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Abstract
Realism about general relativity (GR) seems to imply realism about spacetime cur-
vature. The existence of the teleparallel equivalent of general relativity (TEGR) calls
this into question, for (a) TEGR is set in a torsionful but flat spacetime, and (b) TEGR
is empirically equivalent to GR. Knox (Stud Hist Philos Sci Part B Stud Hist Philos
Mod Phys 42(4):264–275, 2011) claims that there is no genuine underdetermination
between GR and TEGR; we call this verdict into question by isolating and addressing
her individual arguments. In addition, we anticipate and evaluate two further worries
for realism about the torsionful spacetimes of TEGR, which we call the ‘problem of
operationalisability’ and the ‘problem of visualisability’.

Keywords Teleparallel gravity · Curvature · Torsion · Underdetermination ·
Intertranslatability · Tetrads · Surplus structure · Inertial frames · Functionalism ·
Operationalisability · Visualisability · Reichenbach

1 Introduction

Realism about general relativity (GR) seems to imply realism about spacetime cur-
vature. The existence of a version of teleparallel gravity—called the teleparallel
equivalent of general relativity (TEGR)—calls this into question, since (a) TEGR
is set in a torsionful but flat spacetime, and (b) TEGR is empirically equivalent to GR,
so that no experiment could discern them.1 So, building upon prior work by Lyre &
Eynck (2003) and by Knox (2011), underdetermination and realism about GRwarrant
renewed attention.

1 Modulo, at least, issues to do with boundaries, discussed by Wolf & Read (2023), to which we return in
Sect. 3.2.
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The original version of teleparallel gravity was devised by Cartan (1922; 1923),
and developed further by Einstein himself (1928a; 1928b; 1930) inspired also by
his correspondence with Cartan (see their correspondence in (Debever, 1979)). The
key difference with GR is that it postulates an anti-symmetric connection instead
of the (symmetric) Levi-Civita connection; the former is torsionful but flat, whereas
the latter is torsion-free but curved. Einstein’s aim was the unification of gravity with
electromagnetism, as the latter couldperhaps be capturedby the six additional variables
in the teleparallel theory—a project abandoned as physicists convinced themselves
that the theory would not lead to novel predictions (Sauer, 2006). Another hope of
the unified field theory approach was to reproduce quantum effects, which likewise
failed (Van Dongen, 2010). A final large problem was the overdetermination of the
field equations, resulting in practical obstacles for calculations. All this being said,
teleparallelism has since been revived as an empirically equivalent alternative to GR;
in this article, we will focus upon this modern-day version of the approach.2

Over the past decade, TEGR has attracted increasing attention from philosophers.
Lyre & Eynck (2003) and Knox (2011) introduced into the philosophical literature the
topic of the putative underdetermination between GR and TEGR; other recent works
have discussed the ‘background independence’ of TEGR (Read, 2023), the extent to
which the theory really is empirically equivalent to GR once one considers boundary
phenomena (Wolf & Read, 2023), the status of equivalence principles in TEGR (Read
& Teh, 2022), and the existence of non-relativistic teleparallel theories (March et al.,
2024; Read & Teh, 2018; Wolf et al., 2024a). The underdetermination between GR
and TEGR has also been discussed in (Wolf et al., 2023b) (with regard to classic and
modern tests of general relativity) and in (Fankhauser & Read, 2023) (with particular
focus on the results of gravitational redshift experiments). In the present article, we
continue to explore this latter theme of the putative underdetermination between GR
and TEGR, but now with a focus upon claims made by Knox (2011) to the effect that
there is no genuine underdetermination between these theories.

The central aim of Knox’ article is to undermine the underdetermination claim
through a series of arguments that concern the difficulty of ‘reading off’ ontology
from a theory or formalism. Unfortunately, Knox’ article is not too explicit as to how
we should identify such an ontology, except for inviting us to adopt a “relatively
liberal attitude" (Knox 2011, p. 274). Here, we render Knox’ arguments more explicit,
but maintain—after careful analysis—that they are not conclusive: to follow Knox
to her conclusion requires one to buy into certain philosophical and metaphysical
commitments which might not be palatable to all—or which, at the very least, deserve
to be rendered explicit so that one is in a better position to assess their palatability.

In the second half of this article, we consider two further arguments—different
from those raised by Knox—which might lead one to reject TEGR as offering a seri-
ous ontological alternative to GR. Both of these arguments have it that the concept of
torsion is somehow metaphysically problematic. The ‘problem of operationalisabil-
ity’ takes seriously the worry that torsion might not be as easy to operationalise as
curvature. The ‘problem of visualisability’ articulates the question of whether torsion

2 See (Aldrovandi & Pereira, 2012) and (Bahamonde et al., 2023) for modern, book-length presentations
of the theory.
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is harder to visualise than curvature. By extension, verdicts on that question might
warrant thinking differently about the physical interpretation of TEGR as compared
with that of GR. This runs into the question of whether intelligibility, perspicuity,
visualisability, or the like, is necessary for the identification of the ontological com-
mitments of a particular theory: questions which have recently been taken up in the
philosophy of symmetries by e.g. Møller-Nielsen (2017), but which go backmuch fur-
ther (Chang, 2009; de Regt, 1997; de Regt & Dieks, 2005; Galison, 1977). In response
to this worry: we are optimistic about the prospects for visualising torsion. Not only is
the non-closure of parallelograms (which constitutes the definition of torsion—more
on this below) visualisable; in addition, there are visualisations of torsion available
in the literature, such as certain three-dimensional crystalline structures in condensed
matter physics.

Bringing all this together, we conclude that neither of these problems is sufficient
to defuse the underdetermination; and since also Knox’ arguments are at the very least
questionable (in the literal sense), the challenge of underdetermination remains (at least
in the absence of any other arguments which might defuse it)—thereby threatening
the interpretation of curvature as a real property of spacetime.

However, that is not to say that GR/TEGR underdetermination cannot be defused.
Although the current article focuses on how the above-mentioned defusing efforts
are insufficient, other such efforts have in fact been proposed. For example, Wolf et
al. (2023b) argue that GR serves as a common core of the two theories (and of the
‘geometric trinity of gravity’ more generally—on which see (Beltrán Jiménez et al.,
2019)), since the Levi-Civita connection is always definable in each theory; separately,
Mulder (2024a) argues that, by focusing on their common mathematical origin (the
non-vanishing of the Lie bracket of covariant derivatives), the meaning of the terms
‘torsion’ and ‘curvature’ should be construed such that the distinction between them
collapses.

The structure of this article is as follows. In Sect. 2, we recall the relevant back-
ground on TEGR. In Sect. 3, we present and evaluate Knox’ arguments that there is
no genuine underdetermination here. In Sects. 4 and 5, we address the problems of
operationalisability and of visualisability of torsion, respectively.

2 Formalism of teleparallel gravity

‘Teleparallel gravity’ is an umbrella term for a set of spacetime theories on paral-
lelisable manifolds which deploy an anti-symmetric compatible affine connection, as
opposed to the Levi-Civita connection of GR.3 Instead of exhibiting spacetime cur-
vature, teleparallel theories manifest spacetime torsion, which is nothing other than a
codification of the antisymmetry of an affine connection �, as encoded in the ‘torsion
tensor’,4

T τ
μν := �τ

μν − �τ
νμ. (2.1)

3 Recall that a differentiable manifold M is parallelisable if and only if it admits a set of smooth vector
fields {V1, . . . , Vn} such that, at every point p ∈ M , the tangent vectors {V1(p), . . . , Vn(p)} form a basis
of the tangent space Tp M .
4 We will generally use coordinate indices in this article rather than abstract indices.
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Geometrically, torsion captures the extent to which two infinitesimal vectors fail to
commutewhen parallel transported along themselves—pictorially, this is often glossed
as the ‘non-closure of infinitesimal parallelograms’.

