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A method is proposed for replacing a Lie transformation generated by a polynomial in phase-space variables
with a composition of explicit symplectic maps that can be made to agree with the Lie transformation to
an arbitrary order in phase-space variables. By dividing the Lie transformation into steps the method can
be made as accurate as desired, even at a fixed order in phase-space variables. The results can be used
to symplectify a truncated power series map, and may be useful in the construction of explicit symplectic
integrators.
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1 INTRODUCTION

In the study of Hamiltonian systems where the Hamiltonian is a periodic function
of time, it is often computationally convenient to replace the continuous motion in
time by a sequence of discrete symplectic maps that relate conditions on the trajectory
separated by a finite, and generally not small, time step. One convenient choice of the
time step, for example, is the period of the Hamiltonian, in which case one symplectic
map is sufficient. Even when the underlying differential equations of motion are
known, however, it is in general not possible to write down an explicit expression for
the final conditions in terms of the initial ones (final and initial refer to the end and
the beginning of the time step, respectively). In one of the approximation schemes
used to treat this problem, one expresses the final conditions as a power series in the
initial conditions, and then calculates a finite number of terms in the series. While this
method can often give a very accurate description of the map, the truncation of the
power series generally leads to the violation of the symplectic condition, which in turn
gives rise to spurious effects if the map is iterated many times.

A map that consists of a truncated power series can be symplectified by replacing
the series either by an implicit}:? or an explicit expression that is exactly symplectic
and that agrees with the series through the order of truncation. Explicit expressions,
to which we confine our attention in this paper, can be obtained by adding higher-
order terms to the truncated power series such that the modified series satisfies the
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symplectic condition exactly. Ref. 3 demonstrates that only a finite number of higher-
order terms are necessary. While the procedure of Ref. 3 can be implemented with
relative ease in particle tracking codes, the symplectified map often adequately re-
produces the nonsymplectic map only in a small region of phase space. On the other
hand, there exist algorithms, based on Lie transformations generated by polynomi-
als in phase-space variables, that turn the truncated power series into an infinite se-
ries that is exactly symplectic. Two examples of such algorithms are the Dragt-Finn
transformation® and the single Lie transformation generated by a polynomial of one
order higher than the truncated power series.® A limitation of these procedures is
that in general they require the computation and summation of an infinite number of
terms. Except in simple cases, this cannot be done exactly. In this paper we propose a
method to evaluate explicitly, to a desired accuracy, the Lie transformations generated
by polynomials. First we show that the Lie transformations generated by monomials
in phase-space variables can be computed exactly in closed form. We then use this
result to demonstrate that any Lie transformation generated by polynomials can be
approximated to any desired accuracy by a composition of explicit, exactly symplectic
maps.

The organization of the paper is as follows. In Section 2 we introduce the notation
and present the method. Section 3 is devoted to a simple example that illustrates
the use and some limitations of the method, and Section 4 contains a summary and
additional remarks.

2 METHOD

2.1 Preliminaries

We consider a 2d-dimensional phase space and in it a transformation

zzf = Mijz; + Nl(f,gz;z,’c + Nig?,glzjz,izf +.... (1)
Here z is a 2d-dimensional vector with coordinates z; = i, 2i+qa = pi, 1 <1 < d; g
and p; form a canonically conjugate pair; M and N*) are coefficient tensors; and
the superscripts ¢ and f denote initial and final coordinates. The summation over
repeated lower indices is assumed, and we have chosen the coordinates such that the
origin is mapped into itself. Usually Equation (1) represents the Taylor series. For the
discussion that follows, however, that is not necessary.

Now we let the right side of Equation (1) be truncated at order N — 1; that is, we
neglect terms of order N. (Through Section 2.1 we use the word order to refer only
to the order in 2%.) Then, in general, the transformation only preserves the symplectic
condition through order N —2. One way to symplectify the transformation is to write z/
as zf = Mz, where

M = Mehv: @)
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M denotes the linear transformation, hy is a polynomial in z* containing orders 3

through N, and : hy : is the Lie generator associated with hy,: hy = Jij%%fl 5%.
J is a 2d x 2d matrix
0 I

where I is the d x d identity matrix. The exponential of the generator : hy : is defined
by the usual infinite series

S

B ad :hN:
e'h”'zzo X 4)

The coefficients of M and hy are chosen in such a way that terms through order
N — 1 that arise from the expansion of Mz agree with the ones of the same order in
Equation (1) truncated at order N — 1.

