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Resumo

Nesta tese vamos estudar dois aspectos diferentes da f́ısica da constante
cosmológica: a estrutura algébrica do grupo de de Sitter, e as suas implicações
na dinâmica do Universo. Na primeira parte, apresentaremos uma descrição
da estrutura geométrica do espaço de de Sitter, bem como uma discussão
detalhada da estrutura do grupo de de Sitter. Revisaremos os limites do
grupo de de Sitter obtidos por meio do processo de contração de Inönü-
Wigner, e estudaremos o limite formal Λ → ∞. Neste limite, obtem-se um
espaço-tempo singular, maximalmente simétrico, transitivo sob transforma-
ções conformes próprias, e com propriedades termodinâmicas que se ajustam
à idéia de uma condição inicial para um Universo com “big-bang”. Ainda
neste contexto, proporemos uma “relatividade restrita” baseada no grupo de
de Sitter. Nesta teoria, a constante cosmológica introduz uma escala de com-
primento invariante: o raio de de Sitter. A introdução desta escala invariante
não implica numa violação da simetria de Lorentz, mas sim numa mudança
na estrutura causal do espaço-tempo, bem como nas definições de momento
e energia. Na segunda parte da tese, que trata das aplicações cosmológicas,
apresentaremos um modelo dinâmico para a “constante” cosmológica. Neste
modelo, como consequência das equações de Einstein, uma variação em Λ
deve necessariamente ser compensada pela criação ou destruição de matéria,
de modo que a energia total seja mantida constante. Um modelo particu-
lar para esta evolução da constante cosmológica é apresentado, o qual está
baseado no principio holográfico. Veremos como o modelo pode incorporar si-
multaneamente a expansão acelerada do Universo, e a coincidência na ordem
de grandeza das densidades de energia escura e de matéria.

Palavras Chaves: Espaço de de Sitter; Constante Cosmológica; Contração
de Inönü-Wigner; Prinćıpio Holográfico.

Áreas do conhecimento: Gravitação e Cosmologia

ii



Abstract

In this thesis we study two different aspects of the physics of the cos-
mological constant: the algebraic structure of the de Sitter group, and its
implications in the large scale dynamics of the Universe. In the first part we
present a general description of the geometrical structure of de Sitter space,
and a discussion about the structure of de Sitter group. We review the con-
traction limits of de Sitter group, obtained by means of the Inönü-Wigner
procedure, and we study in detail the formal limit Λ →∞. In this limit, one
obtains a maximally-symmetric, singular spacetime, transitive under proper
conformal transformations, and with thermodynamic properties that agreee
with the idea of an initial condition for a “big-bang” Universe. In the same
context, we propose a “special relativity” based on the de Sitter group. In
this theory, the cosmological constant introduces an invariant length scale:
the de Sitter radius. The introduction of this invariant scale does not im-
ply a violation of the Lorentz symmetry, but simply a change in the causal
structure of the spacetime, as well as in the basic notions of momentum
and energy. In the second part of the thesis, that related with cosmological
applications, a dynamic model for the cosmological “constant will be pre-
sented. In this model, as a consequence of Einstein’s equations, a variation
in Λ must necessarily be compensated by creation or destruction of matter-
energy, in such a way that the total energy remains constant. A particular
model allowing for the evolution of the cosmological constant is presented,
which is based on the holographic principle. We will show how this model
can accommodate simultaneously the accelerated expansion of the Universe
and the coincidence in the magnitude of matter and dark energy densities.
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Caṕıtulo 1

Introdução

1.1 Motivação e objetivos

Dados observacionais recentes, provenientes das supernovas tipo Ia com ele-
vado “redshift” [1], e de medidas da radiação cósmica de fundo [2], favorecem
fortemente a existência de uma constante cosmológica positiva e pequena.
Além disso, os dados sugerem que o Universo é espacialmente plano e se en-
contra numa fase de expansão acelerada [3]. Dadas estas caracteŕısticas,
o estudo do espaço de de Sitter torna se muito relevante já que, nestas
circunstâncias, a ausência de gravitação passa a ser representada por este
espaço, e não mais por Minkowski. Uma motivação adicional relaciona-se ao
peŕıodo inflacionário, em que o Universo passou por uma fase de de Sitter,
porém com uma constante cosmológica muito grande [4].

Com o interesse renovado na f́ısica do espaço de de Sitter, tem-se explo-
rado recentemente muitas propriedades deste espaço em diferentes contextos.
Nesta tese, vamos fazer um estudo da estrutura algébrica do grupo de de Sit-
ter, principalmente no limite de grandes valores da constante cosmológica.
Ao mesmo tempo, estudaremos algumas propriedades geométricas do espaço
de de Sitter subjacente. Uma das principais consequências de se incorporar
uma constante cosmológica na estrutura do espaço-tempo refere-se às mu-
danças nas definições de energia e momento. Apesar dessas mudanças serem
pequenas para valores pequenos da constante cosmológica, as mudanças con-
ceituais envolvidas são importantes. Em particular, elas implicam em novas
relações entre e energia e momento, com eventuais implicações para a gra-
vitação quântica. Apresentamos a seguir uma breve descrição dos tópicos
que serão abordados.

1.1.1 Estrutura algébrica do grupo de de Sitter

Da mesma forma que o espaço de Minkowski, o espaço de de Sitter é um
espaço maximalmente simétrico e homogêneo. Neste sentido, ele é uma ge-
neralização simples do espaço de Minkowski, quando existe curvatura não
nula (constante comológica). A homogeneidade é uma propriedade que per-
mite estabelecer uma relação estreita entre a estrutura dos grupos de simetria
destes espaços, isto é, entre os grupos de Poincaré para o caso de Minkowski,
e o grupo de de Sitter, que é o grupo de simetria do espaço de de Sitter.
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A noção de transitividade existente no espaço de Minkowski se altera pela
existência da curvatura. esta, por sua vez, pode ser associada com uma
escala invariante de comprimento, o raio de de Sitter. A presença desta es-
cala de comprimento introduz uma modificação nos conceitos de translação,
distância e causalidade no espaço-tempo. Se pensássemos em modificar o
grupo de simetrias do espaço-tempo para incluir a constante cosmológica,
as noções fundamentais de energia e momento iriam mudar, e consequen-
temente outras noções importantes que dependem destas, como as relações
de dispersão entre energia e momento de uma part́ıcula clássica, e as rela-
ções de comutação e incerteza da mecânica quântica. Naturalmente, estas
modificações são pequenas já que elas são proporcionais ao valor da cons-
tante cosmológica, a qual é pequena. Porém, estas modificações poderiam
se tornar relevantes nas etapas iniciais do Universo, durante o peŕıodo in-
flacionário, onde um espaço de de Sitter com constante cosmológica muito
grande representa um quadro muito próximo das caráteŕısticas desta época.

1.1.2 Relatividade especial

As modificações estruturais no grupo de simetrias devido à presença de uma
constante cosmológica não nula implica em mudanças fundamentais na ci-
nemática e na geometria do espaço-tempo. De fato, como na presença de Λ
o espaço de Minkowski não é mais solução da equação de Einstein, a relati-
vidade especial não será mais aquela baseada no grupo de Poincaré, que é
o grupo de simetris de Minkowski. De acordo com o presente formalismo, a
relatividade especial deve ser aquela baseada no grupo de de Sitter. Esta re-
latividade inclui uma escala invariante de comprimento l. Como a velocidade
da luz c também se mantém como uma escala invariante, este tipo de teoria
apresenta duas escalas invariantes. Ela é, portanto, um novo tipo de “dou-
bly (ou deformed) special relativity”, com a importante diferença de manter
inalterada a simetria de Lorentz. Desenvolveremos esta nova relatividade, e
estudamos algumas de suas posśıveis aplicações f́ısicas.

1.1.3 Expansão acelerada e o futuro do Universo

Como foi mencionado anteriormente, uma das caracteŕısticas importantes
das observações astronômicas recentes é a expansão acelerada do Universo.
É freqüentemente argumentado que uma conseqüência desta expansão acele-
rada seria dirigir o Universo a um estado de esfriamento gradual e isolamento,
ou a um estado de desintegração violenta, ou um “big rip”[5] como tem sido
chamado; ou ainda a uma singularidade súbita no futuro [6]. Trabalhando no
contexto de uma constante cosmológica dependente do tempo e interagindo
com a matéria, iremos propor um novo tipo de estado de estado “final”, carac-
terizado pela presença de uma constante cosmológica infinita. Esta solução
representa uma completa desconexão causal entre todos os pontos do espaço,
o qual se torna transitivo sob transformações conformes próprias.

Ao mesmo tempo, é posśıvel ter neste contexto outras caracteŕısticas de
interesse, como a “coincidência”entre as ordens de grandeza das densidades
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de energia escura associada com a constante cosmológica e a de energia da
matéria observada. O chamado problema da coincidência cosmica [7].

1.1.4 O problema da constante cosmológica

Um dos maiores problemas da f́ısica contemporânea é a enorme diferença
existente entre as estimativas teóricas e o valor observado da constante cos-
mológica [8]. Na atualidade, tem-se entendido que este parâmetro é uma
medida da densidade de energia do vácuo dos campos quânticos que ha-
bitam o espaço-tempo: “o peso do vácuo”. Quando esta interpretação é
aceita, enfrentamos um problema dramático devido à enorme discrepância
das estimativas teóricas e os valores observados já que não existe nenhuma
escala conhecida na f́ısica de part́ıculas que seja capaz de explicar esta dife-
rença. Por exemplo, aceitando a validade das estimativas da teoria quântica
de campos até a escala de Planck,∗ o valor esperado da densidade de energia
do vácuo é

ρ
(QFT )
Λ ∼ 2× 10110erg/cm3. (1.1)

Entretanto, o valor oferecido pelas observações recentes é da ordem

ρ
(obs)
Λ ∼ 2× 10−10erg/cm3. (1.2)

A razão entre essas quantias dá a enorme diferença de 10120 ordens de gran-
deza, o que faz o vácuo incrivelmente instável sob flutuações quânticas.

Uma alternativa recente para encarar este problema é por meio do prinćı-
pio holográfico [9], o qual propõe, a grosso modo, que o número de graus de
liberdade de uma região do espaço depende, não do volume da região, mas da
área da superf́ıcie que contém a região. Esta proposta aponta que a origem
da enorme diferença nas ordens de grandeza entre as estimativas e o valor
observado da energia do vácuo está numa enorme sobre-contagem dos graus
de liberdade da estimativa teórica, muitos deles instáveis gravitacionalmente.
Assim, reduzindo drasticamente os graus de liberdade, as correções quânticas
à energia do vácuo poderiam ser estabilizadas.

1.2 Descrição do trabalho

A tese está organizada da seguinte forma. No caṕıtulo 2, vamos apresentar
uma introdução à estrutura geométrica, bem como aos aspectos semi-clássicos
do espaço de de Sitter. No caṕıtulo 3, revisaremos o processo de contra-
ção de grupos de Inönü-Wigner [23], e aplicáremos este processo ao caso
do espaco de de Sitter. Depois de estudar o limite para Λ pequeno, e o
limite não relativ́ıstico, vamos nos concentrar no limite formal Λ →∞, bem
como nas caracteŕısticas geométricas do espaço-tempo resultante nesse limite.
No caṕıtulo 4, vamos apresentar uma generalização da relatividade restrita
baseada no grupo de de Sitter. Nos caṕıtulos 5 e 6, faremos aplicações dos
estudos anteriores aos problemas da cosmologia atual. Apresentaremos um

∗Outras escalas da f́ısica de part́ıculas podem ser invocadas, mas o problema continua
sendo igualmente dramático
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esquema consistente, embora muito simplificado, das consequências de um
termo cosmológico dependente do tempo, que eventualmente pode realizar
os limites estudados no processo de contração mediante um processo f́ısico.
No Caṕıtulo 5, apresentamos o esquema em sua forma básica, e no caṕıtulo 6
apresentamos uma proposta onde o comportamento da energia escura satisfaz
a hipótese holográfica, a qual será revisada nesse caṕıtulo. Ao longo da tese
vamos manter as constantes dimensionais como G, c, kB, ~, e o raio de de
Sitter l. A signatura utilizada para a métrica será (1,−1,−1,−1).
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Caṕıtulo 2

Geometria e aspectos semi-clássicos

2.1 Introdução

Neste caṕıtulo vamos estudar a geometria do espaço de de Sitter. Para este
propósito, vamos utilizar diferentes sistemas de coordenadas nas quais vamos
ter diferentes perspectivas da estrutura deste espaço. Um ponto importante é
a existência de um horizonte de eventos independente do observador, um hori-
zonte cosmológico, assim chamado pela natureza do espaço em consideração.
Vamos estudar a estrutura causal gerada pela presença deste horizonte, e va-
mos estabelecer as semelhanças deste horizonte cosmológico com os horizon-
tes de eventos que aparecem nas soluções tipo buraco negro. Nos contextos
clássico e semi-clássico, é encontrado que os horizontes de eventos dos buracos
negros obedecem leis dinâmicas semelhantes com as leis da termodinâmica
dos sistemas em equiĺıbrio. Por este motivo as leis da dinâmica dos buracos
negros foram propostas como uma generalização das leis da termodinâmica
para os casos que incluem sistemas interagindo com buracos negros. Vamos
apresentar uma descrição breve destas leis, e a sua conseqüente generalização
ao caso dos horizontes cosmológicos. Existem várias referências que discutem
de forma mais detalhada os assuntos apresentados aqui, assim como outros
aspectos relacionados; ver, por exemplo, as referências [10, 11, 12].

2.2 Geometria clássica

O espaço de de Sitter é a solução de vácuo das equações de Einstein com
termo cosmológico:

Gµν − Λgµν = 0, µ, ν = 0, ..., 3 (2.1)

Um fato importante é que esta solução pode ser visualizada como o hiper-
bolóide

ηABχ
AχB = −l2, A,B = 0, ..., 4 (2.2)

imerso no espaço ambiente E4,1 com elemento de linha

ds2 = ηABdχ
AdχB = (dχ0)2 − (dχ1)2 − ...− (dχ4)2 (2.3)

onde o raio de de Sitter l está relacionado com a constante cosmológica Λ
pela relação:

Λ =
3

l2
(2.4)

5



A representação gráfica deste hiperbolóide pode ser vista na Figura 2.1.

χ0

Figura 2.1: Representação gráfica do hiperbolóide (2.2).

Vamos começar nosso estudo da estrutura geométrica introduzindo dife-
rentes parametrizações para o hiperbolóide (2.2). Em alguns dos sistemas de
coordenadas que vamos utilizar, usaremos as coordenadas angulares ωa na
esfera p-dimensional Sp:

ω1 = cos θ1

ω2 = sin θ1 cos θ2

...
ωp−1 = sin θ1 sin θ2... sin θp−2 cos θp−1

ωp = sin θ1 sin θ2... sin θp−2 sin θp−1.

(2.5)

O domı́nio dos ângulos θa é: 0 ≤ θk < π para k = 1, ..., p−2, e 0 ≤ θp−1 < 2π.
As descrições apresentadas aqui podem ser generalizadas facilmente para um
número arbitrário de dimensões.

2.2.1 Coordenadas globais (τ, θi)

Vamos introduzir a parametrização

χ0 = l sinh(τ/l) ; χi = ωil cosh(τ/l) ; i = 1, ..., 4, (2.6)

com −∞ < τ < ∞. Esta parametrização descreve completamente o espaço
de de Sitter (2.2). Por este motivo as coordenadas (τ, θi) são chamadas de
globais. Substituindo em (2.3), o intervalo neste sistema de coordenadas
toma a forma:

ds2 = dτ 2 − l2 cosh2(τ/l)dΩ2
3, (2.7)

onde
dΩ2

3 = dθ2
1 + sin2 θ1dθ

2
2 + sin2 θ1 sin2 θ2dθ

2
3.

Pode-se ver desta expressão que as seções τ = constante são esferas, podendo
ver o espaço de de Sitter como o produto Cartesiano R×S3, onde as esferas
começam em τ = −∞ com um raio infinito, contraem-se até atingir o raio
l em τ = 0, e expandem-se novamente até o infinito em τ = ∞. As regiões
assintóticas I±, caracterizadas por τ = ±∞, são chamadas de passado e
futuro infinito nulo, respectivamente. A transformação

cosh (τ/l) =
1

cos (T/l)
, (2.8)
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leva o intervalo infinito −∞ < τ <∞ no intervalo finito −π/2 < T/l < π/2,
sendo posśıvel representar o espaço de de Sitter por meio de coordenadas com
domı́nio finito. A forma do intervalo invariante com esta nova coordenada é

ds2 =
1

cos2(T/l)

[
dT 2 − l2dΩ2

3

]
. (2.9)

Esta forma do intervalo é particularmente útil se estamos interessados na
estrutura causal dado que uma geodésica tipo luz (a qual descreve uma fron-
teira entre regiões causalmente conexas) com respeito ao intervalo (2.7), é
também tipo luz com respeito ao intervalo

ds̃2 = dT 2 − l2dΩ2
3. (2.10)

Apesar de ter uma forma mais simples do que o intervalo (2.7), ele descreve
igualmente a estrutura causal do espaço.

São de muito utilidade neste contexto os diagramas de Penrose, já que
eles permitem visualizar num desenho compacto a conexão causal entre as di-
ferentes regiões do espaço-tempo incluindo as regiões asintóticas I±, as quais
estão representadas por T = ±π/2. Apresentamos o diagrama de Penrose na
Figura 2.2.

Neste ponto, começamos a ver uma diferença fundamental deste espaço
com o espaço de Minkowski. A estrutura assintótica do espaço de Minkowski
é tal que um observador ideal não acelerado eventualmente teria acesso causal
a todo o espaço, sempre que a sua linha de mundo atingir o futuro assintótico
infinito t = +∞. Esta possibilidade fica excluida no espaço de de Sitter, dado
que um observador inercial ideal em τ = +∞ sempre vai ter regiões do espaço
inacesśıveis desde o seu passado (ver Fig. 2.2).

