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Abstract

Decreasing statistical and systematic uncertainties for particle collisions experi-

ments at the Large Hadron Collider (LHC) put increasing demands on precision

in theoretical predictions. At the LHC protons are collided at high energy in

order to study fundamental interactions. The scattering processes are dominated

by strong interactions which are modelled by Quantum Chromodynamics (QCD).

In this energy regime theoretical predictions can be calculated using perturbation

theory in the coupling constant and hence higher precision is achieved by including

higher orders. The higher orders include both processes of additional unresolved

external states (higher multiplicity) or internal states (more loops). Currently,

calculations at next-to-next-to-leading order (NNLO) precision are in demand for

current and future analyses. These calculations require the development of new

techniques to handle the growth in complexity. The topic of this thesis is loop

calculations in QCD using modern on-shell techniques.

We present new results for planar 2 → 3 gluon scattering at two loops.

The amplitudes are obtained by employing generalised unitarity and finite

field reconstruction methods. The universality of the pole structure is used

for verification of the results, but also allows us to reconstruct only a finite

remainder. Strategies to obtain compact analytic expressions both at the level

of the integrand and after integration are discussed. Integrals are dealt with

using a variety of approaches including sector decomposition, integration-by-parts

identities, and dimensional shifting and recurrence relations.

We also describe a new unitarity compatible method for dealing with massive

fermions at one loop. This method involves an explicit construction of six-

dimensional spinors and a discussion of the renormalisation of effective field

theories.
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Lay summary

At particle physics experiments fundamental particles are collided at high

energy in order to probe the fundamental interactions governing the universe.

Fundamental particles are indivisible and hence the smallest building blocks of

matter. The nuclei of atoms consist of protons and neutrons, which are built

out of fundamental particles known as quarks and gluons. At the Large Hadron

Collider (LHC), protons are collided at near light speed in order to study the

interactions between the quarks and gluons.

These interactions are dominated by the strong nuclear force, which is modelled

by a theory known as Quantum Chromodynamics (QCD). The theoretical

predictions for high energy collisions are given by scattering amplitudes, which

give us information on the probability of the collision outcomes. The calculation

of scattering amplitudes in QCD is the main topic of this research. Scattering

amplitudes can be calculated as sums of Feynman diagrams, where each diagram

is associated with a mathematical expression. Examples of Feynman diagrams are

given in the figure below. Including diagrams with loops increases the complexity

but also the precision of the calculation. A high level of theoretical precision is

necessary to match the precision of the vast amount of experimental data collected

by the detectors at the LHC.

This thesis explores modern methods for amplitude calculations within QCD.

These mathematical methods are implemented on computers to handle the

complexity. In particular, we present a new method for one-loop calculations

involving massive quarks and new results for two-loop five-point scattering.

tree one loop two loops
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Filaci, Joël Mabillard, Calum Milloy, Einan Gardi, Roman Zwicky, Jennifer
Smillie, Hjalte Frellesvig, and Alexander Karlberg for many useful discussions.
I would also like to extend my thanks to Poul Henrik Damgaard and Ciaran
Williams for suggesting Edinburgh for my studies.

I want to thank Johannes Henn and the Johannes Gutenberg University of Mainz
for hosting me during Spring 2018. My appreciation goes to the Augustinus
Foundation and the Oticon Foundation for generous financial support. I am
indebted to the Institute for Particle Physics Phenomenology for funding visits
to Durham University and conference activities.

Finally, I would like to express my heartfelt appreciation to my family and friends
for their support and encouragement. Shout-out to MB! for always having my
back. I am eternally grateful to Irene for her love.

iv



Contents

Abstract i

Lay summary ii

Declaration iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Scattering amplitudes in Quantum Field Theory ........................ 2

1.2 Quantum Chromodynamics ................................................... 3

1.2.1 Feynman rules .......................................................... 5

1.2.2 Tree-level amplitudes and colour ordering........................ 5

1.2.3 Loop amplitudes and dimensional regularisation ............... 7

1.2.4 Renormalisation and the beta function ........................... 9

1.3 The cross section ................................................................ 11

v



2 Scattering amplitudes at tree level 15

2.1 Spinor-helicity formalism ...................................................... 15

2.1.1 Some tree-level helicity amplitudes ................................ 17

2.1.2 Spinors in six dimensions............................................. 19

2.2 Factorisation and recursion relations........................................ 21

2.2.1 Soft limits ................................................................ 21

2.2.2 Collinear limits ......................................................... 22

2.2.3 Berends-Giele off-shell currents ..................................... 24

2.2.4 Britto-Cachazo-Feng-Witten recursion ............................ 25

2.3 Momentum twistors............................................................. 32

2.4 Summary .......................................................................... 34

3 Techniques for one-loop amplitudes 35

3.1 One-loop integrals ............................................................... 36

3.2 Integrand reduction ............................................................. 40

3.2.1 Parametrising the numerators....................................... 41

3.3 Unitarity methods ............................................................... 44

3.3.1 Generalised unitarity .................................................. 46

3.4 Rational terms and d-dimensional cuts..................................... 52

3.5 Summary .......................................................................... 56

4 Unitarity at one loop with massive fermions 57

4.1 Massive fermions................................................................. 59

4.1.1 Massive fermions from massless six-dimensional spinors ..... 60

4.1.2 Interactions and state-sum reduction ............................. 64

vi



4.1.3 An example calculation ............................................... 65

4.2 gg → tt̄ at one loop ............................................................. 67

4.2.1 Determining the remaining integral coefficients ................ 75

4.3 Summary .......................................................................... 85

5 New results at two loops 87

5.1 A first look at two-loop five-gluon scattering ............................. 88

5.1.1 Two-loop cuts ........................................................... 89

5.1.2 Integrand basis.......................................................... 91

5.1.3 Numerical evaluation .................................................. 96

5.1.4 Benchmark results ..................................................... 102

5.1.5 Evaluation in a physical region ..................................... 104

5.1.6 Quark amplitudes ...................................................... 106

5.2 Reduction to pentagon functions ............................................ 107

5.2.1 Integration-by-parts compatible integrand reduction .......... 109

5.2.2 Integration-by-parts reduction ..................................... 112

5.2.3 Map to pentagon functions ......................................... 112

5.2.4 Laurent expansion .................................................... 114

5.2.5 Analytic results ......................................................... 115

6 Conclusions and outlook 120

A Notation and conventions 123

B Trees and cuts in six dimensions 125

B.1 Three-point amplitudes ........................................................ 125

B.2 Four-point amplitudes .......................................................... 126

vii



B.3 Cut solutions in six dimensions .............................................. 126

B.4 Feynman rules for an effective Lagrangian ................................ 128

C One-loop integral reduction 129

D Functional reconstruction using finite field numerics 133

E Some two-loop integrand parametrisations 138

F Rational spinors for six-dimensional loop momenta 143

viii



List of Figures

(1.1) Colour-ordered Feynman rules in massless QCD . . . . . . . . . . 7

(1.2) Gluon two-point function at one loop. . . . . . . . . . . . . . . . . 8

(1.3) One-loop corrections to fermion self-energy and gff̄ vertex. . . . . 10

(1.4) Cross section factorisation. . . . . . . . . . . . . . . . . . . . . . . 12

(1.5) Amplitude contributions to the cross section at NNLO. . . . . . . 14

(2.1) Contour integration for BCFW. . . . . . . . . . . . . . . . . . . . 26

(2.2) Large z-dependence of a Feynman diagram. . . . . . . . . . . . . 27

(3.1) Unitarity cut in s12-channel of a one-loop four-point amplitude . . 46

(3.2) Quadruple cut of a one-loop four-point amplitude . . . . . . . . . 48

(4.1) Divergent wave-function cut. . . . . . . . . . . . . . . . . . . . . . 58

(4.2) One-loop diagram for a massive fermion pair and an off-shell scalar 65

(4.3) Configurations for left- and right-moving ggtt̄ amplitudes. . . . . . 68

(4.4) Cuts for B[L] (1t, 2, 3, 4t̄) . . . . . . . . . . . . . . . . . . . . . . . 70

(4.5) Cuts for B[R] (1t, 2, 3, 4t̄) . . . . . . . . . . . . . . . . . . . . . . . 71

(4.6) Vertex momentum conservation in six dimensions . . . . . . . . . 72

(4.7) Pole structure diagrams for ggtt̄ amplitudes in 6− 2ε dimensions . 83

(5.1) The 18 distinct topologies extractable from (1-loop)2 cuts. . . . . 90

(5.2) 31 distinct topologies extractable from 2-loop cuts. . . . . . . . . 90

(5.3) Eight topologies with divergent cuts. . . . . . . . . . . . . . . . . 91

ix



(5.4) Double-triangle topology. . . . . . . . . . . . . . . . . . . . . . . . 97

(5.5) Two-loop five-point master topologies. . . . . . . . . . . . . . . . 109

(5.6) All distinct two-loop five-point topologies. . . . . . . . . . . . . . 110

x



List of Tables

(1.1) Particle contents of Quantum Chromodynamics. . . . . . . . . . . 3

(4.1) Higher-dimension operators in the six-dimensional QCD effective
Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

(5.1) Non-zero coefficients at the integrand level for the two-loop five-
gluon amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

(5.2) Numerical evaluation of Â(2),[0](1, 2, 3, 4, 5) . . . . . . . . . . . . . 102
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(5.8) Numerical evaluation of Â(2)(1q, 2g, 3g, 4g, 5q̄) . . . . . . . . . . . . 106
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Chapter 1

Introduction

For the last decade the world’s largest particle accelerator, the Large Hadron

Collider (LHC), has tested theory predictions within particle physics. The 27

kilometres long collider ring is placed in a tunnel 100 metres underground. Strong,

superconducting magnets curve particles around vacuum tubes and bring them

to collide inside detectors at near light speed. Physics in this energy regime is

described by Quantum Field Theories (QFTs) which unite quantum mechanics

and special relativity.

Theory predictions are provided by the Standard Model and have been confirmed

to an impressive accuracy. In particular, with the discovery of the Higgs boson in

2012 all particles within the model have been observed and their masses accounted

for through the Higgs mechanism. With the predictions of the Standard Model

verified experimentally to very high precision, the programme has entered a

precision measurement phase.

The mathematical formulation of the Standard Model is based on invariance

under local gauge transformations of the group SU(3) × SU(2) × UY (1). The

electro-magnetic and weak nuclear forces are associated with SU(2) × UY (1)

sector, while the strong force is described by the SU(3) sector. Notably, the

Standard Model does not account for the gravitational force nor does it include

interactions of dark matter and neutrino oscillations. New physics beyond the

Standard Model could become evident with higher precision in both measurement

and prediction of Standard Model processes.
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This thesis concerns high precision predictions within the SU(3) sector. In

particular the calculation of the amplitude, a mathematical object ubiquitous

in particle physics and a central ingredient in predictions for particle scattering

experiments. The amplitude is defined in the next section and its efficient

calculation is the continual topic of this work. In section 1.2 we briefly review

Quantum Chromodynamics (QCD), the theory modelling the strong interactions

of the SU(3) sector of the Standard Model. Section 1.3, the last of this chapter,

ties the amplitude to the experimentally observable cross section.

Chapter 2 introduces modern on-shell techniques for the calculation of scattering

amplitudes at tree level while Chapter 3 introduces unitarity methods for massless

one-loop calculations. In Chapter 4 we present a unitarity compatible approach

for calculations of one-loop amplitudes with massive fermions. We extend the

unitarity method to two loops in Chapter 5 and present our results for 2 → 3

scattering. In the final chapter we present our conclusions.

1.1 Scattering amplitudes in Quantum Field

Theory

At scattering experiments like the Large Hadron Collider beams of relativistic

particles are collided and experimentalists measure the properties of particles

appearing in the final state. The probabilistic nature of interactions at the

quantum level means that the outcome of a collision between wavepackets from

beam A and beam B is expressed as a probability [5],

P = |〈φ1φ2 · · ·︸ ︷︷ ︸
final

|φAφB︸ ︷︷ ︸
initial

〉|2. (1.1)

Considering the initial and final states as linear superpositions of states with

definite momentum and taking into account the transverse displacement of the

wavepackets in position space, the probability can be expressed in terms of a

transition amplitude with definite momenta,

out〈p1p2 · · · |pApB〉in ≡ 〈p1p2 · · · |S|pApB〉
= 〈p1p2 · · · |1 + iT |pApB〉. (1.2)
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This defines the unitary scattering matrix, S, as well as the T -matrix. The latter

in turn defines the scattering amplitude,

A(pA pB → p1 p2 · · · ) = 〈p1p2 · · · |T |pApB〉. (1.3)

The scattering amplitude satisfies momentum conservation, pA + pB −
∑
pi =

0 and depends only on the on-shell momenta of the particles. The on-

shell condition is p2
i = m2

i , i = A,B, 1, 2, . . . . This thesis concerns the

calculation of the scattering amplitude for processes within the theory of

Quantum Chromodynamics (QCD), which will be briefly reviewed in the following

section.

1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is part of the Standard Model and describes

the so-called strong interaction between particles, specifically the elementary

particles that carry colour charge. The particle content of QCD is presented

in Table 1.1. These particles are known as quarks and gluons and together they

form bound, colour-neutral states known as mesons and baryons. The proton is

a baryon consisting of three valence quarks, two up-quarks and one down-quark

bound together by gluons.

QCD is a SU(NC) gauge theory described perturbatively by the Lagrangian,

L = −1

4
F a,µνF a

µν +

nf∑

f

ψ̄f,j
(
iγµD

µ
jk −mfδjk

)
ψf,k + Lgauge-fixing, (1.4)

gauge boson quarks
electric charge + 2

3 − 1
3

1st generation
up

∼ 4 MeV

down
∼ 7 MeV

gluon
massless

2nd generation
charm
∼ 1,500 MeV

strange
∼ 135 MeV

3rd generation
top

∼ 175,000 MeV

bottom
∼ 5,000 MeV

Table 1.1 Particle contents of Quantum Chromodynamics. The masses are
approximate and given in natural units where the speed of light is
set to unity.
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where Greek indices are for space-time and spinor indices have been suppressed.

The colour indices a and j, k are in the adjoint and fundamental representations

of SU(NC) respectively. Summation over the colour indices in (1.4) is implied.

There is strong experimental evidence for the number of colours to be NC = 3

[6], but for the sake of generality we will mostly keep NC unfixed throughout this

work. The explicit sum is over the number of different quark flavours, nf , with

masses mf . In the Standard Model there are a total of 6 flavours listed in Table

1.1. γµ are the Dirac matrices.

The gluon field strength tensor, F a,µν , and the covariant derivative, Dµ
ij, are,

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (1.5a)

Dµ
ij = δij∂

µ + igT cijA
c,µ, (1.5b)

where g is the coupling constant and T cij are the SU(NC) generators in the

fundamental representation. Following [7, 8] we use the normalisation,

tr
(
T aT b

)
= TRδ

ab = δab. (1.6)

This choice of normalisation is convenient for the colour ordering that will be

discussed in the next sections. The generators are traceless and satisfy the

algebra,

[T a, T b]ik = i
√

2fabcT cik, (1.7)

where fabc are the structure constants1. In the above, upper colour indices are in

the adjoint representation taking the values 1, ..., N2
C − 1, while lower indices are

in the fundamental taking the values 1, ..., NC . This implies that,

δii = NC , δaa = N2
C − 1. (1.8)

The two first terms of the Lagrangian (1.4) exhibit local gauge invariance.

This means that they are invariant under the following space-time dependent

redefinitions of the fields, parametrised by αc(x),

ψi(x)→ Vij(x)ψj(x) =
(
eiα

c(x)T c
)
ij
ψj(x), (1.9a)

T cijA
c,µ(x)→ V (x)

(
i

g
δij∂

µ + T cijA
c,µ(x)

)
V †(x). (1.9b)

1The additional factor of
√

2 is a choice related to our choice of TR.
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Gauge invariance permits a mass term for the fermions but forbids a mass term

for the gluon. Physical observables must be gauge invariant, while intermediate

steps in the calculations may depend on the gauge choice. The methods applied

throughout this thesis seek to use gauge-invariant ingredients in all calculations

to avoid gauge redundancies in intermediate steps.

1.2.1 Feynman rules

The standard way to compute scattering amplitudes perturbatively is to use

Feynman rules and diagrams. The rules and their derivations can be found in

textbooks on quantum field theory (see for example [5, 6, 9, 10]). In order to

obtain a propagator for the gluon it is necessary to introduce the gauge-fixing

term of (1.4). In this thesis we choose the axial gauge where,

Lgauge-fixing = − 1

2λ

(
nµAaµ

)2
, (1.10)

with gauge parameter, λ, and n is a reference vector. The axial gauge is

known as a physical gauge, since it does not require introduction of unphysical

internal states known as ghosts in order to counter contributions from longitudinal

polarisations of the gauge boson. We further specialise to the light-cone gauge

where n2 = 0.

The Feynman rules for calculating colour-ordered amplitudes are given in Figure

1.1. The rules associated with external states are the spinors and polarisation

vectors given in section 2.1, equation (2.5) and (2.9) respectively. The propagators

include the Feynman iδ-prescription to ensure well-defined vacuum two-point

functions.

1.2.2 Tree-level amplitudes and colour ordering

Since SU(3) is non-Abelian, the gauge bosons are self-interacting through three-

and four-point vertices. These vertices arise from the last term of the gluon

field strength tensor (1.5a) and would be absent in an Abelian theory where the

structure constants vanish. The three-gluon vertex comes with a factor of fabc

and the four-gluon vertices come with a factor of fabef cde. To study the colour

structure of an amplitude we use (1.7) to rewrite the structure constants into

5



traces over the generators,

fabc = − i√
2

tr
(
T aT bT c − T bT aT c

)
. (1.11)

The quark-quark-gluon vertex comes with a single T aij. The quark propagator

contracts fundamental colour indices while the gluon propagator contracts adjoint

indices. For the latter, the Fierz identity is useful,

T aijT
a
kl = δilδjk −

1

NC

δijδkl. (1.12)

Using the above properties we can decompose tree-level QCD amplitudes into

overall colour factors and partial amplitudes only depending on the kinematics.

For pure gluon amplitudes this colour decomposition reads [8, 11, 12],

A(0)
n (1, 2, . . . , n) = gn−2

∑

σ∈Sn/Zn

tr (T aσ(1)T aσ(2) . . . T aσ(n))A(0)
n (σ(1), σ(2), . . . , σ(n)),

(1.13)

where the sum is over all non-cyclic permutations of the external legs. The

amplitude A
(0)
n (1, 2, . . . , n) is known as a colour-ordered or partial amplitude.

Due to its fixed ordering of the external legs it exhibits singular behaviour only

when invariants, si1...in = (pi1 + · · · + pin)2, of adjacent momenta vanish. From

the trace basis for the colour decomposition it is clear that the amplitudes are

invariant under cyclic permutations of the external legs. This reduces the number

of independent colour-ordered amplitudes that it is necessary to calculate.

In the presence of a quark pair the trace is replaced by a string of colour generators

carrying fundamental indices,

A(0)
n (1q, 2, . . . , nq̄) = gn−2

∑

σ∈Sn−2

(T aσ(2) . . . T aσ(n−1))a1anA
(0)
n (1q, σ(2), . . . , nq̄).

(1.14)

The sum runs over all permutation of the gluons, while the positions of the quarks

are fixed.

The anti-symmetry of the Feynman rules, Figure 1.1, reveals the reflection

symmetry of the colour-ordered amplitudes,

A(0)
n (1, 2, . . . , n) = (−1)nA(0)

n (n, . . . , 2, 1). (1.15)

6



−iγµpµ
p2+iδ

−i
p2+iδ

(
ηµν − pµnν+pνnµ

n·p

)

µ ν

µ
ig√
2
γµ

− ig√
2
γµ

µ

1, µ

2, ν

3, ρ

ig√
2
((p2 − p3)

µηνρ + (p3 − p1)
νηρµ + (p1 − p2)

ρηµν)

µ ν

ρδ

ig2ηµρηνδ − ig2

2

(
ηµνηρδ + ηµδηρν

)

Figure 1.1 Colour-ordered, momentum-space Feynman rules in massless QCD
in the light-cone gauge. Solid lines represent quarks, curly lines
represent gluons. All momenta are considered outgoing.

The colour decomposition for loop amplitudes is less straight-forward, and will

in general contain several different colour structures. The loop-level colour

decompositions relevant in this thesis will be presented in section 4.2 and 5.1.

From colour decomposition it follows that the colour-ordered amplitudes must be

gauge-invariant in order for the full amplitude to be gauge-invariant.

1.2.3 Loop amplitudes and dimensional regularisation

Momentum conservation is implied in all the Feynman rules presented in Figure

1.1 and as a consequence all internal momenta at tree level are constrained by the

external momenta. However, each closed loop in a diagram has an unconstrained

7



k

k − p

p

Figure 1.2 Feynman diagrams contributing to the two-point gluon function at
one loop. External momentum, p, is flowing through the diagram,
and internal momentum, k, is running in the loop.

momentum that needs to be integrated over. The two-point gluon function has

two contributing diagrams at one-loop level, one with a quark loop and one with

a gluon loop, as shown in Figure 1.2.

The calculation of this one-loop contribution involves evaluation of the bubble

integral,

I
(4)
2 (p2) =

∫
d4k

iπ2

1

k2(k − p)2
, (1.16)

where we ignore quark masses and omit the Feynman iδ-prescription. Working

in four dimensions, this integral is logarithmically divergent in the ultraviolet,

k → ∞, and a regularisation procedure is necessary. We follow the method of

dimensional regularisation, where a small excursion from four dimensions is taken

and parametrised by the regularisation parameter ε,

d = 4− 2ε. (1.17)

To keep the mass dimension of the integral fixed we introduce a mass scale, µ.

This regularises the integral and the divergence appears as a pole in ε [13],

I
(4−2ε)
2 (p2) = µ2ε

∫
ddk

iπd/2
1

k2(k − p)2

= rΓ

(
µ2

−p2

)ε(
1

ε
+ 2

)
+O(ε), (1.18)

rΓ =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
. (1.19)

Within dimensional regularisation the bubble integral vanishes in the absence of

an external mass scale, p2.

The poles in ε must cancel for physical quantities such that the limit ε → 0

8



can be taken safely. The cancellation of ultraviolet poles is accomplished by the

procedure of renormalisation discussed in the next section.

Infrared divergences can occur in loop integrals when an internal, massless

propagator goes soft, k → 0. Dimensional regularisation works equally well

for these integrals. However, infrared divergences are not dealt with by

renormalisation but cancel against singular behaviour coming from diagrams with

fewer loops but more legs. Consider a diagram where a massless, internal particle

splits into two massless external particles, p1 and p2. The invariant appearing in

the propagator is,

s12 = (p1 + p2)2 = 2p1 · p2 = 2E1E2(1− cos θ12), (1.20)

where θ12 is the angle between the three-momenta of the external particles. We

see that the propagator blows up in the limit where

• either of the external particles goes soft, Ei → 0, i = 1, 2, or

• they go collinear, θ12 → 0.

In these limits no physical detector is able to resolve both particles, so when

calculating physical observables including quantum corrections, the contributions

from the loop process (virtual contribution) and from the emission of an additional

soft or collinear particle (real radiation contribution) should be combined.

Generally, the infrared divergences from an L-loop, n-point amplitude is cancelled

by real radiation from an (L− 1)-loop, (n+ 1)-point amplitude, an (L− 2)-loop,

(n + 2)-point amplitude and so on. The cancellation is ensured to all orders in

perturbation theory by the KLN theorem [14–16].

1.2.4 Renormalisation and the beta function

Renormalisation is the procedure of absorbing ultraviolet divergences from loop

contributions to propagators and vertices in the parameters and fields of the

Lagrangian (1.4). This can be done by introducing counter-terms, effectively

redefining the parameters and fields using renormalisation constants [9, 10],

m = Zmmr, g = µε
Z1

Z2

√
Z3

gr, ψ =
√
Z2ψr, Aµ =

√
Z3A

µ
r . (1.21)

9



(a) Fermion self-energy. (b) Vertex corrections.

Figure 1.3 One-loop corrections to fermion self-energy and gluon-quark-quark
vertex.

The renormalisation constant, Z1, is the overall scaling of the quark-quark-gluon

vertex and therefore picks up factors of the renormalisation constants from the

fields. The scale, µ, keeps the coupling dimensionless for d = 4−2ε. The constants

are calculated at each order in perturbation theory.

To establish the validity of perturbation theory in QCD we shall be especially

interested in the renormalisation of the coupling constant, gr, which at one loop

receives contributions from the gluon self-energy diagrams in Figure 1.2 through

Z3 as well as the fermion self-energy for Z2 and vertex corrections for Z1 shown

in Figure 1.3. The renormalisation constants in the one-loop approximation are2,

Z1 = 1− 1

ε

g2
r

16π2

3N2
C − 1

2NC

, (1.22a)

Z2 = 1− 1

ε

g2
r

16π2

N2
C − 1

2NC

, (1.22b)

Z3 = 1 +
1

ε

g2
r

16π2

5NC − 2nf
3

. (1.22c)

The scaling behaviour of the coupling constant is then given by the beta function,

β(gr) =
∂gr
∂ lnµ

∣∣∣∣
ε→0

= − g3
r

16π2

(
11NC − 2nf

3

)
, (1.23)

which remains negative for nf <
11NC

2
. This is realised in QCD where nf = 6

and NC = 3. This means that the coupling decreases when the scale increases.

This behaviour is known as asymptotic freedom and justifies treating partons as

free particles at high energy. However, this also tells us that the perturbative

expansion is ill-defined at low energies, where the partons form bound, colour-

neutral states.

2The renormalisation constants are calculated in the Feynman gauge and the MS subtraction
scheme for TR = 1

2 . This calculation involves graphs involving ghosts not shown in the figures.
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Introducing g2
r = 4παS(µ) and solving (1.23) we get,

αS(Q) =
αS(µ)

1 + αS(µ) β0
2π

ln
(
Q
µ

) , (1.24)

β0 =
11NC − 2nf

3
.

Knowing the strong coupling, αS, at one scale, µ, allows us to calculate it at a

different scale, Q, provided both scales are in the perturbative regime. Currently,

the world average measurement of the strong coupling is [17],

αS(mZ) = 0.1181(11), (1.25)

where mZ = 91.1876(21) GeV. The numbers in parentheses are the uncertainty

on the last two digits. β0 is only the one-loop approximation of the β-function,

which has recently been calculated up to 5 loops [18, 19].

1.3 The cross section

While this thesis concerns the calculation of the amplitude (1.3), this is not an

observable at experiments. At the Large Hadron Collider (LHC) beams of protons

are collided and the primary physical observable is the cross section denoted σ. A

proton is a bound state of quarks and gluons, collectively known as partons. The

distribution of partons within the proton is described in the non-perturbative

regime of QCD by experimentally determined parton distribution functions

(PDFs). The information contained in the PDF is therefore intrinsic to the proton

(or generally hadron) and is not process-dependent. The interaction between the

colliding relativistic partons is on the other hand described perturbatively due

to asymptotic freedom and gives the process-dependent information. The cross

section for two colliding hadrons with momenta P1 and P2 producing a final state

X is given by [6, 20],

σ(P1P2 → X) =
∑

a,b

∫
dx1dx2fa(x1, µ

2
F )fb(x2, µ

2
F )σ̂(p1p2 → X;µ2

F , µ
2, Q2)

+O
(

ΛQCD

Q

)
. (1.26)
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σ̂

fa

fb

P1

P2x2P2

x1P1

Figure 1.4 Factorisation of the cross section into parton distribution functions
and a perturbatively calculable partonic cross section. The
interacting partons carry fractions xi of the parent proton momenta,
Pi.

The sum is over the partons a and b and the integration is over the fraction of

momentum carried by them, pi = xiPi. The factorisation scale, µF , separates

physics described by the PDFs, fa, and the partonic cross section, σ̂. The

renormalisation scale, µ, was introduced in the previous section. Q is the

characteristic scale of the interaction which, for example, can be the mass of

an intermediate heavy state or the invariant mass of final state particles. This

factorisation structure is illustrated in Figure 1.4. We do not consider the

subsequent parton shower, jet clustering, or hadronisation of the final state

particles.

The partonic cross-section is expanded as a perturbation series in the strong

coupling, αS(µ),

σ̂ =
m∑

l=0

αk+l
S σ̂(N lLO), (1.27)

where k is the order where the process first occurs. For k = 1, this contribution

is related to a squared tree-level n-point amplitude integrated over the n−2 final

state phase space,

σ̂(LO)(p1p2 → p3 . . . pn) =

∫

Φn−2

|A(0)
n |2. (1.28)

The coupling has been extracted from the amplitude and appears in (1.27). As

mentioned in the previous section, quantum corrections to physical observables
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receive virtual and real radiation contributions. The partonic cross section at

next-to-leading order (NLO) is,

σ̂(NLO)(p1p2 → p3 . . . pn) =

∫

Φn−2

2Re
(
A(1)?
n A(0)

n

)
+

∫

Φn−1

|A(0)
n+1|2, (1.29)

where the infrared divergences cancel between the two terms. Several techniques

exist to achieve this cancellation (see for example [21, 22]), but will not be

discussed further in this thesis. Figure 1.5 illustrates the amplitudes contributing

to the perturbative expansion of the partonic cross section. The amplitudes are

colour coded according to the order that they first contribute to. For example, the

tree-level five-point amplitude contributes at leading order and all higher orders.

Note also that the squared one-loop five-point amplitude contributes at NNLO.

Summed to all orders the cross section is independent of the unphysical scales,

∂σ

∂µF
=
∂σ

∂µ
= 0. (1.30)

Hence, the dependence on the scales of a fixed-order calculation indicate the

magnitude of higher-order corrections and gives an estimate for the theoretical

uncertainty of a cross section calculation.

Currently, the state-of-the-art in theoretical predictions is next-to-next-to-leading

order for 2 → 2, while 2 → 3 predictions are limited in part because of

unknown two-loop amplitudes [23]. However, there has recently been remarkable

development to this end and many new results have emerged for the reduction and

evaluation of the necessary loop integrals. In this thesis we will discuss modern

methods for the calculation of scattering amplitudes focusing especially on the

integrand reduction. We introduce a novel approach to one-loop amplitudes

involving massive fermions [1] and present new results for two-loop 2 → 3

scattering in QCD [2–4].
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NNLO
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LO

Figure 1.5 The amplitudes contributing to the 2 → 3 NNLO partonic cross
section. The amplitudes are colour coded according to the order that
they first contribute to.
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Chapter 2

Scattering amplitudes at tree level

Traditional Feynman diagrammatic methods rapidly increase in calculational

complexity and become unmanageable due to large intermediate expressions.

Non-Abelian gauge theories, like QCD, suffer in particular from this due to

self-interactions and gauge redundancies. Modern techniques use manifestly

on-shell variables and gauge-invariant quantities to avoid unphysical degrees

of freedom. This greatly reduces the complexity of calculations. On-shell

techniques are applied in this thesis through spinor-helicity formalism and tree-

level recursion relations which will be introduced in this chapter. Integrand

reduction and generalised unitarity are loop-level techniques which will be

introduced in Chapter 3.

2.1 Spinor-helicity formalism

In this section we give a brief introduction to the spinor-helicity formalism

following standard references [8, 24]. We take fermions to be massless which,

for the lighter quarks, is a reasonable approximation at high energy when

particle energy is dominated by the three-momentum. Furthermore, we adopt

the convention that all external particles are outgoing. For massless, outgoing

fermions with four-momentum pµ = (p0, p1, p2, p3) the Dirac equation reads,

/pv±(p) = 0, ū±(p)/p = 0, (2.1)
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where we use Feynman slash notation and the Weyl basis,

/p = γµpµ =

(
0 σ̃µȧa

σµaȧ 0

)
pµ, (2.2)

with σµaȧ = (1, σi)aȧ and σ̃µȧa = (1,−σi)ȧa. The Pauli matrices, σi, are given in

Appendix A.

