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Zusammenfassung

In dieser Arbeit untersuchen wir QCD bei endlicher Dichte mit Dyson-Schwinger Glei-
chungen. Im ersten Teil betrachten wir dabei farbsupraleitende Phasen, welche bei hohen
Dichten durch Bildung von Quark-Quark Paaren auftreten. Wir beschreiben dabei die
2SC und CFL Phase mit massiven Strangequarks. Zunéchst berechnen wir das Pha-
sendiagramm in einer Hard-Thermal-Loop / Hard-Dense-Loop Niherung, welche nackte
masselose Quarks an die Gluonen riickkoppelt. Die Vertex Parameter fitteten wir an
eine chirale kritische Temperatur von T, = 150 MeV. Diese Nédherung ergibt recht nied-
rige kritische Temperaturen fiir die farbsupraleitenden Phasen um 20 — 30 MeV und
eine zu hohe Pionzerfallskonstante. Zur Verbesserung der Trunkierung koppeln wir an-
schlieflend den vollen farbsupraleitenden Quarkpropagator an die Gluonen. Neben den
realistischeren Vakuumobservablen steigen die kritischen Temperaturen auch auf 40 — 60
MeV an. Wir finden eine dominante CFL Phase bei hohen Dichten, bei mittlerem che-
mischen Potential ist der Grundzustand eine 2SC Phase, welche auch stets in einem
schmalen Band zwischen CFL und normalleitender Phase auftritt. Wir berechnen auch
Debye- und Meissnermassen der Gluonen, welche die Vorhersagen von Rechnungen bei
schwacher Kopplung reproduzieren kénnen.

Im zweiten Teil der Arbeit betrachten wir chirale Kondensate mit rdumlichen Mo-
dulationen. Wir untersuchen dazu eindimensionale Modulationen in Form einer ebenen
Welle, welche zwischen einem skalaren und einem pseudoskalaren Kondensat rotiert,
im Dyson-Schwinger Formalismus und 16sen das System. Wir erhalten eine inhomogene
Phase, die den urspriinglich chiralen Phaseniibergang erster Ordnung iiberdeckt, was
mit Ergebnissen aus vergleichbaren Modellrechnungen iibereinstimmt.
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Abstract

In this work we investigate QCD at finite density with Dyson-Schwinger equations. In
the first part we consider color-superconducting phases, which occur at high densities
through the formation of quark-quark pairs. We describe 2SC and CFL phases with
massive strange quarks. We calculate the phase diagram in a hard-thermal-loop / hard-
dense-loop approximation which describes the back-coupling of massless quarks to the
gluons. We fixed the vertex parameters to a chiral critical temperature of T, = 150 MeV.
This approximation results in low critical temperatures for the color-superconducting
phases around 20 — 30 MeV and a too large pion decay constant. To improve the
truncation we couple the full color-superconducting quark propagator back to the gluons.
In addition to more realistic vacuum observables also the critical temperatures increase
to 40 — 60 MeV. We find a dominant CFL phase at high densities, while at intermediate
chemical potential, the ground state is a 2SC phase which also extents to a small band
between CFL and normal conducting phase. We also calculate Debye and Meissner
masses of the gluons, which can reproduce the results of weak-coupling calculations.

In the second part of this work we consider chiral condensates with the possibility of
spatial modulations. We investigate 1-dimensional modulations with plane-wave shape,
which oscillate between a scalar and a pseudoscalar condensate, in the Dyson-Schwinger
formalism. We find an inhomogeneous phase that covers the original first-order chiral
phase transition, which is in agreement with similar model calculations.
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1. Introduction

Nature can be described with four fundamental forces: the electromagnetic, the weak
and the strong interaction and the gravitational force. Except for gravity, whose features
at high energies are still unknown, the forces are described by relativistic quantum field
theories in the standard model. It includes the fermionic quarks and leptons, the gauge
bosons photons, gluons, W* and Z and the Higgs boson. While the fermions and gauge
bosons have all been discovered until 2000, a possible discovery of the Higgs particle
was just recently announced in 2012 at CERN @, E] The quantum field theories are
gauge theories that describe fermions and gauge bosons with an interaction between
these particles defined by the principle of local gauge invariance. This invariance also
requires the gauge bosons to be massless, however, they can acquire a dynamical mass
due to spontaneous symmetry breaking of the local gauge symmetry with the Higgs
mechanism.

While weak and electromagnetic interactions are understood well theoretically and can
be verified in precision experiments, the strong force still has many open questions. It
is described by the SU(3) gauge theory quantum chromodynamics (QCD) with quarks
and gluons as elementary degrees of freedom. The charges of QCD are the 3 colors
red, green, blue and the corresponding anticharges. It is a non-abelian gauge theory,
therefore the gluons can interact with each other directly. At high energies, the QCD
coupling decreases logarithmically and the interaction becomes weak. This feature is
called asymptotic freedom and has been shown by Gross, Wilczek and Politzer E, @],
who were awarded with the Nobel Prize in 2004 for this accomplishment. This regime
allows a perturbative treatment and is well described theoretically.

On the other hand, at low energies, the QCD coupling is strong and features like chiral
symmetry breaking and confinement emerge. Confinement enforces the absence of free
color charges in vacuum, and quarks and gluons only occur as bound states in form of
hadrons. Theoretically, confinement is defined by a linearly rising static quark potential.
Indirectly, it can be observed in experiment by the absence of free quarks and theoretical
calculations show the linear potential but its origin is still unknown. This problem
is closely related to one of the Millennium Prize Problems of the Clay Mathematics
Institute that requires the proof that Yang-Mills theory exhibits a mass gap A > 0 B]
This mass gap naturally arises in a confining Yang-Mills theory in forms of glueballs
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Figure 1.1.: Schematic QCD phase diagram ﬂa]

as effective degrees of freedom. In QCD the confined, hadronic observables are quark-
antiquark states called mesons, and baryons which are 3-quark states. Additionally there
may be exotic hadrons like glueballs, tetraquarks, pentaquarks or hybrid states.

Another important feature of QCD at low energies are the high effective masses of
quarks which reflect in the high masses of the baryons. This can be explained by the
spontaneous breaking of chiral symmetry which also explains the existence of light pseu-
doscalar mesons as Goldstone bosons. At high temperatures chiral symmetry is restored
and quarks and gluons are deconfined and form the quark-gluon plasma. These two
phases, the hadronic regime at low temperatures and the partonic quark-gluon plasma
at high temperatures are separated by a phase transition. At finite density, additional
phases are expected to emerge.

The different QCD phases and phase transitions can be visualized in a QCD phase
diagram, that shows the favored phases in dependence of temperature and chemical

otential. The QCD phase diagram is one of the main objects of interest in QCD ﬂ»
ﬁ] and a sketch of this diagram is shown in Fig. [[Jl It shows the hadronic region at
low temperatures and chemical potential where quarks are confined and chiral symme-
try is broken. At high temperature the quark-gluon plasma dominates, where chiral
symmetry is restored and quarks and gluons are deconfined. At high chemical poten-




tial various color-superconducting phases emerge which are condensates of quark-quark
Cooper pairs. The diagram indicates also the regions of the phase diagram, present and
future accelerators can access.

To probe QCD phases experimentally, high energies are required which can be reached
in heavy-ion collisions at RHIC at BNL, LHC at CERN and, in the future, at FAIR in
Darmstadt. In proton-proton collisions at high energies, a pair of jets is produced, which
is a cone of hadrons which were created in the hadronization of a high energy parton
and fly in the same direction as the initial parton. As the partons are produced in
parton-antiparton pairs which fly in opposite directions, there is always a pair of jets or
even more. In heavy-ion collisions at RHIC, it has been found that one of the jets is
highly suppressed or absent m, |ﬁ|] This can be interpreted as the loss of energy due
to the propagation through a strongly interacting hot and dense medium, which is an
evidence for a created quark-gluon plasma. These results could be confirmed with Pb-Pb
collisions at LHC [12]. With statistical methods, temperature and chemical potential
of the chemical freezeout, where the hadrons are created, can be calculated, which is a
rough estimate for the QCD critical temperature (see E@] and references therein).

On the theoretical side, precise quantitative predictions can be obtained with lattice
QCD. Thereby, the 4-dimensional space-time is discretized on a lattice and the path
integral over gluon configurations is sampled numerically with Monte-Carlo simulations.
These techniques require large computational effort but give first-principle results of
QCD. Though there are still some uncertainties about the convergence to the continuum
and infinite volume limit and the effect of fermion discretization, the zero-density regime
of QCD can be described well theoretically. The most recent lattice calculations show,
that the zero-density transition is a crossover and therefore a smooth transition. The
critical temperature therefore depends on the observable and has values of 150 — 160
MeV @, ﬁ

At finite density or chemical potential the lattice formulation is not applicable in
most cases due to the fermion sign problem. The fermion determinant becomes complex
for finite p and cannot be interpreted as a probability distribution anymore, which
spoils the Monte-Carlo simulation. There are ways to extrapolate towards finite density
with Taylor expansion, extrapolation from imaginary chemical potential or reweighting
methods but these only give access to a small region of finite density @@] Only a few
QCD-like theories like 2-color QCD, adjoint fermions and some others allow to prevent
the sign problem, however, all of them show some fundamental differences to QCD.

At very high densities the coupling becomes small and QCD can be studied perturba-
tively with first principles. With weak-coupling methods it can be shown that the ground
state of three-flavor QCD at low temperatures is a color-superconducting state in the
color-flavor-locked (CFL) phase of symmetrically paired up, down and strange quarks
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ﬂﬁ@] These methods are only applicable at chemical potentials above a few GeV.
Below, many different pairing patterns are expected to play a role. Due to the strong
coupling, non-perturbative methods are necessary. Therefore, finite-density regimes are
extensively studied in effective models like Nambu-Jona-Lasinio (NJL) or quark-meson
models. These models can be tuned to reproduce lattice results at zero density but
can calculate finite-density quantities straight forwardly and often also calculations of
dynamical quantities in Minkowski space are possible. Usually a first-order phase tran-
sition with a critical endpoint at finite densities is predicted. Calculations in the NJL
model show a rich phase structure with many different types of color-superconducting
condensates M@]

Also the possibility of inhomogeneous phases has been investigated (see @] for a
review). The idea of inhomogeneous structures already came up in the sixties by the
possibility of inhomogeneous spin-density waves in nuclear matter @] and later was
studied in weak-coupling QCD at large N, ﬂﬁl, @] Calculations in models of strong-
coupling QCD also included the possibility of spatially inhomogeneous phases ﬂﬁ@
These phases are characterized by a spatially varying chiral symmetry breaking conden-
sate and it was found that these phases cover the first-order phase transition completely.
However, these models include some strong simplifications and especially the missing of
gluons and dynamical confinement is a fundamental difference to QCD.

A way to investigate QCD directly at finite densities is provided by functional methods
like the functional renormalization group (FRG) or Dyson-Schwinger equations (DSEs).
In these methods, integral and differential equations for the dressed QCD correlation
functions are derived from the QCD generating functional and solved numerically. These
equations are exact in general, but not a closed system of equations and therefore can
only be solved after specifying a truncation scheme. Truncated DSEs have been solved
in vacuum to study ghost and gluon propagators and their IR behavior in Yang-Mills
theory and also hadronic observables can be calculated (see ﬂﬁ@])

Recently, the study has been extended to finite temperature and density to access
the QCD phase diagram with functional methods. The investigation of the chiral and
deconfinement transition of QCD thereby is in agreement with lattice-QCD predictions

; @] Similar to model calculations, a first-order chiral phase transition at finite
density with a critical endpoint is found @, @] The framework of Dyson-Schwinger
equations can be extended to the study of color-superconducting phases as it has been
done at zero temperature in @@] These calculations show that the CFL phase is
the dominant phase at intermediate chemical potentials and zero temperature. Also
FRG calculations (see @] for a review) show progress in understanding the QCD phase
diagram @] and FRG methods in PQM models predict a similar behavior of the chiral
phase transition ﬂil, @]




The aim of this work is to investigate the QCD phases at finite density with a recent
truncation of QCD Dyson-Schwinger equations. In Chapter Blwe introduce the formalism
of Dyson-Schwinger equations and color superconductivity. In Chapter Bl we show a
simple truncation to solve the system numerically. For the gluon propagator we take
lattice data of Yang-Mills calculations and include quark effects with a hard-thermal-loop
/ hard-dense-loop (HTL-HDL) truncation. This truncation only considers the effects of
bare massless quarks on the gluon. This approximation allows to calculate the dressed
quark propagator and a phase diagram. In Chapter ]l we improve the truncation by
coupling fully dressed quark propagators back to the gluon and also include the effects of
quark masses and color-superconducting condensates on the gluon. Again, we investigate
the color-superconducting condensates and calculate the phase diagram. Additionally we
calculate the gluon screening masses. In Chapter Bl we focus on the chirally broken phase
in the HTL-HDL approximation, but allow for an inhomogeneous chiral condensate. We
take the most simple ansatz in a 1-dimensional plane wave (chiral density wave) and
calculate the phase diagram.

Most of the results shown in Chapter [3] have already been published in @]







2. QCD and Dyson-Schwinger equations

2.1. QCD basics

Quantum chromodynamics is the fundamental quantum field theory describing quarks
and gluons. It is a non-abelian SU(3) gauge theory constrained by renormalizability,
local gauge symmetry, locality and Poincare invariance. In Euclidean space it is described
by the Lagrangian

- 1
ﬁQCD = 1/} (_lp + m) 1/} + ZF;?VF;?V (21)
with the covariant derivative
D, =0, + igAfjt“ (2.2)
and the field strength tensor
Fi, b = _é[Du, D,] = (aﬂAg —0,A% — g fabCAZA§> 2. (2.3)

We use the Feynman slash notation ) = YuDy. g is the unrenormalized strong coupling
constant and m = diag{m,, mg, ms...} the matrix of the unrenormalized (bare) quark
masses. The quark spinors 1), 1) have N ¢ flavor components, N. = 3 color components
and are 4-dimensional spinors in Dirac space. They transform according to the funda-
mental representation of the gauge group SU(3). The gauge or gluon fields Af live in the
adjoint representation of the gauge group. t, are the 8 generators and f*° the structure
constants of that group, defined by [t?, ] = 4 fobete.
The generating functional is defined in the path integral formalism

Zlgnd] = [ DldvAless (—SQCD + [t (g + jzAz)) (2.4)

with the external sources 7, n and jj; and the classical action

Sqcp = /d4x£QCD. (2.5)
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As we work in Euclidean space, the 4-component of x is the imaginary time x4 = it.
All correlation functions can be deduced from the generating functional with functional
derivatives

1 onZ[J]

(T(p,(xl)<pj(x2),> = (26)

with fields ; and corresponding sources J;.

2.1.1. Gauge fixing

An essential feature of the QCD Lagrangian is its invariance under local gauge transfor-
mations

Y= Uy
aya aja i (27)
At — UARUT + ;(BMU)UT

with a space-time dependent SU(3) transformation matrix U = e?®* (@),

This invariance implies that the integration over the gauge fields in Eq. (24]) also sums
up equivalent gauge configurations that are in the same gauge orbit, defined by

Z‘ y a4+

(AL = {UAgtaUT + E(BMU)UT U =e" ¢ SU(3)} (2.8)
and therefore give the same action. This does not generate problems when only using
gauge invariant quantities like it is possible in lattice gauge theory. However, methods
such as Dyson-Schwinger equations rely on unobservable gauge dependent quantities
like quark and gluon propagators and we need a description of these quantities as well.
This cannot be done straightforwardly, as a consequence of gauge freedom is that the
kinetic part of the gluon in the Lagrangian Eq. (21)) AZ(—@Q Guv +0,0,) A, has vanishing
eigenvalues. This spoils the definition of a perturbative gluon propagator DZZO (r —vy),

as the defining equation (—82g,, + 8M3V)D§g70(x —y) = gupd®S(x — y) has no solution
and we need to fix the gauge to overcome that problem. This means, we pick exactly one
gluon configuration from each gauge orbit and calculate all quantities for that choice of
the gauge. While e.g. propagators are dependent of that choice, observable quantities
such as hadron masses, transition temperatures etc. must not be gauge dependent.

We can fix the gauge by using the Faddeev-Popov method introducing the gauge fixing
condition

f(A) —w(x) =0 (2.9)
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such that exactly one configuration of each gauge orbit fulfills that conditio.
We choose linear covariant gauges f*(A) = J,Aj. This gauge condition can be im-
plemented in the generating functional Eq. (2.4) by inserting

1= [ Da@s (74" - wt (o) jaes 2

det
¢ oo

(2.10)

and after averaging over w®(z) with a Gaussian weight exp < i diat > we get the

result @]

Znng.o.0)= [ DlivAcexw ( [ ate (~Lyy o+ dn-+ g2+ oc+an)

252

(2.11)
Lyr = Locp + 5(8 Aa) (Guéa)(Dzbcb) (2.12)

with the covariant derivative in the adjoint representation
DI = 0,0% + gf ™™ AS, (2.13)

and the auxiliary ghost fields ¢ and ¢. These are unphysical spin-zero Gralimann fields.
Together with the unphysical gluon polarizations they have to disappear in the phys-
ical spectrum. This is ensured by the BRST symmetry, a remnant of the local gauge
symmetry after gauge fixing.

The gauge parameter £ can be chosen freely. In this work, we use Landau gauge
§ = 0, where the gluon field is strictly transverse, i.e. J,Af = 0. Therefore, the gluon
propagator is also transverse and as this is not altered by quantum corrections, this
gauge is useful for application in Dyson-Schwinger equations.

2.1.2. Renormalization

The gauge fixed QCD Lagrangian Eq. (2.12]) is multiplicatively renormalizable and with
the introduction of a finite number of renormalization constants all divergencies are
cured. After rescaling the fields, the renormalized Lagrangian is given by

_ N
Eren =Z27/)(—679 + me)ﬂ) - ZIFZQ¢VME¢AM
Z3 a a abc a c Z4 abe pede qa c
+ (047 — 0y AL)? — Z1gf**(0, A )AbA + SRgPpobepede At AD AC AL (2.14)

+Z38°0%c" + Z1gf e 0, (AGD) + == (0, A%)°

2Z§

!The Faddeev-Popov procedure does not solve this problem completely and there still remain equivalent
configurations called Gribov copies ﬂﬂ] which need to be considered when studying Yang-Mills theory.
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and depends only on renormalized fields and couplings. The scaling relation of the fields
are

Inb —s Zoth, A° - z3240 b Zugach
iz 3 S
g— Zgg, m— Zym, §— Ze&. (2.15)

The renormalization constants of the vertices are not independent, but constrained by
Slavnov-Taylor identities that make use of the BRST invariance of the Lagrangian:

Tip = ZgZa 2, Ty = 2,737, Th = Zy2y* 7y, Za= 7273 (2.16)

In Landau gauge it is also possible to choose Z; = 1 @] This gives the relations

Zy= 25" 2;"% and Zyp = 2.

The correlation functions defined in Eq. (28] also inherit the renormalization depen-
dence. The propagators are defined as 2-point correlation functions (see Appendix [B)
and the quark, gluon and ghost propagators scale with the corresponding renormalization

constants Z;(v, A)
S(piA) = ZS(piv),  Di(ksA) = ZsDpy(kiv),  G™(kiA) = ZsG™(kiv) - (217)

with the cutoff A and the renormalization scale v. The quark-gluon vertex has the
scaling relation

1
gMTLP, ¢ A) = ——59(W) T (p, 4; v). (2.18)
7y 7}
Using the relation for the coupling g(A) = Zyg(v), we get

T (p,q;v) = Z1rl,(p, q; A) (2.19)

for the dressed quark-gluon vertex.

