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EQUILIBRIUM ORBIT AND LINEAR OSCILLATIONS OF CHARGED
PARTICLES IN AXISYMMETRIC E x B FIELDS AND APPLICATION
TO THE ELECTRON RING ACCELERATOR

M. REISER
University of Maryland, College Park, Maryland 20742, USA

The first-order theory of charged particle motion in general axisymmetric E x B fields is presented. The fields may
be produced externally or by the particles themselves; the only restrictions are that they are independent of time
and azimuth angle 6, have a plane of symmetry (median plane) and that E, and B, are zero. Results are applied
to the electron ring accelerator. The self fields of an electron ring with stationary ions are calculated for large
aspect ratio; problems arising from the polarization of the ring are discussed and possible solutions suggested.
Expressions for the betatron frequencies v, and v, for the electron motion in the ring are derived and compared

with the results of Ivanov et al.! and Laslett.?

1. INTRODUCTION

In the toroidal beam of an electron ring accel-
erator the oscillation frequencies of the electrons
about the equilibrium orbit are strongly affected
by the electric and magnetic self fields of the beam,
trapped positive ions, and image fields from nearby
boundaries. As a result the well-known expressions
for the radial and axial ‘betatron frequencies’ of
single particles in an axisymmetric magnetic field
have to be modified to include such space-charge
and image-field terms. Moreover, the equilibrium
orbit itself is changed when space-charge forces
due to the toroidal shape of the beam are not
sufficiently screened by suitable measures. The
presence of trapped positive ions inside the beam
may also result in a polarization with the centers
of mass for the electron and ion beams displaced;
in this case the equilibrium orbit has to be properly
redefined.

In the following section an analysis of equilibrium
orbit and linear particle motion is presented for the
most general case of an axisymmetric E x B field
which may consist of both externally applied fields
and space-charge fields due to the particles them-
selves. The only restrictions are that these fields
are independent of time and azimuth angle 6, have
a median plane (symmetry in z), and no E, and B,
components. Expressions are derived for the
equilibrium orbit and for the radial and axial
oscillation frequencies (in terms of the fields and
field gradients at the equilibrium orbit).

In earlier studies on the properties of relativistic
electron rings I. N. Ivanov et al.,' L. J. Laslett,?

and J. D. Lawson® had derived similar expressions
for the ultra-relativistic limit. The theory presented
herein agrees with these results but it contains an
additional focusing term in the radial frequency
formula which may be quite significant at nonrela-
tivistic particle energies, goes to zero at the ultra-
relativistic limit, and also vanishes when either the
electric or the magnetic field at the equilibrium
orbit is zero. The betatron oscillation frequencies
(for the magnetostatic case and zero self fields) and
the focusing properties of an electrostatic deflector
are found as special cases of the general formulas.

In Sec. 3 approximate expressions for the self
fields of an electron ring loaded with a fraction f
of stationary positive ions are derived. The results
are in agreement with those given by Laslett? for
f=0 and show a minor difference for the case
f#0. Some comments and suggestions are made
in regard to the polarization effects that occur due
to the presence of the positive ions.

Lastly, in Sec. 4 expressions for the radial and
axial betatron frequencies for an ion-loaded electron
ring are presented and compared with the results
given by Ivanov et al.' and Laslett.?

2. EQUILIBRIUM ORBIT AND

* OSCILLATION FREQUENCIES IN A
GENERAL STATIC Ex B FIELD WITH
AXIAL SYMMETRY

We assume combined electric and magnetic fields
with axial symmetry and which possess a median
plane. The fields may be produced by charges and
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currents in conductors outside the region of interest
as well as by the fields arising from the charges and
currents of the particles that constitute the beam,
i.e. the divergence of E and the curl of B need not
be zero. In addition the direction of the field
vectors, or, more precisely, the force vectors acting
on a particle, must be such that local force balance
with the centrifugal force can be achieved and an
‘equilibrium orbit’ can be defined. Lastly we
assume that particle displacements and velocities
perpendicular to the equilibrium orbit are small
compared to the orbit radius and the velocity along
the equilibrium orbit, respectively.