The on-shell condition, p2 = 0, translates into vanishing of the determinant,

det /p = 0, and motivates a bi-spinor representation,

p · σaȧ = λaλ̃ȧ, p · σ̃ȧa = λ̃ȧλa, (2.3)

where we suppressed the momentum dependence of the spinors for ease of

notation. The Levi-Civita symbol raises, λa = εabλb, and lowers, λa = εabλ
b,

the spinor indices, with ε12 = 1 = ε21. For real momentum the spinors are related

by complex conjugation, (λa)? = λ̃ȧ. We define the Lorentz invariant spinor

products and introduce a bracket notation,

〈ij〉 = λai λja [ij] = λ̃iȧλ̃
ȧ
j , (2.4)

where λi = λ(pi). The spinor products are antisymmetric and it follows that

〈ii〉 = [ii] = 0. From this observation the independent solutions to the Dirac

equation (2.1) follow immediately,

v−(pi) = vi− =

(
0

λia

)
, vi+ =

(
λ̃ȧi

0

)
, (2.5a)

ūi− = (0, λai ), ūi+ = (λ̃iȧ, 0). (2.5b)

An explicit representation of the spinors is,

λa =
√
p+

(
1
p−
p⊥−

)
, λ̃ȧ =

√
p+

(
1
p⊥−
p+

)
, p± = p0 ± p3, p⊥± = p1 ± ip2. (2.6)

The spinor products are related to generalised Mandelstam variables, sij = (pi +

pj)
2, for massless particles by,

〈ij〉[ji] = 2pi · pj = sij. (2.7)

16



Linear independence of spinors, |i〉 = c1|j〉+ c2|k〉, ci ∈ C, leads to the Schouten

identity,

0 = 〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉. (2.8)

The polarisation vectors for massless, gauge bosons can be expressed as,

ε+µ (p, n) = −〈n|σµ|p]√
2〈np〉

, ε−µ (p, n) =
[n|σ̃µ|p〉√

2[np]
, (2.9)

where p refers to particle momentum and n 6= p is a light-like reference vector.

The existence of a spinor representation for the polarisation vectors is exclusive to

the axial gauge, and summing over helicities we obtain the completeness relation,

∑
ε±µ (p, n)ε∓ν (p, n) = −ηµν +

pµnν + nµpν
n · p . (2.10)

By virtue of (2.1) the polarisation vectors are orthogonal to the momentum. They

are null vectors and normalised such that ε+ · ε− = −1. A change in reference

vector is equivalent to a shift proportional to the momentum and therefore leaves

an on-shell amplitude invariant due to the Ward identity. Helicity can be reversed

by complex conjugation,

(ε+µ )? = ε−µ . (2.11)

This has the immediate consequence that the number of independent helicity

amplitudes we need to calculate drops, as we can flip all helicities in an amplitude

by taking its complex conjugate.

2.1.1 Some tree-level helicity amplitudes

A careful choice of the polarisation reference vector, n, in (2.9) can greatly

simplify computations. In particular, with specific choices we can demonstrate

that a large number of tree-level amplitudes vanish straightforwardly. An n-

point gluon diagram has at most n − 2 vertices which each contributes at most

one momentum vector. Each term must therefore have at least one contraction

of two polarisation vectors. Observing that products of polarisation vectors with
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the same helicity and reference vector vanish,

ε+(pi, n) · ε+(pj, n) = 0, (2.12)

we conclude that choosing the same reference vector, n, for all gluons we have,

A(0)(1+, 2+, 3+, . . . , n+) = 0. (2.13)

We can extend the argument above to the situation when a single gluon has

negative helicity. By observing that,

ε−(pi, n) · ε+(pj, pi) = 0, (2.14)

we choose all the gluons with positive helicity to have the negative helicity gluon

momentum as reference and conclude that for n > 3,

A(0)(1−, 2+, 3+, . . . , n+) = 0. (2.15)

The special case for n = 3 will be discussed in section 2.2.4. Finally, turning to

an n-point amplitude with one quark pair, we use the observation,

〈1|σ · ε+(pn, p1) = 0, (2.16)

and choose all gluons to have positive helicity and the momentum of the negative

helicity quark, p1, as reference vector. It follows that either the polarisation

vectors annihilate each other as in (2.12) or against the external fermion such

that,

A(0)(1−q , 2
+
q̄ , 3

+, . . . , n+) = 0. (2.17)

The above formulas hold only at tree level. From the next-to-leading order cross

section in (1.29) it follows that infrared divergences from one-loop amplitudes

have to cancel against the divergences from tree-level amplitudes. The vanishing

of the tree-level helicity amplitudes above implies that the renormalised one-loop

amplitudes with the same helicity configurations are rational functions.

While the spinor-helicity formalism has made the vanishing of whole classes

of helicity amplitudes evident, it also provides compact expressions for more

complicated helicity configurations. The most well-known is the maximally

helicity violating (MHV) amplitude where all but two gluons have positive
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helicity,

A(1+, 2+, ..., i−, ..., j−, .., n+) = i
〈ij〉4

〈12〉〈23〉...〈n1〉 , (2.18)

where we left the coupling constant out for brevity. An n-point tree-level

amplitude has overall coupling gn−2. This formula was originally conjectured

in [25] and derived in [26] using the recursion relation described in section 2.2.3.

It can be proven by induction using the recursion relation that will be introduced

in section 2.2.4.

2.1.2 Spinors in six dimensions

While space-time is normally four-dimensional we will see several calculational

advantages of considering six space-time dimensions. To extend the spinor-

helicity formalism to six dimensions [27] we introduce antisymmetric 4×4 matrices

that play a similar role to the Pauli matrices in four dimensions. In addition to

the Lorentz index, M = 0, .., 5, they also carry SU(4) indices, A,B = 1, 2, 3, 4,

ΣM
AB and Σ̃M,AB. An explicit form and useful identities are given in Appendix A.

In analogy with the previous section we write,

pAB = p · ΣAB, pAB = p · Σ̃AB, (2.19)

where p is a six-dimensional vector, pM = (p0, p1, p2, p3, p4, p5). The massless

Dirac equation in six dimensions reads,

pABλ
B
a = 0, pABλ̃Bȧ = 0. (2.20)

The extra indices a, ȧ are little group indices and take values 1, 2 so the spinors

can be regarded as 4 × 2 matrices. An explicit representation of the spinors is

given by,

λAa =
√
p+




0 −p⊥−
p+

−ip̃+
p⊥−

1

1 0
p−
p⊥−

ip̃−
p+



, λ̃Aȧ =

√
p+




ip̃−
p⊥−

1

0
p⊥−
p+

−p−
p⊥−

ip̃+
p+

1 0



, (2.21)
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where, in addition to the variables used in (2.6), we introduced p̃± = p4± ip5. In

four dimensions, where p̃± = 0, they take the simple form,

λAa =

(
0 λ̃ḃ

λb 0

)
, λ̃Aȧ =

(
0 λ̃ḃ
−λb 0

)
, (2.22)

where the four-dimensional spinors are given in (2.6). Just as in four dimensions,

we introduce a bracket notation to write down Lorentz invariant objects,

〈ia|jḃ] = [jḃ|ia〉 = λAai λ̃jAḃ, (2.23a)

〈iajbkcld〉 = εABCDλ
Aa
i λBbj λCck λ

Dd
l , (2.23b)

[iȧjḃkċlḋ] = εABCDλ̃iAȧλ̃jBḃλ̃kCċλ̃lDḋ, (2.23c)

where εABCD is the four-dimensional Levi-Civita symbol. Spinor product strings

have the following expression (for even n),

〈1a|2 3 . . . (n− 1)|nḃ] = λA1a(Σ · p2)AB (Σ̃ · p3)BC . . . (Σ̃ · pn−1)XAλ̃ḃAn. (2.24)

Finally, we can write the polarisation vectors in a spinor representation as,

εMaȧ(p, q) =
1√
2
〈pa|ΣM |qb〉〈qb|pȧ]−1

=
1√
2
〈pa|ΣM |qb〉

〈qb|pȧ]
2p · q . (2.25)

Note that gluons in six dimensions have four helicity states. The normalisation

is such that,

εMaȧεMbḃ = εabεȧḃ. (2.26)

Since the invariants do not rely on contractions of the helicity indices, these are

kept free. When calculating an amplitude all helicity configurations are obtained

in one object carrying the helicity indices of the external particles.

The six-dimensional tree-level amplitudes will not be derived here. Amplitudes

with relevance for this thesis are given in Appendix B. Further discussion of the

six-dimensional spinor-helicity formalism can be found in references [28–34].
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2.2 Factorisation and recursion relations

In the first chapter two infrared limits were discussed following (1.20). In this

section we will discuss the infrared behaviour of tree-level amplitudes. These

limits can be used for checking calculations or even in the construction of

amplitudes, for example in order to constrain an Ansatz. It is convenient to study

these limit at the level of colour-ordered tree-level amplitudes as they can only

have poles when sums of adjacent momenta go on-shell. We finish this section by

presenting two methods for recursive construction of tree-level amplitudes.

2.2.1 Soft limits

A particle is said to go soft when its momentum vanishes, pµ → 0. Only massless

particles can go soft and the soft limit does not depend on flavours or helicities

of the other present particles. However, it does depend on the kinematics of

the neighbouring particles in the colour-ordered amplitude and therefore the

colour-dressed amplitude does not factorise. The soft, or eikonal, factor is easily

extracted from the 5-gluon MHV amplitude. In the case where p3 → 0,

A(1−, 2−, 3+, 4+, 5+) = i
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 ,

→ 〈24〉
〈23〉〈34〉 × A(1−, 2−, 4+, 5+), (2.27)

we obtain the eikonal factor,

Eik+(2, 3, 4) =
〈24〉
〈23〉〈34〉 . (2.28)

Starting instead with the anti-MHV amplitude, A(1+, 2+, 3−, 4−, 5−), we get,

Eik−(2, 3, 4) =
[24]

[23][34]
. (2.29)
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2.2.2 Collinear limits

We consider the case when particles 1 and 2 in an n-point amplitude go collinear

in direction, P , and use the parametrisation [35],

pµ1 = zP µ + δT µ − δ2 T 2

2p1 · η
ηµ, (2.30a)

pµ2 = (1− z)P µ − δT µ − δ2 T 2

2p2 · η
ηµ, (2.30b)

where z is the momentum fraction carried by collinear particle 1, T is transverse

to the (light-like) collinear direction P , and η is a light-like reference momentum.

We observe the following relations,

P · T = η · T = P 2 = η2 = 0, (2.31a)

P · η =
p1 · η
z

=
p2 · η
1− z , (2.31b)

and the collinear limit is obtained by sending δ → 0 in (2.30). At the level of

spinors this parametrisation can be realised by setting,

|i〉 =
〈iη〉
〈Pη〉 |P 〉+

〈iP 〉
〈ηP 〉 |η〉, (2.32a)

|i] =
[iη]

[Pη]
|P ] +

[iP ]

[ηP ]
|η]. (2.32b)

Plugging the spinors into (2.30) we find that,

〈iP 〉
〈ηP 〉 = O(δ) and

[iP ]

[ηP ]
= O(δ). (2.33)

Following [8], we will study the 5-gluon MHV amplitude’s factorisation onto the

4-gluon amplitude in collinear limits,

A5(1−, 2−, 3+, 4+, 5+) = i
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 → Split× A4. (2.34)

The vanishing of the helicity amplitudes A
(0)
n (1±, 2+, 3+, ..., n+) = 0 means the

only factorisation channels MHV amplitudes can have are two-particle channels,

as opposed to multi-particle channels where the sum of more than two momenta

go on-shell.
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If we start by considering the situation when particle 4 and 5 go collinear, denoted

4 ‖ 5, and keep only the leading term as δ → 0,

A5(1−, 2−, 3+, 4+, 5+)
4‖5→ 1√

z
√

1− z〈45〉 × A4(1−, 2−, 3+, P+), (2.35)

we extract the splitting function,

Split−(i+, j+) =
1√

z
√

1− z〈ij〉 . (2.36)

Considering instead the limits 2 ‖ 3 and 5 ‖ 1 we get the splitting functions,

Split+(i−, j+) =
z2

√
z
√

1− z〈ij〉 , (2.37)

Split+(i+, j−) =
(1− z)2

√
z
√

1− z〈ij〉 . (2.38)

Collinear limits in six dimensions

For the six-dimensional spinor-helicity formalism we realise the parametrisation

(2.30) using,

λAia = 〈ziax〉λAxP + 〈wiax〉λAxη , (2.39)

〈ziax〉 =
〈ia|η|Px〉

2η · P , 〈wiax〉 = δ
〈ia|P |ηx〉

2η · P .

We again start from the 5-point amplitude,

A5(1aȧ, 2bḃ, 3cċ, 4dḋ, 5eė) = 〈1a|2345|1ȧ]〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė] + 4 cyclic terms

− 〈3c|(4512− 4215)|4ḋ]〈1a2b4d5e〉[1ȧ2ḃ3ċ5ė]
− 〈4d|(5123− 5321)|5ė]〈1a2b3c5e〉[1ȧ2ḃ3ċ4ḋ]
− 〈3c|(5321− 5123)|5ė]〈1a2b4d5e〉[1ȧ2ḃ3ċ4ḋ]
− 〈2b|(3452− 5432)|1ȧ]〈1a3c4d5e〉[2ḃ3ċ4ḋ5ė]. (2.40)

This compact expression for the five-gluon amplitude in six dimensions is derived

from the one appearing in [27].

The algebra involved in the derivation of the splitting function in six dimensions

is lengthy, but since the helicity indices are free all information is contained in
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one expression,

Splitxẋ(1
aȧ, 2bḃ) = − 1

s12z(1− z)

1

(2P · n)3

×
(
〈1a|Pn|1ȧ]〈2b|n|Px〉[2ḃ|n|Pẋ]

− 〈2b|Pn|2ḃ]〈1a|n|Px〉[1ȧ|n|Pẋ]

+
1

2P · n〈Px|n12n|Pẋ]〈1a|n|2b〉[1ȧ|n|2ḃ]
)
. (2.41)

Equivalence with the expressions obtained in four dimensions can be checked

numerically using the spinors in (2.22).

2.2.3 Berends-Giele off-shell currents

In numerical implementations Berends-Giele recursion relations [26] provide a

fast method for computing tree-level amplitudes. A good introduction is given

in [8].

The Berends-Giele recursion relies on Feynman rules to produce off-shell vector

currents. Dressing a current with an external state gives the amplitude. If we

are interested in the n-point gluon amplitude we first construct the n − 1 point

off-shell current, Jµk(1, .., k − 1, k + 1, .., n), recursively. Contracted with the

polarisation vector, εµk(k), we obtain the amplitude. The start of the recursion

relations are indeed the polarisation vectors,

Jµ(k) = εµ(k), (2.42)

where we have suppressed the helicity label. To build an amplitude we need at

least three particles. The off-shell current, Jµ(k), can be contracted with three-

and four-point gluon vertices. The n-point off-shell gluon current is therefore,

Jµ(1, ..., n) =
n−1∑

i=1

V µαβ(p1n, p1i, p(i+1)n)Sαν(p1i)J
ν(1, ..., i)Sβρ(p(i+1)n)Jρ(i+ 1, ..., n)

+

j∑

i

n∑

j=i+1

V µαβγSαν(p1i)J
ν(1, .., i)Sβρ(p(i+1)j)J

ν(i+ 1, .., j)

× Sγδ(p(j+1)n)Jδ(j + 1, .., n) (2.43)
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where pij = pi + · · ·+ pj and the propagators are,

Sαβ(pij) =




ηαβ i = j

−iηαβ
p2ij

i 6= j
. (2.44)

The Feynman vertices, V µαβ(p1n, p1i, p(i+1)n) and V µαβγ, are given by the

Feynman rules for gluon self-interactions in Figure 1.1. Many lower point

currents are shared between the terms of the sum and can be reused to increase

performance.

The recursion relation is easily extended for additional flavours. For fermions

the second sum is omitted as there is no four-point vertex. Furthermore, spinor

indices replace the vector indices, and the propagators and external states are

changed appropriately. Extending to colour singlets involves summing over all

possible positions of the singlet.

2.2.4 Britto-Cachazo-Feng-Witten recursion

While colour-ordering and spinor-helicity formalism simplify calculations a lot,

we still rely on Feynman diagrams when calculating amplitudes. The Berends-

Giele recursion relation offers some recycling of the off-shell currents, but

the calculations have complicated intermediate steps largely due to guage-

dependence. Analytic calculations quickly become impractical as the amount of

diagrams grows rapidly with the number of external particles.A recursion method

due to Britto, Cachazo, Feng, and Witten [36, 37], which uses on-shell, gauge-

invariant amplitudes as input, results in compact results as well as intermediate

steps. We present this recursion relation in detail following the derivations

in [24, 38].

The key idea is to express an n-point amplitude in terms of amplitudes with

fewer external legs connected by single on-shell propagators. We are interested in

the gluon amplitude An(1, 2, ..., n). The first step is to parametrise the singular

behaviour of the amplitude by shifting two spinors by a complex parameter.

Without loss of generality we choose to shift the first and last leg as follows,

|1〉 → |1̂〉 = |1〉+ z|n〉, |n〉 → |n̂〉 = |n〉, (2.45a)

|1]→ |1̂] = |1], |n]→ |n̂] = |n]− z|1], (2.45b)
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Figure 2.1 Contour integration for BCFW. The coloured dots represent
singularities. The residue at the origin gives the amplitude we are
interested in.

where hatted spinors are shifted and z ∈ C. In terms of momenta this shift is,

p̂µ1 =
〈1|σµ|1]

2
+ z
〈n|σµ|1]

2
, (2.46a)

p̂µn =
〈n|σµ|n]

2
− z 〈n|σ

µ|1]

2
, (2.46b)

and the shifted momenta are seen to be on-shell and momentum conservation is

retained. The direction of the deformation is proportional to ε+(p1, pn), see (2.9).

After the shift the amplitude is a rational function of z, An(z). By Cauchy’s

theorem we have,

0 =
1

2πi

∮

γ

An(z)

z
=
∑

k

Res

[
An(z)

z

] ∣∣∣∣
z=zk

, (2.47)

assuming that An(z) → 0 as |z| → ∞ to avoid surface terms as we make the

contour, γ, very large. We will justify this assumption later. We denote the poles

zk, illustrated in Figure 2.1. The residue at the origin is the amplitude we are

interested in and taking it out of the sum,

An(0) = −
∑

k
zk 6=0

Res

[
An(z)

z

] ∣∣∣∣
z=zk

. (2.48)

The remaining singularities occur when a propagator in the shifted amplitude goes

on-shell, connecting two lower-point amplitudes. From the on-shell condition we

26



1 n

Figure 2.2 Large z-dependence of a Feynman diagram. Only propagators drawn
in red depend on the BCFW shift parameter, z.

obtain an expression for zk,

0 = P̂ 2
k (zk) = (p̂1(zk) + ...+ pk)

2 = (zk|n〉[1|+ Pk)
2

⇒ 0 = P 2
k + zk[1|Pk|n〉. (2.49)

The momenta entering this propagator have to be adjacent, since we are working

with colour-ordered amplitudes. With all momenta outgoing this propagator

has opposite helicity in the two connected amplitudes as well as opposite sign

momentum. We will refer to the connected amplitudes by left and right,

AL(1, ..., k,−P̂−hk ) and AR(P̂ h
k , k + 1, ..., n), where h is the helicity of the

intermediate state and must be summed over. The poles of An(z) are simple

and their residues are,

Res

[
An(z)

z

] ∣∣∣∣
z=zk

=
1

zk
lim
z→zk

[(z − zk)An(z)]

=− [1|Pk|n〉
P 2
k

lim
z→zk

[
z[1|Pk|n〉+ P 2

k

[1|Pk|n〉
An(z)

]

=− 1

P 2
k

lim
z→zk

[
P̂ 2
k (z)An(z)

]
. (2.50)

When z → zk the amplitude, An(z), factorises into a left and a right amplitude

as mentioned above. P̂ 2
k cancels against the propagator in the amplitude leaving

the un-shifted propagator in front. Hence, each pole gives a contribution of −1
P 2
k

.

Note that the un-shifted propagator does not diverge at zk. Putting everything

back into (2.48) we arrive at the BCFW recursion formula,

A(0)
n (1, ..., n) =

n−2∑

k=2

∑

h=±

A
(0)
L (1̂, ..., k,−P̂−hk )

i

P 2
k

A
(0)
R (P̂ h

k , k + 1, ..., n̂). (2.51)

Note that k is only summed from 2 to n−2 since at least three gluons are needed

in both lower-point amplitudes. Three-point amplitudes are indeed the starting

point of the recursion and we will derive them shortly.
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In the derivation of the recursion relation we assumed that the amplitude vanishes

for |z| → ∞. We will now justify this assumption for the case of pure gluon

amplitudes. Considering the Feynman diagram in Figure 2.2, only internal

propagators drawn in red carry z dependence. From the expression for the shifted

propagator momentum in (2.49) we find the propagator’s large z behaviour,

1

P̂ 2
k (z)

=
1

(z|n〉[1|+ Pk)2
→ 0 as z →∞. (2.52)

Gluon vertices carry up to one power of momentum and hence at most one power

of z. Without taking the external states into account and noting that there is

one more vertex than there are propagators, the amplitude scales linearly in z

for z → ∞. The remedy comes from the scaling of the external states provided

that we choose the helicity configuration carefully. Symmetries, such as cyclic

permutation, allow us to choose the helicities 1+, n−. For this configuration the

polarisation vectors (2.9) have the desired scaling for large z under the shift (2.45),

ε+1,µ(z) →
z→∞

1

z
, ε−n,µ(z) →

z→∞

1

z
. (2.53)

The amplitude therefore scales as 1
z

in the large z limit. In fact, configurations

where the shifted particles have the same helicity work as well, even if the

argument above fails. However, the configuration 1−, n+ has bad scaling

behaviour and cannot be used for the BCFW shift in (2.45). More generally, it

can be shown that choosing the deformation direction in (2.46) to be proportional

to the polarisation vector of particle 1, ε±µ (p1, pn), provides a valid shift [39].

With the recursion relation (2.51) we obtain an amplitude with n external legs

by sewing together amplitudes with between 3 and (n − 1) external legs. This

is a major improvement over the Feynman diagram approach, where we could

not recycle lower multiplicity amplitudes. Furthermore, by using only on-shell

amplitudes we avoid gauge dependence in intermediate steps. To start the

recursion we will need three-point amplitudes.

Three-point kinematics

In the derivation of three-point amplitudes we will allow complex momenta.

Indeed, in a BCFW recursion complex momenta are introduced when performing

the shift (2.45).
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For massless kinematics we have,

〈12〉[21] = (p1 + p2)2 = (−p3)2 = 0, (2.54)

where we used momentum conservation. For real momenta, angle and square

brackets are related by complex conjugation, but working with complex momenta

we can conclude that either 〈12〉 = 0 or [21] = 0. Assuming that 〈12〉 is non-zero,

it follows from momentum conservation that,

〈12〉[23] = 0⇒ [23] = 0, (2.55a)

〈21〉[13] = 0⇒ [13] = 0, (2.55b)

such that all square brackets vanish. Hence three-point amplitudes can be non-

vanishing provided that they depend only on the angle brackets or alternatively,

only on square brackets. We can now write an Ansatz for the three-point

amplitude with arbitrary helicities, hi,

A(1h1 , 2h1 , 3h1) = c〈12〉x12〈23〉x23〈31〉x31 , (2.56)

where c is constant. We will determine the exponents, xij, using arguments based

on the little group scaling. A momentum vector, pµ = 1
2
〈p|σµ|p] = 1

2
[p|σ̃µ|p〉, is

left invariant under the little group scaling,

λ(p)→ 1

t
λ(p), λ̃(p)→ tλ̃(p). (2.57)

From the solutions of the Dirac equation, (2.5), we see that the little group scaling

of an external fermion at the amplitude level becomes,

A(1h1q , 2q̄, 3, . . . , n) = t−2h1A(1h1q , 2q̄, 3, . . . , n), (2.58)

where h1 = ±1
2
. For a gluon with h = ±1 the same scaling is found from the

polarisation vector expressions in (2.9). Applying the shifts to the Ansatz in

(2.56) gives a system of equations that allow for determining the exponents,

x12 = −h1 − h2 + h3, (2.59a)

x23 = h1 − h2 − h3, (2.59b)

x31 = −h1 + h2 − h3. (2.59c)

The Feynman rules, see Figure 1.1, indicate the mass dimension of the three-
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point amplitude and this prohibits most helicity configurations. The allowed

three-point amplitudes are,

A(1+, 2−, 3−) = −i 〈23〉3
〈12〉〈13〉 , A(1−, 2+, 3+) = i

[23]3

[12][13]
, (2.60a)

A(1−q , 2
+
q̄ , 3

−) = −i〈13〉2
〈12〉 , A(1−q , 2

+
q̄ , 3

+) = i
[23]2

[12]
. (2.60b)

With these three-point amplitudes we can now construct any higher-multiplicity

amplitude using the BCFW recursion relation.

A four-point example

To calculate the four-gluon amplitude, A4(1+, 2+, 3−, 4−), we shift particle 1 and

4 according to (2.45) and apply the BCFW recursion relation (2.51) to obtain,

A4(1+, 2+, 3−, 4−) = A3(1̂+, 2+,−P̂−2 )
i

P 2
2

A3(P̂+
2 , 3

−, 4̂−)

=
i[1̂2]3

[−P̂ 1̂][−P̂2]

i

〈12〉[21]

−i〈34̂〉3
〈P̂3〉〈P̂ 4̂〉

= −i [12]3〈34〉3
[1P̂ ][2P̂ ]〈12〉[21]〈P̂3〉〈P̂4〉

, (2.61)

where we used the analytic continuation | − P̂ ] = i|P̂ ] and that |1̂] = |1] and

|4̂〉 = |4〉. Hence, we only need to evaluate,

[1P̂ ]〈P̂3〉 = [1| (p̂1 + p2) |3〉
= [1| (p1 + z|1]〈4|+ p2) |3〉
= [12]〈23〉, (2.62a)

[2P̂ ]〈P̂4〉 = [21]〈14〉. (2.62b)

Plugging this back in, we arrive at the result expected from (2.18),

A4(1+, 2+, 3−, 4−) = i
〈34〉4

〈12〉〈23〉〈34〉〈43〉 . (2.63)

In fact, (2.18) can be proved by induction using the BCFW recursion relation.

We now turn to the extension of the recursion relation to six dimensions.
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BCFW in six dimensions

The BCFW recursion relation was applied to six dimensions in [27]. As mentioned

earlier, the helicity indices of spinor-helicity formalism in six dimensions are

not fixed and the discussion of valid helicity configurations for BCFW in four

dimensions cannot be readily applied to six dimensions. The solution is to

introduce a little group matrix carrying the helicity indices, Xaȧ, to project out

appropriate shifts. The shifted six-dimensional vectors are then, cf. (2.46),

p̂µ1 = pµ1 + zXaȧεµaȧ(p1, pn), (2.64a)

p̂µn = pµn − zXaȧεµaȧ(p1, pn), (2.64b)

where the polarisation vector is defined in (2.25) and due to the on-shell condition,

det(X) = 0. Therefore, the matrix can be expressed as an outer product of two

little group vectors, Xaȧ = xax̃ȧ. The shift can then be realised using the shifted

spinors,

|1a〉 → |1̂a〉 = |1a〉+ zxax̃ċ〈nc|1ċ]−1|1c〉, (2.65a)

|nb〉 → |n̂b〉 = |nb〉+ zxcx̃ċ〈nb|1ċ]−1|1c〉, (2.65b)

|1ȧ]→ |1̂ȧ] = |1ȧ]− zx̃ȧxc〈1c|nċ]−1|1ċ], (2.65c)

|nḃ]→ |n̂ḃ] = |nḃ]− zx̃ċxc〈1c|nḃ]−1|nċ]. (2.65d)

The recursion relation becomes,

xax̃ȧA(0)
n (1aȧ, ..., nbḃ) =

n−2∑

k=2

∑

cċ

xax̃ȧA
(0)
L (1̂aȧ, ...,−P̂kcċ)

i

P 2
k

A
(0)
R (P̂ cċ

k , ..., n̂bḃ),

(2.66)

and the desired amplitude is extracted as the coefficient of xax̃ȧ. All other helicity

indices of the particles are left free and all helicity amplitudes are obtained in

one BCFW computation. The relevant three-point amplitude for starting the

recursion is computed in [27] and given in Appendix B.
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2.3 Momentum twistors

Spinor-helicity makes on-shell conditions for external particles manifest, through

the identification,

p · σµaȧ = λaλ̃ȧ. (2.67)

Using momentum twistors [40, 41] momentum conservation can be made manifest

and furthermore, we can construct rational phase space points. From the

momenta, pµi , we define dual momentum coordinates and a spinor,

pµi = xµi − xµi−1, µȧi = xi · σ̃ȧaλia. (2.68)

Using these we define the momentum twistor, Z, and the dual twistor, W ,

ZiA =
(
λia, µ

ȧ
i

)
, (2.69a)

WA
i =

εABCDZ(i−1)BZiCZ(i+1)D

〈i− 1 i〉〈i i+ 1〉 =
(
µ̃ia, λ̃

ȧ
i

)
, (2.69b)

where the twistor index A = 1, 2, 3, 4 and i takes values from 1 to the number of

particles, n. It follows that,

λ̃ȧi =
〈i− 1 i〉µȧi+1 + 〈i− 1 i+ 1〉µȧi + 〈i i+ 1〉µȧi−1

〈i− 1 i〉〈i i+ 1〉 , (2.70)

and using the Schouten identity (2.8) momentum conservation can be shown to

be automatically satisfied,

n∑

i=1

λiaλ̃iȧ = 0. (2.71)

We parametrise the phase space by filling out the 4n entries of Zn =

(Z1A, . . . , ZnA). The number of free parameters is deduced from Poincaré

invariance in four dimensions; six constraints come from boosts and rotations

and another four come from translations. Furthermore, each momentum twistor,

ZiA, has a U(1) symmetry. This leaves us with 4n − 6 − 4 − n = 3n − 10 free

parameters. For four-point kinematics we have two free parameters and choose
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the following parametrisation,

Z4 =




1 0 1
x1

1
x1

+ 1
x1x2

0 1 1 1

0 0 0 1

0 0 1 1



⇒W 4 =




0 0 −x2
1x2 0

0 0 0 x1x2

−1 −x1 x1 0

1 0 x1x2 −x1x2



, (2.72)

where the free parameters are related to the Mandelstam variables, s = 2p1 ·p2 =

x1 and t = 2p2 · p3 = x1x2, and the spinors can be read off. Notice that only

x1 carries mass dimension, so in computations it can be set to a numerical value

and reconstructed analytically by dimensional analysis at the end.

For five-point kinematics there are five free parameters. We choose the

parametrisation,

Z5 =




1 0 1
x1

1
x1

+ 1
x1x2

1
x1

+ 1
x1x2

+ 1
x1x2x3

0 1 1 1 1

0 0 0 x4
x2

1

0 0 1 1 1− x5
x4



. (2.73)

With this choice W 5 is relatively large and we will not write it explicitly. The

free parameters, xi, have simple relations to the invariants, sij = (pi + pj)
2,

s12 = x1, (2.74a)

s23 = x1x4, (2.74b)

s34 =
x1

x2

(−x2x3 + x4 + x3x4 + x2x3x5) , (2.74c)

s45 = x1x5, (2.74d)

s51 = x1x3 (x2 − x4 + x5) . (2.74e)

Furthermore, at five point we have the additional Lorentz invariant,

εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 =
−x2

1

4x2

(
x2

2x3 − x2x4 − 2x2x3x4 + x2
4 + x3x

2
4 − x2

2x3x5

− x4x5 − x3x4x5

)
, (2.75)

which is related to the Gram determinant, G = det pi · pj, i, j = 1, ..., 4, through

G = − (εµνρσp
µ
1p

ν
2p
ρ
3p
σ
4 )2. This momentum twistor representation of five-point

kinematics allows us to write all kinematic variables free of square roots.
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Finally, we note that in using the momentum twistor parametrisations the spinor

phase has been discarded. Using the parametrisations above, the phase for a

gluon amplitude is,

Φn(1h1 , . . . , nhn) =

( 〈13〉
[12]〈23〉

)−h1 n∏

i=2

(〈1i〉2[12]〈23〉
〈13〉

)−hi
, (2.76)

where hi are the helicities. The phase is reintroduced using,

An(1h1 , . . . , nhn) = Φn(1h1 , . . . , nhn)Ân({xi}), (2.77)

where Ân({xi}) is the spinor phase free amplitude.

2.4 Summary

This concludes our discussion of tree-level techniques. The spinor-helicity

formalism applied to the gauge-invariant colour-ordered amplitudes, defined

in (1.13) and (1.14), provides compact tree-level amplitude expressions with

definite helicity configurations. This is achieved through use of the on-shell spinor

bracket variables defined in (2.4).