Turning to dynamics, Hayashi & Shirafuji (1979) give one unified Lagrangian for
all teleparallel theories, depending upon which value one takes for three independent
parameters, a1, a2, a3 (and a constant κ):

L = κ
(
a1T ρ

μν T μν
ρ + a2T μ

ρν T ρ
μν + a3T ρ

μρ T νμ
ν

)
. (2.2)

This is what was meant above with ‘teleparallel gravity’ being an umbrella term. The
teleparallel equivalent to general relativity (TEGR) is obtained by taking a1 = 1/4,
a2 = 1/2, a3 = −1,

LTEGR = κ

(
1

4
T ρ

μν T μν
ρ + 1

2
T μ

ρν T ρ
μν − T ρ

μρ T νμ
ν

)
, (2.3)

which can then be rewritten as

LTEGR = κT , (2.4)

where

T := 1

4
T ρ

μν T μν
ρ + 1

2
T μ

ρν T ρ
μν − T ρ

μρ T νμ
ν (2.5)

is the ‘torsion scalar’. This Lagrangian can in turn be rewritten in terms of the Ricci
scalar R and a boundary term:

T = −R − 2∇νT ρ
ρν . (2.6)

This boundary term does not contribute to the dynamics and thus establishes—at least
at the dynamical level—the equivalence with the Einstein–Hilbert action and hence
the Einstein equations.5

There is only one further technical point to make which will be necessary for our
purposes in this article. Can one say more about the particular form that the torsionful
(but flat) derivative operator will take in TEGR, analogous to the form of the Levi-
Civita connection takes in terms of the metric tensor in GR? Denoting the coefficients
of a completely anti-symmetric connection ∇ as �

ρ
μν and the components of the

(completely symmetric) Levi-Civita connection ∇̊ for a metric gμν as �̊
ρ
μν , one can

show that these are related as6

5 See (Wolf & Read, 2023) for subtleties regarding this equivalence claim when boundary phenomena are
taken into account, where it is argued that even though the two theories are dynamically equivalent, having
actions which differ by a boundary term does have empirical consequences.

123



Synthese          (2024) 204:126 Page 5 of 29   126 

�̊ρ
μν = �ρ

μν − K ρ
μν , (2.7)

where K ρ
μν is the ‘contorsion tensor’, which is defined in terms of the torsion tensor

as

Kμνλ = 1

2

(
Tμνλ + Tνλμ − Tλμν

)
. (2.8)

Sometimes the TEGR connection is referred to as ‘Weitzenböck connection’—wewill
follow suit in this article, and moreover will in general work within the ‘pure tetrad’
framework according to which the components of this connection can be written
exclusively in terms of the tetrad fields eμ

a (also called ‘tetrads’, ‘frame fields’ or
‘vielbeins’) and their inverse ‘co-tetrads’ ea

μ, as
7

�ρ
μν = eρ

a∂νea
μ. (2.9)

There is, however, a ‘covariant’ approach to TEGR, in which the spacetime connec-
tion has components which are invariant under local Lorentz transformations—see
(Aldrovandi andPereira 2012, pp. 11–2, 48–9).We return to this distinction inSect. 3.2;
in the meantime, see (Aldrovandi & Pereira, 2012; Bahamonde et al., 2023) for further
background on the formalism of TEGR.

3 Knox on teleparallel gravity

With the relevant formalism of TEGR in hand, we turn now to an assessment of Knox’
(2011) claims to the effect that there is no genuine underdetermination between GR
and TEGR, because the ontology of TEGR is ‘really’ that of GR. The word ‘force’ in
the title of Knox’ article—‘Newton-Cartan theory and teleparallel gravity: the force
of a formulation’—should then be read with a pejorative ring to it: it signals that
TEGR as a mathematical formulation has an ideological force behind it that fools us
into thinking that we are confronted with a genuine example of underdetermination
of theory by data. Knox does not argue against such underdetermination by disputing
the empirical equivalence of these two theories; on the contrary, she argues for their
ontological equivalence, in the sense that they should be interpreted as making the

6 One way to do this is to repeat the standard derivation of the Levi-Civita connection coefficients but
allowing for both symmetry and anti-symmetry, as follows. Write the metric compatibility condition three
times, cycling through the indices, and add these together as: 0 = ∇ρ gμν − ∇μ gνρ − ∇ν gρμ . Writing
out the connection coefficients, and using the definition of the torsion tensor (2.1) and its anti-symmetry
property Tμ(νρ) = 0, will result in (2.7).
7 The tetrads cover the manifold such that for each point there is a set of four independent vector fields
that span the tangent bundle at that point: ea = e μ

a
(
∂/∂xμ

)
, for a = 0, 1, 2, 3. Co-tetrads are then

ea = ea
μdxμ, so that e μ

a eb
μ = δ b

a , and these connect to spacetime vectors as e μ
a V a = V μ.
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same claims about what nature is like8—that the theories are empirically equivalent
thereby (for Knox) follows straightforwardly. On this, Knox writes:

[...] these theories do not, in fact, represent cases of worrying underdetermi-
nation. On close examination, the alternative formulations are best interpreted
as postulating the same spacetime ontology. In accepting this, we see that the
ontological commitments of these theories cannot be directly deduced from their
mathematical form. (Knox 2011, p. 264)

At the same time, in Knox’ eyes these two equivalent formulations are not on a par:
representations fromGR take precedence, for her, over those from TEGR. It is not that
GR is a reformulation of TEGR—rather, loosely, the situation is more akin to TEGR
being a bad ‘coordinate choice’ for GR. That is, in the sense that it is an unilluminating
way of splitting up degrees of freedom (cf. the relationship betweenNewtonian gravity
and Newton-Cartan theory, as also discussed by Knox (2014)).

The points inKnox’ article are important for bringing together philosophical themes
concerning TEGR and for presenting the theory in a manner which is accessible to
philosophers. That work was long overdue. Moreover, Knox furthers the debate by
clearing up (at least in part) some important muddles, such as TEGR being regarded as
a ‘force’ theory akin to Yang-Mills theory (see also (Wallace, 2015)) and, importantly,
drawing attention to how non-gravitational dynamics can influence our interpretation
of the gravitational sector.9 That being said, Knox’main argument—that TEGR should
be seen as a reformulation of GR instead of as a rival—does not move us, as it rests
on questionable assumptions which remain unarticulated. And as we will show, these
assumptions appear to stem from prior familiarity with GR; to stem from an Occamist
drive to expunge gauge degrees of freedom at all costs; from a commitment to an
understanding of what is meant by ‘spacetime structure’ which is problematically
theory-independent; and from certain other implicit philosophical commitments, such
as a specific form of spacetime functionalism (more onwhich later). Below, we present
and assess Knox’ critiques of TEGR in the form of three ‘problems’ that are to be taken
as potential motivations to prefer GR. We argue that in each case, Knox’ objections
to TEGR are relevant but not decisive.

8 We believe other qualifications, like ‘theoretical equivalence’ or ‘formal equivalence’ would be less apt
than ‘ontological equivalence’ due to their mathematical connotations. Weatherall & Meskhidze (2024),
for example, argue that GR and TEGR are not theoretically equivalent (in the specific sense that they are
not categorically equivalent).
9 Regarding the latter, we do commend Knox’ discussion that considering non-gravitational forces and
their associated force-free trajectories can make a difference in evaluating the seriousness of the underde-
termination. She applies this to the non-relativistic case of putative underdetermination between Newtonian
gravity and Newton-Cartan theory. Yet, the opposite can also be the case: in Weyl’s ‘geometrisation’ of
the electromagnetic field (e.g., Giovanelli 2021), for example, particles follow the affine geodesics of dif-
ferent affine connections, namely those corresponding to different values of electric charge. Furthermore,
if such characteristics are deemed problematic, sometimes other formulations can circumvent them: in
five-dimensional Kaluza–Klein theory, different values of charge are identified with different values of
momentum in an additional spatial dimension. The point is that when one adds non-gravitational forces
to break underdetermination, the choice about how to add these forces mathematically is itself subject to
interpretation.
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3.1 Reverse-engineering themetric and connection of GR

One of Knox’ main accusations against TEGR is that all the features of the theory
are such that they in fact reproduce the familiar geometrical properties or objects of
GR. Thus, the implication is that TEGR is somehow parasitic on GR and its ontology.
Knox’ main examples are (i) the obscured use of the metric, and (ii) the coupling of
matter to the Levi-Civita connection. We look at these in turn.

Knox argues that the metric tensor of GR is obscured in TEGR and yet remains a
central tool in that theory:

So far we have not mentioned the metric. In teleparallel gravity, this is quite
possible; it does not appear in the formalism of the theory. Nonetheless, it is
worth noticing that it has been hiding in the shadows all along, closely tied to
the tetrad field. In fact, gμν is still used to raise and lower indices, just as it is in
GR.

One might therefore have doubts that teleparallel gravity really postulates a
different ontology; the old entities from GR appear to be waiting in the wings.
(Knox 2011, pp. 273–4)

As mentioned in the previous section, it is indeed quite typical to see TEGR presented
in terms of tetrads, for we have already seen that these fields can be used—via (2.9)—
to construct theWeitzenböck connection coefficients in TEGR; moreover, (co-)tetrads
are related to the metric as

gμν = e a
μ e b

ν ηab, (3.1)

for all spacetime points p ∈ M and the tangent space Minkowksi metric field ηab.
With this in mind, we can then formulate a potential problem for TEGR:

Problem 1(a): The shymetric tensor: TEGR is usually set in the tetrad formal-
ism and its main quantities are commonly expressed in terms of those fields. Yet,
the metric is still ‘waiting in the wings’, so to speak, not only through (3.1) but
also because it is used to raise and lower spacetime indices. Since TEGR relies
on the metric tensor in this way, we should therefore not read off the ontology
of the theory from its surface formalism.