The equations of motions (in cylindrical co-
ordinates) will be used, and in the interest of clarity
we present the derivation for the nonrelativistic case
adding relativistic effects afterwards. The radial
force equation may be written for electrons
(g=—e)as

m#—mr0? = —eE,—er0B,, €))

where E, = E(r,z), B, = B,(r, z).

Define the equilibrium orbit, » = R, in the median
plane (z=0, E, =E,, B, = B,) such that balance
exists between centrifugal, electric and magnetic
forces, i.e. # =0 and

mRO,? = eEy+eR0, B,

hence
. eE, eB
0,2 = —24-—20,,
0 R+ 0
or
0’ =0 +0,0. )

o is the radian frequency of the particle at the
equilibrium orbit, w, = (eE,/mR)"/* is the frequency
associated with the particle motion in a purely
electrostatic field, and w = eB,y/m is the magnetic
(or cyclotron) frequency. Solving (2) for  yields

o =0, = Ho,+(0,>+40,H)']. 3)

Since the velocity of the equilibrium orbit particle
is v, = RO, we can solve (2) for the orbit radius R

and obtain

mvy? mo E, \!

=0 _TOofyy 0 ) 4)
eEy+evyB, eB, vo By

The angular velocity of a particle off the equilibrium
orbit is determined by the azimuthal force equation
from which one gets (Busch’s theorem or con-

servation of canonical angular momentum):
mr20—(mr*0),-x = ej‘ B,(r)rdr. ©)
R

In linear approximation, writing r = R+x(x < R),
one gets

(mr?0),—g = mR*0, and f B,rdr = By Rx.
R
Hence

mR20,+eBg x . eBox
= —————=|90 1- 2
mR*[1+(x/R)]? ( ot m R
or

i

From the equilibrium condition one has

Oy _ w? o> eEoR

() ) o) mvg

hence we may also write

- _ eEq R x
0= a)l:l <1+ mvoz)R]' @)

For the radial motion one obtains in linear
approximation

X eEy R
X—Row*[1+= ) 1-2(1 —
e ( +R>[ < " muy’ )R:I

E E’ R
_ _¢Eo_¢ x_e__“3<1+’i>

m m m R

[ (1 +eE°0R> %] [B, +B'x],

where E’ = 0F,/or|,-g and B’ =0B,[or |, g. Drop-
ping all quadratic terms in x after multiplication
yieldst

R
% —Rw? + w? <1+2———°——>x
mo

0

eE, eE' eRwB, we’E,RB,
=TT X - 2.2 x
m m m m?v,
eRw
+—DB'x.
m

+ The same result is obtained if one writes (correct to first
order)

o AN dv x
v (12,058 (2) (1-3)

in Eq. (1), and substitutes
d_v_ eEox

Vo mUoz '
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The zero-order terms cancel (from the equilibrium
condition) and we get
eE, e*ByEoR
srof 14208 _Cholok
mvo‘ m=ve~w
eE'’ eRB
2+——:|x =0. (8)

ma ma

The terms inside the brackets represent the square
of the radial focusing frequency, v,
From the equilibrium condition
e’BoEqR _eEqByR®> eE,R . eEyR
miv o muy: mog’ mvy* )’

Employing this relation one finds

eE,R eE,R ¢?E,*R?
vr2=1+2 02_ 02+ 204
moy®  mu, m?v,
eE’'R* eB'R?
mvy:  mvy

or, in view of mvy?/R = eEy+evy By:
ST
! (Eo+vo Bo)®  Eo+vo By
4 R[(OE,/0or)+vo(0B,/dr)]
Ey+v By

v

)

(Nonrelativistic case).