In this paper we do not discuss the construction of M and hy. Instead, for a
tutorial on the procedure we refer the reader to Ref. 4 and 5. Those contemplating
the construction of these quantities in actual accelerator problems are also urged to
learn about the efficient numerical procedures contained in automatic differentiation
packages.6—3

We now introduce the assumption that in the region of interest, M gives a good
approximation to the map of Equation (1) truncated at order N — 1. By “good” we
mean that terms of order N that originate from the expansion of Mz*, and whose sole
role is to make the transformation symplectic, do not appreciably affect the dynamics,
which is specified by terms of order 1 through N — 1. We emphasize, however, that
while this assumption simplifies calculations, the method described below is also
applicable in cases where it is advantageous to take a Lie-algebraic transformation
that is of a different form than the one assumed here.

Since the linear part of the transformation M is simply a multiplication of a vector
by a matrix, the main task to be accomplished is to evaluate explicitly e*¥*z. (From
now on we drop the superscript 7 on z.) We show how this can be done such that the
explicit and exactly symplectic map agrees with e**~*z through terms of order N — 1
in a series expansion. (For d = 1 and N < 4 another method is given in Ref. 9.)

2.2 Monomial factorization

The first step is to use the Baker-Campbell-Hausdorff (BCH) formula to rewrite
eh~* as a product of Lie transformations generated by monomials in z. The required
manipulations are standard?, and to order N in Lie generators we rewrite e"~* as

r+2rd——1 )

My = H H e:a;r)Pj(r): ) (5)

r=3 j=1
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r ials i () rjl _1j2 rj2d
Here Pj( ) are monomials in z of order r, Py = e p e+

rj2d =1, and a j(r) are constants. The number of monomials of order r is (T”f_l )

This decomposition of e*~* can be performed numerically in an efficient way, again by
the use of automatic differentiation packages.—2 To proceed further we note that for
any two functions g(z) and f(z) the following holds: exp(: f :)g(z) = g(exp(: f :)z).°
Therefore, in order to evaluate explicitly the action of My on z, it is necessary and
sufficient to evaluate exp(: aET)ID;T) ))z.

Two remarks are in order here. First, given e*~:, the corresponding My is not
unique, since the ordering of Lie transformations generated by monomials is not spec-
ified. We have tested numerically the agreement between e:#¥* and various monomial
orderings for several 2-dimensional maps. No significant differences were found be-
tween differently ordered monomial maps. When applying the prescription given be-
low to a specific problem, however, the reader may want to examine which ordering is
optimal for his/her task. And second, while hx contains only terms through order N,
one can compute its monomial factorization to an order higher than N (higher-order
monomials cancel the commutators arising from lower-order monomials). Since the
difference in Lie generators between My and e~: scales as zV+*+1 as 2 — 0,
computing the monomial factorization to an order higher than N improves the agree-
ment between the two maps in the vicinity of the origin. It is not unequivocally true,
however, that M,z with k > 1 approximates e~z better than Mz does at val-
ues of z that are not very small. We will return to this question in the example treated
later in the paper.

Returning to the evaluation, we need to compute exp(: ay)Pj(r) :)g; and
exp(: ag.r)Pj(T) :)pi, where i labels the degree of freedom. We write P].(T) as Pj(r) =
q?p;-"Pj(T), where the factor P does not depend on ¢; and p;, and then notice that

P (gorpy) = (P7)* s gp* +* (qi0rpy). (6)

This relation is easily proven by induction on s. Therefore, when acting on g; or p;,
the factor P](T) can be combined with the constant ay). For simplicity we now drop

the subscript 4, and set a = ag.’")lf’j(r). Hence, we need to evaluate

"7 (gorp). @)

First we consider the case m # n, and outline the derivation for g. The procedure
for p is analogous, and we merely quote the result. By carrying out the required Poisson
brackets explicitly, it can be shown, for example by induction on s of Equation (8b),
that

R 1 » _
eq'P q=q— amq"pm_l + mna2 §q2"_1p2m 2 + qR:| ) (88.)
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where
_Plam—n)2  m-—2n
R—§s| NE= (s —2+—), (8b)
and
p=q"p" . (8¢)

We differentiate R with respect to p twice, introduce k = s—2, and use a standard rela-
tion between gamma functions, T (k + an‘_—%?) /T (%) = (=1)*r (1 - ﬂm“_—znﬂ) /
I (1- k- 222, 10 get

—-n

2R & L -ae)
W_,;(a(n_m)p)kr(kJrl)F (1—’6—%;—27?). )

This series is convergent, and can be summed using the binomial theorem, provided

la(n —m)p| < 1. (10)

This, then, gives us directly the radius of convergence in p of the Lie transformation
of Equation (7) (the condition is the same for p). We can also find the radius of
convergence from the location of the singular point of the final expressions given
below.