2.1.3. QCD symmetries

The QCD Lagrangian exhibits a number of important symmetries. As a gauge theory
it is invariant under local gauge transformations as indicated in the previous section.
Although gauge invariance of the QCD Lagrangian forbids a gluon mass term in the
Lagrangian, breaking of Lorentz invariance in the medium can induce effective electric
screening masses of the gluons, the Debye masses. These masses only occur at finite
temperature or chemical potential and do not spoil gauge invariance of the theory @]
In a color-superconducting regime it is also possible that the global gauge symmetry

10
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is spontaneously brokerE. The spontaneous breaking of a symmetry induces massless
Goldstone bosons. In case of a gauge symmetry these Goldstone bosons are “eaten” by
the gauge bosons and the gluons get a magnetic screening mass through the Anderson-
Higgs mechanism @, @] These masses are called Meissner masses.

Another important symmetry of QCD is chiral symmetry. For vanishing bare quark
masses m = 0, left- and right-handed quarks, defined by

L+
2

v, (2.20)

YR, =

do not mix and the Lagrangian exhibits a Ur(Nf) ® Ur(NNy) symmetry. This symmetry
can be expressed as Up(1) ® Ux(1) ® SUy(Ny) @ SUs(Ny) emphasizing the invariance
under vector and axial-vector rotations

1 — exp (2'6?;/7',1) v, P — exp (1'96‘?757'@) ) (2.21)

with 7, € SU¢(3). The corresponding currents, already generalized to finite bare quark
masses, are:

Oudp = ,ﬂﬁ%ﬂﬁ =0 (2.22)
-5 n 7 gsz QYpo pa pa
Oudp = Outbyuysy = 29mystp — 39,2 FiFo, (2.23)
a _ Ta _ Ta
5a _ Ta _ Ta
Oujn” = WY ¥ = ¥ {Em} (0 (2.25)

The Up(1) current j, is always conserved and guarantees baryon number conservation.

The vector current jj is conserved for equal quark masses while the axial and axial-vector

currents jfj and jg’a are already broken by non-vanishing quark masses. The axial current

is additionally broken anomalously by the Adler-Bell-Jackiw anomaly @, @] that breaks
this current through the quark triangle diagram on the quantum level. This symmetry
breaking explains the mass splitting of the  and 1’ mesons.

In vacuum, a dynamical quark mass is generated through the strong quark-gluon in-
teraction. This dynamical quark mass already arises in the chiral limit and breaks the
SU4(Ny) symmetry spontaneously. According to the Goldstone theorem this causes the

20Only the global gauge symmetry in the gauge fixed theory is broken which is not in contradiction with
Elitzur’s theorem @], which states the impossibility of breaking local gauge symmetries.

11
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—— ' = —— '+

Figure 2.1.: Dyson-Schwinger Equation for the full quark propagator. Plain lines rep-
resent quark propagators, the curly line the gluon propagator. Thick dots
represent dressed quantities.

occurrence of NJ% — 1 Goldstone bosons which are the pseudoscalar mesons. They are
massless in the chiral limit, for small bare quark masses they have small masses. For
Ny = 2+1 these are the three pions and the heavier four kaons and the eta meson. Chi-
ral symmetry along with gauge symmetry can also be broken in color-superconducting
phases.

2.2. Dyson-Schwinger equations

Dyson-Schwinger equations are the quantum equations of motion of a quantum field
theory. Exploiting the identity

0= [ Dlelz= expl(-Sacold + 1o (2.26)

for the variation with respect to different sources ¢; and taking additional variations,
the DSEs for all n-point functions can be obtained. For the quark and gluon DSE this is
shown in Appendix The DSEs are coupled integral equations and obtained without
any approximation.
2.2.1. Quark Dyson-Schwinger equation
The DSE for the dressed quark propagator S(p) is depicted in Fig. 2] diagrammatically
and given by

S piv) = Zo(v, A) (Sy (05 A) + S(p; A)) - (2.27)
The bare propagator is

Sy (s A) = —ip + Z (v, N)my(v) (2.28)

where, in general, different bare quark masses my(v) for the different quark flavors are
allowed. The quark self-energy X(p; A) is a one-loop diagram including a dressed quark

12
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propagator S(q;v), a dressed gluon propagator ng(kz; v), a bare ¢Z1p (v, A)7ﬂ§ and a
dressed gFZ(p, q;v) quark-gluon vertex
2 dlg A b ab
Zo(v, N)E(p; A) = Z1r(v, N)g™ (v) / W%7S(q; V) (p.¢;v) Dy (k =p — g v).

(2.29)

A% = 2t are the 8 Gell-Mann matrices in color space. We use the convention of labeling

the quark momenta with p and ¢ and the gluon momentum with k£ whereas momentum

conservation implies k = p — q.

An unfortunate feature is that the DSE of an n-point correlation function includes
at least one higher n-point function and consequently, the system cannot be closed
without a truncation. For the quark DSE the unknown quantities are the dressed gluon
propagator and the dressed quark-gluon vertex. In general, the DSEs are an infinite
tower of coupled equations and not solvable exactly. We therefore will solve the quark
and gluon DSE in an appropriate truncation that will be specified later.

As already indicated on the left-hand side of Eq. [229]), the self-energy diagram is
proportional to Z, which is necessary to keep multiplicative renormalizability. This can
be seen easily, applying the scaling relations Eq. (Z17) and Eq. (2.19) with the STIs for
the renormalization constants Eq. (2I6]) to the right-hand side of Eq. ([2Z229). To fix the
remaining renormalization constants Zs and Z,, the quark propagator is renormalized
by requiring

S_l(p§ V)|p2:V2 = —1'215+mf(V)|p2:l,2 (2.30)

at the renormalization point v. In the chiral limit, the DSE does not depend on Z,,, and
the mass stays unrenormalized. As Z,, only depends on the cut-off and the renormal-
ization scale and not on the bare quark mass, it can still be determined by extrapolation
from finite bare quark masses. In the following, we omit the explicit dependence of the
propagators on the renormalization scale v and the cutoff A.

Specifying the dressed gluon and the dressed quark-gluon vertex, the quark DSE can
be solved. The inverse quark propagator in vacuum has two dressing functions and can
be parametrized by

S™Hp) = —ipA(p) + B(p). (2:31)

The propagator is often expressed as

_ iAW)+ Blp) _ Zyp)(ip + M(p))
p*A%(p) + B%(p) ~ p*+ M3(p)

S(p) (2.32)

defining the quark wave function renormalization Z,(p) = 1/A(p) and the renormaliza-
tion-point independent mass function M (p) = B(p)/A(p).

13



2. QCD and Dyson-Schwinger equations

Investigating QCD in the medium introduces the rest frame of the medium which
breaks the O(4) rotational symmetry of the system. Temporal and spatial coordinates
or equivalently energy and momentum in Fourier space need to be treated as independent
coordinates. Finite temperature 1" can be introduced by restricting the integration in
imaginary time direction to § = 1/7. In Fourier space this translates to a sum over
discrete Matsubara frequencies

| G0 2 TE st (233)

The Matsubara frequencies are odd multiplicities of 77" for quarks w, = (2n+1)7T due
to the anti-periodic boundary conditions of fermions. Bosons obey periodic boundary
conditions, therefore the gluon Matsubara frequencies are w,, = 2mnT.

Finite chemical potential is introduced as a Lagrange multiplier that enforces baryon
number conservation

B
SQCD — / dT/dgx (»CQCD + M,O) . (2.34)
0

The baryon number density is given by

p() = Y @)y (z) = P(a)y(@) (2.35)

and can be absorbed in the free Dirac part of the Lagrangian

LQeD, free + 1p = (=P +my + yap)ip. (2.36)

Therefore, the bare medium propagator has an energy component shifted by the chemical
potential

Sy L (p i= (W, D)) = —iva(wn + i) — if + Zymy. (2.37)

The medium quark propagator has an additional dressing function, also reflecting the
broken O(4) symmetry

S7H(p) = —ina(wn +ip)C(p) — iPA(p) + B(p). (2.38)

Finite chemical potential also leads to complex dressing functions. We define the medium

mass function by M (p) = %.
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2.2. Dyson-Schwinger equations

e T = QY +m%9/
By O
..
+ e e +
P

Figure 2.2.: DSE for the gluon propagator. Curly, dotted and plain lines represent gluon,
ghost and quark propagators, respectively. Thick dots indicate dressed
quantities.

2.2.2. Gluon Dyson-Schwinger equation
The gluon propagator is described by the DSE in Fig. and obeys the equation

—1l,a —1,ab a a
DMVL b(k:) - Duy,O (k) + Huby,Y]W(k:) + Hul;,q(k)' (239)

Without the last diagram the equation corresponds to the pure (quenched) Yang-Mills
system including a ghost-loop diagram and diagrams involving only gluons that arise due
to the possible self-interaction of the gluons. The last diagram describes the coupling to
the quarks. Solving the Yang-Mills equations is numerically demanding already without
quarks @@] In this work we therefore do not calculate the Yang-Mills diagrams
explicitly but investigate the quark contribution to the gluon self-energy, described by
the last diagram and given by

d* @
15,0 =21 [ e (0 SO 05@ ) (2.40)
We work in Landau gauge where the gluon is strictly transverse and given by
. Z(k
oy = 2P, (2.41)

in vacuum with the transverse projector

T = (6,W - 7) (2.42)
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2. QCD and Dyson-Schwinger equations

iﬁﬁx;ii%

Figure 2.3.: Dyson-Schwinger Equation for the quark-gluon vertex.

and the gluon dressing function Z% (k) that, in general, may depend on the color channel.

The medium also has influence on the structure of the gluon propagator. In the 4-
dimensional transverse subspace the gluon splits up into a 3-dimensional transverse and
3-dimensional longitudinal component, defined via the projectors

kik;
Pun(k) =8 = 55" 2.43
PL (k) = 6, — Tk _p1 ) e
,ul/( )_ puy 2 - ,uz/( )

The gluon propagator has in general two different dressing functions proportional to
those projectors.

a Z%. (k) z% (k)
Dul;(k): T]ZQ Pl (k) + leQ Pl (k). (2.44)

2.2.3. Dyson-Schwinger equation of the quark-gluon vertex

The quark-gluon vertex is probably the least known quantity. Its DSE can be expressed
as shown in Fig. @] As already mentioned, a generic feature of the vertex DSE is the
occurrence of at least one higher correlation function, here a 2-quark—2-gluon correlation
function in the last diagram which prevents getting a closed system of equations. In gen-
eral, the dressed vertex consists of 10 Dirac components with different dressing functions
that depend on 2 external momenta. In medium, there are even more components.

2.3. Effective action, quark condensate and pion properties

The solutions of Dyson-Schwinger equations can also be understood as extremal values
of the effective action. The effective action is an interesting quantity as it also allows to
judge the stability of the solutions, however, it is not always easy to calculate it. It can

16



2.3. Effective action, quark condensate and pion properties

be defined in the CJT formalism @] by

T[s] = / Trin S~ (p) — / Tr (1 - 255 (p)S(p)) + TalS] (2.45)
P P

where I's incorporates the interaction and is the sum of all 2-particle-irreducible (2P1)
diagrams of the dressed quark propagator. The effective action is equivalent to the
thermodynamic pressure of the system

p=T[S5]. (2.46)
The quark DSE can be derived by extremizing the effective action

orls) _
550 =" (2.47)

This also relates I'3[S] to the quark self-energy

ol [S5]
6S(p)

It is always possible to derive DSEs from a given effective action, however, vice versa,
not every truncated DSE allows to explicitly define an effective action as it is not always
possible to solve Eq. (248)) analytically for I'y. If the gluon-propagator and the quark-
gluon vertex in the quark self-energy Eq. (Z29) do not depend on the quark propagator,
which is used in the HTL-HDL approximation, I'y can be determined analytically and
is given by

= Z>%(p). (2.48)

2 4 4 a
I :ZlF%/ éif; /(;ZT(;:TY (w%S(q)FZ(nq)DﬁZ(k)S(p)>

2 T iy (2.49)
-2 [ G ewse)).
At the stationary point it can also be written as
L= /p Tr (1 - 255 (p)S (1)) - (2.50)

The effective action is quartically divergent and can be regularized by calculating the
difference between two actions. However, due to the strong divergencies, it is very tedious
to perform these integrals numerically and one needs a very high accuracy of the dressing
functions.

17



2. QCD and Dyson-Schwinger equations

For the back-coupling of the dressed quark propagator to the gluon, which is investi-
gated in Chapter Ml it is even not possible to get an analytic expression for I'y and it is
only formally defined by Eq. ([2.48)).

The quark condensate is the expectation value of the quark-antiquark fields (1¢) and

defined by @]
4

() = _ZQZm/(;iTp;lerS(p)' (2.51)

In the chiral limit this quantity is finite, but depends on the renormalization scale. As
the renormalization dependence is solely carried by Zs and Z,,, it drops out for ratios
of condensates which are therefore physical quantities.

For finite bare quark masses, a combination of bare and strange condensate cancels
the divergencies and is used in e.g. lattice QCD @]

()s = () — %@ws (2.52)

with the condensate of a light flavor [. Alternatively it is possible to determine the
condensate with a fit on the perturbative behavior of the mass function @] This also
requires a high accuracy of the dressing functions as the condensate is only sensitive to
the next-to-leading-order asymptotic behavior of the mass function.

In medium we fix our input quantities by the critical temperature of the chiral phase
transition. To get a measure for the quality of the vacuum results, we need to compare
with mesonic observables. In the chiral limit, the pion is massless which is ensured if the
corresponding symmetries are preserved. In contrast, the pion decay constant also has
a finite value in the chiral limit and is a good observable to check the accuracy of the
vacuum solution of the DSE. The physical pion has the value of f; = 92.4 £+ 0.2 MeV
ﬂﬂ], in the chiral limit it is slightly smaller. It can be calculated without solving the
pion Bethe-Salpeter equation using the relation @, @]

2= Ne [ dpp? Zy A~ (p*) M (p?) <M( 2y _ p_2dM(P2)> .
ToAn (p? + M2(p?))?

This equation uses the leading-order Bethe-Salpeter equation for the pion and is valid
in the chiral limit but underestimates the pion decay constant by a few percent.

For small explicit chiral-symmetry breaking, the Gell-Mann Oakes Renner relation
ﬂﬁ] gives a connection between pion and quark properties

2m? = —my(au + dd) + O(m?) (2.54)

(2.53)

with the pion mass my, the light quark mass m; and the light quark condensate (@u+dd).
It is trivially fulfilled in the chiral limit, where m; = m, = 0, and provides the connection
between m; and m,, when allowing for light quark masses.
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2.4. Color superconductivity

2.4. Color superconductivity

In a fermionic system an attractive force between the fermions leads to the formation
of bosonic Cooper pairs m, @] This phenomenon is analog to the formation of elec-
tron pairs in an electric superconductor. At large enough chemical potential, up and
down quarks are nearly massless and therefore have a finite density and the strong force
provides an attractive channel for the formation and condensation of diquarks. Due
to the complex color, flavor and Dirac structure of the quarks, there are many pairing
patterns possible which have been extensively studied in the past @@] The color-
superconducting phases are characterized by diquark condensates

(¥ Cys09). (2.55)

C = 974 is the charge conjugation matrix and O an operator in color, flavor and Dirac
space, specifying the condensate. The combination Cv5O needs to be antisymmetric to
obey the Pauli principle. We restrict the investigations to scalar spin 0 phases throughout
this work. Therefore, O only acts in color and flavor space. As Cys is antisymmetric in
Dirac space, the overall antisymmetric condition requires O to be a symmetric operator.
In field theory formalism, color superconductivity can be implemented most easily by
introducing the 2-dimensional Nambu-Gor’kov (NG) space and defining bi-spinors

1 - 1 -
‘I’:ﬁ<(}?ﬂ>’ m:ﬁw T C). (2.56)
The quark spinors are 4-dimensional objects in Dirac space and have 3 x Ny components
in color-flavor space, where Ny is the number of flavors. Additionally they have two
components in NG space but, by construction, those are not independent and therefore,
the degrees of freedom of the theory effectively are not changed. The fermionic part of
the Lagrangian can also be formulated in NG space

= (=1 +myp+yap 0 >
L =V v 2.57
Qe ( 0 —De+my —yup (257)
with the charge conjugate covariant derivative D¢, = _5u — igAz(ta)T. Deriving the

quark DSE by taking the derivatives with respect to the NG spinors instead of the quark
spinors gives the DSE for the NG quark propagator

S7Hp) =22 (Sy ' (p) + Z(p)) - (2.58)
We also define the NG propagators and self-energies , ]:

st = (70 5 0)) 259)
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2. QCD and Dyson-Schwinger equations

So(p) = <S(J]ro(p) S—O( )) (2.60)

p
== () 3-10) @

The components diagonal in NG space represent the normal propagators and self-
energies for particles (+) and charge conjugate particles (—), while the off-diagonal
components are related to color superconductivity. Therefore, the bare propagator is
diagonal in NG space. Without color superconductivity, also the dressed propagator
and the self-energy are diagonal and the Dyson-Schwinger system decouples into two
equivalent gap equations for the quark propagator and the charge conjugate propagator.
On the other hand, if color-superconducting condensates are present, quarks and charge
conjugate quarks are coupled.

This becomes evident when we insert the above expressions into the gap equation,
Eq. (Z58). One then obtains the following set of equations, which are coupled by the
color-superconducting condensates:

S5 = 7, (S 45 - 8T (57 2T) T )

. (2.62)
T = — (ST'+5F) oF5=,
The vertices also live in NG space. While the bare vertex is diagonal
A? a
~y 0 A
et =z o ot | =t Z1pyu— 2.63
© 1F ( 0 _'YMAQT> 1FYu 9 ( )

the full vertex also has off-diagonal elements in general

. Iy (p,a) AL (p,q)
I (p.q) = (Aa+( ) Pg_(p’q)). (2.64)

The self-energy integral can also be formulated in NG space

dq

ZsX(p) = g ()T (p, ) D% (K). (2.65)

Allowing for color superconductivity also requires additional dressing functions for the
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2.4. Color superconductivity

®
@@@

Figure 2.4.: Pairing patters of 3 quark flavors: unpaired (left), 2SC phase (middle) and
CFL phase (right). Colors of the quarks are not illustrated.

propagators m, @]
S p) = 5 PP =Y (—m«un T in)CH(p) — iBAF () + B (p) W%DJ <p>) P
f] T (p )) ¥5M;.

(2.66)

i

) =T )M = 3 (74 f? T (p) + T3 (0) + T (o) +

The self-energies ©* and ®* are decomposed analogously. For chirally symmetric phases,
the B;" (p)-dressing functions vanish due to the symmetry. D (p) as well as TEZ-(P) and
T g,i(p) are only non-zero for color-superconducting phases with finite strange-quark
masses. P; and M; parametrize the phases that are investigated and are matrices in
color, flavor and Dirac space in general. For scalar spin 0 phases these matrices are
unity in Dirac space. In general, they can be directly related to the operator O in the
condensates Eq. (Z.55) and the operator O is a linear combination of the matrices M.
The restrictions to these matrices are to obey the residual symmetries of the CSC phases
and to be complete in the sense that they yield a closed set of self-consistency equations
when inserted into Eq. (2:62]), Eq. (Z63) and therefore fulfill

B Pj = aji Py, M;M; = Biji By
]DZ‘MJ‘ = ’YijkMIm MZPJ = 5@]]4:Mk: (267)
NPida = aijPj, Ag Mida = BijM

with constants «, 3,7, 0.