How should we respond to this problem? It is indeed true that the GR metric as given
in (3.1) is used to raise and lower spacetime indices in TEGR. Of course, one might
argue that were one to use only the right-hand side of this equation to raise and lower
indices, then reference to the metric tensor would thereby be avoided. Such a reply,
however, might be too quick: it is the same piece of structure that is doing the raising
and lowering and this piece of structure is a complex of two tetrads whereas in GR it
is the metric tensor directly, part and parcel of its conceptual framework.

But, in any case, there is no obligation to set up TEGR using tetrad fields: tetrads
are generally used for convenience in order to express relevant physical quantities in
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Table 1 Actions for both general relativity and teleparallel gravity can be formulated either in terms of
metrics or in terms of tetrads

Metric formalism Tetrad formalism

Symmetric connection
∫

dxμ√−gR
∫

dxμeR
Anti-symmetric connection

∫
dxμ√−gT

∫
dxμeT

the theory, but this is by nomeans compulsory.10 Indeed, there are metric formulations
of TEGR just as well as there tetrad formulations. Up to a boundary term, the TEGR
Lagrangian (2.3) can be coupled into an action as

Sg
TEGR =

∫
dx4

√−gT (3.2)

just as well as it can be written as

Se
TEGR = dx4

∫
eT , (3.3)

where g is the determinant of the metric tensor, cf. (Hohmann, 2021; Capozziello
et al., 2022). Conversely, tetrads can also be introduced freely while using GR and
indeed this is routinely done (Møller, 1961a, b, 1978). Table 1 summarises these four
possible sectors. Perhaps one could still argue as follows: for the metric formulation
of TEGR, we are actually even closer to GR than in the tetradic formulation. However,
even in this case one would be ontologically committing to not only the metric but
also an anti-symmetric connection (and hence not the Levi-Civita connection). The
case remains that we can formulate either TEGR or GR in terms of tetrads or in terms
of the metric tensor (plus spacetime derivative operator). Thus one can only conclude
that the use of tetrad fields is orthogonal to working within the framework of TEGR,
and so critiques which invoke said formalism in an essential way cut no ice.

That being said, even if we were to restrict ourselves to a version of TEGR which
makes use of tetrads and a version of GR which does not, we think that Knox’ argu-
mentation could be questioned. Within that context, Knox still looks at TEGR and
takes the metric to be more fundamental than the tetrad fields:11

Both [TEGR] and GR appear to take the metric to be fundamental. Looked at
another way, we can note that both theories admit of both the tetrad field and
the metric; tetrad formulations of GR have various uses. Moreover, rods and
clocks survey the self-same metric in both theories. The only difference is the
way in which this comes about—either via the Weitzenböck connection or the

10 Tetrads are also helpful for understanding TEGRas a ‘gauge theory of the translations’—see (Aldrovandi
& Pereira, 2012).
11 Here, neither we nor Knox (2011) should be understood as taking ‘fundamental’ to be synonymous with
‘real’. Moreover, while of course all parties could say more about what ‘fundamentality’ in physics really
amounts to (see e.g. (Tahko, 2023)), these issues don’t really matter for the purposes of the discussion here;
one can simply choose to work with one’s preferred account of the notion.
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Levi-Civita connection. It seems that both theories posit the ‘same’ spacetime;
if the connections in the two theories are thought of as modelling properties of
this spacetime, they should perhaps be seen as alternative representations of the
same properties. (Knox 2011, p. 273)

But the fact that themetric and tetrad formulations of either theory are intertranslatable
does not tell us anything about the relative ‘fundamentality’ of the metric or tetrads.12

Nor does the observation that metrical structure is just as well operationalised in both
theories—by linking metrical structure to lengths and durations surveyed by rods and
clocks—per se privilege the metric over the tetrads.13

Indeed, the difference between GR and TEGR just is the use of a symmetric versus
an anti-symmetric connection, with the corresponding consequences for curvature
and torsion. It is the realistic interpretation of curvature and torsion as properties of
spacetime that is in the balance, while we already know that there is no discrepancy
of measurement expected for metrical properties. So: if Knox indeed has a reason for
privileging the formalism of GR over that of TEGR, then this likely has to do with
some other considerations, such as those discussed in Sects. 3.2 and 3.3.

Ultimately, it is not so surprising thatmetrical structure can be constructed inTEGR.
After all, in TEGR (just as in GR) we need to have measures of length and duration,
as surveyed by rods and clocks. This metrical structure can be encoded either by
the metric tensor or by the tetrads. But the point of metric-affine geometries such as
TEGR is that the metric structure and the affine structure are not as intimately tied
up with each other as they are in GR. In GR it is common to regard the metric as
ontologically prior to the connection, since the former uniquely determines the latter.
But this interpretation is not necessary and it may even be more helpful to regard the
connection as ontologically prior—a point made, for example, by Stachel (2007).

In TEGR, the conceptual cleavage of metrical structure (whether represented by
a metric tensor or by tetrads) and affine structure (represented by the anti-symmetric
connection) is more readily recognised. The salient difference between GR and TEGR
has to do with the symmetry of the connection, and (in the quote above) Knox (2011,
p. 273) points exactly at this: “[...] rods and clocks survey the self-same metric in
both theories. The only difference is the way in which this comes about—either via
the Weitzenböck connection or the Levi-Civita connection." The question is not about

12 In general, there is no clear-cut reason why either the tetrad formulation or the metric formulation
regarded as being more apt to represent reality. Usually the metric degrees of freedom are taken to be
sufficient to capture the real degrees of freedom. It is of course important (fn. 3) that the manifold be
parallelisable, i.e. admit of tetrads in the first place. To the extent that this is an objection, it applies to
tetrad formulation of GR as well as to tetrad formulations of TEGR (as also pointed out by Knox (2011),
fn. 29, p. 272). Nevertheless, such restrictions can be seen as very natural from either standpoint, and in
fact could be argued to constitute a type of evidence for tetrads (cf. (Nawarajan & Visser, 2016)); we thank
an anonymous referee for this point. Another reason for taking tetrads seriously is that they—unlike the
metric—admit of fermionic degrees of freedom by allowing for the construction of Dirac operators in terms
of the tetrads, cf. (Krasnov, 2020).
13 Although of course, due to their extra gauge freedom, there is a clear sense in which the tetrads are
less operationalisable than the metric field. The situation here is somewhat akin to debates regarding the
metaphysics of electromagnetism—in principle, both F-field and A-field electromagnetism offer viable
metaphysics for the theory, in spite of the latter having more gauge freedom and thereby being less
operationalisable.
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whether the metric is ontologically prior to either the tetrads or the connection, but
rather about whether the different connections are to be interpreted as giving rise to
genuinely different spacetime structures (in casu: curved or torsionful spacetimes, and
thus whether curvature or torsion, if any, is deserving of a realistic interpretation as a
property of spacetime).

We take the above to dispatch worries regarding the metric in TEGR, at least
conditional on clearing up some issues regarding scientific realism to which we will
later return. This leaves us with (ii), concerning the putative reverse-engineering of
the Levi-Civita connection. This is more involved, because it is tied closely to a worry
about inertial structure which we address in Sect. 3.3, but we nevertheless discuss it
here as a conceptually independent point of reverse-engineering.

To establish the existence of conserved quantities in TEGR, one uses the Levi-Civita
connection for theminimal coupling rule, re-expressing theWeitzenböck connection∇
of TEGR in terms of the Levi-Civita connection of GR and the contorsion tensor. That
is, the field equations of TEGR lead to a conserved quantity hj μ

a := (∂LTEGR/∂ea
μ)

only with the teleparallel covariant connection, which—one may argue, looking at
(2.7)—is the Levi-Civita connection in disguise (in the sense that, ultimately, this is a
GR expression simply rewritten in TEGR quantities):

Dμ j μ
a := ∂μ j μ

a + (
�μ

νμ − K μ
νμ

)
jνa . (3.4)

This mimicking can be formulated as another problem:

Problem 1(b): Reverse-engineering the Levi-Civita connection: In TEGR
the teleparallel covariant derivative (3.4) is made up out of the contorsion tensor
and the Weitzenböck connection, thereby closely mimicking the Levi-Civita
connection of GR. It would be more natural were the conserved quantities to
be derived using the Weitzenböck connection. Hence, it seems that it is the
Levi-Civita connection of GR which is doing much of the physical work in
TEGR.