By performing the summation in d2R/dp?, integrating the result twice, and substi-
tuting the expression into Equation (8a), we obtain for the final answer

m

"™ g = g1 + (n — m)ag" ™1 x, (1)

Analogously, the result for p is

e® P = p[l + (n — m)ag® tp" " Fm . (12)

For the case m = n the derivations are very simple. From Equation (7) we get directly
the exponential series, with the result

ea:qmpm;q — qe—amq P , (13)
and
ea:qmpm:p — peamq P X (14)

Alternatively, we can obtain these expressions by taking the limit n — m in Equations
(11) and (12). Equations (13) and (14) are valid for all values of amg™~p™~1. In
order to verify directly that the symplectic condition is satisfied, we take the Poisson
bracket of the right sides of Equations (11) and (12), and also (13) and (14). The
result is 1, as it should be. Evidently, the use of expressions (11-14) in numerical
computations should be straightforward. (Note: After the completion of this work,
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it was brought to my attention that in Ref. 10, Equations (11-14) were derived from a
Hamiltonian.)

2.3 Subdivision of the time interval

We have expressed e~z through order N — 1 in z as a composition of explicit
maps that are exactly symplectic. Since e?~* itself is computed from a power series
truncated at order N — 1, the result given here is a consistent symplectification of the
original power series. In many problems of interest, however, the value of z can be
sufficiently large that the agreement between e*V:z and My z through order N — 1
does not make the two transformations as close in magnitude as one would like.
In addition, the requirement of Equation (10) can be too limiting for the region of
interest. This is especially true if the right sides of Equations (11) and (12) possess
branch points. In that case the natural analytic continuation of Equation (8a,b,c) by
the right side of Equation (11) (and analogously for p) may require that p and q take
on complex values — an obviously complicating feature. We now outline a procedure,
based on generalized Trotter’s formula,'!? that can be used to make e"~'2z and its
monomial factorization as close as desired and to make the condition of Equation
(10) less stringent. (Of course, progress towards these goals comes at the expense of
increased computation.) Since we have assumed that Me*~:z is a good, but formal,
symplectification of the truncated series in Equation (1), the procedure enables us to
obtain an explicit, and also good, symplectification of that power series.
We begin by writing e"~* as

e:hN: — (C%ZhN:)L

; (15)

where L is an integer. This relation clearly holds since + : hy : commutes with itself.

Next, following the procedure that yields Equation (5), we decompose eZ**~* into
Lie transformations generated by monomials through order N. We denote this result
by M%). Then, upon taking the composition of Mg‘) L times, we obtain an explicit
map whose difference from "~ in Lie generators is suppressed by a factor of at least

% compared with M. Furthermore, in the evaluation of Lie transformations that

comprise M%), the left side of inequality (10) is multiplied by at least 1.
To demonstrate the truth of these assertions, we note that each monomial in ME\I,’)
carries a factor of not less than + (monomials of order in z higher than 3 can be mul-

tiplied by factors that contain higher powers of 1) Hence the less restrictive condition

on convergence (the equivalent of Equation (10)). By using the BCH formula we can
recombine the exponents in M%') into a single exponent yielding

1
MP = exp |: Thy 0 (16)

Terms of order N + 1 in z in the exponent on the right side of Equation (16) arise
only from commutators of lower-order monomials in MS\I,‘). Therefore, in 1, they
must be at least of order 2. Upon raising the right side of Equation (16) to the Lth
power, we see that terms of order N + 1 in z remain suppressed by at least a factor of
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1. Therefore, by choosing L large enough, we can make (M%) )L approach e?~ as
closely as desired. (For z in a bounded domain the procedure is convergent. See Ref.
12.)