Polo ´ Polo ´
    Norte Sul

I +

II −

Figura 2.2: Diagrama de Penrose para as coordenadas globais. As linhas
verticais são linhas θ1 = cte. Os pólos norte e sul estão representados por
θ1 = π e θ1 = 0 respectivamente. As linhas horizontais são linhas τ = cte.
As diagonais são geodésicas nulas que unem as regiões I+ onde τ = ∞, e I−

onde τ = −∞. Todas as geodésicas nulas são paralelas às diagonais.
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2.2.2 Coordenadas planas ou inflacionárias (t, xi)

Agora, vamos introduzir as coordenadas

χ0 = l sinh(t/l)− l
(xi/l)2

2
exp (−t/l)

χi = xi exp (−t/l) i = 1, ..., 3. (2.11)

χ4 = l cosh(t/l)− l
(xi/l)2

2
exp (−t/l)

com −∞ < t <∞ , −∞ < xi <∞. Nestas coordenadas o intervalo toma a
forma:

ds2 = dt2 − l2 exp (−2t/l)dxidx
i. (2.12)

Nestas coordenadas, as seções t = constante são planas, com um fator de
contração exp (−2t/l). O espaço pode ser visto como um produto Cartesiano
R×R3. Fazendo a transformação t→ −t, obtemos o intervalo

ds2 = dt2 − l2 exp (2t/l)dxidx
i, (2.13)

o qual descreve um espaço em expansão, com fator de expansão exponencial
exp(2t/l), próprio do peŕıodo inflacionário. Em contraste com as coordenadas
globais, estas coordenadas só cobrem a metade inferior da diagonal χ0 = χ4

do hiperbolóide (2.2) devido ao fato que

−χ0 + χ4 = l exp (−t/l) < 0. (2.14)

Nestas coordenadas, para se construir o diagrama conforme de Penrose, in-
troduzimos as coordenadas de Kruskal∗

U =
r/l − exp (t/l)

2
; V =

2

exp (t/l) + r/l
; (r2 = xix

i), (2.15)

bem como suas relações inversas

r/l = 1/V + U ; exp (t/l) = 1/V − U. (2.16)

Pode-se ver que estas coordenadas descrevem a região V > 0. A origem
r = 0 corresponde a UV = −1, o infinito passado e infinito futuro t→ ±∞,
corresponde a V = 0 e UV = 1, respetivamente. O infinito espacial r → ∞
corresponde a UV = 1. A métrica nestas coordenadas é:

ds2 =
4l2

(1− UV )2

[
dUdV − (1 + UV )2dΩ2

2

]
, (2.17)

onde
dΩ2

2 = dθ2
1 + sin2 θ1dθ

2
2.

∗A introdução das coordenadas de Kruskal segue a mesma motivação que tem a
sua introdução na solução de Schwarzschild, onde elas permitem fazer uma continuação
anaĺıtica da solução na região interna ao horizonte de eventos.
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Ante às transfomações U → −U e V → −V , esta métrica permanece inva-
riante o que permite a extensão anaĺıtica para a região V < 0. Com esta
métrica é posśıvel então descrever o espaço dS4 completamente.

O passo seguinte consiste em colocar estas regiões num domı́nio finito por
meio das transformações :

U = tan

(
ϕ− ζ

2

)
; V = tan

(
ϕ+ ζ

2

)
, (2.18)

as quais levam o espaço de de Sitter dS4 no domı́nio compacto |ζ ± ϕ| < π.
O diagrama conforme resultante é apresentado na Figura 2.3.

Polo ´ Polo ´
    Norte Sul

I +

II −

Figura 2.3: As linhas tracejadas são linhas com t = cte. A região assintótica
I− corresponde à t = −∞. A diagonal representa t = ∞. O Pólo sul está
em r = 0, e o Pólo norte em r = ∞.

2.2.3 Coordenadas hiperbólicas

As coordenadas hiperbólicas (τ̄ , ψ, θa) são descritas pela parametrização

χ0 = l sinh(τ̄ /l) coshψ
χi = lωi sinh (τ̄ /l) sinhψ i = 1, 2, 3
χ4 = l cosh(τ̄ /l),

(2.19)

onde −∞ < τ̄ < ∞, e 0 ≤ ψ < ∞. Estas coordenadas parametrizam a
região do espaço restrida pela condição

cos θ1 cosh(τ̄ /l) ≥ 1. (2.20)

O intervalo, neste caso, assume a forma

ds2 = −dτ̄ 2 + sinh2 (τ̄ /l)[dψ2 + sinh2 ψdΩ2
d−2]. (2.21)

As seções τ̄ = cte. são hiperbolóides abertos 3-dimensionais H3, de tal forma
que o espaço pode ser visto como a folhação R×H3. O diagrama de Penrose
para estas coordenadas é mostrado na Figura 2.4.
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Junto com os sistemas anteriores, podemos escrever a métrica do espaço
de de Sitter na forma

ds2 = dt2 − a2(t) dΣ2
k,3, (2.22)

onde a coordenada t é qualquer uma das coordenadas tipo-tempo usadas
anteriormente, e

dΣ2
k,3 =


l2dΩ2

3 para k = 1
dxidx

i para k = 0
l2dΘ2

3 para k = −1

O fator de escala é

ak =


cosh(t/l) para k = 1
exp(−t/l) para k = 0
sinh(t/l) para k = −1.

As folhações anteriores também afetam a geometria das fronteiras nas regiões
assintóticas, sendo estas dadas por S3, R3 e H3, para k = 1, 0,−1 respecti-
vamente.

Polo ´ Polo ´
    Norte Sul

I +

II −

Figura 2.4: As coordenadas hiperbólicas descrevem só a parte na qual apare-
cem as linhas τ̄ = cte., as quais são hipérboles abertas, que são representadas
por meio das linhas com flecha.

2.2.4 Coordenadas estáticas

Quando escrevemos†

χ0 = l
√

1− r2

l2
sinh (t/l)

χi = rωi i = 1, ..., d− 1,

χd = l
√

1− r2

l2
cosh (t/l),

(2.23)

com 0 < r < l, a métrica induzida em (2.2) fica

ds2 = −
(
1− r2/l2

)
dt2 +

dr2

(1− r2/l2)
+ r2dΩ2

2. (2.24)

†A coordenada t aqui é diferente da coordenada utilizada nas coordenadas planas.
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Estas coordenadas descrevem a região

−χ0 + χd = l(1− r2/l2)1/2 exp (−t/l) > 0 (2.25)

χ0 + χd = l(1− r2/l2)1/2 exp (t/l) > 0. (2.26)

Este sistema de coordenadas é particularmente útil pelo fato de apresentar
manifestamente o horizonte de eventos em r = l, e o vetor de Killing ∂/∂t.
Apesar desse vetor ser um vetor tipo-tempo, deve-se observar que ele não
preserva este caráter de maneira global, mas somente na região r < l. Para
a construção do diagrama de Penrose, é necessário definir as coordenadas
de Eddington-Finkelstein, as quais seguem trajetórias radiais tipo-luz. Elas
estão definidas por meio da equação

dt = dx± ± dr

1− r2/l2
. (2.27)

Resolvendo, obtemos

x± = t± 1

2
ln

(
1 + r/l

1− r/l

)
; −∞ < x± <∞. (2.28)

Vemos assim que a métrica toma a forma

ds2 =
(
1− r2(x+, x−)/l2

)
dx+dx− − r2dΩ2

2, (2.29)

com r = tanh x+−x−

2
.

Para conseguir a extensão anaĺıtica completa do espaço dS4, introduzimos
as coordenadas de Kruskal

U = exp (x−/l) ; V = − exp (−x+/l), (2.30)

nas quais a métrica assume a forma

ds2 =
l2

(1− UV )2
[dUdV − (1 + UV )2dΩ2

2]. (2.31)

Finalmente, podemos levar tudo num diagrama compacto por meio da trans-
formação

U = − tan

(
ψ + ζ

2

)
; V = tan

(
ψ − ζ

2

)
. (2.32)

O resultado deste processo é apresentado no diagrama conforme da Figura
2.5.

O vetor de Killing:
∂

∂t
=
U

l

∂

∂U
− V

l

∂

∂V
, (2.33)

divide o espaço dS4 em quatro regiões dependendo da sua norma

(∂/∂t)2 = 4UV/(1− UV )2 (2.34)

e o seu sentido. Na região representada pelo triângulo direito na figura 2.5,
este vetor é tipo tempo e tem sentido orientado do passado para o futuro; por
estas caracteŕısticas é permitido pensar nele como uma espécie de operador
Hamiltoniano, gerador da evolução temporal nessa região.
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Polo ´ Polo ´
    Norte Sul

I +

II −

Figura 2.5: A maior extensão anaĺıtica das coordenadas estáticas. O hori-
zonte está representado pelas diagonais r = l e divide o espaço dS4 em quatro
regiões. As regiões representadas pelos triângulos esquerdo e direito incluem
os pólos norte e sul, representados por r = 0. Os triângulos inferior e superior
incluem as regiões assintóticas I− e I+, respectivamente. As linhas com seta
indicam o sentido do vetor de Killing ∂/∂t em cada região.

2.2.5 Coordenadas estereográficas

Estas coordenadas são obtidas da projeção estereográfica do hiperbolóide
representado pela Eq. (2.2) no espaço de Minkowski de quatro dimensões
com signatura (1,−1,−1,−1). Ela é dada por

χµ = Ωxµ ; χ4 = −lΩ
(

1 +
σ2

4l2

)
(2.35)

onde

Ω =
1

1− σ2/4l2
, (2.36)

onde σ2 = ηµνx
µxν e as xµ tomam valores no espaço de Minkowski onde a

projeção estereográfica é feita. Nestas coordenadas, o intervalo de de Sitter
assume uma forma conformalmente plana:

ds2 = Ω2ηµνdx
µdxν . (2.37)

Estas coordenadas serão utilizadas sistemáticamente nos caṕıtulos seguin-
tes. A importância delas está em que os geradores de simetria apresentam
uma grande semelhança com os geradores de simetria do grupo de Poincaré.
Por esta razão, elas são ideais para as aplicações no processo de contração
que vamos definir no caṕıtulo seguinte. Os geradores do grupo de simetria
nos outros sistemas de coordenadas, que são de utilidade em outro tipo de
aplicações—como o estudo das simetrias assintóticas e as cargas conservadas
consistentes com estas simetrias, ou ainda no estudo das simetrias perto do
horizonte de eventos—são apresentados no Apêndice A.
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2.3 Propriedades semi-clássicas

Vamos agora entrar no terreno semi-clássico da f́ısica no espaço de de Sitter.
Para este propósito, vamos fazer uso das selelhanças entre a solução de de
Sitter e as soluções tipo buraco negro. Uma das caracteŕısticas de maior
interêsse apresentadas na seção anterior é a presença de um horizonte de
eventos neste espaço. Em particular, as coordenadas estáticas permitem es-
tabelecer uma semelhança significativa com o horizonte de eventos presente
na solução de Schwarzschild. A f́ısica dos buracos negros apresenta uma inte-
ressante interface entre os fenômenos clássicos e quânticos associados com o
campo gravitacional. Para explorar um pouco melhor esta linha de interface,
nesta seção vamos fazer uma revisão breve das leis clássicas e os efeitos semi-
clássicos da fíısica dos buracos negros. No final discutimos a generalização
destas idéias para o caso do horizonte cosmológico do espaço de de Sitter.

2.3.1 Termodinâmica de buracos negros

Durante o final da década de 60 e ińıcio da década de 70, foram descobertas
uma série de leis que descrevem o comportamento clássico dos horizontes de
eventos nas soluções tipo buraco negro. Estes resultados foram chamados as
quatro leis da mecânica dos buracos negros [13]. Estas leis apresentam uma
estreita analogia com as leis que governam a termodinâmica de sistemas em
equiĺıbrio, e por isso foram propostas como uma generalização das leis da
termodinâmica em sistemas que interagem com buracos negros. Por este
motivo, o posterior sucesso desta generalização promoveu a denominação de
leis da termodinâmica dos buracos negros.

Lei zero

Em um horizonte de eventos existe uma grandeza chamada de gravidade
superficial κH definida por meio da relação

Kµ∇µK
ν = κHK

ν , (2.38)

onde Kν é um vetor de Killing tipo tempo. Esta grandeza assume um valor
constante em toda a superf́ıcie do horizonte. Esta caracteŕıstica é semelhante
à condição de equiĺıbrio térmico onde a temperatura é constante em todo o
sistema.

Primeira lei e o teorema de “no-hair”

O teorema de “no-hair” é um teorema de unicidade para as soluções tipo
buraco negro. Essencialmente, ele diz que um buraco negro estacionário‡ é
caracterizado somente por três quantidades: massa M , momento angular J
e carga Q[14]. Em um processo geral envolvendo troca de matéria, energia

‡Um buraco negro estacionário é uma solucão das equações de Einstein que apresenta
um horizonte de eventos e um vetor de Killing tipo tempo no “infinito”.
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e carga, os parâmetros que definem o buraco negro variam diferencialmente
segundo a expressão

δM =
κH

8π
δAH + ΩHδJ + ΦHδQ, (2.39)

sendo AH , ΩH , e ΦH , a área, velocidade angular e potencial elétrico do
horizonte, respectivamente. A massa e o momento angular são calculadas
usando as definições dos vetores de Killing tipo tempo Kµ, e o vetor de
Killing que reflete a simetria sob rotações da solução ϕµ. Esta expressão é
idêntica à primera lei da termodinâmica quando pensamos em κH como um
tipo de temperatura, e na área AH como um tipo de entropia.

Segunda lei

É conhecida como teorema da área [15]. Ele diz que a área de um buraco
negro nunca decresce no tempo:

δAH ≥ 0. (2.40)

Em particular, quando dois buracos negros colidem, a área do horizonte do
buraco negro resultante é maior do que a soma das áreas dos buracos negros
iniciais. Esta lei sugere uma analogia entre a área do horizonte de eventos
com a entropia termodinâmica.

Terceira lei

Em analogia com a lei termodinâmica que diz que é imposśıvel chegar até
uma temperatura zero em um sistema por meio de um processo f́ısico, a ter-
ceira lei diz que é imposśıvel obter κH = 0 por meio de um processo f́ısico.

As leis mencionadas acima oferecem uma analogia simples, mas ao mesmo
tempo sugestiva, entre as leis da termodinâmica e a dinâmica dos buracos
negros. Vamos examinar mais de perto algumas implicações dos enunciados
anteriores.

Relação entre entropia e área: segunda lei generalizada da termo-
dinâmica

A entropia conta o número de estados acesśıveis Ω§ de um sistema,

S = kB ln Ω, (2.41)

onde kB é a constante de Boltzman. Quando um sistema material complexo,
como por exemplo uma estrêla, entra em processo de colapso gravitacional,
o estado final do processo é, segundo o teorema de “no-hair”, um estado
único caracterizado pelos parâmetros M , J e Q. Este resultado entra em
aberta contradição com a segunda lei da termodinâmica. O estado inicial de

§Vamos estar usando indistintamente os termos “graus de liberdade”, e “estados
acesśıveis” de um sistema.
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sistema prévio ao colapso pode ter um número de estados acceśıveis muito
grande, mas, o estado final somente tem só um estado acceśıvel, a entropia
do sistema tem diminúıdo no processo! A mesma situação acontece quando
um sistema é jogado no interior de um buraco negro, aparentemente os graus
de liberdade do sistema são “perdidos” atrás do horizonte. Para resolver
esta contradição, Bekenstein [16, 17] propôs uma relação entre a entropia e
a área do horizonte de um buraco negro, por meio da relação

SBH = ηAH , (2.42)

sendo η uma constante a ser determinada. A proposta de Bekenstein é que a
entropia “perdida” de um sistema jogado no interior de um buraco negro, é
compensada por um incremento na área do horizonte após o processo. Com
isto, ele sugere que a área do horizonte é de fato a entropia do buraco ne-
gro. Para contornar a contradição entre a segunda lei da termodinâmica e
o resultado clássico do teorema de “no-hair”, ele propôs uma generalização
da segunda lei da termodinâmica para incluir processos envolvendo interação
com buracos negros. Nesta proposta, a soma da entropia dos sistemas or-
dinários e a entropia associada com os horizontes dos buracos negros constitui
a entropia total do sistema. Esta entropia obedece a segunda lei generalizada
da termodinâmica:

δStotal = δ(Sm + SBH) ≥ 0, (2.43)

onde Sm é a entropia do sistema interagindo com o buraco negro.

Radiação de Hawking

Se a associação entre área e entropia proposta por Bekenstein é levada a
sério, a expressão (2.39) leva a pensar em κH como um equivalente da tem-
peratura do horizonte do buraco negro (salvo um fator numérico). Porém,
se ele tivesse associada uma temperatura, ele deveria emitir algum tipo de
radiação. No contexto puramente clássico, um buraco negro é um objeto que
não emite nenhum tipo de radiação. Porém, considerando efeitos ao ńıvel
semi-clássico, Hawking calculou [18] que um observador longe do horizonte
do buraco negro deteta um fluxo de part́ıculas provenientes das vizinhanças
do horizonte distribúıdas em um espectro Planckiano de radiação térmica
com temperatura

TH =
~κHc

3

2πGkB

. (2.44)

Com este resultado o papel de κH como uma temperatura fica bem estabele-
cido, e ao mesmo tempo é fixada a constante η da equação (2.42) como sendo
1/4. Desta forma

SBH =
kBAH

4l2P
, (2.45)

(com lP = (G~/c3)1/2 ≈ 1.6 × 10−33cm, o raio de Planck) é a entropia do
horizonte de um buraco negro. Este é a equação de Bekenstein-Hawking para
a entropia de um buraco negro. Em termos destas quantidades, e equação
(2.39) se escreve

δM = THδSBH + ΩHδJ + ΦHδQ. (2.46)
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Como exemplo, vamos tomar a solução de Schwarzschild:

ds2 =
(
1− 2GM/c2r

)
dt2 − dr2

(1− 2GM/c2r)
− r2(dθ2 + sin2 θdφ2). (2.47)

Nesta solução, Q = J = 0, e κH = 1/4M . A área é AH = 4πr2
S, com rS o raio

de Schwarzschild rS = 2GM/c2. É fácil verificar que estes valores satisfazem
(2.46).