This problem seems to have real bite, since it highlights that—at least when it comes
to conserved quantities—the Weitzenböck connection might not play as central a role
in TEGR as does the Levi-Civita connection.

In response to the worry, we say the following: versions of teleparallel gravity
are plentiful, not only through different choices for the parameters of the Hayashi-
Shirafuji Lagrangian (2.2) but also through the choices that are made to couple fields
dynamically. It is true that TEGR is constructed explicitly so as to reproduce the
empirical content of GR; indeed reverse-engineering is to some extent necessary to
preserve the empirical equivalence with GR. Therefore it is only to be expected that
teleparallel quantities can always be rewritten in a form that uses only quantities
associated with GR.

Does this constitute a genuine problem?We think not. In principle TEGR can stand
on its own four legs—the geometric structure (whether cashed out in terms of tetrads
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or in terms of a metric field) and the Weitzenböck connection—even if GR had never
been invoked.14

To emphasise: reverse-engineering by itself does not strengthen the claim that
TEGR provides us with just a different mathematical form to represent the same
observables that GR represents. It is simply a statement of symmetry. As such, it goes
both ways: any quantity in GR could be seen as reverse-engineered from TEGR, with
all the teleparallel quantities “hiding in the shadows all along". For, one may equally
well have a general relativistic covariant connection, analogous to the teleparallel
covariant connection (3.4),

D̊μ j μ
a := ∂μ j μ

a +
(
�̊μ

νμ + K μ
νμ

)
jνa , (3.5)

which says that it is the Levi-Civita connection together with the contorsion tensor that
are closely mimicking the Weitzenböck connection. Again, this is simply a statement
of symmetry.

Albeit not for the reason of reverse-engineering, this symmetry between the theories
might nevertheless not make them entirely on a par: the symmetry-related quantities
do not stand in a one-to-one but in a many-to-one relation. That is, for each model
of GR, there will generically be many models of TEGR (at least when presented in
the tetrad formalism). The additional degrees of freedom in TEGR are considered
unphysical or gauge, which brings us to the problem to be addressed in Sect. 3.2.

We also highlight another problem down the line: the coupling to matter using the
teleparallel covariant connection can be construed as a problem insofar as one sees it
as more than a mathematical formulation and rather as identifying directly the inertial
structure which the theory must represent; we return to this in Sect. 3.3.

3.2 Surplus structure

Setting aside issues to do with the fact that the quantities of GR can be expressed in
terms of those of GR and vice versa, we turn now to a second conceptual problemwith
TEGR adumbrated by Knox—namely, that this theory has surplus (‘gauge’) structure
as compared with GR. Here is Knox:

The tetrad field is defined only up to a local gauge transformation, and this gauge
freedom passes on to the connection defined in terms of the tetrads. As a result,
the gravity/inertia split expressed in [(2.7)] is just as much a gauge matter as it
was in the Newtonian case. In fact, the situation is worse. Because the tetrad field

14 In response to this, Knox (2011) could perhaps appeal to additional arguments against geometric
reformulation of this kind presented by Dürr & Ben-Menahem:

Else, it’s too cheap to concoct geometric alternatives [...], e.g. by introducing empirically and
theoretically superfluous extra structure. [Footnote suppressed.] Instead [...], the differences of geo-
metric alternatives must be non-trivial (e.g. simplifying, explanatory, unificatory, etc.) (Duerr and
Ben-Menahem 2022, p. 171)

Our thanks to an anonymous reviewer for drawing our attention to this passage; however, they go beyond
the arguments offered in (Knox, 2011).
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is subject to a local gauge freedom, no amount of information about the tetrad
field on, say, a spacelike hypersurface will determine the value of the tetrad field
in other regions of spacetime. As a result, it is tempting to think that the metric,
and the Levi-Civita connection, should be taken as ontologically prior to the
tetrad field and Weitzenböck connection. (Knox 2011, p. 273)

There are two related problems here. First, any model of tetradic TEGR in which the
tetrad fields are related by a local Lorentz transformation e a

μ �→ �a
b(x)e b

μ will also
be a TEGRmodel associated to the sameGRmodel. Indeed, whereas the metric tensor
(which is symmetric) has 4(4+1)

2 = 10 independent components, two tetrad fields have
an additional six: 4× 4 = 16. Second, even though it is true that “this gauge freedom
passes on to the connection defined in terms of the tetrads”, this is only true on the
conception of TEGR on which the theory deploys a Weitzenböck connection; not on
the covariant conception of TEGRwhich uses a ‘dressed’ connection. So, setting aside
the second of these two issues for the time being, here is the problem:

Problem 2: Surplus degrees of freedom: There are surplus (‘gauge’) degrees
of freedom in TEGR that are not present in GR, recognised in (3.1). Thus, for
each model of GR there are many empirically equivalent models of TEGR.

Potentially, this complaint is appropriate, at least on grounds of parsimony: let us
not take these mathematical variables seriously (one might say) when they do not
lead to additional empirical predictions, for adding something on top of an already
empirically adequate theory is excessive (notwithstanding any calculational or other
pragmatic advantages).

Other grounds would involve concerns with indeterminism, as indeed Knox is
pointing at in the above quote when she says that the specification of initial values on
spacelike hypersurfaces fails to fix the tetrad at other times. Philosophically, this is
akin to the hole argument in GR (Earman&Norton, 1987; Gomes&Butterfield, 2023;
Pooley, 2013): if substantivalism is understood as the position that spacetime points
have an intrinsic ‘thisness’ (or haecceity), then due to diffeomorphism invariance no
amount of information on a spacelike hypersurface will determine the distribution of
spacetime points in other regions of spacetime, amounting to indeterminism.

Take as another example the different formulations of electrodynamics, one in
terms of the electric and magnetic fields (E,B) and one in terms of the electromag-
netic potentials (φ,A). In the latter case, Maxwell’s equations formulated in terms of
the potentials will generically not have unique solutions (Belot, 1998). This is not a
problem as long as one interprets the additional mathematical variables (additional to
those shared with the electric and magnetic field formulation) as unphysical. As such,
it only leads to indeterminism if one has a reason to regard these additional variables
as having physical significance of their own. Yet, for the gauge variables in TEGR,
there is no such reason;15 for the gauge variables of the potentials theory (φ,A), the
reason is the empirical phenomenon known as the Aharonov–Bohm effect, and the
resulting situation of having no experimental means to find out how much of the (hith-
erto) gauge degrees of freedom should be considered physical can be characterised as
‘gauge-underdetermination’ (Mulder, 2021). Thus, indeterminism only arises when

15 At least as far as we are aware, and nor does Knox mention such a reason.
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‘gauge’ variables are considered to have physical significance after all—a move that
is unnecessary in TEGR. This leaves us only with the argument that the additional
gauge degrees of freedom in TEGR are simply superfluous.

Perhaps, however, theOccamist drive itself—to excise ‘gauge’ structure—should be
tempered, or at least recognised to be suffixed with important ceteris paribus clauses.
One reason would be that were one to start out with the formalism of TEGR, and
then to expunge the gauge variables, this does not immediately lead to a formalism
ready to be identified with GR. After all, there remains the non-trivial translation (2.7)
between the flat but torsionful connection and the Levi-Civita connection. This is
strikingly different from the situation in electrodynamics, where expunging the gauge
freedoms of the potentials leaves one with a structure that can be directly identified
with the electric and magnetic field.16

Another reason to resist the philosopher’s drive to excise gauge variablesmight very
well be that it is in some cases naïve to think it will not have empirical consequences:
‘gauge’ degrees of freedom are now well-understood to be required for, among
other things, coupling subsystems (Gomes, 2021; Rovelli, 2014; Teh, 2015), and the
correct modelling of boundary degrees of freedom (Murgueitio Ramírez & Teh, 2022;
Wolf et al., 2023). Indeed, in (Wolf & Read, 2023) the merits of TEGR over GR
with respect to modelling boundary phenomena are highlighted explicitly. Therefore,
it is far from clear on physical grounds that the extra degrees of freedom in TEGR
render the theory conceptually problematic to the degree that there is no genuine
underdetermination between it and GR, as Knox would have it.