The Berends-Giele recursion relation provides an efficient way of calculating

amplitudes of high multiplicity and is especially suitable for numerical imple-

mentation. The on-shell recursion relation due to Britto, Cachazo, Feng, and

Witten enables us to construct amplitudes without relying on Feynman rules,

using only gauge-invariant quantities. Such on-shell methods are central to our

discussion on the calculation of loop amplitudes.

We shall rely heavily on the six-dimensional extension of the spinor-helicity

formalism throughout this thesis. In the next chapter we use six dimensions for

embedding the extra-dimensional loop momentum components from dimensional

regularisation that was introduced in section 1.2.3. In Chapter 4 we embed

a fermion mass in the sixth dimension to develop a method for calculating

amplitudes involving massive fermions. Six dimensions is the minimal embedding

dimension at two loops in dimensional regularisation. We shall use this in

Chapter 5.
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Chapter 3

Techniques for one-loop amplitudes

In the last chapter we introduced several on-shell techniques at tree level. The

spinor-helicity formalism makes the on-shell condition on the external kinematics

manifest, while momentum twistors ensure momentum conservation throughout

our calculations. The BCFW recursion relation (2.51) is an on-shell technique

which goes beyond the traditional Feynman diagrammatic methods. By using

only physical degrees of freedom, intermediate steps are simplified by avoiding

gauge redundancies. As the complexity of Feynman diagrammatic calculations

increases rapidly when adding loops, it is desirable to extend these methods

beyond tree level. In this chapter we shall apply on-shell principles at the one-loop

level. As an example, we will calculate the one-loop four-point gluon amplitude

using only on-shell gauge-invariant ingredients.

In dimensional regularisation, with d = 4− 2ε, a general one-loop amplitude can

be written schematically as,

A(1) = µ2ε
∑

Feynman
diagrams

∫
ddk

(2π)d
N(k, {p})∏

Di

. (3.1)

The sum is over all Feynman diagrams contributing to the one-loop process. The

numerator, N(k, {p}), is a polynomial in scalar products of the loop momentum,

independent external momenta, and polarisation vectors. The denominator is

a product of the inverse (scalar) propagators, Di = (k − qi)
2, appearing in

the Feynman diagram and qi is a sum of external momenta pj. Finally, the

factor in front, µ2ε, keeps the mass dimension fixed on excursions away from four
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dimensions.

In the first section of this chapter we will discuss integral reduction in order

to write one-loop amplitudes solely in terms of Feynman integrals with four or

less propagators. The second section introduces integrand reduction and the

parametrisation of general gauge theory integrands. The third section describes

unitarity methods and generalised unitarity cuts, and also demonstrates an

application to the reduction of a four-point, one-loop amplitude. In the last

section rational terms and their calculation using d-dimensional unitarity cuts

are discussed.

3.1 One-loop integrals

The above representation (3.1) of the amplitude involves n-point tensor integrals

of the form,

In[kµ1 · · · kµn ] = µ2ε

∫
ddk

(2π)d
kµ1 · · · kµn∏n−1

i=0 Di

. (3.2)

We will limit our discussion to n-point tensor integrals of rank n, since no higher

rank appear in a renormalisable gauge theory. Using the technique introduced

by Passarino and Veltman [42], tensor integrals can be fully reduced to scalar

integrals. We briefly review this method for the case of a massless, four-point

integral of rank one,

I4,0123[kµ] =

∫
d4k

(2π)4

kµ

D0D1D2D3

, (3.3)

where we have set d = 4. The additional sequence of subscripts on the left

hand side specifies the propagators. For outgoing, cyclically ordered momenta

the inverse propagators are,

D0 = k2, (3.4a)

Di = (k − qi)2, i = 1, . . . , n− 1, (3.4b)

qi = p1...i, (3.4c)
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where we have used the shorthand notation pi1...in =
∑in

j=i1
pj. We will use the fact

that the integral can be written in terms of the independent external momenta,

I4,0123[kµ] = apµ1 + bpµ2 + cpµ3 . (3.5)

The coefficients a, b, c can be projected out by contracting with the external

momenta, p1, p2, p3. In these three cases the numerator becomes,

k · p1 = −1

2

(
(k − p1)2 − k2

)
= −1

2
(D1 −D0) , (3.6a)

k · p2 = −1

2

(
(k − p12)2 − (k − p1)2 − s12

)
= −1

2
(D2 −D1 − s12) , (3.6b)

k · p3 = −1

2

(
(k − p123)2 − (k − p12)2 + s12

)
= −1

2
(D3 −D2 + s12) , (3.6c)

where sij = (pi + pj)
2 and we have used p2

i = 0. Note the appearance of inverse

propagators on the right hand side, which will cancel against the factors in the

denominator. Solving for the coefficients, we find,

2a =
s13 − s12

s13

I4,0123 [1]− s23

s12s13

I3,123[1]− 1

s13

I3,023[1]

+
s12 − s13

s12s13

I3,013[1]− 1

s13

I3,012[1], (3.7a)

2b = −I4,0123[1] +
1

s12

I3,123[1] +
1

s23

I3,023[1]

− 1

s12

I3,013 −
1

s23

I3,012[1], (3.7b)

2c = −s12

s13

I4,0123[1] +
1

s13

I3,123[1]− s23 − s13

s23s13

I3,023[1]

+
1

s13

I3,013[1]− s12

s23s13

I3,012[1], (3.7c)

and the desired reduction is obtained. Note that the reduced expression involves

only scalar four- and three-point integrals. The solutions are significantly longer

in the massive case, but follow from the same principle. The result from reducing

a rank two integral would involve rank one integrals, which can then be further

reduced using the result above. This way a chain of reductions is formed and all

tensor integrals can be reduced to scalar integrals.

Further, it can be shown that all n-point scalar integrals with n > 4 can be

reduced to linear combinations of integrals with n ≤ 4 [43]. To show this we start
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by considering the massless pentagon integral in four dimensions,

I
(4)
5,01234[1] =

∫
d4k

(2π)4

1

D0D1D2D3D4

. (3.8)

At five points, the four independent momenta sums in the propagators span the

four-dimensional space, and therefore the loop momentum can be written as a

linear combination of them. This observation leads to a Schouten identity,

kµ tr5 (1234) =
4∑

i=1

k · qi vµi , (3.9)

where we use the shorthand notation,

tr5 (ijkl) = tr5 (qiqjqkql) = tr (γ5γµγνγργσ) qµi q
ν
j q

ρ
kq
σ
l , γ5 = −iγ0γ1γ2γ3.

(3.10a)

vµ1 = tr5 (γµ234) , vµ2 = tr5 (1γµ34) , vµ3 = tr5 (12γµ4) , vµ4 = tr5 (123γµ) .

(3.10b)

Contracting the Schouten identity (3.9) with kµ leads to a relation between the

five-point scalar integral and five four-point scalar integrals through the relations,

k · qi = −1

2

(
Di −D0 − q2

i

)
, i = 1, . . . , n− 1, (3.11)

using the definitions in (3.4). We find,

k2 tr5 (1234) = −1

2

4∑

i=1

(Di − q2
i ) vi · k +

1

2

4∑

i=1

D0 vi · k. (3.12)

Terms proportional to Divi · k are spurious and vanish. Further details on the

reduction are worked out in Appendix C and the result is,

I
(4)
5,01234[1] =

1

w2

( (
2tr5 (1234)2 − Σ4

i=1w · vi
)
I

(4)
4;1234 [1]

+ w · v1I
(4)
4;0234 [1] + w · v2I

(4)
4;0134 [1] + w · v3I

(4)
4;0124 [1] + w · v4I

(4)
4;0123 [1]

)
,

(3.13)

where wµ =
∑4

i=1 q
2
i v

µ
i .

This reduction can be extended for n > 5-point scalar integrals using the same

approach as for the pentagon integral. More details are given in Appendix C and
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the result is,

I
(4)
n,0...n−1[1] =

1

w · qn − q2
n tr5 (1234)

( (
tr5 (1234)− Σ4

i=1vi · qn
)
I

(4)
n−1;1...n−1 [1]

+ v1 · qnI(4)
n−1;02...n−1 [1]

+ v2 · qnI(4)
n−1;013...n−1 [1]

+ v3 · qnI(4)
n−1;0124...n−1 [1]

+ v4 · qnI(4)
n−1;01235...n−1 [1]

− tr5 (1234) I
(4)
n−1;0...n−2 [1]

)
. (3.14)

The dimensionally regulated generalisations of these integral reduction formulae

are derived in [44]. The formula for n ≥ 6, (3.14), generalises straightforwardly

for loop momentum in d = 4 − 2ε dimensions. The formula for the reduction of

the pentagon picks up an extra-dimensional contribution,

I
(d)
5,01234[1] = −1

2

4∑

i=0

aiI
(d)
5,0...(i−1)(i+1)...4[1] + εa−1I

(d+2)
5,01234[1], (3.15)

where,

a−1 =
4∑

i=0

ai =
4∑

i,j=0

(
A−1

)
ij
. (3.16)

In the massless case the elements of the matrix A are Aij = −qi · qj−1, with

Aii = 0. The six-dimensional pentagon is finite and hence the last term in (3.15)

vanishes in the limit ε→ 0.

Reducing the integrals we can write any n-point, one-loop amplitude in dimen-

sional regularisation, where d = 4− 2ε, as,

A(1),4−2ε
n =

∑

a

caI
4−2ε
4,a +

∑

a

caI
4−2ε
3,a +

∑

a

caI
4−2ε
2,a +

∑

a

caI
4−2ε
1,a +Rn +O(ε),

(3.17)

where the integral coefficients and the rational term, Rn, are rational functions of

invariants in external kinematics. The rational term emerges from contributions

from the extra-dimensional, −2ε, part of the loop momentum and will be

discussed in more detail later in this chapter. The indices a are sequences of
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length 1 to 4 specifying the relevant propagators. The integrals are defined as,

I4−2ε
n,a [N(k, {pi})] = µ2ε

∫
ddk

(2π)d
N(k, {pi})∏

i∈aDi

. (3.18)

In (3.17) we used the shorthand I4−2ε
n,a [1] = I4−2ε

n,a for scalar integrals. We will refer

to integrals with n = 4 as boxes, n = 3 as triangles, n = 2 as bubbles, and n = 1

as tadpoles. Up to an overall normalisation, the results for these integrals are

available in the literature [13, 45, 46]. The integrals are expressible in terms of

logarithms and dilogarithms and each integral comes with unique discontinuities

due to these functions. This fact is central to the unitarity methods presented

later in this chapter.

3.2 Integrand reduction

The previous section established how one-loop amplitudes can be written solely

in terms of four- and lower-point integrals. This section describes a method

for reducing a d-dimensional one-loop integrand into terms with at most d

propagators. For example, boxes are the highest appearing topology in four

dimensions.

Before reduction, the integrand is a rational function in scalar products of the

loop momentum and external momenta. In cases where the external momenta do

not span four-dimensional space, scalar products between the loop momentum

and spurious directions, transverse to all external momenta, may also be present.

These spurious terms are non-vanishing at the level of the integrand, but the

associated spurious integrals vanish, explaining why only scalar integrals appeared

in (3.17).

Scalar products between loop momenta and external momenta appearing in the

numerator can be written in terms of propagators and external kinematics. These

are known as reducible scalar products (RSPs) and were used in the integrals

reductions of the previous section in (3.6) and (3.11). In later chapters we will see

that, starting from two loops, some scalar products between loop momenta and

external momenta cannot be expressed in terms of propagators. These are known

as irreducible scalar products (ISPs). Scalar products between loop momenta and

spurious directions are known as spurious ISPs.
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A dimensionally regulated, d = 4 − 2ε, n-point one-loop amplitude with four-

dimensional external momenta can be written as [47–49],

A(1),d
n =

∫
ddk

(2π)d
B(1)
n ,

B(1)
n =

n∑

1≤i<j<k<l<m

∆ijklm (k, {p})
DiiDijDikDilDim

+
n∑

1≤i<j<k<l

∆ijkl (k, {p})
DiiDijDikDil

+
n∑

1≤i<j<k

∆ijk (k, {p})
DiiDijDik

+
n∑

1≤i<j

∆ij (k, {p})
DiiDij

+
n∑

1≤i

∆i (k, {p})
Dii

. (3.19)

The irreducible numerators, ∆, are functions of the loop momentum, k, and the

set of independent external momenta, {p}. The numerator subscripts denote

the first particle on each leg such that the first leg has momentum pi(j−1) =

pi + ... + pj−1. For example, for an 8-point amplitude the box numerator ∆1347

has external legs p12, p3, p456, p78. Using this notation, the denominators are,

Dij =
(
k − pi(j−1)

)2
, (3.20)

so Dii = k2. This labelling is different to the one used for denominators in the

previous section.

Note that bubble and tadpole integrals without an external mass scale vanish in

dimensional regularisation. In massless QCD this happens for the bubble terms

where j = i + 1 in (3.19). Likewise, in dimensional regularisation the tadpole

contribution is relevant only in the presence of massive external particles. We

will deal with its determination using a new approach in section 4.2.1.

The pentagon has no spurious ISPs in four dimensions. Equation (3.13) and (3.15)

allow for the absorption of the four-dimensional part of the pentagon in the box

numerators. The extra-dimensional contribution is O(ε) [44]. Using this we

see the equivalence of (3.17) and (3.19) for d = 4 − 2ε. We now turn to the

parametrisation of the numerators, ∆.

3.2.1 Parametrising the numerators

To parametrise the numerators it is useful to start by expanding the loop momenta

around a basis of external momenta and transverse directions (similarly to the
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methods of Van Neerven and Vermaseren [43]),

ki = k‖,i + k⊥,i, (3.21)

where, for generality, the index i runs from 1 to the number of loop momenta.

The parallel part is spanned by independent external momenta, qj, and we write

the expansion, k‖ =
∑d‖

i aijqj, where the dimension of parallel space d‖ ≤ 4.

The coefficients aij are functions of scalar products between the loop momentum

and external momenta. The transverse space is further decomposed into a four-

dimensional part, k
[4]
⊥ , and an extra-dimensional part, k[−2ε],

k⊥ = k
[4]
⊥ + k

[−2ε]
⊥ . (3.22)

k
[4]
⊥ is expanded around spurious directions, ωj, such that k

[4]
⊥ =

∑d⊥
i bijωj. The

spurious directions satisfy qi ·ωj = 0 and the dimension of transverse space d⊥ ≤ 3

for four-dimensional external momenta. The coefficients, bij, are functions of the

spurious ISPs only. Finally, the extra-dimensional part satisfies the relation,

µij = −k[−2ε]
⊥,i · k

[−2ε]
⊥,j

= ki · kj − k‖,i · k‖,j − k[4]
⊥,i · k

[4]
⊥,j. (3.23)

The first term on the right hand side can be expressed in terms of denominators

and external kinematics while the remaining two are in general functions of the

ISPs. To summarise, we have three categories of ISPs,

• physical ISPs, expressed as scalar products between loop momenta and

external momenta, ki · qj,

• spurious ISPs, written as scalar products between loop momenta and

spurious directions, ki · ωj,

• extra-dimensional ISPs, µij, defined in (3.23) and related to the ISPs of the

above categories.

As previously mentioned, physical ISPs are absent at one-loop level and we

will return to the challenge of parametrising the numerator in their presence

in the next chapter. Below, we present d-dimensional parametrisations for the

numerators at one loop.
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The pentagon numerator is simple since the external momenta fully span four-

dimensional space. This means that there are no spurious directions. With the

absence of physical ISPs at one loop, we choose the numerator to be,

∆ijklm = c
(0)
ijklm µ11. (3.24)

For the box numerator we have one spurious direction,

ωµ = εµνρσp1νp2ρp3σ. (3.25)

Notice in particular that the right hand side of (3.5) vanishes upon contraction

with ωµ. Hence I4,0123[k · ω] = 0, while at the level of the integrand k · ω is

non-zero. This is an example of a spurious integral, which play a central role

throughout this thesis.

Renormalisability in four dimensions implies that the rank of a tensor integral

cannot exceed the number of propagators. Therefore, the box numerator

parametrisation will be a polynomial of at most degree four in the ISPs. Equation

(3.23) relates monomials in the extra-dimensional ISPs to the spurious ISPs,

exposing a choice in the set of monomials appearing in the parametrisation. We

choose the parametrisation,

∆ijkl = c
(0)
ijkl + c

(1)
ijkl k · ω + c

(2)
ijkl µ11 + c

(3)
ijkl µ11k · ω + c

(4)
ijkl µ

2
11. (3.26)

Note that µ11 is of rank 2.

The triangle topology has two spurious directions, ωµ1 and ωµ2 , satisfying qi ·ωj = 0

and we choose them to have the same normalisation, ωi · ωj = ω2δij. We use the

integrand parametrisation,

∆ijk = c
(0)
ijk + c

(1)
ijk k · ω1 + c

(2)
ijk k · ω2 + c

(3)
ijk k · ω1 k · ω2

+ c
(4)
ijk [(k · ω1)2 − (k · ω2)2] + c

(5)
ijk (k · ω1)2 k · ω2 + c

(6)
ijk k · ω1 (k · ω2)2

+ c
(7)
ijk k · ω1 µ11 + c

(8)
ijk k · ω2 µ11 + c

(9)
ijk µ11. (3.27)
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Finally, the bubble parametrisation, where three spurious directions appear, is,

∆ij = c
(0)
ij + c

(1)
ij k · ω1 + c

(2)
ij k · ω2 + c

(3)
ij k · ω3

+ c
(4)
ij k · ω1 k · ω2 + c

(5)
ij k · ω1 k · ω3 + c

(6)
ij k · ω2 k · ω3

+ c
(7)
ij [(k · ω1)2 − (k · ω2)2] + c

(8)
ij [(k · ω1)2 − (k · ω3)2]

+ c
(9)
ij µ11. (3.28)

In the next section we describe a method to obtain the coefficients of the above

parametrisations using only on-shell, gauge-invariant tree-level amplitudes.

3.3 Unitarity methods

The traditional unitarity method [38, 50, 51] is derived from the unitarity of the

S-matrix, introduced in section 1.1. We start with a short discussion of unitarity

before commenting on its use for calculating amplitudes. The method applied for

amplitude calculations in this thesis is based on unitarity and discussed in detail

in section 3.3.1. Unitarity states that,

1 = S†S

= (1− iT †)(1 + iT )

= 1− i(T † − T ) + T †T. (3.29)

Rearranging, we arrive at a representation of the Optical Theorem,

i(T † − T ) = T †T. (3.30)

Expanding the transition matrix, T , perturbatively in the coupling constant for

four- and five-point amplitudes we have,

T4 = g2T
(0)
4 + g4T

(1)
4 + g6T

(2)
4 + ... (3.31a)

T5 = g3T
(0)
5 + g5T

(1)
5 + g7T

(2)
5 + .... (3.31b)
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Solving (3.29) in powers of the coupling constant, g, we obtain,

g2 : i
(
T

(0)†

4 − T (0)
4

)
= 0, (3.32a)

g4 : i
(
T

(1)†

4 − T (1)
4

)
= T

(0)†

4 T
(0)
4 , (3.32b)

g6 : i
(
T

(2)†

4 − T (2)
4

)
= T

(1)†

4 T
(0)
4 + T

(0)†

4 T
(1)
4 + T

(0)†

5 T
(0)
5 , (3.32c)

where the superscripts denote the number of loops. The first equation implies

that tree-level amplitudes are real. The two remaining equations imply that the

discontinuities of loop level amplitudes can be related to amplitudes with fewer

loops.

We can turn expression (3.29) into a relation between scattering amplitudes by

dressing it with an initial state, |i〉, and a final state, 〈f |. In between the T -

matrices on the right-hand side we furthermore put a complete set of on-shell

states,

〈f |T †T |i〉 =
∑

f,n

∫ n∏

i=1

ddqi
(2π)d

δ(+)(q2
i )〈f |T †|{qi}〉〈{qi}|T |i〉, (3.33)

where the delta function δ(+)(q2) = Θ(q0)δ(q2) enforces positive energy and real

momentum for the intermediate states. The sum runs over flavour configurations,

f , and number of intermediate particles, n. Including momentum-conserving

delta functions we have,

Ai→f − A?f→i = i
∑

f,n

∫ n∏

i=1

ddqi
(2π)d

δ(+)(q2
i )Ai→{qi}A

?
f→{qi}. (3.34)

The left-hand side will only be non-zero if the amplitude has a branch cut. In

analogue with the observations following (3.32) we see that branch cuts are

absent in tree-level amplitudes. At loop level however, discontinuities appear

from logarithms.

The discontinuities of loop diagrams and integrals can be calculated using

Cutkosky rules [5, 52]. Putting intermediate states on-shell is known as cutting

and is achieved by replacing propagators,

1

k2 −m2 + iδ
→ −2πiδ(+)(k2 −m2). (3.35)

The calculation of the physical discontinuity of a loop diagram follows three steps
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Figure 3.1 Unitarity cut of a one-loop four-point amplitude. External momenta
are outgoing. Grey blobs denote tree-level amplitudes.

constituting the Cutkosky rules. First step is to systematically apply all cuts that

can be satisfied simultaneously, followed by an integration over the remaining

degrees of freedom. Finally, summing over the contributions from all the cuts

gives the discontinuity. These rules can be used to prove (3.34) order by order in

perturbation theory.

Turning to amplitudes, the discontinuity in the s12-channel of the four-point one-

loop amplitude can be calculated using,

Discs12A
(1)
4 = (−2πi)2i

∑

f

∫
ddk

(2π)d
δ(+)

(
k2 −m2

1

)
δ(+)

(
(k − p12)2 −m2

2

)

× A(0)
4 (−k, p1, p2, k − p12)A

(0)
4 (−k + p12, p3, p4, k),

(3.36)

where all momenta are considered to be outgoing. This cut is illustrated in Figure

3.1. In QCD the sum over flavours, f , will be over quarks and gluons as well as

their helicity states. Comparing the discontinuities of the amplitude to those of

the parametrisation of the amplitude in terms of scalar integrals (3.17), we obtain

a system of equations for determining the coefficients.

3.3.1 Generalised unitarity

A weakness of the unitarity method is the complication in disentangling the

information when a branch cut is shared by several integrals. In the previous
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section we saw an example of a double cut (3.36) where the momenta of the

intermediate states are real. In section 2.2.4 the power of working with complex

momenta in intermediate states in the context of BCFW was demonstrated. If

we allow the cut momenta to take complex values, we can perform more general

cuts than the double cut discussed above. These cuts are known as generalised

unitarity cuts [47, 53, 54]. The real delta function in (3.35) does not allow complex

solutions so we reinterpret the cut as an integral contour deformation. Performing

cuts we pick up the residues of the amplitude. Cutting m internal states we get,

Cuti1...imA
(1)
n =

∑

f

∫
ddk

(2π)d

m∏

j=1

(−2πi)δ(l2ij)A
(0)(−lij , ij, . . . , ij+1 − 1, lij+1

),

(3.37)

where we ignore masses and lij = k − pij(ij+1−1) = k −∑ij+1−1
l=ij

pl. The indices

should be considered cyclic such that im+1 = i1. Using generalised unitarity cuts

we can systematically disentangle and extract the contributions from each integral

topology. This procedure is most easily shown through an example calculation.

The algorithm used in the following is commonly known as OPP after the authors

of [47]. We demonstrate the application to a four-point one-loop amplitude.

Quadruple cut

In the context of the four-point amplitude in four dimensions the maximal cut

we can perform is quadruple. This quadruple cut is illustrated in Figure 3.2. On

this cut the amplitude factorises into four three-point tree-level amplitudes,

Cut1234A
(1)
4 =

∑

f

∫
d4k

(2π)4
(−2πi)δ(l21)A

(0)
3 (−l1, 1, l2)

× (−2πi)δ(l22)A
(0)
3 (−l2, 2, l3)

× (−2πi)δ(l23)A
(0)
3 (−l3, 3, l4)

× (−2πi)δ(l24)A
(0)
3 (−l4, 4, l1). (3.38)

Only one box integral in (3.17) has this singularity and its coefficient can therefore

be extracted directly. For intermediate states in four dimensions we choose the
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Figure 3.2 Quadruple cut of a one-loop four-point amplitude. External
momenta are outgoing. Grey blobs denote tree-level amplitudes.

following parametrisation of the loop momentum,

kµ = ~χ · ~vµ = (χ1, χ2, χ3, χ4) · ~vµ

= χ1p
µ
1 + χ2p

µ
2 + χ3

〈1|σµ|2]

2
+ χ4

〈2|σµ|1]

2
, (3.39)

and solve the cut constraints. A quadruple cut in four dimensions gives four

constraints and therefore localises the internal momentum completely. We get

two solutions, a and b, for the parameters,

~χa =
(

1, 0,− [41]
[42]
, 0
)
, ~χb =

(
1, 0, 0,− 〈14〉

〈24〉

)
. (3.40)

Applying this cut to the integrand parametrisation in (3.19) we pick out the

box numerator, ∆1234. The pentagon is absent in this four-point amplitude and

topologies without all four cut propagators are set to zero. Working in four

dimensions the numerator parametrisation, (3.26), reduces to,

∆1234 = c
(0)
1234 + c

(1)
1234k · ω, (3.41)

and evaluating on the two cut solutions yields,

∆1234|a = c
(0)
1234 + c

(1)
1234is12s23, (3.42a)

∆1234|b = c
(0)
1234 − c(1)

1234is12s23. (3.42b)

So far we have not specified the theory we are working in, except for the
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requirement of renormalisability. In this thesis massless QCD is the obvious

choice, allowing gluons and fermions to run in the loop. In both cases we need

to sum over the helicities of the internal states and we choose the non-adjacent

MHV configuration for the external states, 1−, 2+, 3−, 4+. For the gluon loop in

four dimensions we need four three-point amplitudes from (2.60a) and get,

Cut

(
k

1

2

4

3

) ∣∣∣
a

= i4
∑

hi=±

A
(0)
3 (−l−h11 , 1−, lh22 )A

(0)
3 (−l−h22 , 2+, lh33 )

× A(0)
3 (−l−h33 , 3−, lh44 )A

(0)
3 (−l−h44 , 4+, lh11 )

=
[l2l1]3

[1l2][1l1]

〈l3l2〉3
〈2l3〉〈2l2〉

[l4l3]3

[3l4][3l3]

〈l1l4〉3
〈4l1〉〈4l4〉

=
〈k|421|k]3

〈2|k|1]〈4|k|1]〈2|(k − p1)|3]〈4|k|3]

= −s12s23A
(0)(1−, 2+, 3−, 4+), (3.43a)

Cut

(
k

1

2

4

3

) ∣∣∣
b

= −s
5
12s23 + s12s

5
23

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+), (3.43b)

where the left-hand side subscript refers to the cut solution. In this notation we

omit factors of 2π and any other factors from the integral measures as they will

appear on both sides of the equation when comparing the cut to the integrand

parametrisation (3.19). Equating the numerator parametrisations (3.42) to the

cuts (3.43), we obtain the coefficients,

c
(0)
1234 = i

s12s23(s2
12 + s12s23 + s2

23)2

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+), (3.44)

c
(1)
1234 = −4

s12s23(2s2
12 + 3s12s23 + 2s2

23)

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+). (3.45)

For the fermion loop we use the three-point amplitudes in (2.60b) and obtain,

c
(0),fermion
1234 =

1

2

s2
12s

2
23(s2

12 + s2
23)

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+) = −c(1),fermion

1234 . (3.46)

For the rest of this example we will ignore the fermion loop.

Triple cut

At this point we know all relevant box coefficients (in this case one) of the one-loop

amplitude parametrisation in four dimensions (3.17). The algorithm proceeds by
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determining the triangle coefficients using triple cuts. We have four topologies,

k

1

2

3

4 k

3

4

2

1 k

3

4

2

1

k

3

4

2

1

123 134 124 234

.

Focusing on the topology associated with numerator ∆123 and using the

momentum parametrisation (3.39) the cut solutions are,

~χa = (1, 0, τ, 0) , ~χb = (1, 0, 0, τ) , (3.47)

where τ is a free parameter. The corresponding cuts are,

Cut

(
k

1

2

4

3

) ∣∣∣
a

= i3
∑

hi=±

A
(0)
3 (−k−h3 , 1−, kh11 )A

(0)
3 (−k−h11 , 2+, kh22 )

× A(0)
4 (−k−h22 , 3−, 4+, kh3)

=
is12

1 + τs12

A(0)(1−, 2+, 3−, 4+), (3.48a)

Cut

(
k

1

2

4

3

) ∣∣∣
b

=
is23

2s2
12

2τ 4 − 4τ 3s12 + 12τ 2s2
12 − 16τs3

12 + 8s4
12

τs12 + τs23 − 2s12s23

A(0)(1−, 2+, 3−, 4+)

(3.48b)

In the four-dimensional limit the integrand basis (3.27) is,

∆123 = c
(0)
123 + c

(1)
123 k · ω1 + c

(2)
123 k · ω2 + c

(3)
123 k · ω1 k · ω2

+ c
(4)
123 [(k · ω1)2 − (k · ω2)2] + c

(5)
123 (k · ω1)2 k · ω2 + c

(6)
123 k · ω1 (k · ω2)2,

(3.49)

and we use the two massless legs to construct the spurious directions,

ωµ1 =
〈1|σµ|2]

〈132]
+
〈2|σµ|1]

〈231]
, (3.50a)

ωµ2 = i

(〈1|σµ|2]

〈132]
− 〈2|σ

µ|1]

〈231]

)
. (3.50b)

The four-point tree amplitude entering the cut has a pole in the free parameter,

τ . In order to isolate the triangle numerator coefficients we cancel this pole by

subtracting the contribution from the quadruple cut,

∆123|a =

(
Cut

(
k

1

2

4

3

)
− ∆1234

(k − p123)2

) ∣∣∣∣
a

, (3.51)
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and similarly for the second cut solution, b. Knowing the spurious box coefficient

is necessary to achieve this cancellation. We obtain the coefficients by numerically

sampling over several values of the free parameter, τ ,

c
(0)
123 =

is2
12s23(2s2

12 + 3s12s23 + 2s2
23)

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+), (3.52a)

c
(1)
123 = −is

2
23(3s2

12 + 4s12s23 + 2s2
23)

(s12 + s23)3
A(0)(1−, 2+, 3−, 4+), (3.52b)

c
(2)
123 = −s

2
23(3s2

12 + 4s12s23 + 2s2
23)

(s12 + s23)3
A(0)(1−, 2+, 3−, 4+), (3.52c)

c
(3)
123 =

s3
23(2s12 + s23)

s12(s12 + s23)2
A(0)(1−, 2+, 3−, 4+), (3.52d)

c
(4)
123 =

is3
23(2s12 + s23)

2s12(s12 + s23)2
A(0)(1−, 2+, 3−, 4+), (3.52e)

c
(5)
123 = − s4

23

s2
12(s12 + s23)

A(0)(1−, 2+, 3−, 4+), (3.52f)

c
(6)
123 =

is4
23

s2
12(s12 + s23)

A(0)(1−, 2+, 3−, 4+). (3.52g)

For the remainder of the reduction we will only write the non-spurious terms

explicitly. The relevant coefficients for the three remaining triangle topologies

are,

c
(0)
124 =

is12s
2
23(2s2

12 + 3s12s23 + 2s2
23)

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+), (3.53)

c
(0)
134 = c

(0)
123, (3.54)

c
(0)
234 = c

(0)
124. (3.55)

Double cut

There are two non-vanishing bubble topologies,

3

4

2

1

13

2

34

1

24

,
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with only one cut solution each. In the case of ∆13 the subtraction of higher-lying

topologies is performed as follows,

∆13|cut =

(
Cut

(
3

4 1

2

)
− ∆1234

(k − p1)2(k − p123)2
− ∆123

(k − p1)2
− ∆134

(k − p123)2

) ∣∣∣∣
cut

,

(3.56)

and the only non-spurious coefficient in four dimensions in the integrand

parametrisation (3.28) is,

c
(0)
13 =

i(14s2
12s23 + 19s12s

2
23 + 11s3

23)

3(s12 + s23)3
A(0)(1−, 2+, 3−, 4+). (3.57)

For the other bubble topology, ∆24, we have,

c
(0)
24 =

i(11s3
12 + 19s2

12s23 + 14s12s
2
23)

3(s12 + s23)3
A(0)(1−, 2+, 3−, 4+). (3.58)

We used the spurious directions,

ω1 =
〈1|σµ|2]

2
+
〈2|σµ|1]

2
, ω2 = i

(〈1|σµ|2]

2
− 〈2|σ

µ|1]

2

)
, ω3 = p1 − p2, (3.59)

for ∆13 and a similar construction for ∆24.