2.3.2 Horizontes cosmológicos

Vimos na seção 2.2 que o espaço de de Sitter tem um horizonte de eventos
para cada observador inercial. Nas coordenadas (2.23) foi fácil identificar o
horizonte explicitamente e estabelecer algumas semelhanças com o horizonte
da solução de Schwarzschild (2.47). Gibbons e Hawking [19] notaram que
este horizonte também apresenta uma gravidade superficial, e por meio de
técnicas Euclidianas semi-clássicas, também calcularam um espectro térmico
de part́ıculas provenientes do horizonte com temperatura

TdS =
1

2π l
, (2.48)

ou, TdS = ~c/2π l kB, com todas as constantes dimensionais. Uma forma
simples de entender este resultado é por meio da relação existente entre a
temperatura e o peŕıodo Euclidiano das funções de Green que descrevem um
sistema termodinâmico. É um fato conhecido (veja se por exemplo a seção 3.7
de [20]) que quando as funções de Green de um sistema possuem um peŕıodo
P no tempo imaginário, o sistema descrito tem uma temperatura associada
T = 1/P . Para calcular o peŕıodo Euclidiano no espaço de de Sitter, vamos
usar a métrica nas coordenadas globais (2.7). Fazendo a continuação anaĺıtica
ao tempo imaginário τ → iτ desta métrica, obtemos

−ds2 = c2dτ 2 + l2 cos2(cτ/l)dΩ2
3, (2.49)

a qual tem peŕıodo P = 2πl, e consequentemente temperatura TdS = 1/2πl.
Da mesma forma, uma entropia pode ser atribúıda ao horizonte de de

Sitter. Na métrica (2.24), a área do horizonte de de Sitter é AdS = 4πl2. A
entropia, segundo a Eq. (2.45), é

SdS =
AdS

4
≡ πl2, (2.50)

ou SdS = kB AdS/4 l
2
P ≡ π c3 kB l

2/G~, com todas as constantes dimensionais.
Até aqui, a analogia dos dois casos funciona muito bem, mas é um pouco

mas sutil tentar ver se a primeira lei da termodinâmica funciona da mesma
forma que no caso de um buraco negro. Numa solução tipo buraco negro
é relativamente simples entender o significado do termo de massa-energia,
dado que esta é a massa da fonte que origina a solução. Mas, no caso de de
Sitter, esta fonte não existe dado que este espaço é uma solução de vácuo
das equações de Einstein. Assim, não é imediato saber que termo colocar
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no lado esquerdo da primeira lei da termodinâmica, equação (2.39). Para
resolver esta dificuldade, vamos usar a identificação formal entre o termo
cosmológico com um fluido perfeito, com equação de estado

pdS = −εdS ≡ −
EdS

V
, (2.51)

sendo pdS a pressão, EdS e εdS a energia e a densidade de energia do termo
cosmológico, e V o volume contido no interior do horizonte de de Sitter.
Consequentemente, temos que adicionar um termo de trabalho na primeira
lei da termodinâmica do horizonte de de Sitter, obtendo

δEdS = TdS δSdS − pdS δV. (2.52)

Para um termo cosmológico constante, é considerando pouco plauśıvel a pos-
sibilidade de uma evaporação do horizonte de de Sitter, imagem que sim é
razoável no caso de um buraco negro. A energia, a entropia e o volume do
horizonte de de Sitter são constantes de fato, e a equação anterior é satisfeita
trivialmente. Agora, se considerássemos um termo cosmológico dependente
do tempo, como vamos apresentar no caṕıtulo 5, o raio de de Sitter, e todas
as grandezas envolvidas na equação (2.52) tornam-se variáveis. Neste caso,
usando que V ∼ l3, o qual implica

δV

V
=

3

l
δl,

a equação (2.52) pode ser resolvida para a energia, obtendo

EdS = −c
4 l

2G
. (2.53)

Antes de continuar, vamos examinar a origem do sinal negativo na energia
(2.53). Para começar, observemos que existe uma diferença fundamental
entre as soluções de Schwarzschild e de Sitter: a solução de Schwarzschild
é valida fora do horizonte de eventos, e o vetor de Killing tipo tempo, que
é utilizado para calcular a energia da solução, está bem definido na região
externa ao horizonte. Por outra parte, o vetor de Killing tipo tempo ∂/∂t,
utilizado na solução de de Sitter, esta definido no interior do horizonte. Seu
caráter e orientação, portanto, mudam nas regiões exteriores ao horizonte, da
forma como foi explicado na figura 2.5. A energia (2.53) refere-se, então, à
energia na região interior ao horizonte. Agora, se atribúıssemos uma energia
negativa ao interior do horizonte, devido à mudança de orientação do vetor
de Killing na região externa, nos vemos forçados a atribuir uma energia
positiva na região externa.¶ Feito isto, podemos fazer uma comparação com
o caso de um horizonte de buraco negro, onde a solução é valida no exterior
do horizonte. Baseados neste argumento, podemos afirmar que a expressão
correta para a energia associada ao setor externo do horizonte de de Sitter é

EdS = +
c4 l

2G
. (2.54)

¶Uma discussão detalhada deste ponto pode ser encontrada em [11].
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É importante observar que a única grandeza que vai mudar de sinal ao ul-
trapassar o horizonte é a energia. A consistência deste resultado pode ser
verificada observando que para uma energia positiva a equação de estado
(2.51) dá origem a uma pressão negativa, como é requerido pela energia es-
cura.

Utilizando agora a analogia com o caso do buraco negro, podemos esperar
que a energia associada ao lado externo de horizonte coincida com a energia
no interior do horizonte. Quando existe um vetor de Killing tipo tempo
ξµ = (1,~0) associado com as translações no tempo ∂/∂t, esta energia pode
ser escrita na forma (veja-se por exemplo [21])

EdS =

∫
r≤l

√
h Tµν ξ

µ nν d3x, (2.55)

sendo h o determinante da métrica induzida em uma seção t = constante,
Tµν representa a densidade de energia-momento do termo Λ, e nµ = ξµ/ξ.
Agora, no sistema de coordenadas estáticas (2.23), temos que

ξ ≡ |ξµ| = (gµρ ξ
µξρ) = (g00)

1/2 e
√
h = (g11)

1/2 r2 sin θ.

Fazendo uso da definição invariante da densidade de energia-momento

εdS = Tµν n
µ nν ,

é fácil ver que afim de obter a energia (2.54), devemos ter

εdS =
3c4

8πGl2
. (2.56)

Desta expressão inferimos que a energia associada ao horizonte de de Sitter
coincide com a densidade de energia escura relacionada com um termo cos-
mológico positivo. Note-se adicionalmente que a energia cresce linearmente
com l entretanto que a densidade de energia decai com l−2. Finalmente, é
importante observar que um decaimento no termo cosmológico implica neces-
sariamente criação de matéria no interior do horizonte [22] (este aspecto vai
ser discutido no caṕıtulo 5). Naturalmente, quando o Universo se expande
e a matéria é criada, este deixa de ser um Universo de de Sitter. Porém, a
noção de horizonte vai continuar existindo, e as propriedades termodinâmicas
associadas com ele ainda vão estar bem definidas. É claro que um tratamento
completo do problema requer da introdução das funções termodinâmicas da
matéria criada.
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Caṕıtulo 3

Contrações do grupo de de Sitter

3.1 Introdução

O espaço de de Sitter é semelhante ao espaço de Minkowski no sentido que
compartilham a propriedade de serem espaços homogêneos e maximalmente
simétricos. Neste caṕıtulo, vamos explorar estas semelhanças e apresentar as
implicações da presença da constante cosmológica Λ no grupo de simetria. O
caṕıtulo esta organizado da seguinte forma: na seção 3.2 vamos apresentar
uma revisão geral do procedimento de contração de grupos de Lie [23, 24, 25];
na seção 3.3 vamos aplicar este procedimento ao caso particular do grupo de
de Sitter e vamos obter os diferentes limites posśıveis com os parâmetros c e Λ.
Os limites não relativ́ısticos que vamos revisar seguem as referências [26, 27].
No final desta seção, em 3.4.3, vamos nos concentrar no limite formal Λ →∞
cujo resultado é o chamado segundo grupo de Poincaré [28]. Finalmente,
vamos dedicar a seção 3.5 ao estudo das propriedades geométricas do espaço-
tempo resultante neste limite [29, 30].

3.2 Contração de grupos de Lie

O processo de contração de grupos consiste em obter de um grupo deter-
minado G, um outro grupo G′ não isomorfo ao primeiro por meio de um
procedimento de limite. Uma das motivações originais para estudar o pro-
cesso de contração, foi ver como o grupo de Galilei podia ser obtido como o
limite não relativ́ıstico do grupo de Lorentz. É natural pensar que o grupo
de Galilei aparece como o limite para uma velocidade da luz infinita, já que
as transformações de Galilei são obtidas como limite das transformações de
Lorentz neste limite. Porem, este processo de “tomar o limite” do grupo de
Lorentz para obter o grupo de Galilei, deve ser definido de forma precisa,
dado que o resultado pode depender da representação inicial escolhida. Para
ter uma idéia de como isto acontece, vamos tomar a representação matricial
do grupo de Poincaré em uma dimensão

Λ =

 coshλ sinhλ ax

sinhλ coshλ at

0 0 1

 ,
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onde

sinhλ =
1

[1− v2/c2]1/2
; coshλ =

v/c

[1− v2/c2]1/2
, (3.1)

v é a velocidade relativa entre os dois sistemas de referencia, c é a velocidade
da luz e ax, at são as componentes de um vetor que representa as translações
no espaço-tempo. Tomando o limite não relativ́ıstico c→∞, a representação
anterior transforma-se em

Λ →

 1 0 ax

0 1 at

0 0 1

 ,

a qual é uma representação do grupo das translações em um espaço com
uma dimensão espacial e uma translação no tempo, mas não é uma repre-
sentação do grupo não homogêneo de Galilei em uma dimensão. Porem, se
aplicássemos uma transformação de similaridade com a matriz dependente
de c

C =

 c 0 0
0 1 0
0 0 1

 ,

e redefińıssemos os parâmetros por meio de bx = cax, e depois aplicássemos
o limite c→∞, o resultado é

CΛC−1 →

 1 v bx
0 1 at

0 0 1

 ,

a representação apropriada do grupo de Galilei!.
Por meio deste exemplo simples, vemos que o processo de obter um grupo

como caso limite de um outro não isomorfo requer uma parametrização apro-
priada das representações. Muitas vezes, como vamos ver no caso do grupo
de de Sitter, é necessário fazer manipulações e redefinições apropriadas nos
parâmetros e nos geradores do grupo para se obter o resultado desejado. Em
seguida vamos revisar a definição precisa do processo de contração.

3.2.1 Definição

Considere-se um grupo de Lie n-dimensional G, com Xi (i = 1, ..., n) e ai os
geradores e os parâmetros do grupo respectivamente. Os geradores satisfazem
as relações de conmutação :

[Xi, Xj] = ckijXk , (3.2)

sendo ckij as constantes de estrutura do grupo. Agora vamos efetuar uma

transformação linear não singular no grupo mediante a matriz U j
i , obtendo

os novos geradores:
Yi = U j

i Xj . (3.3)
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Neste processo também ficam redefinidos os parâmetros, as relações de con-
mutação e as constantes de estrutura do grupo

ai = U i
jb

j ; [Yi, Yj] = Ck
ijYk ; Ck

ij = U l
iU

m
j c

n
lm(U−1)k

n . (3.4)

Se a matriz U é não singular, a estrutura do grupo permanece inalterada,
mas com U singular, a estrutura do grupo irá mudar, e vamos obter um novo
grupo como resultado da transformação. Vamos considerar uma matriz U
que depende linearmente num parâmetro ε > 0 na seguinte forma

U j
i = uj

i + εwj
i , (3.5)

e vamos supor que a matriz U é não singular quando ε é finito, mais torna-se
singular no limite em que ε → 0. Adicionalmente, vamos assumir que as
matrizes u e w podem ser escritas na forma

u =

(
Ir×r 0
0 0

)
; w =

(
v 0
0 Ip×p

)
,

onde v é uma matriz com posto r < n, e p = n− r. Nem sempre é posśıvel
escrever as matrizes da forma anterior, e assim uma condição para a possibi-
lidade de efetuar o processo de contração é que esta decomposição possa ser
feita. A fim de distinguir os geradores do subgrupo respeito do qual a contra-
ção é feita, vamos definir subindices adicionais nos geradores X e Y . Assim,
aplicando a transformação (3.5) da forma indicada acima, vamos obter

Y1ν = X1ν + ε
r∑

µ=1

vµ
νX1µ (ν = 1, ..., r) (3.6)

Y2λ = εX2λ (λ = r + 1, ..., n) (3.7)

os parametros de grupo vão mudar da forma

a1ν = b1ν + ε
r∑

µ=1

b1µvν
µ (ν = 1, ..., r) (3.8)

a2λ = εb2λ (λ = r + 1, ..., n), (3.9)

se o limite ε → 0 resultasse bem definido, vemos como o grupo G vai ficar
contráıdo ao subgrupo definido pelos parâmetros a1λ. Isto explica o motivo
do nome contração para este processo.

Agora, vamos analisar as condições nas quais este limite resulta de fato
bem definido. Como vamos nos interessar só no limite em que ε vai para
zero, vamos manter só a parte singular em ε. Por exemplo, fazemos isso nas
relações de comutação

[Y1µ, Y1ν ] =
r∑

κ=1

c1κ
1µ,1νY1κ +

1

ε

n∑
λ=r+1

c2λ
1µ,1νY2λ +O(ε), (3.10)

onde O(ε) representa os termos lineares e de ordens maiores em ε. A fim
de obter um limite finito nas relações de comutação quando ε vai para zero,
devemos ter que

c2λ
1µ,1ν = 0 µ, ν = 1, ..., r;λ = r + 1, ..., n (3.11)
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isto é os geradores X1µ expandem um subgrupo em G. Pode-se verificar que
de fato (3.11) é a única condição para o limite ε→ 0 existir. Com a condição
(3.11) as novas constantes de estrutura no limite ε→ 0 tomam os valores

C1κ
1µ,1ν = c1κ

1µ,1ν , C
2λ
1µ,1ν = C2λ

1µ,1ν = 0 (3.12)

C1κ
1µ,2λ = 0, C2λ′

1µ,2λ = C2λ′

1µ,2λ (3.13)

C1κ
2µ,2ν = C2λ

2µ,2ν = 0 (3.14)

as quais satisfazem a relação de Jacobi

C l
ijC

m
kl + C l

jkC
m
il + C l

kiC
m
jl = 0, (3.15)

que é a condição para formarem um grupo de Lie. No final do processo
obtemos um novo grupo G′ não isomorfo com o grupo inicial G, mas com o
mesmo numero de dimensões. O grupo é contráıdo com respeito do grupo S
expandido pelos geradores X1µ, e os geradores X2λ tem sido contráıdos. A
relação (3.12) mostra que existe um subgrupo S ′ ⊂ G′ isomorfo com S. As
relações (3.13) e (3.14) expressam que existe um subgrupo invariante abeliano
A em G. O subgrupo S é isomorfo ao grupo fator A em G′.

3.2.2 Exemplos

Agora, vamos revisar um par de exemplos com o objetivo de deixar mais
clara a definição do processo. Os dois exemplos que vamos dar aqui, são a
contração do grupo de rotações para o grupo de translações, e o segundo, a
contração do grupo de Lorentz no grupo de Galilei.

Rotações

Os geradores do grupo de rotações em três dimensões Ji, (i = 1, 2, 3) satisfa-
zem a álgebra

[Ji, Jj] = εijkJk (3.16)

Para maior clareza, vamos abrir a notação acima e vamos escrever a álgebra
na forma explicita

[J1, J2] = J3 ; [J2, J3] = J1 ; [J3, J1] = J2. (3.17)

Vamos contrair o grupo respeito do subgrupo gerado pelo operador J3, e
vamos redefinir os geradores na seguinte forma

I3 = J3 ; I1 = εJ1 ; I2 = εJ2. (3.18)

No limite ε→ 0, a álgebra (3.17) fica

[I1, I2] = 0 ; [I2, I3] = I1 ; [I3, I1] = I2. (3.19)

Esta é a álgebra do grupo de translações e rotações no plano Euclidiano.
O que esta acontecendo geometricamente neste exemplo pode ser entendido
da seguinte forma: o gerador das rotações no eixo z permanece inalterado,
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entanto que os geradores nos eixos x e y são restringidos para agir infinitesi-
malmente. Infinitesimalmente estes geradores agem como sendo translações
no plano x− y, eles comutam entre sim mas não com o gerador das rotações
no eixo z. O parâmetro usado neste processo de contração é o angulo de
rotação nos eixos x, e y.

Lorentz

O segundo exemplo que vamos ver é a contração do grupo de Lorentz respeito
do grupo de rotações . O grupo é expandido pelos geradores Lαβ (α, β =
0, ..., 3) que satisfazem a álgebra

[Lab, Lcd] = δbcLad + δadLbc − δbdLac − δacLbd (3.20)

[La0, Lbc] = δabL0c − δacL0b (3.21)

[La0, Lb0] = Lba, (3.22)

onde (a, b, ... = 1, 2, 3). Redefinindo os geradores da forma

Lab = Lab ; Ta = εLa0 (3.23)

onde ε = 1/c. Indo para o limite ε→ 0, obtemos a álgebra

[Ta, Lbc] = δacTb − δabTc ; [Ta, Tb] = 0 (3.24)

que é a álgebra do grupo homogêneo de Galilei que contem as rotações, e
as transformações a um sistema de referencia em movimento relativo em 3
dimensões. Desta forma vemos como no limite em que a velocidade da luz vai
para infinito o grupo de invariância da relatividade especial contrai-se para
o grupo de simetria da mecânica newtoniana. Um procedimento semelhante
leva do grupo de Poincaré para o grupo não homogêneo de Galilei que inclui
as translações no espaço e no tempo.

3.3 Os espaços e grupos de de Sitter

Nesta seção vamos nos concentrar nas propriedades algébricas do espaço de
de Sitter. Para os nossos objetivos vai ser de particular interesse o uso das
coordenadas estereográficas (2.35) definidas no caṕıtulo anterior. Nestas co-
ordenadas é posśıvel ressaltar as semelhanças estruturais entre o grupo de
Poincaré e os grupos de de Sitter e anti-de Sitter, os quais vamos tratar si-
multaneamente. O estudo das propriedades fundamentais do grupo de de
Sitter, assim como as suas representações e a contração para o limite Λ → 0,
pode se encontrar no trabalho de Gürsey [31].

3.3.1 Os espaços de de Sitter

Espaços com curvatura escalar R constante são maximalmente simétricos,
o que significa que eles têm o maior número posśıvel de vetores de Killing,
geradores do grupo de simetrias. Dada uma signatura na métrica, existe um
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único espaço para cada valor de R [32]. O espaço de Minkowski M , com
curvatura escalar nula, é o exemplo mais simples. Seu grupo de simetrias
é o grupo de Poincaré P = L � T , o produto semi-direto entre o grupo de
Lorentz L = SO(3, 1) e o grupo Abeliano das translações T . Este último
age transitivamente em M , e a sua variedade de grupo pode ser identificada
com M . De fato, o espaço de Minkowski é um espaço homogêneo sob P , na
verdade o quociente

M = P/L.