2.4.1. Structure of color-superconducting phases

The phases of our interest are the 2SC and CFL-like phases. The pairing patterns in
flavor space are illustrated in Fig. 24l The 2SC phase is characterized by a pairing of
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2. QCD and Dyson-Schwinger equations

up and down quarks while strange quarks remain unpaired. This phase is dominant in
a regime between the chiral phase transitions of up/down and strange quarks where up
and down quarks are light and can form Cooper pairs while strange quarks are still too
heavy for pairing.
In group theory, the coupling of two fundamental color triplets forms a sextet and an
anti-triplet
33=306. (2.68)

In the 1-gluon exchange, the sextet channel is repulsive, while the anti-triplet is attractive
and therefore provides the attractive force needed to form Cooper pairs. We choose a
color structure in the attractive 3-channel parametrized by the antisymmetric Gell-
Mann matrices A\y—257. We therefore need an antisymmetric flavor structure to obtain
a symmetric O in Eq. (Z55]). For up and down quarks, this is given by 75 and we choose

O25c = A2 @ T2 (2.69)

as we can rotate the color vector A\, to the a = 2 component by the global color symmetry.
In the 2SC phase the SU.(3) color symmetry is broken to a SU.(2) subgroup. For two
flavors the SU{(2) symmetry stays unbroken, for three flavors the SU¢(3) is broken to
S Uf(2).
The matrices P; and M; can be obtained by requiring the invariance under the residual
symmetry ﬂﬁ]
UPU =P, UTMU-=M, (2.70)

with U being an element of the the residual symmetry group and choosing a set of
matrices being a closed system under Eq. (267)). For the 2SC phase we can choose

Masc = A @ 7 (2.71)

parametrizing a condensate of red and green up and down quarks and we close the
system with

Pud,rg = )\% ® TQZ, Pud,b = (]1 — )\%) ® T22, PS =1- Pud,rg — Pud,b (272)

where the indices name the quarks represented by the projector. They form a orthonor-
mal basis for the 25C phase.

For three quark flavors of the same mass, a symmetric pairing is expected to be
energetically preferred. In the color-flavor locked (CFL) phase, quarks of all 3 flavors and
3 colors are paired in a totally symmetric way with a residual symmetry of a combined
color and flavor rotation described by the SU.,1 (3) group with the generators 7, — AL
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2.4. Color superconductivity

The dominant anti-triplet condensate is parametrized by the antisymmetric Gell-Mann
matrices

MCFL = Z )\a X Tq- (273)
a=2,5,7

Additionally there is a small contribution in the sextet channel

Me= > @7 (2.74)
a=0,1,3,4,6,8

with the definition \g = 79 = \/g 1.
For the practical calculation it is more convenient to chose a basis in the orthonormal
singlet-octet representation ﬂ@]

1

3 (MC’FLMCFL - ]l) 5 Poct =1~ Psing (275)

Psing =

and

1
Msing = §MCFLPsinga Moet = Morpr Poct- (276)

The anti-triplet and sextet gap functions can then be expressed byﬁ

1 2 1 1
5 = éq)sing + gq)och Qg = _E(IDSing + gq)OCt' (277)

In weak-coupling calculations, the sextet gap is often neglected, as is it usually small,
which leads to a singlet gap twice the octet gap ®ging = 2Pt

With 2 light flavors and a heavier strange quark, the symmetry breaking pattern is
more complicated. The strange quark breaks the SUy(3) flavor symmetry explicitly
to SUf(2) ® Ug(1). In a color-superconducting phase, this symmetry, together with
the gauge symmetry is broken down to SU., v (2) ® Uey1/(1), generated by 7, — AL for
a =1,2,3,8. The projectors need to interpolate between a 2SC phase that will be the
ground state for large strange-quark masses and a CFL phase for massless strange quarks

30ur singlet gap differs by a factor of 2 from the gap defined in @] as we take the convention of ﬂ@]
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2. QCD and Dyson-Schwinger equations

and we choose m, @]H

0i1+ i 0i2 0i4

) di1+0i2 dia
i 5 di5 0i3
di1
P = 0i1
0i6
di7
0i6
%7 (2.78)
0i1 + 0i2 0i2 0i4
0i2 8in+0i2 Oia
di5 dis5 0i3
03,1
M; = di1
0i7
0i6
0i 7
di6

in the basis

{(r,u), (g,d), (b, 5), (r,d), (g,u), (r,s), (b,u), (g, ), (b, d)}. (2.79)

In contrast to the pure 2SC or CFL phase, this basis is not orthonormal and even not
orthogonal. The quarks areina 1®1® 2@ 2@ 3 representation which would predict
5 color-superconducting condensates. We allow for 7 components which are allowed by
the restriction of the residual symmetry Eq. [Z70)), but it turns out that My and M; as
well as M7 and Mg are not independent for the stable solutions of the DSE and therefore
only 5 components are independent.

With these matrices, a 25C phase can be parametrized, if the condensates fulfill

B = —By = Bygo, By = Dy = by — g = By = 0 (2.80)
Y1 =Ygud, 23=X6=2Xs X7r=DDyugp, 22=24=2X5=0. (2.81)

4 Qur Ps and Mg correspond to Pr and M7 in Ref. HE] and our P; and M7y correspond to Ps and Ms,
while there are no projectors Ps and Mg in that reference.
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2.4. Color superconductivity

If the strange quarks have the same mass as up and down quark, also a phase exhibiting
an exact CFL symmetry can be parametrized, if

2 1 2
(bl - (I)G - (I)’Y - q)och (I)Q - (I)4 — @5 - _gq)sing - _q)och (I)?) - g(q)oct - (I)sing)

3
(2.82)
1 1 2
E1 - E6 - E7 - Eoct7 E2 - E4 - E5 - g(zoct - Esing)a E3 - gzsing + gzoct-
(2.83)

For a different strange-quark mass, a CFL-like pairing pattern is possible. This pairing-
type has non-vanishing strange condensates but only approximate CFL symmetry which
is explicitly broken by the strange-quark mass difference. However, an exact 25C pairing
is still possible and which pairing type is more stable is chosen dynamically by the system
and depends on the strange-quark mass. Finally, also a non-superconducting phase can
be described with the constraint

Y=Y =Y, U3 ==Y, (2.84)

and all other dressing functions being zero.

2.4.2. Color-superconducting condensates

The color-superconducting condensates, defined by Eq. (Z55])
Co = (T Cr0) (2.85)

can be calculated directly from the NG propagators Eq. (Z59]), using the definitions of
the NG spinors Eq. (2.56])

3
Co=~2TY. / gT(;STr (0T (q)) - (2.86)

The operator O can project onto the different pairing patterns. For a pure up and down
quark pairing of red and green quarks, as it occurs in the 2SC phase we chose

A T
Oud:_2®_2

5 ® (2.87)

Similarly, the condensates including strange quarks are represented by

Ouds:1<§®5+ﬁ®3>. (2.88)
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2. QCD and Dyson-Schwinger equations

For a 25C phase, only up and down quarks pair, therefore

d3
C25C — _47,T Z / T 950 (2.89)

is the only condensate and ngsc = 0. In contrast, in a phase with three chiral quarks

and an exact CFL symmetry, up, down and strange condensates are equal and have the
value of the anti-triplet condensate

coqrl — ceCFl — _4ZQTZ/ I Te s (2.90)

For massive strange quarks, both condensates are independent and the difference between

CSdI:L and ngF L indicates the magnitude of the explicit symmetry breaking due to the
strange-quark mass. Explicitly the condensates are given by
d3q 1
CFL _
¢ —4ZQTZ/ 2y 5 (To1 - Ta) (2.91)
CFL d q 1 _ _ _
corL - —4ZQTZ T+ Tor—Tou—Tgs) - (2.92)

2.4.3. Symmetry relations of the propagator

The propagator components and dressing functions carry internal symmetries that are a
great simplification for practical calculations. General relations for the propagators can
be derived by investigating the definition of the propagators by time ordered expectation
values which is for NG propagators

S(w,y) = (TU(2)¥(y)). (2.93)

Defining the matrices in NG space

c— <g g) C Ta-= (761 34) (2.94)

v=cuv’ wv=vuTc, ¥U=1,07, ¥=vullr, (2.95)

the spinors are related by
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2.4. Color superconductivity

With these relations, the transposed Eq. (2Z93)) gives
S(a,y)" = —C{TU(y)¥(x))C = ~CS(y, x)C (2.96)

or in Fourier space

S(p)t = —cS(—p)C. (2.97)
Similarly, the adjoint expression Eq. ([2.93]) gives

S(.%', y)T = P4<7'\I/(y)\fl(x)>r4 = F4S(—y4, 37, —X4, f)l“4 (2.98)

where T indicates that the imaginary time ordered path is also changed by the complex
conjugation, leading to the minus-sign in the time component. A Fourier transformation
of this expression gives the relation

S(ps, p) = TuS(—pa, P)T4. (2.99)

The two relations Eq. (2.97) and Eq. ([Z.99) relate the + and — components as well as
the propagators at positive and negative energies. Therefore, it is sufficient, if only the
+-dressing functions are calculated for ps > 0.

Relation Eq. (Z97) gives for the NG components

S*(p) = -CST(p)"C

(2.100)
T*(p) = ~CT*(-p)"C
or for the self-energy components
Xipep.i(P) = S pep (D) (2.101)
$apci(P) = O hpe:(—p), 6D ,(0) =~} -(=p) (2.102)
ABC,j p ABC.; p), D,j p D P

where 7 is defined by PZ-T = P; and j by M ]T = M;. This is important for the non-
symmetric matrices Py, Ps, My, M5, M7 and Mg that transform into each other under
transposition. The second relation Eq. (299]) gives

SE(pa,P) = 14SE(—pa, 7) 0

N - ; (2.103)
T (psa, p) = 74T " (=pa, D) 74
or for the self-energy components
S anci(paP) = EXBQ;(—P&@*, ¥5.i(Pa,p) = —235(—1)445)* (2.104)
¢£CD7j(p4am = _¢;CD75(_p4,m*’ ¢E7](p4am = ¢;75(_p47m* (2105)
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2. QCD and Dyson-Schwinger equations

Additionally we require parity invariance for homogeneous phases, formally defined by
the spinor transformation ¢ (x4, %) = Y49 (x4, —Z) and giving the relation

SE(pa, ) = 71ST (pay —D)v4

(2.106)
T*(ps, §) = —vaT* (pa, —P) V4.

As the dressing functions are scalar functions they can only depend on p? = |p]?

Yapcp(p) = Xapep(pa, 1P1),  ¢aBep(p) = dapep(pa, D)) (2.107)
The vertex exhibits similar properties
5(p,q) = —CT(=q, —p)'C (2.108)
and equivalently its components

a,+ _ a,— T
L (pg) = =CTy (¢, —p)" C

(2.109)
AL (p,q) = —=CALT (—q,—p)"C.
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3. Color-superconducting phases in a
HTL-HDL truncation

In the last chapter we have derived the Dyson-Schwinger equations for the quark and
gluon propagator and specified the most general ansatz for the propagators. Up to this
point, these were exact QCD equations. However, the Dyson-Schwinger system is not
a closed system of equations and to solve the system it is still necessary to introduce a
truncation. Our main goal is to solve the quark DSE which requires the dressed gluon
propagator and the dressed quark-gluon vertex as input quantities. In this section, we
introduce our basic truncation scheme, which is based on an HTL-HDL approximation.
An improved truncation will be discussed in Chapter [l

3.1. Truncation of the quark-gluon vertex

The quark-gluon vertex is a complicated object as it has various tensor structures and
a dependence on two external momenta, and therefore it is quite involved to solve its
DSE. It has been studied on the lattice @] and also with Dyson-Schwinger equations
in semi-perturbative truncations |66, 88]. Recently the coupled system of quark DSE
and vertex DSE has been investigated self-consistently in a truncated version in vacuum
@, @] where the vertex shows, besides a perturbative UV running, a significant IR
enhancement. We model this vertex dressing with an ansatz mimicking this behavior.

At this stage, we restrict the vertex to the diagonal NG components and an abelian
ansatz that only depends on the gluon momentum k =p — ¢

a

Ci(p,0) = 5l (h) (31)

with a dressing function I'(k) and the Gell-Mann matrices in NG space A® defined in

Eq. [Z63).

For this function, we take a model ansatz, similar to the vertex proposed in HB]

1)
F(k2)22223< b, K (ﬂoa(V)ln(k2/A2+1)>2>, (32)

dy + k2~ k2 + A2 4dr
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3. Color-superconducting phases in a HI'L-HDL truncation

The vertex consists of a perturbative logarithmic running with the critical exponents
Bo = (11N, — 2Ny)/3 and 6 = —9N./(44N. — 8Ny). The values for the strong coupling
a(v) = g?/4m = 0.3 and the scale factor A = 1.4 GeV are taken from ﬂﬁ] The first part
in the parentheses is an infrared enhancement, necessary to generate chiral symmetry
breaking. We take dy = 0.5 GeV? and fit d; to obtain a critical temperature of around 150
MeV for the chiral phase transition at © = 0 and we get a value of d; = 9.6 GeV2. The
vertex in Ref. m has additional contributions motivated by a Slavnov-Taylor identity
and a Ball-Chiu vertex construction @ As there is no strict argument for the necessity
of these components, we dropped them as they lead to instabilities in the iteration of
color-superconducting phases.

With this vertex and the STI Z1p = Zy/ Zg, the normal and anomalous components
of the self-energy Eq. (2.65]) become

Yt(p) = dna(v TZ/ 3é—
3
d*(p) = —dma(v TZ/dgé—

Note that Z3 drops out when Eq. (Z2) is inserted.

b

S*(@)w 5 Dy (k).

)
\T (3.3)
a5

b

T (q) w5 D (k).

3.2. Truncation of the gluon DSE

The second quantity to specify for solving the quark DSE is the gluon propagator.
In recent years great progress has been made in this sector by combining continuum
methods with lattice calculations. In lattice QCD the gluon dressing functions can be
calculated in vacuum and at finite temperature in Landau gauge which can serve as an
input for the Dyson-Schwinger equations ﬂﬁ, @] At finite densities there are no lattice
results due to the fermion sign problem, but in the gluon DSE Eq. ([2.2)) density effects
can only originate from the quark-loop diagram. We therefore use the truncation shown
in Fig. Bl where we take the Yang-Mills result for the gluon propagator from the lattice
and include the quark loop perturbatively.

Thereby we include finite temperature and also finite-density effects from the quark
propagator but we neglect back-coupling effects of the quark propagator on the Yang-
Mills system.

The gluon DSE is then given by

D (k) = Dyt (k) + T8 (k) (3.4)

30



3.2. Truncation of the gluon DSE

el = QaY +mu<:>w

Figure 3.1.: Truncated DSE of the gluon propagator. The shaded propagator is the full
Yang-Mills gluon propagator.

TMeV] || 0 | 100 | 122 | 125 | 152 | 167

ar(T) ][0.60]0.42]0.23]033[0.19]0.17
bo(T) | 1.36 | 1.23 [ 1.14 | 1.20 | 1.13 | 1.08
ap(T) [ 0.60 [ 0.71 | 0.78 | 0.83 [ 0.86 | 1.04
b (T) | 1.36 | 1.37 | 1.46 | 1.47 | 1.52 | 1.60

Table 3.1.: Fitting constants of the Yang-Mills gluon dressing function.

with the Yang-Mills gluon propagator DZZY » and the gluon polarization tensor HZbV
The former has the same transverse structure as the full gluon Eq. (2.44)

Y M Y M
DI (k) = <Z kz(k)PZ/(k‘) + Zr kQ(k)P,fy(k)> 5. (3.5)

The Yang-Mills gluon dressing functions has been extracted from lattice data and
fitted by

ZTTTL(k‘) = EA (( ‘ )bT’L + = (ﬁoa( v)In(k? /A + 1))7

(k% + A?)? k? + ar A2 A2 A
(3.6)
The lattice data and fitting constants can be found in ] The temperature dependent
infrared constants are summarized in Tab. B and ¢ = 11.5 GeV2. We determine

their values at other temperatures by linear interpolation. The perturbative logarithmic
running is parametrized with the same constants 5y, a(v) and A as in the vertex dressing
function Eq. (82). The critical exponent for the running is given by v = (—13N, +
4Nyf)/(22N, — 4Ny) and related to ¢ by 20 +~v = —1.

The polarization tensor is given by

3
(0 = ~2reTS [ GG (TG 6. 5(0) (.7
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3. Color-superconducting phases in a HI'L-HDL truncation

with p=k+4q. We already included a factor % that compensates for the trace over NG
space. As quantum corrections must not change the transverse nature of the gluon (cf.
Eq. 2:44) and Eq. (83])), we require the polarization tensor to be transverse as well, i.e.

1 (k) = T (k) Py, (k) + 1147, (k) By (R). (3.8)
The dressed gluon propagator is then given by
ab _ T T TL L
DW(k:) P, (k)+ (k). (3.9)

k24 2 ()T (k) k2 + ZXM (k)T (k)

Since the gluon polarization tensor has a dependence on the dressed quark propagator,
see Eq. (B1), this equation must, in principle, be solved self-consistently together with
the quark DSE. This will be the essential part of the next Chapter @ However, in a first
step, we perform a simple non-self-consistent approximation, which was also employed

in Ref. 46, ]

3.3. HTL-HDL approximation

In this scheme, the quark loop is calculated with bare quarks in a hard-thermal-loop
/ hard-dense-loop (HTL-HDL) approximation which is numerically a simple way to
consider unquenching effects on the gluon propagator. With bare propagators and a
vertex Eq. 1)) the quark contribution Eq. (87) simplifies to

3 a b
() = ~1ma()T Y [ Gt (3 Sl 5T 0S@) . (310

In HTL-HDL approximation, the quark-loop integral can be performed analytically un-
der the assumption that the external momenta are small in comparison to temperature
T > |k| or chemical potential y > |k|. Neglecting the vacuum contributions, the HTL-
HDL result can be found in textbooks, e.g. ﬂa] and is given by

2 .
ZXM ()L (k) = mBp <1+<°i—m>>zQ Dom ) _ Zm ] gab
7 (R)IIF (k) TT|]€ 72 7l 7l
S (3.11)
+ k Wi . w
ZYM (V% (k) = om2., Em T8 1y Emun (Wm0 | gab
Tz () (k) LT I B
with . )
g 1, 1T+
iQ(ix) = 5 In P arctan <5> . (3.12)
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3.4. Strange-quark mass

The effective transverse and longitudinal gluon masses are defined by

7.(.712 2
mirrr, = Nyarrro(k) <— + M-)

o (3.13)

with the renormalization-point independent strong running couplings, given by (cf. ])

(k) Z1 1. (k)

ZaZs a(v). (3.14)

arrrr(k) =

In this approximation, all quark masses and color-superconducting contributions to

the polarization tensor are neglected, but, as it provides analytic results for the gluon

polarization, it has the advantage to keep the numerical efforts at the same level as in

a pure rainbow truncation with quenched gluons. We first present the results for the
QCD phases in this truncation.

3.4. Strange-quark mass

The last input quantity to be specified is the strange-quark mass at the renormalization
scale v. According to the particle data group (PDG) 1@], its value is mg = 95+ 5 MeV
in the M S renormalization scheme at a renormalization scale of v = 2 GeV. In earlier
Dyson-Schwinger calculations ﬂﬁ] the renormalization point was therefore chosen to be
2 GeV as well, and the PDG value for m, was directly used as an input. However, the
gluon dressings and vertex in this work differ from our input which also has influence
on the mass functions. This is illustrated in Fig. B2l where the vacuum-mass functions
of the (chiral) up and down quarks are shown for the two interactions used in Ref. ﬂﬁ]
and for the present setting. An essential difference is that, for these mass functions
chiral symmetry is restored at lower momenta and therefore, 2 GeV is already close to
the purely perturbative regime, so the perturbative strange-quark mass could be used
at this scale.

In contrast, with the improved parametrizations of quark-gluon vertex and gluon
propagator used in our calculations, there are still considerable non-perturbative effects
at 2 GeV and therefore we have to renormalize at a higher scale to be in the perturbative
region. To be on the safe side, we choose v = 100 GeV. Thus, in order to make contact
to the PDG value of the strange-quark mass, we have to evolve it to that higher scale,
employing the same perturbative running which was used in the PDG analysis. The
scale evolution of the quark mass is then described by the differential equation

2 dm(v)

e —y(a(v))m(v) (3.15)
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3. Color-superconducting phases in a HI'L-HDL truncation
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Figure 3.2.: Vacuum mass functions of chiral quarks for the interactions ay j; from ﬂﬂ]
and in our setting.

while the coupling obeys the equation

2 da(v)
dv?