3.3 Inertial structure and functionalism

Standardly, necessary conditions for a frame to be inertial are that it be one inwhich the
connection coefficients vanish and on which the coordinate axes remain unchanged by
parallel transport, i.e., when transported over the straightest lines of that connection.
According these criteria, inertial structure would seem to be a notion relative to the
choice of connection. As Knox (2011, p. 268) sees it, such a definition importantly
already assumes that we have picked the correct connection, the one that conveys the
physical inertial structure. Knox continues:

Happily, there is a more physical characterisation of an inertial frame available.
Inertial frames are those reference frames in which force-free bodies move with
constant velocities, and which are indistinguishable according to the dynamics.
This second criterion is a strong one; in order for a class of reference frames
to count as inertial, dynamical laws must take the same form in each frame.
Moreover, inertial frames must be universal; if the theory under consideration
allows for multiple types of interaction, each of these must pick out the same
class of inertial frames. (Knox 2011, p. 268)

16 See (Belot, 1998) for a more detailed discussion of the gauge orbits of electrodynamics; and see again
(Mulder, 2021) for a more detailed discussion of how such expunging leads to a widening of equivalence
classes and how such expunging in the form of gauge-fixing is subject to choices of interpretation, even
though empirically constrained by the Aharonov–Bohm effect.
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Implicit in this article is the by-now well-known philosophical position of ‘spacetime
functionalism’, which has it that “the spacetime role is played by whatever defines
a structure of local inertial frames” (Knox 2018, p. 122).17 In turn, as discussed in
(Knox 2011, p. 268) and (Knox 2013, p. 348), the structure of local inertial frames
is picked out by any structure which identifies the frames of reference in which (a)
force-free bodies move with constant velocities, (b) the dynamics governing material
bodies simplifies maximally, i.e., the laws take the same form and (c) such is the case
for all material bodies and associated dynamics (‘universality’).

Given this version of spacetime functionalism, it would seem to follow that the
spacetime structure of TEGR just is that ofGR, for (i) being torsionful, the components
of the Weitzenböck connection cannot be made to vanish at a point, and (ii) it would
seem that it is the Lorentzian metric of GR and its associated Levi-Civita connection
which play the spacetime role in TEGR (Knox 2013, p. 347).18 We condense this
problem for TEGR as follows:

Problem 3: Non-vanishing connection coefficients: The structure of inertial
frames is specified by requirements (a)–(c). Being torsionful, the components of
the Weitzenböck connection cannot be made to vanish in any frame at any point
p ∈ M . Therefore, the Weitzenböck connection cannot pick out a structure of
local inertial frames, and so cannot (by spacetime functionalism) be the correct
spacetime setting for TEGR.

As outlined above, Knox indeed goes on to argue that the true spacetime of TEGR is
that of GR—i.e., the familiar Lorentzian spacetimes of that theory—because material
bodies couple to that metric and its associated Levi-Civita derivative operator.19

There are various options to respond to this apparent problem for the viability of a
literalist interpretation of TEGR qua spacetime theory; here we focus on the following
three:

1. Reject Knox’ spacetime functionalism.
2. Reject Knox’ functional characterisation of inertial structure.
3. Deny the ‘realiser functionalism’ which is implicit in Knox’ reasoning.

Let us discuss each of these in turn, beginning with option (1). Frankly, insofar as one
is motivated to identify (or individuate) a structure which plays the ‘spacetime role’ in
a given physical theory, we in fact find Knox’ functionalism attractive.20 Nevertheless,
surely one won’t go to jail for not buying into Knox’ particular brand of spacetime
functionalism, and indeed other options are available—see (Lam & Wüthrich, 2018;
Baker, 2020). Focusing here on the approach of Baker (2020), we see that other
authors have proposed that ‘fundamentality’ should constitute part of the spacetime

17 In personal communication, Knox has indicated to us that she understands (Knox, 2011) not as presup-
posing spacetime functionalism, but rather as an argument for it. But since spacetime functionalism does
appear to be operative in the above passage, we have some worries about circularity in that case.
18 One can in fact find ‘anholonomic’ frames in which the components of torsionful connections vanish;
for discussion and critical assessment of the physicality of such frames, see (Knox 2013, p. 354). We won’t
engage further with anholonomic frames in this article.
19 Knox’ account is reconstructed in, e.g., (Baker, 2020; Read & Menon, 2021).
20 Although onemight want to seek a yet-more ‘operationally informed’ variant à laRead&Menon (2021).
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role. Yet, to us there seems to be nothing wrong with insisting that it is (say) the
tetrads or Weitzenböck connection which are fundamental in TEGR—in which case
we see that alternative functionalist criteria might judge that such objects are the
spatiotemporal structures of the theory after all. With this we do not mean to endorse
Baker’s reasoning—we simply invoke it as a means of pointing out that it is certainly
possible to push back against Knox’ functionalist argument.

Moving on to possible response (2), Knox’ criterion that inertial structure should be
associated with inertial frames, and so with vanishing connection coefficients, sounds
reasonable at first blush. However, one might push back against this for both technical
and conceptual reasons. Technically: making good mathematical and physical sense
of ‘local inertial frames’ in a given spacetime theory is by now very well-known to be
a delicate issue, as testified by (Read et al., 2018; Weatherall, 2020; Fletcher, 2020;
Fletcher & Weatherall, 2023a, b; Linnemann et al., 2024), among others. Again we
agree with Knox that the notion of a local inertial frame, or of the local validity of
special relativity in GR, is meaningful and comprehensible, but we will refrain from
dwelling on this point in the current paper; our point here is simply that there is
room for other positions, and indeed that several authors may in fact plump for such
alternative positions at exactly this juncture.

Conceptually: it is not obvious why the vanishing of connection coefficients should
be regarded as being the sine qua non of inertial structure—for it is of course still true
of theWeitzenböck connection (as with any other affine connection) that it identifies a
preferred class of trajectories as the affine geodesics, which are thereby naturally asso-
ciated with straight-line motion. Why should one dismiss this obvious (and, indeed,
well-defined and unambiguous!) notion of inertial structure in favour of an account in
terms of the vanishing of connection coefficients?

Now, it is true that Knox stresses in other work that she does not intend to offer a
once-and-for-all account of inertial structure:

One might, if one wished, take these features to be something like ‘constitutive’
of our concept of an inertial frame. But I don’t mean this to imply that there is
something like an inertial frame concept that may be defined once and for all and
is common to all spacetime theories. Concepts in physics vary in subtle ways
from theory to theory and from application to application [...] Inertial frames
in general relativity do differ from those in, say, special relativity, most notably
because they are only defined locally. Nonetheless, it’s also highly non-trivial
that so many of the features of an inertial frame are retained in general relativity.
(Knox 2013, fn. 4)

Fair enough—but why then carry over Knox’ conception of an inertial frame to other
theories, such as TEGR? Or to theories yet further removed from GR? Clearly, more
needs to be said to justify the domain of applicability of Knox’ account.21

21 Here is a further point about specifying a functional role in terms of the theory itself, or in some theory-
transcendent way, using a meta-language that is based on other theories or familiarity with other theories,
or on the manifest image. To us, it seems epistemically more cautious to identify a concept (such as ‘inertial
frame’) from the point of view of a theory itself. Any theory-transcendent criteria should be independently
motivated—Knox, of course, can be seen to do this elsewhere (Knox, 2013, 2014, 2018).
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Finally, we discuss option (3). We remind the reader of the quote from the
introduction, where Knox writes vis-à-vis GR and TEGR that

[...] these theories do not, in fact, represent cases of worrying underdetermi-
nation. On close examination, the alternative formulations are best interpreted
as postulating the same spacetime ontology. In accepting this, we see that the
ontological commitments of these theories cannot be directly deduced from their
mathematical form. (Knox 2011, p. 264)

Inmaking such claims, Knoxmoves from the individuation of structures with the same
functional role in models of the two theories—structures qualifying as spatiotempo-
ral in light of her functionalist criterion—to a claim that those structures should be
identified as the very same ontology. This position is sometimes known as ‘realiser
functionalism’ (Cohen, 2005; Levin, 2018; McLaughlin, 2006)—indeed, in the con-
text of Knox’s spacetime functionalism, this point has already been made by Lam and
Wüthrich (2020, p. S344). This, of course, is a non-trivial position which not everyone
need accept (cf. the status of realiser functionalism in the philosophy of mind).22

4 Operationalisability

In this section, we consider and assess a potential objection which could be raised
against TEGR and other torsionful theories: that such theories are deficient because
torsion is not an operationalisable geometrical notion. Before we get to this objection,
though, we must clarify what it means for a piece of structure in a physical theory to
be operationalisable.

Roughly, for a piece of structure (or concept) to be operationalisable is for it to
be coordinated in a systematic way with an empirical/observable process. On this
understanding, operationalisability is weaker than measurability, which requires in
addition that one be able to find experimental setups which allow agents to gain epis-
temic access to that structure, given sufficiently warranted background assumptions.23

On this understanding, the curvature tensor of GR can be said to be operationalised
through, for example, a gravitational gradiometer (Misner et al. 1973, pp. 400–3). This
is a particular device which—when used correctly, i.e., according to some determinate
operational prescription—can read out particular components of this tensor. Never-
theless, in virtue of the existence of TEGR, neither spacetime curvature nor spacetime
torsion is straightforwardly measurable per se.