The analysis for the general relativistic case
follows the same pattern. For the mass m one
has to write ym,, and in linear approximation
the fractional change of y for a particle off
the equilibrium orbit is dyjy = —eE,x/ymyc>.
Thus the mass m has to be replaced by
ymy[1 —(eEyx/ymoc?)] in our previous equations.
The derivation is straightforward, though a little
tedious, and one obtains the following results:

9=w|:1—<1+ ¢Eo R )"] (10)
RTTE

i, EU=P) K
’ (Eo+BcBo)®  Eo+BeBy
+ R[(3E,[dr)+ Bc(dB,[or)] .
Ey+ fcB,
Equation (11) is identical with the nonrelativistic

expression (9) except for the factor (1—f2) in the
second term on the right.

(11)

If neither E, nor B, is zero we can introduce the
electric and magnetic field index

R OE, R 0B, Iso
== s "m ; a )
EO 51’ r=R Bo (37' r=R
following Lawson,® we define B, =E,/cB,. With

this notation the expression for v,> may be written
in the form

B*(1=B*)  Bo , Boke , Pkn

Got P ot B Bt Borp P

Of interest are the following limits:

vi=1+

(a) E, =0, k, = 0 (magnetostatic case)

Here
v2=1+k,. (13)
(b) By =0, k,, = 0 (electrostatic case)
v?=3-p*+k,. (14

(c) Ultrarelativistic limit (8 = 1)
E, R[(OE,|0r) + ¢(dB,/or)]

2=1+ ! z , (15
' E0+cBO+ Ey+cB, (15)
k k
or w2 =1+ Bo | Bok. m_
1+Bo 148, 1+P,

Equations (13) and (14) are in agreement with the
well known solutions for a purely magnetic or
purely electric field. Equation (15) agrees with
Laslett’s? as well as Lawson’s® results; the
main difference in this analysis is the additional
term Ey*(1—p%)/(E,+BcBy)* in the general ex-
pression, Eqgs. (11) and (12) for v,2. This term may
be quite significant at low (nonrelativistic) kinetic
energies, but in electron ring accelerator application,
where % = 1, it can be neglected for most practical
purposes.

The frequency v, of the axial motion can be
derived from the axial force equation (in relativistic

form):
mz =ymyZ = —eEz+eréB,. (16)

In the midplane (z = 0) one hasr =R, § =0, = ©
E,(R,0)0=0 and B.(R, 0)= The field com-
ponents outside the midplane are then in linear
approximation

JF, 6B
E/(R, 3) = 6; z, B/(R,z)=

z=0 z

0
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and one obtains

e OE,_ eR0,0B,
T oymg 0z ymg 0z
or
R OB
ror| 2 OB R OB o am)
ymy* 0z  ymy® 0z

From the equilibrium condition Rymw? = eE,+
efcB,; hence

2 R[(9E,/0z)— Bc(9B,/02) ]
w zZ=

0,
Eq+ BBy
from which
vzz — R[(UEz/az) - Bc(aBr/aZ)] . (18)
Eq+ BBy

In the purely magnetostatic case, E, = 0, 0E,/0z = 0,
and
2 R 0B,

Vs "B, 0z
On the other hand, if B, =0, dB,/0z = 0 (electro-
Static case), one gets

yr=X aE’.

*  E, 0z

(19)

(20)

For the special case where the self fields of the
particles can be neglected, i.e. the fields are produced
by external sources only, one gets from divD =
p=0:

OE E, OE
z _ Y r. 21
0z R or @1
Also curl B =J = 0, and therefore
0B, 0B,
oz or’ (22)

Under these conditions-Eq. (18) may be written in
the form

02— _Eo+R(E,[or) RPc(0B,/or)
: Eo+BeBy Eo+pcBy
If Ey #0 and B, # 0 we can introduce the field
indices k, and k,, and write
2 _(I+k)Ey  kyBcBy
: Eo+PcBy Eo+PcB,

(23)

(24

or, with 8, = Ey/Byc

L2 ~(LHk)Bo—kn B
: Bo+B
It should be noted that the general expression for
v, given in Eq. (18) is in agreement with Laslett’s
results (for f =1) while Eq. (25) is in the form
given by Lawson (private communication).

