hal21]. It is of similar nature to [KR93], in that the existence
of (modular) pairs in involution is linked to solutions of certain equations. The
strategy for this is to consider a well-studied class of Hopf algebras—the generalised
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Taft algebras. Following for example the articles [ARS10] and [HY10] they might
be viewed as Borel parts of certain small quantum groups, introduced by Lusztig in
[Lus90]. Closely related to this, they can be identified with the rank two case of the
quantum linear spaces investigated in [AS98a] and could therefore also be referred
to as quantum planes, see also [Man87].

A conceptual approach to generalised Taft algebras revolving around the notion
of Nichols algebras3 is discussed in Section II.3. At this point, however, it suffices
for us to characterise them as being finite-dimensional Hopf algebras generated
by a group-like element, spanning a finite cyclic group, and two twisted-primitive,
nilpotent elements such that all three generators commute up to some roots of unity.
The details of this presentation are given in Theorem II.3.14.

The systematic study of generalised Taft algebras is carried out in Section II.4.
In Theorem II.4.1 we prove this class of Hopf algebras to be closed under duality,
which implies that both the group-likes and characters of a generalised Taft alge-
bra form isomorphic finite cyclic groups. This leads to one of our main results,
Theorem II.4.5: the (modular) pairs in involution for a generalised Taft algebra
equate to solutions of a system of Diophantine equations whose coefficients are
derived from the Hopf algebra structure. Subsequently, we classify their solutions in
Theorem II.4.8. With the constraints found therein we can answer Question 1 in
Theorem I.1.2 and Lemma II.4.10. These findings can be summarised as follows.
Theorem 1. There are two families H1 and H2 of generalised Taft algebras, both
with countably infinite cardinality, such that

(i) the members of H1 do not admit pairs in involution, and
(ii) all elements of H2 have such pairs but they cannot satisfy the modularity

condition.
Quasitriangular and unimodular Hopf algebras without pairs in involution.
Due to Theorem 1 of [KR93], every ribbon Hopf algebra has a pair in involution. In
the further course of Section II.4 we investigate whether there are other properties
of Hopf algebras, which entail the existence of such pairs. While Lemma II.4.13 and
Corollary II.4.14 show that the restrictions imposed on a generalised Taft algebra
by requiring it to be unimodular or quasitriangular result in the existence of these
pairs, this is not true in general. As discussed in Theorem II.4.12, the Drinfeld
double D(H), which is always unimodular and quasitriangular, admits a pair in
involution if and only if its underlying Hopf algebra H does4.

Towards a Morita-theoretic view on such pairs, we observe in Lemma II.5.1 that
Hopf algebras which are isomorphic only as algebras need not share the property
of having a pair in involution. This suggests a link between these pairs and the
monoidal structure of the category of finite-dimensional modules of a Hopf algebra.

Pairs in involution and pivotal structures on the Yetter–Drinfeld modules.
In [BW99] Barrett and Westbury investigated traces in rigid monoidal categories.

3Nichols algebras are a braided version of symmetric algebras, see [AS02, Section 2]. In
particular, they are vector spaces endowed with a multiplication, comultiplication and antipode.
These maps satisfy the usual axioms of Hopf algebras, except that the compatibility between the
multiplication and comultiplication take a braiding into account. Generalised Taft algebras arise
via Radford’s biproduct construction([Rad85]), which is also called Majid’s bosonisation([Maj94]),
as a combination of a certain type of Nichols algebras with group algebras of finite cyclic groups.

4In fact, the proof of Theorem 4.12 shows that a pair in involution for H can be lifted to a
modular one for the Drinfeld double D(H).
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Their definition depends on a pivotal structure. That is, a monoidal natural
isomorphism between every object and its bidual. Rigid monoidal categories with
such a natural isomorphism are called pivotal.

In Section II.5 we explore the connection between pivotality and pairs in involution.
It can be deduced from [BW99, Proposition 3.6] that the pivotal structures on the
category H-Modfin of finite-dimensional modules over a finite-dimensional Hopf
algebra H can be identified with group-like elements g ∈ H implementing the
square of the antipode by their adjoint action. Combined with a result of Radford,
[Rad93, Proposition 9], which identifies the group-likes of the Drinfeld double D(H)
with pairs comprising a character and a group-like of H, we obtain that pairs in
involution correspond to pivotal structures on the finite-dimensional Yetter–Drinfeld
modules over H, see Lemma II.5.5. From this point of view our examples of Hopf
algebras without (modular) pairs in involution bear two concrete implications. The
Yetter–Drinfeld modules over a Hopf algebra H without pairs in involution are not
pivotal. If these pairs exist for H but none of them is modular, the category of
Yetter–Drinfeld modules is pivotal but neither the finite-dimensional modules nor
comodules over H are. These observations motivate our second question.
Question 2: What is the categorical analogue of pairs in involution and can they
be used to classify pivotal structures on generalisations of Yetter–Drinfeld modules?

Our first step towards answering it is to recognise these pairs as place of a broader
structure.

Anti-Yetter–Drinfeld modules and the Hajac–Sommerhäuser theorem.
With the introduction of (stable) anti-Yetter–Drinfeld modules, Hajac et al. made a
significant contribution to the systematic investigation of coefficients for Hopf-cyclic
cohomology, see [HKRS04a, HKRS04b]. These provide a conceptual framework
for our understanding of pairs in involution. Like Yetter–Drinfeld modules, they
are modules with a compatible comodule structure. Contrary to their well-known
‘cousins’, they do not form a monoidal category. Instead, the tensor product of a
Yetter–Drinfeld module with an anti-Yetter–Drinfeld module is again an anti-Yetter–
Drinfeld module, see [HKRS04b, Lemma 2.3]. A more succinct way of saying this is
to state that for any Hopf algebra H the tensor product of its modules and comodules
extends to a weakly associative and unital action functor of the Yetter–Drinfeld on
the anti-Yetter–Drinfeld modules. Hence, the anti-Yetter–Drinfeld modules form
a module category over the Yetter–Drinfeld modules. Reconstruction allows us
to identify the anti-Yetter–Drinfeld modules of H with modules over its so-called
anti-Drinfeld double A(H), see [HKRS04b, Section 4]. Its construction parallels
that of the Drinfeld double. The underlying vector space of A(H) is H◦ ⊗H and
the algebra structure is, as before, derived from the multiplications of H◦ and H as
well as the compatibility condition of anti-Yetter–Drinfeld modules. The action of
the Yetter–Drinfeld on the anti-Yetter–Drinfeld modules materialises as a coaction
of D(H) on A(H) which is compatible with the algebra structure of A(H). In other
words, the anti-Drinfeld double is a comodule algebra over the Drinfeld double.

Pairs in involution can be interpreted as examples of anti-Yetter–Drinfeld modules
in the following way: given such a pair (l, β) for a Hopf algebra H, we endow the
ground field k with a coaction induced by l ∈ H and an action implemented by the
convolution inverse β−1 : H → k of the character β. A direct computation shows
that for the above defined module and comodule structure the antipode condition
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of the pair (l, β) and the compatibility condition between the action and coaction
of anti-Yetter–Drinfeld modules coincide. The significance of pairs in involution
among the anti-Yetter–Drinfeld modules is captured by the following theorem due
to Hajac and Sommerhäuser:

Theorem (Theorem II.3.4). For any finite-dimensional Hopf algebra H over k the
following statements are equivalent:

(i) The Hopf algebra H admits a pair in involution.
(ii) There exists an anti-Yetter–Drinfeld module over H with k-dimension one.

(iii) The Drinfeld and anti-Drinfeld double of H are isomorphic as algebras.

Bimodule categories and the centre construction. Our solution to the problem
posed in Question 2 is given in the first part of [HZ22]. An essential component
is the development of a categorical version of the previous theorem. Coming from
the perspective of Tannaka–Krein reconstruction, we substitute the role of a Hopf
algebra in the description of pairs in involution with a rigid monoidal category C.
That is, a category with a (weakly) associative and unital product in which every
object has a left and right dual. This leaves us with the task of transferring the
notions of Yetter–Drinfeld and anti-Yetter–Drinfeld modules as well as pairs in
involution into this abstract setting.

For this, we consider (bi-)module categories over monoidal categories. As the
name suggests, these are categories endowed with compatible left and right actions
by monoidal categories. One of the first accounts5 of module categories is given
in the work of Crane and Frenkel on four-dimensional topological quantum field
theories([CF94]). Later, Ostrik carried out an extensive investigation of these
categories in [Ost03]. Module categories are a natural structure to consider in the
study of ‘higher-dimensional algebra’ as sketched in [BD95] and provide a wide
range of applications, see for example [FS03] and [Gre10].

The passage from bimodule categories to generalisations of Yetter–Drinfeld and
anti-Yetter–Drinfeld modules is given by the Drinfeld centre construction. As stated
in [Kas95, Chapter XIII], it dates back to works of Drinfeld(unpublished), Joyal
and Street([JS91]) as well as Majid([Maj91]). The centre of a bimodule category
M over a monoidal category C is a category which we denote by Z(M). Its objects
are pairs comprising an object of M together with a natural isomorphism, called a
half-braiding, that implements a coherent way of interchanging the right action on
this object with the left one. The morphisms of the centre Z(M) are all arrows of
M which ‘commute’ with the respective half-braidings. The centre of a monoidal
category C considered as a bimodule over itself is called the Drinfeld centre. It is a
braided monoidal category that generalises the Yetter–Drinfeld modules: if C are
the modules of a finite-dimensional Hopf algebra H, there is a braided equivalence
between the centre of C and the Yetter–Drinfeld modules of H. A proof can be
found for example in [Kas95, Theorem XIII.5.1]. The Drinfeld centre has manifold
applications. For example it can be used to construct link or tangle invariants which
generalise the Jones polynomial, see [Tur88] and [RT90].

A categorical perspective on pairs in involution. The similarity between
Yetter–Drinfeld and anti-Yetter–Drinfeld modules suggests that a modification of the
Drinfeld centre leads to a suitable replacement of the anti-Yetter–Drinfeld modules.

5A brief discussion of the history of module categories is given in Section 7 of [EGNO15].
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To this end, we consider variants of the regular bimodule whose actions are altered
by precomposing with a monoidal endofuctor. A particularly important example for
us is given by twisting the right action of a rigid monoidal category C on itself with
its (left) biduality functor. We write A(C) for the centre of the resulting bimodule
category and call it the anti-Drinfeld centre of C. In [FSS17] its trace-like properties
were examined and applications in topological quantum field theories were shown.
Similar considerations can also be found in [DSS21, Section 3.2.2]. The reason for
calling A(C) the anti-Drinfeld centre of C is due to [HKS19] where it is proven that
if C is the category of finite-dimensional modules over a Hopf algebra H, then its
anti-Drinfeld centre corresponds to the anti-Yetter–Drinfeld modules over H.

In Section III.4 we study the anti-Drinfeld centre and the possibility of it leading
to a categorical description of pairs in involution. An essential role is played by a
variation of the anti-Drinfeld centre A(C) which we denote by Q(C). It is obtained by
twisting the left action of the regular bimodule with the bidualising functor instead
of the right one and applying the centre construction to it. As in the Hopf algebraic
case, the Drinfeld centre Z(C) acts by tensoring on A(C) from the left and on Q(C)
from the right, see Theorem III.4.2. Furthermore, we prove in Theorem III.4.4
that the dualising functor of C extends to an equivalence between A(C) and the
opposite of Q(C). Accordingly, we think of Q(C) as the dual of A(C). The interplay
between the anti-Drinfeld centre and its dual allows us to show in Theorem III.4.6
that the Z(C)-module equivalence between Z(C) and A(C) are parametrised by those
objects in A(C), whose underlying objects are invertible in C. We call such objects
C-invertible. They generalise the notion of anti-Yetter–Drinfeld modules whose
underlying vector space is one-dimensional.

Our adaptation of pairs in involution to general rigid monoidal categories are what
we will call quasi-pivotal structures. These consist of an invertible object, replacing
the character, and, instead of a group-like, a monoidal natural isomorphism between
every object and a conjugate of its bidual. For a precise statement, we refer the
reader to Definition III.4.10. A simple computation, carried out in Lemma III.4.12,
identifies the C-invertible objects of the anti-Drinfeld centre A(C) with the quasi-
pivotal structures of C. This leads to one of the main results of Section III.4:
the categorical version of the Hajac–Sommerhäuser characterisation of pairs in
involution.
Theorem 2 (Theorem III.4.14). Let C be a rigid monoidal category. The following
are equivalent:

(i) The category C is quasi-pivotal.
(ii) There exists a C-invertible object in A(C).

(iii) There is an equivalence of Z(C)-module categories between Z(C) and A(C).
Heaps and induced pivotal structures. With a categorical interpretation of
pairs in involution established, we turn in the second half of Section III.4 to the
second part of Question 2 and investigate how the C-invertible objects of A(C) induce
pivotal structures on Z(C). This provides an alternative view on results given by
Shimizu in [Shi16].

The basis for our considerations is the observation that both the isomorphism
classes of C-invertible objects of the anti-Drinfeld centre and the pivotal structures
of Z(C) can be organised into heaps. That is, they admit a ternary multiplication
operation that extends the concept of affine spaces to general groups, see Section III.3.
Alternatively, a perspective on heaps as torsors is given in the article [BS11b].
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In Lemma III.4.15 we prove that the half-braiding of a C-invertible object can
be used to construct a pivotal structure on Z(C). As described in the first half
of Theorem III.4.23, this assignment can be interpreted as a morphism of heaps
between the Picard heap of the anti-Drinfeld centre of C and the heap of pivotal
structures on Z(C). This raises the question whether this morphism is injective or
surjective. While in many cases, such as C being a finite tensor category over an
algebraically closed field, two different elements of the Picard heap Pic A(C) induce
different pivotal structures, see Remark III.4.24, this is not true in general. Instead,
we have to take the symmetric or transparent invertible objects of Z(C) into account,
i.e. invertible objects in the Drinfeld centre whose half-braidings square to the
identity. These act by tensoring on Pic A(C) and we can consider the quotient heap
Pic A(C)/∼. Now, Lemma III.4.21 proves that two elements of A(C) induce the same
pivotal structure if and only if they are in the same orbit under this action. This
results, see Theorem III.4.23, in an injective heap morphism

ι : Pic A(C)/∼ → Piv Z(C).
Again, due to [Shi16], all pivotal structures on a finite tensor category over an

algebraically closed field originate from C-invertible objects in the anti-Drinfeld
centre. In the introduction of same article, Shimizu conjectures that this is not
true in general. We prove this by considering a category B that might loosely
be described as unoriented tangles in R4 with zero or one ‘bead’ threaded onto
them. The explicit description of the automorphism groups of objects in B given in
Theorem III.4.31 leads us to Theorem III.4.38:

Theorem 3. There exists a pivotal structure on Z(B) which is not induced by an
B-invertible object in A(B).

The third and last main question of this thesis has the purpose of mediating
between the Hopf algebraic and categorical view on pairs in involution. A possible
answer is due to second part of our article [HZ22].
Question 3: Is there a notion of an anti-Drinfeld double of a Hopf monad and can

it be used to detect pivotal structures?

Reconstruction revisited: Hopf and comodule monads. As described at the
beginning of the introduction, the examination of ‘structure preserving’ functors
from a rigid monoidal category C to the category of vector spaces is a crucial part in
Tannaka–Krein reconstruction. A natural generalisation of this procedure is given by
replacing Vect with any suitable monoidal ‘base’ category V , for example bimodules
over an algebra, and circumvent the need of finding an algebraic datum inside V by
studying adjunctions between C and V directly. In this manner we can subsume
various related constructions, such as Hopf algebras and Hopf algebroids([Szl03])
in one terminology: Hopf monads. Their definition and representation theory are
discussed in Section III.5. Instead of algebras over a ground field k they are based on
monads. That is, endofunctors with an associative and unital multiplication modelled
by natural transformations. Defining monads with compatible comultiplications
poses the problem that, due to the lack of canonical braidings, the axioms of
bialgebras do not generalise to endofunctors categories. A possible solution is given
in terms of mixed distributive laws, see [MW11]. The approach, which we will
follow, is due to Boardman and Moerdijk, see [Boa95, Moe02]. It is based on the
observation that for every monad B : V → V there is a bijective correspondence



9

between extensions of the monoidal structure of V to the modules VB of B and
ways of endowing B with a certain type of natural transformation. This leads to
the notion of bimonads. Theses can be thought of as parmetrisations of monoidal
categories. As defined by Bruguieres and Virelizier in [BV07], Hopf monads are
bimonads with left and right antipodes. The latter are natural transformations
modelling the rigid structures on the modules of the bimonads.

In addition to a replacement of Hopf algebras, we need a monadic version of
comodule algebras. This is given by the comodule monads of Aguiar and Chase,
see [AC12]. Let M be a module category over V . In the Tannaka–Krein dictionary
between algebraic and categorical structures, a comodule monad K : M → M over
a bimonad B : V → V corresponds to a (unique) lift of the action of V on the module
category M to an action of VB on MK .

The anti-Drinfeld double of a Hopf monad. Our construction of the anti-
Drinfeld double Q(H) of a Hopf monad H : V → V is carried out in Section III.6.
It mimics the procedure outlined in [BV12]. Since we do not assume that V is
symmetric or braided, it will implement Q(VH ) instead of A(VH ).

Building on results of Day and Street, [DS07], Bruguières and Virelizier described
in [BV12] the Drinfeld double D(H) of a Hopf monad H : V → V under the
assumption that certain colimits, called coends, exist. From these, a left adjoint
to the forgetful functor U (Z) : Z(VH ) → VH is constructed. It admits a ‘universal
coaction’ which, due to the extended factorisation property, see [BV12, Lemma 5.4],
allows us to reconstruct the central Hopf monad D(H) : VH → VH . Its modules
are equivalent as a rigid monoidal category to Z(VH ). The Drinfeld double of H
is the cross product D(H) ⋊H which, by a suitable adaptation of Beck’s theory
of distributive laws, can be described as a product of two monads on V with a
twisted multiplication. Analogous to the classical case, it parametrises the Drinfeld
centre Z(VH ). In Definition III.6.9 we introduce actions of bimonads on functors
which are in a certain sense compatible with the monoidal structures of their source
and target categories. This allows us to extend the above sketched construction
to module categories and obtain the anti-Drinfeld double Q(H) : V → V of H in
Definition III.6.17. It can either be characterised as a cross product Q(H) ⋊H of
the anti-central monad with H or, equivalently, as the composite of two monads on
V with an multiplication altered by a distributive law. The fact that the Drinfeld
centre acts on the anti-Drinfeld centre is reflected by the anti-Drinfeld double Q(H)
being a comodule monad over D(H). Accordingly, we prove in Theorem III.6.16,
that Q(H) implements the dual of the anti-Drinfeld centre Q(VH ) of VH as a right
module category over the Drinfeld centre VD(H), viewed as the modules over D(H).

Pairs in involution for the anti-Drinfeld double of a Hopf monad. Having
established the anti-double of a Hopf monad, we continue in Section III.6 by providing
a monadic version of the Hajac–Sommerhäuser theorem.

In analogy with the Hopf algebraic case, we define the characters of a Hopf monad
H : V → V to be lifts of the unit object of V to a module of H. Together with
an abstraction of group-like elements this allows us to state in Definition III.6.21
that pairs in involution of a Hopf monad consist of a group-like and a character
implementing the square of the antipode by their adjoint action. An identification
of certain monoidal natural transformations on VH with group-like elements of H
leads to Theorem III.6.24: pairs in involution correspond to quasi-pivotal structures
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on VH whose underlying invertible objects are characters of H. Furthermore, we
prove in Theorem III.6.25 that morphisms of comodule monads between the anti-
Drinfeld and Drinfeld double of H are in bijection with a particular kind of module
functors from Q(VH ) to Z(VH ). With this, we get the monadic version of the
Hajac–Sommerhäuser characterisation of pairs in involution:

Theorem 4 (Theorem III.6.26). Let H : V → V be a Hopf monad on a pivotal
category V and assume that H admits a Drinfeld and anti-Drinfeld double. The
following are equivalent:

(i) The Hopf monad H admits a pair in involution.
(ii) There exists a module over Q(H) whose underlying object is 1 ∈ V.

(iii) The Drinfeld and anti-Drinfeld double of H are isomorphic as monads.

From this we obtain as a final result of the present dissertation a connection
between the anti-Drinfeld double of a Hopf monad and certain pivotal structures. It
is given in Corollary III.6.27.

Theorem 5. Provided the necessary coends exist, a rigid category C is pivotal if and
only if there exists an isomorphism of monads between the Drinfeld and anti-Drinfeld
double of the identity Hopf monad of C

Structure and outline of the thesis. The present thesis consists of three chap-
ters, each corresponding to one of the following articles. Except from bundling the
references into a single bibliography, only minor textual and typographical changes
have been made in order to increase the coherence of the dissertation at hand.

[HK19] Sebastian Halbig and Ulrich Krähmer. A Hopf algebra without mod-
ular pairs in involution. In Geometric Methods in physics XXXVII,
2019.

[Hal21] Sebastian Halbig. Generalised Taft algebras. In Communications in
algebra, 2021.

[HZ22] Sebastian Halbig and Tony Zorman. Pivotality, twisted centres and
the anti-double of a Hopf monad. (preprint) arXiv:2201.05361, 2022.

Chapter I considers special generalised Taft algebras, called the book Hopf algebras.
In Theorem I.1.2 it is proven that while these Hopf algebras always admit a pair
in involution, the modularity condition cannot be satisfied for certain choices of
parameters.

This theory is extended considerably in Chapter II. Section II.1 provides an
introduction to the theory of pairs in involution for finite-dimensional Hopf alge-
bras. This is extended and made more precise in Section II.2. Generalised Taft
algebras are introduced in Section II.3. The classification of such Hopf algebras
without pairs in involution is the main content of Section II.4, see in particular
Theorem II.4.5 and Theorem II.4.8. Examples of generalised Taft algebras without
pairs in involution are discussed in Lemma II.4.10. The chapter is concluded in Sec-
tion II.5, where the role of pairs in involution in representation theory is investigated.

Chapter III is a continuation of these considerations. In Section III.1, the Hajac–
Sommerhäuser theorem is recalled and our strategy for generalising it is sketched.
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Section III.2 provides a recollection of the necessary categorical tools for our study.
A short discussion of heaps is given in Section III.3. The anti-Drinfeld centre and
its connection with pivotal structures are investigated in Section III.4. We prove in
Theorem III.4.14 a variant of the Hajac–Sommerhäuser theorem for rigid monoidal
categories. Theorem III.4.23 explains how certain objects of the anti-Drinfeld centre
induce pivotal structures on the Drinfeld centre. That this association is neither
injective nor surjective is discussed in Remark III.4.24 and Theorem III.4.38.

We recall Hopf monads and comodule monads in Section III.5. Section III.6 merges
the categorical with the Hopf monadic findings by developing the concept of the anti-
central monad and the anti-Drinfeld double. The main result is Theorem III.6.26, a
monadic version of the description of pairs in involution by Hajac and Sommerhäuser.
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1. Introduction

The concept of a modular pair in involution was introduced by Connes and
Moscovici, see [CM99] in order to define the Hopf-cyclic cohomology of a Hopf
algebra H over a field k. In the following we freely use standard notation from Hopf
algebra theory e.g. as in [Mon93, Rad12]. In particular, H◦ is the Hopf dual of H
and β−1 = β ◦ S is the convolution inverse of a group-like β ∈ H◦ (i.e. a character
β : H → k).

Definition 1.1. Let H be a Hopf algebra. A pair (l, β) of group-like elements
l ∈ H,β ∈ H◦ is a modular pair in involution if β(l) = 1 and
(1.1) S2(h) = β(h(3))β−1(h(1)) lh(2)l

−1

holds for all h ∈ H.

Hajac et al. extended this notion to that of stable anti-Yetter–Drinfeld modules
over Hopf algebras, see [HKRS04b]. It is also related to earlier work by Kauffman
and Radford [KR93] who classified the ribbon elements in Drinfeld doubles of finite-
dimensional Hopf algebras. Among their results they showed that if dimkH is odd
and S2 has odd order, then there is always a pair (l, β) implementing S2. The
question arises whether there are also always pairs (l, β) that additionally satisfy
the stability condition β(l) = 1. The aim of the present note is to point out that
this is not the case in general:

Theorem 1.2. Let p be a prime number, s ∈ Zp \{0}, q ∈ k be a primitive p-th
root of unity, and H be the Hopf algebra with generators g, x, y and defining algebra
and coalgebra relations

gx = qxg, gy = q−syg, gp = 1, xp = yp = 0, xy = q−syx,(1.2)
∆(g) = g ⊗ g, ∆(x) = 1 ⊗ x+ x⊗ g, ∆(y) = 1 ⊗ y + y ⊗ gs.(1.3)

Its antipode is determined by
(1.4) S(g) = g−1, S(x) = −xg−1, S(y) = −yg−s,

and H has a modular pair in involution if and only if s ∈ {0, 1, p− 1}.

The Hopf algebra H appears naturally in several contexts. In particular, it is
referred to as the book Hopf algebra in [AS98b].
Acknowledgements. We thank P.M. Hajac for pointing us to the question answered
here.

2. Proof

It is immediately verified that the group-likes in H are the elements of the form
l = gi for some integer i ∈ Zp; furthermore, a character β : H → k, has to vanish on
x, y and is determined by its value β(g) which can be any p-th root of unity in k
(including 1, in which case β = ε is the counit of H). Any such pair of a group-like
and character induces an automorphism of H via

T(l,β) : H → H, T(l,β)(h) := β(h(1))lh(2)l
−1β−1(h(3))

It is determined by its values on the generators
T(l,β)(g) = g, T(l,β)(x) = qiβ(g)x, T(l,β)(y) = q−isβ(g)sy.
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Comparing this with the square of the antipode

S2(g) = g, S2(x) = gxg−1 = qx, S2(y) = gsyg−s = q−s2
y

shows that S2 = T(l,β) if and only if

β(g) = q1−i, β(g)s = qs(i−s).

Assuming β(g) = q1−i, the modularity condition translates to
β(l) = β(g)i = qi(1−i) = 1.

Furthermore, β(g)s = qs(i−s) reduces to qs(2i−s−1) = 1. Using the identification of
the p-th roots of unity with Zp given by q ↦→ 1, we observe that (l, β) is a modular
pair in involution if and only if modulo p we have

i(1 − i) = 0 and s(2i− s− 1) = 0.
For i = 0 this means −s(s+ 1) = 0 and for i = 1 it means s(1 − s) = 0 in Zp. The
claim follows. □
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1. Introduction

Main result. A pair in involution for a Hopf algebra H over a field k is a pair (l, β)
of a group-like l ∈ H and a character β : H → k such that the square of the antipode
is given by the conjugate action of l and β. In a vague sense, it can be imagined
to be similar to a ‘square-root’ of Radford’s S4-formula. Often one additionally
requires the pair to be modular, i.e to satisfy β(l) = 1. Pairs in involution appear
in many different contexts within Hopf algebra theory, reaching from Hopf-cyclic
cohomology [CM99, HKRS04b, HS10] to knot invariants [KR93]. Kauffman and
Radford showed in the aforementioned article that the square of the antipode of
certain Taft algebras is not implemented by square-roots of the distinguished group-
likes, see [KR93, Proposition 7]. Nonetheless, these Hopf algebras admit modular
pairs in involution. In a previous work by Krähmer and the author, see [HK19],
examples of Hopf algebras were given, whose pairs in involution do not satisfy
the modularity condition. The paper at hand builds upon this result and proves
the existence of finite-dimensional Hopf algebras without such pairs. Hereto, we
introduce generalised Taft algebras, a class of Hopf algebras containing the examples
of [HK19]. As algebras, these are generated by a group-like g and two twisted
primitives x and y such that g spans a cyclic group and x and y are nilpotent.
Moreover, the generators are required to commute up to some roots of unity. The
details of this presentation are given in Theorem 3.14. For a generalised Taft algebras
pairs in involution correspond to solutions of systems of Diophantine equations,
see Theorem 4.5. The main result, Theorem 4.8, gives necessary and sufficient
conditions for the non-existence of such solutions. In Lemma 4.10 we apply the
above result to show that there are finite-dimensional Hopf algebras without these
pairs. Additionally, Lemma 5.1 shows that Hopf algebras which are isomorphic only
as algebras need not share the property of having a pair in involution.

Pivotal categories and anti-Yetter–Drinfeld modules. A pivotal category is
a monoidal category with a notion of duality and a natural isomorphism between
any object and its bidual which is compatible with the monoidal structure. An
example are the finite-dimensional modules over pivotal Hopf algebras. As discussed
in Section 5, a finite-dimensional Hopf algebra has a pair in involution if and only if
its Drinfeld double is pivotal. Another way of describing this interplay is via anti-
Yetter–Drinfeld modules, which arose in the field of Hopf-cyclic cohomology. Similar
to Yetter–Drinfeld modules, they are simultaneously modules and comodules over a
Hopf algebra with a compatibility condition between the action and coaction. For a
finite-dimensional Hopf algebra one can construct an algebra called the anti-Drinfeld
double, whose modules correspond to anti-Yetter–Drinfeld modules. The existence
of a pair in involution is equivalent to the Drinfeld double and the anti-Drinfeld
double being isomorphic as algebras. As a consequence of our findings there are
examples where such an isomorphism does not exist. In this case the Drinfeld double
is not a pivotal Hopf algebra.