Entre os espaços curvos, o espaço de de Sitter, e o de anti-de Sitter são os
únicos posśıveis com curvatura escalar negativa e positiva respectivamente (o
sinal da curvatura escalar depende da convenção na signatura da métrica ado-
tada.). Assim como foi apontado no caṕıtulo anterior para o caso do espaço
de de Sitter, estes espaços podem ser definidos como hipersuperf́ıcies nos
espaços “ambiente”pseudo-Euclideanos E4,1 e E3,2, com coordenadas Carte-
sianas (χA) = (χ0, χ1, χ2, χ3, χ4) satisfazendo respectivamente

ηABχ
AχB ≡ (χ0)2 − (χ1)2 − (χ2)2 − (χ3)2 − (χ4)2 = − l2

e
ηABχ

AχB ≡ (χ0)2 − (χ1)2 − (χ2)2 − (χ3)2 + (χ4)2 = l2.

Vamos usar o alfabeto Latino (a, b, c . . . = 0, 1, 2, 3) para denotar ı́ndices na
álgebra e no espaço tangente. Utilizando a notação ηab para a métrica de
Minkowski η = diag (1, −1, −1, −1), e introduzindo a notação s = η44,
podemos estudar os dois casos simultaneamente:

ηab χ
aχb + s (χ4)2 = s l2. (3.25)

Definindo a coordenada adimensional χ′4 = χ4/l, temos que

1

l2
ηab χ

aχb + s (χ′4)2 = s. (3.26)

Para s = −1, temos o espaço de de Sitter dS(4, 1), cuja métrica é induzida
da métrica pseudo-Euclidiana ηAB = diag (+1,−1,−1,−1,−1). Ele tem o
grupo pseudo-ortogonal SO(4, 1) como grupo de simetrias. O caso s = +1
corresponde ao espaço de anti-de Sitter space, denotado por dS(3, 2). Ele
provem da métrica ηAB = (+1,−1,−1,−1,+1), e tem SO(3, 2) como grupo
de simetrias. Ambos são espaços homogêneos [33]:

dS(4, 1) = SO(4, 1)/L e dS(3, 2) = SO(3, 2)/L.

Adicionalmente, cada variedade de grupo é um fibrado com o correspondente
espaço de de Sitter ou anti-de Sitter como espaço base, e o grupo de Loretnz
L como fibra [34]. Estes espaços são solução das equações de Einstein sem
fontes, sempre que a constante cosmológica Λ e o parâmetro de de Sitter l
estejam relacionados por

Λ = −3s

l2
. (3.27)
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Nas coordenadas estereográficas (2.35) com métrica (2.37), a conexão de
Christoffel assume a forma

Γλ
µν =

[
δλ

µδ
σ

ν + δλ
νδ

σ
µ − ηµνη

λσ
]
∂σ[ln Ω(x)], (3.28)

e o tensor de Riemann

Rµ
νρσ = − Λ

3
[δµ

ρgνσ − δµ
σgνρ] . (3.29)

Consequentemente, o tensor de Ricci e a curvatura escalar são ,

Rµν = −Λ gµν and R = − 4Λ. (3.30)

Na convenção adotada aqui, o espaço de de Sitter (anti-de Sitter) possui
curvatura escalar negativa (positiva).

3.3.2 Os grupos cinemáticos

O grupo de isometrias de um espaço tempo sempre vai ter um subgrupo que
dá conta da isotropia do espaço e a equivalência de sistemas de referencia em
movimento relativo. Além disso, existe uma parte do grupo de simetrias que
é responsável da homogeneidade do espaço-tempo. Esta parte do grupo é
chamada geralmente de translações a qual pode ser comutativa ou não. Isto
acontece naturalmente na cinemática Galileana e outros tipos de cinemáticas
não relativ́ısticas conceb́ıvel [35]. O caso melhor conhecido de cinemática
relativ́ıstica é o grupo de Poincaré P . Ele está associado naturalmente com o
espaço de Minkowski M , sendo seu grupo de simetria. O grupo de Poincaré
está constitúıdo pelo produto semi-direto do grupo de Lorentz L = SO(3, 1) e
o grupo das translações T . Este último age de maneira transitiva em M . De
fato, o espaço de Minkowski M é um espaço homogêneo sob P , na verdade o
quociente M ≡ T = P/L. A invariância de M sob P reflete a uniformidade.
O subgrupo de Lorentz proporciona a noção de isotropia localmente, e a
invariância sob translações faz que a simetria seja obtida em qualquer outro
ponto do espaço. Este é o significado usual da noção de uniformidade, no qual
T é responsável pela equivalência entre todos os pontos do espaço-tempo.

Uma vez estabelecidas estas noções, vamos analisar o grupo de simetria
dos espaços de de Sitter e anti-de Sitter. Nas coordenadas cartesianas χA, os
geradores das transformações infinitesimais são

JAB = ηAC χ
C ∂

∂χB
− ηBC χ

C ∂

∂χA
, (3.31)

que satisfazem as relações de comutação

[JAB, JCD] = ηBCJAD + ηADJBC − ηBDJAC − ηACJBD. (3.32)

Em termos das coordenadas estereográficas {xa}, estes geradores assumem a
forma

Jab ≡ Lab = ηac x
c Pb − ηbc x

c Pa (3.33)
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e
J4a = −s

(
l Pa +

s

4l
Ka

)
, (3.34)

onde

Pa =
∂

∂xa
and Ka =

(
2ηabx

bxc − σ2δa
c
)
Pc (3.35)

são respetivamente os geradores das translações e as transformações confor-
mes próprias. Para s = −1, elas dão lugar ao grupo de de Sitter, e para
s = +1, dão origem ao grupo de anti-de Sitter SO(3, 2). Os geradores Jab se
referem ao subgrupo de Lorentz SO(3, 1), en tanto que Ja4 definem a transi-
tividade nos correspondentes espaços homogeneos, e transformam como ve-
tores sob transformações de Lorentz. Em termos da decomposição anterior,
podemos ver explicitamente estas propriedades nas relações de comutação

[Jab, Jcd] = ηbcJad + ηadJbc − ηbdJac − ηacJbd, (3.36)

[J4a, Jbc] = ηabJ4c − ηacJ4b, (3.37)

[J4a, J4b] = −sJab. (3.38)

Vemos na Eq. (3.34) que estes espaços são transitivos sob uma mistura
de translações e transformações conformes próprias. A importância relativa
destas duas componentes é pesada pelo valor da constante cosmológica. Em
particular, para uma constante cosmológica nula, como vamos ver, os dois
espaços de de Sitter e anti-de Sitter transformam-se no espaço de Minkowski
M com o grupo de Poincaré como grupo de simetrias.

3.4 Limites de contração

Agora vamos apresentar os vários limites de contração dos grupos de de
Sitter. Para obter os diferentes limites é necessário fazer redefinições apro-
priadas dos parâmetros e os geradores. Nestas redefinições vamos sempre
levar em conta as duas constantes c e l e vamos apontar como elas entram na
redefinição dos parâmetros, e o significado dos limites que estamos tomando.
Uma ampla discussão dos aspectos algébricos e geométricos da contração no
limite não relativ́ıstico encontra-se em [26].

3.4.1 Constante cosmológica nula

Para o estudo do limite (l → ∞), é conveniente escrever os geradores de de
Sitter na seguinte forma

Jab ≡ Lab = ηac x
c Pb − ηbc x

c Pa, (3.39)

e

Πa ≡
Ja4

l
= s

(
Pa + s

1

4l2
Ka

)
. (3.40)

Os geradores Lab dão origem às transformções de Lorentz usuais agindo no
espaço de Minkowski e satisfazem as relações de comutação

[Lab, Lcd] = ηbcLad + ηadLbc − ηbdLac − ηacLbd. (3.41)
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As outras relações de comutação as quais descrevem o setor transitivo, escre-
vem se

[Πa, Lbc] = ηabΠc − ηacΠb, (3.42)

[Πa,Πb] = − s

l2
Lab. (3.43)

Para l→∞, os geradores Πa se reduzem às translações ordinárias, e o grupo
de de Sitter contrai-se ao grupo de Poincaré P = L � T . Junto com as
modificações na álgebra e no grupo, o espaço de de Sitter transforma-se no
espaço de Minkowski

M = P/L,

o qual é transitivo sob translações ordinárias.

3.4.2 Limite não relativ́ıstico: espaços de Newton–Hooke

Os espaços de Newton–Hooke podem ser considerados como limites não re-
lativ́ısticos do espaço de de Sitter. A principal caracteŕıstica destes espaços
é que apresentam uma curvatura constante não nula herdada do espaço de
de Sitter. O efeito da curvatura aparece explicitamente nos geradores de
translação. A redefinição apropriada neste caso é:

Lab ≡ Jab , Li0 ≡ Ja0/c , Ta ≡ sJa4/cτ , T0 ≡ sJ04/τ, (3.44)

onde a, b, ... = 1, 2, 3 são ı́ndices na álgebra, e τ = l/c é mantido constante
no processo. Estas redefinições nos geradores correspondem a modificar os
parâmetros de grupo ωαβ, de tal forma que ωab → ωab; ωa0 → cωa0; ωa →
εcτωa, e ω0 → ετω0. Os fatores são absorvidos nos parametros de grupo
redefinidos, e estes adquirem dimensionalidade. Em termos dos geradores
redefinidos, a álgebra de de Sitter resultante de (3.32) toma a forma

[Lab, Lde] = δbdLae + δaeLbd − δbeLad − δadLbe (3.45)

[Lab, Ld0] = δbdLa0 − δadLb0 (3.46)

[L0b, L0e] =
1

c2
Lbe (3.47)

[Lab,Td] = δbdTa − δadTb (3.48)

[La0,Tb] =
1

c2
δabT0 (3.49)

[La0,T0] = −Ta (3.50)

[Lab,T0] = 0 (3.51)

[Ta,Tb] = − s

τ 2c2
Lab (3.52)

[Ta,T0] = − s

τ 2
La0 (3.53)

[T0,T0] = 0 . (3.54)

(3.55)
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Esta é a parametrização apropriada para obter a álgebra do grupo de
Newton–Hooke. Tomando o limite c→∞ obtemos

[Lab, Lde] = δbdLae + δaeLbd − δbeLad − δadLbe (3.56)

[Lab, Ld0] = δbdLa0 − δadLb0 ; (3.57)

[L0b, L0e] = 0 ; (3.58)

[Lab,Td] = δbdTa − δadTb ; (3.59)

[La0,Tb] = 0 ; (3.60)

[La0,T0] = −Ta ; (3.61)

[Lab,T0] = 0 ; (3.62)

[Ta,Tb] = 0 ; (3.63)

[Ta,T0] = − s

τ 2
La0 ; (3.64)

[T0,T0] = 0, (3.65)

o qual reproduz a álgebra do grupo de Galilei, com a importante diferença
exibida na equação (3.64), que mostra a não comutatividade entre as transla-
ções espaciais e temporais. Este efeito é originado pela curvatura não -nula
destes espaços herdada da curvatura do espaço de de Sitter [26]. É importante
observar que τ deve permanecer finito no processo para ter um resultado bem
definido.

3.4.3 Constante cosmológica infinita

É importante enfatizar que o limite Λ → ∞ deve de ser entendido como
um limite formal puramente clássico já que neste caso estaŕıamos tomando
valores arbitrariamente pequenos para o raio de de Sitter l. Para as escalas
de comprimento implicadas neste limite, espera-se uma influencia impor-
tante de efeitos de natureza quântica, podendo aparecer como um impe-
dimento para atingir escalas arbitrariamente pequenas. O interesse funda-
mental deste limite está em que ele proporciona um modelo consistente da
estrutura algébrica do grupo de simetrias quandoé introduzida uma escala
de comprimento pequena, como por exemplo a escala de Planck, e pode ser
de eventual relevância no estudo da f́ısica por trás desta escala.

Neste caso vamos rescrever os geradores da forma:

L̄ab = σ−4Jab = η̄ac x
c Pb − η̄bc x

c Pa (3.66)

e
Π̄a ≡ 4l La4 = s(4l2Pa + sKa). (3.67)

A diferença com relação às redefinições apresentadas anteriormente é que,
neste caso, estamos introduzindo o fator σ−4 nos geradores de Lorentz. A
justificativa para se introduzir este fator vai ser entendida melhor na seguinte
seção na qual definimos uma métrica invariante conforme no espaço-tempo
resultante no limite. De qualquer forma, a presença deste fator não vai alterar
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as relações de comutação do setor de Lorentz, dado que ele é um invariante de
Lorentz. Com estas redefinições, as relações de comutação (3.32) se escrevem[

L̄ab, L̄cd

]
= η̄bcL̄ad + η̄adL̄bc − η̄bdL̄ac − η̄acL̄bd (3.68)[

Π̄a, Π̄b

]
= −sl2Lab (3.69)[

Π̄a, L̄bc

]
= ηabΠ̄c − ηacΠ̄b. (3.70)

No limite l → 0, os geradores Π̄a se transformam nos geradores das trans-
formações especiais conformes Ka, e as relações de comutação (3.70) tomam
a forma [

Π̄a, Π̄b

]
= 0 ;

[
Π̄a, L̄bc

]
= ηabΠ̄c − ηacΠ̄b, (3.71)

entretanto, a parte correspondente as transformações de Lorentz permane-
cem iguais. O grupo resultante contrai-se para o chamado segundo grupo
de Poincaré [28], o grupo de Poincaré conforme P̄ = L̄ � T̄ , isto é o pro-
duto semi-direto do grupo conforme de Lorentz L̄ e o grupo coforme proprio
T̄ . Consequentemente, com a contração do grupo, o espaço de de Sitter
transforma-se em

N = P̄/L̄.
Este é um novo tipo de espaço maximalmente simétrico [29], ao qual va-
mos nos referir como espaço cone N . Vamos estudar as suas propriedades
geométricas na seção seguinte.

3.5 O espaço cone

Agora, vamos apresentar o enfoque geométrico das carateŕısticas do espaço-
tempo resultante da contração formal Λ →∞. O primeiro que temos a dizer,
é que desde o ponto de vista mético, este espaço não resulta bem definido.
O limite l→ 0 na métrica (2.37) leva em

lim
l→0

gµν = 0, lim
l→0

gµν →∞. (3.72)

Porém, ainda é posśıvel definir una métrica compat́ıvel com este grupo de
simetrias e que ao mesmo tempo reflete a estrutura métrica nas regiões
asintóticas do limite l → 0. A métrica que é invariante sob o grupo de
simetrias P̄ é∗

ds2 → ds̄2 = η̄ab dx
adxb, (3.73)

onde
η̄ab = σ−4 ηab, η̄ab = σ4 ηab. (3.74)

A invariância de (3.74) sob P̄ vai ser mostrada explicitamente ao calcular os
vetores de Killing. É interessante observar que os espaços de Minkowski M e
o espaço cone N e os seus geradores de simetria podem ser relacionados por
meio da inversão espaço-temporal

xa → − xa

σ2
. (3.75)

∗Vamos utilizar também os ı́ndices latinos para denotar coordenadas no espaço cone.
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De fato, sob a inversão espaçotemporal (3.75), os pontos no infinito em M ,
são levados no vértice do cone N , e os pontos no cone de luz da origem em
M são levados em pontos no infinito em N . Adicionalmente, utilizando esta
inversão, o intervalo de M é levado no intervalo de N

ds2 → ds̄2 = η̄ab dx
adxb. (3.76)

Ao mesmo tempo, é um fato conhecido [36] que a inversão (3.75) relaciona
as translações com as transformações conformes próprias:

Pa → Ka. (3.77)

Por último, é conveniente escrever os geradores das transformações de Lorentz
em termos da métrica do espaço onde eles agem. Desta forma, como foi
anunciado previamente na seção 3.4.3, estes geradores são definidos na forma

L̄ab = σ−4Jab = η̄ac x
c Pb − η̄bc x

c Pa. (3.78)

Antes de continuar, vamos resumir algumas das caracteŕısticas importan-
tes deste espaço. Ele é transitivo sob transformações conformes próprias,
representa um espaço-tempo vazio, onde toda a energia esta concentrada na
forma de uma densidade de energia escura infinita [29]. Ele é resultado de um
tratamento puramente clássico, e por esta razão, efeitos quânticos poderiam
evitar que um processo determinado chegasse até este estado. Um esquema
gráfico do que acontece no processo de contração apresenta-se na figura 3.1.

3.5.1 Geometria

A métrica (3.74) do espaço cone leva na conexão de Christofell

Γc
ab = 2σ−2xd(ηad δ

c
b + ηbd δ

c
a − ηab δ

c
d). (3.79)

Em termos de η̄ab, escrevemos

Γc
ab ≡ Γ̄c

ab = 2σ̄−2xd(η̄ad δ
c
b + η̄bd δ

c
a − η̄ab δ

c
d), (3.80)

onde σ̄2 = η̄ab x
axb. É fácil ver que os correspondentes tensores de Riemann

e Ricci se anulam e consequentemente a curvatura escalar também se anula.
Exceto na origem, onde a métrica é singular e o tensor de Riemann não pode
ser definido, o espaço cone N é um espaço plano.

3.5.2 Vetores de Killing

Agora, vamos resolver a equação de Killing para a métrica invariante com-
forme (3.74). Os vetores de Killing resultantes ξa, serão chamados de vetores
de Killing comformes.† A equação de Killing Lξη̄ab = 0, pode se escrever da
forma

∇̄aξb + ∇̄bξa = 0, (3.81)

†Estes vetores não devem de ser confundidos com os vetores solução da equação de
Killing conforme Lξgµν = Ω2gµν .
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AdSdS

Figura 3.1: A figura dá uma idéia esquemática do que esta acontecendo no
processo de contração no limite Λ →∞. Tanto dS como AdS se aproximam
ao mesmo espaço cônico N no limite Λ →∞.

onde ∇̄a é a derivada covariante na conexão Γ̄c
ab. Usando a equação (3.80),

esta pode se reescrever na forma

η̄ac ∂bξ
c + η̄bc ∂aξ

c + η̄ab ∂c(ln σ̄
−4) ξc = 0. (3.82)

A correspondente solução é

ξa(x) = αc(σ̄2 δc
a − 2η̄cd x

d xa) + βac xc, (3.83)

sendo αc and βac = − βca constantes de integração. Assim, os dez vetores de
Killing

ξa
(c)(x) = σ̄2 δc

a − 2η̄cd x
d xa (3.84)

e
ξa
(cd)(x) = δa

c xd − δa
d xc, (3.85)

geram o conjunto de soluções da equação de Killing. Os quatro vetores
ξa
(c)(x) representam as transformações conformes próprias, entanto que os seis

vetores ξa
(cd)(x) representam as “rotações” no espaço-tempo. A existência de

dez vetores de Killing, mostra o caráter maximalmente simétrico do espaço
N .