(25)

3. ELECTRIC AND MAGNETIC SELF
FIELDS OF AN ELECTRON RING
LOADED WITH POSITIVE IONS

The determination of the self fields of a toroidal
electron beam in free space involves complete
elliptical integrals, i.e. one does not get convenient
analytical expressions but, in general, has to employ
the computer and present the results in tabulated
form, as was done by Laslett* and Luccio,® for
instance. For a rough evaluation of self field
effects under various conditions however, analytical
expressions or approximations are almost indis-
pensable. In the case of the electron ring such
approximate analytical expressions can be obtained
when the minor dimensions of the toroidal beam
are small compared to the diameter of the ring.
Laslett? derived such simple expressions and used
them in the calculation of v, and v, for a relativistic
electron ring. In the following we present a
derivation which avoids the elliptical integrals and
perhaps illuminates the physical picture a little
better from a somewhat more direct angle.

Consider a toroidal beam of N, electrons (moving
in azimuthal direction with velocity v = fc¢) and N;
stationary ions, major radius R and elliptical cross
section with minor radii a and b as shown in Fig. 1.
Assume @< R,b < R and uniform charge and
current density.

For a straight beam (R — o) of elliptical cross
section, semi-axis a in x direction, b in y direction,
total current I and uniform charge density p =
Ijabrmv, the two components of the electric field
inside the beam are (MKS units):

_p bx I bx
*“goa+b megabva+b’

(26)

B _pay _ I ay
' ga+b megabva+b’

27)
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R

FIG. 1. Geometry of ring beam with elliptical section.

The magnetic field components are given by

I
Bo— _tl Y _ _Yp (28)

* raba+b 277

y~-7taba+b_c2E"' (29)
If the beam is bent into a toroidal shape, the above
field distribution will be distorted. The charge and
current elements in distant parts of the ring produce
at any given point a ‘bias’ field, as Laslett calls it,
which crudely speaking is superimposed on the
field of the straight beam configuration. Indeed,
if the major radius R of the ring is large in com-
parison to the minor dimensions, we can approxi-
mate the (axisymmetric!) field at any given point
(r, z) within the beam by a superposition of the
straight-beam term and the bias effect; thus, for
instance, we may write for the radial field com-
ponent E/(r, z) = EP* + ES"i#™  In carrying out
the analysis along this line, we shall restrict our-
selves to the two orthogonal surfaces r = R and
z=0. For the straight-beam terms we shall use
Egs. (26) to (29) substituting r— R for x and z for
y. The bias fields will be evaluated at r = R, 2 =0
by approximating the torus with a circular line
charge or filamentary current loop (neglecting the
finite width 2a and 2b in the two directions). The
bias field at any other point (#, 0) or (R, z) is then

obtained by linear - expansion using the field
gradients at (R,0). Thus, one obtains for the
contribution to the electrical bias field at point
r = R on the r-axis (see Fig. 1) resulting from the
line charge element p,; dL at distance ¢

dEbias — PL dLaC .

dney &2
Due to symmetry only the radial component dE, =
dEcos¢ will survive in the summation. Now
dL = Rd#, cos¢ = sin(0/2), & =2Rsin(6/2), and
the integral may be written as

2 .

) " pr RdO sin (6/2)

EP*(R,0)= | 2
r ( H ) JO 47158052

" prdo
=2| ————, 30
L 167eq R sin (6/2) (30)
which yields
bias PL i
=——Intan-| . 31
P T dme R 4, (D)

To avoid the singularity problem at the lower limit,
we replace 6 =0 by 0 =0, (where 0 <0, < 1),
i.e., we exclude from the integration a small part of
the ring (of length 26,,) near the field point (R, 0).
This is justified because the charges in this section
of the ring near the field point do not contribute
to the bias field and are taken into account in the
straight-beam term. Considering the geometry
and the finite cross section of the torus (which was
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neglected in the integration), one can argue quali-
tatively that the length of this excluded part of the
ring should be comparable, or proportional, to the
transverse dimensions (¢ and b). We therefore
write 6, = a(b/R), where b = (a+b)/2 represents
the average minor radius of the torus and « is a

proportionality factor whose value one would"

expect to be close to unity. Since, by assumption,
a< R and b < R, we then find tan(6,/4) ~ ab/4R
and
bias PL 4R

E™ = 4neoRln ab (32
An approximate analytical expression for the bias
field can of course also be obtained by evaluating
the elliptical integral directly. This was done by
Laslett> whose result is identical with ours if we
substitute o =1 in Eq.(32). In our subsequent
analysis we will therefore use this value for « in all
formulas concerning the bias field.