Outline. This article is organised as follows. Section 2 serves as a summary of
the theory of pairs in involution with a focus on finite-dimensional Hopf algebras.
In Section 3 we introduce the main object of our study, generalised Taft algebras,
and give an ‘easy-to-work-with’ presentation. The classification of all of these Hopf
algebras admitting a pair in involution is carried out in Section 4. Afterwards we
discuss examples of Hopf algebras with and without such pairs. We conclude the
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paper with Section 5, where we apply our results to the context of representation
theory.
Acknowledgements. The author would like to thank P. Hajac for his kind invita-
tion to IMPAN. He would also like to thank I. Heckenberger and U. Krähmer for
many stimulating discussions.

2. Pairs in involution

We work over an algebraically closed field k of characteristic zero; ‘dim’ and ‘⊗’
ought to be understood as dimension and tensor product over k. Standard notation
for Hopf algebras, as in e.g. [Mon93, Rad12], is freely used. Given a Hopf algebra
H we write Gr(H) for its group of group-likes, Pr(H) for its space of primitive
elements and H◦ for its (finite) dual Hopf algebra. The antipode of H is denoted
by S : H → H, its counit by ϵ : H → k and its coproduct by ∆: H → H ⊗H. For
calculations involving the coproduct of H or the coaction of some comodule M over
H we rely on reduced Sweedler notation. For example we write h(1) ⊗ h(2) := ∆(h)
for h ∈ H. An element x ∈ H whose coproduct is ∆(x) = 1 ⊗ x + x ⊗ g, for
g ∈ Gr(H) a group-like, is called a twisted primitive.

Modular pairs in involution play the role of coefficients for Hopf-cyclic cohomology
as introduced by Connes and Moscovici [CM99]. Later on, it was realised by Hajac
et al. [HKRS04a] that this notion can be extended to that of (stable) anti-Yetter–
Drinfeld modules, which we discuss in Section 3.

Definition 2.1. Let H be a Hopf algebra over k. A pair (l, β) comprising group-like
elements l ∈ Gr(H) and β ∈ Gr(H◦) is a pair in involution if it satisfies the antipode
condition
(AC) S2(h) = β(h(3))β−1(h(1)) lh(2)l

−1, for all h ∈ H.

If additionally the modularity condition
(MC) β(l) = 1
holds, it is called a modular pair in involution.

A left integral of a Hopf algebra H is an element Λ ∈ H such that hΛ = ϵ(h)Λ
for all h ∈ H. If H is finite-dimensional, its left integrals form a one-dimensional
subspace L(H) ⊂ H . There is a unique group-like α ∈ Gr(H◦) such that Λh = α(h)Λ
for all Λ ∈ L(H) and h ∈ H . It is called the distinguished group-like of H◦. Radford
proved that the fourth power of the antipode is implemented by the distinguished
group-likes of a Hopf algebra and its dual [Rad76].

Theorem 2.2 (Radford’s S4-formula). Let H be a finite-dimensional Hopf algebra
and g ∈ Gr(H), α ∈ Gr(H◦) the distinguished group-likes of H and H◦. Then the
fourth power of the antipode is given by
(2.1) S4(h) = α(h3)α−1(h(1)) g−1h(2)g, for all h ∈ H.

In their paper on the classification of ribbon elements of Drinfeld doubles Kauff-
man and Radford studied ‘square roots’ of the distinguished group-likes to obtain a
formula for the square of the antipode, see [KR93]. The next lemma follows from
[KR93, Proposition 6].
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Lemma 2.3. Let H be a pointed Hopf algebra, i.e. a Hopf algebra whose simple
comodules are one-dimensional. If the dimension of H is odd, it has a pair in
involution (l, β) such that g := l−2 and α := β2 are the distinguished group-likes of
H and H◦, respectively.

Let us conclude this section with a remark on the representation theoretic
viewpoint on pairs in involution. Given a finite-dimensional Hopf algebra H one
can associate to it its category of finite-dimensional Yetter–Drinfeld modules, see
Section 3.1. It is a rigid category; i.e it is monoidal together with a notion of
duality compatible with its monoidal structure. In this context a pair in involution
corresponds to, and can be reconstructed from, a monoidal natural isomorphism
between the identity functor and the functor which maps objects and morphisms
to their biduals. A rigid category admitting such a structure is called pivotal. In
Section 5 we will discuss the correspondence between pairs in involution and the
pivotality of Yetter–Drinfeld modules.

3. Generalised Taft algebras

The strategy behind defining generalised Taft algebras is as follows. Fix a finite
cyclic group G. Choose a Yetter–Drinfeld module V over the group algebra kG
whose braiding is subject to certain relations. The bosonisation of the Nichols
algebra of V along kG yields another Hopf algebra. This will be referred to as the
coopposite of a generalised Taft algebra, see Definition 3.11. A presentation in terms
of generators and relations is obtained in Theorem 3.14.

3.1. Yetter–Drinfeld and anti-Yetter–Drinfeld modules. Unless stated other-
wise, every Hopf algebra in this section is assumed to have an invertible antipode.

The next Definition agrees with [EGNO15, Definition 7.15.2].

Definition 3.1. A Yetter–Drinfeld module over a Hopf algebra H is a k-vector space
M together with a module structure ▷ : H ⊗M → M and a comodule structure
δ : M → H ⊗M satisfying the compatibility condition
(YD) δ(h▷m) = h(1)m(−1)S(h(3)) ⊗ h(2) ▷m(0), ∀h ∈ H,m ∈ M.

A linear map f : M → N between Yetter–Drinfeld modules is called a morphism of
Yetter–Drinfeld modules if it is both a module and comodule morphism.

Remark 3.2. The Yetter–Drinfeld modules over a Hopf algebra H form the category
H
HYD. The diagonal action and coaction of H define a monoidal structure on it, see
[EGNO15, Chapter 7.15]. If the antipode of H is invertible, the natural isomorphism
(3.1) σM,N : M ⊗N → N ⊗M, m⊗ n ↦→ m(−1) ▷n⊗m(0).

turns H
HYD into a braided category. This is explained in Chapters 7 and 8 of

[EGNO15]. Yetter–Drinfeld modules over a finite-dimensional Hopf algebra H
coincide with modules over its Drinfeld double D(H), see [Kas95, Chapter IX]6.

6 The definition of the Drinfeld and anti-Drinfeld double given here varies from [Kas95, Chapter
IX.4] and [HKRS04b, Proposition 4.1] to accommodate our choice of (anti-)Yetter–Drinfeld modules.
In terms of the literature listed above our definition would read as D(Hcop)cop and A(Hcop)cop.
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It is the vector space H◦ ⊗ H whose Hopf algebra structure is for g, h ∈ H and
α, β ∈ H◦ defined by

(DD)
(α⊗ g)(β ⊗ h) := β(1)(S(g(1)))β(3)(g(3))β(2)α⊗ g(2)h,

∆(α⊗ g) := (α(1) ⊗ g(1)) ⊗ (α(2) ⊗ g(2)),
S(α⊗ g) := α(1)(g(1))α(3)(S(g(3)))S−1(α(2)) ⊗ S(g(2)).

Remark 3.3. The anti-Drinfeld double A(H) of a finite-dimensional Hopf algebra
H was introduced in [HKRS04b, Proposition 4.1]6. It is a comodule algebra over
the Drinfeld double D(H). As a vector space it is H◦ ⊗H. The multiplication and
coaction are given by

(ADD)
(α⊗ g)(β ⊗ h) := β(1)(S(g(1)))β(3)(S−2(g(3)))β(2)α⊗ g(2)h,

δ(α⊗ g) := (α(1) ⊗ g(1)) ⊗ (α(2) ⊗ g(2)),
for g, h ∈ H and α ∈ H◦. Modules over A(H) correspond to anti-Yetter–Drinfeld
modules, see [HKRS04b, Definition 2.1]. That is, triples (M, ▷ , δ) comprising a
vector space M , an action ▷ : H ⊗M → M and a coaction δ : M → H ⊗M such
that
(AYD) δ(h▷m) = h(1)m(−1)S

−1(h(3)) ⊗ h(2) ▷m(0), ∀h ∈ H,m ∈ M.

In general, anti-Yetter–Drinfeld modules do not form a monoidal category but a
module category over the Yetter–Drinfeld modules [HKRS04b, Lemma 2.3].

Our interest in anti-Yetter–Drinfeld modules is due to the following unpublished
result by Hajac and Sommerhäuser. We include a proof for the reader’s convenience.
Theorem 3.4. Suppose H to be a finite-dimensional Hopf algebra. The following
are equivalent:

(i) The Hopf algebra H admits a pair in involution.
(ii) There exists an anti-Yetter–Drinfeld module with k-dimension one.

(iii) The Drinfeld and anti-Drinfeld double of H are isomorphic as algebras.
Proof. We start with (iii) =⇒ (ii): Assume f : A(H) → D(H) to be an iso-
morphism of algebras. The ground field k considered as the trivial D(H)-module
becomes a one-dimensional A(H)-module by pulling back the action along f .

(ii) =⇒ (i) : Let (k, ▷ , δ) be a one-dimensional anti-Yetter–Drinfeld module.
Its action and coaction are implemented by group-like elements β−1 ∈ Gr(H◦) and
l ∈ Gr(H). We identify H ∼= H ⊗ k and observe

(3.2) β−1(h(2))S(h(1))l = S(h(1))δ(h(2) ▷ 1) (AYD)= β−1(h(1))lS−1(h(2)) ∀h ∈ H.

Applying S to both sides of Equation (3.2) shows that (l, β) is a pair in involution.
(i) =⇒ (iii) : Given a pair in involution (l, β) we define the linear map

f : A(H) → D(H), α⊗g ↦→ α(2)(l)β−1(g(2)) α(1) ⊗g(1) and compute for all elements
(α⊗ g), (γ ⊗ h) ∈ A(H):
f((α⊗ g)(γ ⊗ h)) = γ(1)(S(g(1)))γ(3)(S−2(g(3))) f(γ(2)α⊗ g(2)h)

= γ(1)(S(g(1)))γ(4)(S−2(g(4)))γ(3)(l)α(2)(l)β−1(g(3))β−1(h(2)) γ(2)α(1) ⊗ g(2)h(1)

= γ(1)(S(g(1)))γ(3)
(︁
β−1(g(3))lS−2(g(4))

)︁
α(2)(l)β−1(h(2)) γ(2)α(1) ⊗ g(2)h(1)

(AC)= γ(1)(S(g(1)))γ(3)(g(3))γ(4)(l)α(2)(l)β−1(g(4))β−1(h(2)) γ(2)α(1) ⊗ g(2)h(1)

= f((α⊗ g))f((γ ⊗ h)).
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This proves f to be a morphism of algebras. Its inverse is f−1 : D(H) → A(H),
α⊗ g ↦→ α(2)(l−1)β(g(2)) α(1) ⊗ g(1). □

Our next result shows that the existence of a pair in involution corresponds to a
suitably strong notion of Morita equivalence between the Drinfeld and anti-Drinfeld
double. Given an algebra A we write UA : A-Bimod → A-Mod for the forgetful
functor from the category of bimodules over A to the category of left A-modules.

Lemma 3.5. Let H be a finite-dimensional Hopf algebra. It is equivalent:
(i) H has a pair in involution.

(ii) There are k-linear equivalences of categories F : D(H)-Mod → A(H)-Mod
and G : D(H)-Bimod → A(H)-Bimod such that a natural isomorphism
η : F UD(H) → UA(H) G exists.

Proof. Suppose H has a pair in involution. By Theorem 3.4 there exists an iso-
morphism of algebras f : A(H) → D(H). Let F : D(H)-Mod → A(H)-Mod be the
functor that identifies modules over D(H) with modules over A(H) by pulling back
the action along f and define G : D(H)-Bimod → A(H)-Bimod likewise. Both, F
and G are k-linear equivalences of categories and F UD(H) = UA(H) G.

Conversely, assume F , G and η to be as described above. Let Xbi := (X, ▷ , ◁ )
be a bimodule over D(H). Set Xl := UD(H)(Xbi) = (X, ▷ ) and write Y := F (Xl).
The module endomorphisms EndA(H)(Y ) themselves become a module over A(H)
via

▷̃ : A(H) ⊗ EndA(H)(Y ) → EndA(H)(Y ), (a ▷̃ϕ)(x) := ϕ(η−1
Xbi

(ηXbi
(x) ◁ a)).

As F is a k-linear equivalence of categories EndD(H)(Xl) ∼= EndA(H)(Y ) as k-vector
spaces. Choose Xbi := ϵkϵ to be the trivial bimodule over D(H). Then Xl = ϵk is the
trivial D(H)-module and EndA(H)(F (ϵk)) is a one-dimensional module over A(H).
The existence of a pair in involution follows from Theorem 3.4. □

3.2. Nichols algebras and bosonisations. We follow the survey articles [AS02,
AA17] in recalling some aspects of Nichols algebras of diagonal type. Until the end
of this subsection we fix a Hopf algebra H with invertible antipode.

The definition of Hopf algebras generalises naturally to braided monoidal cat-
egories. A Hopf algebra R in the category of Yetter–Drinfeld modules over some
Hopf algebra H is referred to as a braided Hopf algebra. Our next definition follows
[AS02, Definition 2.1] almost verbatim.

Definition 3.6. Let V be a Yetter–Drinfeld module over H. A Nichols algebra of
V is a braided graded Hopf algebra B(V ) = ⊕n≥0 B(V )n ∈ H

HYD satisfying
(i) B(V )0 = k,
(ii) B(V )1 = Pr(B(V )) ∼= V , and
(iii) B(V ) is generated as an algebra by B(V )1.

Proposition 2.2 of [AS02] asserts the existence of Nichols algebras and their
uniqueness up to isomorphism. By abuse of notation we will speak of the Nichols
algebra in the following. As explained in [AS02, Definition 1.6], different types of
Nichols algebras are distinguished in terms of their braidings.
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Definition 3.7. Let V be a θ-dimensional Yetter–Drinfeld module over H. Write
σ := σV,V : V ⊗ V → V ⊗ V for its braiding. An ordered k-basis {v1, . . . , vθ} of V
is said to be of diagonal type if
(3.3) σ(vi ⊗ vj) = qijvj ⊗ vi, qij ∈ k for 1 ≤ i, j ≤ θ.

Accordingly, V and B(V ) are referred to be of diagonal type if V has an ordered
basis of diagonal type. The matrix (qij) ∈ kθ×θ is called the matrix of the braiding.

Finite-dimensional Nichols algebras of diagonal type were classified by Hecken-
berger in terms of generalised Dynkin diagrams, see [Hec09]. The Nichols algebra
part of a generalised Taft algebra corresponds to a diagram of A1×A1-type.

Definition 3.8. A Yetter–Drinfeld module V over H is of A1×A1-type if a basis of
diagonal type exists whose matrix of the braiding (qij) ∈ k2×2 satisfies:
(3.4) Its entries are roots of unity, q11, q22 ̸= 1 and q12q21 = 1.
Likewise, its Nichols algebra B(V ) is also referred to as of A1×A1-type.

Nichols algebras of A1×A1-type are also called quantum planes, see [AS98a].

Remark 3.9. A direct computation shows that whether a Yetter–Drinfeld module
is of A1×A1-type does not depend on the choice of basis of diagonal type.

The bosonisation or biproduct of a braided Hopf algebra R over H equips the
vector space R ⊗ H with the structure of a Hopf algebra, see [Rad12, Theorems
11.5.7 and 11.6.9]. To distinguish between the coaction and comultiplication of R we
use a slight variation of Sweedler notation and write r(1) ⊗ r(2) := ∆(r) for r ∈ R.

Definition 3.10. Let H be a Hopf algebra whose antipode is invertible and R a
braided Hopf algebra in H

HYD. The bosonisation of R by H is the Hopf algebra R#H ,
whose underlying vector space is R⊗H and whose multiplication, comultiplication
and antipode is defined for g, h ∈ H and r, s ∈ R by

(3.5)

(r ⊗ g)(s⊗ h) := r(g(1) ▷ s) ⊗ g(2)h,

∆(r ⊗ g) := r(1) ⊗ (r(2))(−1)g(1) ⊗ (r(2))(0) ⊗ g(2),

S(r ⊗ g) := SH(r(−2)g(2)) ▷SR(r(0)) ⊗ SH(r(−1)g(1)).

3.3. Generalised Taft algebras. We define now the main object under investiga-
tion, generalised Taft algebras. In Theorem 3.14 we obtain a presentation in terms
of generators and relations.

Definition 3.11. Let V be a Yetter–Drinfeld module of A1 ×A1-type over the
group algebra kG of a finite cyclic group G. We call (B(V )#kG)cop a generalised
Taft algebra.

In the above definition the coopposite is chosen to match the definition of Taft
algebras as given for example in [KR93, p. 113].

Let N ≥ 2 be a natural number. We write ZN := Z/NZ.

Definition 3.12. A matrix (aij) ∈ Z2×2
N whose entries satisfy modulo N

(3.6) a11a12 ̸= 0, a21a22 ̸= 0, a11a22 + a12a21 = 0
is called a parameter matrix of a generalised Taft algebra.

Parameter matrices allow us to define Yetter–Drinfeld modules of A1×A1-type.
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Lemma 3.13. Let N ≥ 2 and (aij) ∈ Z2×2
N . Fix a generator g ∈ ZN and a primitive

N -th root of unity q ∈ k. The Yetter–Drinfeld module V := spank{x, y}, defined by
δ(x) := ga11x, δ(y) := ga21y, g ▷x := qa12x, g ▷ y := qa22y,(3.7)

generates a generalised Taft algebra (B(V )#kZN )cop if and only if (aij) is a parameter
matrix.

Proof. The matrix of the braiding of V is, with respect to the ordered basis {x, y},
given by qij := qaj1ai2 . Identifying q with a generator of ZN shows that V is of
A1×A1-type if and only if (aij) is a parameter matrix. □

Given a matrix (aij) ∈ Z2×2
N , we write Nx := ord(a11a12) and Ny := ord(a21a22)

for the orders of a11a12 and a21a22 in ZN , respectively.

Theorem 3.14. Let H be a generalised Taft algebra. Then there exists an integer
N ≥ 2, a parameter matrix (aij) ∈ Z2×2

N and a primitive N -th root of unity q ∈ k
such that H is generated by elements g, x, y ∈ H subject to the relations

xNx = 0, yNy = 0, xy = qa11a22yx,(3.8a)
gN = 1, gx = qa12xg, gy = qa22yg,(3.8b)

∆(g) = g ⊗ g, ∆(x) = 1 ⊗ x+ x⊗ ga11 , ∆(y) = 1 ⊗ y + y ⊗ ga21 ,(3.8c)
S(g) = g−1, S(x) = −xg−a11 , S(y) = −yg−a21 .(3.8d)

Proof. By definition H = (B(V )#kZN )cop for some N ≥ 2. We fix a generator
g ∈ ZN and a primitive N -th root of unity q ∈ k. As a vector space V admits an
ordered basis {x, y} such that a matrix (aij) ∈ Z2×2

N exists which implements the
action and coaction as in Equation (3.7), see [AS02, Remark 1.5]. The preceding
lemma shows that (aij) needs to be a parameter matrix. Every element z ⊗ h ∈ H
can be factorised into the product (z ⊗ 1)(1 ⊗ h), for z ∈ B(V ) and h ∈ kZN ,
implying that g := 1 ⊗ g, x := x ⊗ 1 and y := y ⊗ 1 generate H. The relations
(3.8a) follow from [Hec07, Corollary 8.1]. The definition of the multiplication of
bosonisations and gN = 1 imply the relations (3.8b). The coproduct and antipode
of the generators are obtained by the respective formulas in Definition 3.10. □

Convention. We fix some of the notation of this section. From now onwards
N ≥ 2 denotes an integer and 1 ̸= q ∈ k a primitive N -th root of unity. We
write A := (aij) ∈ Z2×2

N for a parameter matrix and H := Hq(A) for its associated
generalised Taft algebra, generated by elements g, x and y. In particular, g generates
the group Gr(H) and x and y are nilpotent of degree Nx and Ny, respectively.

4. Hopf algebras without pairs in involution

We show that similar to Taft algebras their generalisations form a class of basic,
pointed Hopf algebras, which is closed under duality. Our main result, Theorem
4.8, states necessary and sufficient conditions for these Hopf algebras to admit pairs
in involution. Thereafter, we investigate how various properties of generalised Taft
algebras affect the existence of such pairs. In Lemma 4.10 we construct an infinite
family of examples of finite-dimensional Hopf algebras without pairs in involution.
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4.1. Properties of generalised Taft algebras. To prove that the class of gener-
alised Taft algebras is closed under duality, we identify generators of the dual. For
a generalised Taft algebra H := Hq(A), generated by g, x, y ∈ H, we specify linear
maps ξ, ψ, ϕ : H → k by their values on the basis {xiyjgl | 0 ≤ i, j, l ≤ Nx, Ny, N}
of H:

(4.1)
ξ(xiyjgl) = q−lδi=j=0, ψ(xiyjgl) = q−a12lδi=1,j=0,

ϕ(xiyjgl) = q−a22lδi=0,j=1.

Given a matrix A ∈ Z2×2
N we write A21 for the matrix obtained by interchanging

the first with the second column of A. The next result is implied by [Nen04,
Proposition 3.1].

Theorem 4.1. Let H := Hq(A) be a generalised Taft algebra and write ḡ, x̄
and ȳ for the generators of Hq(A21). There is an isomorphism of Hopf algebras
Θ: Hq(A21) → H◦ defined by Θ(ḡ) = ξ, Θ(x̄) = ψ and Θ(ȳ) = ϕ.

A Hopf algebra is called pointed if every simple comodule is one-dimensional; if
every simple module is one-dimensional it is called basic.

Lemma 4.2. Generalised Taft algebras are pointed and basic.

Proof. The first claim follows from [Rad12, Proposition 4.4.9]. The second is a
consequence of the former one and Theorem 4.1. □

We determine the left integrals and distinguished group-likes of generalised Taft
algebras. The latter will prove useful in the study of the square of the antipode.
This is a standard exercise, see for example [AA17, Section 2.12].

Lemma 4.3. Let H := Hq(A) be a generalised Taft algebra. The left integrals of H
and H◦ are up to scalar multiplication

Λ :=
(︃∑︂N−1

i=0
gi

)︃
xNx−1yNy−1 ∈ H and Υ :=

(︃∑︂N−1

i=0
ξi

)︃
ψNx−1ϕNy−1 ∈ H◦.

The elements ξ−(a12+a22) ∈ H◦ and g−(a11+a21) ∈ H are the distinguished group-likes
of H◦ and H, respectively.

Proof. By multiplying Λ with the generators of H we see that it is a left integral
and that ξa12(Nx−1)+a22(Ny−1) is the distinguished group-like of H◦. Modulo N we
have a12Nx = a22Ny = 0 and therefore ξa12(Nx−1)+a22(Ny−1) = ξ−(a12+a22). The
results for H◦ follow by applying the isomorphism of Theorem 4.1. □

The motivation behind Kauffman’s and Radford’s study of the square of the
antipode, see [KR93], was understanding Hopf algebras which give rise to knot
invariants. This necessarily requires the Hopf algebra to be quasitriangular. That
is, roughly speaking, an encoding of the notion of braidings on the level of Hopf
algebras, see [Kas95, Chapters VIII and XIII]. The next Lemma is implied by
Theorem 3.4 of [Nen04].

Lemma 4.4. Let H := Hq(A) be a generalised Taft algebra with generators g, x, y.
Recall that Nx, Ny ∈ N were the minimal positive integers such that xNx = 0 and
yNy = 0. Then H is quasitriangular if and only if N is divisible by 2, Nx = Ny = 2
and a11 = a21 = N

2 .
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4.2. Pairs in involution as solutions of Diophantine equations. To find
necessary and sufficient criteria for generalised Taft algebras to not admit a pair in
involution we study the behaviour of the square of the antipode. Fix a generalised
Taft algebra H := Hq(A). Its square of the antipode is determined by

S2(g) = g, S2(x) = qa11a12x, S2(y) = qa21a22y.

Likewise, the fourth power of the antipode is
S4(g) = g, S4(x) = q2a11a12x, S4(y) = q2a21a22y.

Now, consider the family of Hopf algebra automorphisms T(l,β) : H → H which is
indexed by a pair of group-likes l ∈ Gr(H), β ∈ Gr(H◦) and defined via

T(l,β)(h) = β(h(3))β−1(h(1)) lh(2)l
−1, for all h ∈ H.

Definition 2.1 states that H has a pair in involution if and only if there exists a
pair of group-like elements (l, β) such that T(l,β) = S2. Every group-like l ∈ Gr(H)
and character β ∈ Gr(H◦) can uniquely be written as l = gd and β = ξ−c with
c, d ∈ ZN . Evaluating T(gd,ξ−c) on the generators yields

T(gd,ξ−c)(g) = g, T(gd,ξ−c)(x) = qa11c+a12dx, T(gd,ξ−c)(y) = qa21c+a22dy.

Identifying the N -th roots of unity with ZN via q ↦→ 1 implies our next theorem.

Theorem 4.5. Let q be a primitive N -th root of unity. A generalised Taft algebra
Hq(A) has a pair in involution if and only if c, d ∈ ZN exist such that modulo N
(4.2) a11c+ a12d = a11a12, a21c+ a22d = a21a22.

The pair is modular if and only if it additionally satisfies modulo N

(4.3) cd = 0.

Remark 4.6. Lemma 4.3 and the discussion prior to the above theorem imply that
for a given parameter matrix (aij) ∈ Z2×2

N of a generalised Taft algebra the integers
c′ := a12 + a22, and d′ := a11 + a21 satisfy modulo N

a11c
′ + a12d

′ = 2a11a12, a21c
′ + a22d

′ = 2a21a22.

If N is odd, 2 is invertible modulo N . In this case (4.2) has a solution.

Consequently, a generalised Taft algebra without pairs in involution necessarily
needs to have a group of group-likes of even order N . In fact, the existence of such
a pair depends on the behaviour of the entries of the parameter matrix modulo 2n,
where n ∈ N0 is the maximal integer such that 2n divides N .

Definition 4.7. Suppose 2n ·j ≥ 2, with j odd, and let (aij) ∈ Z2×2
2nj be a parameter

matrix of a generalised Taft algebra. The matrix of powers associated to (aij) is the
matrix (aij) ∈ N2×2

0 whose entries are the minimal non-negative integers satisfying
(4.4) 2aijµij = aij mod 2n, for µij ∈ Z2n invertible or zero.
The matrix (µij) ∈ Z2×2

2n is called the matrix of coefficient of (aij). The power of the
coefficient matrix is the minimal integer τ ∈ N0 such that 2τν = det(µij) modulo
2n, with ν ∈ Z2n invertible or zero.

Theorem 4.8. Suppose 2n · j ≥ 2, with j odd. Let q ∈ k be a primitive 2nj-th root
of unity and (aij) a parameter matrix whose matrices of powers and coefficients are
(aij) and (µij), respectively. Write τ for the power of (µij). It is equivalent:
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(i) Hq(aij) has no pair in involution,
(ii) n ≥ 1, µij ̸= 0 for 1 ≤ i, j ≤ 2, a11 + a22 < n, a11 ̸= a21 and either

τ > min{aij | 1 ≤ i, j ≤ 2} or det(µij) = 0 modulo 2n.

Proof. We prove H having a pair in involution equivalent to at least one of the
above conditions not being met. By Theorem 4.5 this amounts in solving

(4.5)
(︃
a11 a12 a11a12
a21 a22 a21a22

)︃

modulo 2nj. As χ : Z2nj → Zj × Z2n , (x mod 2n · j) ↦→ (x mod j, x mod 2n) is
an isomorphism of rings this is equivalent to the solvability of the above equation
modulo j and modulo 2n, respectively. In Remark 4.6 a solution modulo j was
given. Thus, H has a pair in involution if and only if Equation (4.5) is solvable
modulo 2n. If n = 0, this is trivially the case. Hence, we assume n ≥ 1. Using the
matrices of powers and coefficients, Equation (4.5) can be expressed modulo 2n as

(4.6)
(︃
µ112a11 µ122a12 µ11µ122a11+a12

µ212a21 µ222a22 µ21µ222a21+a22

)︃
.

We may assume without loss of generality that a11 ≤ aij for 1 ≤ i, j ≤ 2.
If one of the terms on the right hand side is zero, a solution can be written down

directly. For example, if µ12 = 0 or 2a11+a12 = 0, take (0, µ212a21)T ∈ Z2
2n . We

therefore assume µij ̸= 0 in the following. A less obvious implication follows from
the identity a11a22 + a21a12 = 0 modulo N , which reads in our setting as
(4.7) µ11µ222a11+a22 + µ12µ212a12+a21 = 0 mod 2n.
If a11 +a22 ≥ n, or equivalently a21 +a12 ≥ n, the second entry of the right hand side
of (4.6) is zero. Hence, we furthermore add a11 + a22 < n to our list of assumptions,
which in particular implies
(4.8) a11 + a22 = a21 + a12.

We transform (4.6) into upper triangular form by multiplying the second row with
µ11 and then subtracting the first row µ212a21−a11 -times from it. Using Equations
(4.7) and (4.8), this simplifies to

(4.9)
(︃
µ112a11 µ122a12 µ11µ122a11+a12

0 det(µij)2a22 (µ22µ11)(µ212a21−a11 + µ11)2a11+a22

)︃
.