Given the possibility (indeed, actuality) of the gravitational gradiometer, it is clearly
possible to operationalise spacetime curvature in GR. The question, then, is whether
it is likewise possible to operationalise torsion in TEGR. If not, then one might argue

22 In the spirit of keeping the semantic and epistemic conjuncts of scientific realism apart, note that,
analogously to the distinction between structuralism and structural realism in many cases it is useful to
distinguish between functionalism and can be called functional realism—see (Mulder 2024b, p. 11). Where
structuralism and functionalism are purely semantic tools for describing or defining a certain piece of
structure or set of items, the realisms go beyond this semantic individuation and come with a commitment
to the existence of that structure or set of items.
23 For more on this distinction, see e.g. (Fankhauser & Dürr, 2021) and references therein. The distinction
between empirical significance and operational significance is also discussed by e.g. Chen & Read (2023).

123



Synthese          (2024) 204:126 Page 17 of 29   126 

that the theory is insufficiently interwoven with our actual practice of science. The
problem to be addressed, then, is this:

Problem 4: Operationalisability: There is no obvious existing operationali-
sation of spacetime torsion in TEGR. To the extent that this is true, TEGR is
deficient as comparedwithGR,where operationalisations of spacetime curvature
are available.

Is the problem of operationalisability a real problem for TEGR? Prima facie yes—
although, in fact, in our view the problem can be overcome fairly straightforwardly.
To see this, we first consider an intuitive picture of what operationalisation of torsion
looks like, quite apart from the context of the whole physical theory, similar to how
we teach basic operationalisation of curvature. Then we give two more specific poten-
tial operationalisations of spacetime torsion in TEGR. (Of course, ultimately, further
operationalisations might also become available.)

An intuitive way to operationalise torsion is as follows. To test whether a given
space exhibits the effects of torsion: hold your arms in a ninety degree angle with
respect to each other and send two little messengers along the respective directions in
which your arms are pointing. Both messengers are equipped with the same notion of
length and instructed to walk a certain distance L , after the completion of which they
each take a right turn (the one in line with your right arm turns left, the one in line with
your left arm turns right), after which both messengers again walk the distance L .24

If your messengers end up at the same point, then—ceteris paribus—the space does
not generically exhibit torsion. If the space does have torsion, the messengers will
generically not end up in the same spot.25 That is, if the above procedure is repeated
with slight variations of directions, not arriving at the same spot is a necessary (but
not sufficient) condition for there being spacetime torsion.

Beyond this intuitive picture, our first further operationalisation of torsion in
TEGR ‘piggybacks’ on the gravitational gradiometer introduced above. Recall Baha-
monde (2023, Section 2.1.3) that curvature and torsion of a connection are related via
the Bianchi identities, as:

Rμ
[νρσ ] = ∇[ν T μ

ρσ ] + T μ
λ[ν T λ

ρσ ] . (4.1)

Recall also that there is a straightforward formula relating two Riemann tensors in
terms of their difference tensors—see (Malament 2012, problem 1.8.1); here, the
salient difference tensor is of course the contorsion tensor (2.8). In that case, one
sees that the gravitational gradiometer will also be capable of reading out torsion
components and their derivatives. Such read-outs will not be as straightforward as
for curvature, for (4.1) shows that components of a curvature tensor correspond to

24 Note that this particular operationalisation is predicatedupon thepresenceof a certain conformal structure
and a notion of length (introduced either via the metric or the tetrads, or some other way), i.e., we assume
to already know what it means to take a right turn and walk distance L .
25 This is not to say that such operational procedures will necessarily adjudicate between torsionful and
curved spaces. Indeed, there are possible worlds where the effects of curvature and torsion do not come
apart at the operational level, given dynamical effects that precisely offset the manifestations of one over
the other—indeed, if the Einstein–Hilbert action is exactly correct, that is precisely the actual world.
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components of a torsion tensor and their derivatives; nevertheless, this is sufficient
to demonstrate that there still exists a correspondence between the components of
torsion and the readouts of actually constructed devices which is at least reasonably
straightforward.

Our second potential operationalisation of spacetime torsion in TEGR appeals to
considerations presented byHehl (1971). There—fairly straightforwardly—the author
considers the equation of motion governing a test particle with spin, and shows that
the components of said equation can be correlated to the components of the torsion
tensor—so “we have for the first time amethodwhich allows us in principle tomeasure
all components of the torsion tensor of space-time” (Hehl 1971, p. 226).26 Of course,
it remains to be shown how one would construct a device capable of correlating its
readouts with torsion components—in this sense, the connection between the relevant
geometric object (here the torsion tensor) and device readouts is still less direct than in
the above-discussed case of the gradiometer. Nevertheless, we take this to be a prima
facie good case for the claim that components of the torsion tensor can be put into
fairly direct contact with the empirical, and so in this sense are ‘operationalisable’.

One might have here a residual question—namely: if torsion and curvature are
both operationalisable but not measurable (in the above-defined sense), then what
becomes of experimental tests of GR, both classic and modern? After all, one test
of GR is the famous perihelion shift of Mercury’s orbit, which relies on metrical
structure; other tests, like gyroscopic frame-dragging, are probed by surveying affine
structure.27 Given empirical equivalence, it is of course to be expected that classic and
modern tests of GR deliver the same results in TEGR, albeit that they are differently
interpreted, as outlined in detail by Wolf et al. (2023b). But it is worth emphasising
how special this case is, and that not just any manifestation of torsion can be modelled
by curvature, nor vice versa. One could engage in a thought experiment of imagining
a world where a spacetime is torsionful, and not curved, and this fact does indeed
manifest at the level of measurable quantities. That is, the torsional terms of the action
in this world combine in such a way that they cannot be modelled with a curvature
tensor (that there is no dynamically equivalent action that uses only theRiemann tensor
and the Levi-Civita connection). Likewise, other worlds can be imagined in which the
situation is reversed in favour of the Riemann tensor.28 However, if our actual world
is one in which the dynamical equivalence discussed in Sect. 2 does indeed hold, then
we can express torsion components in terms of curvature components or vice versa.29

26 Note that Hehl is working within the context of a Riemann-Cartan geometry with torsion.
27 We thank two anonymous reviewers for emphasising this point.
28 Some f (R) versus f (T ) theories would suffice to illustrate our point here.
29 Continuing on from the previous footnote: is very possible that even in our actual world the equivalence
between the theories is broken, and that at higher energies the effects of torsion and curvature come apart,
which could be a world governed by some f (R) theory, or any f (R, T , Q) theory, cf. (Heisenberg, 2024;
Bahamonde et al., 2023; Beltrán Jiménez et al., 2019; Chakrabortty et al., 2023) Until we have evidence
that this might be so, we assume the actual world is one in which the equivalence holds.
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5 Visualisability

We turn now to our second potential novel problem for torsionful theories (a fortiori
TEGR), which is whether spacetime torsion can be visualised, and if it cannot be visu-
alised, whether this spells doom for a realist and literalist interpretation of torsionful
spacetime theories. More formally, we can state the problem like this:

Problem 5: Visualisability. Curvature as a property of spacetime is easier to
visualise than torsion as a property of spacetime. To the extent that visualisability
is important for theory choice, GR and TEGR are thus not on a par, thereby
breaking any putative underdetermination.

This is a problem for the scientific realist who takes visualisability to be an important
selection criterion. Whether one finds this compelling will depend upon one’s other
commitments in the philosophy of science—for example, logical empiricists will cer-
tainly not grant that visualisability bears on scientific knowledge. But for those who
think visualisability is important for being a realist about a given scientific theory (and
there are many such individuals, as we discuss below), the problem of visualisability
is certainly relevant to the supposed underdetermination of GR and TEGR.