The magnetic bias field can be calculated in
similar fashion. For the contribution due to a
current element /dL one obtains at the field point
(R, 0) from Biot-Savart’s Law

IdL x a;

° 4pe2

Only the z-component survives the integration
which yields

BE*(R,0) =

deias —

oI, 4R pyI 8
4nR "2 ~anr 50 Y

1
= c2>.
Ho &o

To obtain the radial gradients due to the bias field
at the point (R, 0) we simply differentiate E?™ and
BP'* with respect to R. In doing so, we have to
recognize that the fields according to Egs. (32) and
(33) exhibit only a 1/R dependence, i.e., In(8R/b)
has to be considered as a constant geometry factor.
Then

ie.

" v s
bias bias [ -
B; =C—2E, (smce prv=1,

OE, 1 0B, 1
F S S S0
ie.
6E, bias oL SR
—3 —“1 _
or lox | 4 R2 B (34)
OB bias uol 8
z = - 1 . 3

or |-z 4R B (35)

To find the gradients of the bias force in the z
direction, 0E,/0z and 0B,/0z, we make use of the
divergence and curl conditions. Here we have to
recognize that the bias fields are generated by the
charges and currents in the distant parts of the
ring. (The local singularity was excluded in the
integration.) Consequently, we have divE"™ =0
and curl B%* = 0 and we get

OE, [Pias E, OE
=T, (36)
0z |,=gr R or
and
6B bias aBbias 1 SR )
o=t = - Ho sIn—. 37
0z |,=g or 4nR b

In applying the previous results to an electron ring
containing N, electrons (velocity fc) and N; = fN,
stationary ions we have to substitute

N ,(1—f N
_eNa-f) 4 12_5_;;_
|

= c.
PL 7R B

The total radial bias force acting on an electron
at r = R, z =0 may be written as

bias __ bias bias
F)™ = —eE"* —efcB,

. 2N, (1—f+pB%. 8R

FPaos =~ 7 "7 ‘In—. 38
" 8n%e, R? 3 (38)
This force is radially outward and hence tends to
enlarge the electron equilibrium orbit in com-
parison to the single-particle cyclotron orbit in an

applied external magnetic field. The corresponding

orbit radius is readily obtained from the balance
equation between centrifugal and bias forces on the
one hand (radially outward) and the inward Lorentz
force due to the applied field on the other hand.
It should be pointed out, however, that this
equation for the radial bias force assumes an ion
distribution which is proportional to the ‘hard-edge’
electron distribution function (density constant
over the ring cross section and zero outside). In
reality the positive ions experience an inward radial
force due to the bias field. The net result is that the
center of mass of the electron distribution and that
of the ions are radially separated, i.e., one obtains
two subrings, and our foregoing assumption is not
exactly valid under these conditions. The equili-
brium orbit for the electrons has to be redefined in
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this case. It will correspond to a ‘mean radius’ R
whose value should be less than that obtained from
Eq. (38). We can calculate it approximately by
treating the ring like a rigid body where the electron-
ion binding force reduces the bias force by a factor
1—f. Hence, instead of eE, (electrostatic force on
an electron) one has (1—f)eE, and instead of
Eq. (38) one has to write

N J(1-f)*+B*]. 8R

In=—.  (39)

Fbias —
r 8n%ey R? b

This result is in agreement with the expressions for
the ring equilibrium derived by Linhart®; in other
models’ on ring equilibria the ion concentration
appears in the form of a linear term (1—f).