1%

= B(a(v)) (3.16)

where the functions 3(a) and y(a) are known to four-loop order for M S renormalization
@, @] With the initial conditions mg(2 GeV) = 95 MeV and a(Mz = 91.2 GeV) =
0.118 we integrate Eq. (B15]) to my = 4.2 GeV with 4 flavors and finally to 100 GeV with
5 flavors, giving mM 9(100 GeV) = 54 GeV. This strange-quark mass was also chosen in
@], although at a slightly lower renormalization scale of 80 GeV. The renormalization
scheme used in this work is a momentum subtraction (MOM) scheme which is different
from M S, however, at high renormalization scales the quark masses have similar values
in both schemes.

Additionally, the gluon fit led to a quite large scale A (Eq. (8:2)), Eq. (86)) and it is
not clear whether the perturbative strange-quark mass is consistent with our truncation.
Therefore, we also consider a different way to estimate the strange-quark mass. Assuming
a physical pion mass of m,; = 140 MeV and calculating the light-quark condensate
Eq. (251) and pion decay constant Eq. (Z53]), we can use the Gell-Mann Oakes Renner
(GMOR) relation Eq. ([Z54) and calculate the corresponding light-quark mass, which
turns out to be m;(100 GeV) = 1.2 MeV. The ratio of light and strange-quark mass
is given by mg/m; = 27.5 @] and we get a strange-quark mass of m4(100 GeV) = 32
MeV.

As the pion decay constant is quite large (f; = 127 MeV), even without considering
that Eq. (253]) underestimates the true f;, the application of the GMOR relation seems
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3.5. Results
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Figure 3.3.: Light and strange-quark mass functions in vacuum.

to be questionable. However, the resulting strange-quark mass of around 30 MeV is
similar in the improved truncation in Chapter [ with a more realistic f,. We therefore
perform calculations for ms; = 54 MeV and m,; = 30 MeV at our renormalization point
of 100 GeV. These values can be seen as upper and lower bounds for the strange-quark
mass.

The corresponding quark mass functions for chiral (m = 0) and strange quarks (m =
30 MeV and m = 54 MeV) in vacuum are shown in Fig. We find a dressed light-quark
mass of M (0) = 710 MeV and strange-quark masses of M (0) = 875 MeV and M (0) =
970 MeV, respectively These quark masses seem to be quite large in comparison to
typical model results. Due to the neglect of the quark masses in the quark loop, the HTL-
HDL approximation gives too large gluonic screening masses in the chirally broken phase
which would result in very low critical temperatures if we fixed the vertex parameter d;
in Eq. 2 by vacuum quantities. Instead, we chose a larger value for d; to raise the
critical temperature to T, = 150 MeV with the drawback of getting too large vacuum
quantities. However, in the improved truncation in Chapter [ pion decay constant and
quark masses will have smaller values again.

3.5. Results

We perform the calculations for Ny = 2 4 1. We take chiral up and down quarks and
a strange-quark mass of 30 MeV and 54 MeV at our renormalization point at v = 100

1Strictly speaking, these masses are only the screening masses, the pole masses can not be extracted in
Fuclidean formalism.
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3. Color-superconducting phases in a HI'L-HDL truncation

GeV as discussed in the last section.

The stable solutions of the DSEs correspond to minima of the thermodynamic poten-
tial, or, equivalently, to maxima of the pressure Eq. (2.46]). The numerical calculation of
the pressure is very unstable due to the initial quartic divergencies. We therefore want
to obtain the stable solutions by iterating the DSEs. As argued in Appendix[F] the solu-
tions found by solving the DSEs iteratively are expected to correspond to global or local
maxima of the pressure, i.e., to stable or metastable solutions, but not to unstable ones.
According to this hypothesis (which is usually assumed in DSE calculations), this means
that we always find the correct solution in the case of second-order phase transitions.

For first-order phase transitions, there is a regime where both a stable and a metastable
solution of the DSEs exist, which both can be found by iteration. The exact position
of the phase transition, which manifests itself in a jump between the two solutions, can
only be determined by studying the pressure of the system. However, because of the
numerical uncertainties mentioned above, this does not further narrow down the phase-
transition region in practice. We therefore restrict ourselves to calculating the spinodal
lines of the first-order region, i.e., the lines where the metastable solutions disappear.
As these regions mostly have only a small extent, they still give a good estimate for the
phase transition.

We show results for 2SC and CFL-like pairing and indicate for all quantities in which
phase the solutions have been obtained. A CFL solution can only be found when it
corresponds to a maximum of the pressure, 2SC solutions can always be found by en-
forcing a strict 25C symmetry of the system. In Fig. B4l we show the dependence of the
color-superconducting condensates on chemical potential at low temperatures 10 MeV.
All condensates rise with increasing chemical potential. At low chemical potential we
only find a 2SC phase while at a threshold of 500 MeV for mg = 30 MeV or 600 MeV
for ms = 54 MeV also a CFL-like solution exists, indicated by a non-zero ngiL .

Except for the onset of the CFL-condensation, the condensates show a similar behavior
for both strange-quark masses and, in particular, the 25C condensates are equal in both
cases. This is due to the fact, that the quark masses were neglected in the HTL-HDL
calculation of the gluon polarization. Therefore, if there is no pairing between light and
strange quarks, the strange sector decouples from the light quarks. In contrast, CFL
condensates couple light and strange quarks and therefore depend on m.

The behavior of the condensates is related to the dependence of the quark mass func-
tions M (0) on chemical potential, shown in Fig. . At low and intermediate chemical

2Precisely, the masses of red / green and blue quarks differ in the CFL-like phase. However, in the HTL-
HDL truncation, this mass splitting is only of the order of 1 MeV and not visible in the resolution
of the plot. Additionally, the light quarks have a finite mass in the CFL phase, also of the order of
1 MeV due to the mixing between light and strange quarks.
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Figure 3.4.: Dependence of 2SC and CFL condensates at 7' = 10 MeV on the chemical
potential for mg = 30 MeV (left) and ms = 54 MeV (right). All condensates

are given in arbitrary, but equal, units.
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Figure 3.5.: Dependence of light and strange-quark mass functions at 7' = 10 MeV on
chemical potential for mgs = 30 MeV (left) and ms = 54 MeV (right).
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3. Color-superconducting phases in a HI'L-HDL truncation
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Figure 3.6.: Temperature dependence of 25C and CFL condensates at p = 580 MeV for
ms = 30 MeV (left) and at u = 680 MeV for mg = 54 MeV (right). The
units are the same as in Fig. 341

potential the strange-quark mass is quite high. This leads to a strong mismatch be-
tween the Fermi momenta of light and strange quarks which inhibits CFL pairing. The
strange-quark mass smoothly decreases until a crossover transition at u = 500 MeV for
ms = 30 MeV and at p = 600 MeV for mg = 54 MeV occurs in the 2SC phase. As
the strange sector decouples in a 2SC phase, a non-color-superconducting phase shows
the same behavior as the 2SC phase and the 25C condensate CidSC is not influenced by
the drop of M, in the transition region. The crossover also triggers the onset of a CFL-
like solution which has a slightly lower strange quark mass than the mass in the 2SC
phase. At higher p this deviation almost vanishes and purely perturbative behavior of
the strange quark dominates. We also show the light quark mass in the chirally broken
phase. It decreases with increasing p until 350 MeV where this solution ceases to exist.

In Fig. the dependence of the condensates on temperature is shown at a chemical
potential of 580 MeV for mgs = 30 MeV and p = 680 MeV for mg = 54 MeV. The 25C
condensate smoothly decreases with temperature and eventually vanishes at a temper-
ature between 20 — 25 MeV. The CFL-like phase ceases to exist above a lower critical
temperature. The system therefore undergoes a first-order phase transition between the
25C and CFL-like phase and finally the 2SC phase melts in a second-order transition to
the normal conducting phase.

The resulting phase diagrams are shown in Fig. B7l As pointed out earlier, in the
HTL-HDL approximation, the strange and non-strange sectors decouple, except for the
CFL phase, where they are coupled by the condensate. Therefore, the only effect of mg
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Figure 3.7.: Phase diagram for mys = 30 MeV (left) and ms = 54 MeV (right). The
regions of the first-order phase transitions are indicated by shaded areas
and bounded by spinodal lines (dashed). Solid lines indicate second-order
phase transitions and CP the tricritical point.

on the phase diagram is a shift of the CFL phase boundary while all other transitions
are identical for both strange-quark masses.

The shaded areas indicate first-order regions bordered by spinodal lines. The first-
order transition is located somewhere in this region. The most prominent ones corre-
spond to the chiral phase transition from the chirally broken phase to the 2SC phase
or, at somewhat higher temperatures, to the normal-conducting restored phase (with
respect to the up and down quarks). At a tricrital point the two spinodal lines and
therefore also the first-order transition line meet. At higher temperatures the transition
is of second-order.

The critical point in a similar calculation in ﬂA_AI] differs from our result and is located
at a higher temperature (7' = 95 MeV, pu = 280 MeV) but was calculated for two
flavors with a critical temperature of T, = 180 MeV at p = 0. Additionally the vertex
truncation slightly differs in this work. As shown in @] the inclusion of strange quarks
shifts the critical point towards lower temperatures and slightly higher chemical potential
which is consistent with our result. However, a direct comparison is not possible, as the
calculations in ﬂﬁ] were done without HT'L-HDL approximation.

The hadronic part of the phase diagram is mainly shown for completeness, while our
focus is on the color-superconducting phases at low temperatures and higher chemical
potentials.

Here we find a 2SC phase followed by a CFL-like phase. At T'= 10 MeV the transition
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3. Color-superconducting phases in a HI'L-HDL truncation

between these phases happens at a chemical potential of around 500 MeV for ms = 30
MeV and 600 MeV for mg = 54 MeV. At high chemical potential and low temperature,
the CFL-like phase is the ground state as it has the larger residual symmetry. At finite
temperature the CFL condensates undergo a phase transition to the 2SC phase. This
transition is of first-order at low chemical potential, however, it becomes weaker with
larger  and we have numerical indications that at large u (somewhere around 900 MeV)
the phase transition becomes second-order, i.e., the spinodal region ends again in a crit-
ical point. Such a behavior was also found in the NJL-model analysis of Ref. @] At
higher temperatures, the 25C phase undergoes a second-order transition to the normal
conducting chirally restored phase. This transition takes place around 20 and 30 MeV.
Remarkably, the critical temperature is slowly decreasing with increasing chemical po-
tential, despite the fact that the zero-temperature condensate increases (cf. Fig. B.4]).

The most important result of this chapter is the occurrence of a stable 2SC phase
at low temperatures which is in contrast to the zero-temperature investigations in [47]
where the CFL phase was found to be favored in the whole region above the chiral phase
transition at T = 0. Although our calculations have been performed for T° > 10 MeV
only, a naive extrapolation of the phase boundaries to 7" = 0 does not change our results
qualitatively. The difference should therefore mainly be attributed to the improved gluon
propagators and vertices, we have used. This truncation generates higher strange quark
masses that persist up to higher chemical potential and prevent the pairing of strange
quarks.

40



4. Self-consistent calculation of the gluon
propagator

Due to its simplicity the HTL-HDL truncation is a widely applied truncation. The usage
of bare quark propagators in the gluon DSE makes it independent of the dressed quark
propagator and the numerical effort is similar to a pure rainbow truncation. Nevertheless,
it neglects important contributions to the gluon polarization such as those of quark
masses and color-superconducting condensates. These approximations can be justified
in the perturbative regime at high temperatures and give a reasonable description of the
chirally restored phase. However, in the chirally broken phase and at high densities in the
color-superconducting regime, an improved description of the gluon polarization would
be favorable. We therefore wish to calculate the quark loop in the polarization function
with self-consistent fully dressed Nambu-Gor’kov quark propagators, which takes care
of these features and restores self-consistency on the level of quark propagators.

4.1. Gluon DSE with self-consistent quarks

We use a similar truncation of the gluon propagator as in the HTL-HDL case but with
the essential difference that the quark loop now consists of full NG quark propagators.
The Feynman diagrams are shown in Fig. 1]

Y ' = e +~mu<:>@

Figure 4.1.: Truncated DSE of the gluon propagator, the shaded propagator is the full
Yang-Mills gluon propagator and the quark loop consists of dressed NG
quarks.
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4. Self-consistent calculation of the gluon propagator

The quark loop Eq. (8.1
3
(k) = —2ma()T Y [ ST (TS0 0. 0)S(0)) (11)

has to be evaluated simultaneously to the iteration of the quark DSE. Calculating this
quantity with dressed quark propagators is not as trivial as the quark self-energy as,
dependent on vertex truncation and numerical cut-offs, problems like quadratic diver-
gencies and longitudinal components arise. Those need to be cured by an appropriate
regularization and renormalization scheme which we will specify in the next sections.

4.2. Renormalization of the gluon DSE

Like the quark self-energy the gluon polarization shows logarithmic divergencies that
have to be renormalized. To implement renormalization in our truncation scheme prop-
erly, we start by investigating the Yang-Mills gluon DSE in vacuum given by

ab,— ab,— a
D (k) = ZsDyot () + T8 5 (k) (4.2)

(k) = k%TW(k)éab and the Yang-Mills gluon self-

energy HZ&Y 1 (k). Assuming a transverse, color diagonal self-energy

with the bare gluon propagator DZZ,O

Hff;,YM(k?) = Ty a1 (k) T (k)6 (4.3)
the corresponding dressed propagator has the same structure
a Zym (k) a
D (k) = TT“”(k)(S b (4.4)

with the Yang-Mills dressing function Zy (k) and the DSE simplifies to

Hpym (k)

k2 ’
The renormalization condition requires the gluon propagator to be equal to the bare
propagator at the renormalization point by

ZYM(V) =1 (46)
which allows to eliminate Z3 in Eq. (4.3

_ Orym(k)  Hrym(v)
Zyy(k) =14 —5—— = = (4.7)

Zyr(k) = Z3 + (4.5)
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4.2. Renormalization of the gluon DSE

and gives the dressed Yang-Mills gluon propagator

1
Dai’, v (k) = T ,,(k:)(sab. (4.8)
e k2 +ryu(k) — IZ_;HT,YM(V) g

Including the quark loop, we get an additional contribution

b,— b,—1 b b
Dy~ (k) = Zs Dy (k) + 100y p (k) + 1055 (k) (4.9)
and, if we assume again a diagonal and transverse quark contribution, we get for the full
gluon dressing Z (k)

HT,);{J;d(kj) L (k) @5 ZoL (k) +

I (k)
k2 '

k2

Z7 k) = Z3 + (4.10)
Using same renormalization condition as before Z(r) = 1 and subtracting this condition
results in

Hr(k) Ilp(v)

27N k) = 14 Zypy (k) = Zy (V) + =5 = =5

. (4.11)

It it useful to choose the same renormalization point v as for the Yang-Mills dressing.
Then, Zyp(v) = 1 and the full renormalized gluon propagator becomes

Zy m (k)

T, (k)6 4.12
W+@M@@hm_§m@0“() (412

ab o
Duu(k) -

and we define the renormalized polarization function by
Wyen (k) = (k) — —51I(v). (4.13)

It is worth to note that Eq. ([AI2]) includes no truncation yet and is exact. The ap-
proximation we make, is neglecting the dependence of Zy (k) on the dressed gluon
propagator ng(kz) and therefore neglecting the influence of quarks on the Yang-Mills
sector. Therefore, this truncation is not fully self-consistent on the level of gluons, but
as it does not require to solve the Yang-Mills system, it keeps the numerical effort on
a feasible level. However, the gluon DSE and quark DSE are still coupled as the quark
propagator contributes to Iy (k).
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4. Self-consistent calculation of the gluon propagator

4.3. Regularization of the quark loop

4.3.1. Regularization for normal phases

Renormalization of the quark loop is necessary to get rid of the logarithmic divergencies
naturally arising in a renormalizable QFT. As already mentioned, truncation and also
a numerical cutoff can generate additional quadratic divergencies and unphysical longi-
tudinal contributions that need to be cured as well. In full QCD without truncation,
regularizing carefully, e.g. with dimensional regularization, these issues are cured auto-
matically. As we need to use a cutoff regularization for our numerical calculations we
need to define a regularization scheme to get rid of the quadratic divergencies. This is
done such that known results in the weak-coupling limit can be reproduced. Although
the gluon propagator must be transverse, the quark loop itself may have longitudinal
contributions, if they are canceled by longitudinal contributions of Yang-Mills diagrams,
which is ensured by Slavnov-Taylor identities in full QCD. As we truncate the system
and especially do not calculate the quark effects on the Yang-Mills system, we do not
get this cancellation. Instead we specify a truncation that cures the divergencies and
drop all remaining longitudinal quark-loop contributions.

In a first step we therefore investigate the polarization tensor for non-superconducting
propagators and introduce the abbreviations

Py = (C(p)wp, A(P)D)

(4.14)
N, = (P*)? + B*(p) = C*(p)wy, + A%(p)7” + B*(p).
The dressed propagator can then be written as
1.
S0) =+ (iP" + B(p)) . (4.15)
p
After evaluating the traces the polarization function becomes
ZlFQQNf(Sab / d3q
Hab St A g o e
“”(k) 2 (2m)3
0.0 (4.16)
AT (p, q
m [—PﬁQg - QP + 6, (P'Q" + B(p)B(q))]
where the color trace was evaluated as
a \b
(A0 - Lga (4.17)
2 2 2
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4.3. Regularization of the quark loop

For 2+1 flavors the integral has to be calculated for light and strange quarks separately.
In medium, the integral can be decomposed into 3 Lorentz components

10 (k) = TP (k) Ly, (k) + 5% (k) Py, (k) + 15, (k) By, () (4.18)
with the longitudinal projector L, = k*];];” and the projections

" Z1pg? N o d3q 4T (p, ow  SkPYEQY
(k) = — ==L / (2753 NSVZ) <P Q-2 +B(p)B(Q)>
Z1pg?Nyo® d3q 4T
1 (k) = ~ 2y / i N (P'Q" = 24() Al + BB (@)

Z N&“b d? kPY - kQV
P = -2 S [ o 00 (g 2 i)

H%‘bL(k) = 3HT (k’) - 2HTT(k’)-
(4.19)

At this point the problems are visible. The integrals are quadratically divergent and
a longitudinal contribution of the polarization function occurs. To investigate these
problems further we simplify the longitudinal part using bare propagators and a bare

877Nf5“b d*q (kp kg
1_[L bare(k) - - k2 / (27‘(‘)4 <p_2 - q_g : (4'20)

vertex in vacuum

Recalling that p = k + ¢, it can be seen that this integral vanishes analytically when
performing the shift of the integration variable ¢ — ¢ — k in the first term, guaranteeing
the transverseness in the HTL-HDL approximation. Applying similar transformations
to H%b and H%bT, it can be shown that this also cures the quadratic divergencies. This
mechanism is spoiled when using a cutoff for numerical calculation as this prevents the
shift of the integration variable. Using a cutoff A in the g-integration the integral gives

Nf 5ab
127

a N (5ab 8 A2
I e (k) = 1f2—7T <§k2 — 3A% + 2k” log <ﬁ>> :

We therefore need a regularization that removes the longitudinal contribution and also
the cutoff dependence. We use a scheme similar to one proposed by Brown and Pen-

Hcllll?;)[c\zre(k:) = (k:2 B 3A2)

(4.21)
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4. Self-consistent calculation of the gluon propagator

nington @], defined by the projection

a 1 k kV a a a a
152, (1) = 5 (G = 4552 ) W0 = T0) — TP06) = i (). (422

It is also possible to subtract 119(0) instead of T1%°(k) which gives the same result for
bare quarks after renormalization with Eq. (£I3)), as

k2

2

k2

2

(k) = T3 (k) — = (I4(v) = () ) = T (k) = T(0) — = (1 (v) — 17(0))
(4.23)
is fulfilled for Eq. (£2I). This regularization only removes a constant contribution
cA? also for dressed quarks and only the divergent contribution is subtracted. We use
this scheme in the following and define the regularized and renormalized polarization

functions II,. (k) generally as

k2

g, (k) = T g (k) — T1E(0) — 2

b b
(0577, (v) - TI(0)) (4.24)
For bare quarks, we get a regularized transverse polarization function that reproduces
HTL-HDL results and gives the renormalized vacuum expression

. N 6ab kQ
g, (k) = —é‘—ﬂ k2 log <ﬁ> . (4.25)

This is the same result as obtained in textbooks @] in dimensional regularization and
therefore an appropriate way of regularizing the integral. This scheme also ensures van-
ishing Meissner masses! m?m b = H%bT,r (0), required for an unbroken gauge symmetry.
This can be seen in a short calculation, taking the limits k4 = 0 and k— 0 in Eq. (@19)
and performing the angular integration.