The power of + suppressing spurious terms can be raised. The most straightforward

approach is to compute, and adjoin to M%’) , all Lie transformations whose generators
carry a factor of (%)2, that is those arising from a single commutator of monomials

present in L hx which are not included in M(L) We call this result R} The differ-
ence in Lie generators between Ry and e~ is of order (1)° and so Ry and e
differ by terms of order (i)2 N+1_ At the expense of increasing the number of Lie

transformations that make up R D the suppression factor + can obviously be raised
to any power desired.
Another approach for raising the power of % is based on judicious ordering of Lie

transformations that make up M%‘). The ordering is chosen such that an application
of the BCH formula to bring the transformation into the form of Equation (16) leads

to the vanishing of commutators through a certain order in +. The most common

ordering scheme is symmetrization.*"® An elementary application of this technique
is given in the example that follows. As in the case when additional commutators are
computed, the price paid for increasing the power of  in the ordering schemes is an

increase in the number of Lie transformations compared with M(L)

The method described above which uses powers of + L to suppress unwanted terms
is similar to the construction of explicit symplectic mtegrators with + 1 playing the role
of the time step. The two approaches differ in that in the present one z is the primary

small parameter (for example, in M(L) terms that are multiplied by (+ ) but have
the power of z less than N + 1 are kept) powers of 1 1 provide additional suppres-
sion to terms that are already of higher order in z. It is worth noting that monomial
factorization can provide an additional tool for the construction of symplectic integra-
tors: Instead of relying on symmetrization to remove the commutators that cannot be
explicitly evaluated, one can use Equations (11-14) to explicitly evaluate all commu-
tators for Lie transformations generated by polynomials. There are two caveats. First,
the computation of commutators does not in general require less work or lead to fewer
Lie transformations than symmetrization. And second, in contrast to symmetrization
the difference between the exact and approximate map can be of any order in 1, even
or odd, and can contain both even and odd powers of +. Hence replacing 1 by — 1 in
general yields the inverse of the approximate map only through the order of approx1-
mation in .

3 EXAMPLE

To illustrate the use of monomial factorization, we apply the procedures described
above to the map

M = exp(: hg ), (17a)
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FIGURE 1: Contours of constant values of h¢ as given by Equation (17b). Each of the first seven rings
contains a point that is chosen as an initial condition for the iterations of the map Mg displayed in Figure 2.

where

1 1 1 1
B = —g 4 Spt 4 S By LB 17b
6=79 + Pt paP- gz (17v)

The linear transformation is the identity . The phase-space contour of M is shown in
Figure 1.

It is interesting to write M in terms of action and angle variables, J = -;—(q2 +
p?), ¢ = arctan(2). M then reads

M = exp(: he :) exp(: he :), (18a)
where
he =27mnJ (ninteger), (18b)

and

he = 2]2 + EJQ cos(4¢) — %J?’ sin(44). (18c)
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FIGURE 2: 3000 iterations of the map Mg for each of the initial conditions along the p=—gq axis: g= 0.05,
0.1,0.15,0.2,0.3, 0.4, 0.56, 0.57.

We have explicitly displayed the identity transformation as a linear transformations
with an integer unperturbed tune. The first term in hg represents anharmonicity (tune
shift with amplitude). If the unperturbed tune were not an integer, then the second
and third terms would drive the resonance at the shifted tune of J(minteger). The
choice of the identity for the linear transformation stems from the ease of drawing
the phase-space portrait of M in this case, as well as from the fact that monomial
factorization is not required for the linear part of the map.

Returning to the variables ¢ and p, M can be factorized through sixth order into
transformations generated by monomials as follows:

1.4, 1.4 1.5, _1.3.3. _1. 5.
MG = el ieiP g5l Pe 20 Pigm 5P} (19)

(The prime is affixed to M, to distinguish it from maps considered later.) The third
and fifth transformations have finite domains of absolute convergence,

g< (%)1/4 ;i p< (Z)lﬂ . (20)

(Of course, neither of these transformations acts on initial conditions.) Figure 2 shows
3000 iterations of Mg for eight initial conditions along the p = —q axis. Evidently, M
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reproduces the behavior of M well for small values of z, but fails to capture the entire
stable region around the origin.

As discussed above, we can subdivide M into L steps and monomial-factorize each
one of them. This procedure yields

1.4, 1.4 1.5 1 .38 _ 1 s\l
Mg = (eﬁ‘q ‘eaL’P lesL'd PigT 212’1 P e TSI P :) . (21)

The difference between My and M in Lie generators is of order +28. We can also

produce a symmetrized version of this decomposition:!3—16

M’GH —_ (eﬁlqzlleﬁZp4leré—qu5pZe—ﬁlqpslem%:qspie&2p426ﬁ2q4:)L. (22)
When the Lie transformations that make up the Lth root of M are brought into
a single exponent, the lowest-order commutators between the sixth-order terms, be-
tween the sixth- and fourth-order terms, and between the fourth-order terms vanish
because of symmetrization (the reader may easily check this). Thus the difference in
Lie generators between M and My is of order 2228 (these terms come from double
commutators between fourth-order terms). We do not employ here the procedure for

constructing a map that agrees with eZ*s* through order (%)2 in Lie generators by
computing the relevant commutators. Such a computation leads to 9 Lie transforma-
tions, compared with 7 in Equation (22).