This concludes the reduction of the one-loop four-point gluon amplitude in four

dimensions.

3.4 Rational terms and d-dimensional cuts

In the previous sections the external particles have been restricted to four

dimensions, which is also the spin dimension of the internal particles. This is

in accordance with the four-dimensional helicity scheme (FDH) [55, 56]. Using

dimensional regularisation, where the loop momentum lives in d = 4 − 2ε

dimensions, the numerator acquires dependence on d from contractions of the

loop momentum with itself. These contributions to the massless amplitude give

rise to the rational term in (3.17), which are overlooked in the four-dimensional

treatment. The terms obtained through the four-dimensional integrand reduction

are historically known as cut-constructible [54] and several methods have been

developed for a subsequent calculation of the rational term, see for example

[49, 57–60]. In this section we will demonstrate how to extract the cut-
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constructible part as well as the rational terms by using d-dimensional generalised

unitarity cuts [33, 48, 49, 61–63].

At this point it is helpful to summarise the different dimensions that appear

in our calculations. Using dimensional regularisation, integrals are evaluated in

d = 4 − 2ε dimensions. The spin dimension, where polarisation vectors live, is

denoted ds for internal particles and fixed to four for external particles. This

leaves us with a choice of two schemes; four-dimensional helicity (FDH) which

has ds = 4 and the ’t Hooft-Veltman scheme (HV) [64] where ds = 4−2ε. Finally,

we need an integer embedding dimension, D, for the particle momenta. To catch

the (−2ε) contribution we will embed in six dimensions, D = 6, for which we

introduced a spinor-helicity formalism in section 2.1.2.

In section 3.2.1 we parametrised the numerator in d dimensions. In order to

determine the coefficients, we embed the loop momenta in D = 6 dimensions and

solve the cut conditions and perform the cuts. Revisiting the box cut from the

previous section we choose the loop momentum parametrisation,

kM = χ1p
µ
1 + χ2p

µ
2 + χ3

〈1|σµ|2]

2
+ χ4

〈2|σµ|1]

2
+ χ5e

⊥
5 + χ6e

⊥̄
6 . (3.60)

For the extra dimensions we have chosen light-cone coordinates e⊥5 = (0, 0, 0, 0, 1, i),

e⊥̄6 = (0, 0, 0, 0, 1,−i), and e⊥5 ·e⊥̄6 = 2. At one loop the numerator can only depend

on the magnitude and not the direction of the extra-dimensional loop momentum

components. Without loss of generality we set χ5 = 〈12〉[21]
4

. We therefore have

one free parameter, which we will choose to be χ4 = −τ 〈14〉
〈24〉 . This leaves us with

a single, rational solution,

~χ =

(
1, 0, (τ − 1)

[41]

[42]
,−τ 〈14〉
〈24〉 ,

〈12〉[21]

4
, (τ − 1)

〈14〉[41]

〈24〉[42]

)
. (3.61)

The four-dimensional limit is taken by solving µ11 = 0 ⇒ τ = 0, 1 and the two

solutions from (3.40) are obtained. On the cut the amplitude factorises into a

product of trees,

Cut6d
1234 = i4A

(0)
3 (−kxẋ, 1aȧ, (k − p1)yẏ)A

(0)
3

(
−(k − p1)yẏ, 2bḃ, (k − p12)zż

)

× A(0)
3

(
−(k − p12)zż, 3cċ, (k + p4)wẇ

)
A

(0)
3

(
−(k + p4)wẇ, 4dḋ, k

xẋ
)
.

(3.62)
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The coefficients in (3.26) for a six-dimensional gluon running in the loop are,

c
(0),6d
1234 =

is12s23(s4
12 + 2s3

12s23 + 4s2
12s

2
23 + 2s12s

3
23 + s4

23)

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+),

(3.63a)

c
(1),6d
1234 = −8

s12s23(s2
12 + s12s23 + s2

23)

(s12 + s23)4
A(0)(1−, 2+, 3−, 4+), (3.63b)

c
(2),6d
1234 = 4i

s3
12s23 + s12s

3
23

(s12 + s23)3
A(0)(1−, 2+, 3−, 4+), (3.63c)

c
(3),6d
1234 = −16

s12s23

(s12 + s23)3
A(0)(1−, 2+, 3−, 4+), (3.63d)

c
(4),6d
1234 = 4

is12s23

(s12 + s23)2
A(0)(1−, 2+, 3−, 4+). (3.63e)

Even without the extra-dimensional contributions, c
(2),6d
1234 , c

(3),6d
1234 , c

(4),6d
1234 , this result

does not match the coefficients in four dimensions (3.45). This is due to the

additional internal helicity states summed over in (3.62). Our goal in the following

is to perform a state-sum reduction in order to match the four-dimensional result.

In particular, we will derive a formula for obtaining coefficients with explicit spin

dimension dependence.

At one loop, a coefficient can at most be linear in the spin dimension, ds,

c(ds) = a+ dsb, (3.64)

since the dependence stems from contraction of the metric tensor around the

loop, ηµµ = ds. The coefficients a and b are rational functions of the external

kinematics and are independent of ds. We can project them out by calculating

the coefficients for two different values of ds. If we choose ds = D,D + 1 (3.64)

becomes,

c(ds) =
(
(D + 1)c(D) −Dc(D+1)

)
+ ds

(
c(D+1) − c(D)

)
. (3.65)

In calculating both c(D) and c(D+1) we can set the embedding dimension to D.

The difference is then only the additional polarisation state in c(D+1), ε⊥, which

is perpendicular to all other momentum vectors. Hence, it only contributes

through contractions with itself. Consider the three-gluon vertex Feynman rule

in Figure 1.1. Contracted with two gluons, 1 and 2, with polarisation ε⊥, only
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one term can survive,

ig√
2

(p1 − p2)ρε⊥ · ε⊥. (3.66)

Up to the normalisation of ε⊥ this is just the Feynman rule for a scalar-

scalar-gluon vertex. There are no other contributions involving the additional

polarisation state. Hence the difference between c(D) and c(D+1) is that of a

scalar loop,

c(D+1) = c(D) + cscalar. (3.67)

Putting this back into (3.65) yields,

c(ds) = c(D) + (ds −D)cscalar. (3.68)

We therefore need to calculate the coefficients, cscalar, where the internal gluon

loop is replaced by a scalar loop. After state-sum reduction we obtain,

c
(0),ds
1234 =

(
c

(0),4d
1234 + i

ds − 4

2

s3
12s

3
23

(s12 + s23)4

)
A(0)(1−, 2+, 3−, 4+), (3.69a)

c
(1),ds
1234 =

(
c

(1),4d
1234 +

ds − 4

2

4s2
12s

2
23

(s12 + s23)4

)
A(0)(1−, 2+, 3−, 4+), (3.69b)

c
(2),ds
1234 =

(
c

(2),6d
1234 − ids

2s2
12s

2
23

(s12 + s23)3

)
A(0)(1−, 2+, 3−, 4+), (3.69c)

c
(3),ds
1234 = −4 (ds − 2)

s12s23

(s12 + s23)3
A(0)(1−, 2+, 3−, 4+), (3.69d)

c
(4),ds
1234 = i (ds − 2)

s12s23

(s12 + s23)2
A(0)(1−, 2+, 3−, 4+). (3.69e)

With the explicit ds dependence we can now choose between the FDH and the

HV schemes mentioned earlier.

Finally, we need to evaluate the additional integrals appearing in d dimensions.

The µ11-dependent monomials of the integrand parametrisation can be evaluated

in terms of scalar integrals of higher dimension [61–63]. Using the integral

definition (3.18), we have,

I(4−2ε)
n [µr11] = −ε(1− ε) · · · (r − 1− ε)(4π)rI(4−2ε+2r)

n [1], (3.70)
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and the integrals evaluate to,

I
(4−2ε)
5 [µ11] = −ε4πI(6−2ε)

5 [1] = O(ε), (3.71a)

I
(4−2ε)
4 [µ11] = O(ε), (3.71b)

I
(4−2ε)
4 [µ2

11] =
−i

(4π)2

1

6
+O(ε), (3.71c)

I
(4−2ε)
3 [µ11] =

i

(4π)2

1

2
+O(ε), (3.71d)

I
(4−2ε)
2 [µ11] =

−i
(4π)2

1

6

(
p2 − 3(m2

1 +m2
2)
)

+O(ε), (3.71e)

where the momentum, p, is flowing through the bubble and the masses of the

propagators are m1, m2. These integrals give rise to the rational term in (3.17),

Rn =
−i

(4π)2

(
1

6

n∑

1≤i<j<k<l

c
(4)
ijkl −

1

2

n∑

1≤i<j<k

c
(9)
ijk +

1

6

n∑

1≤i<j

c
(9)
ij

(
p2
i(j−1) − 3(m2

1 +m2
2)
)
)
.

(3.72)

3.5 Summary

In this chapter we have demonstrated the use of modern on-shell techniques at

the one-loop level. We started with the reduction of integrals and integrands into

the parametrisations in equation (3.17) and (3.19). Integration of the integrand

parametrisations from section 3.2 using the d-dimensional pentagon (3.15)

and the extra-dimensional integrals in (3.71) show the equivalence of these

parametrisations.

The rational terms were overlooked in the four-dimensional integrand reduction

via generalised unitarity cuts in section 3.3.1. Using this method we calculated

the cut-constructible part of the one-loop four-gluon amplitude. Direct extraction

of the rational terms was achieved in section 3.4 using d-dimensional generalised

unitarity.

Using state-sum reduction, equation (3.68), we were able to reconstruct the

explicit dependence on the spin dimension of the internal particles, ds, in the

integrand coefficients. In the remaining chapters we will continue to use d-

dimensional generalised unitarity and state-sum reduction in the calculation of

loop amplitudes.
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Chapter 4

Unitarity at one loop with massive

fermions

Precise predictions for the production of strongly interacting massive particles

are in high demand for current experimental analyses at the LHC. The current

precision level of predictions is in relatively good shape, with top quark pair

production now known differentially at NNLO in QCD [65, 66] and a full range

of off-shell decays known at NLO in QCD with an additional jet [67]. Modern

one-loop techniques are also able to explore high multiplicity final states where

the current state-of-the-art is top quark pair production in association with three

jets [68]. The GoSam collaboration has also been able to produce NLO predictions

for the challenging tt̄H + j final state [69]. A more complete overview of the

current status can be found in reference [70].

On the other hand, these processes are often overlooked by more formal

studies of amplitudes in gauge theory which can uncover hidden simplicity

and structure. While it is well known that on-shell techniques like unitarity

[61], spinor integration [71, 72] and BCFW recursion apply equally well to

massive amplitudes, explicit computations are relatively few [73–75]. Nevertheless

some computations using these approaches have produced compact analytic

results useful for phenomenological applications [74, 76]. While elements of

these computations use unitarity cuts and on-shell trees, Feynman diagram

techniques were also employed to compute the UV counterterms necessary for

mass and wavefunction renormalisation. To the best of our knowledge the only

computations not to do this are those with a massive internal loop where a UV

57



= +
∑

Figure 4.1 Decomposing the tree amplitude appearing on the left hand side of a
wavefunction cut reveals a divergent graph.

matching prescription was used [61, 73].

The obstacle is that the traditional approach to renormalisation requires the

amputation of wavefunction graphs, and the addition of counterterm diagrams.

This procedure breaks gauge invariance during intermediate steps and therefore

causes problems for methods based on (generalised) unitarity [50, 51, 53], which

construct amplitudes from on-shell tree-level building blocks. Naive attempts

to amputate wavefunction graphs in generalised unitarity are precluded by the

presence of an on-shell propagator, leading to a factor 1/0: this is depicted

explicitly in Figure 4.1, where the on-shell tree amplitude appearing on the right

hand side of a two-particle cut is expanded to reveal a divergent propagator

inside. Consequently, the favoured method is still to follow an approach

based on Feynman diagrams; then the amputation of wavefunction graphs is

straightforward.

Two solutions to this problem have been proposed. Ellis, Giele, Kunszt and

Melnikov showed that modifying the tree-level input entering the double cuts

of the wavefunction graphs allowed a simple implementation of the on-shell

renormalisation scheme [77]. All cuts can then be performed but gauge invariance

is only restored at the end of the computation. Since the removal of the unwanted

graphs is extremely easy to implement within a Berends-Giele construction of

the tree-level amplitudes in the cuts this method is quite efficient numerically. A

second solution, proposed by Britto and Mirabella [78], is to regulate the divergent

tree by introducing a momentum shift. This procedure allows us to preserve gauge

invariance but introduces an additional variable into the calculation which will

cancel when combined with the mass-renormalisation counterterms. In either

case a set of extra two- and single-particle cuts is necessary together with the

counterterms to fully determine the amplitude in comparison to the massless

case.

Despite both of these solutions there is still an open question: is it possible to

compute amplitudes with masses using only on-shell gauge invariant building
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blocks and without introducing additional regulators? Both of the approaches

mentioned above follow the on-shell renormalisation scheme where divergences

can be absorbed into additional terms in the Lagrangian. In this chapter we will

seek an alternative way to absorb the divergences by appealing to an effective six

dimensional version of QCD.

This procedure relies on first computing a full set of finite d-dimensional

unitarity cuts. We show how this can be done efficiently in the six-dimensional

spinor-helicity formalism [27] by embedding the additional mass into the higher

dimensions and performing cuts in six dimensions. In particular we show how

these results can be dimensionally reduced to d-dimensional amplitudes keeping

the spin dimension of the gluon ds arbitrary. This generalises the previous

approaches used for massless cuts in six dimensions [30, 33] that were discussed

in the previous chapter.

The work in this chapter was also presented in [1]. In section 4.1 we review

the spinor-helicity formalisms in four and six dimensions, and show how Dirac

spinors for massive fermions can be represented as massless Weyl spinors in six

dimensions. We then discuss a simple example of a pair of massive fermions

coupling to an off-shell vertex at one-loop. This example allows us to show

how computations in six dimensions can be performed, and how they can be

dimensionally reduced to results with an arbitrary spin dimension ds. In section

4.2 we explain some of the key features needed to apply the generalised unitarity

method in six dimensions to gg → tt̄ scattering. Section 4.2.1 describes the

procedure of fixing the remaining ambiguities using the universal epsilon pole

structure in d = 4− 2ε dimensions and the corresponding epsilon pole structure

of the effective theory in 6− 2ε dimensions.

4.1 Massive fermions

In this section we describe how we can use massless six-dimensional momenta

to obtain amplitudes in four dimensions with massive particles. Before getting

started, we briefly review how massive fermions can be incorporated within

the four-dimensional spinor-helicity formalism commonly used for massless

amplitudes, see section 2.1. We follow the notation used previously in reference

[75] while the formalism itself was established long before that, see for example

[79–83].
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Starting from a massive 4-momentum, p, with p2 = m2, we can define a massless

projection with respect to a light-like reference vector η,

p[ = p− m2

2p · ηη, (4.1)

such that (p[)2 = 0. A complete set of solutions of the Dirac equation for the

massive momentum p can then be constructed from the Weyl spinors of p[ and η,

ū+(p,m) =
〈η|(/p+m)

〈ηp[〉 , ū−(p,m) =
[η|(/p+m)

[ηp[]
,

v+(p,m) =
(/p−m)|η〉
〈p[η〉 , v−(p,m) =

(/p−m)|η]

[p[η]
. (4.2)

These Dirac spinors maintain several of the simplifications which are familiar in

the massless case. The tree-level helicity amplitudes for gg → tt̄ scattering, for

example, take the relatively simple forms,

−i〈η11[〉〈η44[〉A(0)(1+
t , 2

+, 3+, 4+
t̄ ) = −m

3
t s23〈η1η4〉

2p1 · p2〈23〉2 , (4.3)

−i〈η11[〉〈η44[〉A(0)(1+
t , 2

+, 3−, 4+
t̄ ) =

mt〈η13〉〈η43〉〈3|1|2]

2p1 · p2〈23〉 +
mt〈η1η4〉〈3|1|2]2

2p1 · p2s23

.

(4.4)

We will now show that these results can be rewritten in terms of amplitudes of

massless fermions in six dimensions.

4.1.1 Massive fermions from massless six-dimensional spinors

In this section we will use the six-dimensional spinor-helicity formalism [27]

introduced in section 2.1.2 to find representations of four-dimensional massive

fermion wavefunctions and amplitudes. We begin our discussion by looking at a

free massive fermion field in four dimensions,

L4d = ψ(x)(iγµ∂µ −m)ψ(x). (4.5)
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For the spinors associated with external fermions we seek solutions to the massive

Dirac equation,

(γ · p̄−m)us(p̄) = 0 and ūs(p̄)(γ · p̄−m) = 0, (4.6)

where the bar on the momentum, p̄, denotes a vector in four dimensions.

Alternatively, we can consider a massless fermion field in six dimensions with the

Lagrangian,

L6d = Ψ(x)(iΓM∂M)Ψ(x). (4.7)

Note that for six dimensions we use capital Greek letters and M runs from 0 to

5. In six space-time dimensions the Dirac matrices are 8 × 8 objects, which we

choose to be,

ΓM =

(
0 Σ̃M

ΣM 0

)
, (4.8)

Our representation of the Σ-matrices (A.4) is simply related to the four-

dimensional γ-matrices. The relation for the first four Σ-matrices is,

−Σ̃5,AXΣµ
XB = (γµ)AB = Σ̃µ,AXΣ5

XB, (4.9)

where we used the Clifford algebra for the last equality. For the remaining two

Σ-matrices we have,

−Σ̃5,AXΣ4
XB = (−γ0γ1γ2γ3)AB = i(γ5)AB, (4.10a)

−Σ̃5,AXΣ5
XB = 1AB. (4.10b)

There is no six-dimensional mass term and in our Weyl basis for the Γ matrices

(4.8) we can decompose Ψ = (Ψ1,Ψ2). We see that the two fields decouple,

L6d = Ψ1(x)(iΣM∂M)Ψ1(x) + Ψ2(x)(iΣ̃M∂M)Ψ2(x). (4.11)

Hence the two Ψi are essentially copies of each other. Their Dirac equations in

momentum space read,

(Σ · p)ABλBa (p) = 0, (4.12a)

(Σ̃ · p)ABλ̃Bȧ(p) = 0. (4.12b)
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We embed the massive four-dimensional momentum, p̄, into a six-dimensional

massless momentum by declaring,

p = (p̄, 0,m), so p2 = p̄2 −m2 = 0. (4.13)

Having made this choice, it is consistent to relate the chiral spinor, λ, to the

anti-chiral spinor, λ̃, by defining,

λA = iΣ̃4,ABλ̃B. (4.14)

It is straightforward to verify that this is a solution to the Dirac equation by

inserting equation (4.14) into (4.12a) and using the Clifford algebra,

0 = (Σ · p)ABλBa (p)

= i(Σ · p)ABΣ̃4,BC λ̃C

= −iΣ4
AB(Σ̃ · p)BC λ̃C

⇒ 0 = (Σ̃ · p)BC λ̃C . (4.15)

Having embedded our massive four-dimensional momentum into six dimensions,

it is instructive to understand in detail how massless six-dimensional spinors

relate to the usual massive four-dimensional Dirac spinors. We begin by writing

the massless six-dimensional Dirac equation (4.12a) in detail as,

(Σ · p)ABλBa (p) =
(
Σµpµ − Σ5p(5)

)
AB

λBa (p) = 0. (4.16)

Multiplying from the left by −Σ̃5,XA we obtain,

(γ · p̄− p(5)
1 )XBλ

B(p) = 0. (4.17)

Notice how the sign in the sixth component of the momentum determines whether

λ(p) should be associated with the four-dimensional spinor for a fermion, u(p),

or an anti-fermion, v(p),

λ(p) =




u(p̄) , p(5) = m

v(p̄) , p(5) = −m
. (4.18)

A similar calculation shows how to identify massless six-dimensional spinors with
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the conjugate four-dimensional Dirac spinors,

0 = λA(p)(Σµpµ − Σ5p(5))AB

= λA(p)(−Σ5Σ̃5) X
A (Σµpµ − Σ5p(5))XB

= λA(p)Σ5
AX(γ · p̄− p(5))XB. (4.19)

Again the sixth momentum component determines whether λ(p)Σ5 should be

identified with ū(p) or v̄(p):

λ(p)Σ5 =




ū(p̄) , p(5) = m

v̄(p̄) , p(5) = −m
. (4.20)

In the following, we find it useful to write an explicit representation for λA(p)

that allows us to make a direct connection with the four-dimensional Dirac spinors

given in (4.2). We use a massless (in the four-dimensional sense) reference vector

η, as introduced in (4.1), with Weyl spinors κα(η), κ̃α̇(η) and define the six-

dimensional spinors,

λAa(η, p̄[) =

(
0 κ̃α̇(η)

[p[η]
κα(η)

〈p[η〉 0

)
, λ̃Aȧ(η, p̄

[) =

(
0 κ̃α̇(η)

[p[η]
κα(η)

〈p[η〉 0

)
. (4.21)

Using (Σ · p)AB(Σ̃ · p)BC = 0 we see that the Dirac equation (4.12a) is solved by

setting,

λA(p) = (Σ̃ · p)ABλ̃B(η, p̄[). (4.22)

The anti-chiral case is completely analogous,

λ̃A(p) = (Σ · p)ABλB(η, p̄[). (4.23)

The discussion following (4.16) showed how these six dimensional spinors solve

the massive Dirac equation in four dimensions with the appropriate choice of sign

for p(5).
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4.1.2 Interactions and state-sum reduction

We introduce interactions by replacing the derivative with the covariant deriva-

tive. In six dimensions,

∂M → DM = ∂M − igAiM(x)ti, (4.24)

where AiM(x) are the gauge fields and ti are the generators of the gauge group.

We dimensionally reduce the six-dimensional gauge field to four dimensions by

treating its last two entries as scalar fields,

AM(x) = AiM(x)ti = (Aµ(x), φ1(x), φ2(x)), (4.25)

leading to the following interaction terms for Ψ1 (dropping dependence on position

for simplicity),

L6d
int,Ψ1

= −igΨ1ΣMAMΨ1

= −igΨ1

(
ΣµAµ − Σ4φ1 − Σ5φ2

)
Ψ1

= −igΨ1ΣµAµΨ1 + gΨ1φ1Ψ2 − igΨ1φ2γ5Ψ2. (4.26)

In the last line, we have used the relation between chiral and anti-chiral spinors

(4.14), which for the fields reads Ψ1 = iΣ̃4Ψ2. The last two terms give rise

to the three-point amplitudes given in (B.4) and (B.5). While the first term

resembles the four-dimensional interaction term the two last terms are additional

contributions arising from the extra momentum components. For internal lines

these contributions correspond to additional gluon polarisation states that should

be subtracted to obtain the four-dimensional result. This procedure is known as

state-sum reduction. This was already discussed in section 3.4, but is revisited

here since our specific frame of reference, (4.13), changes the expression slightly.

The contraction of Lorentz indices over internal propagators leads to explicit

dependence on the spin dimension ds. Working explicitly in six dimensions this

dependence will be lost but can be recovered through state-sum reduction, as was

shown in section 3.4. The general procedure is described in [33, 49]. Gluons in

six dimensions have 6 − 2 = 4 polarisation states, so for each extra dimension

introduced we get an additional state. Each of these states correspond to the

contribution from replacing gluons in the loop by a scalar. By subtracting these

scalars the number of polarisation states can be reduced to ds− 2. In our set-up,
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1a

2b

l1

l2

l3

Figure 4.2 Feynman diagram for one-loop contribution to the coupling between
a massive fermion pair and an off-shell scalar. All external momenta
are outgoing.

the scalar associated with the mass direction should be subtracted separately and

we arrive at the state-sum reduction prescription,

c = c6d − (5− ds)cφ1 − cφ2 . (4.27)

In the massless case cφ1 = cφ2 and we recover the expression in (3.68) for

embedding dimension D = 6.

4.1.3 An example calculation

Let us now illuminate this higher-dimensional formalism with a worked example,

the one-loop amplitude for a massive fermion pair coupled to an off-shell scalar,

A(1). This calculation involves only one Feynman diagram, Figure 4.2, which is

given by,

A(1),4d =

∫
dd`1

(2π)d
ū1γ

µ (γ · `3 +m)

`2
3 −m2

(γ · `2 +m)

`2
2 −m2

γνv2
ηµν
`2

1

≡
∫

dd`1

(2π)d
N4d

D1D2D3

,

(4.28)

where `2 = `1 − p2, `3 = `1 + p1, Di = `2
i −m2

i , and N4d is the numerator. We

will write the result in terms of the scalar integrals using the notation of [13],

I =
{
I3(m2, s,m2; 0,m2,m2), F2(s,m2), I2(m2; 0,m2)

}
, (4.29)
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where F2(s,m2) = I2(s;m2,m2) − I2(m2; 0,m2). The result is A(1),4d = c(ds) ·
IA(0),4d where the integral coefficients are given by,

c(ds) =

{
−2(s− 2m2), (ds − 4)− 8m2

sβ2
, ds

}
, (4.30)

and β2 = 1− 4m2

s
while ds is the spin dimension.

Using the relation between γµ and the Σ- and Σ̃-matrices (4.9) we may simplify

the numerator by insertion of 1AB = −Σ̃5,AXΣ5
XB in (4.28),

N4d = ū1γ
µ(γ · ¯̀3 +m)(γ · ¯̀2 +m)γµv2

= ū11γ
µ(γ · ¯̀3 +m)1(γ · ¯̀2 +m)1γµv2

= −ū1Σ̃5Σµ(Σ̃ν ¯̀
3ν − Σ̃5m)Σ5(Σ̃ρ ¯̀

2ρ − Σ̃5m)Σµv2

= λ1Σµ(Σ̃ · `3)Σ5(Σ̃ · `2)Σµλ2. (4.31)

Note the leftover Σ5 which is associated with the scalar interaction. Hence the

tree-level amplitude in six dimensions is given by,

A(0),6d = λ1Σ5λ2. (4.32)

As discussed in section 4.1.2, the contraction of the six-dimensional Lorentz

indices of internal gluon lines includes contributions from the extra dimensions.

The procedure of reducing the sum over internal states allows us to obtain the

explicit dependence on space-time dimensionality. In the case at hand, the

numerator in the six-dimensional calculation is,

N6d = λ1ΣM(Σ̃ · `3)Σ5(Σ̃ · `2)ΣMλ2. (4.33)

Comparing with N4d in equation (4.31), the extra contributions in six dimensions

are evidently,

N6d
φ1

= −λ1Σ4(Σ̃ · `3)Σ5(Σ̃ · `2)Σ4λ2, (4.34a)

N6d
φ2

= −λ1Σ5(Σ̃ · `3)Σ5(Σ̃ · `2)Σ5λ2. (4.34b)

It follows from (4.26) that contributions from the scalars can equivalently be
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obtained with,

N6d
φ1

= −λ1(Σ · `3)Σ̃5(Σ · `2)λ2, (4.35a)

N6d
φ2

= λ1γ5(Σ · `3)Σ̃5(Σ · `2)γ̃5λ2, (4.35b)

where (γ̃5)AB = −iΣ̃4,AXΣ5
XB. Using the integral basis in (4.29) the result is,

A(1),6d = c6d · IA(0),6d

=

{
−2s,−16m2

sβ2
, 4

}
· IA(0),6d, (4.36)

A
(1)
φ1

= cφ1 · IA(0),6d

= {0, 1, 1} · IA(0),6d, (4.37)

A
(1)
φ2

= cφ2 · IA(0),6d

=

{
−4m2,−1− 8m2

sβ2
,−1

}
· IA(0),6d. (4.38)

The coefficients above are the ingredients needed to perform the state-sum

reduction and reproduce (4.30).

4.2 gg → tt̄ at one loop

We consider two gauge-invariant primitive amplitudes relevant for the gg → tt̄

one-loop scattering amplitude. Helicity amplitudes for this process have been

previously presented in reference [75]. Using the usual colour decomposition [84]

we define the ordered partial amplitudes A
(1)
4;1 and A

(1)
4;3 by,

A(1) (1t, 2, 3, 4t̄) =
∑

P (2,3)

(T a2T a3)ī4i1 A
(1)
4;1 (1t, 2, 3, 4t̄)

+ tr (T a2T a3) δ ī4i1A
(1)
4;3 (1t, 4t̄; 2, 3) , (4.39)
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A[L] (1t, 2, 3, 4t̄) =

1t 2

4
t̄ 3

+ . . . , A[R] (1t, 2, 3, 4t̄) =

1t 2

4
t̄ 3

+ . . .

Figure 4.3 Configurations for left- and right-moving primitive amplitudes
contributing to gg → tt̄ scattering.

where P (2, 3) is the permutations over the order of gluons. These partial

amplitudes can be further decomposed into gauge-invariant primitive amplitudes,

A
(1)
4;1 (1t, 2, 3, 4t̄) = NcA

[L] (1t, 2, 3, 4t̄)−
1

Nc

A[R] (1t, 2, 3, 4t̄)

−NfA
[f ] (1t, 2, 3, 4t̄)−NHA

[H] (1t, 2, 3, 4t̄) , (4.40)

A
(1)
4;3 (1t4t̄; 2, 3) =

∑

P (2,3)

(
A[L] (1t, 2, 3, 4t̄) + A[L] (1t, 2, 4t̄, 3) + A[R] (1t, 2, 3, 4t̄)

)
,

(4.41)

where Nc is the number of colours, while Nf and NH are the number of light and

heavy fermion flavours, respectively. The left-moving A[L] and right-moving A[R]

primitive amplitudes are labelled according to the direction of the fermion current

as it enters the loop, following the convention of reference [84]. Representative

diagrams for these amplitudes are shown in Figure 4.3. We will not consider the

fermion loop contributions A[f ] and A[H] in this article as they do not present any

further technical difficulties.

Each primitive amplitude can be decomposed at the integrand level into the

basis of integrals described in section 3.2. In this massive case there are only two

possible basis integrals which go beyond those appearing in the massless case,

A(1)
n = B(1)

n + c2;m2I2,m2 + c1I1. (4.42)

The amplitude labelled B
(1)
n is the part that can be constructed from finite d-

dimensional unitarity cuts. The additional basis integrals depend only on the
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fermion mass and in dimensional regularisation are,

I2,m2 = µ2ε

∫
ddk

(2π)d
1

k2((k − p)2 −m2)
d=4−2ε

= icΓ

(
1

ε
+ log

(
µ2

m2

)
+ 2

)
+O(ε),

(4.43)

I1 = µ2ε

∫
ddk

(2π)d
1

k2 −m2

d=4−2ε
= icΓm

2

(
1

ε
+ log

(
µ2

m2

)
+ 1

)
+O(ε), (4.44)

where cΓ = Γ(1+ε)Γ(1−ε)2
(4π)2−εΓ(1−2ε)

.

To capture the full d-dimensional dependence, we first compute generalised

unitarity cuts in six dimensions using the spinor-helicity formalism described

in the previous section. We then compute the two additional scalar loop

contributions and perform the state-sum reduction onto a general spin dimension,

ds, according to equation (4.27). The complete set of generalised unitarity cuts

needed for the amputated primitives B[L] and B[R], c.f. B
(1)
n in equation (4.42),

are shown in Figure 4.4 and 4.5, in which the divergent two-particle and one-

particle cuts are removed.

Each six-dimensional cut is associated with a set of loop momenta `i which enter

the tree-level amplitudes. These momenta are determined by solving the system

of on-shell equations {`2
i = 0, i ∈ S}. The complete set of loop momenta for our

ordered amplitudes are labelled as,

`µi ≡ `µ0 − P µ
i , P µ

i =
i∑

n=1

pµn,

`µ0 ≡ kµ, (4.45)

where pµn are the external momenta and k is the loop integration momentum.

The internal particles are embedded into six dimensions by allowing the mass to

flow in the sixth component, following our convention in equation (4.13), and the

(d− 4) part of the loop momentum to flow in the fifth component,

gluon loop momentum: ` = {¯̀, µ, 0},
fermion loop momentum: ` = {¯̀, µ,m}. (4.46)

The gluon and fermion loop propagators can then be expanded into a four-
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Figure 4.4 The complete set of cuts for B[L] (1t, 2, 3, 4t̄). Double lines represent
massive fermions.
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Figure 4.5 The complete set of cuts for B[R] (1t, 2, 3, 4t̄). Double lines represent
massive fermions.
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(ℓ̄1, µ,−m)(p̄1, 0, m)

(ℓ̄0, µ, 0)

Figure 4.6 To perform the unitarity cuts of the six dimensional propagators
involving internal fermions, we allow the (d − 4) part, µ, of the
loop momentum to flow in the fifth component and the mass term
to flow in the sixth component, in order to easily impose momentum
conservation.

dimensional part and an effective mass term µ2,

gluon propagator: `2 = ¯̀2 − µ2, (4.47)

fermion propagator: `2 = ¯̀2 − µ2 −m2. (4.48)

This choice is particularly convenient when requiring momentum conservation

and orthogonality of the −2ε component with respect to the external massive

fermions momenta expressed in the six-dimensional representation, as shown in

Figure 4.6.