To preserve renormalizability, the vertex dressing function I'(p, q) also must not de-
pend solely on the gluon momentum. In that case I'(p,q) = I'(k?), the vertex dressing
function does not depend on the integration variable and would result in a renormalized
polarization

12 (k) — Néfrab (gkz (T(k*) =T (%) + & <log (1]:—5) I'(k%) — log (ﬁ;) P(VQ)M;)

'For a more detailed study of the Meissner and Debye masses, see Section
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4.3. Regularization of the quark loop

800 1000
700 i 900
800
600 . 700
= 800 F 1 = 600
(] [}
= 400 1 = 500
= 300 i = 400
100 L oo mg =30 MeVe, |
-« mgs = 54 MeV "\ 100
0 1 1 1 - 0
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
p [MeV] p [MeV]

Figure 4.2.: Vacuum quark mass functions for light quarks (left) and strange quarks
(right) for the HTL-HDL approximation (for ms; = 30 MeV and mgs = 54
MeV) in comparison with the self-consistent calculation.

This expression still has a logarithmic divergenceﬁ. We therefore take the momentum
dependence

I'(p,q) =T(*+¢*) (4.27)

with the dressing function Eq. (8:2]) in the gluon polarization with an explicit dependence
on both quark momenta p and ¢ and preserve renormalizability with Eq. (£13]). We also
need to adjust the value of d; in Eq. (2] and take d; = 14 GeV?, which leads to a
chiral critical temperature of T, &~ 150 MeV at u = 0.

Using this scheme in the vacuum quark DSE, we get quark mass functions that are
significantly smaller than in the HTL-HDL approximation (Fig. £2)).

With the back-coupling of the quarks, the strange quark also has influence on the
light quarks as seen in the left figure, but this is only a minor effect. The light masses
are now around M (0) = 450 MeV while the pion decay constant is also smaller and
around fr; = 95 MeV which is a much more realistic value than that of the HTL-HDL
approximation. The self-consistent treatment of the quarks in the gluon DSE therefore
has important influence on the vacuum observables. Estimating the strange-quark mass
with the GMOR relation as done in Section B4 gives a similar value of my; = 33 MeV,
but now with a quite realistic pion decay constant and therefore justifies the application
of the GMOR relation.

The strange quark naturally has a bigger dependence on the bare strange mass. The

2Only a modified vertex-dependent renormalization condition TI(k) — I;zggﬁzgﬂ(y) would result in finite

expressions.
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4. Self-consistent calculation of the gluon propagator

bare masses of 30 and 54 MeV lead to a difference of the dressed masses of around 100
MeV for both approximations. Similar to the light quarks, the improved gluon leads to
a strong decrease of the quark mass.

4.3.2. Regularization for full NG propagators

The regularization specified in the last chapter works well for non-superconducting
phases and can reproduce weak-coupling results. For superconducting phases, it turns
out that this scheme still neglects important contributions. For 25C and CFL phases,
some interesting features for Debye and Meissner masses have been found in @, | in
the weak-coupling limit. In a two-flavor 2SC phase, gluons with different colors have
different Debye and Meissner masses due to the unsymmetric breaking of color symme-
try. The gluons with color index 1-3 are special as they have both vanishing Debye and
Meissner masses. As they represent the unbroken SU.(2) subgroup of color symmetry
the Meissner masses need to vanish. Additionally, these gluons only couple to red or
green quarks, which are all bound in Cooper pairs. This also suppresses the Debye mass
of these gluons. Furthermore the relative value of the gluon masses in comparison to the
HTL-HDL gluon masses could be calculated for the 2SC and CFL phase. These features
can be reproduced in our formalism if we improve our vertex truncation. We therefore
investigate the Slavnov-Taylor identity (STI) for the quark-gluon vertex @], which con-
nects the quark propagator and the quark-gluon vertex with the ghost propagator G(k)
and the ghost-gluon vertex H%(p, q)

— G (k)R (p, @) = ST (p)H" (p, @) — H* (p, 9)S " (q)- (4.28)

As we do not solve the Yang-Mills system explicitly we cannot implement the STT di-
rectly. Instead, as a truncation, we construct a vertex and a regularization, that keep
the most important features of the polarization by exploiting the STI in a limiting case.
If we assume H%(p,q) = g(p, q)% the STI reduces to a restriction similar to the Ward-
Takahashi identity in QED, except for a multiplicative scalar function f(p,q)

— ik, pe(p,q) = S7Hp) 5 — 58 (a). (4.29)

This can be used to give constraints to the quark-gluon vertex as proposed by Ball and
Chiu M] The Ball-Chiu vertex therefore ensures a transverse quark contribution to the
gluon polarization and fulfills

ek, 100 () = 0. (4.30)

This is a strict requirement in QED while in QCD it is only an approximate criterion
as longitudinal parts are allowed in principle as discussed before. We do not require

48



4.4. Evaluating the quark loop

Eq. (£29) to be fulfilled in general but use it as a guide to construct the vertex. We use
the simple color-superconducting self-energy

" (p) = disM; (4.31)

with M; = Magc and M; = M;pg/0c¢ for a 25C and a CFL phase, respectively, and the
corresponding gaps ¢;. These self-energies are also used in weak-coupling calculations
and we construct the exact Ball-Chiu vertex for this propagator.

We can rewrite Eq. ([A29]) as
A®  A°

ikl pe(p:q) = (ST () = S7Ha) - + 7 (ST () =S (9)
L4 (432
(S0 +S ) 7 - (ST +SH(9)

The first line are contributions similar to those also occurring for normal propagators.
It gives the bare vertex v, for bare propagators or propagators with constant mass or
color-superconducting gap functions like our test propagator Eq. ({3I]). The second
line only contributes for propagators non-trivial in color space. The gap functions give
additional contributions to the vertex

re ik 0 (67 (p) + 67 (@) \*M; + MA*T)
wESC a2 \ (oF (p) + 6 () (X7 M; + M%) 0 '
(4.33)
For our calculation with full NG quarks we therefore use the vertex

a

(p,q) = <W7 + FZ,CSC) L'(p,q) (4.34)

with the full anomalous self-energies ®* in the vertex Eq. ([Z33)).

It is worth to note that the the anomalous vertex contributions FZC g are proportional
to k, and vanish for every transverse projection. Therefore, they do not contribute to
the quark DSE and in the gluon polarization they only contribute to the longitudinal
component 11%°(k) and enter through the regularization condition Eq. ([Z24).

4.4. Evaluating the quark loop

Using the NG propagators Eq. ([Z59) and the vertex Eq. (264]) the NG trace of the
quark loop Eq. B7) can be performed, giving the contributions (details are shown in

Appendix [D)
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4. Self-consistent calculation of the gluon propagator

3
% (k) = —Zipdna(w)T Y / (;iT‘ig

a )\b,T

a b
{Tr [m%b’*(p)%%ﬂp, Q)SJF(C])} —Tr [%%T(p)%—

5L, q)T*(q)} (4.35)

+Tr [w%sﬂp)ﬁﬁ’(p, Q)T+(Q)] T [w%T (p)ALT (p, Q)SJF(C])} }

For a pure CFL phase the color-flavor traces give a diagonal gluon polarization in color
space. For a 25C phase or a CFL-like phase with massive strange quarks the situation
is more difficult. In these cases, the quark loop can have non-diagonal contributions in
color space. In general, block structures arise for (a,b) € {4,5} and (a,b) € {6,7} with

the structure i 45
122 (k) 1102 (k
(Hgi(k) Hg;(k)> (439
uu( ) MV( )

and the properties Hfﬁ(kz) = Hi?,(k) and Hf‘f;(k) = _H;%(k)‘ These blocks can be
diagonalized using the unitary matrix [97]

1 1 —i
Therefore, the matrix U with a block w on the diagonal for the 4—5 and 6 —7 component
and a 1 on all other diagonal elements diagonalizes the polarization tensor in color space
by
b v
1%, jiag (k) = UL TI2Y (k) Uy, (4.38)

After diagonalization, the first contribution in Eq. (£35]) therefore has the color trace
Ut Ty, (Aa’mb’Pj) Uyp = Trop ((UTA)“E(U)\)ij> (4.39)

where we used the symmetry U7 = U. The other contributions give analogous results
and it is useful to absorb U into the Gell-Mann matrices

M F A5 A5+ idg g+ iA7 A7 +i)g \ >a
\/5 ) \/5 ) \/5 ) \/5 s N8

M—ids A5 —ida dg —idr Ar—ide >”
\/5 M \/5 b \/5 b \/5 ) 8

(UT)‘)G = <)\15 )‘2, >‘3a
(4.40)

(U = <)\1, A2, A3,
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4.5. Results

and interpret the diagonal gluon polarization function just as the polarization in a dif-
ferent basis in color space. In the quark DSE Eq. (Z63]), the color-flavor structure with
the diagonal gluon gives

X PN Uit Digtiag (KU, = (UN) BA(UTN)Y D (k) (4.41)
and only the diagonal gluon and the rotated Gell-Mann matrices emerge. Requiring
the conditions for P; and M; Eq. (267) in this new system gives no change in the
CFL parametrization but requires a new projector for the 2SC phase. The strange-
quark projector Ps now splits into a strange-blue projector P = (]l — )\%) ® (]1 — 7'22)
and a non-blue strange projector Ps,q, = Ps — Ps3. This requirement of an additional
projector is also intuitive, as the symmetry breaking between red / green and blue
quarks, significant in the 2SC condensates, is also carried over to the strange sector via
the gluon. In the HTL-HDL approximation this was not visible, as the strange quark
decoupled from the light sector in the 2SC phase.

4.5. Results

Using the full quark propagator in the quark loop we can present results of the coupled
quark and gluon DSE system. The dependence of the diquark condensates on chemical
potential at T'= 10 MeV is shown in Fig. The condensates are qualitatively similar
to the HTL-HDL case, except that with the back-coupling of the full quark propagator to
the glue sector the strange quark has a stronger influence on the color-superconducting
condensates. While the CFL condensates can only be formed with light strange quarks,
2SC pairing is also possible for heavy strange quarks. When restricting to the 25C phase,
a discontinuity is visible in the 2SC condensate which corresponds to the strange quark
phase transition, as strange and light quarks are coupled due to the quark loop in the
gluon DSE. At small T this transition is of first-order and the figure shows both branches
of the 25C condensate in the spinodal region. The first-order phase transition is located
somewhere between the two branches. This transition leads to a small decrease of the
2S5C condensates and is located around p = 600 MeV for mgs = 30 MeV and p = 700 MeV
for mgs = 54 MeV. An unfortunate feature of the truncation used here is the much larger
extent of the spinodal regions in contrast to the HTL-HDL approximation. However, the
calculation of the pressure, that could provide the location of the first-order transition is
not possible as, in addition to the numerical problems in the HTL-HDL approximation,
there is even no analytic expression for the interaction I's Eq. (2.49]), as our truncation
involves a non-trivial dependence of the vertex and gluon on the quark propagator.
Therefore, we cannot constrain the first-order transition to a smaller region. However,

51



4. Self-consistent calculation of the gluon propagator
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Figure 4.3.: Dependence of 25C and CFL condensates at 7' = 10 MeV on chemical

potential for mg = 30 MeV (left) and ms = 54 MeV (right).
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Figure 4.4.: Dependence of the strange-quark mass at T' = 10 MeV on chemical potential
for ms = 30 MeV (left) and ms = 54 MeV (right).
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Figure 4.5.: Dependence of 25SC and CFL condensates on temperature at u = 580 MeV
for ms = 30 MeV (left) and at = 680 MeV my = 54 MeV (right).

it is probable, that the CFL phase is favored almost everywhere where it exists and the
CFL phase is dominant at ¢ > 500 MeV or p > 600 MeV for for ms; = 30 MeV or
mgs = b4, respectively. The CFL condensates show no qualitative difference to the HTL-
HDL approximation and increase smoothly for chemical potential above the threshold.

The discontinuous behavior in the 25C phase can be also seen in the diagram for the
strange-quark masses Fig. L4l We show the mass functions M(0) in the 2SC phase
for red/green and blue strange quarks, corresponding to the propagator component
proportional to Ps,, and Ps; and the masses in the CFL phase corresponding to Pr
(red/green) and Ps (blue). The masses in the 2SC phase also have two branches in the
first-order region. In contrast to the simpler truncation, the masses of red/green and
blue strange quarks have a visible difference in the 2SC phase as the blue quarks are
not paired in contrast to the other quarks, which has an influence on their mass. The
unpaired blue quarks are lighter than the other quarks.

The CFL pairing shifts the phase transition of the strange quarks to lower chemical
potential, as the energy gain due to CFL condensation can exceed the energy gain due to
chiral symmetry breaking. The CFL quark masses of blue and red/green quarks do not
differ remarkably, as the pairing is almost symmetric. As one would expect, the higher
strange-quark mass shifts the strange quark phase transition also to higher chemical
potential.

The dependence of the condensates on temperature at a chemical potential of y = 580
MeV for the light strange-quark mass and of g = 680 MeV for the heavier ones is shown
in Fig. These chemical potentials are inside the spinodal region of the strange
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4. Self-consistent calculation of the gluon propagator
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Figure 4.6.: Phase diagram for ms; = 30 MeV (left) and ms = 54 MeV (right). First-order
areas are indicated by shaded areas bounded by spinodal lines (dashed).
Solid lines indicate second-order transitions, CP the tricritical point.

quark phase transition, therefore there are two branches for the 2SC phase. The up-
per one corresponds to the high strange-quark mass and the lower branch to the light
strange quark. The first-order phase transition occurs in the coexistence region of the
two branches. Similar to the HTL-HDL case there is a possible CFL pairing at low tem-
peratures followed by a first-order transition to the 25C phase. The critical temperature
of the second-order phase transition between the 2SC and the normal conducting phase
is around 1" = 40— 50 MeV. This is an important difference to the HTL-HDL truncation,
which had much smaller critical temperatures.

Due to the impact of the strange quark phase transition, the phase diagrams (Fig. [4.0])
show a more complicated phase structure. As a general feature both phase diagrams show
larger spinodal regions and a higher critical temperature for the color-superconducting
phases in contrast to the HTL-HDL approximation. For the hadronic phase at low
densities, the critical point is lifted to higher temperatures and lower chemical potentials.
The spinodal region of the first-order transition becomes remarkably larger and we were
not able to find the exact position of the upper spinodal anymore. Therefore the region
is only approximately indicated. The chiral phase transition seems to be quite robust
under the variation of the strange-quark mass, the critical point is shifted to higher
temperatures and lower chemical potentials when increasing the strange-quark mass. We
find the critical point around (7, ) = (100,160) MeV for mgs = 30 MeV and (T, pu) =
(120,120) MeV for mg = 54 MeV. A similar study in @] finds a CEP at T' = 100
MeV and g = 190 MeV and sees the same qualitative change in comparison with the
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4.6. Debye and Meissner masses

HTL-HDL approximation. However, it should be noted that the regularization of the
quark loop and the vertex truncation were done in a slightly different way in that work.
Again, our focus lies on the color-superconducting phases at higher chemical potential.
The qualitative phase structure with a CFL-like phase at high © and a 2SC phase at
intermediate p and a small band extending to finite temperature and separating the
CFL and normal conducting phase are similar to the HTL-HDL case, nevertheless there
are some important differences. The coupling of the strange quarks to the light sector
leads to the separation of the 2SC phase in one phase with light, approximately chirally
symmetric, strange quarks and a phase with heavy strange quarks, separated by a first-
order transition. Therefore, we find a large spinodal region where four phases - the CFL
phase, the two 25C phases and the normal conducting phase - meet and are all separated
by first-order transitions. Although we find a (meta-)stable 2SC solution in the shaded
region at low temperatures, we expect most of the lower part of the spinodal region to be
a CFL-like phase. This would mean that the strange quark transition is shifted to lower
chemical potentials in comparison to a 2SC or a normal conducting phase, as the energy
gain of CFL pairing is larger than that of strange quark chiral symmetry breaking.

The transition between 2SC and normal conducting phase is, except for the spinodal
region, of second-order and for both strange-quark masses between T" = 40 — 60 MeV.
It rises with increasing chemical potential, however, the strange quark phase transition
leads to a kink with a sudden drop of the critical temperatures.

Although the strange-quark mass has some influence on the critical point of the chiral
phase transition, the color-superconducting section and especially the 2SC phase is quite
similar for both masses. The main difference is that the onset of CFL condensation
together with the kink in the 2SC transition between light and heavy strange quarks
is shifted to larger chemical potentials for the heavier strange quarks. The critical
temperature to the normal conducting phase only shows a weak dependence on the
strange-quark mass.

4.6. Debye and Meissner masses

The strength of the effective coupling of the quarks is determined by the vertex and
the gluon dressing. As the system is dominated by the momentum regime < 1 GeV
the screening of the gluons at low energies has a great influence on the system and is
interesting to investigate. The screening is in general defined by a screening function
M (k) with

Z3

D -2
%21 M2(k)

(4.42)
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4. Self-consistent calculation of the gluon propagator

and the screening mass is the zero-momentum limit A (0). If M (0) = 0 the gluon is not
screened and diverges in the IR, for finite M (0) the gluon is finite in the IR. There is a
Yang-Mills contribution to the screening mass, given by

— A2 (aLA2 > "
k—0 ¢

— A2 <aTA2 > a
k—0 ¢

for the gluon parametrization Eq. ([3.6). These components are called Debye and Meiss-
ner masses and account for the electric and magnetic screening of the gluon. In the
Yang-Mills sector both gluon projections are screened and the masses only depend on
temperature.

With dynamical quarks in the theory, the quark loop in the gluon polarization gives
additional contributions to the gluon masses. These contributions are defined analo-
gously as the polarization tensors at zero momentum

k?2
m% YM X — 75
’ ZTL(k)

k‘2
m?w YM X 7%
’ ZTT(k)

(4.43)

M = lim T (wn = 0, )
I (4.44)
m?\d,ab = 11?13(1) H%’bT(Wm =0,p).

As we focus on the quark sector, we call these quark contributions simply Debye and
Meissner masses in the following, neglecting the small and chemical potential indepen-
dent Yang-Mills contribution (< 0.1 GeV?). Due to the propagator structure Eq. (&Z2]),
the full screening masses also can only be calculated up to an unknown factor Z3 in our
truncation, leaving them as renormalization dependent result, as we do not calculate Z3.
However, they are still a qualitative measure for the screening of the gluons.

For normal phases the regularized expressions Eq. (£19) are

2
ML ab = 0
Z1pg? N o d3q 4TI'(q,q) 2
2 1Fg~INf q q,q SN2 ~2 2 12
=2 _J 7 —2 (-2 ~FPA .
mMD.ab 2 Ew : / @n)F N2 < (a4 +11)°C"(q) + 34 (Q)>

(4.45)

For bare propagators and vertices, which are realized at high temperatures, the Debye
. . 2 Nfg2 ’I‘2 2
mass approaches the HTL-HDL limit Eq. 3I3]) m7, = (FT + %) .