The addition of positive ions to a ring beam of
relativistic electrons in free space thus results in the
formation of two subrings which are radially
separated. The net result of this effect is a decrease
in the holding power and an intrinsic polarization
which leads to the dipole oscillations of the two
subrings treated theoretically by Koshkarev and
Zenkevich.® The separation of the center of mass
of the two beams and the associated dipole oscilla-
tions were observed in a numerical computer study
by Boris and Lee® on ring beams in which the initial
density of positive ions was proportional to that of
the electrons.

It should be pointed out that the radial polariza-
tion of the ring can be avoided by applying an
external electric field which shifts the negative
potential minimum of the beam from the inner edge
to the center of the electron ring. In this case, the
centers of mass of the two subrings coincide. Such
an external field can be provided by putting a
conducting rod inside and a cylindrical boundary
outside the beam. The electric bias field at » = R
can then be cancelled either by a suitable choice of
the radii of the two conductors (if they are both
at the same potential) or by applying a potential
difference between them. An inner conductor will
be employed in the Maryland ERA system!® and
in the Garching experiment when a B, field'! is
generated by an axial current.

After these remarks we shall now proceed with
our analysis of the self-field terms needed to com-
pute the radial and axial oscillation frequencies of
the electrons. In doing so we shall ignore the

olarization effect, i.e., we will use Eq. (38) for the

bias force acting on the electrons at the mean
radius R and expand linearly about R to obtain the
force on an electron displaced from R in radial or
axial direction. For the latter case we need the
radial and axial gradients of the bias force at r = R
and z =0. First we have
OFPiss - N, (1—f+B%. 8R

T gy _ONASSHE) B8R )

or R 8¢y R b
This is in agreement with Laslett,” ERAN-30, p. 3,
if we put f=0 and > = 1. The axial gradient of
the bias force is

e’N,p*> . 8R

6 F:ias
0z 8m’eyR3 n b’ (1)

The factor 1 —f'is absent in this expression due to
the fact that 0EY**/dz =0, from Eq. (36). Note
that the bias field gives rise to a focusing force
gradient in radial direction and a defocusing
gradient in axial direction.

The ‘straight-beam’ effect produces a force F5t2iet
on an electron at radius r = R+x which from
Egs. (26) and (29) may be written as

sosign _ & N1 =S =) x

Fr "~ 2n%,Ra(a+b) (42)
For the ‘straight-beam’ force in the axial direction
(on an electron at a distance z from the midplane)
one obtains from Egs. (27) and (28), putting y = z:

F: ~ 2n%,Rb(a+b) (43)
Both force terms are focusing whenever f> 1— 2
or > 1/y* (Bennett-Budker condition). It should
be pointed out that the factor 1—f implies singly
charged positive ions. If the ions are multiply
charged, i.e., Z electrons removed from the neutral
atom, we must replace 1 —f by 1 —Zfin all previous
equations. Since the bias force according to
Eq. (41) is defocusing, the amount of positive ions
must be increased sufficiently above the Bennett-
Budker limit of Zf=1—p% in order to obtain
satisfactory focusing in the axial direction.

4. FOCUSING FREQUENCIES IN AN
ELECTRON RING

Following the notation of Soviet authors and
Laslett we introduce the dimensionless parameters
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u=v/yand P = 2In(8R/b), where (mks units):

v  e*N,/2nR e’N,
“ = - = P = 2 2 (44)
y A4megmgoc’y 8ngg Rmgc”y

We also define the total guide field, B,, from the
force-equilibrium condition:

2
Mo? _ evB, = eEy+evB,
= e(EP™*+ E{7™) + eo(BS+ B, (45)
Hence
ymy e
=—. 46
=R (46)

The applied electric field, E***", depends on the
potential difference between inner and outer con-
ductors. In the following we shall assume that
E**! = ( and that no conductors or other boun-
daries are near the ring. The bias field is then
unaffected by image charges and we can use
Eq. (32); introducing

_eN(1-)
Pr= 2nR

and the parameters P, u and B, we can write

. 1
EPis = ﬁBg P——f . 47
Likewise
. P
B:ws — B Ez__ (48)

and the total bias force

. ec 1—f+p?
Fbs — B uP :
gt
Substituting EP*" = 0 and Egs. (47), (48) into (45)
we may write the applied magnetic field in the form