By the minimality of a11 Equations (4.6) and (4.9) have the same set of solutions and
the solvability of (4.9) depends only on the existence of a solution for the equation
displayed in its second row. We want to simplify this equation further. By the
definition of the power of the coefficient matrix there exists an element ν ∈ Z2n , which
is invertible or zero, such that det(µij) = 2τν. Additionally, we define in the same
spirit ρ ∈ N to be the minimal number such that (µ22µ11)(µ212a21−a11 +µ11) = 2ρϖ
for ϖ ∈ Z2n , with ϖ invertible or zero. We divide the second row of Equation (4.9)
by 2a22 and observe that it is solvable if and only if a d ∈ Z2n−a22 exists such that
(4.10) 2τν · d = 2a11+ρϖ mod 2n−a22 .

There are three cases which might occur.
First, the right hand side might be zero and the equation is trivially solvable.

This is the case if and only if ϖ = 0 or ρ+a11 ≥ n−a22. One verifies that necessarily
a21 = a11 needs to hold.



28

Second, The right hand side of Equation (4.10) is not zero but a11 = a21. Thus,
we have ρ ≥ 1. By Equation (4.7) µ12µ21 = −µ11µ22 modulo 2n−(a11+a22) and we
can write 2τν = det(µij) = 2(µ11µ22 + λ2n−(a11+a22+1)) for a λ ∈ Z. Since the right
hand side of Equation (4.10) is non-zero we have a11 + a22 < n − ρ ≤ n − 1 and
(µ11µ22 + λ2n−(a11+a22+1)) is, as the sum of an odd and even integer, invertible
modulo 2n−a22 . In other words, ν ̸= 0, 1 = τ ≤ ρ and a solution d ∈ Z2n−a22 exists.

Finally, consider the case where the right hand side of Equation (4.10) is not zero
and a11 ̸= a21. Then ρ = 0 and ϖ ≠ 0. A solution exists if and only if τ ≤ a11 and
ν ̸= 0. □

We study the effect of the order of the group of group-likes of a generalised Taft
algebra on the existence of pairs in involution.

Lemma 4.9. Let q ∈ k be a primitive 2nj-th root of unity, with j odd, and Hq(A)
a generalised Taft algebra without a pair in involution. Then n ≥ 2 and 2nj ̸= 4.

Proof. Assume Hq(A) to not admit a pair in involution, which implies n ≥ 1. Let
(aij) be the matrix of powers associated to A. In case n = 1, it is the zero matrix
and by Theorem 4.8 a pair in involution exists. If 2nj = 4, note that we have
without loss of generality 0 = a11 ̸= a21 = 1. The discussion prior to Equation (4.8)
shows that a11 + a22 = a12 + a21 and, therefore, a22 = 1. But a21 + a22 = 2 implies
a12a22 = 0 modulo 4, contradicting that A is a parameter matrix. □

Conversely, we obtain for every natural number 4 · N ≥ 8 an example of a
generalised Taft algebra without such a pair.

Lemma 4.10. Let N ≥ 2 be a natural number and q ∈ k a primitive 4N -th root of
unity. The generalised Taft algebra Hq

(︁ 1 1
2 −2

)︁
has no pair in involution.

Proof. The matrices of powers and coefficients associated to
(︁ 1 1

2 −2
)︁

are (aij) = ( 0 0
1 1 )

and (µij) =
(︁ 1 1

1 −1
)︁
. Since det(µij) = −2, Theorem 4.8 implies that Hq

(︁ 1 1
2 −2

)︁
does

not admit a pair in involution. □

Remark 4.11. Suppose q ∈ k to be a primitive p-th root of unity for p > 2 an odd
prime number. For any s ∈ Zp \ {0}, the generalised Taft algebra Hq

(︁ 1 1
s −s

)︁
has a

pair in involution. In [HK19], Krähmer and the author showed, however, that the
modularity condition can only be satisfied if s ∈ {1, p− 1}.

Requiring the existence of additional structures on generalised Taft algebras
might restrict the possible choices of parameter matrices severely. We conclude this
section by investigating two such cases and their influence on pairs in involution.

The next theorem, whose proof resembles [KR93, Theorem 3], will help us greatly
in that respective. It links the existence of such pairs to their existence for the dual
and Drinfeld double.

Theorem 4.12. Let H be a finite-dimensional Hopf algebra. If any of the Hopf
algebras H, H◦ or D(H) admit a pair in involution, then all do.

Proof. Let (l, β) be a pair in involution for the finite-dimensional Hopf algebra H.
For any ω ∈ H◦ and h ∈ H we compute

S2(ω)(h) = ω(S2(h)) = β(h(3))β−1(h(1))ω(lh(2)l
−1)

= ω(1)(l)ω(3)(l−1) (β−1ω(2)β)(h).
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Thus, (β−1, l−1) is a pair in involution for H◦. The converse statement follows by
the same argument and the fact that H is isomorphic to its bidual.

For any element ω ⊗ h ∈ D(H) we have

(4.11)
S2(ω ⊗ h) = (S−2(ω) ⊗ 1)(ε⊗ S2(h))

= ω(1)(l−1)ω(3)(l)β−1(h(1))β(h(3))(βω(2)β
−1 ⊗ lh(2)l

−1)
= ω(1)(l−1)ω(3)(l)(ω(2)β

−1 ⊗ lh)(β ⊗ l−1) = (β−1 ⊗ l)(ω ⊗ h)(β ⊗ l−1).

In other words, (β−1 ⊗ l, εD(H)) is a pair in involution for D(H). In fact, it is
modular since εD(H)(β−1 ⊗ l) = 1.

Assume conversely that γ ∈ Gr(D(H)◦) and c ∈ Gr(D(H)) constitute a pair
in involution for D(H). By [Rad12, Proposition 13.2.2], we have c = β ⊗ l for
β ∈ Gr(H◦) and l ∈ Gr(H). As ι : H → D(H), h ↦→ ε⊗ h is an inclusion of Hopf
algebras we obtain a character γ̃ := γ ◦ ι ∈ Gr(H◦). For any h ∈ H

S2(ι(h)) = γ̃(h(3))γ̃−1(h(1))(β ⊗ l)ι(h(2))(β ⊗ l)−1

= γ̃(h(5))γ̃−1(h(1))β(h(2))β−1(h(4))(ε⊗ lh(3)l
−1)

= (β−1γ̃)(h(3))(β−1γ̃)−1(h(1))ι(lh(2)l
−1).

The injectivity of ι implies that (β−1γ̃, l) is a pair in involution for H. □

A finite-dimensional Hopf algebra is called unimodular if the distinguished group-
like of its dual is equal to its counit.

Lemma 4.13. Suppose H to be a generalised Taft algebra such that either H or
H◦ is unimodular. Then H has a pair in involution.

Proof. Assume without loss of generality H◦ to be unimodular. Let N = 2nj ≥ 2,
with j odd, q a primitive N -th root of unity and (aij) a parameter matrix such that
H = Hq(aij). By Lemma 4.3 the unimodularity of H◦ implies a11 + a21 = 0 modulo
N . With respect to the matrices of powers and coefficients associated to (aij) this
equation reads as µ112a11 + µ212a21 = 0 modulo 2n. Thus, either µ11 = µ21 = 0 or
a11 = a21. Applying Theorem 4.8 shows that H has a pair in involution. □

Corollary 4.14. If the generalised Taft algebra H is quasitriangular, it has a pair
in involution.

Proof. Let N ≥ 2, q a primitive N -th root of unity and (aij) a parameter matrix
such that H = Hq(aij). Lemma 4.4 asserts that N is even and a11 = a21 = N

2 . In
particular, a11 + a21 = 0 modulo N . Lemma 4.3 shows that H◦ is unimodular and
therefore H has a pair in involution. □

Remark 4.15. Drinfeld doubles are quasitriangular and unimodular, see Theo-
rems 10.3.6 and 10.3.12 of [Mon93], respectively. Applying Theorem 4.12 to the
Hopf algebras of Lemma 4.10 shows that in general neither unimodularity nor
quasitriangularity imply the existence of pairs in involution.

5. Anti-Drinfeld doubles and pivotality

We investigate pairs in involution from a Morita theoretic viewpoint. This leads us
to construct two generalised Taft algebras whose underlying algebras are isomorphic.
Yet, only one of them admits a pair in involution, implying that such pairs are not
a Morita equivalent property. We conclude this article by explaining the connection
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between pivotal categories and pairs in involution and commenting on a possible
categorical description of such pairs.

Lemma 5.1. Let q ∈ k be a primitive 48-th root of unity. The generalised Taft
algebras H := Hq ( 34 26

4 4 ) and L := Hq ( 34 26
28 4 ) are isomorphic as algebras but only L

admits a pair in involution.

Proof. One immediately verifies that H and L are generalised Taft algebras. Let
g, x, y ∈ H be the generators of H and ĝ, x̂, ŷ the generators of L. The defining
relations of the algebras H and L are
xord(34·26) = xord(20) = 0, yord(4·4) = yord(16) = 0, xy = q34·4yx = q40yx,

g48 = 1, gx = q26xg, gy = q4yg,

x̂ord(34·26) = x̂ord(20) = 0, ŷord(28·4) = ŷord(16) = 0, , x̂ŷ = q34·4ŷx̂ = q40ŷx̂,

ĝ48 = 1, ĝx̂ = q26x̂ĝ, ĝŷ = q4ŷĝ.

Therefore, H and L are isomorphic as algebras.
Note that 48 = 3 · 16. The parameter matrices of H and L modulo 16 are

aHij =
(︃

34 26
4 4

)︃
=

(︃
2 5 · 2
4 4

)︃
and aLij =

(︃
34 26
28 4

)︃
=

(︃
2 5 · 2

3 · 4 4

)︃
.

In particular, we have (aHij ) = (aLij) = ( 1 1
2 2 ). The determinants and powers of the

matrices of coefficients are det(µHij ) = 12 and det(µLij) = 2 as well as τH = 2 and
τL = 1, respectively. Theorem 4.8 implies that L has a pair in involution whereas
H does not. □

The next corollary follows readily from the fact that the class of generalised Taft
algebras is closed under duality.

Corollary 5.2. There exist generalised Taft algebras H and L which are isomorphic
as coalgebras such that only L has a pair in involution.

Remark 5.3. The generalised Taft algebras H and L of Lemma 5.1 provide us
with examples of Hopf algebras whose anti-Drinfeld doubles A(H) and A(L) are not
Morita equivalent in the sense of Lemma 3.5. The Drinfeld and anti-Drinfeld double
of L are isomorphic as algebras by Theorem 3.4. The same argument as in the
proof of Lemma 3.5 implies that H would admit a pair in involution if A(H) and
A(L) ∼= D(L) were Morita equivalent in the above sense. This is a contradiction.

We end this article by characterising pairs in involution categorically. Recall
that a pivotal category is defined as a rigid monoidal category such that a natural
monoidal isomorphism between every object and its bidual exists, see [EGNO15,
Definition 4.7.7]. This isomorphism can be encoded on the level of Hopf algebras,
which is for example discussed in [AAGI+14].

Definition 5.4. A pivotal Hopf algebra is a pair (H, ρ) of a Hopf algebra H together
with a group-like ρ ∈ Gr(H), its pivot, such that S2(h) = ρhρ−1 for all h ∈ H.

The following statement is a consequence of Equation (4.11).

Lemma 5.5. A finite-dimensional Hopf algebra H has a pair in involution if and
only if D(H) is pivotal.
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The relationship between pivotal Hopf algebras and pivotal categories is well-
known. For example, the first half of the following result is contained in the proof
of [BW99, Proposition 3.6].

Lemma 5.6. The category H-Modfin of finite-dimensional left modules over a
finite-dimensional Hopf algebra is pivotal if and only if H is pivotal.

Proof. Suppose H to be pivotal with pivot ρ ∈ Gr(H). Given a finite-dimensional
module (M, ▷ ) over H we define ωM : M → M

∨∨
,m ↦→ can(ρ▷m) where M

∨∨

denotes the left bidual of M and ‘can’ the canonical isomorphism of the underlying
vector spaces. The definition of the dual module, see [Kas95, III.6, Equation (6.5)],
shows that h▷ can(m) = can(S2(h) ▷m) for every h ∈ H and m ∈ M . Moreover,
ωM (h▷m) = can(ρh▷m) = S−2(ρh) ▷ can(m) = ρρ−1hρ▷ can(m) = h▷ωM (m),

for h ∈ H and m ∈ M . Thus, ωM is a morphism of modules whose inverse is given
by ω−1

M : M∨∨ → M,m ↦→ ρ−1 ▷ can−1(m). The naturality of ω is verified by a
straightforward computation and since ρ is group-like ω is monoidal.

Conversely, let H-Modfin be pivotal and ω : Id → (−)∨∨ a natural monoidal
isomorphism. Consider H as a module over itself with multiplication from the left
as its action and define ρ := can−1(ωH(1)) ∈ H . Since ω is monoidal ρ is group-like
and for all h ∈ H

S2(h)ρ = S2(h) can−1(ωH(1)) = can−1(h▷ωH(1))
= can−1(ωH(h)) = can−1(ωH(1 · h)) = can−1(ωH(1))h = ρh.

This proves (H, ρ) to be a pivotal Hopf algebra. □

The Yetter–Drinfeld modules over a finite-dimensional Hopf algebra H are equiv-
alent as a monoidal category to the modules over its Drinfeld double. By the two
preceding lemmas, the Yetter–Drinfeld modules over H are pivotal if and only if H
admits a pair in involution. In conclusion there exists a connection between pairs in
involution, anti-Yetter–Drinfeld modules and pivotality. We would be interested in
finding a more general characterisation of this interplay using an abstract notion of
anti-Yetter–Drinfeld modules as considered for example in [KS19].
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1. Introduction

The aim of this paper is to study the relationship between the Drinfeld centre
of a monoidal category and a ‘twisted’ version of it, which arises in the study of
Hopf-cyclic cohomology. Our approach splits into two parts. First, we deploy general
categorical tools in order to identify equivalences of the aforementioned categories
with ‘invertible’ objects in a twisted centre. Second, we take the monadic point of
view and explain which of these equivalences translate into isomorphisms of monads
generalising the Drinfeld and anti-Drinfeld double. As a byproduct we exemplify
how these monads can be used to detect pivotal structures on a rigid monoidal
category.

The Hopf algebraic case. Our goal is best explained by first recalling the
interactions between the various objects and categories in the setting of finite-
dimensional Hopf algebras. This is covered in greater detail in [Hal21].

A peculiarity of the Hopf-cyclic cohomology, as defined by Connes and Moscovici
[CM99], is the lack of ‘canonical’ coefficients. Originally, see [CM00], modular
pairs in involution were considered. These consist of a group-like and a character
implementing the square of the antipode by their respective adjoint actions. Later,
Hajac et.al. obtained a quite general source for coefficients in what they called the
category of anti-Yetter–Drinfeld modules, [HKRS04a]. Their name is due to the
similarity with Yetter–Drinfeld modules. Like their well-known ‘cousins’, they are
simultaneously modules and comodules satisfying a compatibility condition between
the action and coaction. In general, they do not form a monoidal category but a
module category over the Yetter–Drinfeld modules. This is reflected by the fact that
they can be identified with the modules over the anti-Drinfeld double, a comodule
algebra over the Drinfeld double. The special role of pairs in involution is captured
by the following theorem due to Hajac and Sommerhäuser:

Theorem 1.1 (II.3.4). For any finite-dimensional Hopf algebra H the following
statements are equivalent:

(i) The Hopf algebra H admits a pair in involution.
(ii) There exists an anti-Yetter–Drinfeld module over H whose underlying vector

space is the ground field k.
(iii) The Drinfeld and anti-Drinfeld double of H are isomorphic as algebras.

Furthermore, these pairs are of categorical interest as they give rise to pivotal
structures on the Yetter–Drinfeld modules. That is, they provide a natural monoidal
isomorphism between each object and its bidual.

Twisted centres and pivotality. We want to reformulate this theorem in a
categorical framework with an emphasis on pivotal structures.

First, let us discuss appropriate replacements for the concepts described above.
The role of the Hopf algebra is taken by a rigid monoidal category C. Roughly
speaking, that means a category with a suitably associative and unital product in
which every object has a left and right dual. Due to the monoid-like nature of C,
we can study its bimodule categories. Of special interest is the regular bimodule,
whose actions are given by respectively ‘multiplying’ from the left or right. Its
centre Z(C), called the Drinfeld centre of C, provides us with an analogue of the
category of Yetter–Drinfeld modules, see [Kas95, Chapter XIII]. Generalisations of
anti-Yetter–Drinfeld modules to what one might call the anti-Drinfeld centre A(C)
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of C were considered in the context of topological quantum field theories in [FSS17]
and [DSS21] as well as in the categorical description of coefficients of Hopf-cyclic
cohomology given in [HKS19]. As in the Hopf algebraic case, A(C) is a module
category over Z(C). An adaptation of pairs in involution are, what we will call,
quasi-pivotal structures, studied for example in [Shi16]. They consist of an invertible
object, which replaces the character, and, instead of a group-like element, a certain
natural monoidal isomorphism.

The main observation needed to generalise Theorem 1.1 is that the anti-Drinfeld
centre admits a ‘dual’. In Theorem 4.6 this allows us to identify equivalences of
Z(C)-modules between Z(C) and A(C) with the so-called C-invertible objects in A(C).
These are objects of A(C) whose image under the canonical forgetful functor to the
base category C is invertible. Subsequently, we prove that these objects correspond
to quasi-pivotal structures on C and obtain the categorical version of Theorem 1.1
as Theorem 4.14.

Theorem 1.2. Let C be a rigid monoidal category. The following are equivalent:
(i) The category C is quasi-pivotal.

(ii) There exists a C-invertible object in A(C).
(iii) The Drinfeld and anti-Drinfeld centre of C are equivalent module categories.

The pivotal structures of the Drinfeld centre Z(C) of a finite tensor category C
were studied by Shimizu in [Shi16]. We contribute to these results with the following
observations: the set Pic A(C) of isomorphism classes of C-invertible objects in A(C)
forms a heap, see Lemma 4.8. That is, it behaves like a group but without a fixed
neutral element. Note that this provides a parallel with the aforementioned fact that
Hopf-cyclic cohomology has no canonical coefficients. Equipping the set of pivotal
structures Piv Z(C) of Z(C) with the same algebraic structure, we construct a heap
morphism κ : Pic A(C) → Piv Z(C). In general, we cannot expect κ to be injective.
Instead, the invertible objects in the centre Z(C) which admit a ‘trivial’ braiding
have to be taken into account. The orbits under their action on Pic A(C) correspond
to a quotient heap Pic A(C)/∼ of Pic A(C) and indeed, the induced morphism

ι : Pic A(C)/∼ → Piv Z(C),
is injective, see Theorem 4.23. In many cases, such as C being a finite tensor category,
it is moreover surjective. However, by constructing an explicit counterexample, we
show in Theorem 4.38 that this is not true in general. This answers a question
raised in [Shi16].

Reconstruction: Comodule monads. To reconcile our results with the ini-
tial Hopf algebraic formulation, we provide a monadic interpretation under the
assumption that certain coends exist.

The starting point for our considerations is a Hopf monad H : V → V on a rigid,
possibly pivotal, category V of which we think as a replacement of finite-dimensional
vector spaces. Its modules form a rigid monoidal category VH . Utilising the
centralisers of Day and Street, [DS07], Bruguières and Virelizier described in [BV12]
the Drinfeld double D(H) of H. It is obtained through a two-step process. First,
the central Hopf monad on VH is defined. Then, the double D(H) : V → V arises
by applying a variant of Beck’s theorem of distributive laws to it. As in the classical
setting, the modules of D(H) are isomorphic as a braided rigid monoidal category
to the Drinfeld centre Z(VH ). By adapting the procedure outlined above for our
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purposes, we construct the anti-central monad and derive the anti-Drinfeld double
Q(H) : V → V of H from it. It is a comodule monad over D(H) in the sense of
[AC12] which implements the ‘dual’ of the anti-centre Q(VH) as a module category.
Having all ingredients assembled, we show in Theorem 6.25, that certain module
equivalences between Z(VH ) and Q(VH) materialise as isomorphisms between their
associated monads. Applying our general categorical results to VH and combining it
with a monadic version of pairs in involution, we obtain in Theorem 6.26 an almost
verbatim translation of Theorem 1.1:

Theorem 1.3. Let H be a Hopf monad on a pivotal category V that admits a
Drinfeld and anti-Drinfeld double. The following are equivalent:

(i) The Hopf monad H admits a pair in involution.
(ii) There exists a module over Q(H) whose underlying object is 1 ∈ V.

(iii) The Drinfeld and anti-Drinfeld double of H are isomorphic as monads.

An immediate consequence of the above result is the observation that pivotal
structures on VH equate to isomorphisms between the central and anti-central
monads, see Corollary 6.27.

Outline. The article is divided into two parts comprising Sections 2, 3 and 4 as well
as Sections 5 and 6. We give a self-contained overview of the necessary categorical
tools for our study in Section 2. In Section 3, we recall the concept of heaps.
Section 4 starts with a discussion about twisted centres and their Picard heaps,
before studying the notion of quasi-pivotality and establishing the rigid monoidal
version of the correspondence given in Theorem 1.1. Subsequently, the connection
with the pivotal structures on the Drinfeld centre is investigated. Section 5 provides
an overview of the theory of Hopf monads and comodule monads. In Section 6 the
central and anti-central monad are constructed and from them the Drinfeld and
anti-Drinfeld double. By expressing our abstract categorical findings in the monadic
language we then obtain Theorem 1.3 and comment on how it can be used to detect
pivotal structures.
Acknowledgements. We would like to thank Ilya Shaprio for many fruitful dis-
cussions in the early stages of this project and Kenichi Shimizu for helpful remarks
concerning symmetric centres and connections to topological quantum field theories.



Part 1:
Twisted centres and pivotality



2. Monoidal categories, bimodule categories and the centre
construction

Let us recall some background on the theory of monoidal categories needed
for our study of pivotal structures in terms of module categories. We assume
the readers familiarity with standard concepts of category theory, as given for
example in [ML98, Lei14, Rie17]. As a convention, the set of morphisms between
two objects X,Y ∈ C of a category C will be written as C(X,Y ). We will denote the
composition of two morphisms g ∈ C(X,Y ) and f ∈ C(W,X) by the concatenation
gf := g ◦ f ∈ C(W,Y ). Adjunctions play an important role in our investigation.
A right adjoint of a functor F : C → D is a functor U : D → C together with two
natural transformations η : IdC → UF and ϵ : FU → IdD, called the unit and counit
of the adjunction, satisfying for all X ∈ C and Y ∈ D

F (X) F (ηX )−−−−→ FUF (X)
ϵF (X)−−−−→ F (X) = F (X)

idF (X)−−−−→ F (X),(2.1)

U(Y )
ηU(Y )−−−−→ UFU(Y ) U(ϵY )−−−−→ U(Y ) = U(Y )

idU(Y )−−−−→ U(Y ).(2.2)
These conditions determine U : D → C uniquely up to natural isomorphism. We
write F : C ⇄ D :U or F ⊣ U .

To navigate the proverbial ‘sea of jargon’, [BS11a], we provide the reader with a
table, inspired by [HPT16, Figure 2], in order to help us outline the main topics we
are about to encounter in this section.

Z

Z

Z

Modules are
defined over
monoidal cate-
gories.

The centre of the
regular bimodule is
braided monoidal.

Z

monoidal

rigid

pivotal

braided

braided rigid

braided pivotal

modules bimodules

A B

B is obtained from A by
forgetting properties or
structure.

A B

B is obtained from A by
the centre construction.

module categories

monoidal categories

Figure 1. Various types of monoidal and module categories, as
well as (some) relations between them.

In Subsection 2.1 we work our way down the first column, encountering monoidal,
rigid and pivotal categories. This is based on [EGNO15, Chapter 2]. The concept
of braided monoidal categories, responsible for the second column, is discussed in
Subsection 2.2. See [EGNO15, Chapter 8] for a reference. Our approach to module
categories, see Subsection 2.3, is derived from [EGNO15, Chapter 7]. We pay special
attention to the (Drinfeld) centre construction, responsible for the arrows labelled
with a ‘Z’, in Figure 1.
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2.1. From monoidal to pivotal categories. Monoidal categories were introduced
independently by Mac Lane, [ML63], and Bénabou, [Bén63], under the name
‘categories with multiplication’.7 The prime examples we draw our inspiration from
are finite-dimensional modules over Hopf algebras or, more generally, finite tensor
categories, see [EGNO15, Chapters 5 and 6].

2.1.1. Monoidal categories, their functors and natural transformations.

Definition 2.1. A strict monoidal category is a triple (C,⊗, 1) comprising a category
C, a bifunctor ⊗ : C × C → C, called the tensor product, and an object 1 ∈ C, the
unit, satisfying associativity and unitality in the sense that
(2.3) (− ⊗ −) ⊗ − = − ⊗ (− ⊗ −) and 1 ⊗ − = IdC = − ⊗ 1.

Many natural examples of monoidal categories, such as the category of vector
spaces, are not strict. That is, the associativity and unitality of the tensor prod-
uct only hold up to (suitably coherent) natural isomorphisms. However, we can
compensate this by Mac Lane’s strictification theorem. It states that any monoidal
category is, in a ‘structure preserving manner’, equivalent to a strict one. A proof is
given for example in [EGNO15, Theorem 2.8.5]. For this reason, and to keep our
notation concise, we shall omit the prefix ‘strict’ from now on.

The next definition slightly extends the scope of [EGNO15] but is standard in
the literature, see for example [AM10, Chapter 3].

Definition 2.2. An oplax monoidal functor between monoidal categories (C,⊗, 1)
and (C′,⊗′, 1′) is a functor F : C → C′ together with a natural transformation

∆X,Y : F (X ⊗ Y ) → F (X) ⊗′ F (Y ), for all X,Y ∈ C,
and a morphism ε : F (1) → 1′ satisfying for all W,X, Y ∈ C

(idF (W ) ⊗′ ∆X,Y )∆W,X⊗Y = (∆W,X ⊗′ idF (Y ))∆W⊗X,Y ,(2.4)
(ε⊗′ idF (1))∆1,1 = F (id1) = (idF (1) ⊗′ ε)∆1,1.(2.5)

If the coherence morphisms, ∆ and ε, are isomorphisms or identities, we call F
(strong) monoidal or strict monoidal, respectively.

We think of an oplax monoidal functor (F,∆, ε) as a generalisation of a coalgebra.
To emphasise this point of view, we refer to ∆ and ε as the comultiplication and
counit of F . The dual concept is that of a lax monoidal functor, which resembles
the notion of an algebra.

Assume F : C → D to be strong monoidal and an equivalence of categories. Its
quasi-inverse G : D → C can be turned into a monoidal functor such that the natural
isomorphisms FG → IdD and GF → IdC are compatible with the monoidal structure
in a sense we will explain in the next definition. This justifies calling F a monoidal
equivalence.

Definition 2.3. An oplax monoidal natural transformation between oplax monoidal
functors F,G : C → C′ is a natural transformation ρ : F → G such that for all
X,Y ∈ C

(2.6) ∆(G)
X,Y ρX⊗Y = (ρX ⊗′ ρY )∆(F )

X,Y and ε(G)ρ1 = ε(F ).

7Parts of the historical development of the study of monoidal categories are sketched in [Str12]
and, to a lesser extend, in [BS11a].



40

If ρ is additionally a natural isomorphism, we call it an oplax monoidal natural
isomorphism.

In case we want to emphasise that the underlying functors of an oplax monoidal
natural transformation ρ : F → G are strong or strict monoidal, we replace the
prefix ‘oplax’ with either ‘strong’ or ‘strict’.

Adjunctions between monoidal categories are a broad topic with many facets,
see [AM10, Chapter 3]. For our purposes, we can restrict ourselves to the following
situation.

Definition 2.4. We call an adjunction F : C ⇄ D :U between monoidal categories
C and D oplax monoidal if F and U are oplax monoidal functors and the unit and
counit of the adjunction are oplax monoidal natural transformations. If F and U are
moreover strong monoidal, we call F : C ⇄ D :U a (strong) monoidal adjunction.

An efficient means for computations in strict monoidal categories are string
diagrams. They consist of strings labelled with objects and vertices between the
strings labelled with morphisms. If two string diagrams can be transformed into each
other, the morphisms that they represent are equal. A more detailed description is
given in [Sel11]. Our convention is to read diagrams from top to bottom and left to
right. Taking tensor products is depicted by gluing diagrams together horizontally;
composition equates to gluing vertically. Identity morphisms are given by unlabelled
vertices. The unit object is represented by the empty edge.

W

W

⊗

X

f

Y

=:

W

W

X

f

Y

X

g

Y

◦

W

f

X

=:

W

f

g

Y

1

h

X

=:

h

X

idW ⊗ f : W ⊗ X → W ⊗ Y g ◦ f : W → Y h : 1 → X

2.1.2. Rigidity and pivotality. Rigidity in the context of monoidal categories refers to
a concept of duality similar to that of finite-dimensional vector spaces. Importantly,
notions like dual bases and evaluations have their analogues in this setting. If,
moreover, there exists an identification between objects and their biduals that is
compatible with the tensor product, the category is called pivotal. The more refined
notion of spherical categories is not discussed here. For a treatment in the context of
Hopf algebras we refer to the articles [BW99] and [AAGI+14]. Examples of duality
inspired by topology are discussed in [DP80].