47
For non-superconducting phases the Meissner masses are equal to 0 as also observed in

the HTL-HDL limit Eq. (3I1]). For color superconductivity, the SU.(3) color symmetry
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Figure 4.7.: Meissner (left) and Debye (right) masses (dots) of the gluons in different
color channels in comparison with weak-coupling results @] (lines) for the
2SC phase for propagators Eq. ([@3T]).

is spontaneously broken. The resulting Goldstone bosons are eaten up by the gluons
giving rise to magnetic gluon masses via the Anderson-Higgs mechanism E, @? For
the 2SC phase the SU.(3) is broken down to SU.(2) giving rise to 5 massive gluons
while the remaining 3 gluons stay massless. For the CFL phase the whole SU,.(3) group
is broken, therefore all 8 gluons acquire Meissner masses.

We show the gluon masses for the simple propagator Eq. (d31]) in Fig. BT at T = 10
MeV and p = 1000 MeV for the 2SC phase with ¢ = ¢o5c. The 2SC polarization
was calculated for Ny = 2 flavors. The Debye and Meissner masses for the different
gluons are calculated as functions of the gap parameter ¢ and compared with the weak-
coupling results of @] Additionally to the simple propagator parametrization, the
weak-coupling limit assumes T' < ¢ < u. This is fulfilled for ¢ around 100 — 200 MeV
where we find good agreement between the weak-coupling results and our results. For
larger and smaller values there are some deviations. For the Debye mass of gluons 1-3 a
temperature dependent weak-coupling result is provided that fits exactly our calculation.
The Meissner mass of the gluons 1-3 vanishes exactly as they correspond to the SU.(2)
subgroup that stays unbroken in the 2S5C phase. Additionally, the Debye mass of gluon
1-3 also tends towards O for low temperature. These gluons can only couple to red or
green quarks which are all bound in Cooper pairs for 2 flavors. Therefore, the quark
loop gives no contribution and no Debye mass is generated. All other gluons acquire
both Debye and Meissner masses. The results for a CFL phase for Ny = 3 flavors with
O = Poet = %gbsmg are shown in Fig. As the breaking pattern is symmetric in color
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Figure 4.8.: Meissner and Debye masses (dots) in comparison with weak-coupling results
@] (lines) for the CFL phase for propagators Eq. (£31]).

and flavor, all gluons acquire the same Debye and Meissner masses. The weak-coupling
results @] are shown again for comparison and reasonably agree in the region where
T Ko< .

Finally we also show the Debye and Meissner masses for the full calculation for ms = 30
MeV Fig. [£9 and ms = 54 MeV Fig. 10l At low chemical potentials all masses are
small as the Debye masses are suppressed by the heavy quark masses and Meissner
masses are zero in non-color-superconducting phases. There is a small change at low
chemical potential which is a small violation of the Silver-Blaze property, that requires
observables and also the Debye mass to be independent on chemical potential, if the
latter is smaller than the mass gap of the theory. The violation comes from the vertex
approximation and will be discussed in detail in the next section. Small negative squared
Debye masses are not forbidden in principle, as there is always a positive Yang-Mills
contribution to the Debye mass, that the sum of Yang-Mills and quark contribution still
stays positive. However, due to the Silver-Blaze property, the negative contributions
should be an artifact, nevertheless.

At = 300 — 400 MeV, there is a first phase transition at the onset of 25C conden-
sation. Similar to the weak-coupling results, gluons 1-3 have no or only small Debye
and Meissner masses and the relative ordering of the gluon masses is the same as in the
weak-coupling approximation.

At higher chemical potential also the strange quarks undergo a phase transition and

become light. Therefore, the strange quark loop gives larger contributions and increases
the Debye masses of all gluons equally while it does not contribute to the Meissner
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Figure 4.9.: Meissner (top) and Debye (bottom) masses for the 25C and chirally broken
phase (left) and the CFL phase (right) for mgs = 30 MeV.
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Figure 4.10.: Meissner (top) and Debye (bottom) masses for the 2SC and chirally broken
phase (left) and the CFL phase (right) for mg = 54 MeV.
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4.7. Silver-Blaze property

masses. CFL pairing is possible for p larger than 450 or 550 MeV for ms = 30 or
ms = b4 MeV respectively. In this phase, the Debye and Meissner masses of all 8 gluons
become similar due to the symmetric pairing pattern, like in the weak-coupling limit.
The deviations origin from the finite strange-quark mass and diminish with increasing
1, as the mass becomes negligible with respect to the chemical potential. Both strange-
quark masses give very similar results, the main difference is the position of the strange
quark phase transition.

4.7. Silver-Blaze property

The Silver-Blaze property @, ] states that in a relativistic theory at zero temper-
ature, the partition function and observables do not depend on chemical potential, if
the latter stays below the mass gap of the system. Although the Lagrangian of the the-
ory shows an explicit dependence on p in general and therefore also some unobservable
quantities like propagators depend on u, observables like the masses of physical particles
must stay constant, which requires a cancellation of the internal p-dependence of the
Lagrangian. If the chemical potential exceeds the mass gap, states can be excited and
observables change. For the baryon Silver-Blaze property, relevant in our study, the
Silver-Blaze region is ;1 < mp/3 with the proton mass mp as the mass of the lightest
baryon. This Silver-Blaze property only holds at zero temperature, as thermal excita-
tion also change observables. Truncations can easily violate the Silver-Blaze property
and our Debye masses Fig. and Fig. 10 show a small violation of the Silver-Blaze
property. In the following we discuss the Silver-Blaze property, its restrictions to the
truncation and where we violate it.
For simplicity, we assume a quark propagator with a physical mass A that fulfills

— C2(iA,0)A? + B%(iA,0) = 0. (4.46)

A should be also the lowest singularity of the system and therefore the mass gap of
the theory. This mass pole lies on the imaginary gs-axis. The quark self-energy is
schematically given by an integral over a propagator component S(gqq + ip) multiplied
with an integration kernel K (p,q) that includes the vertex and the gluon dressings

S(patipp)~ [ Slaa+in, @)K (ps+ip, P as + i, ). (4.47)

94,4
We focus on the g4 integration and consider the integration path C shown in Fig. [£T11]
The integral along this contour vanishes as it includes no singularity. Considering a
rectangle with infinite extent in Re(gy)-direction, that means shifting the vertical parts to
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4. Self-consistent calculation of the gluon propagator

 -iA

Figure 4.11.: Schematic integration contour of the g4-integration in a system with a mass
gap A.

g4 — 00, these do not contribute as the integrand in Eq. ([{47]) vanishes for ¢4 — +oo.
Therefore, the integral along the lower horizontal equals the integral along the upper one
and especially the shift ¢4 — g4 —ip in Eq. ([4.47) is possible, if the chemical potential
is smaller than the mass gap, as no singularity is touched by this shift

2(p4 + W,ﬁ) ~ HS(Q45 @K(pll + Z.//J’ﬁ, 44, Cf) (448)
q4,9

This integral is just the vacuum self-energy evaluated at p4 + ¢p and therefore

E(]74 + 2M7ﬁ) = Evac(p4 + Zﬂaﬁ) (449)

For self-energies that are independent on p, like they occur in mean-field calculations
in many effective models, the self-energy does not change for chemical potentials lower
than the mass gapﬁ. In Dyson-Schwinger calculations the self-energy is momentum
dependent and therefore changes with chemical potential, but is related to its vacuum
value by Eq. [@49). Going one step further and calculating the quark condensate we
need to evaluate an integral over the quark propagator

(aq) ~ S(qa +ip, Q). (4.50)

q4,9

As long as the chemical potential is lower than the mass gap, we can replace the propa-
gator with its vacuum value and shift the integration variable g4 — ¢4 — i1t for the same
reasons as before and get

3except if a first-order phase transition occurs earlier
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Figure 4.12.: Light quark condensate and mass for HTL-HDL truncation and the full
back-coupling.

<C.7Q> ~ / HSvac(q4 + iﬂy@ = / Svac(qzla@ ~ <C.7Q>vac- (451)
q4,9

44,4
Therefore, the quark condensate stays constant for p < A, reflecting the Silver-Blaze
property. If u > A, the shift of the integration variable ¢4 — ¢4 — i1 is not possible, as
the singularity at the mass gap needs to stay outside the integration contour in Fig. 1Tl
We can now study the gluon polarization with similar arguments. It is schematically
given by

94,4
with p = k + ¢q. Here, the shift ¢4 — q4 — ip directly leads to a result independent of p
T(ky, k) ~ / HS(Q4,®5(P4,Z?)K(P4,Z7, 1, @) ~ Toae(ka, F). (4.53)
94,4

In particular the Silver-Blaze property therefore predicts constant Debye and Meissner
masses at low chemical potential. In these arguments, it was important to choose a
kernel with a consistent dependence on chemical potential K (pg + ip, qq + ip).

In the quark DSE we use a vertex I'(p,q) = I'(p — q). The dependence on chemical
potential of the argument p — g drops out and the Silver-Blaze property is fulfilled. In
our calculation with the improved gluon polarization with full quarks, this vertex spoils
renormalizability as shown in Eq. (£26]) and we cannot use it. Instead we take I'(p, q) =
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4. Self-consistent calculation of the gluon propagator

I'(p? + p* + ¢ + ¢®). This vertex violates the Silver-Blaze property, as a consistent
implementation of the chemical potential would require a dependence on (py + iu)?
instead of only p? and analogously for ¢;. On the level of quark quantities, this violation
is only weak which can be seen in Fig. We show the quark mass function M (0)
and quark condensate and also the HTL-HDL results for comparison. The condensate
of the full calculation stays almost constant and only shows a tiny increase at higher
chemical potential. In contrast, the HTL-HDL result shows a strong dependence on
1 which violates the Silver-Blaze property heavily. As the HTL-HDL approximation
assumes massless quarks and therefore removes the mass gap, the gluon involves an
explicit dependence on chemical potential via the effective gluon mass mg ~ ©? which
causes the violation. The quark masses M (0) show a u-dependence in both cases which
gives no statement about the Silver-Blaze property directly, as a momentum dependent
self-energy shows a dependence on p in general according to Eq. (£49]).

For the Debye masses of the improved truncation Fig. 1.9 and Fig. [£.10] the violation
of the Silver-Blaze property is a bit larger than on the quark level, but altogether the
improved truncation respects the Silver-Blaze property approximately and the violations
are negligibly small in the quark sector and not too big in the gluonic sector.

A possible choice for a vertex fulfilling the Silver-Blaze property would be I'(p, q) =
T((pg +ip)? + 2 + (qu +ip)? + @%). We cannot use this vertex as it causes a different
problem. When considering the infrared term of our vertex model Eq. 32) I'rr(z) =

mfdQ, we get for that momentum dependence

dy
Cdo+ (pa+ip)?+ P2+ (qa+ip)? 4+ @

Tir (4.54)

At zero energy and 3-momentum, the denominator becomes dy — 242 which leads to an
artificial singularity for larger chemical potential. As this problem cannot be evaded
easily, we use the vertex I'(p,q) = I'(p2 + p% + ¢7 + ¢*) and live with a small violation of
the Silver-Blaze property.
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5. Inhomogeneous phases

In the previous chapters we only considered phases that are homogeneous in space. In
effective models it has been found that spatially varying chiral condensates are preferred
over homogeneous condensates in the region of the chiral phase transition which is en-
tirely covered by an inhomogeneous phase ﬂﬁ, M] In these models, the critical endpoint
of QCD changes to a Lifshitz point, where three second-order phase transitions meet in
the chiral limit. It turns out that solitonic modulations are the most stable structures
among the investigated modulations and 1-dimensional inhomogeneities were preferred
over 2-dimensional crystals M] In every case, the homogeneous solution was least
favored in the vicinity of the first-order line. Also inhomogeneous color-superconducting
phases are suggested to be the ground state at higher densities ﬂ@@]

The possibility of an inhomogeneous chiral condensate will be investigated in this sec-
tion with Dyson-Schwinger equations. In NJL models the central quantity is the ther-
modynamic potential which is calculated in mean-field approximation and minimized
with respect to a parametrized inhomogeneous condensate. As the NJL interaction is
local, the thermodynamic potential can be simplified and it is possible to calculate vari-
ous inhomogeneous structures with a brute-force diagonalization of the Hamiltonian. In
the Dyson-Schwinger framework of QCD, the momentum dependent dressing functions
increase the numerical effort drastically and we therefore restrict to a simple plane-wave
ansatz (chiral density wave) of the modulation which allows an analytical inversion of
the quark propagator and keeps the numerical effort on a feasible level. We also perform
all calculations in this section with two chiral flavors.

5.1. Quark propagator for inhomogeneous phases
The homogeneous quark propagator is parametrized by
S7H(p) = —iwa1uC(p) — iFA(p) + B(p). (5.1)

We now generalize this parametrization to an inhomogeneous propagator. Thereby it is
useful to work in the chiral representation of the Dirac matrices (see Appendix [A]). In
this representation ~s is diagonal while the other gamma matrices are only non-zero in
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5. Inhomogeneous phases

the off-diagonal 2 x 2 blocks. This simplifies the structure of the propagators. Similar
to the NJL model we allow an inhomogeneous mass term characterized by an oscillation
between scalar and pseudoscalar condensates @, @, |

Cs = (qq) o cos(Qz)

Cp = (qiv573q) o< sin(Qz) (5.2)

with the Pauli matrix 73 in isospin space. In general, the pseudoscalar condensate is a
vector in that space, however, due to isospin symmetry which is unbroken for vanishing
isospin-chemical potential we can rotate it into 73 direction.

We parametrize the mass term in coordinate space by

B(x,y) = Bi(,y) + ivssBy(2,y) = B (2,9) ® B~ (2,y) (5:3)
with the two isospin components

B*(z,y) = By(z,y) + ivsBy(x,y) (5.4)

corresponding to up and down quarks. With the explicit Dirac structure in 2 x 2 Pauli
blocks we get

At _ (Bs(z,y) FiBy(z,y) 0
B wy) = ( 0 Bs(x7y)iin(w7y)> (5:5)

which visualizes the advantage of the chiral Dirac matrices. The quantities Bg(x,y)
and Bp(x,y) are real in coordinate space which originates from the symmetry relations

Bg(ps) = Bs(—pa)* and By(ps) = Bp(—pa)* in Fourier space (see Eq. (2103])) and with
the definition B(x,y) := Bs(x,y) + iBy(z,y) we get

O G T B (5:6)

We want to investigate a chiral density wave and make a plane wave ansatz
- 1. .
Bt (x,y) = B(x — y)§ (e’QJC + ele) (5.7)

for the mass term and build a self-consistent system around this ansatz. As our gluon
propagator and quark-gluon vertex are diagonal in isospin space, quarks with positive
and negative isospin do not mix and we can restrict the calculation to the components
with positive isospin B*(z,y) and omit the isospin indices in the following, unless oth-
erwise noted. B~ (z,y) can be obtained by Q — —Q.
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5.1. Quark propagator for inhomogeneous phases

For 1-dimensional modulations we choose the wave vector @) to point in the 3-direction
@ = Qes. The Fourier transform (see Appendix [A3]) of Eq. (&.7)) is given by

(B(p)+ B@")) d(p—p' - Q). (5.8)

N | =

B(p,p') =

Eq. (5.8) leads to an off-diagonal structure in p-p’ space for the dressing function B(p, p').
The inversion of a propagator with such a non-diagonal contribution induces further
dressing functions and we need in total 10 terms for a complete ansatz for the inverse
propagator to achieve a self-consistent solution

S p,p') = [—i(wn+iu)740(p)—ipsst(p)—iﬁA(p)

— i(wn +ip)v574Cs5(p) — ip3vs73Es(p) — 5P As (p)] é(p—1p')

+ <B ) = iy F(p,p') —iva ’ﬁ; ’G( p) —ivs ‘é ‘H( )> (11_7%’)5(19—19%@)
+ (B0 + 1raF ) + i B G + i B 0h) ) S50 -5 - Q)

(5.9)

with B(p,p') = % (B(p) + B(p')) and similar for F, G and H. Here we used the notation
p 1 for the momentum contribution perpendicular to the wave vector () in 3-dimensional
space. The chiral condensates of Eq. (5.2]) are then defined by

@) =2 [ T (S ) 057 (.0)
o (5.10)
(qivsTsq) = —Z2/ PP Ty [ins 3 (ST (p,p)) & S~ (p,p'))]

p,p’

which have contributions from up and down propagators. The dressing functions are
also constrained by symmetries. The relation for negative energies is similar to the
homogeneous case Eq. (2103

S(wn7p37ﬁJ_) — 745(_(*)77/7]937133_)1-747 (511)

while parity is now restricted to the p; components, realized by

S(wn,p3,D'L) = 57275715 (Wnsy D3, —D1L) V17577275 (5.12)
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5. Inhomogeneous phases

In the direction of the inhomogeneous modulation, the propagator shows a parity sym-
metry, if the modulation vector @ is reversed as well

S(wn, p3, P15 Q) = Y5735 (Wn, —p3, P15 —Q)Y375- (5.13)

We now specify the structure of the quark propagator for a 1-dimensional modulation.
For a periodic modulation we can define a reciprocal lattice (RL) in momentum space
and only momenta that differ by an element of the RL are coupled. In our case, the RL
is given by the momenta n@ for n € Z. The Brillouin zone (BZ) is a primitive cell of
this lattice such that every momentum is uniquely obtained by p = K + L with K € RL
and L € BZ. We can define the (first) Brillouin zone by [0, @[ in 3-direction and infinite
in 1- and 2-direction, containing a set of uncoupled momenta. The propagator can be
rearranged into a block structure in momentum space by

S= > S (5.14)

peBZ

where the sum has to be interpreted as a direct sum and S(p) represents one of these
blocks which contains the infinite, but discrete, set of momenta differing by an element
of the RL which are all coupled in general. To visualize this we show the schematic
structure of one of these blocks of the inverse propagator in Dirac and momentum space

0 O | Qiit1 0 0 0
; 0 0 0 0 0

_ 0 0 0 0, Oia1 0

1 i+1 41,542
~ . - ! 1
5 () 0 Oit1s | Diga 0 0 0 (5:15)

0 0 0 0 0 Do
0 0 0 Qit2,i+1 | Higa 0

The continuous lines visualize the momentum grid and the indices the corresponding
momenta p; = p + 1) which are constrained by the RL. Each field in the momentum
grid represents a 4 x4 Dirac block, i.e. the four entries of one these blocks represent a 2x 2
matrix each. The squares [J are built out of A,C, E, A5,C5 and F5 dressing functions
and only appear in the diagonal momentum space components while the diamonds ¢
represent the non-diagonal B, F,G and H terms. In contrast to different modulations
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5.2. Gap equations

like sinusoidals or solitons, where all of these elements would be coupled, the chiral
density wave generates a simpler structure and only four of the 2 x 2 components are
coupled (e.g. [J;, ‘ji+1, Oii+1 and <~>i+1,i). This allows the propagator to be inverted
analytically with the structure

0 H; 0 0 0 0
u; 0 0 ®it1| O 0
4.1, O 0 __FEs| 0 0
S ~ ’ - 5.16
®) 0 0| Wy 0 0 i1 (5.16)
0 0 | #1241 0 0 TR
0 0 0 0 |Muy 0

Due to the simple structure, the elements of S do not depend on the whole matrix
Eq. (B15) but only on four elements of the latter. For example B; is only dependent on
O, Oig1, Qiir1 and Qypq i

5.2. Gap equations

In a homogeneous system stable states can be determined solely by solving the quark
DSE Eq. (227)) as done before. If we allow inhomogeneous condensates, characterized by
a wave vector (), we need an additional constraint to fix the wave vector and with that
the shape of the modulation in coordinate space. The quark DSE can also be derived as
the extremum of the thermodynamic potential {2 by variation with respect to the quark
propagator

ds?