3.5.3 Invariantes de Casimir

Os campos relativ́ısticos ordinários, e as part́ıculas associadas a eles, estão
classificadas como representações do grupo de Poincaré P = L � T . As
representações estão determinadas pelo valor dos dois operadores invariantes
de Casimir do grupo que estão associados com a massa (m), e o spin (s) de
cada part́ıcula. Entre todas as posśıveis representações do grupo de Poincaré
[38], a Natureza parece dar preferência às séries discretas, cujas representa-
ções se classificam segundo os autovalores dos dois operadores invariantes

C2 = γab P
aP b = 2 ≡ −m2c2 (3.86)
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e
C4 = γabW

aW b ≡ −m2c2s(s+ 1), (3.87)

sendo W a o vetor de Pauli-Lubanski

W a =
1

2
εabcdPbScd. (3.88)

Qualquer métrica γab invariante sob a ação do grupo proporciona redefinições
destes invariantes, porém a escolha mais direta é a métrica de Lorentz ηab. O
primeiro invariante de Casimir só envolve os geradores das translações, fixa
a massa, define o operador Laplaciano, e a equação de Klein-Gordon que é
satisfeita por todos os campos relativ́ısticos, se escreve

(2 +m2c2)φ = 0, (3.89)

O segundo invariante, é o quadrado do vetor de Pauli-Lubanski, o qual fixa
o spin da part́ıcula.

De maneira análoga, os operadores de Casimir do grupo de Poincaré con-
forme P̄ = L̄ � T̄ podem ser constrúıdos com a métrica γab = ηab e os
geradores Sab, e Ka

‡, resultando

C̄2 = ηabK
aKb = 2̄ = −m̄2c2, (3.90)

m̄ é o equivalente comforme da massa. Identificando ∂a∂a ≡ m2, encontramos

m̄2 = σ4m2. (3.91)

Consequentemente, a equação de Klein-Gordon conforme é

(2̄ + m̄2c2)φ = 0. (3.92)

Por outra parte, o segundo invariante de Casimir é

C̄4 = ηab W̄
aW̄ b = −m̄2c2s(s+ 1), (3.93)

sendo W̄ a o vetor de Pauli-Lubanski conforme

W̄ a =
1

2
εabcdKbScd. (3.94)

3.5.4 Propriedades termodinâmicas

Vamos agora analisar o comportamento das propriedades termodinâmicas
deste espaço limite. Segundo as noções introduzidas na seção 2.3.2, a tem-
peratura (dstemp) torna-se infinita, enquanto a entropia (2.50) anula-se. Fi-
nalmente, a energia (2.53) associada com o horizonte de de Sitter também
é nula neste limite. É importante enfatizar ainda que a energia é nula, sua
densidade (2.56), torna-se infinita. A razão deste comportamento, é que o

‡Ou alternativamente, os operadores de Casimir podem ser obtidos tomando o limite
l → 0 dos operadores de Casimir do grupo de de Sitter.
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volume delimitado pelo horizonte, anula-se a uma velocidade maior do que a
energia.

Pode-se dizer que as condições mencionadas acima correspondem muito
bem com a idéia das condições iniciais para um Universo tipo big-bang. É
interessante também observar o fato de que o espaço de Minkowski, sendo
obtido no limite de uma constante cosmológica nula, apresenta temperatura
nula, entropia infinita,§ e energia infinita com densidade nula.

§O conceito de entropia está intimamente ralacionado com a noção de informação
acesśıvel a um observador. A informação acesśıvel a um observador no espaço de de
Sitter está limitada pela presença de um horizonte de eventos. No espaço de Minkowski,
a inexistência de um horizonte de eventos para um observador inercial permite dizer que
a informação acesśıvel para ele é ilimitada.
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Caṕıtulo 4

A relatividade de de Sitter

4.1 Introdução

Neste caṕıtulo, vamos apresentar as noções do que seria uma relatividade
restrita baseada no grupo de de Sitter. Vamos manter sempre a analogia
com o caso de relatividade restrita baseada no grupo de Poincaré, de tal
forma que em cada passagem do estudo vamos estar revisando as noções
usuais e comparando-as com as novas noções introduzidas.

Uma idéia assumida geralmente é que a escala de Planck representa um
limite de interface entre os fenômenos gravitacionais e a mecânica quântica.
Em particular, argumentos de consistência sustentam a idéia de que os efei-
tos quânticos da gravitação levam a uma quebra da simetria de Lorentz e
consequentemente a relatividade restrita é invalidada perto desta escala [39].
A fim de obter este tipo de quebra da simetria de Lorentz perto da escala de
Planck sem produzir modificações significativas na relatividade restrita longe
desta escala, tem se apresentado recentemente a idéia de uma “relatividade
deformada”[40]. Neste tipo de teoria, a simetria de Lorentz é deformada
por meio da introdução de um parâmetro κ proporcional ao comprimento
de Planck [41]. Esta deformação sugere que perto desta escala, o grupo de
simetrias de uma teoria quântica da gravitação é este grupo “κ-deformado”
o qual reduz para o grupo de Poincaré longe desta escala. Neste caṕıtulo
vamos apresentar uma abordagem diferente baseada no grupo de de Sitter,
o qual incorpora de forma natural uma escala invariante de comprimento
dentro de sua estrutura, mas não implica uma quebra da simetria de Lorentz
(tratamentos semelhantes podem ser encontrados em [42, 43]).

Pare ter uma melhor idéia de como podemos pensar numa relatividade de
de Sitter, vamos brevemente relembrar a relação existente entre os grupos de
de Sitter e Galilei por meio do processo de contração visto no caṕıtulo ante-
rior e no processo inverso, o chamado processo de expansão [24, 25]. Podemos
pensar que o grupo de Poincaré apresenta as conseqüências de se introduzir
uma escala fundamental de velocidade no grupo de Galilei. Inversamente,
o ultimo pode ser obtido do grupo de Poincaré tomando o limie formal, em
que esta escala de velocidade tornasse infinita (o limite não relativ́ıstico).
Da mesma forma, podemos pensar que o grupo de de Sitter apresenta as
implicações de introduzir uma escala de comprimento e uma escala de velo-
cidade invariantes dentro do grupo de Galilei. No limite formal em que dita
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escala de comprimento tornasse infinita, o grupo de de Sitter, contrai-se ao
grupo de Poincaré onde somente temos a escala de velocidade invariante. É
interessante observar que a ordem em que os processos são efetuados não é
relevante. Se introduzimos no grupo de Galilei uma escala invariante de com-
primento, vamos obter como resultado o grupo de Newton-Hooke estudado
na seção 3.4.2 (ou em [26]), o qual descreve uma cinemática não-relativ́ıstica
na presença de uma constante cosmológica (curvatura) [44]. Adicionando
a este grupo a escala invariante de velocidade, vamos obter como resultado
novamente o grupo de de Sitter. Inversamente, o limite de baixas velocidades
do grupo de de Sitter dá como resultado o grupo de Newton-Hooke, o qual
contrai-se para o grupo de Galilei no limite de uma constante cosmológica
nula.

Uma propriedade crucial do grupo de de Sitter é que ele conserva o caráter
de quociente e, portanto a noção de homogeneidade. Assim como na rela-
tividade restrita, cujo espaço subjacente de Minkowski é o quociente dos
grupos de Poincaré e Lorentz, o espaço subjacente da relatividade de de Sit-
ter, é o quociente dos grupos de de Sitter e Lorentz, isto é o espaço de de
Sitter [43]. Agora, um espaço e chamado de transitivo sob certo conjunto
de transformações—ou homogêneo sob ele—quando qualquer par de pontos
nele podem ser colocados em contato por meio de uma das transformações
pertencentes ao conjunto. Por exemplo, o espaço de Minkowski é transitivo
sob translações espaço-temporais. O espaço de de Sitter, por outra parte
como foi mostrado no caṕıtulo anterior, é transitivo sob uma mistura das
translações e as transformações conformes próprias cuja importância relativa
é determinada pelo valor da constante cosmológica.

Em termos muito gerais, a relatividade de de Sitter pode ser interpretada
como a composição de duas relatividades diferentes: a relatividade ordinária
que está relacionada com as translações, e um tipo de relatividade conforme
que está relacionada com as transformações especiais conformes. Devido ao
caráter de quociente, o espaço de de Sitter vai ser modificado quando acon-
tecer alguma modificação no grupo de simetrias. Ao longo deste caṕıtulo
vamos desenvolver esta idéia, e explorar a relação existente entre a estrutura
algébrica nos limites de contração, bem como a resposta destas modificações
nos respectivos espaços subjacentes. A importância dos limites apresenta-
dos aqui, em particular o limite formal de Λ → ∞, é que espera-se que o
grupo de simetria seja de interesse para a f́ısica além da escala de Planck, no
mesmo sentido que o limite não-relativ́ıstico descreve a cinemática por trás
da mecânica clássica. É claro que esta expetativa é de caráter puramente es-
peculativo, porém o fato dos grupo de simetria estarem bem definidos nestes
limites permite considerar seriamente este tipo de expectativa.

4.2 A relatividade de de Sitter

Vamos começar a construção da uma relatividade restrita baseada no grupo
de simetrias de de Sitter. Como foi apresentado no caṕıtulo anterior, na
reatividade especial o espaço de Minkowski subjacente aparece como um
quociente entre o grupo de Poincaré e o grupo de Lorentz. De maneira
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similar, numa relatividade de de Sitter o espaço subjacente é o quociente
entre o grupo de de Sitter e o grupo de Lorentz. Este aspecto é crucial já
que isto garante a permanência da noção de homogeneidade. Em vez do
espaço de Minkowski, o espaço homogêneo aqui vai ser o espaço de de Sitter
dS(4, 1) = SO(4, 1)/L.

O alfabeto grego (µ, ν, ρ, . . . = 0, 1, 2, 3) será usado para denotar os ı́ndices
nos espaço de de Sitter; assim, por exemplo, {xµ} denota as coordenadas
do espaço. O alfabeto latino (a, b, c . . . = 0, 1, 2, 3) denota a álgebra quadri-
dimensional de de Sitter, assim como em ambos limites do espaço de de Sitter,
isto é no Minkowski M , e no espaço cone N . Isto permite a introdução de
uma tetrada holonomica δa

µ, a qual satisfaz

ηµν = δa
µδ

b
ν ηab, η̄µν = δa

µδ
b
ν η̄ab. (4.1)

Como conseqüência, podemos escrever também

σ2 = ηab x
axb = ηµν x

µxν (4.2)

e
σ̄2 = η̄ab x

axb = η̄µν x
µxν , (4.3)

onde temos identificado xa = δa
µx

µ.

4.2.1 Transitividade e a noção de distância

Os dois tipos de transformação concorrentes na definição dos geradores que
definem a transitividade no espaço de de Sitter, dão origem a duas noções
diferentes de distância: uma que está relacionada com as translações, e outra
relacionada com as transformações especiais conformes. A importância rela-
tiva destas duas noções depende do valor de Λ. O valor de referência para
estabelecer a magnitude relativa das escalas de comprimento vai ser a escala
de Planck lP ; assim no contexto de uma relatividade de Sitter, os limites de
“altas e baixas energias” estarão caracterizados por Λ l2P → 1 e Λ l2P → 0,
respectivamente.

Distância translacional

A primeira noção de distância está relacionada com as translações. Esta
noção como sabemos é importante para valores pequenos de Λ, para os quais
as translações são a parte dominante nos geradores de transitividade. Neste
regime, é apropriado utilizar a reparametrização proporcionada pela equação
(3.26),

KG Ω2(x)σ2 + (χ′4)2 = 1, (4.4)

onde
KG = − 1/l2 (4.5)

representa a curvatura Gaussiana do espaço de de Sitter. Vamos introduzir
a tetrada não-holônoma

ha
µ = Ω δa

µ. (4.6)
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Se ηab denota a métrica de Minkowski, a métrica de de Sitter neste caso
pode-se escrever

gµν ≡ ha
µ h

b
ν ηab = Ω2(x) ηµν . (4.7)

Esta métrica define a noção de “distância translacional”, cujo intervalo é

dτ 2 = gµν dx
µdxν ≡ Ω2(x) ηµν dx

µdxν . (4.8)

Para l→∞ (Λ → 0), ele reduz-se ao intervalo invariante de Minkowski:

dτ 2 → ds2 = ηµν dx
µdxν . (4.9)

Por outra parte, para l → 0 (Λ → ∞), ele vira singular, o que significa que
esta noção de distância não faz sentido no espaço cone N .

Distância conforme

A segunda noção de distância é aquela relacionada com as transformações
conformes próprias. Dado que estas transformações são de importância domi-
nante no limite Λ →∞, seu estudo apropriado requer re-escrever a equação
(3.26) na forma

K̄G Ω̄2(x) σ̄2 + (χ′4)2 = 1, (4.10)

onde

Ω̄(x) ≡ σ2

4l2
Ω(x) = − 1

(1− 4l2/σ2)
(4.11)

é o novo fator conforme e
K̄G = − 16 l2 (4.12)

é a curvatura Gaussiana conforme. Introduzimos agora a tetrada não-holô-
noma

h̄a
µ = Ω̄(x) δa

µ. (4.13)

Se η̄ab denota a métrica do espaço cone, a correspondente métrica de de Sitter
neste caso pode-se escrever

ḡµν ≡ h̄a
µh̄

b
ν η̄ab = Ω̄2(x) η̄µν . (4.14)

Esta define a noção de “distância conforme”no espaço de de Sitter, cujo
intervalo invariante tem a forma

dτ̄ 2 ≡ ḡµν dx
µdxν = Ω̄2(x) η̄µν dx

µdxν . (4.15)

Para l → 0 (Λ → ∞), de Sitter contrai-se para o espaço cone N , e dτ̄ 2

reduz-se ao intervalo invariante conforme em N :

dτ̄ 2 → ds̄2 = η̄µν dx
µdxν . (4.16)

Dada a noção de transitividade neste tipo de espaço, esta é a única noção de
distância que pode ser introduzida de maneira consistente emN . Para l→∞
(Λ → 0), ela torna-se singular, o que indica que esta noção de distância não
faz sentido em Minkowski M .

37



Duas métricas, uma curvatura

Como foi indicado no caṕıtulo anterior, a conexão de Christoffel e o tensor
de Riemann para a métrica de de Sitter gµν são respetivamente,

Γλ
µν =

[
δλ

µδ
σ

ν + δλ
νδ

σ
µ − ηµνη

λσ
]
∂σ [ln Ω(x)] (4.17)

e

Rµ
νρσ = − 1

l2
[δµ

ρgνσ − δµ
σgνρ] . (4.18)

Por outra parte, a conexão de Christoffel para a métrica ḡµν é

Γ̄λ
µν =

[
δλ

µδ
σ

ν + δλ
νδ

σ
µ − η̄µν η̄

λσ
]
∂σ

[
ln Ω̄(x)

]
. (4.19)

Similarmente, o tensor de Riemann é

R̄µ
νρσ = −16l2 [δµ

ρḡνσ − δµ
σḡνρ] . (4.20)

Os dois tensores de Riemann Rµ
νρσ e R̄µ

νρσ representam a curvatura do
espaço de de Sitter. A diferença está em que enquanto que Rµ

νρσ representa
a curvatura apropriada para o limite de uma constante cosmológica pequena,
R̄µ

νρσ representa o tensor de curvatura apropriado para o outro limite. Pode-
se ver que os dois limites levam a um espaço-tempo com curvatura nula. Esto
indica que tanto M como N são espaços planos.

4.2.2 As transformações de de Sitter

As transformações de de Sitter podem ser pensadas como rotações em um
espaço-tempo de cinco dimensões,

χ′
C

= ΛC
D χ

D, (4.21)

onde ΛC
D é o elemento do grupo na representação vetorial. Dado que estas

transformações deixam invariante a forma quadrática

−ηABχ
AχB = l2, (4.22)

elas deixam invariante o próprio parâmetro l (pela própria definição do
grupo). A forma infinitesimal destas transformações é

δχC =
1

2
EABLAB χ

C , (4.23)

onde EAB são os parâmetros do grupo, e LAB os geradores.

Constante cosmológica pequena

Para Λ pequena, analogamente com as identificações (3.33) e (3.40), defini-
mos os parâmetros

εab = Eab e εa = l Ea4. (4.24)
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Neste caso, em termos das coordenadas estereográficas, as transformações
infinitesimais assumem a forma

δxc =
1

2
εabLabx

c + εaΠax
c, (4.25)

ou equivalentemente

δxc = εcax
a + εa − εb

4l2
(
2xbx

c − σ2δb
c
)
. (4.26)

No limite Λ → 0, estas transformações reduzem-se às transformações de
Poincaré, como já vimos no caṕıtulo anterior, as quais deixam invariante a
forma quadrática

ηab u
aub = 1, (4.27)

sendo ua = dxa/ds a quadri-velocidade.

Constante cosmológica grande

Para Λ grande, analogamente às identificações (3.66) e (3.67), definimos os
parâmetros

ε̄ab = σ4 Eab and ε̄a = Ea4/4l. (4.28)

Neste caso, em termos das coordenadas estereográficas, as transformações
infinitesimais assumem a forma

δxc =
1

2
ε̄abL̄ab x

c + ε̄aΠ̄a x
c, (4.29)

ou equivalentemente

δxc = ε̄cax
a − ε̄a

(
2xbx

c − σ2δb
c
)

+ 4l2ε̄a, (4.30)

onde ε̄ca = ε̄cb η̄ba ≡ εca. No limite Λ → ∞, elas reduzem a uma trans-
formação conforme de Poincaré, as quais deixam invariante a orma quadrática

η̄ab ū
aūb = 1, (4.31)

onde ūa = dxa/ds̄ é a cuadri-velocidade conforme.