Definition 2.5. A left dual of an object X ∈ C in a monoidal category C is a triple
(X∨, evlX , coevlX) comprising an object X∨ and two morphisms
(2.7) evlX : X∨ ⊗X → 1 and coevlX : 1 → X ⊗X∨,
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called the left evaluation and coevaluation of X, such that the snake identities
idX = (idX ⊗ evlX)(coevlX ⊗idX) and(2.8a)

idX∨ = (evlX ⊗idX∨)(idX∨ ⊗ coevlX)(2.8b)
hold. A right dual of X is a triple (∨X, evrX , coevrX) consisting of an object ∨X and
a right evaluation and coevaluation,
(2.9) evrX : X ⊗ ∨X → 1 and coevrX : 1 → ∨X ⊗X,

subject to analogous identities.
We call C a rigid category if every object has a left and right dual.

Left and right duals are unique up to unique isomorphism. We fix a choice of
duals for every object in a rigid category C and speak of the left or right dual in the
following. Graphically, we represent evaluations and coevaluations by semicircles,
possibly decorated with arrows if we want to emphasise whether we consider their
left or right version.

X
∨ X

X X
∨

X ∨
X

∨
X X

evl
X : X

∨ ⊗ X → 1 coevl
X : 1 → X ⊗ X

∨ evr
X : X ⊗ ∨

X → 1 coevr
X : 1 → ∨

X ⊗ X

Definition 2.6. An object X ∈ C in a rigid category C is called invertible if its
(left) evaluation and coevaluation are isomorphisms.

It is an illustrative exercise to show that the right evaluations and coevaluations
of an invertible objects must be isomorphisms as well. Tensor products and duals
of invertible objects are invertible too. Hence, we can consider the full and rigid
subcategory InvC ⊆ C of invertible objects of C.

Definition 2.7 ([May01, Definition 2.10]). The Picard group Pic C of a rigid category
C is the group of isomorphism classes of invertible objects in C. Its multiplication is
induced by the tensor product of C, i.e.
(2.10) [α] · [β] := [α⊗ β], for α, β ∈ Inv(C).
The unit of Pic C is [1] and for any α ∈ Inv(C) we have [α]−1 = [α∨].

The next theorem will play a central role in our studies. To formulate it, we
introduce for any X ∈ C and n ∈ Z the shorthand-notation

(2.11) (X)n :=

⎧
⎪⎨
⎪⎩

The n-fold left dual of X if n > 0,
X if n = 0,
The n-fold right dual of X if n < 0.

Theorem 2.8. For every object X ∈ C in a rigid category C we obtain two chains
of adjoint endofunctors of C:

. . . ⊣ (− ⊗ (X)−1) ⊣ (− ⊗X) ⊣ (− ⊗ (X)1) ⊣ . . . and(2.12)

. . . ⊣ ((X)1 ⊗ −) ⊣ (X ⊗ −) ⊣ ((X)−1 ⊗ −) ⊣ . . . .(2.13)
Furthermore, − ⊗X and X ⊗ − are equivalences of categories if and only if X is
invertible.
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Proof. The existence of the stated chains of adjunctions follows from [EGNO15,
Proposition 2.10.8]. For example, for any Y ∈ C the unit and counit of the adjunction
between − ⊗X and − ⊗X

∨ are given by

Y
idY ⊗coevl

X−−−−−−−→ Y ⊗X ⊗X∨ and Y ⊗X∨ ⊗X
idY ⊗evl

X−−−−−−→ Y.

Then, Equations (2.1) and (2.2) translate to the snake identities (2.8a) and (2.8b).
From this point of view, it becomes clear that tensoring (from the left or the
right) with an invertible object establishes an equivalence of categories. Conversely,
suppose that X ∈ C is such that F := − ⊗X is an equivalence of categories. The
functor F and its quasi-inverse U are part of an adjunction with invertible unit
η : IdC → UF and counit ϵ : FU → IdD, see for example [Rie17, Proposition 4.4.5].
By [Rie17, Proposition 4.4.1], there exists a natural isomorphism θ : U → − ⊗X

∨

which commutes with the respective counits and units. Applied to the monoidal
unit 1 ∈ C, we obtain

coevlX = θXη1 and evlX(θ1 ⊗ idX) = ϵ1.

It follows that X is invertible. An analogous argument shows that X ⊗ − being an
equivalence of categories entails X being invertible. □

Next, we want to turn taking duals into a functor. Let f : X → Y be a morphism
between two objects X,Y ∈ C in a rigid category C. Its left dual f∨ : Y ∨ → X∨ is
defined in terms of the following diagram:

(2.14)

X
∨

X
∨X

f

YY
∨

Y
∨

X
∨

f
∨

Y
∨

:=

f
∨ := (evl

Y ⊗idX∨)(idY ∨ ⊗ f ⊗ idX∨)(idY ∨ ⊗ coevl
X ) : Y

∨ → X
∨.

This assignment is contravariantly functorial. Since (X ⊗ Y )∨ ∼= Y ∨ ⊗X∨, taking
duals is also compatible with the opposite tensor product. In conclusion, we have a
monoidal functor, the left dualising functor,
(2.15) (−)∨ : C → Cop,⊗-op,

mapping objects and morphisms to their left duals. Its coherence morphisms are
given by the isomorphisms induced by the uniqueness of duals. Similarly, we have a
right dualising functor ∨(−) : C → Cop,⊗-op. To simplify computations, we want to
‘strictify’ both of these.

Definition 2.9. Let C be a rigid monoidal category with fixed left and right
duals for every object. It is called strict rigid8 if the induced dualisation functors
(−)∨, ∨(−) : C → Cop,⊗−op are strict and
(2.16)

(︁∨(−)
)︁∨ = IdC = ∨(︁(−)∨)︁

.

8The notion of ‘strict rigidity’ is not prevalent in the literature and does not appear in [EGNO15].
However, hints towards it can be found for example in [Sch01, Section 5].



43

Our next theorem, a slight variation of [NS07, Theorem 2.2], shows that every
rigid category admits a rigid strictification, i.e. a monoidally equivalent strict rigid
category. The hinted at compatibility between the respective left and right duality
functors is an immediate consequence of the fact that for any strong monoidal
functor F : C → D between rigid categories there are natural monoidal isomorphisms
(2.17) φX : F

(︁
X

∨)︁ →
(︁
F (X)

)︁∨
, ϑX : F

(︁∨
X

)︁
→ ∨(︁

F (X)
)︁
, for all X ∈ C.

Theorem 2.10. Every rigid category admits a rigid strictification.

Proof. Taking a rigid and strict monoidal category C as our input, we build a
monoidally equivalent strict rigid category D. The objects of D are (possibly empty)
finite sequences (Xn1

1 , . . . , Xni
i ) of objects X1, . . . , Xi ∈ C adorned with integers

n1, . . . , ni ∈ Z. To define its morphisms, recall the notation of Equation (2.11) and
set:
D((Xn1

1 , . . . , Xni
i ), (Y m1

1 , . . . , Y
mj

j )) := C((X1)n1 ⊗ · · · ⊗ (Xi)ni , (Y1)m1 ⊗ · · · ⊗ (Yj)mj ).

The category D is strict monoidal when equipped with the concatenation of sequences
as tensor product and the empty sequence as unit. By construction, there exists
a strict monoidal equivalence of categories F : D → C, which maps any object
(Xn1

1 , . . . , Xni
i ) ∈ D to (X1)n1 ⊗ · · · ⊗ (Xi)ni ∈ C and every morphism to itself9.

Now fix an object X := (Xn1
1 , . . . , Xni

i ) ∈ D. We define its left dual to be given by
X

∨ := (Xni+1
i , . . . , Xn1+1

1 ) with evaluation and coevaluation morphisms as shown
in the following diagram

ϕn

ϕ1
ψn

ψ1

(Xi)ni+1
. . . (X1)n1+1 (X1)n1 . . . (Xi)ni

(X1)n1 . . . (Xi)ni (Xi)ni+1
. . . (X1)n1+1

evl
X : F (X∨ ⊗ X) → 1 coevl

X : 1 → F (X ⊗ X
∨)

where for all 1 ≤ k ≤ i we set

ϕk :=
{︄

evl(Xk)nk if nk ≥ 0,
evr(Xk)nk+1 if nk < 0,

and ψk :=
{︄

coevl(Xk)nk if nk ≥ 0,
coevr(Xk)nk+1 if nk < 0.

We define the right dual of X to be ∨
X := (Xni−1

i , . . . , Xn1−1
1 ) with evaluation and

coevaluation similar to the above construction. It follows that D is strict rigid. □

Many applications require that the objects of a rigid category are isomorphic to
their biduals in a way which is compatible with the monoidal structure. One of our
aims is to gain a representation theoretic approach to detecting such a property.

Definition 2.11. A pivotal category is a rigid category C together with a fixed
monoidal natural isomorphism
(2.18) ρ : IdC → (−)∨∨,

9In the definition of F : D → C we regard the unit of C as the empty tensor product.



44

which is referred to as a pivotal structure of C.

Rigid categories do not have to admit a pivotal structure and, if they do, it need
not be unique. Examples coming from Hopf algebra theory are given in [KR93]
and [HK19,Hal21]. However, Shimizu showed that every rigid category admits a
universal pivotal category, called its pivotal cover, see [Shi15].

2.2. Braided categories. Braidings are natural transformations relating the tensor
product to its opposite. They where introduced by Joyal and Street in [JS93],
building on the notion of symmetries studied amongst others in [ML63, EK66].

Definition 2.12. A braiding on a monoidal category C is a natural isomorphism
σX,Y : X ⊗ Y → Y ⊗X, for all X,Y ∈ C,

which satisfies the hexagon axioms10. That is, for all W,X, Y ∈ C
σW,X⊗Y = (idX ⊗ σW,Y )(σW,X ⊗ idY ) and(2.19)
σW⊗X,Y = (σW,Y ⊗ idX)(idW ⊗ σX,Y ).(2.20)

The pair (C, σ) is referred to as braided monoidal category.

Remark 2.13. Often, we will make use of the fact that the braiding of any object
X ∈ C with the unit 1 ∈ C of a braided category (C, σ) is trivial. This is a
consequence of the hexagon identities as the following considerations exemplify.
First, we compute

σX,1 = σX,1⊗1 = (id1 ⊗ σX,1)(σX,1 ⊗ id1) = σX,1σX,1.

Then, we compose both sides with σ−1
X,1 and observe that σX,1 = idX . Similarly, we

obtain σ1,X = idX .

Braidings are depicted in the graphical calculus by crossings of strings subject to
Reidemeister-esque identities, see [Sel11]. In the following figure, we show from left
to right a braiding, its inverse, the hexagon identity (2.19) and the naturality of the
braiding in its first argument.

X Y

Y X

Y X

X Y

W X Y

X Y W

=
W X Y

X Y W

W Y

Y X

f

=

W Y

Y X

f

σX,Y σ−1
X,Y (idX ⊗ σW,Y )(σW,X ⊗ idY ) = σW,X⊗Y σX,Y (f ⊗ idY ) = (idY ⊗ f)σW,X

2.3. Bimodule categories and the centre construction. Just as monoids can
act on sets, monoidal categories can act on categories. Thinking representation
theoretically therefore advocates studying monoidal categories through their modules.
In parallel with our treatment of monoidal categories, we will focus solely on
their ‘strict modules’. Again, a more general theory is possible by weakening the
associativity and unitality of the action.

10The name ‘hexagon axioms’ is due to the fact, that in the non-strict setting, the defining
Equations (2.19), (2.20) can be organised as a commuting, hexagon-shaped diagrams; see [JS93].
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2.3.1. Left, right and bimodule categories.

Definition 2.14. A strict left module (category) over a monoidal category C is a
pair (M, ▷ ) comprising a category M and an action of C on M implemented by a
functor ▷ : C × M → M such that
(2.21) (− ⊗ −) ▷ − = − ▷ (− ▷ −) and 1 ▷ − = IdM.

To keep our notation concise, we will simply speak of modules, instead of strict
module categories, over a monoidal category.

For a functor between modules to be structure preserving, it has to satisfy a
variant of equivariance which is encoded by a natural isomorphism.

Definition 2.15. Let M and N be left modules over a monoidal category C. A
functor of left modules is a functor F : M → N together with a natural isomorphism

δX,M : F (X ▷M) → X ▷F (M), for all X ∈ C and M ∈ M
such that

δX⊗Y,M = (idX ▷ δY,M )δX,Y ▷M , for all X,Y ∈ C and M ∈ M,(2.22)
idM = δ1,M , for all M ∈ M.(2.23)

We call (F, δ) strict if δ is given by the identity.

With respect to the analogy between oplax monoidal functors and coalgebras,
module functors play the role of (strong) comodules over the identity functor. We
will encounter the more general concept of comodule functors in Sections 5 and 6.

An equivalence of module categories is a functor of module categories F : M → N
that is an equivalence. As with monoidal categories, it admits a quasi-inverse functor
of module categories G : N → M and the natural isomorphisms FG → IdN and
GF → IdM are compatible with the respective ‘coactions’ in a way explained in the
next definition.

Definition 2.16. Let F,G : M → N be two functors of left modules over a
monoidal category C. A morphism of left module functors is a natural transformation
ϕ : F → G satisfying for all X ∈ C and M ∈ M

(2.24) (idX ▷ϕM ) δ(F )
X,M = δ

(G)
X,M ϕX▷M .

Module adjunctions will be a corner stone of our investigation. They are defined
as adjunctions F : M ⇄ N :G of module functors between module categories whose
unit and counit are module natural transformations.

A theory of right modules can be formulated in a similar fashion. More precisely,
right modules over a monoidal category C can be identified with left modules over
C⊗-op. If we assume some additional conditions on C, we could define its bimodules
as left modules over an ‘enveloping category’ Ce of C, see for example [EGNO15,
Exercise 7.4.3]. For our purposes, however, it will be more beneficial to define them
explicitly in terms of categories with compatible left and right actions.

Definition 2.17. A (strict) bimodule (M, ▷ , ◁ ) over a monoidal category C is a
category M which is simultaneously a left and right module and
(2.25) (− ▷ −) ◁ − = − ▷ (− ◁ −).
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Example 2.18. The prime example of a bimodule over a monoidal category C is
the regular bimodule IdC CIdC . As a category, it is simply C and the left and right
actions are given by tensoring from the left and right, respectively.

Remark 2.19. If C is for example a tensor category, its bimodules form a monoidal
2-category, see [Gre10].

Since we will not work with bimodule functors and their natural transformations,
we will not state their precise definitions. Rather, we remark that they equate to
(strong) ‘bicomodules’ over the identity functor.

2.3.2. The Drinfeld centre of a monoidal category. The centre construction can be
used to obtain a braided category from a monoidal one. We work in a slightly more
general setup than [EGNO15, Chapter 7] and define centres for bimodule categories.
See [GNN09, BV12, FSS17, HKS19, Kow20] for similar considerations.

Definition 2.20. Let M be a bimodule over a monoidal category C and M ∈ M
an object. A half-braiding on M is a natural isomorphism

σM,X : M ◁X → X ▷M, for all X ∈ C,
satisfying for all X,Y ∈ C the hexagon axiom
(2.26) σM,X⊗Y = (idX ▷σM,Y )(σM,X ◁ idY ).

Let σM,− : M ◁ − → − ▷M be a half-braiding on an object M ∈ M. The same
arguments as in Remark 2.13 show that σM,1 = idM for all M ∈ M.

Thinking of objects plus half-braidings as ‘central elements’, one can try to mimic
the centre construction from representation theory. This leads to the following
definition.

Definition 2.21. The centre of a bimodule M over a monoidal category C is the
category Z(M). It has as objects pairs (M,σM,−) comprising an object M ∈ M
together with a half-braiding σM,− on M . The set of morphisms between two objects
(M,σM,−), (N, σN,−) ∈ Z(M), consists of those morphisms f ∈ M(M,N) which
commute with the half-braidings. That is,
(2.27) (idX ▷ f)σM,X = σN,X(f ◁ idX), for all X ∈ C.

There is a canonical forgetful functor U (M) : Z(M) → M. Unlike classical
representation theory where the centre of a bimodule is a subset, U (M) need not be
injective on objects in general.

Example 2.22. The centre Z(C) of the regular bimodule of a monoidal category
C is called the Drinfeld centre or simply centre of C. It is braided monoidal. The
tensor product is defined by (M,σM,−) ⊗ (N, σN,−) := (M ⊗N, σM⊗N,−) with

σM⊗N,X := (σM,X ⊗ idN )(idM ⊗ σN,X), for all X ∈ C.
Its braiding is given by the respective half-braidings. The hexagon axioms follow
from Equation (2.26) and the definition of the tensor product of Z(C).

Our next theorem uses the shorthand notation for iterated duals given in Equa-
tion (2.11).
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Theorem 2.23. Suppose C to be strict rigid. Its Drinfeld centre Z(C) inherits the
rigid structure of C. That is, for all (X,σX,−) ∈ Z(C) we have

U (Z)(︁(X,σX,−)∨)︁ = X
∨
, U (Z)(︁∨(X,σX,−)

)︁
= ∨

X.

Moreover, for every n ∈ Z and X ∈ Z(C) we have
(2.28) σ(X)n,(Y )n = (σX,Y )n, for all Y ∈ C.

Proof. Let (X,σX,−) ∈ Z(C). We equip the left dual of X with the half-braiding

(2.29)

X
∨

X

X

X
∨ Y

Y

σX∨,Y : X
∨ ⊗ Y → Y ⊗ X

∨.

Using the rigidity of C, we observe that the inverse of the half-braiding σX,Y is

(2.30)

Y

∨
Y

∨
Y

Y

X

X

Y

Y

X

X

=

σ−1
X,Y

: Y ⊗ X → X ⊗ Y .

Combining Equations (2.29) and (2.30) with Y = ∨(Y ∨) yields σX∨,Y ∨ = (σX,Y )∨.
The claim follows for any positive n by induction.

To prove the statement for right duals, we proceed analogously. □

3. Heaps

Heaps can be thought of as groups without a fixed neutral element. They extend
the concept of affine vector spaces to general groups and are closely linked with
the study of torsors [BS11b]. Prüfer studied their abelian version under the name
Schar in [Prü24]. Since then, the notion has been adapted to the non-abelian
case, see [HL17]. Recently, their homological properties were studied in [ESZ21];
a generalisation towards a ‘quantum version’ of heaps is hinted at in [Ško07]. We
follow Section 2 of [Brz20] for our exposition.

Definition 3.1. A heap is a set G together with a ternary operation
⟨−,−,−⟩ : G×G×G → G,

which we call the heap multiplication11, satisfying a generalised associativity axiom
and the Mal’cev identities, of which we think as unitality axioms:

⟨g, h, ⟨i, j, k⟩⟩ = ⟨⟨g, h, i⟩, j, k⟩, for all g, h, i, j, k ∈ G,(3.1)
⟨g, g, h⟩ = h = ⟨h, g, g⟩, for all g, h ∈ G.(3.2)

11The terminology ‘heap multiplication’ is not standard in the literature. We use it for purely
psychological reasons. As we will often work with groups and heaps at the same time, we want to
provide the reader with a common, well-known, term.
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There are two peculiarities we want to point out. First, our definition does,
intentionally, not exclude the empty set from being a heap. Second, due to a slightly
different setup, an additional ‘middle’ associativity axiom is required in [HL17].
However, as noted in [Brz20, Lemma 2.3], it is implied by the ‘outer’ associativity
and the Mal’cev identities.

Definition 3.2. A map f : G → H between heaps is a morphism of heaps if
(3.3) f (⟨g, h, i⟩) = ⟨f(g), f(h), f(i)⟩, for all g, h, i ∈ G.

The next lemma can be shown by mimicking the proof of its group theoretical
version.

Lemma 3.3. A morphism of heaps f : G → H is an isomorphism if and only if it
is bijective.

By forgetting its unit, any group defines a heap. Conversely, any non-empty heap
can be turned into a group by choosing a fixed element to act as unit, see [Cer43].

Lemma 3.4. Every group (G, ·, e) is a heap via
⟨−,−,−⟩ : G×G×G → G, ⟨g, h, i⟩ := g · h−1 · i.

A morphism of groups becomes a morphism of the induced heaps.

Lemma 3.5. A non-empty heap H with a fixed element e ∈ H can be considered
as a group with unit e via the multiplication

− ·e − : H ×H → H, g ·e h := ⟨g, e, h⟩.
With respect to this multiplication, the inverse of an element g ∈ H is given by
g−1 := ⟨e, g, e⟩. A morphism of heaps is a morphism of the induced groups, provided
it maps the fixed element of its source to the fixed element of its target.

We end this section by discussing an example of heaps which will play a prominent
role in our investigation.

Example 3.6. Let F,G : C → C be two oplax monoidal endofunctors. The set
Iso⊗(F,G) := {oplax monoidal natural isomorphisms from F to G}

bears a heap structure with multiplication
(3.4) ⟨−,−,−⟩ : Iso⊗(F,G)3 → Iso⊗(F,G), ⟨ϕ, ψ, ξ⟩ = ϕψ−1ξ.

4. Pivotal structures and twisted centres

In this section, we study the relations between pairs in involution, anti-Yetter–
Drinfeld modules and isomorphisms between the Drinfeld and anti-Drinfeld double
from a categorical point of view. Our approach is representation theoretic in nature.

We consider variants of the regular bimodule of a rigid category C with either
the left or right action twisted by a strict monoidal endofunctor. Their centres are
canonically modules over the Drinfeld centre. These twisted centres inherit a notion
of duality which follows in close parallel to that of Z(C). Functors of Z(C)-modules
between the Drinfeld and a twisted centre are determined by their value on the unit
object. A consequence of the above sketched duality is that module equivalences
correspond to objects in the twisted centre, which behave as if they were invertible.
We gather these objects into the Picard heap of the twisted centre. If we twist with
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the left biduality functor, we obtain a generalised version of the anti-Yetter–Drinfeld
modules, see [HKS19]. Its Picard heap has an alternative interpretation as quasi-
pivotal structures; appropriate analogues of pairs in involution. This observation
leads us to the desired categorical version of the Hajac–Sommerhäuser theorem,
given in Theorem 4.14.

In [Shi16], Shimizu observed that quasi-pivotality of C induces pivotality of Z(C).
We recall his proof from the perspective of twisted centres and investigate how
this construction is related to the so-called symmetric centre of C. This leads to
an injective heap morphism from a quotient of the Picard heap of the generalised
anti-Yetter–Drinfeld modules to the heap of pivotal structures of Z(C). In the end
of the section, we answer a question of Shimizu, by proving that this morphism is
not surjective in general.

In the following, C denotes a strict rigid category.

4.1. Twisted centres and their Picard heaps. The regular action is not the
only way in which we can consider C as a bimodule over itself. Given two strict
monoidal endofunctors L,R : C → C, we can ‘twist’ the action by defining for all
V,W,X, Y ∈ C and f : V → W, g : X → Y ,

(4.1)
X ▷Y := L(X) ⊗ Y, f ▷ g := L(f) ⊗ g,

Y ◁X := Y ⊗R(X), g ◁ f := g ⊗R(f).
We write LCR for the bimodule obtained in this manner and call it the bimodule
obtained by twisting with L from the left and R from the right or, if the functors L
and R are apparent from the context, simply a twisted bimodule. Accordingly, we
refer to Z(LCR) as a twisted centre. In case we want to stress that L or R are the
identity functors, we write CR := IdC CR and LC := LCIdC and speak of a right and
left twisted bimodule, respectively. Following this pattern, Z(CR) and Z(LC) are
called right and left twisted centres.

The forgetful functor from the centre of a twisted bimodule to the underlying
monoidal category is faithful. Therefore, we can use the graphical calculus discussed
previously as long as we pay special attention to the half-braidings. Given that
we will often deal with multiple twisted centres at once, we introduce a colouring
scheme to help us keep track of the various categories:

(i) Red for objects in the right twisted centre Z(CR),
(ii) blue for objects in the left twisted centre Z(LC), and
(iii) black for objects in the Drinfeld centre Z(C) or C.

For example, the half-braidings of objects A ∈ Z(CR) and Q ∈ Z(LC) are:

A R(X)

X A

Q X

L(X) Q

The half-braiding σA,X : A ⊗ R(X) → X ⊗ A. The half-braiding σQ,X : Q ⊗ X → L(X) ⊗ Q.

Remark 4.1. One can easily imagine a more involved setting than what is described
above by twisting with an oplax monoidal functor (L,∆, ε) : C → C from the left and
a lax monoidal functor (R,µ, η) from the right. We hypothesise that LCR would be a
type of ‘oplax-lax’ bimodule over C, whose actions are associative and unital only up
to coherent natural transformations, subject to laws as described in [Szl12, Section 2].
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At least conceptually, this unifies our subsequent considerations with the centres
studied in [BV12]. We will revisit these more general structures in Section 6 and for
now only remark that the half-braiding of an object X ∈ Z(LCR) in the centre of
an ‘oplax-lax’ bimodule is a natural transformation σX,− : X ⊗R(−) → L(−) ⊗X,
which has to satisfy:

(4.2)

R(X) R(Y )

µ

W

W

L(Y )L(X)

∆

=

R(X) R(Y )

W

W

L(Y )L(X)

W

W

η

ε

=

W

W

(∆X,Y ⊗ idW )σW,X⊗Y (idW ⊗ µX,Y )
= (idL(X) ⊗ σW,Y )(σW,X ⊗ idR(Y )) (ε ⊗ idW )σW,1(idW ⊗ η) = idW

Convention. In what follows, we are predominantly interested in twisting with
the same strict monoidal functor from the left or right. For the purpose of brevity,
we therefore fix such a functor T : C → C and consider the categories T C and CT .

Suppose we are given three objects
(A, σA,−) ∈ Z(CT ), (Q, σQ,−) ∈ Z(T C) and (X,σX) ∈ Z(C).

The diagrams below show that various tensor products of the underlying objects
in C admit ‘canonical’ half-braidings.

(4.3)
A

A

Q

Q

T (Y )

Y

T (Y )

A

A

X

X

T (Y )

Y

Y

X

X

Q

Q

Y

Y

T (Y )

Q

Q

A

A

Y

T (Y )

Y

σQ⊗X,Y : Q ⊗ X ⊗ Y → T (Y ) ⊗ Q ⊗ X σX⊗A,Y : X ⊗ A ⊗ T (Y ) → Y ⊗ X ⊗ A

σQ⊗A,Y : Q ⊗ A ⊗ T (Y ) → T (Y ) ⊗ Q ⊗ A σA⊗Q,Y : A ⊗ Q ⊗ Y → Y ⊗ A ⊗ Q

The top row suggests a right action of Z(C) on left twisted centres and a left
action on right twisted centres.
Theorem 4.2. The tensor product of C extends to a right and left action of the
Drinfeld centre Z(C) on Z(CT ) and Z(T C), respectively. The half-braidings are as
defined in Diagram (4.3).
Remark 4.3. Right and left twisted centres are two sides of the same coin. We
write C := Cop,⊗-op. A direct computation proves the categories Z(CT ) and Z(T C)op

to be the same. This identification is compatible with the respective actions since
− ⊗op T (−) = T (−) ⊗ − and σX⊗opA,− = σA⊗X,− for all X ∈ Z(C) and A ∈ Z(CT ).
According to these considerations, from now on we deliberately restrict ourselves to
the study of right twisted centres.
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The left dual A∨ of any object (A, σA,−) ∈ Z(CT ) can be turned into an object of
Z(T C) if we equip it with the half-braiding

(4.4)

A
∨

A

A

A
∨ X

R(X)

σA∨,X : A
∨ ⊗ X → R(X) ⊗ A

∨
.

The relation between the duality of twisted centres and their underlying categories
is stated more conceptually in our next result. It can be seen as an analogue of
Theorem 2.23.

Theorem 4.4. The left dualising functor (−)∨ : C → Cop,⊗-op lifts to a functor
between right and left twisted centres
(4.5) (−)∨ : Z(CT ) → Z(T C)op.

The half-braidings displayed in the right column of Diagram (4.3) show that
every object (A, σA,−) ∈ Z(CT ) gives rise to two functors of left modules over Z(C),
(4.6) − ⊗A : Z(C) → Z(CT ) and − ⊗A∨ : Z(CT ) → Z(C).
Before we prove that the adjunction −⊗A : C ⇄ C :−⊗A∨, discussed in Theorem 2.8,
lifts to an adjunction of module categories, we fix our notation for the evaluation
and coevaluation morphisms in the context of twisted centres. For any object
(A, σA,−) ∈ Z(CT ), we write

(4.7)

1

coevl
A

A A
∨

=:
A A

∨

AA
∨

:=

AA
∨

evl
A

1

evl
A : A

∨ ⊗ A → 1, coevl
A : 1 → A ⊗ A

∨
.

Theorem 4.5. Every object (A, σA,−) ∈ Z(CT ) induces adjoint Z(C)-module functors
(4.8) − ⊗A : Z(C) ⇄ Z(CT ) :− ⊗A

∨
.

Proof. We fix an object (A, σA,−) ∈ Z(CT ). Considered as endofunctors of C, there is
an adjunction −⊗A : Z(C) ⇄ Z(CT ) :−⊗A∨. As stated in the proof of Theorem 2.8,
its unit and counit are implemented via the evaluation and coevaluation morphisms

ηY := idY ⊗ coevlA : Y → Y ⊗A
∨ ⊗A, for all Y ∈ Z(C),

ϵX := idX ⊗ evlA : X ⊗A
∨ ⊗A → X, for all X ∈ Z(CT ).
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The next diagram shows that ϵX is a morphism in Z(CT ) for every X ∈ Z(CT ).

(4.9)

T (V )

V

AA
∨X

X

T (V )

V X

AA
∨X

T (V )

V

A
∨X

X

A

= =

σX,V (ϵX ⊗ idT (V )) = (idV ⊗ ϵX )σX⊗A∨⊗A,V for all V ∈ C.