— =0. 5.17

T (5.17)
The ground state of the system is also a minimum of 2 with respect to )

ds)

— =0 5.18

i (518)

which gives a gap equation that fixes the wave vector ). Deriving these gap equations
is straight forward if the thermodynamic potential is given as an analytic expression.
On the other hand, not every DSE allows to reconstruct the thermodynamic potential,
especially if the quark-gluon vertex or the gluon propagator depend on quark dressing
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5. Inhomogeneous phases

functions. For homogeneous phases this is only problematic in the vicinity of a first-
order phase transition where more stable and metastable phases coexist and only the
thermodynamic potential gives insight which phase is the ground state. In all other
regions the DSE is sufficient to find the ground state. For inhomogeneous phases the
DSE alone does not fix the wave vector (). Thus we need a truncation that provides
an explicit expression for the thermodynamic potential. Therefore, we use a HTL-HDL
truncation for the gluon and a vertex independent of the propagator. Then the effective
action which is just the negative thermodynamic potential I' = —(Q, is given by Eq. (2.45])

I'= TI‘pTI‘D,Qf InS~!— TI‘pTI‘D@,f (]1 — ngals) + I's. (519)

with the interaction I'y specified later. The traces need to be performed in color, flavor,
Dirac and momentum space. For the first term, we can use Trln = Indet, but in
contrast to the trace, we cannot perform the determinant separately in momentum and
Dirac space but have to calculate the determinant for the whole matrix in momentum
and Dirac space. However, we can exploit the structure of the propagator and the
determinant decays in a product of determinants of blocks Eq. (515

=Indet S =7 In J] detS™'(p). (5.20)
Wn, ﬁGBZ

The product can be written as an integral over the BZ

d*py dps
TZ/ /O In det S~ (p). (5.21)

The momentum determinant is now restricted to one block S~!(p). Additionally we can
use that these blocks Eq. (5I5]) consist of smaller blocks that decouple and restrict the
propagator to one of these smaller blocks, summing over all contributions

2 Q
FO:Tg/(dQ::;;/O ‘;Tl det S5t (pm = p + mQ) (5.22)

where S5 Y(pm) is one of the smaller coupled blocks in Eq. (5I5) that depends on py,
and p,, + Q. Finally we can combine the integration over the BZ and the sum over the

blocks
> [ s 4 m@) = [ 50 (523)
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5.2. Gap equations

and write

Ppy dps —1 _ —1
Iy —T;/ @n)? ﬁlndet So(p) = /pTrlnSD (p) (5.24)

with the small block S5 '(p). The second contribution to I' contains a matrix product
with the homogeneous bare propagator being diagonal in momentum space

Sal(p,p') = (271)45(19 — p')Sal(p). (5.25)

As the trace can be performed separately in momentum and Dirac space, we only modify
the momentum trace and write it as sum over matrix elements

Tii=—Y Trpes((2m)'6(p—p') = 255" (0,0)S (W', p)) - (5.26)

This sum covers infinitely many momenta which are also infinitely dense and can be
replaced by an integral

Fl = —/ TI‘D7c7f ((27‘[‘)4(5(]) _ p/) o ZQSal(p,p/)S(p/,p)) ] (527)
pp’
Using the bare propagator Eq. (5.25]), one momentum integral can be evaluated
O / Trpe.s (L — 225y " (0)S(p,p)) - (5.28)
P

Similar to I'g, we can write this expression as a function of S(p), which is useful for
deriving the gap equations

L= [ 151 - 2280)50)) (5.29)

The interaction term is shown in Fig. B.1] and given by

a

2 A
Ty = le% / Trp.e s (w;s(q,q’)Fﬁ(Q’,p’)Dﬁﬁ(k, k’)S(p’,p)> (5.30)
P49

where we assumed a homogeneous vertex (see Appendix Eq. (BI6)). In the following
we also consider a homogeneous gluon

Db (k, k') = (2m)*6(k — k') D (k) (5.31)
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5. Inhomogeneous phases

k=p—q=p—¢

Figure 5.1.: Feynman diagrams for the interaction term of the effective action I'y (left)
and the corresponding self-energy (right). Plain lines represent quark prop-
agators, the curly line the gluon propagator. Thick dots represent dressed
quantities. The gluon momenta are defined by k = p — ¢ and ¥ = p' — ¢
and for a homogeneous gluon holds k = &'

and a vertex dependent on the gluon momentum T8 (¢, p') = T%(k'). In general, es-
pecially when considering the full back-coupling of the quark to the gluon or vertex,
the latter are also expected to have an inhomogeneous structure, which we neglect for
simplicity. Using our previous notation, I's can also be written more compactly

t=zpl [ 1 (5 So@rt LS. (5:32)

One of the gap equations is the standard DSE obtained by extremizing I with respect
to the dressed propagator

or
— =0 5.33
35 (5.33)
and leads to the quark DSE
S p,p) = Z2S5 (p. 1) +92/ I 05(a,4") Dy (k, KT (¢, ). (5.34)
4,9’

Due to the assumption of a homogeneous gluon and vertex, the inhomogeneous structure
is solely carried by the quarks and the loop integral only depends on ¢, while the ¢’
integration is trivial with the momentum conservation of the gluon propagator 6(k —&').
When using the block structure we can derive a more compact expression for the DSE

S5(0) = Z2S1p) + 9° | ThoS(a) DL (RTL(R) (53)
q
The second gap equation is obtained by varying the action with respect to @

= 0. (5.36)

S5
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5.3. Results

When calculating this derivative it is useful to take the description of the action in terms
of the small blocks (Eq. (24]), Eq. (529), Eq. (532])). As the small blocks depend on p
and p + (), we need to consider that the argument of Sy L also depends on @ and needs
to be varied when calculating the second gap equation

Vb 5T dSo(p) 0T dSy5(p)
=5 _/pTer(p) 0 +/pTr55&é(p) Q- (5.37)

The first term is just the first gap equation (quark DSE) and vanishes at the extremum.
The derivative in the second term can be carried out and we obtain

. dsyt
0= /pTr (Sﬂ@%) . (5.38)

The derivative of the bare propagator can be evaluated

d 1,y a4 (—i(wp +ip) —op 0 (0 0
aq o) = 5 ( 0 i(wn + i) + FF Q)) - <0 og> - (339)

In analogy to the dressing functions of the inverse propagator Eq. (.9), we label the
dressing functions of the dressed propagator that are proportional to —ip3ys and —ip3vy5y3
by e(p) and e5(p), respectively. We then get from Eq. (B38])

0= /(Ps +Qles(p+ Q) — (ps + Qle(p + Q). (5.40)

Shifting the integration variable p — p — @ and using the symmetry e(ps) = e(—p3) the
gap equation simplifies to

/P3€5(P) = 0. (5.41)

P

This expression does not vanish in general, as e5(p3) = —e5(—ps). It gives the necessary
condition for the determination of Q).

5.3. Results

For the numerical calculation we use the ansatz Eq. (59) for the inverse propagator
and the corresponding self-energy. We first fix the wave vector @ and solve the gap
equation for the propagator Eq. (5.34]) for fixed . The inversion of the propagator can
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Figure 5.2.: Mass (left) and left-hand side of the gap equation for @ (right) in dependence
of a fixed value of Q) at T'= 10 MeV for different chemical potentials.

be performed analytically with computer algebra systems, taking advantage of the block
structure in momentum space. Then, we have to solve the coupled system

SN p.p') = Z> (S5 (p.p)) + Z(p, ) (5.42)

dBq T(k) A N
Spat) = ama)T Y [ G S+~ P D) G

with the self-energy truncation of Eq. (B.3).

We perform these steps for several values of @) and evaluate the left-hand side of the
gap equation for QQ Eq. (5.41) for these results. A necessary condition for a stable solution
is this expression to be zero while the slope of the curve at this point has to be positive.
This allows us to find possible inhomogeneous solutions of the Dyson-Schwinger system.

We first show a visualization of the root-finding procedure of the @)-gap equation in

Fig. In the left picture the result for the mass M(0) = ‘%‘ as an outcome of

the quark DSE, iterated with a fixed value of @, is shown in dependence of Q. All
results are at T' = 10 MeV. The right plot shows the result of the left-hand side of the
Q-gap equation Eq. (5.30) evaluated with the self-consistent solution of the quark DSE.
At a chemical potential of 300 MeV the mass decreases smoothly till a sudden jump at
Q =~ 300 MeV. After this discontinuity the mass again smoothly decreases to zero. The
value of the Q-gap equation rises almost linearly and also jumps to a much smaller value
at the discontinuity at @ ~ 300 MeV. Afterwards it rises weakly again and finally also
decreases to 0. At this chemical potential there is only one stable solution at @@ = 0
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Figure 5.3.: Mass and wave vector @) of the stable solutions in dependence of p at T' = 10
MeV (left) and of T" at u = 320 MeV (right).

with a positive slope. The region at @) > 630 MeV where the gap equation also vanishes
is a plateau in the thermodynamic potential and corresponds to the unstable massless
solution. At p = 320 MeV the mass has a similar shape as for ;1 = 300 MeV while the
Q-gap equation even drops below zero at the discontinuity. This implies a second root
of the gap equation with a positive slope at @) ~ 335 MeV which corresponds to a stable
or metastable inhomogeneous solution. At higher chemical potentials we enter a region
where no massive homogeneous solution exists, however, an inhomogeneous solution may
be possible. This is the case for = 410 MeV where only at finite () around 600 MeV
the mass is non-zero. As the Q)-gap equation also shows a zero in this region, which is
the only solution with positive slope, the inhomogeneous solution is the ground state in
this region.

The masses and wave vectors of the inhomogeneous solutions are shown in Fig.
The left picture shows the dependence on chemical potential at T' = 10 MeV. Addi-
tionally the massive homogeneous is shown. The decrease of the homogeneous solution
with increasing chemical solution is mainly attributed to a violation of the Silver-Blaze
property (see Sec. 7)) due to the HTL-HDL approximation. At chemical potentials
larger than 315 MeV we find an inhomogeneous solution which is separated from the ho-
mogeneous phase by a first-order phase transition. At this transition the mass jumps to
a smaller value while a finite wave vector () arises. As we do not calculate the pressure,
we cannot determine the exact position of the phase transition, instead the onset of the
inhomogeneous solution indicates the lower spinodal of the phase transition. In the inho-
mogeneous region the mass smoothly decreases to zero while @ rises. At p > 410 MeV
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Figure 5.4.: Phase diagram for inhomogeneous phases. The red line shows the homo-
geneous phase diagram including the spinodals. The blue line shows the
boundaries of the inhomogeneous region.

the mass is zero and the system becomes independent of (). The transition between
inhomogeneous and chirally restored phase is of second-order. The right plot shows
the same quantities at © = 320 MeV in dependence on temperature. At this chemical
potential the system is inhomogeneous at low temperatures, indicated by a finite Q.
With increasing temperature the mass continuously melts to zero, also in a second-order
transition, while @) rises with temperature.

We can also collect all results and draw a phase diagram, displayed in Fig. 54l Tt
shows the inhomogeneous region and the homogeneous transition with the two spinodals
that restrict the region of the first-order phase transition. The upper border of the
inhomogeneous phase is a second-order transition and lies outside the homogeneous
spinodal region. This line also bends to higher chemical potentials for lower temperatures
and it is unclear if the inhomogeneous region ends or if the transition line only approaches
0 asymptotically. The lower border is a first-order spinodal that gives a lower bound
to the inhomogeneous phase. Although we do not know the exact positions of the first-
order transitions, we can state that the inhomogeneous region covers the homogeneous
first-order phase transition similar to results in the NJL model ﬂﬁ, ] Especially the
phase diagram in ﬂﬁ] which also includes the homogeneous spinodals looks qualitatively
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5.3. Results

very similar to our result.

The positions of the homogeneous critical point and the critical point, where the
inhomogeneous region and the second-order chiral phase transition meet, seem to be
very similar. Unfortunately our numerical precision does not allow to decide if these to
points coincide or not. In NJL models without vector coupling, these two points fall on
top of each other and the resulting phase diagram ﬂﬁ] is in qualitative agreement with
our result.
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6. Conclusion and Outlook

In this work we investigated QCD at finite density with Dyson-Schwinger equations.
These equations are the exact QCD equations of motion but, as they are not a closed
system of equations, cannot be solved exactly and need to be truncated. We focused on
the quark sector and studied the truncated quark DSE and the quark contribution to
the gluon DSE in detail. For the Yang-Mills sector of the gluon DSE we used dressing
functions obtained in lattice QCD calculations and for the quark gluon vertex dressing
we used a phenomenological model with correct UV running and a model IR strength.

In a first step we calculated the quark loop in the gluon DSE with a hard-thermal-
loop / hard-dense-loop approximation which assumes bare massless propagators and
provides analytic expressions for the gluon polarization. Open parameters in the vertex
were fitted to reproduce the critical temperature of the chiral phase transition at 150
MeV. We performed calculations for 2+1 flavors with 2 chiral quarks and a strange
quark with masses in a range compatible with the data of the particle data group [93].
We investigated a 25C and a CFL like phase and calculated the phase diagram. We
see a first-order region with a critical endpoint for the chiral phase transition. At high
densities the CFL phase is the ground state as expected. At intermediate densities and
in a band between the CFL and the chirally restored phase at finite temperature we also
find a 25C phase. The critical temperature of the color-superconducting phases is quite
low and around 20 — 30 MeV.

We improved the truncation in a second step by evaluating the quark loop with dressed
color-superconducting quark propagator and therefore used a truncation which is self-
consistent on the level of quarks. However, we still neglected the effects of the quark
propagator on the Yang-Mills sector. The evaluation of the quark loop required the
development of a regularization scheme to cure the quadratic divergencies occurring in a
calculation with a numerical cutoff. We used a regularization that effectively subtracted
the longitudinal contributions to remove the divergencies. We also had to improve the
vertex structure by adding contributions of the color-superconducting condensates to
the vertex guided by Slavnov-Taylor identities of QCD. We solved the coupled system of
quark and gluon DSE and calculated condensates and the phase diagram. In comparison
with the HTL-HDL approximation, the critical temperatures turned out to be higher
and are between 40 and 60 MeV. Additionally also the strange quark phase transition is
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6. Conclusion and Outlook

clearly visible in the color-superconducting phases, as the strange quark also couples to
the light quark via the gluon. It splits the 2SC phase into two phases with high and low
strange-quark mass. This truncation also improves vacuum observables like the pion
decay constant which was overestimated in the HTL-HDL approximation. With this
truncation we also could calculate Debye and Meissner masses of the gluon. Due to the
breaking of the color symmetry, gluons with different colors acquire different dressing
functions. We checked our truncation by using weak-coupling quark propagators and we
could reproduce the weak-coupling results for the Debye and Meissner masses ﬂ@, @]
For the full calculation the gluon masses showed the same relative behavior as in the
weak-coupling case. Our truncation does not fulfill the Silver-Blaze property completely
as we made simplifying assumptions in the vertex model, but the deviations from the
Silver-Blaze property are under control and only small. Especially the quark condensate
shows no visible deviation.

In the second part we investigated spatially inhomogeneous phases in the Dyson-
Schwinger formalism. These phases have already been investigated in effective models
and turned out to cover the first-order chiral phase transition ﬂﬁ] We developed the
formalism to implement inhomogeneous condensates in the Dyson-Schwinger system and
to solve the system iteratively as it is commonly done with DSEs. We used the most sim-
ple inhomogeneous modulation in form of a one-dimensional plane wave and solved the
Dyson-Schwinger system for 2 chiral flavors in HTL-HDL approximation. The gap equa-
tions for the quark propagator and the wave vector, characterizing the inhomogeneous
modulation, have been obtained by the stationarity condition of the thermodynamic
potential. Similar to model calculations, we find an inhomogeneous phase that covers
the original first-order transition completely. The critical point seems to stay at the
same position within the numerical accuracy. The homogeneous chirally broken phase
undergoes a first-order phase transition to an inhomogeneous chirally broken phase. The
transition to the normal phase seems to be of second-order within our accuracy.

For the future, it would still be desirable to extend these calculations in further studies.
There are still strong assumptions in the truncation especially in the vertex. Therefore,
the investigation of the vertex DSE in a suitable truncation and investigating a closed
system for quark and gluon propagator and quark-gluon vertex would be a great im-
provement of the truncation, however, it is numerically demanding. It is also possible
to include meson and baryon contributions to the vertex which should be dominant
dynamical contributions.

The study of inhomogeneous phases was only a small step into this field. While more
complicated inhomogeneous structures like solitons or more-dimensional modulations
seem to be numerically tough with DSEs, the investigation of color-superconducting
phases with a plane wave structure should be a doable task. These steps, together with
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model investigations and experimental research are crucial steps for the understanding
of QCD at finite density.
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A. Definitions

A.1. Conventions

Throughout this work, we use natural units h = ¢ = kp = 1. We work in 4-dimensional
space using the Euclidean metric g,,, = 6, and scalar products of 4-vectors are defined

by xy = x,y, = T4ys + TY.
A.2. Dirac matrices

The Dirac matrices are a matrix representation of the Clifford algebra

{'Y;M'Yv} = 20u. (A1)

The most common representation is the Dirac representation, given by

o 1 0 o 0 —’L'O'i
= &) = ) (A2)
with the Pauli matrices

S R (O N (A a2

These matrices are Hermitian 7;5 = 4. Additionally the 5th Dirac matrix is defined by

0 1
V5 = —M1Y2Y3V4 = (1 0) (A.4)

and anti-commutes with .
For inhomogeneous phases it is convenient to choose the chiral representation of the
Dirac matrices

0 1
7= <1 0> s W= (A-5)
This effectively swaps 4 and 5

=92, W=-77. (A.6)
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A.3. Fourier transformation

A.3. Fourier transformation

We define the Fourier transform as

F(p) = /d4xeimF(m)

A (A.7)
F(p,q) = / drzdye P W F(z, y)
and the inverse transform as

d*p .
Fo) = [ e F o)

(2m)?

d'p d'q 4 ) (A8)

r _ i(pr—qy) p

(z,y) / o) @)t (p,q)

A.4. Integral conventions

The integrals in 4-dimensional Fourier space can be simplified exploiting symmetries.
For vacuum integrals, we use hyperspherical coordinates

/(;;34 = ﬁ/OAdqq3/02ﬂd¢/0ﬂd98in9/0ﬂd¢sm2¢ (A.9)

with a cut-off A. 1 is the angle between ¢ and an external momentum p, pq = |p||q| cos 1,
and the remaining angular integrals are trivial. In medium, the O(4) symmetry is broken
to O(3) and g4 = |g|cos® and |g] = |¢|sin® are independent coordinates. Finite tem-
perature additionally introduces discrete values of ¢4 and replaces the g4-integration by
a Matsubara sum and we cannot use 4-dimensional hyperspherical coordinates anymore.
Using 3-dimensional spherical coordinates for the O(3)-symmetric space instead, we can
parametrize the integral by

4 3 A 27 T
/(;T;%TZ/(;T%Z%Z/O dlcﬂlciP/O dgo/o dosing  (A.10)

with the angle 6 between ¢ and an external momentum 7, pg = |p]|q] cos 0, and a trivial
© integration.

For inhomogeneous phases we introduced a wave vector Q = Q€3 in pz-direction
and the spatial O(3) symmetry is broken to an O(2) symmetry in the p|-plane. In
the parametrization Eq. (A.I0), these components are defined by ps = |p]cosf and
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A. Definitions

|p]L = [p] sin € together with the scalar product 71 ¢1 = |p]1|q]1L cos ¢ and all integrations
are non-trivial in general.