4.2.3 Os geradores de Lorentz

Até agora temos estudado as transformações de de Sitter em um espaço-
tempo de Minkowski. Na sequência, iremos estudar a forma dos geradores
correspondentes em um espaço de de Sitter, que é o espaço-tempo de uma re-
latividade especial de de Sitter. Isto será feito contraindo-se os geradores que
agem no espaço-tempo de Minkowski com as tetradas apropriadas. Vamos
começar considerando os geradores de Lorentz.
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Constante cosmológica pequena

Para Λ pequena, os geradores das transformações infinitesimais de Lorentz
são (ver a seção 4.2.2)

Lab = ηacx
cPb − ηbcx

cPa. (4.32)

Os correspondentes geradores agindo no espaço de de Sitter podem ser obti-
dos contraindo Lab com a tetrada ha

µ, dada em (4.6):

Lµν ≡ ha
µ h

b
ν Lab = gµρ x

ρ Pν − gνρ x
ρ Pµ. (4.33)

Equivalentemente, podemos escrever

Lµν = Ω2(ηµρ x
ρ Pν − ηνρ x

ρ Pµ). (4.34)

A correspondente matriz da respresentação vetorial é

(Sµν)λ
ρ = gµλ δν

ρ − gνλ δµ
ρ. (4.35)

Por outra parte, a representação espinorial é

(Sµν)λ
ρ =

i

4
[γµ, γν ], (4.36)

onde γµ = ha
µ γa são as matrices de Dirac dependentes do ponto. Para

l → ∞, de Sitter reduz-se a Minkowski, e os correspondentes geradores de
Lorentz reduzem-se aos geradores usuais das transformações de Lorentz em
Minkowski.

Agora, os geradores Lµν satisfazem as relações de comutação

[Lµν ,Lρλ] = gνρLµλ + gµλLνρ − gνλLµρ − gµρLνλ. (4.37)

Mesmo agindo no espaço de de Sitter, estes geradores apresentam uma es-
trutura algébrica bem definida, isomórfa à álgebra de Lie usual do grupo de
Lorentz. Esta é uma propriedade fundamental no sentido que ela permite a
construção de uma relatividade bem definida, no sentido algébrico, no espaço
de de Sitter.

Constante cosmológica grande

Para Λ grande, os geradores das transformações infinitesimais de Lorentz
(ver a seção 4.2.2)

L̄ab = η̄acx
cPb − η̄bcx

cPa. (4.38)

Num espaço de de Sitter, sua forma expĺıcita pode se obter contraindo (4.38)
com a tetrada h̄a

µ, dada pela equação (4.13):

L̄µν ≡ h̄a
µ h̄

b
ν L̄ab = ḡµρ x

ρ Pν − ḡνρ x
ρ Pµ, (4.39)

ou equivalentemente,

L̄µν = Ω̄2(η̄µρ x
ρ Pν − η̄νρ x

ρ Pµ). (4.40)
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Estes geradores satisfazem as relações de comutação[
L̄µν , L̄ρλ

]
= ḡνρL̄µλ + ḡµλL̄νρ − ḡνλL̄µρ − ḡµρL̄νλ. (4.41)

Da mesma forma que Lµν , eles apresentam uma estrutura algébrica tipo
Lorentz. A correspondente matriz da representação vetorial, é neste caso,
dada por

(S̄µν)λ
ρ = ḡµλ δν

ρ − ḡνλ δµ
ρ, (4.42)

enquanto a representação espinorial é

(S̄µν)λ
ρ =

i

4
[γ̄µ, γ̄ν ], (4.43)

com γ̄µ = h̄a
µ γa as matrizes de Dirac dependentes do ponto. Para l →

0, o espaço de de Sitter, reduz-se ao espaço cone N , e os correspondentes
geradores de Lorentz reduzem-se aos geradores das transformações de Lorentz
conformes.

Relatividade conforme

A relatividade de de Sitter pode ser vista como a composição de dois tipos
diferentes de relatividades: a usual, relacionada com as translações, e a con-
forme, relacionada com as transformações especiais conformes. É uma única
relatividade que interpola estes dois casos extremos. No limite da contração
de uma Λ nula, a relatividade de de Sitter reduz-se à relatividade restrita
ordinária. O espaço subjacente reduz-se ao espaço de Minkowski M , o qual
é transitivo somente sob translações. No limite de contração oposto, de uma
Λ infinita, a relatividade de de Sitter reduz-se à relatividade conforme. O
espaço subjacente vai ser o espaço cone N , o qual é transitivo somente sob
transformações conformes próprias.

Podemos dizer que a relatividade conforme é o limite da relatividade de
de Sitter para uma constante cosmológica infinita. Esta é a relatividade que
governa a equivalência entre os sistemas de referência no espaço cone N .
Note-se que esta é uma equivalência no sentido conforme. De fato, lembre-
se que dois pontos no espaço cone não podem ser relacionados por meio
de uma translação, mas somente por meio de uma transformação conforme
própria. De acordo com isto, a cinemática será governada pelo chamado
grupo conforme de Lorentz cujos geradores são

L̄ab = η̄ac x
c Pa − η̄bc x

c Pa. (4.44)

As correspondentes representações vetorial e espinorial são os casos limites
das expressões (4.42) e (4.43), e são dadas por

(S̄ab)d
c = η̄ad δb

c − η̄bd δa
c (4.45)

e

S̄ab =
i

4
[γ̄a, γ̄b], (4.46)
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onde γ̄a = −σ−2 γa é um tipo de matiz conforme de Dirac. Observe-se que o
anti-comutador das γ̄a’s gera a métrica do spaço cone:

{γ̄a, γ̄b} = 2 η̄ab. (4.47)

Naturalmente, assim como o espaço cone N , esta teoria limite deve ser in-
terpretada como puramente formal. Esta teoria é o que a f́ısica clássica
conduziria, sendo então a relatividade clássica por trás da f́ısica quântica na
escala de Planck.

4.2.4 Os geradores das “translações” de de Sitter

Assim como no caso dos geradores de Lorentz, a forma dos geradores Πa e
Π̄a agindo no espaço de de Sitter pode ser obtida por meio das contrações
com a tetrada apropriada. Para Λ pequena, eles são dados por

Πµ ≡ ha
µ Πa = Ω

[
Pµ − (1/4l2)Kµ

]
, (4.48)

onde
Pµ = ∂/∂xµ e Kµ =

(
2ηµρ x

ρxν − σ2δµ
ν
)
Pν . (4.49)

Por outra parte, para Λ grande, eles são

Π̄µ ≡ h̄a
µ Π̄a = Ω̄

(
Pµ − (1/4l2)Kµ

)
. (4.50)

Vemos destas expressões que o espaço de de Sitter é transitivo sob uma
combinação dos geradores das translações e as transformações conformes
próprias. Para Λ → 0, Πµ reduzem-se ao gerados das translações, as quais
definem a transitividade em M , entretanto que para Λ → 0, Πµ reduzem-se
ao gerados das transformações conformes próprias, os quais definem a tran-
sitividade em N .

4.2.5 Relações de energia-momento

Agora, vamos considerar a mecânica das part́ıculas puntuais no espaço de de
Sitter. As correntes de Noether conservadas associadas com uma part́ıcula
de massa m são, neste caso, o momento angular em cinco dimensões [31]

λAB = mc

(
χA dχB

dτ
− χB dχA

dτ

)
, (4.51)

com dτ o elemento de linha de de Sitter (4.8). A fim de ter contato com as
definições usuais de energia e momento, vamos re-escrever as correntes acima
em termos das coordenadas estereográficas {xa} e o elemento de linha de
Minkowski ds. O resultado é

λab = xa pb − xb pa (4.52)

e
λa4 = lpa − (4l)−1 ka, (4.53)
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onde

pa = mcΩ
dxa

ds
(4.54)

é o momento, e
ka = (2ηcb x

c xa − σ2 δb
a) pb (4.55)

é o chamado momento conforme. Sua forma no espaço de de Sitter pode ser
obtida por meio da contração com as tetradas apropriadas.

Limite de baixas energias

Para Λ l2P → 0, analogamente aos geradores, definimos o momento de de
Sitter

πa ≡ λa4

l
= pa − ka

4l2
. (4.56)

A correspondente versão espaço-temporal é

πµ ≡ ha
µ πa = pµ − kµ

4l2
, (4.57)

onde

pµ = mc
dxµ

ds
(4.58)

é o momento de Poincaré, e

kµ = (2ηλρ x
ρ xµ − σ2 δλ

µ) pλ (4.59)

é o correspondente momento conforme de Poincaré.∗ Observamos que πµ é o
momento de Noether conservado relacionado com as transformações geradas
por Πa. Sua componente zero

π0 ≡ p0 − k0

4l2
, (4.60)

representa a energia, enquanto as componentes espaciais (i, j, . . . = 1, 2, 3

πi ≡ pi − ki

4l2
(4.61)

representam o momento. A presença da constante cosmológica, em conse-
qüência, muda as definições usuais de energia e momento [45]. Como resul-
tado, as relações de energia-momento também vão ser modificadas [46].

De fato, a relação de energia-momento na relatividade de de Sitter vem
dada por

gµνπ
µπν = Ω2 ηµν

(
pµpν − 1

2l2
pµkν +

1

16l4
kµkν

)
. (4.62)

As componentes do momento de Poincaré pµ são

pµ =
(εp

c
, pi

)
, (4.63)

∗Analoga à identificação pµ = Tµ0, com Tµν a corrente de energia-momento, o momento
conforme kµ é definido por kµ = Kµ0, com Kµν a corrente conforme [36].
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onde εp e pi são respetivamente a energia e o momento usuais. Como é bem
conhecido, eles satisfazem a relação ηµν p

µpν = m2c2, onde m2c2 é o primeiro
Casimir do grupo de Poincaré. Analogamente, as componentes do momento
conforme kµ são

kµ =
(εk

c
, ki

)
, (4.64)

sendo εk a noção conforme de energia, e ki as componentes espaciais do
momento conforme. O momento conforme satisfaz ηµν k

µkν = m̄2c2, onde
m̄2c2 é o primeiro invariante de Casimir do grupo conforme de Poincaré.
Utilizando as expressões acima, a relação (4.62) fica

ε2
p

c2
− p2 = m2c2 +

1

2l2

[
εpεk

c2
− ~p · ~k −mm̄c2 − 1

8l2

(
ε2

k

c2
− k2 − m̄2c2

)]
.

(4.65)
Para valores pequenos de Λ, o parâmetro de de Sitter l é grande, e as mo-
dificações nas relações de energia-momento vão ser pequenas. Até primeira
ordem em Λ, temos

ε2
p

c2
− p2 ' m2 c2 +

1

2l2

[εpεk

c2
− ~p · ~k −mm̄ c2

]
. (4.66)

No limite de Λ → 0, as noções ordinárias de energia e momento são recupe-
radas, e a relatividade de de Sitter reduz-se à relatividade restrita ordinária,
na qual a simetria de Poincaré é exata. A relação de energia-momento, neste
caso, reduz-se à expressão usual

ε2
p

c2
− p2 = m2 c2. (4.67)

Limite de alta energia

Para Λ l2P → 1, em analogia com os geradores, definimos o momento de de
Sitter

πa ≡ 4l λa4 = 4l2pa − ka. (4.68)

A correspondente versão espaço-temporal é

π̄µ ≡ h̄a
µ π̄a =

4l2

σ2

(
4l2pµ − kµ

)
. (4.69)

Observamos que π̄µ é o momento de Noether relacionado com as trans-
formações geradas por Π̄a. Sua componente zero,

π̄0 =
4l2

σ2
(4l2p0 − k0), (4.70)

representa a energia conforme, enquanto as componentes espaciais

π̄i =
4l2

σ2
(4l2pi − ki) (4.71)
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representam o momento conforme. A relação energia-momento neste caso é
dada por

ḡµν π̄
µπ̄ν = 16l4 Ω̄2 σ−8 ηµν

[
16l4pµpν − 8l2pµkν + kµkν

]
. (4.72)

Em termos das componentes de energia e momento, ela fica

ε2
k

c2
− k2 = m̄2c2 + 8l2

[
εpεk

c2
− ~p · ~k −mm̄c2 − 2l2

(
ε2

p

c2
− p2 −m2c2

)]
.

(4.73)
Para valores grandes de Λ, o raio de de Sitter l é pequeno. Até primeira
ordem em l2, temos que

ε2
k

c2
− k2 ' m̄2 c2 + 8 l2

[εpεk

c2
− ~p · ~k −mm̄ c2

]
. (4.74)

No limite formal Λ l2P → ∞, somente permanecem as noções conformes da
energia e do momento, e a relatividade de de Sitter reduz-se à relatividade
conforme pura. Neste caso, a relação energia-momento fica

ε2
k

c2
− k2 = m̄2 c2. (4.75)

É importante observar que, dado que as noções de energia e momento mu-
dam na presença da constante cosmológica, a mecânica quântica também
muda [45]. Em particular, as relacões de incerteza vão ser modificadas, e no
limite acima, elas estarão dadas em termos das noções conformes de energia
e momento.

4.3 Observações finais

Devido ao carácter homogêneo do espaço de de Sitter, existe um subgrupo
isomorfo ao grupo de Lorentz. Neste sentido, este esquema de modificação do
grupo de simetrias respeita a simetria de Lorentz como parte das simetrias.
Da mesma forma que a introdução de uma escala invariante de velocidade
na cinemática Galileana leva a uma estrutura causal por meio da introdução
do cone de luz, a introdução de uma escala invariante de comprimento leva
a uma modificação na estrutura causal do espaço-tempo. A maneira como
é modificada a estrutura causal é por meio da introdução de um horizonte
de eventos para cada observador inercial, na forma como foi apresentado no
caṕıtulo 2. Vimos que o horizonte tem uma descrição simples em termos
das coordenadas estáticas: ele é a superf́ıcie com coordenada radial r =
l. Em termos das coordenadas estereográficas que temos usado de maneira
sistemática ao longo deste caṕıtulo, a expressão para o horizonte de eventos
é

x2 + y2 + z2 = l2/Ω2 and (x0)2 = l2(2− 1/Ω)2. (4.76)

Para Λ pequeno, o “raio”do horizonte tende a infinito, e assim um observador
tem acesso causal a uma região maior do espaço-tempo. No caso limite
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de Minkowski, um observador inercial tem eventualmente acesso ao espaço-
tempo inteiro. Por outra parte, para um Λ muito grande (isto é, para Λ l2P →
1), esta região é da ordem da escala de Planck, onde espera-se mudanças
profundas na estrutura causal do espaço-tempo. Em conclusão, a introdução
de uma escala de comprimento invariante não leva a uma quebra da simetria
de Lorentz, mas a sua presença reflete-se numa modificação no domı́nio causal
para qualquer observador inercial neste espaço.

Na relatividade restrita existe um limite superior para a velocidade: a ve-
locidade da luz. Na relatividade de de Sitter, o parâmetro lP aparece como
um limite inferior de distância. Diferentemente do caso do limite superior
para a velocidade, este limite para l não aparece como conseqüência da ci-
nemática ou da causalidade, mas sim como conseqüéncia de considerações
quânticas. Para ver isto, observe que a área do horizonte de de Sitter é
proporcional a l2:

AdS ' l2. (4.77)

Dado que a entropia associada com esta superf́ıcie é proporcional ao logaritmo
do número de estados,

n = AdS/l
2
P '

l2

l2P
, (4.78)

e dado que o mı́nimo valor atinǵıvel acontece com n = 1, vemos que o mı́nimo
permitido para l está na ordem do comprimento de Planck.

Finalmente, é importante mencionar as mudanças na definição dos cam-
pos relativ́ısticos. Se o grupo de simetria muda, isto deve se refletir no
conceito de campo relativ́ıstico. Por exemplo, no contexto da relatividade de
de Sitter, um campo escalar deve ser interpretado como uma representação
singleto do grupo de de Sitter, e não do grupo de Lorentz. Entre outras
conseqüências, a equação de Klein-Gordon vai ter uma forma diferente. Para
Λ arbitrario, temos que

2φ+m2c2 φ− R

6
φ = 0, (4.79)

onde 2 é o operador de Laplace-Beltrami na métrica (4.7), e R = −12/l2.
Note-se que nesta expressão aparece naturalmente o termo R/6, o qual é
interessante no caso em que m = 0 já que as equações tornam-se invariantes
sob transformações conformes da métrica [47]. É claro que no limite de uma
constante cosmológica nula, vamos recuperar a equação ordinária de Klein-
Gordon. Por outra parte, no limite de Λ muito grande, a equação anterior
assume a forma

2̄φ+ m̄2c2 φ− R̄

6
φ = 0, (4.80)

onde 2̄ é o operador de Laplace-Beltrami da métrica (4.14). No limite formal
Λ →∞, ela se reduz à equação conforme de Klein-Gordon (3.92).
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Caṕıtulo 5

Termo cosmológico dependente do tempo

5.1 Introdução

Nos caṕıtulos 3 e 4 exploramos algumas conseqüências algébricas de tomar
limites extremos da constante cosmológica. A motivação foi puramente
cinemática e não pensamos em nenhum mecanismo que desse conta das
posśıveis mudanças no valor da constante cosmológica. Porém, observações
recentes [1, 2] e a teoria inflacionária [4] sugerem que o Universo pode ser
aproximado pela geometria do espaço de de Sitter, tanto no passado como no
futuro remoto, com valores diferentes da constante cosmoógica. Isto torna
necessário pensar em algum tipo de mecanismo dinâmico para explicar a
evolução do termo cosmológico. Neste caṕıtulo vamos apresentar um modelo
plauśıvel e simples para um termo cosmológico dinâmico que consegue in-
corporar de forma consistente as caracteŕısticas do Universo atual sugeridas
pelas observaçoes cosmológicas recentes.

5.2 Energia escura dinâmica e as equações de Einstein

Vamos começar relembrando a forma das equaçoes de Einstein na presença
de uma constante cosmológica e uma fonte de matéria:

Gµ
ν ≡ Rµ

ν −
1

2
δµ

νR =
8πG

c4

[
T µ

ν +
c4Λ

8πG
δµ

ν

]
, (5.1)

onde T µ
ν é o tensor de energia-momento do campo fonte. Estas equaçoes,

junto com a identidade de Bianchi

∇µG
µ

ν = 0, (5.2)

e a lei covariante de conservação da fonte

∇µT
µ

ν = 0 (5.3)

implicam que o termo cosmológico não admite nenhuma dependência nas
coordenadas espaço-temporais, isto é, Λ é uma constante de fato. Por outro
lado, dado que os modelos inflacionários requerem uma constante cosmológica
muito grande nas etapas iniciais da evolução do universo [4], e as observações
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recentes oferecem um valor muito menor na época atual [1, 2], esta constância
aparece como um dos principais problemas da cosmologia atual [8].