As an explicit example we will describe the computation of the quadruple cuts.

The on-shell equations for these cuts in the left- and right-moving configurations

are,

SL4;1234 =




`2

0 = `2
1 = `2

2 = `2
3 = 0

`
(5)
0 = m

, SR4;1234 =




`2

0 = `2
1 = `2

2 = `2
3 = 0

`
(5)
0 = 0

.

(4.49)

The constraint on the sixth component of the loop momentum `0 distinguishes

between the two different configurations.

We construct explicit solutions for the six-dimensional spinors of `i by introducing

arbitrary two-component reference spinors xa and x̃ȧ. These solutions, which have
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a similar form to those presented in [85, 86], take a simple form,

`M0 =
〈x.4|ΣM 1 2 3|4.x̃]

〈x.4|2 3|4.x̃]
, `M1 =

〈x.4|1 Σ̃M 2 3|4.x̃]

〈x.4|2 3|4.x̃]
,

`M2 =
〈x.4|1 2 ΣM 3|4.x̃]

〈x.4|2 3|4.x̃]
, `M3 =

〈x.4|1 2 3 Σ̃M |4.x̃]

〈x.4|2 3|4.x̃]
, (4.50)

where 〈x.4| = xa〈4a|, |4.x̃] = |4ȧ]x̃ȧ. The expressions for the two reference spinors

can be chosen to be,

xa = (1, τ1), x̃ȧ = (1, y), (4.51)

where y is fixed, for left and right, by the mass constraint for `
(5)
0 specified in

(4.49). Because we have a system of 5 equations for 6 dimensional momenta, the

parameter τ1 is left unconstrained.

On the quadruple cut the amplitudes factorise into products of four tree-level

amplitudes,

2

4
t̄

1t

3

ℓ0

ℓ1

ℓ2

ℓ3

CL
4;1234 = A(−`0a, 1

α
t , `

bḃ
1 )A(−`1bḃ, 2

ββ̇, `cċ2 )

× A(−`2cċ, 3
γγ̇, `dḋ3 )A(−`3dḋ, 4

δ
t̄ , `

a
0), (4.52)

and

2

4
t̄

1t

3

ℓ0

ℓ1

ℓ2

ℓ3

CR
4;1234 = A(−`0aȧ, 1

α
t , `

b
1)A(−`1b, 2

ββ̇, `c2)

× A(−`2c, 3
γγ̇, `d3)A(−`3d, 4

δ
t̄ , `

aȧ
0 ), (4.53)

where in both cases the repeated SU(2) spinor indices are summed over the six-

dimensional polarisation states.

The integrand reduction method then proceeds to extract the five independent

coefficients in the integrand parametrisation from (3.26) by evaluating both the

product of trees and the irreducible scalar products µ2 = µ11 and k · ω using

the on-shell solution in (4.50) and comparing the resulting rational functions in

τ1. We encounter an interesting subtlety when following this procedure since

the six-dimensional cut contains additional terms which are linear in the extra-

dimensional component of the loop momentum µ. These terms are spurious and

integrate to zero, but require additional coefficients to be added at the integrand
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level if this direct approach is taken. A slightly simpler approach is to cancel the

linear part of the cut by averaging over the two different flows of the momentum

in the fifth component,

∆1234

∣∣
S4;1234

=
1

2

(
C4;1234

∣∣
S+
4;1234

+ C4;1234

∣∣
S−4;1234

)
, (4.54)

where,

S+ =
{
`2
i = 0, `i = {. . . , µ, . . . }

}
, S− =

{
`2
i = 0, `i = {. . . ,−µ, . . . }

}
. (4.55)

The triangle and bubble coefficients follow using the OPP method to system-

atically remove all singularities from the cut amplitude using the previously

computed irreducible numerators. The mass dependence of the propagators is

now dictated by six-dimensional momentum conservation applied to the loop

momenta, so all propagators are simply `2
i . To remove the terms linear in µ, we

average over the two directions for the extra-dimensional component, as described

above. Thus,

∆1234

∣∣
S4;1234

=
1

2

∑

σ=±

C4;1234

∣∣
Sσ4;1234

, (4.56a)

∆123

∣∣
S3;123

=
1

2

∑

σ=±

C3;123

∣∣∣∣
Sσ3;123

− ∆1234

`2
3

∣∣∣∣
S3;123

, (4.56b)

∆13

∣∣
S2;13

=
1

2

∑

σ=±

C2;13

∣∣∣∣
Sσ2;13

−
(

∆123

`2
1

+
∆134

`2
3

+
∆1234

`2
1`

2
3

) ∣∣∣∣
S2;13

, (4.56c)

where the parametrisations for each irreducible numerator are those of section 3.2.

The remaining triple and double cuts follow by permuting the equations (4.56).

Further details on the on-shell cut solutions are given in Appendix B.3 and

a full set of numerical results for the six-dimensional cuts are listed in the

Mathematica notebook accompanying our paper [1].

The final step to dimensionally reduce the coefficients from 6 to a general spin

dimension, ds, is to remove the extra degrees of freedom contained in the six-

dimensional loop momentum according to (4.27). The computation of these extra

cuts is done using the same procedure as above, but the internal gluon lines in

Figure 4.4 and 4.5 are replaced with scalars. For example, the quadruple cuts are
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given by the following expressions,

C
L,φ(1,2)
4;1234 = A(−`0ȧ, 1

α
t , `1)A(−`1, 2

ββ̇, `2)A(−`2, 3
γγ̇, `3)A(−`3, 4

δ
t̄ , `

ȧ
0), (4.57)

C
R,φ(1,2)
4;1234 = A(−`0, 1

α
t , `

ḃ
1)A(−`1ḃ, 2

ββ̇, `ċ2)A(−`2ċ, 3
γγ̇, `ḋ3)A(−`3ḋ, 4

δ
t̄ , `0). (4.58)

A complete set of fermion and scalar integrand coefficients are presented in the

attached notebook of [1].

4.2.1 Determining the remaining integral coefficients

At this point, let us pause to take stock of what has been achieved, and what

remains to be done. To do so, we return to equation (4.42), the standard

expression for a one-loop amplitude, expanded in a basis of scalar integrals,

A(1)
n = B(1)

n + c2;m2I2,m2 + c1I1. (4.59)

By definition, B
(1)
n is the part of the amplitude which can be computed using

finite d-dimensional unitarity cuts; its expansion in terms of an integral basis was

explicitly given in equation (3.19), ignoring the bubble and tadpole topologies

with divergent cuts. We have therefore computed B
(1)
n explicitly in section 4.2. A

complete construction of the amplitude requires us to find the integral coefficients

c2;m2 and c1. This is the task of the present section.

Fixing c2,m2 by matching the poles in 4− 2ε dimensions

Our first source of additional information is the universal pole structure of four-

dimensional amplitudes. The poles of general one-loop QCD amplitudes in four

dimensions were inferred from the corresponding real-radiation contributions to

the NLO cross-section in full generality by Catani, Dittmaier and Trocsanyi [87],

A(1),4−2ε = cΓ I
(1)(ε)A(0) + finite. (4.60)

The integrals I2,m2 and I1 appearing in equation (4.59) are divergent, and

therefore the coefficients c2;m2 and c1 contribute to the pole structure of our

amplitude. This will allow us to constrain them.

For the simplified case of tt̄ + n(g) with nf light quark flavours and one heavy
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flavour of mass m, the function I(1)(ε) appearing in the univeral pole formula is,

explicitly,

I(1)(ε) =
ngβ0(nf + 1)

2ε
+
∑

i,j

(
µ2
R

sij

)ε
Vij − ngΓg − 2Γt + finite. (4.61)

Following Catani et al. [87], this formula corresponds to partially renormalised

amplitudes. The first term contains UV poles related to charge renormalisation,

the second term corresponds to soft-collinear poles and takes the familiar dipole

form in colour space. The last terms contain poles given by the anomalous

dimensions,

Γg =
β0(nf )

2ε
+

2TR
3

log

(
µ2
R

m2
t

)
, (4.62)

Γt = CF

(
1

ε
− 1

2
log

(
µ2
R

m2
t

)
− 2

)
. (4.63)

The QCD β function appears as a function of the active fermion flavours β0(nf ) =

(11CA− 4TRnf )/3. For the purposes of this chapter we will not require the finite

parts of I(1) which depend on the dimensional regularisation scheme. The exact

form of the function V is a little more complicated and not of direct relevance

here. Clearly there is an enormous amount of information contained in this result

and further details can be found by consulting the original reference [87].

The simple observation relevant for our approach is that this universal information

can be compared to the integral basis in equation (4.59), enabling a partial

determination of the unknown coefficients of wavefunction bubble and tadpole

integrals. These integrals give rise to single poles in ε and single logarithms in

the mass m. This comparison is however insufficient to constrain both c2,m2 and

c1.

It is convenient to modify the integral basis slightly, introducing finite bubble and

tadpole functions defined by,

F2;i1,i2 = I2,i1,i2 − I2,m2 , (4.64)

F1 = I1 −m2I2,m2 . (4.65)

The result of this modification is that only the finite bubble integrals and the

wavefunction integral contribute to the log(µ2
R/m

2
t ) dependence of the universal

pole structure (4.61). Upon matching the amplitude with the universal pole
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structure, we find that the amplitude takes the explicit expression

A(1) = A6D,(1)

∣∣∣∣∣
I2→F2

+
ds − 2

4
A(0)I2,m2 + c1F1, (4.66)

where the only missing information now lies in the tadpole coefficient c1.

Counterterms for QCD in six dimensions

Because of our exploitation of the universal four-dimensional pole structure, the

one-loop amplitude, in the form given in equation (4.66), has the property that

its infrared and ultraviolet poles have been correctly determined. In addition, all

logs in the mass mt are correctly reproduced. Indeed, the unknown coefficient c1

now multiplies an integral F1 which we may explicitly compute,

F1
d=4−2ε

= −icΓm
2 +O(ε) = − im2

(4π)2
+O(ε). (4.67)

Since c1 is also a rational function, the part of the amplitude which remains to

be determined is simply a rational function of the external momenta and masses.

Having made heavy use of higher dimensional methods so far in our computation,

it is natural to regard the four-dimensional result we wish to determine as

a specialisation of an amplitude that exists in higher dimensions. Indeed, a

quantum field theory which is an analogue of QCD exists in six dimensions.

Moreover, in six dimensions the integral F1 is no longer simply a finite rational

function. It has an epsilon-pole given by,

F1
d=6−2ε

= − im4

(4π)3

1

6ε
+O(ε). (4.68)

We may therefore find c1 by comparison with the universal epsilon-pole structure

of the amplitude in six dimensions.

Thus, we are motivated to consider QCD in six dimensions. Above four

dimensions QCD ceases to be renormalisable, so to determine the universal

epsilon-pole structure in six dimensions we must include higher (mass-)dimension
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operators1 and treat the theory as an effective theory. By power counting,

these operators have one or two powers of momentum more than in the usual

QCD Lagrangian, so that they have mass-dimension five or six. The point

of view we adopt is that the role of the additional operators is simply to

provide counterterms, subtracting the infinities from any one-loop amplitude in

the theory. Once all the counterterms have been determined, the epsilon-pole

structure of any one-loop amplitude is known.

We therefore begin by constructing a basis of the dimension five and six operators

which are required for renormalising QCD amplitudes in six dimensions. These

operators contain either two quark fields and up to three derivatives, such as

O1 ≡ iψ̄ /D /D /Dψ, or are purely bosonic operators such as tr (F µνFνρF
ρ
µ).2 A full

list of potential operators appears in Table 4.1.

Since we are only concerned with poles of on-shell amplitudes, rather than

of off-shell correlation functions, we need only study operators which lead to

independent contributions to the S matrix. It is a well known fact that operators

which are related by the classical equations of motion of the theory lead to the

same contribution to the S matrix, to all orders of perturbation theory [88–92].

Thus we may simplify the list of operators in Table 4.1 using the equations of

motion,

i /Dψ = mψ, (4.69)

DµF a
µν = −gψ̄γνT aψ. (4.70)

It is straightforward to see that many operators in Table 4.1 are related to other

operators in our Lagrangian. For example,

O1 ≡ iψ̄ /D /D /Dψ = −im2ψ̄ /Dψ, (4.71)

so that O1 does not lead to a new, independent counterterm. It may therefore

be omitted.

Our task now is to construct a basis of operators which are independent under the

use of the equations of motion, integration by parts etc. To construct such a basis,

1It is linguistically unfortunate that we are now dealing with operators of mass-dimension
five and six (using the usual four-dimensional classification of operator dimension) in a theory
defined in six space-time dimensions. We hope that context will make the meaning of the word
“dimension” clear.

2Recall that a field strength F counts as two derivatives since [Dµ, Dν ] = −igFµν .
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Quark fields Operator Operator class name

Two quarks

iψ̄ /D /D /Dψ
[ψ̄D3ψ]iψ̄ /DD2ψ

iψ̄Dµ /DDµψ
ψ̄γµγνFµν /Dψ

[ψ̄DFψ]ψ̄DµFµνγ
νψ

ψ̄Fµνγ
µDνψ

ψ̄ /D /Dψ
[ψ̄D2ψ]

ψ̄D2ψ
iψ̄γµγνFµνψ [ψ̄Fψ]

Zero quarks
itr (F µνFνρF

ρ
µ)

tr (F µνD2Fµν)
tr ((DµFµν)(D

ρFρ
ν))

Table 4.1 Table of potential higher-dimension operators in the six-dimensional
QCD effective Lagrangian. We have ignored four-quark operators,
which are not relevant for tt̄ + gluons scattering at this order, and
operators related to those in our table by integration-by-parts or
Hermitian conjugation. We have also imposed the parity symmetry
of QCD.

we consider several categories of operators. Firstly, we will focus on operators

containing two quark fields. We classify these operators further according to the

powers of derivatives, or of derivatives and field strength insertions as shown in

detail in Table 4.1. We will begin by examining operators containing the largest

number of derivatives or field strengths, as the use of the equations of motion

may reduce these operators to simpler operators containing fewer derivatives (or

field strength tensors).

Each of the derivatives contained in operators of type [ψ̄D3ψ] has one Lorentz

index which we must contract using either metric tensors or gamma matrices. By

making use of the equations of motion, we may ignore the options of contracting

the left-most or right-most D index against a gamma matrix—such a contraction

would reduce to an operator with fewer derivatives which we will analyze below.

We are left with the unique possibility ψ̄Dµ /DDµψ. However, this operator is

equivalent to a linear combination of operators of class [ψ̄DFψ] and [ψ̄D2ψ]

upon use of the equations of motion since,

ψ̄Dµ /DDµψ = ψ̄ (−imDµDµ − igDµγνFµν)ψ. (4.72)

Therefore, the class [ψ̄D3ψ] can be completely reduced to simpler operators.
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Next, consider the class [ψ̄DFψ]. In this case we again have three possible Lorentz

indices which must be contracted against gamma matrices or metric tensors.

We may ignore the possibility of contracting the Lorentz index of the covariant

derivative against a gamma matrix because of the equations of motion. We are

left with two potential operator structures: ψ̄DµFµνγ
νψ and ψ̄FµνD

µγνψ. But,

ψ̄DµFµνγ
νψ = ψ̄(−gψ̄γνψ)γνψ + ψ̄FµνD

µγνψ, (4.73)

using the Yang-Mills equation. Since we are only interested in processes with two

quarks, we will systematically ignore four quark operators. Therefore, we may

replace the operator ψ̄DµFµνγ
νψ with ψ̄FµνD

µγνψ. This is the only member of

the class [ψ̄DFψ] which is of interest to us.

We now turn to operator structures containing two quark fields but only one

extra power of derivatives or gauge fields. Thus the available operator structures

are [ψ̄DDψ] and [ψ̄Fψ]. Up to equations of motion, there is only one operator

of the first type: ψ̄DµDµψ. However, this is a reducible operator,

ψ̄DµDµψ = ψ̄ /D /Dψ − ig

2
ψ̄Fµνγ

νγµψ. (4.74)

Thus, up to equations of motion, we may reduce the [ψ̄DDψ] class to the [ψ̄Fψ]

class. Because of the antisymmetry of the field strength tensor, there is only one

operator in the [ψ̄Fψ] class, namely ψ̄Fµνγ
νγµψ.

Finally, we must consider operators containing no quark fields. There are three

gauge invariant possibilities:

tr (F µνFνρF
ρ
µ), tr (FµνD

2F µν), and tr ((DµFµν)(D
ρFρ

ν)).

The last of these three operators is equivalent to a four quark operator using the

Yang-Mills equation, and is therefore of no interest to us. Meanwhile, the second

of the three is equivalent to the other two,

tr
(
FµνD

2F µν
)

= −2tr ((DµFµν)DαF
αν)− 2igtr (FνµF

µ
αF

αν) . (4.75)

As a result, we may also ignore this operator, leaving only tr (F µνFνρF
ρ
µ).

In summary, there are only three higher dimension operators that contribute to

the on-shell amplitudes. We may therefore take the full QCD Lagrangian in six
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dimensions, at one-loop order, to be,

L6
QCD = ψ̄(i /D −m)ψ − 1

2
tr (FµνF

µν) +
i

2
σ1 g

3
smt ψ̄γ

µγνFµνψ

+ iσ2 g
3
s ψ̄Fµνγ

µDνψ +
i

6
γ g3

s tr
(
F µν [Fµλ, Fν

λ]
)
. (4.76)

A selection of the resulting Feynman rules are listed in Appendix B.4.

We adopt the point of view that σ1, σ2 and γ are couterterms which remove

the divergences in loop amplitudes. In addition there are the usual counterterms

from the dimension four vertices tt̄g and ggg. We can compute the constants

δtt̄g, δggg, σ1, σ2 and γ from simple one-loop vertex graphs. For example, expanding

the tt̄g vertex to O(g3
s) leads to,

=gs

+g3
s

(
+ + +

+ δtt̄g + σ1 1 + σ2 2

)

+O(g5
s). (4.77)

Renormalising this correlation function off-shell would require the inclusion of

all possible counterterms (before using the equations of motion.) For us, it is

simpler to compute the on-shell three-point vertex, in which case all infinities

can be absorbed in our effective Lagrangian, equation (4.76). This presents a

minor problem since the three-point vertex is not well defined for real momenta.

The computation may be performed using complex external kinematics or

alternatively performed with the gluon taken off-shell and the constants extracted

by taking the on-shell limit p2 → 0 at the end of the computation. We find this

amplitude is UV finite in 6− 2ε dimensions for the values,

δtt̄g =
m2
t

24(4π)3ε
CF (3ds + 2), (4.78)

σ1 = − 1

12(4π)3ε

(
CA(ds − 5)− CF

2
(3ds − 14)

)
, (4.79)

where CF = N2
c−1

2Nc
and CA = Nc. A similar computation for the three-gluon
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vertex,

= gs

+ g3
s

(
+ + +

+ δggg + γ

)

+O(g5
s), (4.80)

results in

δggg = 0, (4.81)

γ =
1

12(4π)3ε
CA

(ds − 2)

5
. (4.82)

Fixing c1 by matching poles in 6− 2ε dimensions

We finally apply this knowledge of the universal epsilon poles in six dimensions

to determine the remaining unknown coefficient, c1 in equation (4.66). The

six-dimensional leading colour partial amplitude, A
(1),6−2ε
4;1 (1t, 2, 3, 4t̄), can be

decomposed into gauge invariant primitives,

A
(1),6−2ε
4;1 (1t, 2, 3, 4t̄) = NcA

[L],6−2ε(1t, 2, 3, 4t̄)−
1

Nc

A[R],6−2ε(1t, 2, 3, 4t̄), (4.83)

precisely as in four dimensions (we ignore fermion loops as they present no

technical difficulties). Because the epsilon-poles are universal, we know that the

poles of this amplitude are,

A
(1),6−2ε
4;1 (1t, 2, 3, 4t̄) = g4

s

(
2δtt̄gA

(0)(1t, 2, 3, 4t̄) + σ1A
[σ1](1t, 2, 3, 4t̄)

+ σ2A
[σ2](1t, 2, 3, 4t̄) + γA[γ](1t, 2, 3, 4t̄)

)
+O(ε0), (4.84)

where the tree-type amplitudesA[σ1](1t, 2, 3, 4t̄), A
[σ2](1t, 2, 3, 4t̄) andA[γ](1t, 2, 3, 4t̄)

are associated with the three higher-dimension operators in the effective six-

dimensional QCD Lagrangian, equation (4.76). They are explicitly defined by
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A[σ1](1t, 2, 3, 4t̄) = 1 +
1

+
1

+ 1

A[γ](1t, 2, 3, 4t̄) =

Figure 4.7 The Feynman diagrams contributing to the tree-level amplitudes
appearing in the pole structure of the one-loop ggtt̄ amplitudes in
6 − 2ε dimensions. Solid vertices correspond to the usual QCD
interactions while the open vertices are those resulting from the
corresponding dimension six operators in L6

QCD of (4.76).

the diagrams shown in Figure 4.7. In a similar fashion to the vertex computation

we find that A[σ2](1t, 2, 3, 4t̄) = 0. By collecting in powers of Nc, and inserting the

known expressions for δtt̄g, σ1 and γ given in equations (4.78), (4.79) and (4.82)

we find,

A[L],6−2ε(1t, 2, 3, 4t̄) =
g4
s

48(4π)3ε

(
2(3ds + 2)m2

tA
(0)(1t, 2, 3, 4t̄)

+
4(ds − 2)

5
A[γ](1t, 2, 3, 4t̄)

− (ds − 6)A[σ1](1t, 2, 3, 4t̄)

)
+O(ε0) (4.85)

for the left-moving ordering and

A[R],6−2ε(1t, 2, 3, 4t̄) =
g4
s

48(4π)3ε

(
2(3ds + 2)m2

tA
(0)(1t, 2, 3, 4t̄)

+ (3ds − 14)A[σ1](1t, 2, 3, 4t̄)

)
+O(ε0) (4.86)

for the right-moving case.

The tree amplitudes A[σ1](1t, 2, 3, 4t̄) and A[γ](1t, 2, 3, 4t̄) are easily determined

by calculating the diagrams in Figure 4.7. Written in terms of four dimensional
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spinor products, the independent helicity amplitudes are,

−i〈η11[〉〈η44[〉A[σ1](1+
t , 2

+, 3+, 4+
t̄ ) =

−2mt(2m
2
t − 4p1 · p2 − s23)s23〈η12〉〈η43〉

〈23〉3 +
2mt(m

2
t − 2p1 · p2)s23〈η1η4〉
mt〈23〉2

− mt(m
2
t − 2p1 · p2)s23〈η13〉〈η43〉〈2|1|3]

p1 · p2〈23〉3

+
mt(m

2
t − 2p1 · p2)s23〈η12〉〈η42〉〈3|1|2]

p1 · p2〈23〉3 , (4.87a)

−i〈η11[〉〈η44[〉A[σ1](1+
t , 2

+, 3−, 4+
t̄ ) =

(−4mt(p1 · p2)2 +m2
t s23 − 2p1 · p2s23)〈η13〉〈η43〉〈3|1|2]

p1 · p2s23〈23〉

− 2mt〈η1η4〉〈3|1|2]2

mts23

+
mt(4p1 · p2 + s23)〈η12〉〈η43〉〈3|1|2]2

p1 · p2s23〈23〉

− mt〈η12〉〈η42〉〈3|1|2]3

p1 · p2s23〈23〉 , (4.87b)

−i〈η11[〉〈η44[〉A[γ](1+
t , 2

+, 3+, 4+
t̄ ) =

mts
2
23〈η12〉〈η43〉
2〈23〉3 +

mtp1 · p2s23〈η1η4〉
〈23〉2 ,

(4.87c)

−i〈η11[〉〈η44[〉A[γ](1+
t , 2

+, 3−, 4+
t̄ ) = 0, (4.87d)

−i〈η11[〉〈η44[〉A[σ2](1+
t , 2

+, 3+, 4+
t̄ ) = 0, (4.87e)

−i〈η11[〉〈η44[〉A[σ2](1+
t , 2

+, 3−, 4+
t̄ ) = 0. (4.87f)

We note that the amplitudes of the σ2 operator vanish in the cases we have

considered. We still include it in our analysis since the operator remains in the

Lagrangian after using the equations of motion despite not playing a role for the

amplitudes in this section.

The final step necessary to determine the tadpole coefficient is to evaluate the

poles of the basis integrals of the one-loop amplitude in 6 − 2ε dimensions. We

find,

I6−2ε
1 [1](m2) =

−im4

2(4π)3ε
+O(ε0) (4.88)

I6−2ε
2 [1](P 2,m2

1,m
2
2) = i

P 2 − 3(m2
1 +m2

2)

6(4π)3ε
+O(ε0) (4.89)

I6−2ε
2 [µ2](P 2,m2

1,m
2
2) = i

P 4 − 5P 2(m2
1 +m2

2) + 10 ((m2
1 +m2

2)2 −m2
1m

2
2)

60(4π)3ε

+O(ε0), (4.90)
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I6−2ε
3 [1] =

−i
2(4π)3ε

+O(ε0) (4.91)

I6−2ε
3 [µ2](P 2

1 , P
2
2 , P

2
3 ,m

2
1,m

2
2,m

2
3) = −iP

2
1 + P 2

2 + P 2
3 − 4(m2

1 +m2
2 +m2

3)

24(4π)3ε

+O(ε0), (4.92)

I6−2ε
4 [1] = O(ε0), (4.93)

I6−2ε
4 [µ2] =

i

6(4π)3ε
+O(ε0). (4.94)

We do not list the formulae for box integrals in 10 dimensions (µ4) since they do

not appear in amplitudes with a fermion pair and any number of gluons. The

formulae are easy to derive using the dimensional recurrence relation implemented

in LiteRed [93] in any case.

The only unknowns in equations (4.85) and (4.86) are then the left- and right-

moving tadpole coefficients c1, allowing a direct determination of these rational

functions. The results are somewhat lengthy formulae which are explicitly derived

in the Mathematica workbook included with the arXiv version of our paper [1].

We have checked that this procedure matches the expected result by comparing

with the previous computation of reference [75].

4.3 Summary

In this chapter we have demonstrated a unitarity compatible method for

calculating one-loop amplitudes involving massive fermions. In addition to

the extra-dimensional component of the loop momentum from dimensional

regularisation also the fermion mass was embedded in six dimensions. We

demonstrated how the massless six-dimensional spinor-helicity formalism can be

applied to this case.

With a massive particle involved, two integrals with divergent cuts appear in the

parametrisation of the amplitude (4.42). The coefficients of these integrals were

determined from the pole structure of the amplitude in four and six dimensions.

The latter involved considering QCD in six dimensions were it ceases to be

renormalisable. Higher mass dimension operators, acting as effective counter-

terms, were introduced in order to remove divergences from loops.
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In section 4.2.1 we discussed how to reduce the possible effective terms to

a minimal set and the operator iσ2 g
3
s ψ̄Fµνγ

µDνψ was included in the final

Lagrangian (4.76). It turned out not to contribute to the process under

consideration. It was shown in [94] that this operator can be reduced to four-

quark operators and therefore does not contribute in our case.3

Finally, the integral basis was evaluated in six dimensions (4.90) - (4.94). These

integrals are related to the µ11-dependent integrals of equation (3.71) from the

previous chapter through (3.70).

3We thank Roman Zwicky for pointing this out to us.
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Chapter 5

New results at two loops

In this chapter we turn our attention to the two-loop contribution to five-parton

scattering in QCD. While there has been remarkable progress in Standard Model

(SM) predictions for multi-particle final states at next-to-leading-order (NLO)

and 2 → 2 scattering processes at next-to-next-to-leading order (NNLO), the

computational complexity of 2 → 3 scattering processes at NNLO results in

many important measurements being currently (or in the near future) limited by

theoretical uncertainties. Pure gluon scattering at two loops in QCD is a key

bottleneck in making such predictions which have been known for gg → gg for

more than 15 years [95, 96]. The one-loop five-gluon amplitudes have been known

since 1993 [97] and were among the first results from the on-shell methods that

led to the modern unitarity method [50, 51] discussed in Chapter 3.

The work in this chapter was also presented in [2–4] and is based chronologically

on these papers. The first section is on a benchmark approach, with focus on

optimisations of the integrand basis for the gluon amplitude. The integrals are

evaluated numerically using a variety of methods and the results verified by

comparison to the universal pole structure. We present the numerical results for

the amplitude with external fermions in the Euclidean region and for the gluon

amplitude in the physical region as well as the Euclidean. The second section

presents a different approach where the amplitude is reconstructed at the level of

the master integrals expanded in a Laurent series in ε and pentagon functions.

Pentagon functions and the expanded master integrals are presented in [98].
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5.1 A first look at two-loop five-gluon scattering

In this section we demonstrate how new evaluation techniques based on gen-

eralised unitarity [53, 99] and integrand reduction [47, 100–105] can offer a

solution to the traditional bottlenecks in loop computations and present the

first results for a complete set of planar five-gluon helicity amplitudes in QCD.

The results extend previous results obtained for ‘all-plus’ helicity amplitudes

[106–113]. These on-shell techniques have also been explored in the context of

maximal unitarity [114, 115] and numerical unitarity [116–118] approaches to

QCD amplitudes.

We define the unrenormalised leading-colour (planar) five-gluon amplitudes using

the simple trace basis:

A(L)(1, 2, 3, 4, 5) = nLg3
s

∑

σ∈S5/Z5

tr (T aσ(1) · · ·T aσ(5))

× A(L) (σ(1), σ(2), σ(3), σ(4), σ(5)) , (5.1)

where T a are the fundamental generators of SU(Nc) and S5/Z5 are all noncyclic

permutations of the external particles. The overall normalisation is n =

mεNcαs/(4π) where αs = g2
s/(4π) is the strong coupling constant and mε =

i(4π)εe−εγE (γE is the Euler–Mascheroni constant). The L-loop partial amplitude

A(L) can be constructed from colour-ordered Feynman diagrams. Here we will

compute the pure gluonic contributions to these amplitudes at two loops including

the dependence on the spin dimension, ds. Results in the ’t Hooft-Veltman

(HV) and four-dimensional-helicity (FDH) schemes can be obtained by setting

ds = 4− 2ε and ds = 4 respectively [56].

The integrand of the ordered partial amplitudes can be parametrised in terms of

irreducible numerators, ∆,

A(2) (1, 2, 3, 4, 5) =

∫
[dk1][dk2]

∑

T

∆T ({k}, {p})∏
α∈T Dα

, (5.2)

where {k} = {k1, k2} are the (d = 4− 2ε)-dimensional loop momenta, T are the

set of independent topologies and {p} = {1, 2, 3, 4, 5} are the ordered external

momenta. The measure is [dki] = −iπ−d/2eεγEd4−2εki and the index α runs over

the set of propagators associated with the topology T .
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5.1.1 Two-loop cuts

Our planar five-gluon amplitudes are built from 57 distinct topologies, giving

425 irreducible numerators when including permutations of the external legs. 18

of these 57 topologies can be extracted from the (1-loop)2 cut configurations as

shown in Figure 5.1. For example,

∆
(

5

4 3

2

1

k1k2

)
+

∆
(

5

4 3

2

1
k1k2

)

(k1 + k2)2
= Cut

(
5

4 3

2

1

k1k2

)
, (5.3)

where it is understood that the integrand parametrisations are evaluated on the

cut. This means that all topologies with an additional propagator including

k1+k2 are computed simultaneously with the (1-loop)2 cuts. This is more efficient

since the parametrisations of the cut loop momentum solutions are much simpler.