In this section, we argue that torsion (and hence TEGR qua torsionful theory) has
no visualisability problems over and above those encountered for curvature in GR. A
distinction between ‘extrinsic torsion’ and ‘intrinsic torsion’ will prove helpful. Just
like extrinsic curvature, extrinsic torsion is visualisable straightforwardly, through a
higher-dimensional embedding. There may remain the worry that intrinsic torsion is
not visualisable. Yet, even in this case we do not regard the problems for TEGR in this
regard as being any more sticky than those for GR, for intrinsic torsion is either (1)
just as hard to visualise as intrinsic curvature (Reichenbach argues that it simply takes
conscientious training) or (2) just as impossible (following Kantian inconceivability
arguments).30

5.1 Visualisability as epistemically virtuous?

Broadly construed, ‘visualisability’ consists in the ability to represent somethingmen-
tally in a visual way, through the mental capacity to form, in the mind’s eye, images,
pictures, or representations of objects, phenomena or concepts.31

Epistemologically, visualisability raises questions about the reliability and limi-
tations of knowledge obtained by visual means, whether we can or should trust our
visual experiences to accurately represent the external world, and, if we cannot, what
the limitations of visual perception for accessing the physical world are. Although few
deny that visual perception and imagination shape our understanding of the physical

30 We are careful not to argue that visualisability is necessarily static or changeable. Although in Sect. 5.3
we consider a position according which visualisability is changeable, the argument we make—that TEGR
poses no special threat to visualisability beyond GR—does not hinge on this.
31 What does ‘in a visual way’ mean? We suggest that it means representing something using visual
elements (such as images, diagrams, charts). It means presenting information or concepts in a manner that
can be seen and understood through the sense of sight, rather than relying on, for example, written or verbal
descriptions. It is that which people with aphantasia cannot do.
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world, many doubt whether visualisability is a guide to ontology or a good criterion for
theory choice. This is especially so when such visualisation extends from the domain
of everyday phenomena into a theoretical or unobservable domain.32

Before considering the visualisability of spacetime torsion specifically, we add
some motivation to take the criterion seriously. Visualisability is often appealed to
as a serious component in the development (discovery) or assessment (justification)
of scientific theories. Historically, for example, Minkowski took visualisability as a
central tool to get grip onphysical reality—as outlined convincingly byGalison (1977).
Minkowski claimed that visual-geometric intuition (geometrische Anschauung) not
only helps us to discover new theorems (his example is number theory), but also gives
us insight into physical reality, such as the true geometrical structure of the world. He
sawgeometry not asmeremathematics or as an abstract formulation of phenomena, but
believed that the world was indeed literally a four-dimensional, Lorentzian manifold,
and that visualisation played a key role in underpinning that claim. Another salient
historical example would be that the early (and persisting) objections to quantum
mechanics as describing physical reality—for example by Schrödinger (deRegt, 1997)
and by Weyl and Einstein (Wolff, 2015)—rested on problems with visualisability
(Anschaulichkeit).

In the philosophy of symmetry, there is a debate between ‘interpretationalism’ and
‘motivationalism’, which regards the question as to when two symmetry-related mod-
els of a given theory can be regarded as representing the same physical state of affairs
(Martens & Read, 2020; Møller-Nielsen, 2017; Luc, 2023; Read & Møller-Nielsen,
2020). According to interpretationalism, one may do this ab initio; according to moti-
vationalism, one may only do this once one has secured a ‘metaphysically perspicuous
characterisation’ of the common ontology of those symmetry-related models. How-
ever, the notion of perspicuity is clearly vague. The English word signals a lack of
obscurity, or to have a clear picture of what is going on.33 To our mind, this notion
is tied up intimately with notions from the scientific understanding literature and to a
large extent the ability to visualise the ontology that underlies the symmetry-related
models, making them intelligible. The thought, then, would be that if models of TEGR
are not visualisable, then they are not perspicuous, and so in turn are not amenable to
a scientific realist treatment. To the extent that visualisability will play a role in this
debate, we believe the following discussions to be thoroughly motivated.

5.2 Extrinsic torsion

Visualisations of geometry are likely to be the most common visualisation in all of
science, starting with the cubes and spheres in primary school geometry. Such pic-
tures are embedded within our three-dimensional Euclidean surroundings. Some years
later, such embedded shapes become the way in which one is first introduced to cur-
vature in GR classes. The most universally taught visualisation of curved manifolds
in textbooks of GR, indeed, is a sphere over which vectors are parallel transported.

32 Here there is a spectrum, with those more positivistically-inclined towards the one end and (arguably)
with ‘primitive ontologists’ (see e.g. (Allori, 2015)) towards the other.
33 Read (2022) cashes out the notion in terms of psychological satisfaction.
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Fig. 1 The torsion tensor is a
measure of the non-closure of
parallelograms

Fig. 2 Crystal structure with
edge dislocation

Following segments of great circles from the North pole to the equator, then over
the equator, and then back to the North pole, indicates the presence of curvature
on this two-dimensional manifold—consider the famous cover of Misner, Thorne
and Wheeler’s Gravitation (1973). Only later does one move to the more abstract
characterisation of the intrinsic curvature of a differentiable manifold. The sphere’s
curvature is assessed extrinsically because it is visualised as being embedded in a
three-dimensional Euclidean space.

Given that the visualisation of extrinsic curvature is relatively straightforward, one
mightworry that torsion is somehowmetaphysically problematicwithout an analogous
visualisation. Such visualisations of torsion, however, already exist, although they are
less well-known. Here, we focus on two such visualizations, following Figs. 1 and 2:
respectively, (i) the non-closure of parallelograms, and (ii) the application of torsional
geometry to crystal structures.

First, the usual picture that one is presented with when torsion is discussed is that of
two vectors at an angle from each other, which are then parallel transported along each
other (Fig. 1). In a torsion-free space, such an operation would result in ‘the closure of
the parallelogram’, or, more simply, the shape visualised would be a parallelogram.
When the space has torsion, however, after a vector u is transported over a vector v
and v is transported over u, there will be a gap: the torsion tensor is a measure of this
gap.34

Even though this picture should be sufficient to get to the core of what torsion
amounts to, at first sight one might object to it as being unnatural or hard to interpret.
At what, for example, are these transported vectors pointing? The uneasiness signalled
by this question occurs only when one forgets about the background points: the trans-
ported vectors are simply indicating other points than the ones they would have both
indicated were there no torsion.

Second, the application of torsion to crystalline structures has been studied
extensively—see e.g. (Hehl & Obukhov, 2007; Lazar, 2001; Lazar & Hehl, 2010).
Because torsion introduces a mismatch in orientation from lattice point to lattice
point, it is particularly well-suited for studying crystal defects and dislocations. One

34 As mentioned earlier, strictly speaking we are dealing here with infinitesimal parallelograms.
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example is shown in Fig. 2, and we strongly recommend (Hehl & Obukhov, 2007) for
many more examples and exhaustive analysis of how such structures come about. The
crystal structures thus produced make for good indirect visualisations of torsion itself,
if one regards the lattice sites not as on a manifold, but as points of the manifold.35

Visualisation of extrinsic torsion thus comes with no special problems that do
not come in the case of extrinsic curvature. Not only is the non-closing of parallelo-
grams already a visualisation, three-dimensional visualisations of torsion are routinely
applied in condensed matter physics, which seem to readily extent to possible visu-
alisations of the space manifold. One might still worry about the extent to which this
can be generalised to intrinsic torsion. In the next subsection, we argue that the visu-
alisation of curvature suffers from the same obstacles and follow Reichenbach into
thinking that the situation for visualising unintuitive geometries may not be as bad as
one might initially think.

5.3 Intrinsic torsion

Already in the case of curvature, opinions differ over whether ‘intrinsic’ (i.e., ‘imma-
nent’; ‘from within’) visualisations of non-Euclidean geometries are possible. After
all, any explicit drawing of anything on a piece of two-dimensional paper (or an
explicit arrangement of visual cues in a three-dimensional room) will, for all practical
purposes, be embedded in a flat space. To visualise without a piece of paper—in the
mind’s eye, so to speak—does not appear to alleviate the need for an embedding space.
On the one hand, we have the Kantian observation that in order to conceive of some-
thing at all, situating it in Euclidean space is a prerequisite. Indeed, visualisations in
the previous subsection of curvature as a two-sphere or torsion as a three-dimensional
crystal structure are embedded in a flat three-space. To some of a traditional Kantian
inclination, visualising intrinsic curvaturewithout a Euclidean embedding spacemight
seem impossible.36

Hasok Chang, in the context of intelligibility, suggests that the whole activity of
visualisation is intelligible only insofar as it is set in Euclidean space:

Visualization, I think, is supported by a set of principles that form the basis
of Euclidean geometry. (This explains why non-Euclidean geometry is deeply
unintelligible to those of us who try to visualize what is going on there.) (2009,
p. 78)

To the extent that this is correct, the problem of visualisation gets no traction on TEGR,
as neither intrinsic torsion nor intrinsic curvature will be visualisable in this case.