Furthermore, ϵW▷X = idW ⊗ ϵX for all W ∈ Z(C). A similar argument shows that
the unit of the adjunction is a natural transformation of module functors as well. □

The forgetful functor from the (twisted) centre to its underlying category is con-
servative, i.e. it ‘reflects’ isomorphisms. This allows us to characterise equivalences
of module categories between Z(C) and right twisted centres.

Theorem 4.6. Any functor of left module categories F : Z(C) → Z(CT ) is naturally
isomorphic to

− ⊗A : Z(C) → Z(CT ), with A = F (1) ∈ Z(CT ).
As a consequence, F is an equivalence if and only if A is invertible as an object of C.

Proof. The first claim is an immediate consequence of the unitality of the action.
Suppose that H ∼= − ⊗A is an equivalence. By Theorem 2.8, A must be invertible.
If conversely A is invertible, the same theorem shows that − ⊗A is an equivalence
of categories. □

Definition 4.7. An object (A, σ(A,−)) ∈ Z(CT ) in a twisted centre of C is called
C-invertible if A is invertible in C.

The notion of heaps allows us to define an algebraic structure on the isomorphism
classes of objects implementing module equivalences between the Drinfeld centre
Z(C) and its twisted ‘relative’ Z(CT ). In analogy with the Picard group, we call this
the Picard heap of a twisted centre.

Lemma 4.8. The Picard heap of the right twisted centre Z(CT ) is the set
(4.10) Pic Z(CT ) := {[(α, σα,−)] | (α, σα,−) ∈ Z(CT ) with α invertible in C}
together with the heap multiplication defined for [α], [β], [γ] ∈ Pic Z(CT ) by
(4.11) ⟨[α], [β], [γ]⟩ = [α⊗ β

∨ ⊗ γ].

Proof. The generalised associativity, see Equation (3.1), follows from the associativity
of the tensor product of C and its compatibility with the ‘gluing’ of half-braidings.
To show that the Mal’cev identities hold, we fix objects α, β ∈ Z(CT ), which are
invertible in C. Theorem 2.23 and Equation (4.9) imply that

α⊗ α∨ ⊗ β
coevl

α
−1⊗idβ−−−−−−−−→ β and β ⊗ α∨ ⊗ α

idβ⊗evl
α−−−−−→ β

are isomorphisms in Z(CT ) and therefore ⟨[α], [α], [β]⟩ = [β] = ⟨[β], [α], [α]⟩ . □
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In general, the twisted centre Z(CT ) does not inherit a monoidal structure from C.
The above lemma, however, hints towards a slight generalisation where the tensor
product is replaced by a trivalent functor, essentially categorifying heaps (without
the Mal’cev identities). The well-definedness of this concept was hinted at in [Ško07]
under the name of heapy categories.

4.2. Quasi-pivotality. A particularly interesting consequence of our previous
findings arises in case T = (−)∨∨ is the left bidualising functor. The centre of the
regular bimodule twisted on the right by (−)∨∨ can be understood as a generalisation
of anti-Yetter–Drinfeld modules, see [HKS19, Theorem 2.3]12.

As before, we fix a strict rigid category C and consider the twisted bimodules
C(−)∨∨ and (−)∨∨C.

Notation 4.9. We denote by A(C) := Z(C(−)∨∨) and Q(C) := Z((−)∨∨C) the centre
of the regular bimodule twisted by the biduality functor from the right and left,
respectively. The former will also be called the anti-Drinfeld centre of C.

We have already mentioned the connection between the twisted centre A(C) and
anti-Yetter–Drinfeld modules over Hopf algebras given in [HKS19]. The case where
C is the category of modules over a Hopf algebroid was recently investigated by
Kowalzig in [Kow20]. The counterpart Q(C) of the generalised anti-Yetter–Drinfeld
modules is less common in the literature but plays a crucial role in our investigation,
especially in Sections 5 and 6, where we focus on the monadic point of view.

The next definition is a specific case of an unnamed construction studied in [Shi16,
Section 4].

Definition 4.10. A quasi-pivotal structure on a rigid category C is a pair (β, ρβ)
comprising an invertible object β ∈ C and a monoidal natural isomorphism
(4.12) ρβ : IdC → β ⊗ (−)∨∨ ⊗ β∨.

We refer to (C, (β, ρβ)) as a quasi-pivotal category.

If C is the category of finite-dimensional modules over a finite-dimensional Hopf
algebra, quasi-pivotal structures have a well-known interpretation—they translate
to pairs in involution. This can be deduced from a slight variation of Lemma II.5.6.
The main observation being, that the invertible object β of a quasi-pivotal structure
(β, ρβ) on C corresponds to a character and ρβ determines a group-like element.
The fact that ρβ is a natural transformation from the identity to a conjugate of the
bidual functor is captured by the character and group-like implementing the square
of the antipode. We study a monadic analogue of this statement in Section 6.4.

Remark 4.11. Every pivotal category is quasi-pivotal; the converse does not hold.
A counterexample are the finite-dimensional modules over the generalised Taft
algebras discussed in [HK19]. Any of these Hopf algebras admit pairs in involution
but in general neither the character nor the group-like can be trivial. The previous
discussion and Lemma II.5.6 show that Mod-H is quasi-pivotal but not pivotal—in
contrast to its Drinfeld centre Z(Mod-H ), which admits a pivotal structure by
Lemma II.5.5.

12More precisely, let H be a Hopf algebra with invertible antipode. Denote by C = Mod-H
the category of finite-dimensional right modules over H. The same arguments as given in [Kas95,
Chapter XII.5] show that A(C) is equivalent to the category HaYDH of right-left anti-Yetter–
Drinfeld modules over H as defined in [HKRS04a].
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Let (β, ρβ) be a quasi-pivotal structure on C and ϕ : β′ → β an isomorphism.
Clearly, the pair (β′, (ϕ−1 ⊗ id ⊗ϕ

∨)ρβ) is another quasi-pivotal structure on C. This
defines an equivalence relation and we write

QPiv(C) := {[(β, ρβ)] | (β, ρβ) is a quasi-pivotal structure on C}
for the set of equivalence classes of quasi-pivotal structures on C.

Lemma 4.12. Let C be a strict rigid category. The Picard heap Pic A(C) and the
set of equivalence classes of quasi-pivotal structures QPiv(C) are in bijection.

Proof. Let (β, ρβ) be a quasi-pivotal structure on C. We define the half-braiding

(4.13)

β X
∨∨

β
∨ β

X β

ρ−1
β

σβ,X =
(

ρ−1
β,X

⊗ idβ

)(
idβ⊗X∨∨ ⊗ (evl

β)−1
)

: β ⊗ X
∨∨ → X ⊗ β.

It satisfying the hexagon identity is due to ρβ being monoidal. This establishes a
map ϕ : QPiv(C) → Pic A(C), [(β, ρβ)] ↦→ [(β, σβ,−)].

Conversely, let (α, σα,−) ∈ A(C) be C-invertible. From its half-braiding we obtain
a monoidal natural transformation

(4.14)

X

X
∨∨

α
∨α

ρα = (σ−1
α,X

⊗ idα∨)(idX ⊗ coevl
α) : X → α ⊗ X

∨∨ ⊗ α
∨.

Due to the snake identities, the map ψ : Pic A(C) → QPiv(C), [(α, σα,−)] ↦→ [(α, ρα)]
is the inverse of ϕ. □

Remark 4.13. Since QPiv(C) and Pic A(C) are bijective, QPiv(C) can be endowed
with a heap structure. However, even if QPiv(C) is non-empty, there might not be a
canonical choice of an element to turn it into a group via the construction displayed
in Lemma 3.5. This conforms to the fact that there are no canonical coefficients for
Hopf-cyclic cohomology as mentioned in the introduction of this article.

Having lifted all Hopf algebraic notions of the Hajac–Sommerhäuser Theorem 1.1,
we can now restate it in its categorical version. Its proof is an immediate consequence
of Theorem 4.6 and Lemma 4.12.

Theorem 4.14. Let C be a strict rigid category. The following are equivalent:
(i) The category C is quasi-pivotal.

(ii) There exists a C-invertible object in A(C).
(iii) The categories Z(C) and A(C) are equivalent as Z(C)-modules.
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4.3. Pivotality of the Drinfeld centre. In Remark 4.11 it is noted that pairs in
involution of Hopf algebras give rise to pivotal structures on their Yetter–Drinfeld
modules. This relationship follows a categorical principle, which we will examine in
this section. Our approach is similar to Shimizu’s investigations in the setting of
finite tensor categories, see [Shi16]. Instead of quasi-pivotal structures, it is based
on the Picard heap of the anti-Drinfeld centre. Our ensuing constructions establish
a conceptual understanding of the connection between elements of Pic A(C) and
pivotal structures on Z(C). This in turn allows us to determine when two such
induced structures coincide by studying actions of the Picard group of the symmetric
centre of C on Pic A(C). Ultimately, this leads to a heap morphism between the
Picard heap of the anti-Drinfeld centre of C and the pivotal structures on Z(C).

Let A = (α, σα,−) ∈ A(C) be C-invertible and write Ω = (ω, σω,−) ∈ Q(C) for its
left dual. The coevaluation of α will play an important role, which is why we gather
some of its properties in the next diagram.

(4.15)

α ω

α ω

= =
1

1

α ω

α ω

α ω

α ω

X

X α ω

X

X

=

α ω X

X

α ω X

X

=

The coevaluation coevl
α : 1 → α ⊗ ω is invertible in Z(C).

Compatibility between coevl
α

and the half-braiding of α ⊗ ω.
Compatibility between

(
coevl

α

)−1

and the half-braiding of α ⊗ ω.

Appropriate half-braidings allow us to ‘entwine’ A with any object X ∈ Z(C) in
a non-trivial manner, resulting in a morphism from X to its bidual:

(4.16)

X

α ω

α ω

X
∨∨

ρA,X =
(

idX∨∨ ⊗
(

coevl
α)−1

)(
σ−1

X,α
⊗ idω

)(
idα ⊗ σω,X

)(
coevl

α ⊗idX

)
: X → X

∨∨

The following result is also discussed in [Shi16, Section 4.4]. For the convenience
of the reader we will recall its proof.

Lemma 4.15. Any C-invertible object A ∈ A(C) of the anti-Drinfeld centre yields a
pivotal structure on Z(C) via

X
ρA,X−−−→ X

∨∨
, for all X ∈ Z(C).
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Proof. As before, we fix a C-invertible object A = (α, σα,−) ∈ A(C) and write
Ω = (ω, σω,−) ∈ Q(C) for its left dual. Furthermore, we assume X ∈ Z(C) to be
any object in the Drinfeld centre of C. We note that for any Y ∈ C a variant of the
Yang–Baxter identity holds:

(4.17)

α X
∨∨

Y
∨∨

Y X α

=

α X
∨∨

Y
∨∨

Y X α

=

α X
∨∨

Y
∨∨

Y X α

=

α X
∨∨

Y
∨∨

Y X α

=

α X
∨∨

Y
∨∨

Y X α

=

α X
∨∨

Y
∨∨

Y X α

The above identity combined with those displayed in Diagram (4.15) proves that
ρA,X : X → X∨∨ is a morphism in the Drinfeld centre of C:

(4.18)

X Y

α ω

α ω

Y X
∨∨

X Y

α ω

α ω

Y X
∨∨

X Y

α ω

α ω

Y X
∨∨

X Y

α ω

α ω

Y X
∨∨

X Y

α ω

α ω

Y X
∨∨

= =

= =

Since the forgetful functor U (Z) : Z(C) → C is conservative and ρA,X is a composite
of isomorphisms in C, it is an isomorphism in the centre Z(C).
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The naturality of the half-braidings implies that ρA is natural as well.

W

f

Xωα

X
∨∨

α ω

W

ωα

f
∨∨

X
∨∨

α ω

=

W

ωα

X
∨∨

α ω
W

∨∨

=

f
∨∨

For any f ∈ Z(C)(W, X) we have ρA,X f = f
∨∨

ρA,W .

Lastly, the natural isomorphism ρA : IdZ(C) → (−)∨∨ being monoidal is established
by the hexagon identities, as is made evident by the next diagram.

X

ωα

α ω

X
∨∨

V

ωα

α ω

V
∨∨

X

ωα

α ω

X
∨∨

V

ωα

α ω

V
∨∨

X

ωα

X
∨∨

V

α ω

V
∨∨

X

ωα

X
∨∨

V

α ω

V
∨∨

===⊗

□

Our previous result tells us that at least some of the pivotal structures of Z(C)
are induced by C-invertible objects in A(C). However, it is challenging to determine
a priori whether these structures coincide. The following lemma is a first step in
this direction. It shows that the induced pivotal structures only depend on the
isomorphism classes of C-invertible objects in A(C).

Lemma 4.16. Let A1, A2 ∈ A(C) be two representatives of the equivalence class
[A1] = [A2] ∈ Pic A(C). Then ρA1 = ρA2 .

Proof. We fix two C-invertible objects A1,2 = (α1,2, σα1,2,−) ∈ A(C) such that there
exists an isomorphism ϕ : A1 → A2 in the anti-Drinfeld centre. For any X ∈ Z(C)
we have:
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X

α1 ω1

α1 ω1

X
∨∨

X

α1 ω1

α1 ω1

X
∨∨

ϕ

ϕ−1 (ϕ−1)∨

ϕ
∨

=

X

α2 ω2

α2 ω2

X
∨∨

ϕ−1

ϕ ϕ
∨

(ϕ−1)∨

= =

X

α2 ω2

α2 ω2

X
∨∨

This shows that the induced pivotal structures ρA1 and ρA2 are the same. □

Any invertible object X ∈ Z(C) in the Drinfeld centre allows us to define an
‘entwinement’ similar to the one displayed in Equation (4.16), which we used to
construct pivotal structures. If the half-braiding of X is ‘trivial’, the resulting
natural isomorphism is the identity. Using this point of view, we will investigate in
the following an action of objects in Z(C) of this type on the Picard heap Pic A(C)
that leaves the induced pivotal structures invariant. We begin by clarifying the
notion of ‘trivial’ half-braidings.

Definition 4.17. We call an object X ∈ Z(C) symmetric13 if we have
(4.19) σ−1

X,Y = σY,X , for all Y ∈ Z(C).

Following the terminology of [Müg13], we call the full (symmetric) monoidal
subcategory SZ(C) of Z(C) whose objects are symmetric the symmetric centre of
Z(C).

Lemma 4.18. Suppose C to be rigid, then SZ(C) is rigid as well.

Proof. Suppose X ∈ Z(C) to be symmetric and let Y ∈ Z(C). We compute

X
∨ Y

= = = =

X
∨

X
∨

X
∨

X
∨

X
∨

X
∨

X
∨

X
∨

X
∨Y

Y

Y

Y

Y

Y

Y

X

X

X

X

X

X

X
∨

X
∨

X
∨

X
∨

X
∨

X
∨ Y

Y

σX∨,Y σY,X∨ = idX∨⊗Y .

This implies σ−1
X∨,Y = σY,X∨. Since the left dual of any X ∈ SZ(C) ⊆ Z(C) can be

equipped with the structure of a right dual and SZ(C) is a full subcategory of Z(C),
it must be rigid. □

13In the literature symmetric objects are also referred to as transparent, see for example [GR20].
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Let us now consider the Picard group Pic SZ(C) of the symmetric centre of Z(C).
It acts on Pic A(C) via tensoring from the left, as shown in Diagram (4.3). We
consider two elements A,C ∈ Pic A(C) equivalent if they are contained in the same
orbit. That is
(4.20) [A] ∼ [C] ⇐⇒ there exists a [B] ∈ Pic SZ(C) such that [B ⊗A] = [C].

To show that two elements of Pic A(C) induce the same pivotal structure on
Z(C) if and only if they are contained in the same orbit under the Pic SZ(C)-action,
we need two technical observations. First, an alternate description of symmetric
invertible objects. Second, a more detailed investigation into the inverse of an
induced pivotal structure.

Lemma 4.19. An invertible object (β, σβ,−) ∈ Z(C), is symmetric if and only if it
satisfies for all X ∈ Z(C)
(4.21)

X

X

β β
∨

β
∨β

X

X

=

(
idX ⊗

(
coevl

β

)−1)(
σ−1

X,β
⊗ idβ

∨
)(

idβ ⊗ σβ
∨

,X

)(
coevl

β ⊗idX

)
= idX .

Proof. Let B = (β, σβ,−) ∈ Z(C) be invertible and X ∈ Z(C). The left-hand side of
Equation (4.21) can be rephrased as:

(4.22)

β

X

=

X

X

β

ββ
∨

β
∨

β
∨

X

β β
∨

We define the morphism f := idX ⊗ coevlβ : X → X ⊗ β ⊗ β
∨ and observe that

Equation (4.21) is identical to
f−1 (︁

(σβ,XσX,β)−1 ⊗ idβ∨
)︁
f = idX .

This is equivalent to σβ,XσX,β ⊗ idβ∨ = idX⊗β ⊗ idβ∨. As the functor − ⊗ β
∨ is

conservative, the claim follows. □
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Lemma 4.20. Let A = (α, σα,−) ∈ A(C) be a C-invertible object of the anti-Drinfeld
centre and write Ω = (ω, σω,−) ∈ Q(C) for its dual. For any X ∈ Z(C), the inverse
of ρA,X is

(4.23)

α
∨∨

α
∨∨ω

ω

X
∨∨

X

ρΩ,X =
(

idX ⊗(coevl
ω)−1

)(
σ−1

X,ω
⊗idα

∨∨

)(
idω⊗σα

∨∨
,X

)(
coevl

ω ⊗idX
∨∨

)
: X∨∨→X.

Proof. Let X ∈ Z(C). The snake identities and a variant of Equation (4.15) imply:

(4.24)

X
∨∨

X
∨∨

α
∨

α
∨∨

α
∨∨

α
∨

α α
∨

α
∨α

=

X
∨∨

X
∨∨

α
∨∨

α
∨αα

∨

α
∨∨

α
∨αα

∨

=

X
∨∨

X
∨∨

α
∨∨

α
∨αα

∨

α
∨∨

α
∨

αα
∨

X
∨∨

α
∨

α
∨∨

α
∨∨

α
∨

=

X
∨∨

=

X
∨∨

X
∨∨

=

X
∨∨

X
∨∨

α
∨∨

α
∨

Thus, with Ω = (α∨, σα∨,−) ∈ Q(C), we have ρA,XρΩ,X = idX . □

Lemma 4.21. Two elements [A], [C] ∈ Pic A(C) induce the same pivotal structure
on Z(C) if and only if there exists a [B] ∈ Pic SZ(C) such that [B ⊗A] = [C].
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Proof. Let [A], [C] ∈ Pic A(C). Suppose there exists a [B] ∈ Pic SZ(C) such that
[B ⊗A] = [C]. For any X ∈ Z(C), we compute:

(4.25) ρC,X

ρA,X

ρA,X

X
∨∨

X

β
∨β

β
∨β

ωα

ωα

=

X
∨∨

X
∨∨

X

β
∨β

β
∨β

=

X
∨∨

X

X
∨∨

X

=

If conversely ρA = ρC , we claim that C ⊗A
∨ is symmetric. By Lemma 4.19 we have

to show that for every X ∈ Z(C) the ‘entwinement’ ρC⊗A∨ of C ⊗A
∨ with X is the

identity and indeed we observe
ρC⊗A∨,X = ρA∨,XρC,X = ρ−1

A,XρC,X = idX .

For the first equality we used the hexagon identities as in Equation (4.25) to separate
ρC⊗A∨,X into two parts. The second one follows from the description of the inverse
of ρA,X given in Lemma 4.20. Finally, since idC ⊗ evlA : C ⊗ A∨ ⊗ A → C is an
isomorphism in A(C), we have [(C ⊗A∨) ⊗A] = [C]. □

The isomorphisms classes of C-invertible objects of A(C) are not just a set but
form the Picard heap Pic A(C). Our next lemma shows that its heap multiplication
projects onto the orbits under the Pic SZ(C)-action.
Lemma 4.22. The canonical projection π : Pic A(C) → Pic A(C)/Pic SZ(C) induces
a heap structure on the set of equivalence classes Pic A(C)/Pic SZ(C).
Proof. The claim follows from a general observation. Let X ∈ Z(C) and A ∈ A(C).
The half-braiding σX,A : X ⊗A → A⊗X is an isomorphism in A(C):

(4.26)

X A

A X

Y
∨∨

Y

X A

A X

Y
∨∨

Y X

A Y
∨∨X

AY X

A Y
∨∨X

AY

= = =

(σA⊗X,Y )(σX,A ⊗ idY ∨∨) = (idY ⊗ σX,A)σX⊗A,Y for all Y ∈ C.

Likewise, σX,A∨ : X ⊗A∨ → A∨ ⊗X is an isomorphism in Q(C). As a consequence,
for all [A], [A′], [A′′] ∈ Pic A(C) and [B], [B′], [B′′] ∈ Pic SZ(C) we have
π (⟨[A], [A′], [A′′]⟩) = π ([A⊗A′∨ ⊗A′′]) = π ([B ⊗B′∨ ⊗B′′ ⊗A⊗A′∨ ⊗A′′])

= π ([B ⊗A⊗ (B′ ⊗A′)∨ ⊗B′′ ⊗A′′]) = π (⟨[B ⊗A], [B′ ⊗A′], [B′′ ⊗A′′]⟩) .
□

Recall that due to Example 3.6, the pivotal structures Piv Z(C) on Z(C) admit a
heap multiplication. This allows us to distil our previous observations into a single
result.
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Theorem 4.23. The morphism of heaps
(4.27) κ : Pic A(C) → Piv Z(C), [A] ↦→ ρA

induces a unique injective morphism ι : Pic A(C)/Pic SZ(C) → Piv Z(C) such that
the following diagram commutes in the category of heaps:

(4.28)

Pic A(C) Piv Z(C)

Pic A(C)/Pic SZ(C)

π

κ

∃!ι

Proof. Lemmas 4.15 and 4.16 show that κ is well-defined. Given three elements
[A], [B], [C] ∈ Pic A(C), we compute

κ(⟨[A], [B], [C]⟩) = ρA⊗B∨⊗C = ρAρB∨ρC = ρAρ
−1
B ρC = ⟨ρA, ρ−1

B , ρC⟩.
Here we applied the hexagon identities as in Equation (4.25) for the second step
and Lemma 4.20 for the third one. We see, κ is a morphism of heaps. Lemma 4.21
states that for any two elements [A], [B] ∈ Pic A(C) we have κ([A]) = κ([B]) if
and only if π([A]) = π([B]). It follows from Lemma 4.22 that the unique injective
map ι : Pic A(C)/Pic SZ(C) → Piv Z(C), which lets Diagram (4.28) commute, is a
morphism of heaps. □

Remark 4.24. The centre Z(C) of a finite tensor category C over an algebraically
closed field is factorisable due to [ENO04, Proposition 4.4]. By [Shi19, Theorem 1.1],
the Picard group Pic SZ(C) is trivial. In this setting, the induced pivotal structures
depend only on the Picard heap Pic A(C) and not on a quotient thereof.

On the other side of the spectrum, one might consider the discrete category G of
an abelian group G; its set of objects is G and all morphisms are identities. The
category G is rigid monoidal with the tensor product given by the multiplication of
G and the left and right duals given by the respective inverses. A direct computation
shows that SZ(G) = Z(G) ∼= G. Since G is skeletal14 and every object is invertible,
we have Pic SZ(G) ∼= G. As the biduality and identity functor on G coincide, the
same argument implies Pic A(G) ∼= G and thus Pic A(G)/Pic SZ(G) ∼= {1}.

It was proven by Shimizu in [Shi16, Theorem 4.1] that under certain circumstances
all pivotal structures on the centre of C are induced by the quasi-pivotal structures
of C. In our terminology, his result can be formulated as:
Theorem 4.25. The map ι : Pic A(C)/Pic SZ(C) → Piv Z(C) is bijective if C is a
finite tensor category.

However, in the introduction of [Shi16] the author states that it is not to be
expected that this does holds true in general. In the remainder of this section, we will
construct an explicit counterexample. The key observation needed to find a fitting
category C is the following: Suppose there is an object X ∈ C which can be endowed
with two different half-braidings σX,− and χX,−. Assume furthermore that there
is a pivotal structure ζ : IdZ(C) → (−)∨∨ on Z(C) such that ζ(X,σX,−) ̸= ζ(X,χX,−)
as morphisms in C. If the unit of C is the only invertible object, there is no
(quasi-)pivotal structure inducing ζ and therefore ι : Pic A(C)/Pic SZ(C) → Piv Z(C)
cannot be surjective.

14A category C is skeletal if the only isomorphisms are identities or, put differently, X ∼= Y
implies X = Y for all objects X, Y ∈ C.
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We will now define such a category C in terms of generators and relations. The
details of this type of construction are explained in [Kas95, Chapter XII]. As a first
step, consider a ‘free’ monoidal category Cfree. Its objects are monomials in the
variable X. Their tensor product is given by Xn ⊗Xm = Xn+m. The morphisms
of Cfree are formal compositions and tensor products of ‘atomic’ building blocks,
subject to suitable associativity and unitality relations. These ‘atoms’ are identities
on objects plus the set M of generating morphisms depicted below.

(4.29)

X

X

X

X

X

X

X X

X X

σX,X : X2 → X2ρX : X → X evX : X2 → 1 coevX : 1 → X2

By [Kas95, Lemma XII.1.2], every morphism f : Xn → Xm in Cfree is either the
identity or can be written as

f = (idXjl ⊗ fl ⊗ idXil ) . . . (idXj2 ⊗ f2 ⊗ idXi2 )(idXj1 ⊗ f1 ⊗ idXi1 ),
where i1, j1, . . . , il, jl ∈ N and f1, . . . , fl ∈ M. Such a presentation is not unique but
the number l ∈ N of generating morphisms needed to write f in such a manner is.
We call it the degree of f and write deg(f) = l.

To pass to the category C, we take a quotient of Cfree by the relations depicted
below. This will turn C into a pivotal, strict rigid category and allow us to extend σ
to a braiding. To increase readability, we omit labelling the strings with X.

= = = =(4.30)

= = =(4.31)

=

=

=

=

=

(4.32)

Due to [Kas95, Proposition XII.1.4], we observe that there is a unique functor
P : Cfree → C which maps objects to themselves and generating morphisms to their
respective equivalence classes.
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Definition 4.26. Consider a morphism f ∈ HomC(Xn, Xm). A presentation of
f is a morphism g ∈ HomCfree(Xn, Xm) such that f = P (g). If the degree of g is
minimal amongst the presentations of f , we call it a minimal presentation.

Before we classify half-braidings of objects in C by studying their minimal
presentations, we first need to gather some information about the structure of C.

Theorem 4.27. The category C is strict rigid and the bidualising functor is the
identity. Furthermore, idX , ρX : X → X can be extended to pivotal structures and
σX,X : X2 → X2 to a braiding.
Proof. The evaluation and coevaluation morphisms plus their snake identities make
X ∈ C, and by extension every object of C, its own left and right dual, respectively.
Using the Relations (4.31) together with the snake identities, we compute

ρX
∨ = ρX = ∨ρX , σX,X

∨ = σX,X = ∨σX,X ,

evX∨ = coevX = ∨evX and coevX∨ = evX = ∨coevX .
Thus, C is a strict rigid category whose bidualising functor is equal to the identity.

Our candidate for a pivotal structure on C, different from the trivial one, is
ρ : IdC → IdC defined by ρXn := ρX ⊗ · · · ⊗ ρX : Xn → Xn, n ∈ N.

This family of isomorphisms is compatible with the monoidal structure of C by
construction and we only have to investigate its naturality. It suffices to verify this
property on the generators. Relations (4.32) imply that ρX2 commutes with σX,X .
For the coevaluation of X ∈ C we use ρ2

X = idX and Equation (4.31) to compute
ρX2 coevX = (ρX ⊗ ρX) coevX = (idX ⊗ ρ2

X) coevX = coevX ρ1.

Applying the left dualising functor, we get evX ρX2 = evX ρ1. Thus, ρ : IdC → IdC
defines a pivotal structure.

Lastly, we establish that σX,X implements a braiding σ : ⊗ → ⊗op on C. We set
σX,Xm := (idX ⊗ σX,Xm−1)(σX,X ⊗ idXm−1), m ∈ N

and extend this to arbitrary objects:
σXn,Xm := (σXn−1,Xm ⊗ idX)(idXn−1 ⊗ σX,Xm), n,m ∈ N.

As this family of isomorphisms is constructed according to the hexagon axioms, see
Equations (2.19) and (2.20), we only have to prove its naturality. Again, it suffices
to consider the generating morphisms. By Equation (4.32), σ is natural with respect
to ρX , σX,X and coevX . The self-duality of σX,X and coev∨

X = evX imply the
desired commutation between σ and evX . Thus σ is a braiding on C. □

We think of a generic morphism of C to be of the form:

(4.33)

1 2 3 4 5 6

1 2 3 4 5 6 7 8

Example of a morphism in C.

This suggest that we distinguish between connectors, which link an input to an
output vertex, closed loops and half-circles of evaluation- and coevaluation-type.
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Connectors induce a permutation on a subset of N. For example, the permutation
arising from Diagram (4.33) can be identified with (1 2)(3 4).