The remaining 39 can be extracted from a further 31 configurations shown in

Figure 5.2. The 8 topologies shown in Figure 5.3 have divergent maximal cuts

and are extracted simultaneously with sub-topologies within the set of 31 2-loop

cuts. For example,

∆

(

4

5

3

2

1

k2

k1

)
+

∆

(

4

5

3

2

1

k2

k1

)

(k1 + p1)2
= Cut

(

4

5

3

2

1

k2

k1

)
−

∑

T∈subtractions

∆(T )∏
Dα

, (5.4)

where the product over denominators, Dα, is over the denominators present in

subtraction topology, T , that are non-vanishing on the cut. The sum is over the

six subtraction topologies,

5
4

3

2
1

5

1

4

3

2

5

1
2

3

4

1

2

3

454
5

1

2

3 1

2

5

4

3
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Figure 5.1 The 18 distinct topologies extractable from (1-loop)2 cuts.

Figure 5.2 31 distinct topologies extractable from 2-loop cuts.
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Figure 5.3 The 8 distinct topologies with divergent cuts that must be computed
simultaneously with subtopologies.

5.1.2 Integrand basis

The construction of an integrand basis has been discussed in the literature using

the language of computational algebraic geometry through polynomial division

over a Gröbner basis [101, 105]. In this work we took a simpler approach which did

not rely on the computation of a Gröbner basis, instead relying on the inversion of

a linear system which can be performed efficiently with finite field reconstruction

methods. We begin by expanding the loop momenta around a basis of external

momenta and transverse directions. This is similar to the methods of Van Neerven

and Vermaseren [43] also discussed in section 3.2.1 in the context of one-loop

integrand parametrisation,

kµi = kµ‖,i + kµ⊥,i, (5.5)

where k‖ lives in the physical space spanned by the external momenta of the

topology and k⊥ lives in the transverse space. We further decompose the

transverse space into four dimensional and (−2ε) dimensional spaces,

k⊥,i = k
[4]
⊥,i + k

[−2ε]
⊥,i . (5.6)

The four-dimensional transverse space (which we will call the spurious space) has

dimension d⊥ = 4− d‖ where d‖ is equal to the number of independent momenta

entering the vertices of the topology, up to a maximum value of four. We choose

a spanning basis v for the physical space of each topology kµ‖,i =
∑d‖

j=1 aijv
µ
j and

a basis ω for the spurious space k
µ,[4]
⊥,i =

∑d⊥
j=1 bijω

µ
j , with vi · ωj = 0.

The coefficients in the physical space k‖ are functions of the aij(ki) ≡ aij({D}, {k ·
q}) where D are the inverse propagators and ki · qj are the physical space

irreducible scalar products (ISPs) for a given topology, where qj are suitable

linear combinations of external momenta. The coefficients in the spurious
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and (−2ε)-dimensional spaces are functions of the additional ISPs ki · ωj and

µij = −k[−2ε]
⊥,i · k

[−2ε]
⊥,j respectively. Having completed this decomposition we find

relations between monomials in the ISPs by expanding (5.5), see also (3.23),

µij = ki · kj − k‖,i · k‖,j − k[4]
⊥,i · k

[4]
⊥,j. (5.7)

From this equation it is easy to obtain a valid basis of monomials for each

irreducible numerator of a dimensionally regulated amplitude by using (5.7) to

remove dependence on the extra dimensional ISPs. This basis is just the most

general polynomial in the ISPs ki · qj and ki · ωj where the power counting is

restricted by the renormalisability constraints.

This simple basis, without dependence on µij monomials, is trivial to obtain

without polynomial division but results in high rank tensor integrals with a

complicated infrared (IR) pole structure. Instead we prefer to map to a new

basis which prefers to keep monomials in µij in the numerator and make the

ε → 0 limit easier to perform. The map to the new basis is performed in four

steps,

1. Write down an over-complete set of monomials in ki · qj, ki · ωj, and µij

obeying the power counting restrictions.

2. Choose a set of criteria to order the over-complete set of monomials (for

example prefer lower rank monomials or prefer monomials proportional to

µij).

3. Map each monomial containing µij from the set of step 1) onto a linear

combination of monomials of the simple basis using equation (5.7), to obtain

a system of linear relations between monomials in the over-complete set.

4. Solve for the independent monomials of this linear system to find the new

basis.

The result of this procedure is a process-independent basis of monomials whose

coefficients can be fixed from unitarity cuts in six dimensions. We take a top-

down, OPP-like, approach to solving the complete system using information from

previously computed cuts to remove known poles from the factorised product of

tree amplitudes using the six-dimensional spinor-helicity formalism [27]. The

product of tree amplitudes is efficiently evaluated by sewing together Berends-

Giele currents [26] as described in [119].
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We can improve the integrand basis further by replacing some monomials with

spurious integrands. These spurious integrands are constructed by building in

integration identities and symmetry relations. For example, the three-propagator

sunrise topology in Figure 5.2 is invariant under the exchange k1 ↔ k2. Extra-

dimensional monomials, µii, of rank two are swapped under this symmetry,

µ11 ↔
k1↔k2

µ22. (5.8)

We can use this to obtain a spurious polynomial in place of a non-spurious

monomial,

µ22 → µ22 − µ11, (5.9)

for the sunrise topologies. Similarly, the bubble insertion topologies appearing in

Figure 5.2 and 5.3 have the symmetry k2 → −k1−k2. Under this transformation

we have for example,

µ12 →
k2→−k1−k2

−µ11 − µ12. (5.10)

We therefore obtain a spurious polynomial by replacing the non-spurious

monomial,

µ12 → µ11 + 2µ12, (5.11)

for bubble insertion topologies.

For the spurious space we note that integrands with odd powers of spurious mono-

mials vanish. This can be seen from a Passarino-Veltman tensor decomposition

argument as there are no physical vectors to expand in. Writing out a quadratic

monomial in the spurious ISPs,

(ki · ωj)2 = kµi k
ν
i ωjµωjν (no sum over i and j), (5.12)

we get the tensor decomposition,

kµi k
ν
i = Aηµν⊥,[4] ⇒ A =

k
[4]
⊥,i · k

[4]
⊥,i

d⊥
, (5.13)

where ηµν⊥,[4]η⊥,[4]µν = d⊥. This means that we can construct a spurious integrand
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helicity flavour non-zero
coefficients

non-spurious
coefficients

contributions
@ O(ε0)

+++++

(ds − 2)0 50 50 0

(ds − 2)1 175 165 50

(ds − 2)2 320 90 60

−++++

(ds − 2)0 1153 761 405

(ds − 2)1 8745 4020 3436

(ds − 2)2 1037 100 68

−−+++

(ds − 2)0 2234 1267 976

(ds − 2)1 11844 5342 4659

(ds − 2)2 1641 71 48

−+−++

(ds − 2)0 3137 1732 1335

(ds − 2)1 15282 6654 5734

(ds − 2)2 3639 47 32

Table 5.1 The number of non-zero coefficients found at the integrand level both
before (‘non-zero’) and after (‘non-spurious’) removing monomials
which integrate to zero. Last column (‘contributions @ O(ε0)’) gives
the number of coefficients contributing to the finite part. Each helicity
amplitude is split into the components of ds − 2.

by replacing the monomial in (5.12),

(ki · ωj)2 → (ki · ωj)2 − ω2
j

d⊥
k

[4]
⊥,i · k

[4]
⊥,i. (5.14)

For example, rather than fitting the coefficient of (k1.ω2)2 we replace it with the

function

(k1 · ω2)2 −→ (k1 · ω2)2 − ω2
2

d⊥
k

[4]
⊥,1 · k

[4]
⊥,1, (5.15)

which will integrate to zero. In Appendix E we show a selection of our integrand

bases. In Table 5.1 we summarise the result of our fit to unitarity cuts listing the

number of non-zero coefficients at the integrand level before and after performing

the integration over the spurious space.

After completing the integrand level reconstruction, the remaining transverse

integration must be performed to obtain a form compatible with traditional

integration-by-parts (IBP) relations. Following a recent approach [120], we have

two options in order to achieve this: 1) to integrate the full transverse space to

remove ki · ωj and µij introducing dependence in ε into the integral coefficients

or, 2) integrate only over the spurious space retaining µij dependence which can
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subsequently be removed through dimension shifting identities. In this work we

have taken the second approach since it turned out to have better numerical

stability to use dimension shifted integrals instead of high rank tensor integrals.

Cuts with scalar loops are required for the reduction from 6 to 4−2ε dimensions.

We perform the fit taking into account the individual contribution of these

scalar loops in order to reconstruct the dependence of the numerator on the spin

dimension ds = gµµ. The relevant scalar loops are discussed in [56]. In [108] the

ds-dependent integrands are decomposed according to their loop flavour content.

In six dimensions this decomposition is,

∆ds
T = ∆g

T + (ds − 6)∆s
T + (ds − 6)2∆s2

T . (5.16)

The second term on the right hand side receives contributions from a single closed

scalar loop. The last term receives contribution from two closed scalar loops and

therefore only get contributions from the (1-loop)2 topologies in Figure 5.1. We

prefer a decomposition around ds = 2,

∆ds
T = ∆

[0]
T + (ds − 2)∆

[1]
T + (ds − 2)2∆

[2]
T , (5.17)

and read off the contributions,

∆
[0]
T = ∆g

T − 4∆s
T + 16∆s2

T , (5.18a)

∆
[1]
T = ∆s

T − 8∆s2

T , (5.18b)

∆
[2]
T = ∆s2

T . (5.18c)

Expanding the amplitudes around ds = 2 yields,

A(1) (1g, 2g, 3g, 4g, 5g) =
1∑

i=0

(ds − 2)iA(1),[i] (1g, 2g, 3g, 4g, 5g) , (5.19a)

A(2) (1g, 2g, 3g, 4g, 5g) =
2∑

i=0

(ds − 2)iA(2),[i] (1g, 2g, 3g, 4g, 5g) . (5.19b)

This is useful since the ds = 2 limit behaves like a supersymmetric amplitude,

where additional cancellations and simplifications can be seen. One can show that

setting ds = 2 is equivalent to performing a supersymmetric decomposition [97]

with nf = 0 adjoint fermions and ns = −1 (complex) adjoint scalars, and that

this yields a linear combination of supersymmetric contributions.
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The fit can be performed efficiently using rational numerics for each phase space

point and in most cases it was possible to obtain completely analytic expressions

for the integrands of the helicity amplitudes using modest computing resources.

5.1.3 Numerical evaluation

The unitarity based method outlined above has been complemented by an

approach based on numerical evaluation of Feynman diagrams to determine

the coefficients of independent monomial bases. Both of these methods use a

momentum twistor [40] parametrisation of the external kinematics to obtain

a rational numerical phase-space point, as described in section 2.3. This is

extremely important since in order to make use of the finite field reconstruction

methods our numerical algorithm must be free of all square roots [121–124].

The momentum twistor parametrisation is given in (2.73). These methods

have been implemented using a combination of tools including Qgraf [125],

Form [126, 127], Mathematica and a private implementation of the finite field

reconstruction method [119]. A short introduction to the techniques of the latter

is given in Appendix D.

We have validated our setup on a number of known cases. Firstly, we have

reproduced integrand level expressions for the ‘all-plus’ helicity sector [106] and

against the known integrands in N = 4 Super-Yang-Mills theory [128]. The

latter check was obtained by computing all fermion and (complex)-scalar loop

contributions and subsequently setting nf = N and ns = N − 1. We also

have performed gauge invariance checks at the integrand level using the Feynman

diagram setup.

To obtain a numerical value for the complete amplitude after integration we

perform a sector decomposition of the basis integrals combined with Monte Carlo

integration. After applying dimension shifting relations [96, 129, 130] to rewrite

the extra-dimensional ISPs as standard integrals we processed the full set of

integrals using both Fiesta [131] and pySecDec [132] packages. This setup was

validated with the four-gluon helicity amplitudes and cross-checked against results

in the literature [116]. Simple topologies with 2 → 2 kinematics were reduced

to the known master integrals (MIs) of [133] using IBPs from Fire5 [134] and

Reduze2 [135] and dimensional recurrence relations from LiteRed [93]. This

gave a substantial improvement in the numerical accuracy.
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Figure 5.4 Double-triangle topology with momentum q flowing through.

We briefly discuss the used techniques in the following sections. An example of an

integration-by-parts identity and the Laporta algorithm are presented. Next, two

complementary methods for dealing with µij-integrals are discussed. The method

of dimension shifting was applied in this work, while transverse integration has

similarities to the integrand improvements discussed in section 5.1.2 and also

applies to monomials quadratic in the spurious ISPs.

Integration-by-parts identities

A large number of the two-loop integrals appearing after integrand reduction are

linearly related through integration by parts identities (IBPs) [136–140]. These

relations arise from the vanishing integration of total derivatives in dimensional

regularisation,

0 =

∫ L∏

i=1

ddki
(2π)d/2

∂

∂kµj

vµj P

Da0
0 ...D

ak
k

, (5.20)

for L loops and k + 1 propagators. vµ is taken to be any independent external

momentum or loop momentum. In particular, special linear combinations of

momenta can be used to avoid double propagators. The polynomial, P , is a

function of the ISPs and denominators, D. The system closes provided a complete

set of independent vµj ’s are used and by considering P of sufficiently high degree.

As a simple demonstration of the linear relations derived from (5.20) we consider

the double-triangle topology, shown in Figure 5.4. The associated scalar integral

is,

Idouble-triangle =

∫
ddk1

(2π)d/2
ddk2

(2π)d/2
1

k2
1(k1 − q)2k2

2(k2 + q)2(k1 + k2)2
. (5.21)

For this two-loop, L = 2, example we set j = 1 in (5.20) and choose vµ1 = kµ1 + kµ2
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and P = 1 to obtain the identity,

0 =

∫
ddk1

(2π)d/2
ddk2

(2π)d/2
∂

∂kµ1

kµ1 + kµ2
k2

1(k1 − q)2k2
2(k2 + q)2(k1 + k2)2

. (5.22)

After differentiation we obtain,

ε

∫
ddk1

(2π)d/2
ddk2

(2π)d/2
1

k2
1(k1 − q)2k2

2(k2 + q)2(k1 + k2)2

=

∫
ddk1

(2π)d/2
ddk2

(2π)d/2
1

k2
1(k1 − q)4k2

2

(
1

(k1 + k2)2
− 1

(k2 + q)2

)
,

(5.23)

where ε = 1
2
(4 − d) is the dimensional regularisation parameter. Relations like

k1 · q = −1
2
(D1−D0), that were heavily used for one-loop integrals in section 3.1,

were applied in this calculation as well. The two integrals on the right hand side

turn out to be easier to evaluate than the one we started out with [137]. Notice

that each term in an IBP relation (5.20) is at most linear in the space-time

dimension, d = 4− 2ε.

Constructing a complete set of linear IBP relations is a challenge as the amount

of relations grows rapidly with increasing numbers of loops and legs. A

systematic approach to this problem is provided by the Laporta algorithm [138].

The key idea is to divide the Feynman integrals into subsystems defined by

the number of propagators and the exponents appearing in the numerator

and denominator. Starting from scalar integrals with the lowest number of

propagators the algorithm works its way upwards, eliminating integrals according

to a predefined ordering. Upper limits on the exponents of propagators and

numerators are imposed at each step to bound the system. Since the system is

under-determined, not all integrals can be eliminated. The remaining integrals

are known as master integrals (MIs). The Laporta algorithm exists in numerous

implementations, see for example [141–147].

By applying a complete set of IBP relations we end up with a set of master

integrals, I({xi}, ε), where xi are kinematic variables. These master integrals

can be evaluated using the differential equation method. Differentiating with

respect to the kinematic variables, a system of differential equations is obtained,

∂

∂xm
I({xi}, ε) = Am({xi}, ε)I({xi}, ε). (5.24)
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Using appropriate boundary conditions, for example from physical limits, the

master integrals can be obtained. The set of master integrals, I, is not unique and

choosing a set with specific properties can greatly help in solving the differential

equations. In [148] a canonical form of the system (5.24) which has proven very

successful at two loops was first presented. In particular this approach led to

the results for planar five-point integrals presented in [98] that are used in this

chapter.

Dimension shifting

Integrals with numerator dependence on extra-dimensional ISPs, µij, can be

replaced with higher dimensional scalar integrals at the cost of introducing

squared propagators [96]. We show this procedure by again taking the double

triangle as example, Figure 5.4. We start by rewriting the scalar integral (5.21),

Idouble-triangle =

∫
ddk1

(2π)d/2
ddk2

(2π)d/2

∫ ∞

0

5∏

i=1

dti exp
[
− t1k2

1 − t2(k1 − q)2 − t3k2
2

− t4(k2 + q)2 − t5(k1 + k2)2
]
,

(5.25)

by using the Schwinger parametrisation,

1

Di

=

∫ ∞

0

dti exp [−tiDi] , (5.26a)

1

Dα
i

=
1

Γ(α)

∫ ∞

0

dti t
α−1
i exp [−tiDi] . (5.26b)

The second identity can be verified using integration by parts. We continue by

splitting up the loop momentum in a four-dimensional and an extra-dimensional

part, ki = k̄i + k̃i, and note that for four-dimensional momentum q,

(ki + q)2 =
(
k̄i + q

)2
+ k̃2

i . (5.27)
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Splitting up the measure, we perform the extra-dimensional part of the integra-

tion,

∫
d−2εk̃1d

−2εk̃2 exp
[
−(t1 + t2 + t5)k̃2

1 − (t3 + t4 + t5)k̃2
2 − 2(t5)k̃1 · k̃2

]

=

∫
d−2εk̃1d

−2εk̃2 exp
[
−(T1 + T3)k̃2

1 − (T2 + T3)k̃2
2 − 2(T3)k̃1 · k̃2

]

=

(
T1T2 + T2T3 + T3T1

π

)ε
, (5.28)

where we introduced T1 = t1 +t2, T2 = t3 +t4, and T3 = t5 and did the integration

by completing the square. Acting with ∂
∂T1

on the equation above we derive a

replacement rule,

µ11 → ε
T2 + T3

T1T2 + T2T3 + T3T1

, (5.29)

since µ11 = −k̃2
1. We obtain similar results for the other extra-dimensional IBPs

by appropriately chosen differential operators.

Turning back to (5.25) but with numerator insertion µ11 we have,

Idouble-triangle[µ11] =

∫
ddk1

(2π)d/2
ddk2

(2π)d/2

∫ ∞

0

5∏

i=1

dti µ11 exp [. . . ]

→ ε

∫
ddk1

(2π)d/2
ddk2

(2π)d/2

∫ ∞

0

5∏

i=1

dti
T2 + T3

T1T2 + T2T3 + T3T1

exp [. . . ] ,

(5.30)

where the exponential is unchanged from the original Schwinger parametrisation

expression. Completing the square to perform the integration over the loop

momenta we obtain,

Idouble-triangle[µ11] = ε

∫ ∞

0

5∏

i=1

dti
T2 + T3

T1T2 + T2T3 + T3T1

(T1T2 + T2T3 + T3T1)−d/2

× exp

[ −Q(q2, ti)

T1T2 + T2T3 + T3T1

]

= ε

∫ ∞

0

5∏

i=1

dti (T2 + T3)(T1T2 + T2T3 + T3T1)−(d+2)/2

× exp

[ −Q(q2, ti)

T1T2 + T2T3 + T3T1

]
. (5.31)
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The exact form of Q(q2, ti) is not important for our current purposes. Since

the dimension, d, only appears in the exponent this corresponds to a higher

dimensional Feynman integral with squared propagators coming from the term

T2 + T3. The dimension can be lowered using dimensional recurrence relations

described in [130, 149] and implemented in LiteRed [93].

Transverse integration

For completeness, we introduce a method for transverse integration even though

the method of dimension shifting was used in our paper [2]. Integrating out

dependence on ki · ωi and µij this way, comes at the expense of introducing

dependence on space-time dimension, d = 4− 2ε, in the integral coefficients. The

idea relies on the decomposition of the loop momenta (5.5) used previously,

kµi = kµ‖,i + kµ⊥,i = kµ‖,i + k
[4]µ
⊥,i + k

[−2ε]µ
⊥,i , (5.32)

as well as a decomposition of the metric tensor,

ηµν = ηµν‖ + ηµν⊥ = ηµν‖ + η
[4]µν
⊥ + η

[−2ε]µν
⊥ . (5.33)

For extra-dimensional monomials we do the following replacement,

µij = k
[−2ε]
⊥,i · k

[−2ε]
⊥,j

= k⊥,i ρk⊥,j ση
[−2ε]µρ
⊥ η

[−2ε]νσ
⊥ ηµν

=
k⊥,i · k⊥,j
d⊥ − 2ε

η⊥,ρση
[−2ε]µρ
⊥ η

[−2ε]νσ
⊥ ηµν

=
−2ε

d⊥ − 2ε
k⊥,i · k⊥,j

=
−2ε

d⊥ − 2ε

(
k

[4]
⊥,i · k

[4]
⊥,j + µij

)
, (5.34)

where we used a Passarino-Veltman like tensor decomposition in the third line

and that k⊥,i = k
[4]
⊥,i+k

[−2ε]
⊥,i . It follows from (5.7) that k⊥,i ·k⊥,j is only a function

of propagators and physical ISPs. The same method can be applied to higher rank

µnij monomials with an appropriate generalisation of the tensor decomposition,

kµ1⊥,i1 . . . k
µ2n
⊥,i2n =

∑

σ∈S

Aσ(1)...σ(2n)η
µσ(1)µσ(2)
⊥ . . . η

µσ(2n−1)µσ(2n)
⊥ , (5.35)
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where at two loops the indices i1, ..., i2n = i, j. The sum is over non-equivalent

permutations, S, of the Lorentz indices.

Following similar steps for the spurious ISPs, ki · ωj, we get,

(ki · ωj)2 =
ω2
j

d⊥ − 2ε
k⊥,i · k⊥,i. (5.36)

We see that expressing spurious and extra-dimensional ISPs in terms of prop-

agators and physical ISPs has come at the cost of introducing dependence on

space-time dimensionality via ε = 1
2
(4− d).

5.1.4 Benchmark results

ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−−+++ 12.5 27.7526 -23.773 -168.117 -175.207±0.004

P
(2),[0]
−−+++ 12.5 27.7526 -23.773 -168.116 —

Â
(2),[0]
−+−++ 12.5 27.7526 2.5029 -35.8094 69.661±0.009

P
(2),[0]
−+−++ 12.5 27.7526 2.5028 -35.8086 —

Table 5.2 The numerical evaluation of Â(2),[0](1, 2, 3, 4, 5) for the Euclidean
phase space point in (5.37). The comparison with the universal pole
structure, P , is shown. The +++++ and -++++ amplitudes vanish to
O(ε) for this (ds − 2)0 component.

We evaluate the obtained irreducible integrands and integrals numerically at a

Euclidean phase space point,

s12 = −1, s23 = −
37

78
, s34 = −

2023381

3194997
, s45 = −

83

102
, s15 = −

193672

606645
, (5.37)

which corresponds to the values of our momentum twistor variables in (2.73),

x1 = −1, x2 =
79

90
, x3 =

16

61
, x4 =

37

78
, x5 =

83

102
. (5.38)

The results for the evaluation are given in Table 5.2 and 5.3 for the amplitudes,

Â
(2),[i]
λ1λ2λ3λ4λ5

=
A(2),[i](1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5)

ALO(1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5)
, (5.39)

with helicities λi and A(2) =
∑2

i=0(ds − 2)iA(2),[i]. The leading order amplitudes

ALO are the tree-level for the --+++ and -+-++ and rational one-loop amplitudes
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ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[1]
+++++ 0 0.0000 -2.5000 -6.4324 -5.311±0.000

P
(2),[1]
+++++ 0 0 -2.5000 -6.4324 —

Â
(2),[1]
−++++ 0 0.0000 -2.5000 -12.749 -22.098±0.030

P
(2),[1]
−++++ 0 0 -2.5000 -12.749 —

Â
(2),[1]
−−+++ 0 -0.6250 -1.8175 -0.4871 3.127±0.030

P
(2),[1]
−−+++ 0 -0.6250 -1.8175 -0.4869 —

Â
(2),[1]
−+−++ 0 -0.6249 -2.7761 -5.0017 0.172±0.030

P
(2),[1]
−+−++ 0 -0.6250 -2.7759 -5.0018 —

Table 5.3 The numerical evaluation of Â(2),[1](1, 2, 3, 4, 5) and comparison with
the universal pole structure, P , at the same kinematic point of
Table 5.2.

for the +++++ and -++++. The finite (1-loop)2 configuration A(2),[2] is presented

in Table 5.4. Numerical accuracy is not an issue here since the integrand level

reduction already leads to a basis of one-loop MIs. In addition, we find complete

agreement with the finite part of the known integrated ‘all-plus’ amplitude [109].

In cases where the ε pole structure of the amplitudes is non-trivial we compared

with the known universal IR structure [150–153] including the dependence on

ds extracted from the FDH scheme results [154]. The leading pole in 1/ε4 was

verified analytically and is therefore quoted exactly in Table 5.2 and 5.3. By

comparing the agreement in the poles between the (ds − 2)0 and (ds − 2)1 we

clearly see the effect of the highest rank tensor integrals which only appear in the

latter case. We find convincing agreement between the poles and our amplitudes

within the numerical integration error 1. Since the full amplitude is the sum of all

three parts we see in this case that the simple (ds − 2)0 part dominates and the

complete amplitude is evaluated with sub-percent level accuracy. This feature is

probably not generic for the whole phase-space however.

While a lot of effort was taken to find manageable expressions, the final integrand

form was still extremely large and significantly more challenging than the

previously known ‘all-plus’ helicity configuration. One obvious next step is to

include a full set of integration-by-parts identities and reduce the amplitude onto

a basis of analytically computed master integrals.

1The uncertainty on the finite terms in Table 5.2 and 5.3 is a rough estimate made by
comparing Fiesta evaluations with different numbers of sample points.
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Â
(2),[2]
+++++ Â

(2),[2]
−++++ Â

(2),[2]
−−+++ Â

(2),[2]
−+−++

ε0 3.6255 -0.0664 0.2056 0.0269

Table 5.4 The numerical evaluation of finite Â(2),[2](1, 2, 3, 4, 5) helicity
amplitudes at the same kinematic point of Table 5.2. As only one-
loop integrals are required for these amplitudes the integration error
is negligible.

5.1.5 Evaluation in a physical region

For numerical evaluation in the physical region, we use a phase space point defined

by the invariants

s12 =
113

7
, s23 = −

152679950

96934257
, s34 =

1023105842

138882415
, s45 =

10392723

3968069
, s15 = −

8362

32585
, (5.40)

which corresponds to the values of our momentum twistor variables in (2.73),

x1 =
113

7
, x2 = −

2

9
−

i

19
, x3 = −

1

7
−
i

5
, x4 = −

1351150

13847751
, x5 =

91971

566867
. (5.41)

The results in the physical region have been obtained using the analytic

expressions of the master integrals in [109], by-passing the time consuming step

of integral evaluations with sector decomposition [131, 132] previously.

The master integrals were computed in [109] using first-order differential equa-

tions. All functions needed are expressed in terms of iterated integrals, where the

integration kernels are taken from a set that was identified in [98]. The boundary

conditions for the differential equations were determined by constraints such as

the absence of unphysical branch cuts. We determined such boundary points for

each of the physical regions, as well as for the Euclidean region.

Up to weight two, all master integrals are expressed in terms of logarithms and

dilogarithms. Weight-three contributions are expressed in terms of Li3 functions

and in terms of one-dimensional integrals of logarithms and dilogarithms. At

weight four, we use a representation proposed in [155] that allows to write the

functions as a one-fold integral of known functions, leading to a fast and reliable

numerical evaluation, for all kinematic regions.

As a validation of these formulas, we have performed numerical comparisons

with [156] and, for the four-point subtopologies, with [133], finding perfect

agreement.
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ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[0]
−−+++ 12.5 -9.17716 +

47.12389 i
-107.40046 -
25.96698 i

17.24014 -
221.41370 i

388.44694 -
167.45494 i

Â
(2),[0]
−+−++ 12.5 -9.17716 +

47.12389 i
-111.02853 -
12.85282 i

-39.80016 -
216.36601 i

342.75366 -
309.25531 i

Table 5.5 The leading colour primitive two-loop helicity amplitudes for the ds =
2 component of Â(2)(1g, 2g, 3g, 4g, 5g) at the physical phase space point
given in the text.

ε−4 ε−3 ε−2 ε−1 ε0

Â
(2),[1]
+++++ 0 0 -2.5 0.60532 -

12.48936 i
35.03354 +
9.27449 i

Â
(2),[1]
−++++ 0 0 -2.5 -7.59409 -

2.99885 i
-0.44360 -
20.85875 i

Â
(2),[1]
−−+++ 0 -0.625 -0.65676 -

0.42849 i
-1.02853 +
0.30760 i

-0.55509 -
6.22641 i

Â
(2),[1]
−+−++ 0 -0.625 -0.45984 -

0.97559 i
1.44962 +
0.53917 i

-0.62978 +
2.07080 i

Table 5.6 The leading colour primitive two-loop helicity amplitudes for the ds−2
component of Â(2)(1g, 2g, 3g, 4g, 5g) at the physical phase space point
given in the text.

The numerical results in the physical region for the five-gluon partonic channel

are shown in Table 5.5 - 5.7.

Â
(2),[2]
+++++ Â

(2),[2]
−++++ Â

(2),[2]
−−+++ Â

(2),[2]
−+−++

ε0 0.60217 -
0.01985 i

-0.10910 -
0.01807 i

-0.06306 -
0.01305 i

-0.03481 -
0.00699 i

Table 5.7 The leading colour primitive two-loop helicity amplitudes for the (ds−
2)2 component of Â(2)(1g, 2g, 3g, 4g, 5g) at the physical phase space
point given in the text.
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ε−4 ε−3 ε−2 ε−1 ε0

Â
(2)
++++− 0 0 -4 -13.53227 6.04865

Â
(2)
+++−− 8 7.96829 -52.39270 -140.15637 47.56872

Â
(2)
++−+− 8 7.96829 -32.22135 -47.92349 145.97201

Â
(2)
+−++− 8 7.96829 -40.88511 -87.02993 101.23299

Table 5.8 The leading colour primitive two-loop helicity amplitudes for
Â(2)(1q, 2g, 3g, 4g, 5q̄) in the HV scheme at the Euclidean phase space
point given in (5.37).

5.1.6 Quark amplitudes

For the amplitudes involving external quarks the colour decompositions are given

by,

A(L)(1q, 2g, 3g, 4g, 5q̄) = nLg3
s

∑

σ∈S3

(T aσ(2)T aσ(3)T aσ(4)) ī5
i1

× A(L)(1q, σ(2)g, σ(3)g, σ(4)g, 5q̄), (5.42)

for a quark pair and three gluons channel and,

A(L)(1q, 2q̄, 3g, 4Q, 5Q̄) = nLg3
s

[
(T a3) ī2

i4
δ ī5
i1
A(L)(1q, 2q̄, 3g, 4Q, 5Q̄)

+
(
1↔ 4, 2↔ 5

)]
, (5.43)

for the case of two distinct quark pairs and one gluon. In addition we normalise

all amplitudes to the leading order amplitudes which removes any complex phase,

using again (5.39).

For the quark amplitudes we use the Feynman diagrammatic setup introduced

in the previous section. ’t Hooft algebra has been used to evaluate the extra-

dimensional spinor strings and we use QGRAF [125] to generate Feynman

diagrams and FORM [126, 127] to perform algebraic manipulations.

The numerical results are shown in Table 5.8 and 5.9 for the qgggq̄ and qq̄gQQ̄

partonic channels, respectively. We have compared the poles of our results against

the known universal IR structure [150–153].
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ε−4 ε−3 ε−2 ε−1 ε0

Â
(2)
+−++− 4.5 2.28315 -32.09848 -41.39350 149.33050

Â
(2)
+−−+− 4.5 2.28315 -6.32369 -4.61657 -32.03278

Â
(2)
+−+−+ 4.5 2.28315 -38.29478 -43.52329 -56.71968

Â
(2)
+−−−+ 4.5 2.28315 -26.71316 -69.75805 22.23653

Table 5.9 The leading colour primitive two-loop helicity amplitudes for
Â(2)(1q, 2q̄, 3g, 4Q, 5Q̄) in the HV scheme at the Euclidean phase space
point given in the text.

5.2 Reduction to pentagon functions

Analytic results can offer many benefits over numerical algorithms. The one-

loop amplitudes for five-gluon scattering, first derived in 1993 by Bern, Dixon

and Kosower [97], are strikingly simple. One immediate consequence of this

is that amplitudes are fast and stable to evaluate numerically and well suited

for Monte Carlo integration. Analytic results also give us more insight into

the structure of on-shell amplitudes in gauge theory. Simplicity in maximally

super-symmetric Yang-Mills theory has enabled huge leaps into the structure of

perturbative amplitudes based on constraints from universal behaviour in physical

limits [157–160]. While in QCD these constraints are not quite enough to fix the

amplitudes (such techniques have been applied in the computation of the QCD

soft anomalous dimension [161]), it would be an extremely powerful tool if the

function space of multi-loop amplitudes could be better understood in general

gauge theories.