In some parts, we abbreviate the integrals by fq which is short for the integral Eq. (A.9)
or Eq. (A-10]), dependent on if it is a vacuum or a medium expression, respectively. Dirac
delta functions are denoted as d(p — ¢), at finite temperature with py = (2n + 1)77T" and
qs = (2n' 4+ 1)7T they are given in detail by

50— ) = 6(ps — 4267 — @) = 50 w0~ ). (A1)

so that

(2r)’ /5<p Q) = (2n) TZ/ 2WE,,QTnn( —p=1 (A12)
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B. Correlation functions

Abbreviating the QCD fields (1;,1/1,143,6“,0“) with ¢; and the corresponding sources
with J;, the generating functional is given by

2191 = [ Doexp(=Slel + Jig (B.1)
where the source terms are
Jipi = b + U + L AT + 5% + o (B.2)
The generating functional of connected Green’s functions is defined by
WI[J] =InZ[J]. (B.3)

The macroscopic fields ¢; are defined as expectation values of the fields y; and given by

SW[J]

=+
¢ 5.J;

(B.4)

where the upper signs stands for the cases J; € {jg,ﬁ, a?} and the lower signs for the
cases J; € {n,0®} which involve a minus sign due to the anti-commutative character of
the Gramann numbers. The effective action is then the Legendre transform of W[.J]

Nig) = [ Ji(2)6z) = WU (5.5)
and therefore the sources are given by
oT'[¢)

J; =+ . B.6
7 (B.6)

The propagators are defined as 2-point correlation functions

52w

(Tei)ei(®) = s77~s77~ (B.7)

! 5Jj(y)5t]i($) J=0
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B. Correlation functions

and can be expressed as derivatives of W[.J] or I'[¢]

52W 52T -1
Sad(T:8) = S @) |y (wmy)wa(x)) (B8)
oy OW B 52T -
Dinev) = Sisia@ |, <5A3<y>5Az<m>> (B:9)
. 52w 82T !
@) = S @)y <6cb<y>6ea<x>> (B.10)

where o and f§ indicate the components of the quark spinors (color, flavor, Dirac) and
emphasize, that the quark propagator is a matrix in these spaces and not a contracted
object as % would suggest. The bare propagators are obtained from the classical
action for vanishing field expectation values

528

S ap(@:y) = ) (=3 +m)apd(x — y) (B.11)
“1a 528 " 1
DH,},ob(Cﬂay) = m =5 <—525W + <1 — g) (3“(9”) 5(x —y) (B.12)
2
Gy " (w,y) = W = 6U0%5(x — ). (B.13)

The dressed vertices are the higher derivatives of the effective action, e.g. the quark-
gluon vertex is defined by

_ 6T
 0AL(2)0Y(y)0da(2)

and analogously for other vertices. The relation to the connected 3-point function can
also be established by taking an additional derivative 6% of Eq. (B:8)

9Ly ap(@,y, 2) (B.14)

W
07 ()03 (y) 07 (2)

For the Fourier transformed vertex I'f,(k, p, ¢) with incoming quark (p) and gluon (k)

momentum and outgoing quark momentum (q) we can exploit momentum conservation
and define

= —/ iji’,(m,u)SM(z,v)gFlb,,,ﬂ;(u,v,w)S(;g(w,y). (B.15)
J:0 u,v,w

gr% (k. p,q) = —ig(2m)*6(k +p — @)L (p, ). (B.16)
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C. Derivation of Dyson-Schwinger
equations

C.1. Quark DSE

Dyson-Schwinger equations can be obtained directly from the QCD generating functional
using the identity

0= [ Dlels - expl(=Slil + Iy ©1)

where ¢; represent the QCD fields (@,w,AZ,E‘I,c“) and J; the corresponding sources.
Carrying out the variation we obtain

58 )
= +— i | Z 2
0= (52 [257] 7 ) 2 (©2)
with the sign conventions from Eq. (B.4]). We can use the relation
0 0 ow 0
2101 = s W) = esp(WL) (57 + 72 (©3)
in Eq. (C2) and get with J; = :I:(%i
or 05 ow 0
= |l —+—. A4
odi  Opi { <5Jj i 5Jj>} e

With this equation, all DSE’s can be derived by choosing an appropriate _ﬁeld vi(z) and

taking additional derivatives. The quark DSE is obtained with ¢;(x) = ¢ (x) and taking
the derivative (Sw‘sm. After inserting the action S = [ d*zL with Eq. 2I4) we get
6T

51p(y)8ba()

) . A2 oW 1) oW o)
505(y) <‘Z“? Al = A E ey <6js<w> T ) > iy <5776(56) * 5?76(5'3)> |
C
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C. Derivation of Dyson-Schwinger equations

The last derivative can be performed using

5 _/6Jk(z) 5 _i/ 6T 5 (C6)
vs(y)  J. 0vp(y) 0Jk(2) = 0 (y)o¢k(2) 0T (2) '
with summation over k. Dropping all terms that do not contribute, we get

52T W
s =) (220 + z220m),, 507 (@)

g < a> SBw 6T
—L41FWY \ Ty - — = .
"2 ) o 035(2)0n,(2)075(x) | 615 (y)01, (2)
Using the definitions in Appendix [B], we arrive at the gDSE in coordinate space
1 1 o A b b
57 ay) = 25y @~ 9) + ZarigPy [ Db wS@ oy, (C8)
u,v
A Fourier transform leads to the DSE in momentum space
—1 ! -1 ! - 2 A* NTb (I Tyab "
ST ) = 228y (0,0) + Z1pig T S(q, )0 (" a0 ) Dy (p—aq.q"). (C.9)
a,4",q"
Assuming a homogeneous system and Eq. (BI6) simplifies the ¢DSE to

_ _ A o
S7Hp) = 2255 () + Zarg " /S(Q)Fﬁ(q,p)D,fi(p —q). (C.10)
q

C.2. Gluon DSE

Choosing p;(z) = Afj(r) in Eq. (C4) and taking a further derivative with respect to
AP (1) leads to the gluon DSE. The derivation is similar to the quark DSE, except it is
more involved to take care of all contributions. We only present a simplified calculation
where all Yang-Mills interactions are summarized to

1
Lvatins =5 [ AUy 0) 4L(0). (©1n)
x?y
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C.2. Gluon DSE

This also corresponds to the truncation we used in this work and we get (Eq. (C.4]))

§°T -
5Ab(y)oAe(x)
) ow 1) ) A? 1144 0
5AL () <_ on(z) 577(x)> <—Z1Fzg’yM7> (Ww) i 577@)) (C.12)

e 1 W s )
*Z‘”’( ““”*(1 5)8“a”> (63';;(:6) 5@

ow 0
Had / )
- [ mtte ) (505 + )

Using Eq. (C.6) with a derivative with respect to A instead of ¥ we get

&r -
A} (y)o Af ()
Tpig / 52—F<7 &) oW
2 0AL()oAg(2) \ " 2/ 45 055 (2)0ma(2)0ms (2)

1 0’ W
+Z —625V+<1——>aay>/ . -
’ ( 8 £) ) ). SAL(y)dA(2) 8j5(2)0 ()

+/ 1150 a1 (2, 2') o z
pl X,z . ; ’
Moy SAY (y)0AS(2) 655(2)054(2')

)

(C.13)

With the definitions in Appendix [Bl we get
DZI;('%.7 y) - ZgDZio(I', y) + HZIZ/,YM('%.7 y)

- airig? [T (3,5 8o w)S(.a) )

)

(C.14)

Performing the Fourier transformations gives

DS (k k') = ZsDW o (k, k') + 119 3 0 (e, K)

a

A C.15
— Zyrpig? / Tr (’m—S(k +q,4)T5 (=K ,d.,d")S(d", Q)> : (C.15)
q7q/7q//

2

and assuming homogeneous propagators we get the gluon DSE

a a a >\a
DL (K) = ZaDiho(0) + T )~ Zurg? [ Tr (g S(h+ Tk +0.005(@)).
q
(C.16)
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D. Details on the gluon polarization

The gluon polarization for color-superconducting propagators is given by Eq. (87

b 0 b

(k) = —2na(v) [ T (F°SOITL0.005(0). (D.1)
q

Using the symmetry relations from Section 2Z4.3] the different contributions to the quark-

loop integral can be related to simplify the expression. Using the internal NG symmetry

Eq. (Z97) and shifting the integration variable ¢ — —p the following properties can be

derived easily

/qTr [wgsﬂp)%%br(p, q)S+(q):| = /qTr [7M¥S‘(p)wugr(p, C])S_(Q)] .

/q Tr [w%T(p)%ﬁr(p, q)T+(q)] = /q Tr [WXZTTWP)%A;F (p, q)T(q)]

where the vertex dressing needs to fulfill I'(p,q) = I'(—¢, —p). In addition, with the
vertex properties Eq. (2109]), we get

/qTr [wg S (A, q)T+(q)] _ /q e [%AZTTHP)AI;’_@, Q)S_(C])} s,

o )\a,T 3 3
/Tr [’m;T (P)AY* (p, q)S+(q)} = —/Tr [WTS (DAY (p,0)T (q)} -
q q
The NG trace of the polarization can then be performed and gives

1% (k) = —Zypdra(v) /
a b a b,T
{Tr [W%SJF(P)%%F(R C])5+(Q)} —Tr [W%T_(p)%%ﬂp, Q)T+(Q)] (D.4)

T g ST AL ()T 0| + T [y T )AL ()5 o) }
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The symmetries Eq. (Z99) and Eq. (2I06]) give further relations:

/qTr [wgsﬂp)%)‘—bf(p, C])SJF(Q)} = /qTr [%A;Tk“(p)%gf(p, CJ)S*(Q)T

/q Tr [w%T(p)%EF(p, q)T+(q)] = /q Tr [WAZTT(p)%&F(p, Q)T+(q)r

2 2
(D.5)

@ _ At f :
[ 1 s oA @] = - [T 0 (A e ) 570
q q
(D.6)
For the standard choice of the Gell-Mann matrices, they are Hermitian A%T = \% and

also the dressed anomalous vertex fulfills <Afj+(—q, —p)) = —A}" (p, q), which ensures
a real gluon polarization tensor. Eq. (D.4) then simplifies to

a b
150 (k) = —ZlF4M(V)/Re{Tr [%%W(p)%%ﬂp, Q)SJF(C])}
) Ab,Tq (D.7)

= Tr |75 T ()1 =T, Q)T+(Q)} +2Tr [%§S+(p)ﬁﬁ’_(p, C])T+(Q)] }

In a pure CFL phase the color-flavor traces of the three components of Eq. (D.7) are
given by

14 2 2
Trcf()\api)\bpj) = (E&',g(gj,g + géi,léj,S + géi,SéjJ) §ab

4
Trcf()\aMi)\b’TMj) = —3 (51‘,85]‘,8 + 5i,15j,8 + 5i,85j,1) 5ob

, - A 9 (D.8)
TI‘Cf ()\GPZ()\ Mj + Mj)\ ’ )Mk> = <—§ i,lé',16k,8 + géi,16j,86k,8

8 4 10
+ §5¢,85j,15k,1 - §5i,85j,85k,1 + ?52‘,86]',861978) 67,

They are all diagonal in color space and therefore also the gluon is diagonal in a CFL
phase. This feature is also expected, as the CFL phase exhibits a large residual symmetry
and all colors are on equal footing.

This is different in a 25C phase or with finite strange-quark masses. For these phases,
the polarization does not have to be diagonal in general. However, it can be diagonalized
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D. Details on the gluon polarization

using a set of rotated Gell-Mann matrices Eq. (£40). Then, 0T £\ for a = 4,5,6,7
and the corresponding polarization components are not real anymore. Instead, they fulfill
Hfﬁ(kz) = Hg?,(k) = Hi?,(k)* = H;Z,(k‘)* So we can get a diagonal gluon polarization
by changing the basis of the Gell-Mann matrices with the downside of getting complex
components. The other components stay real, as the Gell-Mann matrices A\*=5238 are

not modified.
For a 2SC phase we now also evaluate the color-flavor trace, giving various contribu-

tions to the different gluon channels:

() = ~Zipdra(v) [ Tp.0)

({Tr [ijd,rg(p)%SJd,g(Q)] + %Tr (VS5 ()15 14 (@)

+Tr [ Tyse(p 250( )} } (5a15b1 1o5a25b2 4 5a36b3>
T [ udb S rg(q)} + Tr [WS:b(p)%SS rg(a )] } (5a45b4 n 5a65b6)
S g OIS0 (@] + T 78E (05T, (0)| | (6796 + 6757

gt
H

+{éTr {WS;LC& rg (P WS g rg(Q)] + ;Tr [’Y“Sidb( )’Y”S“db(q)]
n

1 1
éTr [f)/usjrg( ) S;—rg( )] + gTI“ [’YMS:b(p)’YVS;:b(q)}

1 — a
—-Tr [’VHTzsc(p)’YuTQJfgc(Q)] }6 808

3
. kl/ — —_ Qa: al
+{Tr [wsqfd,b(l)) [—Z@ (Posc(p) + Pogo(a) ] asc(4 ] } 5 o+ a 65%)
_ ky a a
+{Tr ['YuTzsc(P) [ 1552 (2350 (p) + P550(a)) ] ud (4 ] } 5 76" +4 75b7)
2 ko
+{§Tr |:'YMS:d rg(P) [_ZW (P250(P) + Pa5c(9) } )| Lisc(@)

|
+{§Tr [WTQI;c(P)[ 2’22 (@f50(p) + ®isc(0) } warg (1 H‘WS‘S“)'

(D.9)

The calculation of these contributions for massive strange quarks is straight forward,
but gives many more contributing terms which we do not want to write down explicitly.
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E. Numerical calculation

The quark Dyson-Schwinger equation is schematically given by the system of equations

S7(p) = Syt (p) + Z(p) (E.1)

X(p) = /S(q)K(p, q) (E.2)

q

with an integration kernel K (p, q) that depends on the gluon propagator and the quark-
gluon vertex. We discretize the quark self-energy on a 2-dimensional grid 3(p4, |p;).
The energy component is constrained to Matsubara frequencies w,, but for not too small
temperatures (7" 2 10 MeV) it is sufficient to include only the first 10 Matsubara fre-
quencies explicitly and to discretize higher energies like a continuous energy. The higher
energies and the 3-momenta are discretized on a logarithmic scale while the coarseness is
chosen according to the importance of the region. Especially near the Fermi momentum
that is typically located around p we choose a finer discretization at low energies. We
choose an IR cutoff of 1 MeV and an UV cutoff of 1000 GeV that are small respectively
large enough that their effects are negligible. For the numerical integration we need to
choose a grid with finer integration nodes ¢; to reach a high enough accuracy and we
interpolate X (p;) to ¥(g;) bilinearly. We calculate the propagator at each gridpoint by
evaluating Eq. (E)) and inverting the result and obtain the self-energy by numerical
evaluation of Eq. (E.2)). It is essential to interpolate on the level of the self-energy which
is much smoother than the propagator and therefore requires less gridpoints.

For the numerical integration we use a simple Riemann quadrature which is also quite
stable in the region of the peaked propagator at the Fermi surface.

The system Eq. (E) and Eq. (E.2) is iterated until the desired accuracy is reached.
When the quark propagator is coupled back to the gluon self-consistently we want to
evaluate the time consuming gluon polarization integral not in every iteration step and
we proceed as follows. We calculate the gluon polarization for a quark propagator S.
Then we iterate the quark DSE with the calculated gluon until convergence and the
resulting quark propagator is used to update the gluon polarization. This procedure is
repeated until the full iteration is converged.
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E. Numerical calculation

The gluon polarization
(k) = [ S(@Sla+ DK .0 (£3)
q

is calculated analogously to the quark self-energy. The discretization of II(k) has the
difference that bosonic Matsubara frequencies k4 = wy, need to be used for low energies.
To obtain the quark propagator S(q + k), which also depends on the angle between ¢
and /; the propagator needs to be interpolated also for ¢ + k. The gluon polarization
therefore needs much more interpolations and propagator evaluations, which makes it
numerically more expensive than the quark self-energy. The regularization (Sec. E3])
is also not easy to implement numerically. The regularized polarization function Ilp
for bare vacuum propagators has the asymptotic limit ¢ > k which determines the

convergence (cf. Eq. ([£I9)

/ d'q —3q* + 5¢* cos® ¢
(2m)* (4*)?

where we used hyperspherical coordinates Eq. (A.9). Performing the t-integration, the
result vanishes which regularizes the full polarization integral. The numerical evaluation
of this integral requires a high accuracy, as there is no symmetry of the integrand, that
can be used for canceling the divergent terms. Additionally, in medium, we have to use
the parametrization Eq. (A.10)

(E.4)

nwm+|]|k| cos 6)?
—g(uﬁ—i-\cﬁ)—i—%(w w +\g12| | cos 6)

d3
"% I+ PP 9

and the integral only vanishes when w,, and |¢] are constrained by an O(4) cutoff via
w2 + 13> < A%, otherwise the quadratic divergence remains. In principle, this would
provide a cutoff-independent result, but numerically, this regularization is very unstable.
We therefore choose a different numerical regularization and calculate

Iy (k) — M (k) — (Tp(0) — HL(0)p—g 1m0 - (E.6)

If all terms have the same integration nodes for large ¢, this expression shows no
quadratic divergencies, independent of the coarseness of the nodes, as there is always
a pair of terms II(k) — II(0) which cancel the divergencies of each other. If calculated
with vacuum dressing functions, the subtracted term Il = (Il7(0) — 1 (0))7_q ,—g is
zero analytically and serves solely for numerical stabilization. In medium, we only can
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preserve this advantage by taking medium dressing functions A(q), B(q) and C(gq) in
the regulator. We evaluate 1lg,; with the real part of these dressing functions and set
all other dressings as well as the explicit occurrences of T and p to zero. If A(q) = C(q)
this contribution still vanishes due to the arguments discussed above. As A(q) and C(q)
differ in medium, this term is not exactly zero and leads to a small truncation error, that
also violates the Silver-Blaze property. Although this regulator seems a bit arbitrary, the
result only slightly changes by testing variations of the regularization like setting also
B(q) = 0 or using 3(A(q)+C(q)) instead of A(q) and C(q). The regularization therefore
is quite robust and we neglect the error for the benefit of a numerically stable expression
for the polarization function. Without this subtraction, other approximations like the
introduction of a cutoff are needed for the numerical calculation which usually lead to
even larger errors.
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F. A remark on the iterative procedure

Throughout this work we used a fixed point iteration to obtain the solutions of the DSE.
In general, not every solution can be found iteratively and for an iterative condition

Tit1 = @(x;) (F.1)
with a fixed point z* = ¢(z*), the iteration converges if the iteration is contracting, i.e.

[wip — 2% Jp(i) — (") éL (F.2)

ERe |z — x|

with a constant L < 1. This expression is just the discretized derivative |¢'(z*)] .
For a mean-field NJL model, this property can be investigated analytically. The NJL
Lagrangian is given by |

Ly =P(id —m)yp + G [(1;1/1)2 + (@1757?1/1)2] (F.3)

with an NJL coupling constant G and the bare quark mass m. In mean-field approxi-
mation, the thermodynamic potential in vacuum is given by (e.g. @])

M —m)? d?

with the dressed quark mass M. Additionally a regularization needs to be specified, as
the integral is divergent. The gap equation (DSE) can be derived by

0 M —p(M)

e S o S0 F.5

oM 2G (F5)
with
d3q M
(27T)3 (jQ + M?2
which has the solutions M™. By investigating the second derivative, we can see the
physical stability of the solution:

2
sl - % (1 - Lflg\f)‘ ) (F.7)
M=M* M=M*

o(M) = m + AGN.N; / (F.6)

SM?
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Therefore, the solution corresponds to a minimum if ¢/(M*) < 1 and to a maximum if
¢'(M*) > 1. The derivative of p(M) is given by

'(M) = 4GN,N g & (F.8)
2 = ctVf (27)3 (@ + M?2)3/2 ’
which is positive for all values of M. Therefore, we have
“ <1 for a minimum of
| (M™)] : (F.9)
> 1 for a maximum of ).

With Eq. (E.2) we see immediately that maxima of the potential correspond to numerical
unstable iterative solutions, while minima are numerically stable. This allows in principle
to find all minima of the potential by iterating the gap equation. It can also be checked
easily, that the introduction of finite temperature and chemical potential does not change
these arguments. For QCD DSEs, the situation is much more complicated as we have
functional derivatives and an in principle infinite-dimensional system. Therefore, we
cannot provide an analogous analytic argument for the relation between physical and
numerical stability, however, we expect this relation still to be valid.
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