Conversely, suppose s = ti1 . . . til ∈ Sym(n) to be a permutation written as a
product of elementary transpositions and set fs := fti1

. . . ftil
: Xn → Xn, where

fti := idXi−1 ⊗ σX,X ⊗ idXn−(i+1) : Xn → Xn, for 1 ≤ i ≤ n− 1.
Since the braiding σ is symmetric fs does not depend on the presentation of s.
However, should the presentation of s be minimal, then so is the corresponding
presentation of fs.

The morphism f : X3 → X3 corresponding to the premutation (1 3 2).

1 2 3

1 2 3

To derive a normal form of the automorphisms of C and turn our previously
explained thoughts into precise mathematical statements, we need to study the
‘topological features’ of the morphisms in C.

Remark 4.28. We recall the category T of tangles, a close relative to the string
diagrams arising from C, based on [Kas95, Chapter XII.2]. Its objects are finite
sequences in {+,−} and its morphisms are isotopy classes of oriented tangles. A
detailed discussion of tangles is given in [Kas95, Definition X.5.1]. For us, it suffices
to think of an oriented tangle L of type (n,m) as a finite disjoint union of embeddings
of either the unit circle S1 or the interval [0, 1] into R2 × [0, 1] such that
(4.34) ∂L = L

⋂︁ (︁
R2 × {0, 1}

)︁
= ([n] × {(0, 0)}) ⋃︁ ([m] × {(0, 1)}) ,

where [n] = {1, . . . , n} and [m] = {1, . . . ,m}. The orientation on each of the
connected components of L is induced by the counter-clockwise orientation of S1

and the (ascending) orientation of [0, 1]. The tensor product of tangles is given by
pasting them next to each other. Their composition is implemented, by appropriate
gluing and rescaling.

To distinguish isotopy classes of tangles, one can study their images under the
projection R2 × [0, 1] → R × [0, 1]. This leads to a combinatorial description of T ,
see for example [Kas95, Theorem XII.2.2].

Theorem 4.29. The strict monoidal category T is generated by the morphisms:

+ −
− + + −

− +

+ +

+ +

+ +

+ +

ev+ : + ⊗ − → 1, coev+ : 1 → − ⊗ +, ev− : − ⊗ + → 1, coev− : 1 → + ⊗ −,

τ+,+ : + ⊗ + → + ⊗ +, τ−1
+,+ : + ⊗ + → + ⊗ +.
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These are subject to the following relations:

+

+

=

+

+

+

+

=

−

−

=

−

−

−

−

=(4.35)

+ +

+ +

=

+ +

+ +

+ +

+ +

=

+ + + + + +

+ + + + + +

=(4.36)

=

− −

− −

−−

−−

=

− −

− −

−−

−−

(4.37)

− +

+

+

−+

−+

−+

=

−

−

=

−+

+

+

− +

− +

− +

=

−

−

=(4.38)

=

+

+ +

+

+

+

=(4.39)

The connection between tangles and the category C is attained through applying
[Kas95, Proposition XII.1.4].

Lemma 4.30. There exists a strict monoidal functor S : T → C which is uniquely
determined by S(+) = X = S(−) and

S(ev±) = evX , S(coev±) = coevX , S(τ±
+,+) = σX,X .

To investigate the ‘topological features’ of C, we want to lift its morphisms to
T . Hereto we want to ‘trivialise’ the generator ρX,X : X → X. Set C/⟨ρX⟩ to be
the category obtained from C by identifying ρX with idX . The ‘projection’ functor



67

Pr: C → C/⟨ρX⟩ allows us to define an equivalence relation on the morphisms of C:
(4.40) f ∼ g ⇐⇒ Pr(f) = Pr(g).

For example the following two endomorphisms ⃝, •⃝ : 1 → 1 of the monoidal
unit of C would be equivalent with respect to this relation:

(4.41)

A closed loop ⃝. A closed loop •⃝
decorated with ρ.

Theorem 4.31. Every automorphism f ∈ C(Xn, Xn) can be uniquely written as
(4.42) f = fsfϕ,

where fs : Xn → Xn is the automorphism induced by a permutation s ∈ Sym(n) and
(4.43) fϕ = ρϕ1

X ⊗ · · · ⊗ ρϕn

X , with ϕ1, . . . , ϕn ∈ Z2.

Furthermore, if a minimal presentation s = ti1 . . . til is fixed, the resulting presenta-
tion of f is minimal as well.

Proof. For any automorphism f ∈ AutC(Xn) there exists another automorphism
g ∈ AutC(Xn) such that Pr(f) = Pr(g) and g has a presentation in which no copies
of ρ occur. By proceeding analogous to [Kas95, Lemma X.3.3], we construct a tangle
Lg out of g such that S(Lg) = g. Furthermore Lg is isotopic to a tangle L′

g, whose
connected components are mapped under the projection R2 × [0, 1] → R × [0, 1]
either to closed loops, half-circles of evaluation- or coevaluation-type or straight
lines. Write Ltriv

n for a tangle which projects to n parallel straight lines
{(k, t) | t ∈ [0, 1] and k ∈ {1, . . . , n}}.

Since g was invertible by assumption, we can lift its inverse g−1 : Xn → Xn to a
tangle Lg−1 with [Lg][Lg−1 ] = [Ltriv

n ] = [Lg−1 ][Lg]. This equation readily implies
that L′

g could not have contained any loops or half-circles. In other words g = fs,
where fs is the morphism obtained from the permutation s ∈ Sym(n), induced by
the projection of L′

g onto R × [0, 1]. Due to the naturality of σX,X , the equivalence
between f and g implies f = fsfϕ, with fϕ being a tensor product of identities and
copies of ρX .

The proof is concluded by showing that for all ϕ1, ψ1, . . . ϕn, ψn ∈ Z2 we have
ρϕ1 ⊗ · · · ⊗ ρϕn = ρψ1 ⊗ · · · ⊗ ρψn ∈ C(Xn, Xn) ⇐⇒ ϕ1 = ψ1, . . . , ϕn = ψn.

Hereto we consider a 2-dimensional vector space V over a field k and choose a
basis B = {b0, b1} of V . This allows us to construct a strong monoidal functor
F : C → k-Vect with F (X) = V . For all i, j ∈ {0, 1}, we set

F (ρX)(b1) = b0, F (ρX)(b0) = b1, F (σ)(bi ⊗ bj) = bj ⊗ bi,

F (coev)(1k) = b0 ⊗ b0 + b1 ⊗ b1, F (ev)(bi ⊗ bj) = δi=j ,
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and extend these assignments linearly. This determines the values of F : C → k-Vect
on the set M of generating morphisms of C. Identifying {0, 1} with Z2 yields

F (ρϕ1 ⊗ · · · ⊗ ρϕn)(b0 ⊗ . . . b0) = bϕ1 ⊗ · · · ⊗ bϕn
and

F (ρψ1 ⊗ · · · ⊗ ρψn)(b0 ⊗ . . . b0) = bψ1 ⊗ · · · ⊗ bψn
.

The claim follows. □

The first step in showing that ι : Pic A(C)/Pic SZ(C) → Piv Z(C) cannot be
surjective is to prove that the Picard heap Pic A(C) contains at most two elements.

Corollary 4.32. The only (quasi-)pivotal structures on C are id : IdC → IdC and
ρ : IdC → IdC.

Proof. The only invertible object of C is its monoidal unit, which implies that any
quasi-pivotal structure on C is already pivotal. The claim follows since these are
determined by their value on X and, by Theorem 4.31, AutC(X) = {idX , ρX}. □

Let us now focus on the various ways in which we can equip the objects of C with
half-braidings. Our classification of automorphisms in C allows us to easily verify
that on X ∈ C there are four different half-braidings. These are determined by

(4.44)

σ◦,◦
X,X

: X2 → X2, σ◦,•
X,X

: X2 → X2

and

σ•,•
X,X

: X2 → X2.σ•,◦
X,X

: X2 → X2,

The fact that these braidings are distinguished by the appearances of ρ on the
respective strings, motivates our next definition.

Definition 4.33. Let f = fsfϕ : Xn → Xn be an automorphism in C. Its charac-
teristic sequence is ϕ := (ϕ1, . . . , ϕn) ∈ (Z2)n with

(4.45) fϕ = ρϕ1
X ⊗ · · · ⊗ ρϕn

X .

Indeed, it is the interplay between instances of ρ and the underlying permutation
that determine whether an automorphism χY,X : Y ⊗X → X ⊗ Y can be lifted to a
half-braiding.

Lemma 4.34. Any automorphism χXn,X : Xn ⊗X → X ⊗Xn extends to a half-
braiding on Xn ∈ C if and only if there exists an f ∈ AutC(Xn) with characteristic
sequence (ϕ1, . . . , ϕn) and underlying permutation s ∈ Sym(n) such that for all
1 ≤ i ≤ n we have
(4.46) s2(i) = i, s(ϕi) = ϕi,

and χXn,X = σXn,X(f ⊗ ρjX) for an integer j ∈ Z2.

Proof. Assume χXn,X : Y ⊗ X → X ⊗ Y to induce a half-braiding on Xn. Due
to Theorem 4.31, we can write χXn,X = σXn,X(f ⊗ ρjX), where f : Xn → Xn is
an automorphism of Xn and j ∈ Z2. Let ϕ = (ϕ1, . . . , ϕn) be the characteristic
sequence of f and s ∈ Sym(n) its underlying permutation. We set

fs−1(ϕ) = ρ
s−1(ϕ1)
X ⊗ · · · ⊗ ρ

s−1(ϕn)
X .
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Writing W := Xn−1 and using that f = fsfϕ as well as the naturality of χXn,− and
Equation (4.31), we compute:

(4.47)

Xn

Xn
X

Xn

X

Xn

fϕ

fs

fϕ

fs

ϕj

ϕj

X

Xn

fϕ

fs

fs−1(ϕ)

fs

Xn

fϕ

fs

fs−1(ϕ)

fs

Xn

= = = =

evX ⊗ idW

W
evX ⊗ idW

W

evX ⊗ idW

W

This is equivalent to s being an involution and ϕ being invariant under s.
Conversely, let χXn,X = σXn,X(f ⊗ ρjX) : Xn ⊗ X → X ⊗ Xn, where f is an

automorphism whose characteristic sequence and underlying permutation satisfy
Equation (4.46). In order to turn it into a half-braiding, we extend it to a family
of isomorphisms χXn,− : Xn ⊗ − → − ⊗ Xn according to the hexagon axioms.
We verify its naturality on the generators of C. For ρX and σX,X this is an
immediate consequence of their respective naturality conditions. The necessary
commutation relations between χXn,− and coevX as well as evX , can be deduced
from Equation (4.47). □

The previous lemma severely restricts the number of possibilities in which an
automorphism of C can lift to the centre Z(C).

Corollary 4.35. Consider an object Xn ∈ C equipped with two half-braidings
χXn,X = σXn,X(fsfϕ ⊗ ρjX), θXn,X = σXn,X(ftfψ ⊗ ρkX).

If g = grgλ ∈ AutC(Xn) lifts to a morphism g : (Xn, χXn,−) → (Xn, θXn,−) of
objects in the centre Z(C) of C, then
(4.48) ϕiλsr(i) = ψr(i)λr(i), for all 1 ≤ i ≤ n.

Proof. For the automorphism g = grgλ ∈ AutC(Xn) to lift to the centre it must
satisfy
σXn,X(fsfϕg ⊗ ρjX) = χXn,X(g ⊗ idX) = (idX ⊗ g)θXn,X = σXn,X(gftfψ ⊗ ρkX).

This implies fsfϕgrgλ = grgλftfψ and therefore ϕs(i)λsr(i) = λr(i)ψrt(i) for all
1 ≤ i ≤ n. Since Z2 is abelian and ϕs(i) = ϕi as well as ψt(i) = ψi, the claim
follows. □

In view of Lemma 4.34, we state a slightly refined version of Definition 4.33.

Definition 4.36. Consider an object Y = (Xn, χXn,X) ∈ Z(C) whose half-braiding
is defined by χXn,X = σXn,X(f⊗ρjX) for an integer j ∈ Z2. We call the characteristic
sequence ϕ of f the signature of Y .

We now construct a pivotal structure on the centre of C which differs from the
lifts of id and ρ from C to Z(C).
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Theorem 4.37. The Drinfeld centre Z(C) of C admits a pivotal structure ζ with
ζ(X,σ◦,◦

X,−) = idX , ζ(X,σ◦,•
X,−) = idX ,(4.49a)

ζ(X,σ•,◦
X,−) = ρX , ζ(X,σ•,•

X,−) = ρX .(4.49b)

Proof. For any object Y ∈ Z(C) we define

ζY = ρϕ1
X ⊗ · · · ⊗ ρϕn

X , where ϕ = (ϕ1, . . . , ϕn) is the signature of Y .
Since the signature φ of a tensor product Y ⊗W of objects Y,W ∈ Z(C) is given
by concatenating the signatures ϕ of Y and ψ of W , this defines a family of
isomorphisms ζ : IdZ(C) → IdZ(C), which is compatible with the monoidal structure.
It therefore only remains to prove the naturality of ζ. This can be verified by
considering all possible lifts of identities and generators of C to its Drinfeld centre.
For idX , ρX : X → X and σX,X : X2 → X2, this follows by Corollary 4.35. To study
the coevaluation of X, we fix a half-braiding χX2,− : X2 ⊗ − → − ⊗X2 on X2. Due
to Lemma 4.34, it is determined by

χX2,X = σX2,X

(︁
(σiX,X(ρjX ⊗ ρkX)) ⊗ ρlX

)︁
, where i, j, k, l ∈ Z2.

Now suppose, coevX : 1 → X2 lifts to a morphism in Z(C), where X2 is equipped
with this half-braiding. Relation (4.31) together with the self-duality of σX,X imply
σX,X coevX = coevX and evX σX,X = evX , which allows us to compute:

X

=

XX

X

ρj ρk

X

X

=

ρj

ρk

= =

X

X

ρj

ρk

Therefore j = k and ζ(X2,χX2,−) = id2
X or ζ(X2,χX2,−) = ρ2

X , from which the desired
naturality condition follows. A similar argument for the evaluation of X concludes
the proof. □

By Corollary 4.32, the Picard heap of A(C) can have at most two elements.
However, the above theorem constructs a third pivotal structure on Z(C). This
implies our desired result:

Theorem 4.38. The pivotal structure ζ of Z(C) is not induced by the Picard heap
of A(C). In particular, the map ι : Pic A(C)/Pic SZ(C) → Piv Z(C) is not surjective.

Let us conclude this section by stating that we deem the question interesting under
which conditions on a rigid category C, the map ι : Pic A(C)/Pic SZ(C) → Piv Z(C)
is surjective.



Part 2:
The anti-double of a Hopf monad and

pairs in involution



5. Bimodule and comodule monads

Bimonads and Hopf monads are a vast generalisation of bialgebras and Hopf
algebras, respectively. They naturally arise in the study of (rigid) monoidal categories
and topological quantum field theories, see amongst others [KL01, Moe02, BV07,
BLV11, TV17]. While there are several, sometimes non-equivalent, constructions
for Hopf monads, see [Boa95, MW11], we follow the approach of [BV07].

A monadic interpretation of module categories was given by Aguiar and Chase
under the name ‘comodule monad’, see [AC12]. In this section, we recall some
aspects of their theory needed to obtain a monadic version of the results in Section 4.

5.1. Monads and their representation theory. A monad is an object of al-
gebraic nature which serves as a ‘coordinate system’ of its category of modules.
That is, many properties of the latter can be expressed through the former. In this
short exposition, we follow [Rie17, Chapter 5] but keep our notation in line with
the article [BV07].

Definition 5.1. A monad on a category C is an endofunctor T : C → C together
with two natural transformations

µ : T 2 → T, η : IdC → T,

called the multiplication and unit of T , respectively. They need to satisfy appropriate
associativity and unitality axioms, i.e. for all X ∈ C

µX(T (µX)) = µX(µT (X)),(5.1)
µX(ηT (X)) = idT (X) = µX(T (ηX)).(5.2)

A morphism of monads f : T → S is a natural transformation such that

(5.3) fµ
(T )
X = µ(S)S(fX)fT (X), fXη

(T )
X = η

(S)
X , for every X ∈ C.

Remark 5.2. The endofunctors of a category C form a monoidal category End(C)
with composition as its tensor product. From this point of view, monads can be
interpreted as monoids (or algebras) in End(C). In the language of string diagrams,
we represent the multiplication and unit of a monad (T, µ, η) : C → C as

(5.4)

TT

T T

µ : T 2 → T , η : IdC → T .

Their associativity and unitality then equate to the diagrams

(5.5)
T

T

=

T

TTT

T

T T T

= =

µµT = µT (µ), µηT = idT = µT (η).

T

T

T

T

Definition 5.3. A module over a monad (T, µ, η) : C → C is an object M ∈ C
together with a morphism ϑM : T (M) → M , called the action of T on M , such that
(5.6) ϑMµM = ϑMT (ϑM ) and ϑMηM = idM .
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A morphism of modules over T is a morphism f : M → N that commutes with the
respective actions, i.e.
(5.7) ϑNT (f) = fϑM .

Modules and their morphisms over a monad T on C form the category CT of
T -modules15. The free and forgetful functor of T are

FT : C → CT , FT (M) = (T (M), µ(T )
M ) and UT : CT → C, UT (M,ϑM ) = M.

They constitute the Eilenberg–Moore adjunction FT : C ⇄ CT :UT of T whose unit
η : IdC → UTFT and counit ϵ : FTUT → IdCT are defined by

ηV := η
(T )
V : IdC(V ) → UTFT (V ) = T (V ), for every V ∈ C,(5.8a)

ϵ(M,ϑM ) := ϑM : FTUT (M,ϑM ) → IdCT (M,ϑM ), for every (M,ϑM ) ∈ CT .(5.8b)

Remark 5.4. To fit the free and forgetful functor of a monad (T, µ, η) : C → C into
our graphical framework, we need a small modification: we label connected regions
of the diagrams with categories. The unit and counit of the adjunction then read as

(5.9) =

UTFTFT

η

UT

IdC

=

UT FTFT

ϵ

UT

IdCT

C C

CT

C

CTCT

η : IdC → UT FT , ϵ : FT UT → IdCT .

Since the occurring categories are often apparent from the context, we do not explic-
itly display them in our diagrams. With these conventions, the string diagrammatic
versions of the defining Equations (2.1) and (2.2) of the above adjunction are

(5.10)

UT

UT

=

UT

UT

FT

FT

=

FT

FT

UT (ϵ)ηUT
= idUT

, ϵFT
FT (η) = idFT

.

Likewise, we obtain a diagrammatic representation of the modules over T . By
definition we have that T = UTFT as functors. Define the natural transformation
ϑ := UT (ϵ) : TUT = UTFTUT → UT . Following [Wil08], it will be represented by

(5.11) ϑ =

TUT

C

CCT

UT

T

ϑ : T UT → UT .

UT

UT

15In the literature, modules over T are also referred to as T -algebras and CT is called the
Eilenberg–Moore category of T . The intention behind our conventions is to have a closer similarity
to (Hopf) algebraic notions.
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The compatibility of the action with the multiplication of T and its unitality are
expressed by

(5.12) = =

TTTT

ϑµUT
= ϑT (ϑ), ϑηUT

= idUT
.

As witnessed above, monads lead almost naturally to adjunctions between their
‘base categories’ and their categories of modules. The situation we face, however, is
the opposite. Given an adjunction F : C ⇄ D :U between two categories C and D,
we want to find a monad on C whose category of modules is equivalent to D.

Lemma 5.5. Let F : C ⇄ D :U be an adjunction between two categories C and D
with unit η : IdC → UF and counit ϵ : FU → IdD. The endofunctor UF : C → C is
a monad with multiplication and unit given by

(5.13)

F U F U

F U F U

µ : UF UF
UϵF−−−→ UF , η : IdC

η−−→ UF .

Let T be the monad of the adjunction F : C ⇄ D :U . In the spirit of our
previous remark, we might ask how much the functors F and U ‘differ’ from the free
and forgetful functors FT : C → CT and UT : CT → C of T , respectively. Roughly
summarised we are interested in the following:

D CT

C

U

‘compare′

UTF

FT

Definition 5.6. Let T := UF be the monad of the adjunction F : C ⇄ D :U . We
refer to Σ: D → CT as a comparison functor if
(5.14) ΣF = FT and UTΣ = U.

Theorem 5.7. Every monad T of an adjunction F : C ⇄ D :U admits a unique
comparison functor Σ: D → CT . On objects it is given by
(5.15) Σ(X) = (U(X), U(ϵX)), for all X ∈ D.

We call an adjunction monadic if its comparison functor is an equivalence.
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5.2. Bimonads and monoidal categories. Due to a lack of a (canonical) braiding
on the endofunctors End(C) over C, the näıve notion of bialgebras does not generalise
to the monadic setting and needs to be adjusted. One possible way of overcoming this
problem was introduced and studied by Moerdijk under the name ‘Hopf monads’16 in
[Moe02]; the idea being that the coherence morphisms of an oplax monoidal functor
(T,∆, ε) : C → D, see Definition 2.2, serve as its ‘comultiplication’ and ‘counit’.
Following the conventions of [BV07] we refer to such structures as bimonads.
Definition 5.8. A bimonad on a monoidal category C is an oplax monoidal end-
ofunctor (B,∆, ε) : C → C together with oplax monoidal natural transformations
µ : B2 → B and η : IdC → B implementing a monad structure on B.

A morphism of bimonads is a natural transformation f : B → H between bimon-
ads which is oplax monoidal as well as a morphism of monads.
Convention. As discussed in Section 2.1, we refer to the coherence morphisms

∆: B(− ⊗ −) → B(−) ⊗B(−) and ε : B(1) → 1
of a bimonad (B,µ, η,∆, ε) : C → C as its comultiplication and counit. Their
defining relations, see Equations (2.4) and (2.5), will be called the coassociativity
and counitality axiom of the comultiplication.
Remark 5.9. Despite this terminology not being standard, it can be justified by
representation theoretic considerations. Under Tannaka–Krein reconstruction, see
[EGNO15, Chapter 5], the comultiplication and counit of a bialgebra correspond to
a tensor product and unit on its category of modules. Similarly, given a bimonad
(B,µ, η,∆, ε) : C → C and two modules (M,ϑM ), (N,ϑN ) ∈ CB we set
(5.16)

(︁
M,ϑM

)︁
⊗

(︁
N,ϑN

)︁
:=

(︁
M ⊗N, (ϑM ⊗ ϑN )∆M,N

)︁
.

Moreover, we define ϑ1 : B(1) → 1. The coassociativity and counitality of the
comultiplication of B imply that the above construction implements a monoidal
structure on CB , parallel to that on the modules over a bialgebra.

Going further, we can incorporate rigidity into this picture. In view of [BV07,
Theorem 3.8], we state:
Definition 5.10. A bimonad H : C → C on a rigid category C is called a Hopf
monad if its category of modules CH is rigid.
Remark 5.11. The rigidity of the modules CH of a Hopf monad H : C → C is
reflected by the existence of two natural transformations
(5.17) slX : H(H(X)∨) → H∨, srX : H(∨H(X)) → ∨H, for all X ∈ C,
called the left and right antipode of H. In Example 2.4 of [BV12] it is explained
how these generalise the antipode of a Hopf algebra.

The intricate interplay between monads and adjunctions transcends to monoidal
categories and bimonads. Suppose F : C ⇄ D :U to be an oplax monoidal adjunction
between C and D. The monad of the adjunction UF : C → C is a bimonad whose
comultiplication is defined for every X,Y ∈ C as the composition

(5.18) UF (X ⊗ Y )
U

(︁
∆(F )

X,Y

)︁
−−−−−−→ U(F (X) ⊗ F (Y ))

∆(U)
F (X),F (Y )−−−−−−−→ UF (X) ⊗ UF (Y ).

16As remarked in [Moe02], the concept of Hopf monads is strictly dual to that of monoidal
comonads, which are studied for example in [Boa95].
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Its counit is

(5.19) UF (1)
U

(︁
ε(F )

)︁
−−−−−→ U(1) ε(U)

−−−→ 1.
The next result is a slightly simplified version of [TV17, Lemma 7.10].

Lemma 5.12. Let F : C ⇄ D :U be a pair of adjoint functors between two monoidal
categories. The adjunction F ⊣ U is monoidal if and only if U is a strong monoidal
functor. That is, the coherence morphisms of U are invertible.

Suppose B : C → C to be the bimonad arising from the monoidal adjunction
F : C ⇄ D :U . Since the forgetful functor UB : CB → C is strict monoidal, the ad-
junction FB ⊣ UB is monoidal by the above lemma. This raises the question whether
the comparison functor, mediating between the two adjunctions, is compatible with
this additional structure. Due to [BV07, Theorem 2.6], we have the following result.

Lemma 5.13. Let F : C ⇄ D :U be a monoidal adjunction and write B : C → C
for its induced bimonad. The comparison functor Σ: D → CB is strong monoidal
and UBΣ = U as well as ΣF = FB as strong, respectively, oplax monoidal functors.

The question to which extend the monoidal structure on CB is unique was
answered by Moerdijk in [Moe02, Theorem 7.1].

Theorem 5.14. Let (B,µ, η) be a monad on a monoidal category C. There exists a
one-to-one correspondence between bimonad structures on B and monoidal structures
on CB such that the forgetful functor UB is strict monoidal.

5.3. The graphical calculus for bimonads. Willerton introduced a graphical
calculus for bimonads in [Wil08]. Since it will aid us in making our arguments more
transparent, we recall it here. The key idea is to incorporate the Cartesian product
of categories into the string diagrammatic representation of functors and natural
transformations.

As before, we consider strings and vertices between them. These are labelled
with functors and natural transformations, respectively. The strings and vertices
are embedded into bounded rectangles which we will call sheets. Each (connected)
region of a sheet is decorated with a category. The same mechanics as for string
diagrams apply—horizontal and vertical gluing represents composition of functors
and natural transformations. On top of these operations, we add stacking sheets
behind each other to depict the Cartesian product of categories. Our convention is
to read diagrams from front to back, left to right and top to bottom.

Two of the most vital building blocks in this new graphical language are the
tensor product and unit of a monoidal category (C,⊗, 1):

(5.20)
C

C
C

C
⊗

=: CC1

1 1 C

The tensor product ⊗ : C × C → C. The unit as a functor 1 : 1 → C.

C C
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On the left, we see two sheets equating to two copies of C joined by a line: the
tensor product of C. On the right, we have the unit of C considered as a functor
1

1−→ C, where 1 is the category with one object and one morphism. Our convention
is to represent the category 1 by the empty sheet and the unit of C by a dashed line.

The first example we want to discuss is that of a bimonad (B,µ, η,∆, ε) : C → C.
Diagram (5.4) describes its unit and multiplication. The comultiplication and counit
of B are represented by

(5.21)
B

∆

B

B

C

C

C

∆: B(− ⊗ −) → B(−) ⊗ B(−),

B

ε : B(1) → 1.

C

In string diagrams, coassociativity and counitality equate to

=

B

B

B

B

(idB ⊗ ∆−,−)∆−,−⊗− = (∆−,− ⊗ idB)∆−⊗−,−,

B

B

B

B

(5.22)

B

B

=

B

=

B

B

B

BB

(id ⊗ ε)∆−,1 = idB , (ε ⊗ id)∆1,− = idB .

(5.23)

The multiplication and unit of B are comultiplicative and counital. The graphical
version of these axioms is

(5.24)
BB

=

B

B

B

B

∆−,−µ−⊗− = (µ− ⊗ µ−)∆B(−),B(−)B(∆−,−), ∆−,−η−⊗− = η− ⊗ η−,

B

B

=

B

B

B B
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(5.25) =

BB BB

=

εµ1 = εB(ε), εη1 = id1.

The second—equally important—example is that of an oplax monoidal adjunction
F : C ⇄ D :U . It is characterised by its unit η(F⊣U) and counit ϵ(F⊣U) being oplax
monoidal natural transformations:

F U
U

U

=

F

F U F

=

∆(U)
F (−),F (−)U(∆(F )

−,−)η
(F ⊣U)
−⊗− = η

(F ⊣U)
− ⊗ η

(F ⊣U)
− , ε(U)ε(F )η

(F ⊣U)
1 = id1,

(5.26)

F

=

FU U

=

FU FU

ϵ
(F ⊣U)
−⊗− = (ϵ

(F ⊣U)
− ⊗ ϵ

(F ⊣U)
− )∆(F )

U(−),U(−)F (∆(U)
−,−), ϵ

(F ⊣U)
1 = ε(F )F (ε(U)).

(5.27)

5.4. Comodule monads. Monads with a ‘coaction’ over a bimonad were defined
and studied by Aguiar and Chase in [AC12]. This concept is needed to obtain
an adequate monadic interpretation of twisted centres. We briefly summarise the
aspects of the aforementioned article that are needed for our investigation17. To
keep our notation concise, we fix two monoidal categories C and D and over each a
right module category M and N .

Definition 5.15. Suppose (F,∆, ε) : C → D to be an oplax monoidal functor. A
(right) comodule functor over F is a pair (G, δ) consisting of a functor G : M → N
together with a natural transformation
(5.28) δM,X : G(M ◁X) → G(M) ◁F (X), for all X ∈ C and M ∈ M,

called the coaction of G, which is coassociative and counital. That is, for all X,Y ∈ C
and M ∈ M we have

(idG(M) ◁ ∆X,Y )δM,X⊗Y = (δM,X ◁ idF (Y ))δM◁X,Y ,(5.29)
(idG(M) ◁ ε)δM,1 = idG(M).(5.30)

A comodule functor is called strong if its coaction is an isomorphism.