Since L > 1, the analogues of Equation (20) for M¢ and Mg’ are less stringent.
This fact is especially useful if repeated applications of the Lth root of these maps do
not take the trajectory to infinity (that is, if the motion is bounded).

In monomial-factorizing M or M/ we can also include corrections of order 28.
The result is

4., 1 .4, 1.5, . __1_..,3.3. 1 .,5.
‘edLP ‘eBL'T Pl 212 qp ‘e BLIP i x

Mg =(eir
e—-ﬁ:qsze#:q6p2:ef—2—:q4p4:e— #:quﬁze— ﬁ:psz)L . (23)
The difference between Mg and M in Lie generators is of order 420,

For L = 1 and close to the origin Mg produces rings that are closer to the exact
result than those of Figure 2. Neither Mg nor Mg', however, captures the bounded
trajectories that are present in Figure 1, but not in Figure 2. This fact is displayed in
Figure 3 whose description is given below.

In many applications it may be of interest to find the last bounded trajectory
(boundary curve) for some M. In general M contains a linear transformation that
is different from the identity, in which case the simple drawing of contours that we
have used here cannot be done. Thus it is useful to know how well the monomial-
factorized maps capture this aspect of the exact map. As L — oo, Mg, Mg, and MY’
all approach M. We now examine how fast they reproduce the stable region of M
with increasing L.

The value of hg on the boundary curve for maps M is approximately 0.30. On the
p = —q axis this value of hg corresponds to the value of ¢ of 0.88. For the maps

6, Mg, and Mg we select a value of L, and vary ¢ along the p = —g¢ axis until
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FIGURE 3: Location of boundary curves for My (crosses), My’ (open circles), and Mg (solid diamonds)
vs. L. The vertical axis labels the values of g along the p = —q axis where the boundary curve lies. The
solid line is the result for M.

we find the largest value of ¢ that gives a closed curve. This value of g is then plotted
versus L for the three maps.

The results are displayed in Figure 3. The steps in ¢ are 0.01, and for each initial
condition the maps are iterated between 3000 and 50 000 times, depending on the res-
olution necessary to establish that a closed curve exists. When L = 1 Mg is appreciably
less accurate than Mg or Mg’ in locating the boundary curve (although, of course, as
z — 0 Mgz approaches Mz more rapidly than the other two transformations). We
thus see that computing the monomial factorization of M to higher order in z than the
highest one contained in hy does not necessarily lead to an improved approximation
at appreciable values of z. With increasing L, however, the locations of the boundary
curves for Mg and My’ approach the one for the exact map more rapidly than does
the location of the boundary curve for Mg. This does not mean, though, that M{’ or
Mg is more economical in terms of the number of Lie transformations required: to
reach the accuracy in ¢ of 0.02, Mg needs 50 Lie transformations (L = 5), Mg’ needs
49(L = 7), and M{ needs 40(L = 8).It would be interesting to see if comparable
statements hold for maps of physical interest. Finally we note that even at L = 12, the
boundary curve for Mg is at ¢ = 0.86. We have verified that this curve does move to
the value of g of 0.88 when L is substantially increased (to the order of 1000).
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4 SUMMARY

We have expressed an arbitrary nonlinear symplectic map given to a finite order in Lie
generators as a composition of explicit maps that are exactly symplectic. We have also
shown that this procedure can be used to evaluate the initial map explicitly to arbitrary
accuracy. While we had assumed that the symplectic map was given as a single Lie
transformation and then used the BCH formula to get the monomial factorization,
we could have also extracted this factorization directly from the truncated power
series (without the need for first computing the single Lie transformation). Efficient
numerical techniques for performing this calculation are contained, for example, in
automatic differentiation packages.®=® Furthermore, the prescription of Equation
(15) can also be used directly on power series by taking the Lth root of the series.
Whether this one or the procedure in the paper is adopted may depend on the radius
of convergence of the operation on the series, as well as the computational effort
required by each method.
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