35 In addition to these examples, there are yet further ways to visualise torsion—for example, in terms
of the twisting of screws, on which (in two dimensions) see, e.g., https://www.youtube.com/watch?
v=1YTKedLQOa0.
36 What we have in mind is those who, in Kantian tradition, hold that our perceptual judgements necessitate
a Euclidean space; after all, it was one of Kant’s main examples of the transcendental deduction that space
must be Euclidean because we cannot imagine otherwise. We will not knowwhether Immanuel Kant would
have broadened his definition of spatio-temporality to non-Euclidean versions, but here we leave space for
those who hold on to the narrower, Euclidean definition.
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On the other hand, although visualisation of intrinsic curvature of spacetime is
unintuitive—in the sense that it is far removed from everyday practice—it may nev-
ertheless be trained. One gets such an impression from (Norton 2007, Chapter 24),
or from Jeffrey Weeks’ book (2001), and of course Reichenbach (1928) argues for
this explicitly. Right after dismissing—in light of the empirical success of relativ-
ity theory—the Kantian view that Euclidean geometry is epistemically a priori, he
(pp. 31–2) moves on to discuss what he calls the ‘visual a priori’. This is a method-
ological rule that prefers Euclidean geometry over other geometries on the basis of
one’s ability to visualise as an “innate property of the humanmind". Reichenbach (§9–
§11, pp. 37–58 and §13, pp. 81–92) then proceeds on the topic of visualisation for
four (!) sections. In fact, the entire context of his well-known relativity of geometry, as
stated by the (infamous) Theorem θ , is the ultimate failure of simultaneously adhering
to two desirable methodological principles. On the one hand there’s the visual a priori,
while on the other there is a ‘principle of elimination of universal forces’. Theorem
θ posits that any geometry G can be swapped for another geometry G ′ if compen-
sated for by a so-called universal force F . Such a force is universal in that it cannot
be screened off by insulating walls and acts on all matter in the same way. Thus a
universal force affects all measuring instruments—rods and clocks—in the same way;
as such, only the combination G + F is empirically accessible. This is the reason why
the visual a priori is read as a methodological rule: according to Reichenbach, it is a
matter of convention which geometry we use.

As such, the universal force canbe accommodatedby a suitable conventional choice.
The ‘principle of elimination of universal forces’ is one such choice. Thus, one would
be left with G + 0 and the geometry can be directly surveyed by rods and clocks.
This, however, clashes with the alternative choice that satisfies the rule of the visual
a priori, which is: “The comparison of length is to be performed in such a way that
Euclidean geometry will be the result" (Reichenbach 1928, p. 34). In this case, one is
left with GEuclid+ F , which should be easy to visualise, at the cost of introducing these
mysterious universal forces. Reichenbach is careful to state that this does not inform
us about the “space of real objects", as it only accommodates the epistemological
function of visualisation: to ground subjective preference.

In the end, Reichenbach decides against the visual a priori, at the cost of easy
visualisability. The reason is not just the above observation that subjective preferences
do not inform the reality of space; it is also that Reichenbach, all things considered,
does not believe that non-Euclidean geometries are as unvisualisable as they are
commonly taken to be. For example, in Euclidean geometry a figure can be scaled
up from smaller to larger without changing shape (imagine a glass marble grow to
the size of a basketball to the size of one of Brussels’ Atomium’s iron atoms). In
non-Euclidean geometry the relations do change: the sum of the angles of a triangle
and the ratio between the circumference and the diameter of a circle depend on the
absolute size of the figure. Even though this hinders easy visualisation, Reichenbach
(1928, p. 45) proposes that one should simply modify the method of visualisation: in
addition to visualising the shape, the “smaller figures must be imagined as distorted."

Turning to intrinsic curvature, Reichenbach argues that we have insufficiently
experienced non-Euclidean geometries and that our ability to visualise is adjusted
accordingly. This ability, however, is not set in stone: with sufficient practice we can
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learn to visualise the non-Euclidean just as well. The untrained automobile driver
(Reichenbach 1928, p. 55) who uses a convex mirror to keep track of the road behind,
will see the images as distorted, changing shape; with sufficient driving experience,
however, these changes in shape are no longer experienced as distortions, and the
picture is taken as it presents itself in a non-Euclidean way.

The reason why we can adjust our ability to visualise, according to Reichenbach,
is because of our command of logical capacity, which we can use to adopt different
definitions of congruence. The principle that we are accustomed to in our apparently
Euclidean world is, in mathematical terms, that “[...] concepts of line of equal distance
from a given straight line and of straightest line are coextensive" (Reichenbach 1928,
p. 57, our emphasis). Such a definition of congruence is not logically necessitated and,
indeed, letting go of this particular definition allows us to “emancipate” ourselves from
our “native" Euclidean geometrical intuitions, rather analogous to learning a language
other than one’s native language. Thus, in visualising curvature we need to internalise
the following lesson:

Non-Euclidean lesson. Affine geodesics are not necessarily congruent with the
lines of equal distance from a given straight line.

Although Reichenbach’s main example concerns the visualisation of parallel lines in
Bolyai-Lobachevsky geometry, his presentation remains more of a proof of concept
that a visualisation need not always be Euclidean than a constructive alternative def-
inition of congruence. The alternative definition of congruence which he proposes is
simply the denial of the Euclidean definition of congruence: “We have visualized the
interior [i.e., intrinsic] curvature, since interior curvature is nothing but the deviation
from Euclidean congruence" (Reichenbach 1928, p. 57).

To the extent that someone holds that intrinsic curvature can be visualised in such
ways, we likewise think that intrinsic torsion can be visualised. Those familiar with
GR have internalised the Non-Euclidean lesson very well. Within Non-Euclidean
spaces however, there are of course many concepts to fine-grain further. To achieve
the visualisation of intrinsic torsion, then, we need to use our logical capacity to
rid ourselves of the common convictions that straightest curves are coextensive with
shortest curves. Or in relativistic language:

Teleparallel lesson. Affine geodesics (the straightest lines) are not necessarily
congruent with the extremal curves (the lines with extremal distance), where the
former is given by the affine connection and the latter by the metric.

All we have to do is get used to it: through practice one can become proficient in the
new language and come to visualise intrinsic torsion.

Thus we see no obstacles for visualising torsion, either intrinsically or
extrinsically—at least not in addition to any obstacles that stand in the way of visu-
alising curvature. The only way we see to keep the problem of visualisation alive is
to point out that pictures of torsion are relatively underdeveloped. We are, however,
optimistic that sufficient practice and acquaintance can bring torsion quite literally
into focus.
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6 Conclusion

The theme throughout this paper has been that the arguments against TEGR which
we have encountered are typically based on a familiarity with GR which will lose
their appeal as one gains more familiarity with teleparallel gravity. TEGR is not easily
dismissed as a viable alternative to GR on the basis of (existing) arguments that appeal
to its intertranslatibility withGR (Sect. 3.1), its surplus (gauge) structure relative toGR
(Sect. 3.2), any inability to provide acceptable inertial structure (Sect. 3.3), any lack
of operationalisability (Sect. 4), or on any problems with visualisability that exceed
those of GR (Sect. 5).

As scientific realists, we recognise that our conclusion is negative: we would like to
make the strongest possible justified claims about what nature is like, but a situation of
underdetermination of GR and TEGR weakens such pretensions. It takes away from
us the justification to assert confidently that GR tells us that spacetime is curved. After
all, spacetime could also be torsionful if TEGR is correct. When responding to cases
of underdetermination of this kind there is always available a variety of responses; to
canvas here just some:

1. One can hold that even though one of the theories is correct, we cannot knowwhich
one, resulting in a (transitory or in-principle) anti-realism or agnosticism.

2. One can adopt conventionalism, according to which geometrical propositions do
not per se have truth values, but can be assented to as a matter of free choice, with
each alternative epistemically as good as any other. (See (Dürr & Read, 2024).)

3. One can argue that empirical justification is not our only source of underpinning
the truth, and we need to appeal to something supra-empirical. General examples
of such criteria are coherence, simplicity, fruitfulness, explanatory power; various
physics-specific examples are locality, determinism, or invariance under a certain
symmetry group.37

As scientific realists, we also recognise that we cannot let our desire to remove under-
determination lead us astray, into a territory where our ontological commitments are
based on a familiarity with textbook theories, or by a philosophy so strong that we
can no longer see the ontology clearly. As a fourth route, adding to the above, one
may attempt to reconcile the ontological claims of both theories by abstracting away
from torsion and curvature specifically, and looking at what they share in common—a
project left for future research (Mulder, 2024a;Wolf et al., 2023b). Alternatively, if one
nevertheless finds good other reasons to dismiss teleparallel gravity as a viable alter-
native this may well help to formulate a philosophical framework to help us recognise
ontology for strongly underdetermined theories in general—a framework hopefully
more potent than our current ones.
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