17We slightly deviate from [AC12] in that we study right comodule monads as opposed to their
left versions.
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A recurring example of strong comodule functors in our investigation is given by
forgetful functors. By construction U (Z) : Z(C) → C is strict monoidal. Over it, the
forgetful functor U (L) : Z(LC) → C from a left twisted centre to its base category is
strict comodule.

In order to emphasise that (G, δ) : M → N is a comodule functor over an oplax
monoidal functor (F,∆, ε) : C → D, we colour it blue in our string diagrams. For
example, its coaction is represented by

(5.31)

G

F

G

δ : G(− ⊗ −) → G(−) ⊗ F (−).

The compatibility of the coaction with the comultiplication and counit of F given in
Equations (5.29) and (5.30) would result in analogues of the Diagrams (5.22) and
(5.23).
Definition 5.16. Let G,K : M → N be comodule functors over B,F : C → D. A
comodule natural transformation from G to K is a pair of natural transformations
ϕ : G → K and ψ : B → F such that

(5.32) (ϕM ◁ψX)δ(G)
M,X = δ

(K)
M,XϕM◁X , for all X ∈ C and M ∈ M.

We call (ϕ, ψ) a morphism of comodule functors if B = F and ψ = idB .
Suppose the pair ϕ : G → K and ψ : B → F to constitute a comodule natural

transformation. We can view ϕ : G → K as a morphism of comodule functors over
F if we equip G with a new coaction. It is given for all X ∈ C and M ∈ M by

G(M ◁X)
δ

(G)
M,X−−−→ G(M) ◁B(X)

idG(M)◁ψX−−−−−−−→ G(M) ◁F (X).
It follows that by altering the involved coactions suitably, comodule natural trans-
formations and morphisms of comodule functors can be identified with each other.

The graphical representation of the condition for ϕ : G → K to be a morphism of
comodule functors is displayed in our next diagram.

(5.33)

G

B

K

=

G

B

K

δ
(K)
−,−ϕ−◁− = (ϕ− ◁ idB(−))δ

(G)
−,−

Remark 5.17. Let (B,µ, η,∆, ε) : C → C be a bimonad and M a module category
over C. The unit η : IdC → B implements a coaction on IdM : M → M via
(5.34) idM ◁ ηX : IdM(M ◁X) → IdM(M) ◁B(X), for all X ∈ C,M ∈ M.
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Using the multiplication µ : B2 → B, we can equip the composition GK of two
comodule functors G,K : M → M with a comodule structure:
(5.35) δ(GK) := (id ◁µ)δ(K)G(δ(K)) : GK(− ◁ −) → GK(−) ◁B(−).
Due to the associativity and unitality of the multiplication of B, the category
Com(B,M) of comodule endofunctors on M over B is monoidal. Studying its
monoids will be a main focus of the rest of this section.
Definition 5.18. Consider a bimonad B : C → C and a module category M over
C. A comodule monad over B on M is a comodule endofunctor (K, δ) : M → M
together with morphisms of comodule functors µ : K2 → K and η : IdM → K such
that (K,µ, η) is a monad.

A morphism of comodule monads is a natural transformation of comodule functors
f : K → L that is also a morphism of monads.

The conditions for the multiplication and unit of a comodule monad K : M → M
over a bimonad B : C → C to be morphisms of comodule functors amount to

(5.36)
BB

K

K

=

K

K

K K

=

B

K

B

K

δ−,−µ
(K)
−◁− = (µ

(K)
− ◁ µ

(B)
− )δK(−),B(−)K(δ−,−), δ−,−η

(K)
−◁− = η

(K)
− ◁ η

(B)
− .

Remark 5.19. Let B : C → C be a bimonad and (K, δ) : M → M a comodule
monad over it. The coaction of K allows us to define an action ◁ : MK×CB → MK .
For any two modules (M,ϑM ) ∈ MK and (X,ϑX) ∈ CB , it is given by
(5.37)

(︁
M,ϑM

)︁
◁

(︁
X,ϑX

)︁
:=

(︁
M ◁X, (ϑM ◁ϑX)δM,X

)︁
.

The axioms of the coaction of B on K translate precisely to the compatibility of
the action of CB on MK with the tensor product and unit of CB .

We have already seen that monads and adjunctions are in close correspondence
and that additional structures on the monads have their counterparts expressed in
terms of the units and counits of adjunctions. In the case of comodule monads this is
slightly more complicated as we have two adjunctions to consider: one corresponding
to the bimonad and one to the comodule monad.
Definition 5.20. Consider two adjunctions F : C ⇄ D :U and G : M ⇄ N :V
such that F ⊣ U is monoidal and G,V are comodule functors over F,U . We call
the pair (G ⊣ V, F ⊣ U) a comodule adjunction if the following two identities hold:

(5.38)
F

V

=

F

G V

U

G

U

δ
(V )
G(−),F (−)V (δ

(G)
−,−)η

(G⊣V )
−◁− = η

(G⊣V )
− ◁ η

(F ⊣U)
− ,
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(5.39)

G

=

GV V

ϵ
(G⊣V )
−◁− = (ϵ

(G⊣V )
− ◁ ϵ

(F ⊣U)
− )δ

(G)
V (−),U(−)G(δ

(V )
−,−).

The philosophy that monads and adjunctions are two sides of the same coin
extends to the comodule setting. Suppose that we have a monoidal adjunction
F : C ⇄ D :U and over it a comodule adjunction G : M ⇄ N :V . As stated in
[AC12, Proposition 4.3.1], the bimonad B := UF admits a coaction on the monad
K := V G. For any M ∈ M and X ∈ C it is given by

(5.40) V G(M ◁X)
V

(︁
δ

(G)
M,X

)︁
−−−−−−→ V (G(M) ◁F (X))

δ
(V )
G(M),F (X)−−−−−−−→ K(M) ◁B(X).

The next result slightly extends Proposition 4.1.2 of [AC12]. We prove it analogous
to [TV17, Lemma 7.10].

Theorem 5.21. Suppose F : C ⇄ D :U to be a monoidal adjunction and let
G : M ⇄ N :V be an adjunction between module categories over C and D, re-
spectively. Lifts of G ⊣ V to a comodule adjunction are in bijection with lifts of
V : N → M to a strong comodule functor.

Proof. Let G ⊣ V be a comodule adjunction and write δ(V ) for the coaction of V .
We define its inverse via

(5.41)

V

V

U

δ−(V ) : V (−) ◁ U(−) → V (− ◁ −).

Using that G and H are part of a comodule adjunction, we compute:

V

V

V

V

= =

V

V

A similar strategy can be used to show that δ(V )
N,Y ◦ δ−(V )

N,Y = idV (N)◁U(Y ) for all
Y ∈ D and N ∈ N . Thus, δ(V ) is a natural isomorphism and therefore V is a strong
comodule functor.
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Now, let (V, δ(V )) : N → M be a strong comodule functor. We set

(5.42)

G

G

F

δ(G) : G(− ◁ −) → G(−) ◁ F (−).

Due to [TV17, Lemma 7.10], the comultiplication and counit of F : C → D are for
all X,Y ∈ C given by

∆(F )
X,Y := ϵ

(F⊣U)
F (X)⊗F (Y )F (∆−(U)

F (X),F (Y ))F (η(F⊣U)
X ⊗ η

(F⊣U)
Y ),(5.43)

ε(F ) := ϵ
(F⊣U)
1 F (ε−(U)).(5.44)

Note that, graphically, ∆ looks just like Diagram (5.42), with black strings taking
the place of blue ones. We prove that δ(G) : G(− ◁ −) → G(−) ◁F (−) is a coaction
on G : M → M diagrammatically:

= =

=

G

G

F

F

G

G

F

F

G

G

F

F

G

G

F

F

and

G

G

=

G

G

G

G

=
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It follows that the unit of the adjunction G ⊣ H satisfies:

F U

G V

F U

G V

= =

F U

G U

An analogous computation for the counit shows that G ⊣ V is a comodule adjunction.
To see that these constructions are inverse to of each other, first suppose that

we have a comodule adjunction (G, δ(G)) ⊣ (V, δ(V )). By utilising δ−(V ) as given
in Diagram (5.41), we obtain another coaction λ(G) on G, see Diagram (5.42). A
direct computation shows that δ(G) = λ(G):

G

F

G

G

F

G

=

The converse direction is clear since inverses of natural isomorphisms are unique. □

The above theorem yields a description of the coaction of a comodule monad in
terms of its Eilenberg–Moore adjunction. It is an analogue of Theorem 5.14.

Corollary 5.22. Let B : C → C be a bimonad and M a right module over C. Further
suppose K : M → M to be a monad. Coactions of B on K are in bijection with
right actions of CB on MK such that UK is a strict comodule functor over UB.

Proof. Suppose CB acts from the right on MK such that UK is a strict comodule
functor. Due to Theorem 5.21, K = UKFK is a comodule monad via the coaction
(5.45) δ(K) = δ(UK )UK(δ(FK )) = UK(δ(FK )).

Conversely, if K is a comodule monad, MK becomes a suitable right module
over CB with the action as given in Remark 5.19.

Since the coaction on K and the action of CB on MK determine the coactions of
FK uniquely, the above constructions are inverse to each other by Theorem 5.21. □

The next result clarifies the structure of comparison functors associated to
comodule adjunctions. We prove it analogous to [BV07, Theorem 2.6].

Lemma 5.23. Consider a comodule adjunction G : M ⇄ N :V over a monoidal
adjunction F : C ⇄ D :U and denote the associated comodule monad and bimonad
by K = V G : M → M and B = UF : C → C, respectively. The comparison
functor Σ(K) : N → MK is a strong comodule functor over Σ(B) : D → CB and
UKΣ(K) = V , as well as Σ(K)G = FK as comodule functors.
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Proof. For any N ∈ N we have Σ(K)(N) = (V (N), V (ϵN )) and a direct computation
shows that the coaction of V lifts to a coaction of Σ(K). That is, we have

UK

(︂
δΣ(K)

N,Y

)︂
= δVN,Y , for all N ∈ N and Y ∈ D.

Using that UK : MK → M is a faithful and conservative functor, we observe that
Σ(K) becomes a strong comodule functor in this manner. Furthermore, as UK is
strict comodule, the coactions of UKΣ(K) and V coincide. Lastly, we compute for
any X ∈ C and M ∈ M

δ
(Σ(K)G)
M,X = δ

(UK Σ(K)G)
M,X = δ

(V G)
M,X = δ

(K)
M,X = δ

(UKFK )
M,X = δ

(FK )
M,X .

□

5.5. Cross products and distributive laws. Suppose C to be the modules of a
Hopf monad H : V → V . The Hopf monadic description of the Drinfeld centre Z(C)
of C due to Bruguières and Virelizier, given in [BV12], is achieved as a two-step
process. First, by finding a suitable monad on C and then ‘extending’ it to a monad
on V. We will review this ‘extension’ process based on Sections 3 and 4 of [BV12].

Definition 5.24. Let H : V → V and T : VH → VH be two monads. The cross
product T ⋊H of T by H is the monad UHTFH : V → V whose multiplication and
unit are given by

(5.46)

FH

UH (µ
(T )
FH

)UH T (ϵ
(F ⊣U)
T FH

),

T UH

UH (η
(T )
FH

)η(F ⊣U).

FH T UH

T UHFH T UHFH

The cross product B⋊H : C → C of two bimonads H : V → V and B : VH → VH
is a bimonad again, with comultiplication and counit

(5.47)

FH

FH

FH

∆(UH )
BFH (−),BFH (−)UH (∆(B)

FH (−),FH (−))UH B(∆(FH )
−,− ),

B UH

B UH

B UH FH B UH

ε(UH )UH (ε(B))UH B(ε(FH )).

The comultiplicativity and counitality of the multiplication and unit of B ⋊H can
be deduced from Diagrams (5.24), (5.25), (5.26) and (5.27). Similar considerations
imply the following:

Lemma 5.25. Let H : V → V and B : VH → VH be bimonads which respectively
coact on the comodule monads K : M → M and C : MK → MK . The cross product
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C ⋊K : M → M is a comodule monad over B ⋊H via the coaction

(5.48)

FK

FK

FH

δ
(UK )
CFK (−),BFH (−)UK (δ

(C)
FK (−),FH (−))UK C(δ

(FK )
−,− ).

C UK

B UH

C UK

Assume we have a monad B : VH → VH ‘on top’ of another monad H : V → V.
The question under which conditions the modules VB⋊H of B⋊H are isomorphic to
(VH)B is closely related to Beck’s theory of distributive laws, developed in [Bec69].

Definition 5.26. Consider two monads (H,µ(H), η(H)), (T, µ(T ), η(T )) : V → V . A
distributive law of T over H is a natural transformation
(5.49) Ω: HT → TH,

subject to the following relations:

HTT

H T

=

TT H

TH

H

=

H T

H

H T

µ
(T )
H

T (Ω)ΩT = ΩHµ(T ), η
(T )
H

= ΩHη(T ),

Ω

Ω

Ω Ω
(5.50)

HHT

H T

=

TH

T

=

H T

T

H T

HHT

Ω

Ω Ω Ω

T (µ(H))ΩH H(Ω) = Ωµ
(H)
T

, T (η(H)) = Ωη
(H)
T

.

(5.51)

A distributive law Ω: HT → TH between H,T : V → V allows us to define a new
monad T ◦ΩH : V → V . Its underlying functor is TH : V → V and its multiplication
and unit are given by:

(5.52)

THTH

TH

TH

µ := µ
(T )
H

T 2(µ(H))T (ΩH ) η := η
(T )
H

η(H)

Ω
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Street developed the theory of monads and distributive laws intrinsic to ‘well-behaved’
2-categories in [Str72]. If we apply his findings to the 2-category ⊗-Cat of monoidal
categories, oplax monoidal functors and oplax monoidal natural transformations,
we obtain a description of bimonads and oplax monoidal distributive laws, see also
[McC02]. That is, oplax monoidal natural transformations Λ : HB → BH between
bimonads H,B : V → V that are moreover distributive laws in the sense of Defini-
tion 5.26. Accordingly, suppose Λ: HB → BH to be an oplax monoidal distributive
law. The comultiplication and counit of the underlying functor BH : V → V turn
B ◦Λ H into a bimonad.

Comodule monads, on the other hand, can be intrinsically described in the
2-category ( ◁ -Cat,⊗-Cat) which has

(i) as objects pairs (M,V) comprising a right module category M over a
monoidal category V,

(ii) as 1-morphisms pairs (G,F ) of a comodule functor G over an oplax monoidal
functor F , and

(iii) as 2-morphisms pairs (ϕ, ψ) which constitute a comodule natural transfor-
mation.

The subsequent definition and results arise immediately from [Str72].

Definition 5.27. Let K,C : M → M be two comodule monads over the bimonads
H,B : V → V, respectively. A comodule distributive law is a pair of distributive
laws Ω: KC → CK and Λ: HB → BH such that (Ω,Λ) is a comodule natural
transformation.

Definition 5.28. Let T : C → C be a monad and U : D → C a functor. We call a
monad T̃ : D → D a lift of T if UT̃ = TU and for all X ∈ D

(5.53) U(µ(T̃ )
X ) = µ

(T )
U(X) and U(η(T̃ )

X ) = η
(T )
X .

As the next result shows, distributive laws are closely related to lifts of monads.

Theorem 5.29. Consider two comodule monads K,C : M → M over the bimonads
H,B : V → V. There exists a bijective correspondence between:

(i) comodule distributive laws (KC Ω−→ CK,HB
Λ−→ BH), and

(ii) lifts of B to a bimonad B̃ : VH → VH together with lifts of C to a comodule
monad C̃ : MK → MK over B̃ such that BUH = UHB̃ as oplax monoidal
functors and CUK = UKC̃ as comodule functors.

Let (KC Ω−→ CK,HB
Λ−→ BH) be a comodule distributive law. The coactions of

K and C turn C ◦Ω K into a comodule monad over B ◦Λ H.

Lemma 5.30. Suppose Ω: KC → CK and Λ: HB → BH to form a comodule
distributive law, then

(i) (VH)B̃
Λ

is isomorphic as a monoidal category to VB◦ΛH , and
(ii) (MK)C̃

Ω
is isomorphic as a module category over VB◦ΛH to MC◦ΩK .

Remark 5.31. Suppose B,H : V → V to be Hopf monads. In [BV12] it is shown
that if Λ: HB → BH is a oplax monoidal distributive law, B ◦Λ H : V → V and the
lift B̃Λ : VH → VH are Hopf monads, as well.
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5.6. Coend calculus. For our subsequent monadic description of the anti-Drinfeld
centre, we need to functorially associate to every object a ‘free object’, which caries
enough information to equip it with a ‘universal’ half-braiding. A feasible way of
achieving this is given by considering appropriate coends. Based on [Lor21], we give
an overview of a simplified version of their theory, tailored to our needs.

Definition 5.32. Consider three categories A,B, C. An extranatural transformation
ζ : P ⊸ Q from a functor P : Bop ×A×B → C to a functor Q : A → C is a collection
of natural transformations

ζB,− : P (B,−, B) → Q(−), for all B ∈ B,
which satisfy for all f ∈ B(B,B′) and A ∈ A the cowedge condition
(5.54) ζB,AP (f, idA, idB) = ζB′,AP (idB′ , idA, f).

Remark 5.33. Our definition of an extranatural transformation ζ : P ⊸ Q differs
in two ways from the one given in the literature. First, we have chosen a different
order for the source categories of the trivalent functor P : Bop × A × B → C then
what is the norm. Second, in its full generality, the ‘target functor’ Q of ζ : P ⊸ Q
could be trivalent as well. That is, it could be of the form Q : Dop × A × D → C,
where D is a category which is possibly distinct from A, B and C.

Definition 5.34. Consider an extranatural transformation ζ : P ⊸ Q from a
functor P : Bop × A × B → C to a functor Q : A → C. We call the pair (Q, ζ)
universal if for every other extranatural transformation ξ : P ⊸ R from P to a
functor R : A → C there exists a unique natural transformation ν : Q → R such that
for all A ∈ A and f ∈ B(B,B′) the following diagram commutes:

(5.55)

R(A)

Q(A) P (B′, A,B′)

P (B,A,B) P (B′, A,B)

∃!νA

ζB′,A

ξB′,A

ζB,A
ξB,A

P (f,idA,idB)

P (idB′ ,idA,f)

In this case, we call Q(A) the coend of P (−, A,−) : Bop × B → C for any A ∈ A.

Remark 5.35. It follows from their definition that universal extranatural transfor-
mations are unique up to unique natural isomorphisms.

6. A monadic perspective on twisted centres

The anti-Yetter–Drinfeld modules of a finite-dimensional Hopf algebra are a
module category over the Yetter–Drinfeld modules. Subsequently, they are im-
plemented by a comodule algebra over the Drinfeld double, see [HKRS04a]. As
explained in Section 4, we find ourselves in a similar situation. Our replacement
of the anti-Yetter–Drinfeld modules, the anti-Drinfeld centre, is a module category
over the Drinfeld centre.

We replace finite-dimensional vector spaces by a rigid, possibly pivotal, category
V and the underlying Hopf algebra with a Hopf monad H : V → V . In this section
we study a Hopf monad D(H) : V → V and over it a comodule monad Q(H) : V → V ,
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which realise the centre and its twisted cousin as their respective modules. Bruguières
and Virelizier gave a transparent description of D(H) in [BV12] by extending results
of Day and Street, see [DS07]. The key concept in its construction is the so-called
centraliser of the identity functor of VH . It is used to define a Hopf monad D(VH)
on VH with Z(VH) as its Eilenberg–Moore category. From this, one obtains—as an
application of Beck’s theory of distributive laws—the Drinfeld double D(H) : V → V .
We apply the same techniques to define the anti-double Q(H) of H , whose modules
are isomorphic to the ‘dual’ of the anti-Drinfeld centre Q(VH). This approach is
best summarised by the following diagram:

Z(VH ) Q(VH )

VH

VHD VHQ

V

VD(H) VQ(H)

U(Z)

Σ(D)
U(Q)

action

Σ(Q)

F (Q)

F (Z)

FD

FQ

UH

UD

Σ(D(H))

UQ

Σ(Q(H))

FH

FQ(H)

FD(H)

UD(H)

UQ(H)

action

Figure 2. A cobweb of adjunctions, monads and various versions
of the Drinfeld and anti-Drinfeld centre.

The translation of module functors between Z(VH ) and Q(VH) into morphisms of
comodule monads between Q(H) and D(H) yields our desired monadic version of
Theorem 1.1, which we prove in Theorem 6.26. We end our endeavour into the
theory of comodule monads with Corollary 6.27. In it, we explain how pivotal
structures on VH arise from module morphisms between the so-called central Hopf
monad D and the anti-central comodule monad Q.

6.1. Centralisable functors and the central bimonad. The construction of the
double of a Hopf monad H : V → V given in [BV12] relies heavily on an ‘accessible’
left dual of the forgetful functor U (Z) : Z(VH ) → VH . It is obtained as an application
of the coend calculus covered in Section 5.6.

Definition 6.1. Suppose C to be a rigid category and T : C → C to be an endofunctor.
We call T centralisable if there exists a universal extranatural transformation

ζY,X : T (Y )∨ ⊗X ⊗ Y → ZT (X), for X,Y ∈ C.

A centralisable functor T : C → C admits a universal coaction
(6.1) χX,Y := (idT (Y ) ⊗ ζY,X)(coevlT (Y ) ⊗idY ), for X,Y ∈ C,

which is natural in both variables. We call the pair (ZT , χ) a centraliser of T .
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Graphically, we represent the universal coaction as

(6.2)
T (Y )

X Y

ZT (X)

χX,Y : X ⊗ Y → T (Y ) ⊗ ZT (X).

It being natural equates to

(6.3)

V

T (Y ) ZT (W )

X

g

=

ZT (W )

XV

T (Y )

T (g)

f

ZT (f)

χW,Y (f ⊗ g) = (T (g) ⊗ ZT (f))χV,X

for all morphisms f : V → W and g : X → Y .

The extended factorisation property of universal coactions provides us with a
potent tool for constructing bi- and comodule monads. Its proof is given for example
in [BV12, Lemma 5.4].
Lemma 6.2. Let (ZT , χ) be the centraliser of a functor T : C → C and suppose that
L,R : D → C are two functors. For any n ∈ N and any natural transformation

ϕX,Y1,...,Yn : L(X) ⊗ Y1 ⊗ · · · ⊗ Yn → T (Y1) ⊗ · · · ⊗ T (Yn) ⊗R(X),
where X ∈ D and Y1, . . . , Yn ∈ C, there exists a unique natural transformation

νV : ZnTL(X) → R(X), for V ∈ D,
which satisfies

(6.4)
νX

L(X) Y1 . . . Yn

T (Y1) . . . T (Yn) R(X)

ϕX,Y1,...,Yn =

L(X) Y1 . . . Yn

T (Y1) . . . T (Yn) R(X)

ϕX,Y1,...,Yn =
(

id ⊗ νX

)(
id ⊗ χ

Z
n−1
T

L(X),Yn

)
. . .

(
id ⊗ χZT L(X),Y2 ⊗ id

)(
χL(X),Y1 ⊗ id

)
.

Suppose (T,∆(T ), ε(T )) : C → C to be an oplax monoidal functor with centraliser
(ZT , χ). For all X ∈ C, the counit of T combined with the universal coaction of ZT
gives rise to a natural transformation

(6.5)

X 1

ε(T )

1 ZT (X)

η
(ZT )
X

: X → ZT (X).
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We derive another natural transformation µ(ZT ) : Z2
T → ZT from the comultipli-

cation of T . Due to Lemma 6.2 it is uniquely defined by

(6.6)
µ

(ZT )
X

ZT (X)T (W )T (Y )

∆(T )

Y ⊗ WX

= Z2
T (X)T (W )T (Y )

X WY

ZT (X)T (W )T (Y )

(∆(T )
Y,W

⊗ id)χX,Y ⊗W = (id ⊗ µ
(ZT )
X

)(id ⊗ χZT (X),W )(χX,Y ⊗ id).

Lemma 6.3. The centraliser (ZT , χ) of an oplax monoidal endofunctor T : C → C
is a monad with multiplication and unit as given in Equations (6.6) and (6.5).

The above lemma is proven as the first part of [BV12, Theorem 5.6]. In it, the
authors further consider T : C → C to be equipped with a Hopf monad structure
and show that in this case ZT is a Hopf monad as well. The extended factorisation
property given in Lemma 6.2 allows us to reconstruct a comultiplication on ZT from
a twofold application of the universal coaction and the multiplication of T :

(6.7)
µ

(T )
W

=T 2(W )

X Y W

ZT (X) ZT (Y )T (W )

∆(ZT )
X,Y

X ⊗ Y W

ZT (X) ZT (Y )T (W )

(
µ

(T )
W

⊗ id
)(

χX,W ⊗ id
)(

id ⊗ χY,W

)
=

(
id ⊗ ∆(ZT )

X,Y

)(
χX⊗Y,W

)
.

Likewise, the unit of T induces a counit on ZT via

(6.8) η
(T )
X

X = 1 ⊗ X

T (X) = T (X) ⊗ 1

=

1 X

ZT (1)

1T (X)
ε(ZT )

η
(T )
X

=
(

idT (X) ⊗ ε(ZT )
)

χ1,X .

A direct computation shows that the centraliser ZT of T is a bimonad as well. For the
construction of left and right antipodes we refer the reader to [BV12, Theorem 5.6].
Remark 6.4. Given an oplax monoidal functor T : C → C, we think of Z(T C) as
the centre of an oplax bimodule category as stated in Remark 4.1, see also [BV07,
Section 5.5]. Objects in Z(T C) are pairs (X,σX,−), where X ∈ C and

σX,Y : X ⊗ Y → T (Y ) ⊗X, for all Y ∈ C
is a natural transformation satisfying for all X,Y,W ∈ C

(∆(T )
Y,W ⊗ idX)σX,Y⊗W = (idT (Y ) ⊗ σX,W )(σX,Y ⊗ idW )(6.9)

(ε(T ) ⊗ idX)σX,1 = idX .(6.10)
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Analogous to the centres studied before, the morphisms in Z(T C) are those morphisms
of C which commute with the respective half-braidings. If T : C → C is moreover
a Hopf monad, Proposition 5.9 of [BV12] shows that the Z(T C) is rigid monoidal.
For example, the tensor product of two objects (X,σX,−), (Y, σY,−) ∈ Z(T C) is by
X ⊗ Y ∈ C together with the half-braiding

(6.11)

µ
(T )
W

X Y W

Y

T 2(W )

T (W ) X

σX⊗Y,W = (µ
(T )
W

⊗ idX⊗Y )(σX,T (W ) ⊗ idY )(idX ⊗ σY,W )).

Since centralisers of Hopf monads are Hopf monads themselves, it stands to reason
that their modules implement the twisted centres discussed in the previous remark
as a rigid category. This is proven in [BV12, Theorem 5.12 and Corollary 5.14].
Theorem 6.5. Suppose T : C → C to be a centralisable Hopf monad. The modules
CZT of its centraliser (ZT , χ) are isomorphic as a rigid category to Z(T C).

Applying the above theorem to the identity functor Id: C → C, we obtain a
Hopf monadic description of the Drinfeld centre Z(C) of a rigid category C. The
terminology of our next definition is due to Shimizu, see [Shi17].
Definition 6.6. Let Id: C → C be centralisable with centraliser (Z, χ). We call
D(C) := (Z, µ(Z), η(Z),∆(Z), ε(Z)) : C → C the central Hopf monad of C and denote
the category of its modules by CD.

An important step in proving Theorem 6.5 is determining the comparison functor
Σ(ZT ) : Z(T C) → CZT and its inverse. This construction will also play a substantial
role in our monadic description of the anti-Drinfeld centre, hence why we recall it in
its full generality. Let T : C → C be a centralisable oplax monoidal endofunctor with
(ZT , χ) as its centraliser. To every object (M,σM,−) ∈ Z(T C) we assign a module
over ZT whose action ϑ

(σM )
M is uniquely defined by

(6.12) ϑ
(σM )
M

M

M

X

T (X)

M

M

X

T (X)

=

σM,X = (idX ⊗ ϑ
(σM )
M

)(χM,X ).

This leads to an explicit description of the comparison functor Σ(ZT ) : Z(T C) → CZT .
It is the identity on morphisms and on objects given by

(6.13) Σ(ZT )(M,σM,−) = (M,ϑ
(σM )
M ), for all (M,σM,−) ∈ Z(T C).
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Conversely, to every module (M,ϑM ) over ZT we can associate a half-braiding
σ

(ϑM )
M,− : M ⊗ − → T (−) ⊗M . For any X ∈ C it is obtained by the composition

(6.14)

M X

ϑM

T (X) M

σ
(ϑM )
M,X

= (idT (X) ⊗ ϑM )χM,X : M ⊗ X → T (X) ⊗ M .

This yields another functor E(ZT ) : CZT → Z(T C) that again is the identity on
morphisms and whose value on objects is

(6.15) E(ZT )(M,ϑM ) = (M,σ
(ϑM )
M,− ), for all (M,ϑM ) ∈ CZT .

Remark 6.7. Suppose T : C → C to be a centralisable oplax monoidal endofunctor
with (ZT , χ) as its centraliser. Denote the free functor of the Eilenberg–Moore
adjunction of ZT by FZT

: C → CZT . The composition

(6.16) C
FZT−−−→ CZT

E(ZT )
−−−−→ Z(T C)

defines a left adjoint of the canonical forgetful functor U (T ) : Z(T C) → C.