1-f+p*
Bg|:1 +uP % . (50)
The gradients due to the bias field may be written as

aE::ias aBbias c 1— f+ ‘32
R : - —
(67‘ the s, ) glaF 5 OD

(49)

appl. __
BiPPl =

and

aEblas 6Bb1as P
R( —Be >=—c/33g“7. (52)

The gradients due to an applied electric field we
assume to be zero. For the applied magnetic field
we introduce the field index

R 0BPr:
n= " el g, _R=-km- (53)
Then
aB:ppl- aBappl
Rpe or Rpe oz

— —BenB, [1+uP f;rﬂz]. (54)

The gradients resulting from the straight beam
effect are readily obtained from Eqgs. (42) and (43).
Accordingly

aEstraight aBitraight R antraight
R< *—+fc =—=

or or e 0x
_ AmoPRypl —f+p?
T e a(a+b)’
(55)

or, dividing by the total guide field, BcB,=
ymg B2c?leR = Ey+ fcBy:

R[(3E,|or)+ Be(0B,[or) ™™ 4uR* 1—f+p*
Eo+fBcB, " a(a+b) PP
(56)
Likewise
R[(OE,[0z) + Pc(0B,[oz) "™ 4uR* 1—f+p>
Eo+pcB, " bla+b) B?
(57

To calculate the radial frequency v, according to
Eq. (11) we also need the bias force term
EO Eblas 1 _f
—MP—Z .
Ey+fBcB, ﬁcB 2B
Putting it all together we then find for the radial

oscillation frequency, v,, of the electrons in an ion-
loaded ring the following expression:

2 pP(A=f)*(1=p* uP(1—f)

(38)

vo=1+ a5 e
1-f+p* 1—f+p°
+uP ——— 2 |:1+ P_Zﬁz ]
4uR* f—(1—p%)
a(a+b) p? ’
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or
2 WPP(A=f)* pP 1-f+p°
V. = 1+T4y2+——2—-—n<1+uP——25—2—>
4uR? 1
MPTPEY: <f 77)' (59)

The parameter u can be calculated from the total
number of electrons, N, in the ring, the major
radius, R, and the total energy of the electrons
ymgc? according to the relation

u=4.58x 10"14i- . (60)
[em] b4
In the ultrarelativistic limit (8% = 1) the second term
in Eq. (59) becomes negligible (as long as u remains
small). Our result then agrees with Laslett’s?
expression, ERAN-30, p. 22, except for the third
term where he has (uP/2)(1—f) instead of uP/2.
For the axial oscillation frequency one obtains
by substituting Eqgs. (45), (52), (54) and (57) into
Eq. (18):

P 1— 2
v, = —%+n<1+uP—2£l;;—ﬁ>
4uR? f—(1—p%)
b(a+b) B? ’
or
. 4uR? 1\ pp 1—f+p?
v, —n+_b(a+b)ﬁ2<f y2> 7+n/,tP——2B2 .

(61)

For f* =1 Eq.(61) agrees with Laslett’s® result,
except for the third term where he has (uP/2)(1—f).

If boundaries and an applied electric field are
present we have to add terms which account for the
external field and the image effects. In ERAN-30,
Laslett included image effects from boundaries
outside the beam in his expressions for v,2 and v,2.
As noted ecarlier, these terms will change if
boundaries exist both inside and outside of the ring
beam. In particular, the bias force can be cancelled
and better axial focusing may be achieved by
application of a potential difference between inner
and outer conductor and/or by suitable design of
the geometry and nature of the boundaries (con-
ductors, dielectrics, etc.).

The presence of the factor 1 —fin our pP terms

is a direct consequence of the fact that the toroidal
contribution to 0E,/0z is zero, or at least negligibly
small in comparison to the toroidal magnetic term
0B,/0r, according to Egs. (36) and (37).

After receiving the technical report'? of the
author preceding this publication, L. J. Laslett
carried out accurate numerical computations®3
which appear to support this property of the
toroidal field gradients.
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