In this section we present new, analytic results for the scattering of five gluons

in pure Yang-Mills at two loops in which one gluon has negative helicity and

the remaining gluons have positive helicities. We employ finite field numerics

to a combined system of integrand reduction, integration-by-parts identities and

expansion into a basis of pentagon functions. After multiple evaluations we were

able to reconstruct the analytic form of the amplitude.

We use the same expansion of the amplitudes around ds = 2 as used in (5.19b).

In the case of the single-minus helicity configuration, it was already observed that

A(2),[0]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
= O(ε) [2].

Since the tree-level helicity amplitude is zero, the universal infrared (IR) poles
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take a very simple form [150–153],

A(1),[1]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
= F (1),[1]

(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
+O(ε), (5.44a)

A(2),[1]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
=

[
−rΓ

ε2

5∑

i=1

(
µ2
Re

γE

−si,i+1

)ε]
A(1),[1]

(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)

+ F (2),[1]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
+O(ε), (5.44b)

A(2),[2]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
= F (2),[2]

(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
+O(ε), (5.44c)

where

rΓ =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
. (5.45)

Note that, in (5.44b), the one-loop amplitude2, A(1),[1], needs to be expanded

up to O(ε2). In this section we will present a direct computation of the finite

remainder F (2),[i].

The kinematic parts of the amplitude are written using a momentum twistor [40]

parametrisation, as described in section 2.3. We decompose the amplitude into an

integrand basis, using the method of integrand reduction via generalised unitarity.

We then reduce the amplitude to master integrals by solving IBPs. The master

integrals are in turn expressed as combinations of known pentagon functions,

using the expressions computed in reference [98].

The algorithm is implemented numerically over finite fields. The Laurent

expansion in ε of the results is obtained by performing a full reconstruction

of its dependence on the dimensional regulator ε, for fixed numerical values of

the kinematic variables. The Laurent expansion of the reconstructed function

of ε thus provides a numerical evaluation of the ε-expansion of the final result.

Finally, the full dependence of the expanded result on the kinematic variables is

reconstructed from multiple numerical evaluations, using a modified version of

the multi-variate reconstruction techniques presented in reference [119].

In the next sections, 5.2.1 - 5.2.4, we provide more details on the various steps of

the calculation outlined above before presenting our results in section 5.2.5.

2Expressions for the one-loop amplitudes can be obtained from the authors on request.
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(c) Heptabubble:
G21111a6a711a10a11

Figure 5.5 Two-loop five-point master topologies. All external momenta are
considered outgoing, arrows indicate loop momenta directions.

5.2.1 Integration-by-parts compatible integrand reduction

We define an integral family by a complete, minimal set of propagators and

irreducible scalar products (ISPs),

Ga1a2a3a4a5a6a7a8a9a10a11 =

∫
ddk1

iπd/2e−εγE
ddk2

iπd/2e−εγE

× 1

k2a1
1

1

(k1 − p1)2a2

1

(k1 − p1 − p2)2a3

1

(k1 + p4 + p5)2a4

× 1

k2a5
2

1

(k2 − p5)2a6

1

(k2 − p4 − p5)2a7

1

(k1 + k2)2a8

× 1

(k1 + p5)2a9

1

(k2 + p1)2a10

1

(k2 + p1 + p2)2a11
, (5.46)

where the exponents, ai, are integers and d = 4−2ε. The three master topologies,

shown in Figure 5.5, are,

Pentabox: G11111111a9a10a11 , (5.47a)

Hexatriangle: G111111a711a10a11 , (5.47b)

Heptabubble: G21111a6a711a10a11 , (5.47c)

while propagators with unspecified exponents, aj, correspond to ISPs (i.e. aj ≤ 0).

All lower-point topologies are obtained by systematically pinching the propaga-

tors of the master topologies. Topologies with scaleless integrals are discarded

since we work in dimensional regularisation. Pinching of propagators from

different master topologies can lead to the same sub-topology. This happens in

particular when all five cyclic permutations of the external momenta are included.

In these cases the assignment to a master topology is not unique. The full set
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(a) Topologies associated with the
pentabox master topology (top left),
see (5.47a).

(b) Topologies associated with the hex-
atriangle master topology (top left),
see (5.47b).

(c) Topologies associated with the hep-
tabubble master topology (top left),
see (5.47c).

(d) Topologies with divergent cuts that
must be computed simultaneously
with sub-topologies of the heptabub-
ble master topology in Figure 5.6c.

Figure 5.6 All distinct two-loop five-point topologies.

of 57 distinct topologies with a specific choice of master topology assignment is

shown in Figure 5.6.

We parametrise the integrand numerators by writing the most general polyno-

mials in the ISPs subject to a power counting constraint from renormalisability

considerations. As an example, the pentabox of Figure 5.5a has the numerator

parametrisation,

∆

(
5

4 3

2

1
k1k2

)
=
∑

c11111111a9a10a11(k1 + p5)−2a9(k2 + p1)−2a10(k2 + p1 + p2)−2a11

(5.48)
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where the sum is truncated by the constraints on the exponents,

−5 ≤ a9 ≤ 0, (5.49a)

−4 ≤ a10 + a11 ≤ 0, (5.49b)

−7 ≤ a9 + a10 + a10 ≤ 0. (5.49c)

Each topology has 11 − n ISPs where n is the number of distinct propagators.

The five cyclic permutations of the external legs give a total of 425 irreducible

numerators.

Integrand representations of the form (5.48) are less compact than representations

making use of, for example, local integrands, spurious integrands, and extra-

dimensional ISPs [2, 106–108, 162–164]. However, in our set-up the integrand

is only sampled numerically and not analytically reconstructed. Simplification

at the integrand level is therefore not a priority. Because our final integrated

amplitude does not depend on the choice of integrand parametrisation, we have

chosen a form which is directly compatible with IBPs, rather than one yielding

a compact integrand representation. On the other hand there is potential for

considerable improvements in the efficiency of the algorithm if a simpler integrand

form could be identified.

We take a top down approach to solving the complete system of integrands

which, apart from the basis choice described above, is identical to the approach

taken in the previous section. The tree amplitudes used to compute the

generalised unitarity cuts are evaluated by contracting Berends-Giele currents [26]

as described in [119] and we use the six-dimensional spinor-helicity formalism [27].

Eight topologies, shown in Figure 5.6d, have divergent cuts and their integrand

coefficients are determined simultaneously with sub-topologies in the heptabubble

group, see Figure 5.6c. This follows the approach used previously in section 5.1.1

and references [2, 117].

The numerical sampling of the integrand can show quickly which coefficients

vanish and hence what integrals require further reduction using IBPs. The

number of non-vanishing coefficients at the integrand level split into the

components of ds = 2, (ds − 2), (ds − 2)2 are 4387, 14565, 4420 respectively. We

find the maximum rank to be 5 for genuine two-loop topologies and rank 6 for a

few integrals in the (ds − 2)2 component of the amplitude that can be written as

(1-loop)2 integrals, see Figure 5.6a.
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At the end of the integrand reduction stage, the colour-ordered amplitude can be

written as,

A(2) (1, 2, 3, 4, 5) =
∑

a

c[∂A]
a Ga, (5.50)

where we sum over the tuples a = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11). The

coefficients c
[∂A]
a are rational functions in the momentum twistor variables only.

5.2.2 Integration-by-parts reduction

Each integral appearing in (5.50) is reduced to a set of master integrals Jk,

Ga =
∑

k

c
[IBP]
ak Jk, (5.51)

where the sum runs over 155 master integrals (remembering that we include the 5

cyclic permutations of the integral familyG). The reduction is obtained by solving

a traditional Laporta system of IBP equations [138]. The system is generated in

Mathematica with the help of LiteRed [93], and solved over finite fields,

for numerical values of ε and the kinematic invariants, with a custom general-

purpose linear solver for sparse systems of equations. The master integrals are

chosen to be the uniform weight functions identified by Gehrmann, Henn and Lo

Presti [98]. The c
[IBP]
ak are rational functions in the momentum twistor variables

and the dimensional regularisation parameter ε.

5.2.3 Map to pentagon functions

Our next step is to expand the master integrals into a basis of pentagon functions

defined by Gehrmann, Henn and Lo Presti. These functions can be written in

terms of Goncharov Polylogarithms. We take the results of expanding the master

integrals in ε from reference [98],

Jk =
4∑

x=0

∑

l

c
[f]
kl;x ε

xml;x(f) +O(ε5), (5.52)

where ml;x(f) are monomials in the pentagon functions (note that the coefficients

c
[f]
kl;x depend on the choice of the pentagon functions f).

112



The amplitude can thus be written as a combination of pentagon functions,

A(2) (1, 2, 3, 4, 5) =
∑

l,x

c
[A]
l;x ml;x(f) +O(ε), (5.53)

where the coefficients are defined through matrix multiplication, from the three

reduction steps,

c
[A]
l;x =

∑

a,k

c[∂A]
a c

[IBP]
ak c

[f]
kl;x ε

x. (5.54)

We recall that, in the previous equation, there is also an implicit dependence on

ε coming from the c
[IBP]
ak , which were defined in (5.51) to be the full coefficients of

the IBP reduction. Hence, the coefficients c
[A]
l;x are rational functions of ε which

need to be expanded, as we will explain in the next subsection.

The final step of the algorithm is to perform the same decomposition for the

universal IR poles in (5.44b). For this we need the one-loop master integrals

expanded up to weight four and written in the same alphabet as the two-loop

integrals. These results were obtained directly from the differential equations in

a canonical basis.3 We then write the poles analytically as,

[
−rΓ

ε2

5∑

j=1

(
µ2
Re

γE

−sj,j+1

)ε]
A(1),[i]

(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
=
∑

l,x

c
[IR]
l;x ml;x(f) +O(ε).

(5.55)

Our numerical algorithm can then compute the difference,

c
[F]
l;x = c

[A]
l;x − c

[IR]
l;x , (5.56)

which we will expand in ε to find the finite remainder. At this point we have

constructed a numerical algorithm which combines integrand reduction, IBP

reduction and expansion of the master integrals into a basis of polylogarithms.

This algorithm can be used to compute the finite remainder of the two-loop

amplitude through evaluations of generalised unitarity cuts over finite fields.

3We are very grateful to Adriano Lo Presti for assistance in setting up the differential
equations used in [109].
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5.2.4 Laurent expansion

In the previous subsections we described a numerical calculation over finite fields

of the coefficients c
[F]
l;x . They are used in order to write the finite remainder,

F (2),[i], of the amplitude in terms of known pentagon functions. The coefficients,

computed as described above, are rational functions of ε. However, because

the calculation uses the expansion in (5.52) for the master integrals in terms

of pentagon functions, it is only valid up to O(ε). Here we are interested in the

finite part of the Laurent expansion in ε.

As mentioned before, in order to obtain this Laurent expansion, we first perform

a full reconstruction of the functions c
[F]
l;x in ε, for numerical values over finite

fields of the momentum twistor variables. The reconstructed function can thus

be expanded in ε up to the desired order. This yields a decomposition of the

form,

c
[F]
l;x =

0∑

y=−4

c
[F]
l;x,yε

y +O(ε), (5.57)

where we are interested in the finite parts c
[F]
l;x,0, while c

[F]
l;x,y = 0 for y < 0. The

finite remainder is therefore,

F (2),[1]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
=
∑

l

4∑

x=0

c
[F]
l;x,0ml;x(f) +O(ε), (5.58)

with c
[F]
l;x,0 defined by the Laurent expansion in (5.57).

The algorithm described above numerically computes the coefficients c
[F]
l;x,0 of the

finite remainder of the amplitude over finite fields, for any numerical value of

the kinematic invariants represented by the momentum twistor variables. Full

analytic formulas for the coefficients c
[F]
l;x,0, as rational functions of the momentum

twistor variables, are reconstructed from multiple numerical evaluations. The

number of sample points for the three components ds = 2, (ds − 2), (ds − 2)2 are

3, 2214, 22886 respectively and sampling over one finite field is sufficient. For this

purpose, we use a slightly improved version of the multivariate reconstruction

techniques presented in reference [119]4. We note the large difference in the

number of sample points needed for the different components in the ds = 2

expansion. This happens since the coefficients of the pentagon function basis

4These improvements concern performance, memory usage, and parallelization, and will be
described in a later publication.

114



used in the fit contains higher powers of spurious poles for (ds − 2)2 than for

(ds − 2) even though the integrals and topologies appearing are much simpler.

Once these expressions are collected and written in terms of the finite integral

functions described in the next section, both amplitudes take similarly compact

forms. The difference in time to perform the fit was not prohibitive in this case

so further optimisation of the basis before the fit was unnecessary.

In the next section we give a compact form of this result, obtained from the one

in terms of momentum twistor variables, after converting it into spinor products

and momentum invariants via some additional algebraic manipulations.

5.2.5 Analytic results

We present a compact form of the amplitude by making use of the symmetry

(1, 2, 3, 4, 5) → (1, 5, 4, 3, 2) and extracting an overall phase written in terms of

spinor products,

F (L),[i]
(
1−g , 2

+
g , 3

+
g , 4

+
g , 5

+
g

)
=

[25]2

[12]〈23〉〈34〉〈45〉[51]

(
F (L),[i]

sym (1, 2, 3, 4, 5)

+ F (L),[i]
sym (1, 5, 4, 3, 2)

)
, (5.59)

where L labels the loop order and i labels the component in the expansion around

ds = 2. The known result at one loop can be written as,

F (1),[1]
sym (1, 2, 3, 4, 5) =

tr+(2315)2tr+(1243)

3s2
25s23s34s15

− tr+(2543)

6s34

, (5.60)

where tr+(ijkl) = 1
2
tr ((1 + γ5)γµγνγσγρ) p

µ
i p

ν
jp
σ
kp

ρ
l and sij = (pi + pj)

2.

The finite parts of the two-loop amplitude can be written compactly in terms of

weight two functions, just as at one loop. We therefore follow the same strategy

as at one loop to find a basis of integral functions free of large cancellations due to

spurious singularities. We find that a convenient basis for the ds − 2 component
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of the amplitude is,

F (2),[1]
sym (1, 2, 3, 4, 5) = c

(2)
51 F

(2)
box(s23, s34, s15) + c

(2)
34 F

(2)
box(s12, s15, s34)

+ c
(1)
51 F

(1)
box(s23, s34, s15) + c

(1)
34 F

(1)
box(s12, s15, s34)

+ c
(0)
51 F

(0)
box(s23, s34, s15) + c

(0)
34 F

(0)
box(s12, s15, s34)

+ c45F
(0)
box(s12, s23, s45) + c34;51L̂1(s34, s15) + c51;23L̂1(s15, s23)

+ crat, (5.61)

and

F (2),[2]
sym (1, 2, 3, 4, 5) = d

(3)
34 F

(3)
box(s12, s15, s34) + d

(2)
34 F

(2)
box(s12, s15, s34)

+ d
(3)
34;51L̂3(s34, s15) + d

(2)
34;51L̂2(s34, s15)

+ d
(3)
51;23L̂3(s15, s23) + d

(2)
51;23L̂2(s15, s23) + drat, (5.62)

for the (ds − 2)2 amplitude.

The integral functions are written in terms of simple logarithms and di-logarithms.

All weight one functions appear as logarithms of ratios of kinematic invariants,

Lk(s, t) =
log(t/s)

(s− t)k , (5.63)

where the singular behaviour is removed by defining,

L̂0(s, t) =L0(s, t), (5.64a)

L̂1(s, t) =L1(s, t), (5.64b)

L̂2(s, t) =L2(s, t) +
1

2(s− t)

(
1

s
+

1

t

)
, (5.64c)

L̂3(s, t) =L3(s, t) +
1

2(s− t)2

(
1

s
+

1

t

)
. (5.64d)

At weight two all functions can be written in terms of the six-dimensional box
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function,

F
(−1)
box (s, t,m2) =Li2

(
1− s

m2

)
+ Li2

(
1− t

m2

)
+ log

( s

m2

)
+ log

(
t

m2

)
− π2

6
,

(5.65a)

F
(0)
box(s, t,m2) =

1

u(s, t,m2)
F

(−1)
box (s, t,m2), (5.65b)

F
(1)
box(s, t,m2) =

1

u(s, t,m2)

[
F

(0)
box(s, t,m2) + L̂1(s,m2) + L̂1(m2, t)

]
, (5.65c)

F
(2)
box(s, t,m2) =

1

u(s, t,m2)

[
F

(1)
box(s, t,m2) +

s−m2

2t
L̂2(s,m2)

+
m2 − t

2s
L̂2(m2, t)−

(
1

s
+

1

t

)
1

4m2

]
, (5.65d)

F
(3)
box(s, t,m2) =

1

u(s, t,m2)

[
F

(2)
box(s, t,m2)− (s−m2)2

6t2
L̂3(s,m2)

− (m2 − t)2

6s2
L̂3(m2, t)−

(
1

s
+

1

t

)
1

6m4

]
, (5.65e)

where u(s, t,m2) = m2 − s− t.

These functions serve the same purpose as the Ls and L functions introduced by

Bern, Dixon, and Kosower in [84, 97]. The L̂i(s, t) are finite as s → t and the

F
(i)
box(s, t,m2) are finite as s→ −t+m2. The definitions have been changed very

slightly with respect to the Ls and L functions since the singularities from the

box functions at m2 − s − t have been removed without introducing additional

singularities in s−m2 or t−m2. For the (ds− 2) amplitude the coefficients are,

c
(2)
51 =

5s23s34tr+(1234)2tr+(1542)2

s12s15tr+(2543)2
, (5.66a)

c
(1)
51 =− tr+(1234)2tr+(1534)tr+(2453)2

6s12s34s35tr+(2543)2
, (5.66b)

c
(0)
51 =

s15s45tr+(1234)

3tr+(2543)
− s15s24s45tr+(1234)2

6s12tr+(2543)2
− tr+(1234)2tr+(1542)

6tr+(2543)2

− s23s24tr+(1234)tr+(1543)

6tr+(2543)2
− s12s23s34tr+(1542)tr+(1543)

3s15tr+(2543)2

+
2s23tr+(1234)tr+(1543)2

3s15tr+(2543)2
− s24tr+(1234)tr+(1543)2

6s15tr+(2543)2

− s24tr+(1234)2tr+(1543)2

6s12s15s34tr+(2543)2
− s24tr+(1235)tr+(1243)tr+(1543)2

6s12s15s34tr+(2543)2

− tr+(1234)tr+(1543)tr+(2453)

2tr+(2543)2
, (5.66c)
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c
(2)
34 =

5

2
s2

12s
2
15, (5.67a)

c
(1)
34 =

tr+(1245)tr+(1534)tr+(1543)

3s15s34s45

+
1

12
s12s15s34, (5.67b)

c
(0)
34 =− s15s23tr+(1234)

12tr+(2543)
− tr+(1234)2tr+(1532)

12s12s34tr+(2543)
+
s25tr+(1234)tr+(1543)

12s34tr+(2543)

+
s12tr+(1532)tr+(1543)

12s15tr+(2543)
+
s23s25tr+(1234)tr+(1543)2

12s15s34tr+(2543)2

+
s12tr+(1543)2tr+(2354)

12s15s34s45tr+(2543)
+
s25tr+(2543)

12s34

− 1

3
s12s15, (5.67c)

c45 = −s13s45tr+(1234)2tr+(1534)

6s12s34tr+(2543)2
+
s3

23s34tr+(1543)

6tr+(2543)2
− s13s23tr+(1243)tr+(1543)2

6s15s34tr+(2543)2
,

(5.68)

c34;51 =
s12s15s34s45

6tr+(2543)
− 11tr+(1234)tr+(1543)

6tr+(2543)
+

tr+(1234)2tr+(1542)tr+(1543)

6s12s34tr+(2543)2

− s12tr+(1324)tr+(1543)2

6s13tr+(2543)2
− s45tr+(1234)2tr+(1534)tr+(2453)

6s12s34s35tr+(2543)2
, (5.69)

c51;23 =
s23s45tr+(1234)2tr+(1534)

6s12s34tr+(2543)2
+

2s12s23s34s45tr+(1543)

3tr+(2543)2

− 5s23s45tr+(1234)tr+(1543)

2tr+(2543)2
, (5.70)

crat = − 5tr+(1234)tr+(1543)

4s34tr+(2543)
+

5s23tr+(1243)tr+(1543)2

2s15s34tr+(2543)2
. (5.71)

While for the (ds − 2)2 amplitude the coefficients are:

d
(3)
34 =− s12s15tr+(2543)2

12s34

, (5.72a)

d
(2)
34 =

1

6
s12s15tr+(2543), (5.72b)

d
(3)
34;51 =− 1

18
s15s23tr+(2543), (5.72c)

d
(2)
34;51 =− s15tr+(2543)2

36s12s34

− 1

6
s15tr+(2543), (5.72d)
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d
(3)
51;23 =

s15s23s
2
34s

2
45tr+(1245)

18tr+(2543)2
, (5.73a)

d
(2)
51;23 =

s12s15s23s
2
34s

2
45

12tr+(2543)2
− s15s23s34s

2
45tr+(1234)

6tr+(2543)2
, (5.73b)

drat =
s34

72
+

5s45

36
− tr+(1234)tr+(1453)

72s14tr+(2543)
− s45tr+(1543)

72tr+(2543)
+

tr+(2543)2

72s3
34

− 5tr+(1543)2

72s34tr+(2543)
− s12tr+(1543)2

72tr+(2543)2
+
s23s34s45tr+(1543)

18tr+(2543)2
. (5.74)

These results can also be found in the ancillary file included with the arXiv version

of our paper [4].
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Chapter 6

Conclusions and outlook

In this thesis we have investigated a variety of modern methods used for the

efficient calculation of scattering amplitudes. A common aim of these methods

has been to use only physical degrees of freedom by making on-shell constraints

manifest and avoiding gauge redundancies. Advances in calculational techniques

are crucial to calculate the higher-order theoretical predictions necessary to keep

the precision in line with experimental uncertainties.

In Chapter 2 and 3 we discussed techniques that are widely used in the calculation

of both tree and one-loop level scattering amplitudes. Furthermore, working in

six dimensions allowed for direct extraction of rational terms from integrand

reduction via d-dimensional generalised unitarity cuts. These techniques were

further developed in Chapter 4 and 5 for the study of present challenges in higher-

order calculations. Of particular importance are the spinor-helicity formalism

and momentum twistor coordinates which allow for a rational parametrisation of

phase space as well as rational cut solutions. This enables us to employ efficient

numerical sampling techniques to solve the large linear systems of equations

appearing in integrand and integration-by-parts reductions. Numerical sampling

and functional reconstruction over finite fields have proven especially powerful.

In Chapter 4 a new method to deal with massive fermions compatible with

unitarity methods was presented. Embedding massive four-momenta in massless

six-dimensional momenta allowed for a direct application of the six-dimensional

spinor-helicity formalism. The coefficients of topologies with divergent generalised

unitarity cuts were determined using universal pole structure in four and six

dimensions. Using this approach we reproduced known analytic results for
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gg → tt̄ at one-loop order using a purely on-shell approach.

New results for two-loop scattering amplitudes in Quantum Chromodynamics

were presented in Chapter 5. Firstly, benchmark results for the five-parton

helicity amplitudes were presented for the partonic channels ggggg, qgggq̄, and

qq̄gQQ̄ in the Euclidean region of phase space. The pure gluon amplitudes were

also evaluated in the physical region. The gluon results were obtained through

integrand reduction while the fermionic channels used a Feynman diagrammatic

approach. The evaluation of the integrals was done using both numerical and

analytic results. Our results match those found by another group [165, 166].

Finally, in Chapter 5 we also presented the analytic five-gluon two-loop amplitude

in the case where one gluon has negative helicity and the remaining gluons have

positive helicities. This was achieved by employing finite field numerics to a

combined system of integrand reduction, integration-by-parts identities, and an

expansion of the master integrals into a basis of pentagon functions. Using

the fact that the universal pole structure of two-loop amplitudes is known, it

is only necessary to calculate the finite remainder. The compact result for the

finite remainder of the amplitude was presented in terms of logarithms and di-

logarithms. The rational coefficients are expressed directly in terms of generalised

Mandelstam variables and Dirac traces of the external momenta.

More recently, several new important amplitude results have emerged. The

remaining analytic helicity amplitudes were computed in [167] using a similar

method to the one presented here. The symbol for non-planar corrections to five-

point amplitudes in maximally super-symmetric theories have also recently been

calculated [168–171]. This rapid increase in known amplitudes has partly been

fuelled by the computation of the necessary master integrals. The calculation of

the non-planar five-point integrals was completed recently [172]. This paves the

way for calculating the remaining colour contributions to five-parton scattering

at two loops.

The techniques of integrand reduction and d-dimensional cuts presented for

simultaneously fitting of coefficients from two (or more) topologies in section 5.1.1

can readily be applied for determining the coefficients of non-planar topologies.

This bypasses the challenge of finding rational solutions to the cut constraints in

the non-planar case as the non-planar integrand coefficients can be determined

from planar cut solutions. Alternatively, a change of basis for the momentum

vectors solves this problem. This idea is pursued in Appendix F and general
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representations of the six-dimensional spinors are derived. This construction is

also useful for fermionic amplitudes and a similar approach was taken in [166].

While an increasing number of five-point QCD amplitudes are now known, other

amplitudes of phenomenological relevance involving, for example, the Higgs and

weak gauge bosons are still a big challenge due to the additional mass scales.

In order to obtain physical observables the recombination with the real radiation

contributions remains to be done. While one should not underestimate these

challenges for the real-virtual and double-real contributions, with the two-

loop five-gluon contribution now known analytically one can hope to see

phenomenological studies of leading-colour three-jet production in the near

future.
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Appendix A

Notation and conventions

We use the mostly minus metric in both four and six dimensions,

ηµν = diag{1,−1,−1,−1}, (A.1a)

ηMN = diag{1,−1,−1,−1,−1,−1}, (A.1b)

where lower case Greek letters are four-dimensional and upper case are six-

dimensional. We define the the Pauli matrices in the Weyl representation,

σ0
αα̇ =


1 0

0 1


 , σ1

αα̇ =


 0 −1

−1 0


 , σ2

αα̇ =


 0 i

−i 0


 , σ3

αα̇ =


−1 0

0 1


 ,

(A.2)

and (σ̃µ)α̇α = εαβεα̇β̇σµ
ββ̇

with ε12 = 1 = ε21. We observe the properties,

σµaȧσ̃
ḃb
µ = 2δbaδ

ḃ
ȧ, (A.3a)

σµaȧσ̃
νȧa = 2ηµν . (A.3b)
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Using the Pauli matrices (A.2) we define the Σ-matrices,

Σ0 = iσ1 × σ2 Σ̃0 = −iσ1 × σ2 (A.4a)

Σ1 = iσ2 × σ3 Σ̃1 = iσ2 × σ3 (A.4b)

Σ2 = σ2 × σ0 Σ̃2 = −σ2 × σ0 (A.4c)

Σ3 = −iσ2 × σ1 Σ̃3 = −iσ2 × σ1 (A.4d)

Σ4 = −σ3 × σ2 Σ̃4 = σ3 × σ2 (A.4e)

Σ5 = −iσ0 × σ2 Σ̃5 = −iσ0 × σ2, (A.4f)

which obey the Clifford algebra,

ΣM Σ̃N + ΣN Σ̃M = 2ηMN , (A.5)

as well as the identities,

ΣM
ABΣ̃CD

M = −2
(
δCAδ

D
B − δDA δCB

)
, (A.6a)

tr
(

ΣM Σ̃N
)

= 4ηMN . (A.6b)
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Appendix B

Trees and cuts in six dimensions

B.1 Three-point amplitudes

In this section we list the six-dimensional tree-level amplitudes used in this thesis.

A(0)(1aq , 2
b
q̄, 3

cċ
g ) =

i

sr3
〈1a2b3crx〉〈rx|3ċ] (B.1)

where r is a massless reference vector satisfying sr3 6= 0.

A(0)(1aȧ, 2bḃ, 3cċ) = iΓabcΓ̃ȧḃċ (B.2)

Γabc = u1au2bw3c + u1aw2bu3c + w1au2bu3c

Γ̃ȧḃċ = ũ1ȧũ2ȧw̃3ċ + ũ1ȧw̃2ȧũ3ċ + w̃1ȧũ2ȧũ3ċ,

where the tensors Γ and Γ̃ are written in terms of the SU(2) spinors u, ũ satisfying

the following properties, defined on a cyclic order {ijk},

uiaũjḃ = 〈ia|jḃ], ujaũiḃ = −〈ja|iḃ],

and w, w̃ are the inverse of the u, ũ

εab = uawb − ubwa, εȧḃ = ũȧw̃ḃ − ũḃw̃ȧ,

for which we impose momentum conservation

0 = w̃1ȧλ̃
ȧ
1A + w̃2ȧλ̃

ȧ
2A + w̃3ȧλ̃

ȧ
3A.
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A(0)(1φ1,2 , 2φ1,2 , 3
aȧ
g ) =

−i
2sr3
〈3a|(1− 2)r|3ȧ] (B.3)

where r is a massless reference vector satisfying sr3 6= 0.

A(0)(1φ1 , 2
a
q̄ , 3

ḃ
q) =

i√
2
〈1a|2ḃ]. (B.4)

A(0)(1φ2 , 2
a
q̄ , 3

ḃ
q) =

i√
2
〈1a|γ5|2ḃ]. (B.5)

B.2 Four-point amplitudes

A(0)(1aȧ, 2bḃ, 3cċ, 4dḋ) =
−i

s12s23

〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] (B.6)

A(0)(1q,a, 2bḃ, 3cċ, 4q̄,d) =
i

2s12s23

〈1a2b3c4d〉[1ẋ2ḃ3ċ1ẋ]. (B.7)

A(0)(1aȧ, 2bḃ, 3, 4) =
i

4s12s23

〈1a2b3x3x〉[1ȧ2ḃ3ẋ3ẋ] (B.8)

B.3 Cut solutions in six dimensions

In this section we give details on the solutions for the triple and double cuts in

six dimensions used in section 4.2. We will describe the parametrisation used

to get the solutions without writing down any explicit expression for them. The

implementation is given in the Mathematica notebook attached to the arXiv

version of our paper [1]. Notice that all the cut solutions are rational functions

of the kinematics and the free parameters and contain no square roots.

For the triple cuts we write the six-dimensional loop momentum, `Mi , in the
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following basis,

β =
{
vM , wM , 〈v1|ΣM |w1〉, 〈v1|ΣM |w2〉, 〈v2|ΣM |w1〉, 〈v2|ΣM |w2〉

}
, (B.9)

where v and w are six dimensional massless momenta and use the parametrisation,

`i = β · {y1, y2, y3, y4, τ1, τ2} . (B.10)

We impose the cut conditions,

Sijk =





`2
i = `2

j = `2
k = 0

`
(5)
i =





0 if i is a gluon

±m if i is a fermion

, (B.11)

where {ijk} is the set of the three cut propagators and the sign of the mass

component depends on the kinematic configuration. This system of equations

for `i only constrains 4 parameters so solving for the yi’s, τ1, τ2 are left as free

parameters.

For the double cut solutions we use the same basis, (B.9), and use the following

parametrisation,

`i = β · {y1, τ1, y2, τ2, y3, τ3} . (B.12)

The yi’s are fixed by the double cut constraints,

Sij =





`2
i = `2

j = 0

`
(5)
i =





0 if i is a gluon

±m if i is a fermion

, (B.13)

where {ij} is the set of the two cut propagators and the sign of the mass

component depends on the kinematic configuration. The parameters τ1, τ2, τ3

are unconstrained.

127



B.4 Feynman rules for an effective Lagrangian

In this section we present selected Feynman rules for the six dimensional effective

theory of interest to us, defined by the Lagrangian,

L6
QCD = ψ̄(i /D −m)ψ − 1

2
tr (FµνF

µν) +
i

2
σ1 g

3
smt ψ̄γ

µγνFµνψ

+ iσ2 g
3
s ψ̄Fµνγ

µDνψ +
i

6
γ g3

s tr
(
F µν [Fµλ, Fν

λ]
)
. (B.14)

These rules were derived with the help of FeynCalc [173, 174] and FeynRules [175,

176]. The vertices are colour ordered and all momenta are considered to be out-

going. We include the coupling constants here for clarity though in the main text

they are stripped off.