Naturalmente, o cancelamento da uma divergência covariante, como na
equação (5.3), não corresponde a uma “lei de consevação”já que ela não
fornece uma “carga”conservada. O papel desta “lei de conservação” é re-
gular o intercâmbio de energia-momento entre as diferentes fontes (chamada
genericamente de matéria de agora em diante) e o campo gravitacional. Adi-
cionalmente, esta “lei” não é necessariamente verdadeira em todas as cir-
cunstâncias. Ela não é valida, por exemplo, no caso em que matéria esteja
sendo criada por alguma outra fonte independente. Como tem sido apontado
na literatura (por exemplo [22]) um termo cosmológico decaindo, (ou energia
do vácuo decaindo), poderia ser esta fonte independente.

Para começar, na presença de um termo cosmológico não constante, a
imposição colocada pela identidade de Bianchi (5.2) nas equaçoes de Einstein
(5.1), em vez de ter a forma em (5.3), assume a forma

∇µ [T µ
ν + Λµ

ν ] = 0, (5.4)

onde Λµ
ν = εΛδ

µ
ν , é o tensor de energia-momento associado com o termo

cosmológico, sendo

εΛ =
c4Λ

8πG
(5.5)

a correspondente densidade de energia, à qual vamos nos referir como den-
sidade de energia escura. Em conseqüência, o tensor de energia-momento
da matéria não é conservado covariantemente. Somente a soma com o ten-
sor de energia-momento do termo cosmológico é que é conservado. A lei de
conservação covariante (5.4) pode ser interpretada como uma restrição que
regula o intercâmbio de energia-momento entre a matéria, a gravitação e a
energia escura. Em outras palavras, ela expressa a forma como a energia
escura é transformada em matéria, e vice-versa. Assumindo que Λ depende
somente no “tempo cosmológico” t, a lei de conservação (5.4) equivale a∗

∇µT
µ

i = 0, (5.6)

e

∇µT
µ
0 = − c3

8πG

dΛ

dt
. (5.7)

com i, j, k,= 1, 2, 3. Vemos na equação (5.7) que um termo com Λ decaindo
no tempo implica um tensor de energia-momento não conservado covari-
antemente, e consequentemente matéria deve ser criada para compensar o
decaimento do termo cosmológico. Note-se que a energia total desta solução
é conservada, apesar da criação de matéria. Isto pode ser entendido melhor
quando colocamos as equaçoes de Einstein com termo cosmológico na forma
potencial [48]

∂ρ(
√
−g Sρµ

ν) =
8πG

c4
[√
−g(tµν + T µ

ν + Λµ
ν)

]
, (5.8)

∗Não vamos considerar casos com dependência espacial que podem levar em espaços
não isotrópicos.

48



onde Sρµ
ν = −Sµρ

ν é o chamado superpotencial, e tµν é o pseudo-tensor de
energia momento do campo gravitacional. Devido à anti-simetria do super-
potencial nos primeiros dois ı́ndices, a densidade total de energia-momento,
a qual inclui o campo gravitacional, de matéria e do termo cosmológico, é
conservada:

∂µ

[√
−g(tµν + T µ

ν + Λµ
ν)

]
= 0. (5.9)

Na verdade, esta é a lei de conservação de Noether devido à invariância sob
transformaçoes gerais de coordenadas.

É importante reforçar que a lei de conservação covariante (5.7) é diferente
da que aparece nos modelos de quintessência [49] ou “phantom fields”[50],
onde não existe criação de matéria pela interação com o termo cosmológico.
Nestes modelos, de fato, o tensor de energia-momento do campo escalar que
modela o termo cosmológico é a entidade conservada. Por último, apesar
da criação continua de matétria neste cenário, devemos ressaltar que este
mecanismo é diferente do apresentado pelo modelo do campo C introduzido
por Hoyle e Narlikar [51], dado que neste modelo não se introduz um campo
escalar como modelo para a evolução do termo cosmológico.

5.3 Equações de Friedmann

O ponto inicial das nossas considerações será um espaço-tempo preenchido
somente com um termo cosmológico muito grande (possivelmente infinito
[57]), com a possibilidade de decair e evoluir no tempo. As propriedades do
espaço-tempo resultante do limite Λ → ∞ foram já apresentadas na seção
3.5. Assumindo que a matéria criada pelo decaimento do termo cosmológico
é isotrópica e homogênea na forma de um fluido ideal, é natural pensar que
o tensor métrico resultante na presença deste tipo de campo gravitacional
assume a forma da métrica de Friedmann-Robertson-Walker (FRW)

ds2 = c2dt2 − a2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
,

onde a = a(t) é o fator de escala, e k é o parâmetro de curvatura das seções
espaciais. As coordenadas são as de um observador co-móvel com as linhas
de fluxo do fluido perfeito, cujo tensor de energia-momento tem a forma

T µ
ν = (εm + pm)uµuν − pmδ

µ
ν , (5.10)

com pm e εm, a pressão e a densidade de energia da matéria. Usando a
notação x0 = ct, x1 = r, x2 = θ, e x3 = φ, as componentes não nulas de
(5.10) para este fluido serão

T 1
1 = T 2

2 = T 3
3 = − pm,

T 0
0 = εm.

A lei de conservação (5.7), neste caso, fica

dεm

dt
+ 3H(εm + pm) = − dεΛ

dt
, (5.11)
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com

H =
1

a

da

dt

o parâmetro de Hubble. Esta é uma das equaçoes de Friedmann. De fato,
pode-se mostrar que esta equação é obtida das equações de Friedmann usuais(

da

dt

)2

=

[
8πG

3c2
εm +

Λc2

3

]
a2 − kc2 (5.12)

e
d2a

dt2
=

[
Λc2

3
− 4πG

3c2
(εm + 3pm)

]
a, (5.13)

sempre que Λ seja dependente do tempo. É importante enfatizar que neste
tipo de modelo a matéria não é criada no momento do big bang: ela emerge
gradualmente a medida que o termo cosmológico decai.

Vamos supor que a matéria criada neste processo de decaimento do termo
cosmológico satisfaz uma equação de estado da forma

pm = ωm εm, (5.14)

onde 0 ≤ ωm ≤ 1 é um parâmetro que depende do tipo espećıfico de matéria.
É claro que o conteúdo de matéria do universo pode ter mais do que uma
componente, cada uma com um parâmetro ω diferente na equação. Estas
possibilidades devem de ser consideradas quando se pretende uma descrição
completa da evolução do universo. Aqui, longe de uma descrição detalhada
da história térmica do universo, vamos considerar uma única componente.
Neste caso, a equação (5.11) fica

dεm

dt
+ 3H(1 + ωm)εm = −dεΛ

dt
. (5.15)

Por outra parte, a segunda equação de Friedmann pode se escrever na forma

d2a

dt2
=

8πG

3c2

[
εΛ −

1

2
(1 + 3ωm) εm

]
a. (5.16)

5.4 Análise da evolução

5.4.1 Caso geral

A equação de Friedmann (5.15) estabelece um v́ınculo na evolução de εm e εΛ.
De fato, as duas densidades vão evoluir com a mesma dependência temporal
através do fator de expansão a(t). Em prinćıpio, qualquer comportamento
é posśıvel para estas densidades, mas é usual supor que εm evolui com uma
potência do fator de expansão,

εm = α a−n, (5.17)
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sendo α uma constante de integração das equações, e n um número arbitrário,
não necessariamente inteiro†. Neste caso, a equação (5.15) implica

εΛ =
3(1 + ωm)− n

n
εm, (5.18)

onde estamos supondo uma constante de integração aditiva nula. Na presença
de um termo cosmológico dinâmico, dependendo dos parâmetros n e ω, as
densidades de energia εm e εΛ podem eventualmente ter a mesma ordem de
grandeza, como é claramente indicado pelas observaçoes recentes [3]. É claro
que estes parâmetros também podem levar a regimes em que as densidades
são completamente diferentes. É interessante observar que o caso n = 0, que
corresponderia a um equiĺıbrio entre a criação de matéria e a expansão (εm =
constante), é excluido pelas equaçoes de Friedmann. Note-se adicionalmente
que para εΛ constante, a equação (5.15) fornece a solução εm ∼ a−3(1+ωm).
Não entanto, para uma εΛ decaindo no tempo, é requerido que n esteja no
intervalo

0 < n < 3(1 + ωm). (5.19)

Dado que a matéria esta sendo criada continuamente, é natural para εm

evoluir a uma velocidade menor do que a−3(1+ωm), o qual seria seu compor-
tamento se a matéria não estivesse sendo criada.

Por outro lado, usando a equação (5.14), assim como as relações (5.17) e
(5.18), a equação de Friedmann (5.16) fica

d2a

dt2
=

3(1 + ωm)β2

2

(
2− n

n

)
a1−n, (5.20)

onde β2 = 8πGα/3c2. Desta equação podemos ver que para n = 2, n > 2 e
n < 2, a expansão acelerada do universo seria respectivamente zero, negativa
e positiva. Esta propriedade explicaria eventualmente porque a aceleração
era negativa no passado, e positiva hoje, como é também sugerido pelas
observações recentes. Adicionalmente, no caso de uma aceleração positiva
(n < 2), os intervalos n > 1 e n < 1 representam respectivamente casos em
que a aceleração é decrescente ou crescente, com o valor n = 1 representando
um universo com expansão acelerada constante, determinada por

d2a

dt2
=

3(1 + ωm)β2

2
.

Neste caso, a ∼ t2, e temos as relaçoes

Λ ∼ a−1 ∼ H2 ∼ t−2.

Finalmente notamos que, dado que os parâmetros ωm e n têm intervalos
muito limitados, não se espera uma mudança senśıvel nos resultados anteri-
ores se ωm varia adiabaticamente com o tempo, ou se o conteúdo de matéria
de universo tem mais de uma componente.

†A solução (5.17) é certamente imposta a mão, mas é uma extrapolação do caso em
que Λ é constante e n = 3ωm.
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5.4.2 O caso plano

Observações recentes favorecem o valor k = 0 para as seções espaciais. Neste
caso, é posśıvel encontrar explicitamente a dependência temporal do termo
cosmológico, a qual é valida para qualquer valor dos parâmteros n e ωm. De
fato, para k = 0, a equação de Friedmann (5.12) pode se escrever na forma(

da

dt

)2

=
3β2(1 + ωm)

n
a2−n, (5.21)

ou equivalentemente

an/2−1 da =

(
3(1 + ωm)β2

n

)1/2

dt. (5.22)

Assumindo a constante de integração nula (escolha da origem do tempo), a
solução fica

a =

(
3n(1 + ωm)β2

4

)2/n

t2/n. (5.23)

Consequentemente, as densidades de energia apresentam o comportamento‡

εm ∼ εΛ ∼ t−2. (5.24)

Devido à relação (5.5), e usando a equação de Einstein, temos também que

Λ ∼ R ∼ t−2. (5.25)

Esta dependência é valida para qualquer valor dos parâmetros n e ωn. Deste
comportamento podemos observar que tanto Λ como R divergem no tempo
inicial, o qual aponta para a existência de uma singularidade inicial.

Como exemplo relacionado com o peŕıodo inicial do Universo, vamos as-
sumir a hipótese na qual a matéria criada satisfaz a equação de estado ultra-
relativistica (radiação) [32]

εm = 3 pm, (5.26)

que corresponde a ωm = 1/3. Neste caso, o traço da equação de Einstein fica

R = − 4 Λ, (5.27)

onde usamos que T ≡ T µ
µ = εm − 3pm = 0. Quando é criada somente

matéria ultrarelativistica, a curvatura escalar é determinada de pelo valor
de Λ, e neste sentido este tipo de Universo pode ser considerado uma fase
aproximadamente de de Sitter. Deve-se enfatizar que, dado que o termo
cosmológico não é constante, este caso não corresponde a um espaço de de
Sitter no sentido usual. Em termos do parâmetro de de Sitter l, no caso
de uma constante cosmológica positiva, a curvatura escalar vem dada por
R = −12/l2, e a densidade de energia escura (5.5) fica

εΛ =
3c4

8πGl2
. (5.28)

‡Com a constante de proporcionalidade despendente dos parâmetros n e ωm.
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Por outro lado, a equação de Friedmann (5.15) assume a forma

dεm

dt
+ 4Hεm = − dεΛ

dt
. (5.29)

Para εΛ constante, obtém-se a solução usual εm ∼ a−4, enquanto que para
uma εΛ dependente no tempo, temos a relação

εΛ =
4− n

n
εm, (5.30)

onde agora 0 < n < 4. As expressões (5.28) e (5.30) implicam que sempre
que a matéria seja ultrarelativistica, o raio e o horizonte de de Sitter l vai se
expandir de acordo com

l2 =
c2

3β2

(
n

4− n

)
an. (5.31)

5.5 Comentários

No contexto de uma cosmologia com constante cosmológica Λ não nula, po-
demos dizer que durante as épocas iniciais na evolução do Universo, isto é,
durante o peŕıodo inflacionário, a dinâmica do Universo foi regida por uma
constante cosmológica positiva e muito grande. Num caso extremo de Λ indo
para infinito (l→ 0), este tipo de espaço poderia estar bem representado pelo
espaço cone N que estudamos no caṕıtulo 3. Flutuações quânticas, neste mo-
mento, poderiam dar origem a um espaço de de Sitter com raio finito l 6= 0.
Se no tempo de Planck, por exemplo, o raio de de Sitter assume o valor lP ,
o termo cosmológico assumiria o valor

Λ = 3/(lP )2 ' 1.2× 1066 cm−2.

A densidade de energia escura associada é

εΛ ' 10112 erg/cm3.

Nesse momento, a maior parte da energia do universo estaria na forma de
energia escura. A idéia que quer se apresentar aqui é que o processo de
decaimento da constante cosmológica em matéria, poderia eventualmente
dar conta da diferença deste valor nas etapas primordiais, com o valor atual
ε0
Λ ' 10−8 erg/cm3, sugerido pelas observações recentes. Neste processo, Λ

decai, o Universo se expande, e a matéria é criada, dando origem assim a
um Universo tipo FRW. Como já mencionado, a matéria não é criada num
único instante no big bang, mas sim de maneira cont́ınua durante o processo.
Apesar do processo de criação de matéria, a energia total do sistema, que
inclui a energia do termo cosmológico e a energia do campo gravitacional, é
conservada durante o processo.

Modelos apresentando decaimento de Λ tem sido estudados extensamente
na literatura [22]. A idéia principal desses trabalhos é oferecer um mecanismo
plauśıvel para explicar a diferença entre os valores do termo cosmológico nas
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diferentes etapas da evolução do Universo, e a maioria deles tem um enfo-
que essencialmente fenomenológico do problema, baseado principalmente em
argumentos dimensionais. No modelo apresentado aqui, não estamos abor-
dando o problema baseados em argumentos fenomenológicos, mas apresenta-
se um enfoque teórico baseado essencialmente nas equaçoes de Friedmann,
e na equação de estado para a matéria. Dado que um grau de liberdade
dinâmico é adicionado, torna-se necessário um prinćıpio adicional para regu-
lar a dinâmica deste grau de liberdade. Na forma apresentada neste caṕıtulo,
não temos este prinćıpio adicional para completar o sistema de equaçoes que
regem a evolução do sistema. Desta forma, foi introduzida uma descrição
plauśıvel da evolução da densidade de energia com o fator de escala por meio
da equação (5.17). No caṕıtulo seguinte, vamos apresentar um prinćıpio
alternativo para justificar qualitativamente esta escolha.

Um ponto importante a observar é que a fim de permitir a formação das
estruturas cósmicas da forma como as observamos na atualidade (galáxias,
aglomerados de gálaxias, etc), o Universo necessariamente tem que ter pas-
sado por um peŕıodo de expansão não acelerada, o que indica que o termo
cosmológico deve ter assumido valores pequenos nas etapas iniciais da história
do Universo. Por outra parte, observações recentes indicam que o universo na
atualidade apresenta um peŕıodo de espansão acelerada. Apesar de não ter
um entendimento apropriado dao prinćıpios básicos que regulam a evolução
do termo cosmológico, os fatos mencionados acima sugerem um Universo
primordial caracterizado por um Λ muito grande, incluindo eventualmente a
possibilidade de um Λ indo para infinito, seguido por uma época de decai-
mento de Λ, atingindo um valor mı́nimo mantido durante um certo peŕıodo,
e posteriormente entrando numa nova época de expansão acelerada, e um
conseqüente incremento no valor de Λ.§

Agora, é frequentemente argumentado que se uma nova fase de expanssão
acelerada estivesse acontecendo de fato, o Universo poderia estar se dirigindo
a um estado inóspito de solidão cósmica, ou eventualmente a um estado de
completa desintegração, ou “big-rip”como tem sido chamado [5]. Porém, no
esquema apresentado aqui, um crescimento em Λ implica que a matéria es-
taria sendo transformada em energia escura, e a continuar neste ritmo, este
mecanismo poderia eventualmente levar em um estado em que toda a energia
estaria em forma de energia escura. Em outras palavras, um crescimento em
Λ não implica necessariamente que o Universo vai se dispersar, ou se esfriar,
mas pode estar se dirigindo a um novo tipo de estado singular. Se vamos
ao caso extremo de uma densidade infinita de energia escura, o estado do
Universo estaria caracterizado por um espaço-tempo vazio, desconexo cau-
salmente e conformalmente transitivo, como o espaço cone que descrevemos
na seção 3.5. Naturalmente, se os efeitos quânticos excluem ou não a possi-
bilidade do “colapso”total é uma questão em aberto.

Para finalizar, é claro que uma compreensão completa de todas as carac-
teŕısticas que apontam as observações recentes, como por exemplo a coin-

§Naturalmente, afim de permitir um Λ crescente no tempo, o intervalo de valores para
n necessariamente vai ser diferente da forma apresentada em (5.19).
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cidência nas ordens de grandeza das densidades de energia εΛ e εm na atuali-
dade, o porque da aceleração ter sido negativa no passado, e positiva hoje, re-
querem um modelo que de conta de forma precisa da evolução de Λ. O ponto
importante a ser ressaltado aqui é que um termo cosmológico junto com uma
prescrição apropriada para sua evolução temporal, tem suficientes parâmetros
livres para permitir uma ampla variedade de cénarios posśıveis, incluindo as
principais caracteŕısticas apontadas pelas observaçoes astronômicas, sem a
necessidade de incluir qualquer outro ingrediente ou estrutura exótica para
descrever de forma consistente a dinâmica da evolução do Universo.