We recall [BV12, Theorem 5.12], which proves the adjunction of the previous
remark to be monadic.

Theorem 6.8. Assume (ZT , χ) to be a centraliser of the oplax monoidal endofunctor
T : C → C. The comparison functor Σ(ZT ) : Z(T C) → CZT is an isomorphism of
categories whose inverse is the canonical functor E(ZT ) : CZT → Z(T C).

6.2. Centralisers and comodule monads. We will now apply the methods of
Bruguières and Virelizier to twisted centres for the purpose of obtaining a comodule
monad that implements the anti-Drinfeld centre. Hereto, we need a generalised
version of the concept of modules over a monad. Our approach is based on [MW11].

Definition 6.9. Suppose B : C → C to be a bimonad and L : C → D an oplax
monoidal functor. An oplax monoidal right action of B on L is an oplax natural
transformation α : LB → L, such that for all X ∈ D

(6.17) αXαB(X) = αXL(µ(B)
X ) and αXL(η(B)

X ) = idL(X).

Similarly, we could define oplax monoidal left actions. A prime example of the
latter is given by the forgetful functor UB : CB → C of a bimonad B : C → C together
with the action displayed in Diagram (5.11).

To keep our notation concise, in the following we fix an oplax monoidal functor
L : C → C with an oplax right action α : LB → L by a bimonad B : C → C and
assume that L and B are centralisable. Their centralisers will be denoted by (Q, ξ)
and (Z, χ), respectively.

We think of Z(BC) as a more general version of the Drinfeld centre which is
supposed to act on Z(LC) from the right. To emphasise this, and in line with the
colouring scheme of Section 4, we use black for objects in C or its generalised Drinfeld
centre Z(BC) and blue for objects in Z(LC).
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Consider two objects (M,σM,−) ∈ Z(LC) and (X,σX,−) ∈ Z(BC). The action of B
on L, combined with the half-braidings of M and X, yields a natural transformation

(6.18)
αY

M X Y

L(Y ) M X

σM⊗X,Y : M ⊗ X ⊗ Y → L(Y ) ⊗ M ⊗ X.

Lemma 6.10. The centre Z(BC) acts on Z(LC) from the right by tensoring the
underlying objects and gluing together the half-braidings as in Equation (6.18). With
respect to this action, the forgetful functor U (L) : Z(LC) → C is a strict comodule
functor over U (B) : Z(BC) → C.
Proof. We proceed as in [BV12, Proposition 5.9] and fix objects (M,σM,−) ∈ Z(LC)
and (X,σX,−) ∈ Z(BC). The compatibility of the half-braiding of M ⊗X with the
unit of C is a short computation:

M X 1

1 M X

α1

ε(L)

X 1

1 X

M X

M X

ε(L)

ε(B)

= =

(ε(L) ⊗ idM⊗X )σM⊗X,1 = idM⊗X .

M ⊗ X 1

1 M ⊗ X

ε(L)

=

M

M

Similarly, we verify the hexagon axiom:

M ⊗ X

M ⊗ X Y ⊗ W

M

Y ⊗ W

X

X

L(Y ) L(W )

M

∆(L)
Y,W ∆(L)

Y,W

αY ⊗W=

L(Y ) L(W )

M

Y ⊗ W

X

XM

∆(B)
Y,W

=

αY

∆(L)
B(Y ),B(W )

L(Y ) L(W )

αW

M

Y

X

XM

=
αY

L(Y ) L(W )

αW

W

(∆(L)
Y,W

⊗ idM⊗X )σM⊗X,Y ⊗W = (idL(Y ) ⊗ σM⊗X,W )(σM⊗X,Y ⊗ idW ).
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The compatibility of the action α : LB → L with the multiplication and unit of
B asserts that Z(LC) is a right module of the generalised Drinfeld centre Z(BC).

By construction, we have for all (M,σM,−) ∈ Z(LC) and (X,σX,−) ∈ Z(BC)

U (L)((M,σM,−) ◁ (X,σX,−)) = M ⊗X = U (L)(M,σM,−) ⊗ U (B)(X,σX,−).
Thus, U (L) is a strict comodule functor over U (B). □

We extend our colouring scheme to universal coactions and write

(6.19)

X Y

L(Y ) Q(X)

X Y

B(Y ) Z(X)

ξX,Y : X ⊗ Y → L(Y ) ⊗ Q(X), χX,Y : X ⊗ Y → B(Y ) ⊗ Z(X).

The identification of CZ and CQ with the generalised Drinfeld centre and its
twisted cousin suggest that Q is a comodule monad over Z. In analogy with
Equation (6.7), we define a candidate for the coaction of Q by

(6.20)
αW

=LB(W )

X Y W

Q(X) Z(Y )L(W )

δ
(Q)
X,Y

X ⊗ Y W

Q(X) Z(Y )L(W )

(
αW ⊗ id

)(
ξX,B(W ) ⊗ id

)(
id ⊗ χY,W

)
=

(
id ⊗ δ

(Q)
X,Y

)(
ξX⊗Y,W

)
.

Theorem 6.11. Let α : LB → L be an oplax monoidal right action of a bimonad
B : C → C on an oplax monoidal functor L : C → C. Suppose furthermore that the
centralisers (Q, ξ) of L and (Z, χ) of B exist. The coaction of Equation (6.20) turns
Q into a comodule monad over Z such that CQ is isomorphic as a right module
category over CZ to Z(LC).

Proof. By Remark 6.7 and Theorem 6.8 we have monadic adjunctions
F (B) : C ⇄ Z(BC) :U (B) and F (L) : C ⇄ Z(LC) :U (L)

which, due to [BV12, Remark 5.13], give rise to the bimonad Z and monad Q,
respectively. Lemma 6.10 shows that U (L) is a strict comodule functor over U (B)

and therefore, by Theorem 5.21, we obtain that Q is a comodule monad over B.
Following Corollary 5.22, the coaction λ : Q(− ⊗ −) → Q(−) ⊗ Z(−) implementing
the action of CZ on CQ is for all X,Y ∈ C given by

(6.21) λX,Y = ϑQ(X)⊗Z(Y )Q(η(Q)
X ⊗ η

(Z)
Y ).
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By using the relation between universal coactions and half-braidings, explained
in Equation (6.14), and applying the hexagon identity we compute:

(6.22)

αW

αW

X ⊗ Y W

L(W ) Q(X) Z(Y )

X ⊗ Y W

Q(η
(Q)
X

⊗ η
(Z)
Y

)

L(W ) Q(X) Z(Y )

=

X ⊗ Y W

L(W ) Q(X) Z(Y )

=

X W

=

Y

Z(Y )

=

σQ(X)⊗Z(Y ),W

X W

Q(X)

=

Y

Z(Y )

η
(Q)
X

η
(Z)
Y

σQ(X),B(W )

σZ(Y ),W

X ⊗ Y W

L(W ) Q(X) Z(Y )

L(W )

L(W ) Q(X)

ϑQ(X)⊗Z(Y )

η
(Q)
X

⊗ η
(Z)
Y

δ
(Q)
X,Y

λX,Y

The uniqueness property of universal coactions implies λ = δ(Q).
It remains to show that CQ and Z(LC) are isomorphic as modules over CZ . Note

that by Lemmas 5.12 and 5.13 as well as Theorem 5.21 and Lemma 5.23, the
comparison functor Σ(Z) : Z(BC) → CZ is strong monoidal and Σ(Q) : Z(LC) → CQ
is a strong comodule functor over it. Furthermore, due to Theorem 6.8, both Σ(Z)

and Σ(Q) admit inverses
E(Z) : CZ → Z(BC) and E(Q) : CQ → Z(LC).

Using that E(Z) is monoidal as well, we identify the right action of Z(BC) on Z(LC)
with a right action ◀ : Z(LC) × CZ → Z(LC) of CZ by setting

Z(LC) × CZ Id×E(Z)
−−−−−→ Z(LC) × Z(BC) (−)◁(−)−−−−−→ Z(LC).

For any M ∈ Z(LC) and X ∈ Z(LC) we have

Σ(Q)(M◀X) = Σ(Q)(M ◁E(Z)(X)) δΣ(Q)

−−−−→ Σ(Q)(M) ◁ Σ(Z)E(Z)(X) = Σ(Q)(M) ◁X



96

and therefore Σ(Q) : Z(LC) → CQ is an isomorphism of module categories. □

Let us apply our findings to the identity and biduality functor of a rigid category C.
Suppose (Q, ξ) and (Z, χ) to be the centralisers of (−)∨∨ and IdC : C → C, respectively.
There is a trivial right action of the identity of C on its biduality functor,

idX : (IdC(X))∨∨ → X∨∨, for all X ∈ C.
It turns Q into a comodule monad over Z and its modules CQ are isomorphic to
Q(C) as a CZ -module category. Due to Remark 4.3, we can identity Q(C) with A(C),
justifying our next definition.

Definition 6.12. Assume (−)∨∨
, IdC : C → C to admit centralisers (Q, ξ) and (Z, χ).

We call Q(C) := (Q,µ(Q), η(Q), δ(Q)) the anti-central comodule monad of C.

6.3. The Drinfeld and anti-Drinfeld double of a Hopf monad. We are now
able to untangle the relationship between the various adjunctions and categories
displayed in Figure 2. To that end, we fix a Hopf monad H : V → V on a rigid
category V together with an oplax monoidal functor L : VH → VH , a bimonad
B : VH → VH and an oplax monoidal right action α : LB → B. Furthermore, we
assume that the cross products B ⋊H and L ⋊H have centralisers (ZH , ν) and
(QH , τ).

We start by extending the action of B on L to an action of the respective cross
products.

Lemma 6.13. The action α : LB → B induces an oplax monoidal action

(6.23)

UHLFHUHBFH

UHLFH

α

αH : (L ⋊ H)(B ⋊ H) → L ⋊ H.

Proof. From the pictorial description of the multiplication and unit of B⋊H , given
in Definition 5.24, it becomes apparent that αH is a right action of B⋊H on L⋊H .
Additionally, as a composite of oplax monoidal natural transformations, it is oplax
monoidal itself. □

The following variant of [BV12, Theorem 7.4] lies at the heart of our ensuing
investigation.

Theorem 6.14. Both B,L : VH → VH admit centralisers (Z, χ) and (Q, ξ) such
that Z is a lift of ZH as a bimonad and Q is a lift of QH as a comodule monad.

Proof. By [BV12, Theorem 7.4(a)], we know that there are centralisers (Q, ξ) and
(Z, χ) of L and B that satisfy for all (X,ϑX), (Y, ϑY ) ∈ VH

UHQ(X,ϑX) = QH(X), UH(ξ(X,ϑX ),(Y,ϑY )) = (UHL(ϑY ) ⊗ idQH (X))τX,Y ,
UHZ(X,ϑX) = ZH(X), UH(χ(X,ϑX ),(Y,ϑY )) = (UHB(ϑY ) ⊗ idZH (X))νX,Y .
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The second and third part of the above mentioned theorem state that Q is a lift of
the monad QH and Z is a lift of the bimonad ZH . It remains for us to show that
the coactions of Q and QH are compatible with the forgetful functor UH : VH → V .
We fix objects (X,ϑX), (Y, ϑY ) ∈ VH and W ∈ V and compute:

η
(H)
W

UH L(ϵFH (W ))

η
(H)
W

UH L(FH (η
(H)
W

))

UH L(ϵFH (W ))

αH W

=

QH (X) ZH (Y )L⋊H(W )

UH (ξ)
UH (χ)

QH (X) ZH (Y )L⋊H(W )

UH (ξ)

UH (X⊗Y ) W

=

QH (X) ZH (Y )L⋊H(W )

τ

UH (X⊗Y ) W

=

τ

UH (X⊗Y ) W

QH (X) ZH (Y )L⋊H(W )

=

UH (X⊗Y ) W

QH (X) ZH (Y )L⋊H(W )

UH (X) UH (Y ) W

=

QH (X) ZH (Y )L⋊H(W )

τ ζ

UH (X) UH (Y ) W

=

QH (X) ZH (Y )L⋊H(W )

τ

UH (X⊗Y ) W

(idL⋊H(W ) ⊗ UH (δ
(Q)
(X,ϑX ),(Y,ϑY )))τUH (X⊗Y ),W = (idL⋊H(X) ⊗ δ

(QH )
X,Y

)τUH (X⊗Y ),W .

τ

UH (δ
(Q)
X,Y

) UH (δ
(Q)
X,Y

)

UH (δ
(Q)
X,Y

)
UH (δ

(Q)
X,Y

)

δ
(QH )
X,Y

η
(H)
W

UH (αFH (W ))

The uniqueness property of universal coactions as given in Lemma 6.2 then implies
that UH(δ(Q)

(X,ϑX ),(Y,ϑY )) = δ
(QH )
X,Y . Since UH : VH → V is a strict comodule functor,

the claim follows. □

The previous theorem together with Lemma 5.25 imply that we obtain a comodule
monad D(L,H) := Q⋊H over D(B,H) := Z ⋊H. The correspondence between
lifts and monads given in Theorem 5.29 yields a unique comodule distributive law
(HQH

Ω−→ QHH,HZH
Λ−→ ZHH) such that

(6.24) D(L,H) = QH ◦Ω H and D(B,H) = ZH ◦Λ H.

Definition 6.15. We call D(B,H) and D(L,H) the double and twisted double of
the pairs (B,H) and (L,H).

The relationship between doubles and generalised Drinfeld centres is explained in
[BV12, Proposition 7.5 and Theorem 7.6]. Our next result uses the same techniques
to prove how twisted doubles parametrise twisted centres.
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Theorem 6.16. The twisted double D(L,H) is a comodule monad over D(B,H)
and VD(L,H) is isomorphic as a module category over VD(B,H) to Z(LVH ).

Proof. Since Q is a lift of QH as a comodule monad, the twisted double D(L,H) is
a comodule monad over D(B,H). By Lemma 5.30, this implies the existence of an
isomorphism of VD(B,H)-module categories K(Ω) : VD(L,H) →

(︁
VH

)︁Q. Due to the
proof of Theorem 6.11 the comparison functor Σ(Q) : Z(LVH ) →

(︁
VH

)︁Q implements
an isomorphism of module categories and the statement follows by considering

(6.25) VD(L,H) K(Ω)
−−−→

(︁
VH

)︁Q E(Q)
−−−→ Z(LVH ).

□

Definition 6.17. Suppose B = IdVH : VH → VH and L = (−)∨∨ : VH → VH . We
refer to D(H) := D(B,H) and Q(H) := D(L,H) as the Drinfeld and anti-Drinfeld
double of H.

Our previous definition can be understood as an extension of the notion of the
anti-Drinfeld double given by [HKRS04a] to the monadic framework.

6.4. Pairs in involution for Hopf monads. For the final step in our investigation,
let us consider a Hopf monad H : V → V which admits a double and anti-double.
Tracing the various identifications of the centre and anti-centre of a monoidal
category given in Figure 2, we observe that module functors from Z(VH ) to Q(VH )
equate bidirectionally to module functors between VD(H) and VQ(H). In the spirit
of viewing D(H) and Q(H) as ‘coordinate systems’ of their respective modules, we
want to translate such functors into comodule monad morphisms. Our main focus
here is on pivotal structures of VD(H).

We begin by developing the notion of pairs in involution for a Hopf monad.
Classically, pairs in involution consist of a group-like and character of a Hopf
algebra, which implement the square of its antipode by their adjoint actions.

Definition 6.18. Let H : V → V be a Hopf monad. A character of H is a module
β := (1, ϑβ) ∈ VH , whose underlying object is the monoidal unit of V.

A group-like element of H is a natural transformation g : IdV → H satisfying for
all X,Y ∈ V

(6.26) ∆(H)
X,Y gX⊗Y = gX ⊗ gY and ε(H)g1 = id1.

We write Char(H) for the characters of H and Gr(H) for its group-likes.

Note that the characters Char(H) of a Hopf-monad H : V → V form a monoid
and, by Lemma [BV07, Lemma 3.21], the set Gr(H) of group-like elements bears a
group structure.

Furthermore, the group-likes of a Hopf monad H act on it by conjugation. We
recall this construction based on [BV07, Section 1.4]. Given a natural transformation
g : IdC → H, we define the left and right regular action of g on H to be the natural
transformations defined for every X ∈ V by

Lg,X := H(X)
gH(X)−−−−→ H2(X)

µ
(H)
X−−−→ H(X),(6.27)

Rg,X := H(X) H(gX )−−−−→ H2(X)
µ

(H)
X−−−→ H(X).(6.28)



99

Before we state our next definition, we set for all X,Y,W ∈ V

(6.29) ∆(H)
X,Y,W := (∆(H)

X,Y ⊗ idH(W ))∆
(H)
X⊗Y,W = (idH(X) ⊗ ∆(H)

Y,W )∆(H)
X,Y⊗W .

Definition 6.19. Every group-like g ∈ Gr(H) and character β ∈ Char(H) of a
Hopf monad H : V → V give rise to natural transformations

Adg,X := Rg−1,XLg,X : H(X) → H(X), for all X ∈ V ,(6.30)

Adβ,X := (ϑβ ⊗ idH(X) ⊗ ϑβ∨)∆(H)
1,X,1 : H(X) → H(X), for all X ∈ V .(6.31)

called the adjoint actions of g and β on H, respectively.

To define pairs in involution, we need the ‘square of the antipode’. This notion
was developed in [BV07, Section 7.3].

Definition 6.20. Suppose ϕ : IdV → (−)∨∨ to be a pivotal structure on V and
let H : V → V be a Hopf monad. The square of the antipode of H is a natural
transformation S2 : H → H, which is defined for every X ∈ V by
(6.32) S2

X := ϕ−1
H(X)s

l
H(X)∨H(slX

∨)H(ϕX).

Analogous to the Hopf algebraic case, we state the following:

Definition 6.21. A pair in involution for a Hopf monad H : V → V consists of a
group-like g ∈ Gr(H) and character β ∈ Char(H) such that for all X ∈ V
(6.33) Adg,X = Adβ,X S2

X .

To prove that pairs in involution correspond to certain pivotal structures on the
Drinfeld centre of VH , we need two technical results. The first is a special case of
[BV07, Lemma 1.3].

Lemma 6.22. Let H : V → V be a monad with associated forgetful functor
UH : V H → V. Then there exists a canonical bijection
(6.34) (−)♯ : Nat(IdV , H) → Nat(HUH , UH), f ↦→ f ♯,

where f ♯(M,ϑM ) = ϑMfM .

The next lemma is a variant of [BV07, Lemma 7.5].

Lemma 6.23. Let ϕ : IdV → (−)∨∨ be a pivotal structure on V and H : V → V
a Hopf monad. For any group-like g ∈ Gr(H) and character β ∈ Char(H) the
following are equivalent:

(i) The arrows g and β form a pair in involution.
(ii) The natural arrow ϕg♯ ∈ Nat(UH , UH) lifts to Nat(IdVH , β ⊗ (−)∨∨ ⊗ β

∨).

Proof. Consider a module (M,ϑM ) ∈ VH . By [BV07, Theorem 3.8(a)] and the
definition of S2, the action on M∨∨ is given by

ϑM∨∨ = ϑM
∨∨
slH(M)∨∨H(slM

∨) = ϕMϑMS
2
MH(ϕ−1

M )
and therefore we have
ϑβ⊗M∨∨⊗β∨ = (ϑβ ⊗ ϑM∨∨ ⊗ ϑβ∨)∆(H)

1,M,1 = (ϑβ ⊗ ϕMϑMS
2
MH(ϕ−1

M ) ⊗ ϑβ∨)∆(H)
1,M,1.

By definition ϕg♯ lifts to a natural transformation from IdVH to β ⊗ (−)∨∨ ⊗ β
∨, if

and only if for any H-module (M,ϑM ), we have
(6.35) (ϕg♯)MϑM = ϑβ⊗M∨∨⊗β∨H((ϕg♯)M ).



100

Let us now successively simplify both sides of the equation. Using the naturality
of g : IdV → H, the fact that ϑM is an action and the definition of g♯ as given in
Lemma 6.22, we can rewrite the left hand side of the equation as

(ϕg♯)MϑM = ϕMϑMgMϑM = ϕMϑMH(ϑM )gH(M)

= ϕMϑMµ
(H)
M gH(M).

Similarly, we simplify the right-hand side to

ϑβ⊗M∨∨⊗β∨H((ϕg♯)M ) = (ϑβ ⊗ ϕMϑMS
2
MH(ϕ−1

M ) ⊗ ϑβ∨)∆(H)
1,M,1H((ϕg♯)M )

= (ϑβ ⊗ ϕMϑMS
2
MH(ϕ−1

M )H((ϕg♯)M ) ⊗ ϑβ∨)∆(H)
1,M,1

= (ϑβ ⊗ ϕMϑMS
2
MH(ϑMgM ) ⊗ ϑβ∨)∆(H)

1,M,1

= (ϑβ ⊗ ϕMϑMH(ϑMgM )S2
M ⊗ ϑβ∨)∆(H)

1,M,1

= ϕMϑMH(ϑMgM )(ϑβ ⊗ idH(M) ⊗ ϑβ∨)∆(H)
1,M,1S

2
M

= ϕMϑMµ
(H)
M H(gM ) Adβ,M S2

M .

Using the fact that ϕ is an isomorphism, Equation (6.35) can thus be restated as

ϑMµ
(H)
M gH(M) = ϑMµ

(H)
M H(gM ) Adβ,M S2

M

⇐⇒ ϑMLg,M = ϑMRg,M Adβ,M S2
M

Since (−)♯ is a bijection by Lemma 6.22, the above equation is equivalent to
Lg,M = Rg,M Adβ,M S2

M . We conclude the proof by multiplying both sides with
Rg−1,M . □

The previous lemma leads to an identification of pairs in involution of H with
certain quasi-pivotal structures on VH .

Theorem 6.24. Suppose H : V → V to be a Hopf monad on a pivotal category
V. Then H admits a pair in involution if and only if there exists a quasi-pivotal
structure on VH that is given for any X ∈ VH and β ∈ Char(H) by
(6.36) ρβ,X : X → β ⊗X

∨∨ ⊗ β
∨
.

Proof. We fix a pivotal structure ϕ : IdV → (−)∨∨ on V and proceed analogous to
[BV07, Proposition 7.6]. Suppose g ∈ Gr(H) and β ∈ Char(H) to constitute a pair
in involution for H. By the previous lemma, ϕg♯ lifts to a natural isomorphism

ρβ,X : X → β ⊗X∨∨ ⊗ β∨, for all X ∈ VH .
Since ϕ is monoidal by definition and g♯ is monoidal by virtue of g being a group-
like, see for example [BV07, Lemma 3.20], we obtain a quasi-pivotal structure
ρβ : IdVH → β ⊗ (−)∨∨ ⊗ β∨.

On the other hand, consider a quasi-pivotal structure (β, ρβ), where β ∈ Char(H)
is a character. Since the forgetful functor UH is strong monoidal and thus

UH(β ⊗ (−)∨∨ ⊗ β∨) = UH((−)∨∨) = (UH(−))∨∨,

there exists a monoidal natural transformation
ϕ−1
UH (X)UH(ρβ,X) : UH(X) → UH(X), for all X ∈ VH .
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Again, we apply [BV07, Lemma 3.20] and obtain a unique group-like g ∈ Gr(H) such
that g♯ = ϕ−1

UH (X)UH(ρβ,X). As ϕg♯ = UH(ρβ) lifts to the quasi-pivotal structure
(β, ρβ) on VH , Lemma 6.23 implies that g and β form a pair in involution. □

Let us now study a variant of [BV07, Lemma 2.9].

Theorem 6.25. Assume K,C : M → M to be two comodule monads over a
bimonad B : C → C. There is a bijective correspondence between morphisms of
comodule monads f : K → C and strict module functors F : MC → MK such that
UKF = UC .

Proof. As shown for example in [BV07, Lemma 1.7], we know that any functor
F : MC → MK with UKF = UC is ‘induced’ by a unique morphism of monads
f : K → C. That is, F is the identity on morphisms and on objects it is defined by

F (M,ϑM ) = (M,ϑMfM ), for all (M,ϑM ) ∈ MC .

It remains to show that f is a morphism of comodules if and only if F is a
strict module functor in the sense of Definition 2.15. Let (M,ϑM ) ∈ MC and
(X,ϑX) ∈ CB . We compute

F ((M,ϑM ) ◁ (X,ϑX)) = (M ◁X, (ϑM ◁ϑX)δ(C)
M,XfM◁X),

F (M,ϑM ) ◁ (X,ϑX) = (M ◁X, (ϑM ◁ϑX)(fM ◁ idB(X))δ
(K)
M,X).

According to [BV07, Lemma 1.4], these modules coincide if and only if

δ
(C)
M,XfM◁X = (fM ◁ idB(X))δ

(K)
M,X ,

which is exactly the condition for f to be a comodule morphism. □

The above result readily implies the desired monadic version of the Hajac–
Sommerhäuser characterisation of pairs in involution as stated Theorem 1.1.

Theorem 6.26. Let H : V → V be a Hopf monad that admits a double D(H) and
anti-double Q(H). The following statements are equivalent:

(i) The monoidal unit 1 ∈ V lifts to a module over Q(H).
(ii) The Drinfeld double and anti-Drinfeld double of H are isomorphic as co-

module monads.
(iii) There is an isomorphism of monads g : Q(H) → D(H).

Additionally, if V is pivotal, one of the above statements holds if and only if H
admits a pair in involution.

Proof. (i) =⇒ (ii): suppose ω ∈ Q(VH ) with UQ(H)(ω) = 1. As shown in
Equation (4.6), it induces a functor of module categories

ω ⊗ − : VD(H) → VQ(H).

Since UQ(H)(ω) = 1 ∈ V, we can apply Theorem 6.25 and obtain that Q(H) and
D(H) are isomorphic as comodule monads.

It immediately follows that (ii) implies (iii); we proceed with (iii) =⇒ (i):
consider an isomorphism of monads f : Q(H) → D(H). It gives rise to a functor
G : VD(H) → VQ(H) that, on objects, is defined by

G(M,ϑM ) = (M,ϑMfM ), for all (M,ϑM ) ∈ CZ .
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We compose G with the inverse of the comparison functor E(Q(H)) : VQ(H) → Q(C),
defined in Equation (6.15), and see that there exists an object

1(Q) := E(Q(H))G(1) ∈ Q(C)
whose underlying object is the unit of V.

Now let V be pivotal. By Lemma 4.12, lifts of 1 ∈ V to the dual of the anti-
centre Q(VH ) are in correspondence with quasi-pivotal structures (β, ρβ), where
β ∈ Char(H). By Theorem 6.24 such a quasi-pivotal structure exists if and only if
H admits a pair in involution. □

As a corollary, we can determine whether a category is pivotal in terms of monad
isomorphisms between the central and anti-central monad

Corollary 6.27. Assume C to admit a central and anti-central monad. Then C is
pivotal if and only if D(C) and Q(C) are isomorphic as monads.

Proof. We consider the identity IdC : C → C as a Hopf monad. Its Drinfeld and
anti-Drinfeld double are D(IdC) = D(C) ⋊ IdC and Q(IdC) = Q(C) ⋊ IdC . From
here it follows that D(IdC) = D(C) and similarly Q(IdC) = Q(C). With these
identifications established, we observe that any pivotal structure ρ : IdC → (−)∨∨ can
be uniquely identified with a quasi-pivotal structure (1, ρ). Due to Lemma 4.12, this
corresponds to a module (1, ϑ1) of Q(C) : C → C. By Theorem 6.26 such a module
exists if and only if D(C) and Q(C) are isomorphic as monads. □
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[Prü24] Heinz Prüfer. Theorie der Abelschen Gruppen. Mathematische Zeitschrift, 20(1):165–
187, 1924.

[Rad76] David E. Radford. The order of the antipode of a finite dimensional Hopf algebra is
finite. American Journal of Mathematics, 98(2):333–355, 1976.

[Rad85] David E. Radford. The structure of Hopf algebras with a projection. Journal of
Algebra, 92:322–347, 1985.

[Rad93] David E. Radford. Minimal quasitriangular Hopf algebras. Journal of Algebra,
157(2):285–315, 1993.

[Rad12] David E. Radford. Hopf algebras, volume 49 of Series on Knots and Everything.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

[Rie17] Emily Riehl. Category theory in context. Courier Dover Publications, 2017.
[RT90] N. Yu. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived

from quantum groups. Communications in Mathematical Physics, 127(1):1–26, 1990.
[Sch92] Peter Schauenburg. Tannaka duality for arbitrary Hopf algebras. München: R. Fischer,

1992.
[Sch01] Peter Schauenburg. Turning monoidal categories into strict ones. New York Journal

of Mathematics, 7:257–265, 2001.
[Sel11] Peter Selinger. A survey of graphical languages for monoidal categories. In New

structures for physics, volume 813 of Lecture Notes in Phys., pages 289–355. Springer,
Heidelberg, 2011.

[Shi15] Kenichi Shimizu. The pivotal cover and Frobenius-Schur indicators. Journal of
Algebra, 428:357–402, 2015.

[Shi16] Kenichi Shimizu. Pivotal structures of the Drinfeld center of a finite tensor category.
(preprint) arXiv:1608.05905, August 2016.

[Shi17] Kenichi Shimizu. The monoidal center and the character algebra. Journal of Pure
and Applied Algebra, 221(9):2338–2371, 2017.

[Shi19] Kenichi Shimizu. Non-degeneracy conditions for braided finite tensor categories.
Advances in Mathematics, 355:36, 2019. Id/No 106778.
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