1

2
q

1
�q

3
g

= −g3
sσ1mtσ

µ3νp3ν (B.15)

2

2
q

1
�q

3
g

= −ig3
sσ2

(
pµ32 /p3

− p2 · p3γ
µ3
)

(B.16)

1

2
q

1
�q

3
g

4
g

= g4
sσ1mtσ

µ3µ4 (B.17)

2

2
q

1
�q

3
g

4
g

= −ig4
sσ2

(
gµ3µ4/p3

− γµ4pµ31 + γµ3(pµ41 − pµ43 )
)

(B.18)

2
g

1
g

3
g

= − i
2
g3
sγ

(
gµ1µ2 (p1 · p3 p

µ3
2 − p2 · p3 p

µ3
1 )

+ gµ2µ3 (p2 · p1 p
µ1
3 − p3 · p1 p

µ1
2 )

+ gµ3µ1 (p3 · p2 p
µ2
1 − p1 · p2 p

µ2
3 )

− pµ13 p
µ2
1 p

µ3
2 + pµ12 p

µ2
3 p

µ3
1

)
. (B.19)

where σµν = i
2

(γµγν − γνγµ).
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Appendix C

One-loop integral reduction

In this appendix we present the derivation of the integral reduction formulae

presented in section 3.1.

It can be shown that all n-point integrals with n > 4 can be reduced to linear

combinations of integrals with n ≤ 4 [43]. Using the notation of section 3.1, we

consider the massless pentagon integral in four dimensions,

I5;01234[1] =

∫
d4k

(2π)4

1

D0D1D2D3D4

. (C.1)

For outgoing, cyclically ordered momenta the inverse propagators are,

D0 = k2, (C.2a)

Di = (k − qi)2, i = 1, 2, 3, 4, (C.2b)

qi = p1...i, (C.2c)

where we have used the shorthand notation pi1...in =
∑in

j=i1
pj. With these

definitions we have,

k · qi = −1

2

(
Di −D0 − q2

i

)
, i = 1, 2, 3, 4. (C.3)

We will use the shorthand notation,

tr5 (ijkl) = tr5 (qiqjqkql) = tr (γ5γµγνγργσ) qµi q
ν
j q

ρ
kq
σ
l . (C.4)

At five points, the four independent momenta sums in the propagators span the
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four-dimensional space, and therefore the loop momentum can be written as a

linear combination of them. This observation leads to a Schouten identity,

kµ tr5 (1234) =
4∑

i=1

k · qi vµi , (C.5)

where,

vµ1 = tr5 (γµ234) , vµ2 = tr5 (1γµ34) , vµ3 = tr5 (12γµ4) , vµ4 = tr5 (123γµ) . (C.6)

We contract (C.5) with kµ to obtain,

k2 tr5 (1234) = D0 tr5 (1234)

=
4∑

i=1

k · qi vi · k

= −1

2

4∑

i=1

(Di − q2
i ) vi · k +

1

2

4∑

i=1

D0 vi · k. (C.7)

In the first sum, integrals with numerators Di vi ·k vanish since they are spanned

by qj, j 6= i and the right hand side in a Passarino-Veltman expansion like (3.5)

will vanish upon contraction with vi.

Considering now the second sum on the right hand side of (C.7), under the

integral we can perform a shift, k → k + q1, to obtain,

4∑

i=1

vi · k →
4∑

i=1

(vi · k + vi · q1)

= tr5 [k(2− 1)(3− 1)(4− 1)] + tr5 (1234) . (C.8)

Using an expansion like (3.5), we see that the first term vanishes since the right

hand side would become,

a(q2 − q1)µ + b(q3 − q1)µ + c(q4 − q1)µ, (C.9)

which vanishes upon contraction with tr5 [γµ(2− 1)(3− 1)(4− 1)]. After these

manipulations the relation (C.7) becomes:

D0 tr5 (1234) =
1

2

4∑

i=1

q2
i vi · k +

1

2
D0 tr5 (1234) (C.10)
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Using the Schouten identity (C.5) in the sum,

tr5 (1234) vi · k =
4∑

j=1

k · qj vi · vj

= −1

2

4∑

j=1

(
Dj −D0 − q2

j

)
vi · vj, (C.11)

and rearranging (C.10) becomes,

0 = 2D0tr5 (1234)2 +
4∑

i=1

4∑

j=1

q2
i

(
Dj −D0 − q2

j

)
vi · vj

= 2D0tr5 (1234)2 − w2 +
4∑

i=1

(Di −D0) w · vi, (C.12)

where we introduced wµ =
∑4

i=1 q
2
i v

µ
i . Finally, the reduction formula for the

pentagon integral is,

I5,01234[1] =
1

w2

( (
2tr5 (1234)2 − Σ4

i=1w · vi
)
I4;1234 [1]

+ w · v1I4;0234 [1] + w · v2I4;0134 [1] + w · v3I4;0124 [1] + w · v4I4;0123 [1]
)
.

(C.13)

The result with masses included can be found in the original reference [43].

For higher-point functions the additional vectors, qi, i > 4, simplify the problem.

For an n-point integral we choose, without loss of generality, to contract the

Schouten identity (C.5) with an additional vector, qn, n > 4, we have,

k · qn tr5 (1234) =
4∑

i=1

k · qi vi · qn

= −1

2

4∑

i=1

(
Di −D0 − q2

i

)
vi · qn

= −1

2

(
Dn −D0 − q2

n

)
tr5 (1234) , (C.14)
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which leads to the reduction formula,

In,0...n−1[1] =
1

w · qn − q2
n tr5 (1234)

( (
tr5 (1234)− Σ4

i=1vi · qn
)
In−1;1...n−1 [1]

+ v1 · qnIn−1;02...n−1 [1]

+ v2 · qnIn−1;013...n−1 [1]

+ v3 · qnIn−1;0124...n−1 [1]

+ v4 · qnIn−1;01235...n−1 [1]

− tr5 (1234) In−1;0...n−2 [1]
)
. (C.15)
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Appendix D

Functional reconstruction using

finite field numerics

This appendix gives a short introduction to finite fields and the techniques

described in [119]. A simple demonstration is given by reconstructing a univariate

polynomial.

A finite field contains a finite number of elements. We will be interested in finite

fields of integers,

Zn = {0, 1, 2, .., n− 1}, n ∈ Z+. (D.1)

All arithmetic operations are therefore considered modulo n. In particular we

can define an inverse given the element considered is co-prime with n. Co-prime

numbers have 1 as greatest common divisor, therefore choosing n to be a prime

is a simple way of ensuring this. In this situation we can define the inverse of

a 6= 0 as,

a−1 mod n = b⇔ a× b mod n = 1, b ∈ Zn. (D.2)

The inverse can be computed using the extended Euclidean algorithm for finding

greatest common divisors.
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Greatest common divisor

For two integers a, b ∈ Z the extended Euclidean algorithm is used to calculate

their greatest common divisor, gcd(a, b), and two integers s and t,

a× s+ b× t = gcd(a, b). (D.3)

The algorithm starts with values,

r0 = a,

s0 = 1,

t0 = 0,

r1 = b,

s1 = 0,

t1 = 1.

In each iteration of the algorithm the integer quotient,

qi =

⌊
ri−2

ri−1

⌋
, (D.4)

is used to compute the next step,

ri = ri−2 − qiri−1,

si = si−2 − qisi−1, (D.5)

ti = ti−2 − qiti−1,

for i ≥ 2. Each step in the algorithm satisfies,

a× si + b× ti = ri (D.6)

and the algorithm terminates when ri = 1 and we identify,

{gcd(a, b), s, t} = {ri−1, si−1, ti−1}. (D.7)

We continue by defining the multiplicative inverse by choosing a prime n and

setting b = n in (D.3). Taking the mod n on both sides yields,

a× s mod n = 1, (D.8)
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and hence,

a−1 mod n = s. (D.9)

We see that s is the multiplicative inverse of a. With the definition of an inverse

we can consider Zn to be a field.

The definition of an inverse implies that there is a map from rational numbers to

integers in Zn. For q = a
b
∈ Q we define,

q mod n =
(
a× (b−1 mod n)

)
mod n. (D.10)

This map is not invertible since Q is an infinite field and Zn is a finite field.

However, if q mod n = a ∈ Z we notice that taking (D.6), setting b = n, and

taking the modulo on both sides we arrive at a guess for q,

a× si mod n = ri ⇔ a =
ri
si

mod n. (D.11)

The ratio ri
si

is a guess for q. Further discussion on the accuracy of this guess is

given in the original reference [119].

Chinese remainder theorem

The Chinese remainder theorem allows us to reconstruct an integer, a ∈ Zn, from

its images ai ∈ Zni , where the moduli ni are mutually co-prime and n =
∏
ni.

Then,

a =
∑

i

miai mod n, (D.12)

with

mi =

((
n

ni

)−1

mod ni

)
n

ni
. (D.13)

Reconstructing a polynomial

For reconstruction of polynomials a common approach is based on Newton’s

polynomial representation. It is a recursive method and it is not necessary to
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know the total degree of the polynomial a priori. A univariate polynomial f(z) of

degree N with a known set of function values f(zi) for points zi with i = 0, 1, 2, ...,

can be written as,

f(z) =
N∑

n=0

cn

n−1∏

i=0

(z − zi). (D.14)

The first coefficient c0 is just the function value at the first point,

c0 = f(z0). (D.15)

The factorisation in z of each term in the polynomial ensures that all subsequent

coefficient an does not alter the reconstructed function for points zi with i < n.

The coefficients can therefore be constructed recursively,

c1 =
f(z1)− c0

z1 − z0

,

c2 =

(
f(z2)− c0

z2 − z0

− c1

)
1

z2 − z1

,

. . .

ci =
f(zi)− c0∏i−1
j=0 zi − zj

−
i−1∑

k=0

ck∏i−1
j=k zi − zj

. (D.16)

The recursion will terminate when all N coefficients have been reconstructed as

any attempt at evaluating additional coefficients will give zero.

Reconstructing a polynomial with integer coefficients

We consider a simple univariate polynomial of second degree,

f(z) = z2 − z. (D.17)

We choose to evaluate it for,

z 11 12 13 14 15

f(z) 110 132 156 182 210
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Using the reconstruction method from the previous section, we get the coefficients

(c0, c1, c2) = (110, 22, 1) and arrive at the representation,

f(z) = 110 + 22(−11 + z) + (−12 + z)(−11 + z). (D.18)

We now reconstruct the function using the finite fields Z17 and Z19 instead and

list the reconstructed coefficients,

field c0 c1 c2

Z 110 22 1

Z17 8 5 1

Z19 15 3 1

To reconstruct c0 in Z17·19 = Z323 we use the Chinese remainder theorem and

calculate,

c0 = 8 ·m1 + 15 ·m2 mod 323

= 8 ·
[(

19−1 mod 17
)
· 19
]

+ 15 ·
[(

17−1 mod 19
)
· 17
]

mod 323

= 8 · [171] + 15 · [153] mod 323

= 3663 mod 323

= 110. (D.19)

Note that the values of mi in square brackets do not depend on the coefficient

but only on the chosen finite fields. We can therefore immediately continue,

c1 = 5 · [171] + 3 · [153] mod 323

= 1314 mod 323

= 22, (D.20)

c2 = 1 · [171] + 1 · [153] mod 323

= 324 mod 323

= 1, (D.21)

and we have reconstructed the polynomial.

The generalisations necessary for reconstruction of multivariate rational functions

can be found in the original reference [119].
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Appendix E

Some two-loop integrand

parametrisations

In this appendix we give some examples of the two-loop integrand parametri-

sations used in Chapter 5. The spurious directions, ωi, are orthogonal to the

independent external legs, qj, of the topology, ωi · qj = 0. An n-point topology

has n− 1 independent external legs, so j = 1, ..., n− 1 while i = 1, ..., 5− n. The

extra-dimensional irreducible scalar products are defined by µij = −k[−2ε]
⊥,i · k

[−2ε]
⊥,j ,

see also equation (5.6). The momentum twistor coordinates, xi, can be written

in terms of generalised Mandelstam variables using (2.74).

∆

(
5

4 3

2

1
k1k2

)
= c0 + c1(k1 · p5) + c2(k2 · p1) + c3(k2 · p2)

+ c4µ11 + c5(k1 · p5)µ11 + c6(k2 · p1)µ11

+ c7(k1 · p5)(k2 · p1)µ11 + c8(k2 · p1)2µ11 + c9(k2 · p1)3µ11

+ c10(k2 · p1)4µ11 + c11(k2 · p2)µ11 + c12(k2 · p1)(k2 · p2)µ11

+ c13(k2 · p1)2(k2 · p2)µ11 + c14(k2 · p1)3(k2 · p2)µ11 + c15µ
2
11

+ c16(k1 · p5)µ2
11 + c17(k2 · p1)µ2

11 + c18(k1 · p5)(k2 · p1)µ2
11

+ c19µ12 + c20(k1 · p5)µ12 + c21(k2 · p1)µ12

+ c22(k1 · p5)(k2 · p1)µ12 + c23(k2 · p1)2µ12 + c24(k2 · p1)3µ12

+ c25(k2 · p2)µ12 + c26(k2 · p1)(k2 · p2)µ12

+ c27(k2 · p1)2(k2 · p2)µ12 + c28µ11µ12
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+ c29(k1 · p5)µ11µ12 + c30(k2 · p1)µ11µ12

+ c31(k1 · p5)(k2 · p1)µ11µ12 + c32(k2 · p1)2µ11µ12

+ c33(k2 · p1)3µ11µ12 + c34(k2 · p2)µ11µ12

+ c35(k2 · p1)(k2 · p2)µ11µ12 + c36(k2 · p1)2(k2 · p2)µ11µ12

+ c37µ
2
11µ12 + c38(k2 · p1)µ12µ

2
11 + c39(k2 · p2)µ12µ

2
11

+ c40µ
2
12 + c41(k2 · p1)µ2

12 + c42(k2 · p1)2µ2
12

+ c43(k2 · p2)µ2
12 + c44(k2 · p1)(k2 · p2)µ2

12 + c45µ11µ
2
12

+ c46(k2 · p1)µ11µ
2
12 + c47(k2 · p2)µ11µ

2
12 + c48µ22

+ c49(k1 · p5)µ22 + c50(k2 · p1)µ22 + c51(k1 · p5)(k2 · p1)µ22

+ c52(k2 · p1)2µ22 + c53(k2 · p2)µ22 + c54(k2 · p1)(k2 · p2)µ22

+ c55µ11µ22 + c56(k1 · p5)µ11µ22 + c57(k2 · p1)µ11µ22

+ c58(k1 · p5)(k2 · p1)µ11µ22 + c59(k2 · p1)2µ11µ22

+ c60(k2 · p2)µ11µ22 + c61(k2 · p1)(k2 · p2)µ11µ22

+ c62µ
2
11µ22 + c63(k1 · p5)µ22µ

2
11

+ c64(k2 · p1)µ22µ
2
11 + c65(k2 · p2)µ22µ

2
11 + c66µ12µ22

+ c67(k2 · p1)µ12µ22 + c68(k2 · p2)µ12µ22 + c69µ11µ12µ22

+ c70(k2 · p1)µ11µ12µ22 + c71(k2 · p2)µ11µ12µ22 + c72µ
2
22

+ c73(k1 · p5)µ2
22 + c74µ11µ

2
22 + c75(k1 · p5)µ11µ

2
22. (E.1)

∆


 k

2

k
1

5

4

3

2

1


 = c0 + c1(k1 · p4) + c2(k1 · p4)(k2 · p4) + c3(k1 · p4)2(k2 · p4)

+ c4(k2 · p4)2 + c5(k1 · p4)(k2 · p4)2 + c6(k2 · p4)(k2 · p5)

+ c7(k1 · p4)(k2 · p4)(k2 · p5) + c8(k2 · p5)2 + c9(k1 · p4)(k2 · p5)2

+ c10µ12 + c11(k1 · p4)µ12 + c12(k2 · p4)µ12

+ c13(k2 · p5)µ12 + c14µ22 + c15(k1 · p4)µ22

+ c16(k1 · w1) + c17(k1 · p4)(k1 · w1) + c18(k1 · p4)2(k1 · w1)

+ c19(k1 · w1)3 + c20(k1 · w2) + c21(k1 · p4)(k1 · w2)

+ c22(k1 · p4)2(k1 · w2) + c23(k1 · w1)(k1 · w2)

+ c24(k1 · p4)(k1 · w1)(k1 · w2) + c25(k1 · w1)2(k1 · w2)

+ c26

(
1
2
(k1 · w1)2 + 1

2
(k1 · w2)2

)
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+ c27

(
1
2
(k1 · p4)(k1 · w1)2 + 1

2
(k1 · p4)(k1 · w2)2

)

+ c28(k1 · w1)(k2 · p4) + c29(k1 · p4)(k1 · w1)(k2 · p4)

+ c30(k1 · w2)(k2 · p4) + c31(k1 · p4)(k1 · w2)(k2 · p4)

+ c32(k1 · w1)(k1 · w2)(k2 · p4) + c33(k1 · w1)(k2 · p4)2

+ c34(k1 · w2)(k2 · p4)2

+ c35

(
1
2
(k1 · w1)2(k2 · p4) + 1

2
(k1 · w2)2(k2 · p4)

)

+ c36(k1 · w1)(k2 · p5) + c37(k1 · p4)(k1 · w1)(k2 · p5)

+ c38(k1 · w2)(k2 · p5) + c39(k1 · p4)(k1 · w2)(k2 · p5)

+ c40(k1 · w1)(k1 · w2)(k2 · p5) + c41(k1 · w1)(k2 · p4)(k2 · p5)

+ c42(k1 · w2)(k2 · p4)(k2 · p5) + c43(k1 · w1)(k2 · p5)2

+ c44(k1 · w2)(k2 · p5)2

+ c45

(
1
2
(k1 · w1)2(k2 · p5) + 1

2
(k1 · w2)2(k2 · p5)

)

+ c46(k2 · w1) + c47(k1 · p4)(k2 · w1) + c48(k1 · p4)2(k2 · w1)

+ c49(k1 · w1)2(k2 · w1) + c50(k1 · w2)(k2 · w1)

+ c51(k1 · p4)(k1 · w2)(k2 · w1) + c52(k2 · p4)(k2 · w1)

+ c53(k1 · p4)(k2 · p4)(k2 · w1) + c54(k1 · w2)(k2 · p4)(k2 · w1)

+ c55(k2 · p5)(k2 · w1) + c56(k1 · p4)(k2 · p5)(k2 · w1)

+ c57(k1 · w2)(k2 · p5)(k2 · w1) + c58(k1 · w1)(k2 · w1)2

+ c59(k2 · w2) + c60(k1 · p4)(k2 · w2) + c61(k1 · p4)2(k2 · w2)

+ c62(k1 · w1)(k2 · w2) + c63(k1 · p4)(k1 · w1)(k2 · w2)

+ c64(k1 · w1)2(k2 · w2) + c65(k2 · p4)(k2 · w2)

+ c66(k1 · p4)(k2 · p4)(k2 · w2) + c67(k1 · w1)(k2 · p4)(k2 · w2)

+ c68(k2 · p5)(k2 · w2) + c69(k1 · p4)(k2 · p5)(k2 · w2)

+ c70(k1 · w1)(k2 · p5)(k2 · w2) + c71(k2 · w1)(k2 · w2)

+ c72(k1 · p4)(k2 · w1)(k2 · w2) + c73(k1 · w1)(k2 · w1)(k2 · w2)

+ c74

(
1
2
(k1 · w1)(k2 · w1) + 1

2
(k1 · w2)(k2 · w2)

)

+ c75

(
1
2
(k1 · p4)(k1 · w1)(k2 · w1) + 1

2
(k1 · p4)(k1 · w2)(k2 · w2)

)

+ c76

(
1
2
(k1 · w1)(k2 · p4)(k2 · w1) + 1

2
(k1 · w2)(k2 · p4)(k2 · w2)

)

+ c77

(
1
2
(k1 · w1)(k2 · p5)(k2 · w1) + 1

2
(k1 · w2)(k2 · p5)(k2 · w2)

)

+ c78

(
1
2
(k2 · w1)2 + 1

2
(k2 · w2)2

)

+ c79

(
1
2
(k1 · p4)(k2 · w1)2 + 1

2
(k1 · p4)(k2 · w2)2

)

+ c80

(
− 1

2
x5 + (k1 · p4) + 2(k2 · p4)

)
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+ c81

(
− 1

2
(k1 · p4)x5 + (k1 · p4)2 + 2(k1 · p4)(k2 · p4)

)

+ c82

(
− 1

2
(k1 · p4)2x5 + 2(k1 · p4)2(k2 · p4) + (k1 · p4)3

)

+ c83(k1 · w1)µ11 + c84(k1 · w2)µ11 + c85(k2 · w1)µ11

+ c86(k2 · w2)µ11 + c87

(
− 1

2
µ11x5 + (k1 · p4)µ11 + 2(k2 · p4)µ11

)

+ c88(k1 · w1)µ12 + c89(k1 · w2)µ12 + c90(k2 · w1)µ12

+ c91(k2 · w2)µ12 + c92

(
µ11 + 2µ12

)

+ c93

(
(k1 · p4)µ11 + 2(k1 · p4)µ12

)

+ c94(k1 · w1)µ22 + c95(k1 · w2)µ22

+ c96

(
− 1

2
k2

1 + 1
2
(k1 − p1 − p2 − p3)2 + 1

2
x5 − (k1 · p4)

+ 2(k2 · p5)
)

+ c97

(
− 1

2
(k1)2(k1 · p4) + 1

2
(k1 · p4)(k1 − p1 − p2 − p3)2

+ 1
2
(k1 · p4)x5 − (k1 · p4)2 + 2(k1 · p4)(k2 · p5)

)

+ c98

(
− 1

2
(k1)2(k1 · p4)2 + 1

2
(k1 · p4)2(k1 − p1 − p2 − p3)2

+ 1
2
(k1 · p4)2x5 + 2(k1 · p4)2(k2 · p5)− (k1 · p4)3

)

+ c99

(
− 1

2
k2

1µ11 + 1
2
(k1 − p1 − p2 − p3)2µ11 + 1

2
µ11x5

− (k1 · p4)µ11 + 2(k2 · p5)µ11

)
. (E.2)

∆


 k

2
k

1

4 5

3 2 1


 = c0 + c1(k1 · p123) + c2(k1 · p123)(k2 · p123) + c3µ12

+ c4(k1 · w1) + c5(k1 · p123)(k1 · w1) + c6(k1 · w2)

+ c7(k1 · p123)(k1 · w2) + c8(k1 · w1)(k1 · w2) + c9(k1 · w3)

+ c10(k1 · p123)(k1 · w3) + c11(k1 · w1)(k1 · w3) + c12(k1 · w2)(k1 · w3)

+ c13

(
(k1 · p123)− (k2 · p123)

)
+ c14(k1 · w1)(k2 · p123)

+ c15(k1 · w2)(k2 · p123) + c16(k1 · w3)(k2 · p123)

+ c17

(
− (k1 · p123)2 + (k2 · p123)2

)
+ c18(k2 · w1)

+ c19(k1 · p123)(k2 · w1) + c20(k1 · w2)(k2 · w1) + c21(k1 · w3)(k2 · w1)

+ c22(k2 · p123)(k2 · w1) + c23(k2 · w2) + c24(k1 · p123)(k2 · w2)

+ c25(k1 · w1)(k2 · w2) + c26(k1 · w3)(k2 · w2) + c27(k2 · p123)(k2 · w2)

+ c28(k2 · w1)(k2 · w2) + c29(k2 · w3) + c30(k1 · p123)(k2 · w3)

+ c31(k1 · w1)(k2 · w3) + c32(k1 · w2)(k2 · w3) + c33(k2 · p123)(k2 · w3)
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+ c34(k2 · w1)(k2 · w3) + c35(k2 · w2)(k2 · w3)

+ c36

(
1
3
(k1 · w1)2 − 1

3x5
(k1 · w3)2(x4 − x5)2 + 2

3
(k1 · w2)2

)

+ c37

(
1
3
(k1 · w2)2 + 1

3x5
(k1 · w3)2(x4 − x5)2 + 2

3
(k1 · w1)2

)

+ c38

(
1
3
(k1 · w1)(k2 · w1)− 1

3x5
(k1 · w3)(k2 · w3)(x4 − x5)2

+ 2
3
(k1 · w2)(k2 · w2)

)

+ c39

(
1
3
(k1 · w2)(k2 · w2) + 1

3x5
(k1 · w3)(k2 · w3)(x4 − x5)2

+ 2
3
(k1 · w1)(k2 · w1)

)

+ c40

(
1
3
(k2 · w1)2 − 1

3x5
(k2 · w3)2(x4 − x5)2 +

2

3
(k2 · w2)2

)

+ c41

(
1
3
(k2 · w2)2 + 1

3x5
(k2 · w3)2(x4 − x5)2 + 2

3
(k2 · w1)2

)

+ c42

(
(k1 · p123)2 + 2(k1 · p123)(k2 · p123) + (k1 · p123)x5

)

+ c43

(
µ11 + 2µ12

)
+ c44

(
− µ11 + µ22

)
(E.3)
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Appendix F

Rational spinors for six-dimensional

loop momenta

In [165] a redefinition of the scalar product between two vectors is used to ensure

rational on-shell loop momentum representations. In this appendix we will extend

this discussion to six-dimensional spinors. The new scalar product between two

six-dimensional vectors will depend on the cut topology through dependence on

the extra-dimensional ISPs, µij = −k[−2ε]
⊥,i · k

[−2ε]
⊥,j . We define,

ki · kj = k
[4d]
i · k[4d]

j + g44k
4
i k

4
j + g55k

5
i k

5
j

= k
[4d]
i · k[4d]

j + µ11k
4
i k

4
j +

(
µ22µ11 − µ2

12

µ11

)
k5
i k

5
j . (F.1)

Reading off the metric we have,

gMN = diag

(
1,−1,−1,−1, µ11,

µ22µ11 − µ2
12

µ11

)
,

gMN = diag

(
1,−1,−1,−1,

1

µ11

,
µ11

µ22µ11 − µ2
12

)
, (F.2)

such that gMNg
NO = δOM . The loop momenta are,

kM1 = (kµ1 , 1, 0) ,

kM2 =

(
kµ2 ,

µ12

µ11

, 1

)
. (F.3)
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To satisfy the Clifford algebra,

{
ΣM , Σ̃N

}
= 2gMN , (F.4)

the first four Σ-matrices, (A.4a)-(A.4d), are left unchanged but the extra-

dimensional ones become,

Σ4 =




0 − 1
cµ11

0 0

1
cµ11

0 0 0

0 0 0 c

0 0 −c 0



, Σ̃4 =




0 c 0 0

−c 0 0 0

0 0 0 − 1
cµ11

0 0 1
cµ11

0



, (F.5a)

Σ5 =




0 − 1

c
√
µ212−µ11µ22

0 0

1

c
√
µ212−µ11µ22

0 0 0

0 0 0 − cµ11√
µ212−µ11µ22

0 0 cµ11√
µ212−µ11µ22

0




, (F.5b)

Σ̃5 =




0 − cµ11√
µ212−µ11µ22

0 0

cµ11√
µ212−µ11µ22

0 0 0

0 0 0 − 1

c
√
µ212−µ11µ22

0 0 1

c
√
µ212−µ11µ22

0




, (F.5c)

where c is a free parameter. A tempting choice is to set c = 1/
√
µ11 to obtain

uniform mass dimension in the matrix entries. However, in an implementation

relying on rational parametrisations we will need to define an algebra that keeps

separate track of every square root. It is therefore more convenient to choose

c = 1 and the only square-root is then,

F ≡
√
µ2

12 − µ11µ22. (F.6)

144



With this definition the last Σ-matrices can be written,

Σ5 =
1

F




0 −1 0 0

1 0 0 0

0 0 0 −µ11

0 0 µ11 0



, Σ̃5 =

1

F




0 −µ11 0 0

µ11 0 0 0

0 0 0 −1

0 0 1 0



. (F.7)

Six-dimensional Feynman slashed momenta can then be written in terms of two

matrices, a, b, which are free of square roots,

/pAB = pMΣM
AB = ap + Fbp. (F.8)

Matrix multiplication of two slashed momenta is done through,

/p/q = (ap.aq + F 2bp.qp)︸ ︷︷ ︸
rational

+F (ap.bq + bp.aq)︸ ︷︷ ︸
rational

. (F.9)

The loop momenta (F.3) in Feynman slash notation are,

/k1 = k
[4d]
1 · Σ[4d] + µ11Σ4, (F.10a)

/k2 = k
[4d]
2 · Σ[4d] + µ12Σ4 − F 2

µ11

Σ5, (F.10b)

and we read off the matrices,

a1 = k
[4d]
1 · Σ[4d] + µ11Σ4, b1 = 0, (F.11a)

a2 = k
[4d]
2 · Σ[4d] + µ12Σ4, b2 =




0 1
µ11

0 0

− 1
µ11

0 0 0

0 0 0 1

0 0 −1 0



. (F.11b)

Note that numerically b2 = −Σ4. For the Σ̃-matrices we get similar relations,

/k
AB
i = kiM Σ̃M,AB = ãi + F b̃i, (F.12)
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ã1 = k
[4d]
1 · Σ̃[4d] + µ11Σ̃4 b̃1 = 0 (F.13a)

ã2 = k
[4d]
2 · Σ̃[4d] + µ12Σ̃4 b̃2 =




0 1 0 0

−1 0 0 0

0 0 0 1
µ11

0 0 − 1
µ11

0



, (F.13b)

where numerically b̃2 = Σ̃4. Note that because b1 = 0 and b̃1 = 0 the one-loop

case is automatically square-root free.

We can now construct spinors by requiring that they solve the Dirac equation

and satisfy the completeness relation,

/ki,ABλ
B = 0, /k

AB
i = λAiaε

abλBib. (F.14)

The general solution when k⊥− = k1 − ik2 6= 0 can be written,

λA(k) =




0 −1

Λµ2
11k

4 k+
k⊥−

k⊥− 0

k−
k4

k⊥−




+ F




0 0

Λµ11k
5 0

0 0

0 −k5
k⊥−

1
µ11



, (F.15a)

λ̃A(k) =




Λµ11k
4 k+

k⊥−

0 1

k−
k4µ11
k⊥−

−k⊥− 0




+ F




−Λk5 0

0 0

0 k5

k⊥−

0 0



, (F.15b)

where,

Λ(k) =
k+k− − k⊥+k⊥−

(k4)2µ2
11 − (k5)2F 2

. (F.16)

Notice that the term linear in F vanishes for k1 since k5
1 = 0. It is also worth

noting that in spinor products the coefficient of F 2 always vanishes. It should be

emphasised that the µij’s come from the topology specific loop momenta, while

we have kept the components of kM general. In practical applications the loop
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momenta is given by (4.46) and Λ(k) simplifies and becomes identical for k1 and

k2,

Λ(k1) = − 1

µ11

, Λ(k2) = − 1

µ11

. (F.17)

Λ(k) is therefore divergent for four-dimensional momenta, but since the Σ-

matrices are unchanged in the four-dimensional subspace we can use the simple

solutions in (2.22).

When calculating two-loop fermion cuts with these spinors it turns out that the

result for the chiral and anti-chiral spinors only differ by the sign of the term linear

in F . Calculation for one of the fermions is therefore sufficient to determine the

cut, thereby lowering the computational expense related to the handling of the

square root.

The six-dimensional spinor product between the two loop momenta become,

λAa (k1)λAȧ(k2) =



−k1−k2

⊥
− + k1

⊥
−k2−

k1
⊥
−

k2
⊥
−
µ12 − µ11

−k2
⊥
−

k1
⊥
−
µ11 + µ12

k1+
k1
⊥
−
− k2+

k2
⊥
−




+ F


 0

k1
⊥
−

k2
⊥
−

− 1
µ11

0


 . (F.18)

We end this appendix by giving an alternative solution to (F.15). In the case

when k⊥− = 0 we instead use,

λA(k) =




Λµ2
11k

4 k−
k⊥+

0 −1

k+
k4

k⊥+

k⊥ 0




+ F




Λµ11k
5 0

0 0

0 −k5
k⊥+

1
µ11

0 0



, (F.19a)

λ̃A(k) =




0 −1

−Λµ11k
4 −k−

k⊥+

k⊥+ 0

−k+
−k4µ11
k⊥+




+ F




0 0

Λk5 0

0 0

0 −k5
k⊥+



. (F.19b)
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