55



Caṕıtulo 6

Cosmologia e o prinćıpio holográfico

6.1 Introdução

Neste caṕıtulo vamos continuar discutindo a dinâmica de uma cosmologia
com um termo cosmológico dependente do tempo. Vamos interpretar a
energia escura, não como um flúıdo, mas como uma quantidade puramente
geométrica. Neste caso, não é introduzida uma equação de estado associada
com o termo cosmológico já que ela tem um sentido puramente formal [10].
Esta hipótese está baseada no fato notável de que a equação de Einstein
tem uma solução sem fontes com curvatura não nula: a solução de de Sitter.
Que este espaço não esteja relacionado com nenhuma fonte material pode ser
entendido como conseqüência de ele não ser assintoticamente chato. Dado
que um espaço curvo tem uma densidade de energia intŕınseca, isto significa
que o espaço-tempo pode armazenar energia por sim próprio. Esta energia
armazenada, na forma de energia escura, não precisa estar ligada com uma
fonte material. Adicionalmente, vamos implementar o principio holográfico
como um principio adicional na descrição da dinâmica do termo cosmológico.
Na seção 6.2, vamos introduzir o prinćıpio holográfico, discutir os limites na
entropia de um sistema, e motivar a relevância no contexto da cosmologia.
Nas seções posteriores, vamos aplicar o modelo holográfico à energia escura,
e analisar as caracteŕısticas gerais das soluções resultantes no cenário do
termo cosmológico interagindo com a matéria. Vamos mostrar como dentro
deste modelo, podem ter cabida algumas das carcteŕısticas das observações
astronômicas recentes como a coincidência nas ordens de grandeza das den-
sidades de energia escura e matéria ordinária, e a expanssão acelerada do
Universo. O interessante do modelo é que ele oferece um esquema simples
para discutir as caracteŕısticas observáveis sem ter que utilizar estruturas de
maior complexidade, e ao mesmo tempo oferece possibilidades interessantes
ao respeito do problema da constante cosmológica.

6.2 O prinćıpio holográfico

Nesta seção vamos discutir uma proposta para incorporar apropriadamente os
efeitos da gravitação no contexto quântico. A idéia está baseada no compor-
tamento termodinâmico peculiar dos buracos negros, particularmente na rela-
ção existente entre área e entropia e a conseqüente generalização da segunda
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lei da termodinâmica. A generalização da segunda lei da termodinâmica im-
plica mudanças significativas no comportamento da entropia para os sistemas
macroscópicos e para as teorias efetivas que descrevem os graus de liberdade
destes sistemas. Existem numerosas revisões do prinćıpio holográfico na li-
teratura recente com os mais diversos enfoques, uma revisão excelente com
numerosas referencias encontra-se em [58].

6.2.1 Limites da entropia

Como foi discutido na seção 2.3.1, a segunda lei generalizada apresenta-se
como uma solução ao problema da “perda” dos graus de liberdade de um
sistema que é jogado no interior de um buraco negro. Para ter uma idéia
de como a segunda lei generalizada leva num limite para a entropia de um
sistema material, vamos pensar num processo em que um objeto é absorvido
completamente por um buraco negro. Desta forma, para um observador
externo os graus de liberdade do sistema material perdem-se no interior do
horizonte. Porém, esta “perda” vem acompanhada de um acréscimo na área
do horizonte compensando a entropia Sm do sistema absorvido. Para este
tipo de processo, a segunda lei generalizada eq. (2.43), estabelece que

Sfinal = SBH + δSBH ≥ Sinicial = SBH + Sm,

isto é
Sm ≤ δSBH .

Para sistemas ordinários gravitacionalmente estáveis num espaço assintotica-
mente plano, Bekenstein argumentou que a segunda lei generalizada implica

Sm ≤ 2πkBER/~c, (6.1)

sendo E a energia do sistema, e R o raio da menor esfera que circunscreve
o sistema. A expressão (6.1) é conhecida como limite de Bekenstein para a
entropia de um sistema material. É importante observar que o limite de Be-
kenstein é uma restrição para o número de graus de liberdade de um sistema
material arbitrário contido dentro de uma região com raio caracteŕıstico R
independente da sua natureza ou complexidade. Este limite é conseqüência
direta da segunda lei da termodinâmica.

Um outro tipo de processo no qual um sistema arbitrário sofre colapso
gravitacional e se transforma num buraco negro leva a um outro tipo de
limite dado por

Sm ≤ kBA/4l
2
P , (6.2)

onde A é a área da menor esfera que circunscreve o sistema∗. Este limite
chamado de limite esférico, é mais próximo da formulação moderna do limite
covariante [53], o qual em vez de contar o número de graus de liberdade dentro
da região espacial, conta o número de graus de liberdade dentro da região

∗Deve-se notar o imenso valor que acompanha a área. Esta expressão pode ser entendida
como se a área A estivesse sendo dividida em pequenas celas cuja área é da ordem da área
de Planck AP ∼ l2
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espaço-temporal das folhas de luz gerada pela borda da região contendo o
sistema. Este limite é mais apropriado para aplicações na cosmologia [52, 53].

Independente dos detalhes técnicos envolvidos, o que se deve ser obser-
vado nestes limites é que eles implicam uma restrição para o conteúdo de
graus de liberdade de um sistema restrito pela área da superf́ıcie da região
espaço-temporal que contem o sistema. Isto aponta para a existência de um
v́ınculo entre o número de graus de liberdade de um sistema e uma carac-
teŕıstica geométrica da região espaço-temporal que o contém. Naturalmente,
é de se esperar que uma região espaço-temporal não tenha uma capacidade
arbitrária para a armazenagem de graus de liberdade, mas o que se espera
também é que o conteúdo de informação de um sistema seja extensivo e li-
mitado pelo volume, não pela área da superf́ıcie que contém o sistema, como
sugere a expressão (6.2) por exemplo. Este tipo de restrição no conteúdo
de informação dentro de uma região do espaço-tempo é o que está por trás
do prinćıpio holográfico, formulado inicialmente por ’t Hooft e Susskind [9].
A proposta indica que as teorias de campo locais, as quais apresentam um
comportamento extensivo na entropia, fazem uma sobrecontagem excessiva
dos graus de liberdade quânticos do sistema.

6.2.2 Teorias efetivas e os limites da entropia

Vamos discutir as implicações do prinćıpio holográfico na descrição das teo-
rias efetivas que descrevem a f́ısica de part́ıculas. A discussão apresentada
nesta seção está baseada fundamentalmente na ref. [54].

É importante sinalar que a descrição dos fenômenos f́ısicos fundamentais
pode ser obtida mediante uma teoria efetiva de campos com um “cutoff”
ultravioleta (UV) menor do que a escala de Planck sempre que todos os
momentos envolvidos sejam suficientemente pequenos comparados com uma
potência apropriada deste cutoff. Para teoria efetiva numa caixa com com-
primento caracteŕıstco L e um cutoff UV ΛUV a entropia escala de forma
extensiva com o volume da caixa SM ∼ L3Λ3

UV . Porém, como foi discutido
antes, en sistemas onde os efeitos gravitacionais são dominantes, o limite pro-
posto para a entropia apresenta o comportamento não extensivo Sm ∼ L2.
Para conciliar estas duas visões, Cohen et al [54] propuseram uma relação
entre o cutoff UV e o cutoff infravermelho (IV) nas teorias de campo efeti-
vas. O argumento é como segue: o limite holográfico da entropia deve ser
satisfeito numa teoria de campos efetiva se o volume do sistema é limitado
de acordo com

L3Λ3
UV . SBH ≡ πL2M2

P , (6.3)

sendo SBH a entropia de um buraco negro de raio L, e MP a massa de Planck.
Para obedecer esta restrição, o comprimento L que age como um cutoff IV,
não pode ser mais escolhido independente do cutoff UV. Sendo assim, existe
uma relação de escala entre estes dois cutoffs na forma

L ∼ Λ−3
UV .

Apesar do limite (6.3) ser pouco convencional, é de se esperar que as teorias
locais efetivas não sejam apropriadas para descrever estados de part́ıculas
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cujo volume seja menor do que o volume correspondente ao seu raio de
Schwarzschild. Uma teoria efetiva local que satura a relação (6.3) necessari-
amente vai incluir estados cujo raio de Schwarzschild é muito maior do que
o tamanho do parâmetro da caixa L. Para ver isto, temos que ter em conta
que uma teoria efetiva descreve razoavelmente bem um sistema a tempera-
tura finita T , sempre que T ≤ ΛUV ; assim, quando T � 1/L, este sistema
possui energia térmica E ∼ L3T 4 (a relação de Steffan-Boltzman), e a en-
tropia (Sm = ∂E/∂T ) escala com Sm ∼ L3T 3. Assim, quando a expressão
(6.3) é saturada em T ∼ (M2

P/L)1/3, o correspondente raio de Schwaszchild
(LS = 2M/M2

P ) do sistema seria LS ∼ L(LMP )2/3 � L.
Para contornar este problema, Cohen et al propuseram um limite ainda

mais restritivo ao cutoff IV 1/L de forma todos os estados dentro do raio
de Schwarzschild sejam exclúıdos. A energia contida no interior do raio de
Schwarzschild é ES = LSM

2
P/2, a máxima energia (isto é quando T = ΛUV )

do sistema em uma teoria efetiva é Eeff ∼ L3Λ4
UV . Desta forma, a condição

de excluir todos os estados dentro do raio de Schwarzschild se expressa da
seguinte forma:

L3Λ4
UV . LM2

P . (6.4)

Em termos da densidade de energia, ele assume a forma

ε . M2
P/L

2. (6.5)

A imposição deste tipo de limites implica uma restrição na contagem de graus
de liberdade na descrição de um sistema. Vimos que a motivação principal
destes limites é poder levar em conta de forma apropriada os efeitos da gra-
vitação na descrição de um sistema ao ńıvel quântico. Ao mesmo tempo,
esta diminuição no número de graus de liberdade relevantes é de especial
interesse no problema da constante cosmológica, onde aparece uma diferença
enorme entre as estimativas teóricas calculadas com teorias efetivas locais e
o valor observado atualmente para a energia do vácuo. Esta possibilidade foi
apontada em [54, 59].

Este tipo de comportamento na densidade de energia exibido na relação
(6.5) levou ao Li [55] propor um modelo para a densidade de energia escura
exibindo este comportamento: um modelo holográfico para a energia escura!
Posteriormente, Pavón e Zimdhal [56] consideraram este tipo de modelo num
cénario com energia escura interagindo com a matéria, e mostraram que
escolhendo o parâmetro caracteŕıstico do sistema como sendo o inverso do
parâmetro de Hubble H, podia-se dar conta da coincidência nas ordens de
grandeza da energia escura e da matéria na atualidade.

Continuando nesta linha, vamos utilizar o modelo holográfico para a ener-
gia escura no cénario de um termo cosmológico puramente geométrico e de-
pendente no tempo como foi indicado na introdução deste caṕıtulo.
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6.3 Holografia e modelos com Λ dependente do tempo

Vamos iniciar relembrando as equações de FRW no contexto de um termo
cosmológico dependente no tempo:

ȧ2 = κ2c2[εm + εΛ]a2 (6.6)

ä = κ2c2[εΛ −
1

2
(1 + 3ω)εm]a (6.7)

˙εm + 3H(1 + ω)εm = −ε̇Λ. (6.8)

Como foi enfatizado no caṕıtulo anterior, este sistema apresenta três variáveis
independentes e só duas equações independents. No caṕıtulo anterior fizemos
uma escolha “plauśıvel”para o comportamento da densidade de energia da
matéria por meio da equação (5.17), mas foi enfatizado que esta é uma escolha
feita à mão pela semelhança com a solução do caso com termo cosmológico
constante. Segundo a idéia do prinćıpio holográfico apresentada na seção
anterior, vamos usar um modelo no qual a densidade de energia escura escala
com a área da superf́ıcie que delimita o sistema, em vez de ter dependência
com o volume. Desta forma, vamos assumir o comportamento

εΛ ≤ b κ−2 L−2 (6.9)

para a densidade de energia escura. Aqui b é um parâmetro adimensional
livre, e L é um parâmetro de comprimento caracteŕıstico do sistema. A fim
de ter uma densidade de energia escura positiva, a condição b > 0 deve ser
satisfeita. O passo seguinte é a escolha de L. Uma escolha natural seria
identificá-lo com o inverso do raio de Hubble: L = cH−1. Alem de ser a
escolha mais simples, ele fornece um valor para a densidade de energia do
vácuo que é comparável com as observações atuais [59]. Neste caso, a condi-
ção (6.9) pode se expressar na forma

εΛ ≤ b c−2κ−2H2. (6.10)

Usando o fato de que b é um parâmetro livre, é posśıvel saturar a desigualdade
impondo restrições adicionais a b. Desta forma, uma equação adicional é
obtida, e o sistema de equações (6.6-6.8) pode ser resolvido de forma fechada
em termos do parâmetro holográfico b. A solução para as densidades de
matéria e de energia escura é , em consequência,

εm = αa−3(1+ω)(1−b) (6.11)

e

εΛ =
b

1− b
αa−3(1+ω)(1−b), (6.12)

com α uma constante de integração . Elas satisfazem a relação

εm =
1− b

b
εΛ. (6.13)
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Agora, a fim de preservar a positividade de εm, vemos que da Eq. (6.13)
obtemos a restrição b < 1. O parâmetro holográfico b fica então restrito no
intervalo

0 < b < 1. (6.14)

Para um valor apropriado de b dentro deste intervalo, a relação (6.13) pode
incorporar como uma caracteŕıstica do modelo a igualdade na ordem de gran-
deza das densidades de energia escura e a matéria, conhecida como o problema
da coincidência.

Para completar o análise anterior, vamos apresentar a forma expĺıcita das
expresões para a evolução da funcão de Hubble e do fator de escala, as quais
são dadas por

H =
H0

1 + 3
2
H0(1 + ω)(1− b)(t− t0)

(6.15)

e

a = a0

[
1 +

3

2
H0(1 + ω)(1− b)(t− t0)

]2/[3(1+ω)(1−b)]

. (6.16)

Como consequência, as densidades de matéria e energia escura escalam da
forma

εm ∼ εΛ ∼
[
1 +

3

2
H0(1 + ω)(1− b)(t− t0)

]−2

. (6.17)

6.4 Limites Holográficos

Vamos analisar agora as restrições impostas pelo prinćıpio holográfico nos
parâmetros do modelo, em particular no parâmetro arbitrário b introduzido
no termo para a energia escura (6.9), e no parâmetro ω da equação de estado
da matéria. Enfatizamos que não vamos supor nenhuma restrição a priori
no parâmetro ω, o qual é livre para assumir valores arbitrários, inclusive
na época atual. Desta forma, não estamos supondo que na época atual a
dinâmica do Universo esteja sendo regida por um flúıdo em forma de poeira.
Adicionalmente, vamos supor que estas equações são válidas para qualquer
época da história do Universo, e consequentemente para qualquer flúıdo, ou
ainda qualquer mistura de flúıdos interagentes com o termo cosmológico. Isso
significa que os limites que vamos obter têm validade em qualquer época da
história do Universo. Deve ser enfatizado que a energia escura não será in-
terpretada como um flúıdo, senão como uma entidade puramente geométrica
para a qual não ha necessário de introduzir uma equação de estado [10].

6.4.1 Limites da energia

Impondo condições razoáveis ao sistema matéria + energia escura, vamos
encontrar novos limites para os parâmetros livres do modelo. O primeiro
conjunto de restrições são as assim chamadas condições da energia,† as quais
no cenário de Λ interagindo com a matéria, devem se aplicar ao tensor de
energia-momento total

Θµν = Tµν + Λµν , (6.18)

†Veja, por exemplo, [61]
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onde
Tµν = εmuµuν + pm(gµν + uµuν) (6.19)

é o tensor de energia-momento da matéria, e

Λµν = −εΛgµν (6.20)

é o tensor de energia-momento associado ao termo cosmológico. Como con-
sequência da identidade de Bianchi (5.3), temos que

∇µΘµ
ν = ∇µ[T µ

ν + Λµ
ν ] = 0. (6.21)

Usando a equação de estado da matéria pm = ωεm, assim como as equações
(6.13), pode-se escrever

Θµν = εm(1 + ω)uµuν + εm

(
ω − b

1− b

)
gµν . (6.22)

Como é bem conhecido, as condições para a energia são [61]:

1. Condição nula para a energia: para todo vetor tipo luz nν ,

Θµνn
µnν ≥ 0, (6.23)

o que significa que os raios de luz são enfocados pela matéria.

2. Condição fraca para a energia: para todo vetor tipo tempo vν ,

Θµνv
µvν ≥ 0. (6.24)

3. Condição Causal para a energia: para todo vetor tipo tempo vν ,

Θµ
νvµΘν

αv
α ≤ 0, (6.25)

que a grosso modo expressa o fato da matéria-energia não poder viajar
mais rápido do que a luz.

Aplicadas ao tensor de energia-momento (6.22), obtemos da condição nula
que

ω ≥ −1, (6.26)

que é o resultado usual para matéria normal. Por outra parte, das condições
fraca e causal, obtemos, respectivamente,

Θµνv
µvν = εm(1 + ω)(uµvµ)2 + εm

(
ω − b

1− b

)
v2 ≥ 0 (6.27)

e

Θµ
νvµΘν

αv
α = ε2

m

[
(1 + ω)2u2(uµvµ)2 +

2(1 + ω)
(
ω − b

1− b

)
(uµvµ)2 +

(
ω − b

1− b

)2

v2
]
≤ 0. (6.28)
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Dado que estas relações são válidas para qualquer vetor tipo-tempo vµ, as
duas condições implicam que

ω ≤ b

1− b
. (6.29)

Esta é uma caracteŕıstica nova do modelo holográfico interagente. De fato, no
contexto da relatividade geral sem o termo holográfico interagente, a condição
de positividade da energia requer que ω < 1 afim de preservar a causalidade.
Em consequência é obtido um novo tipo de restriç ão causal regulada pelo
parâmetro holográfico b. O fato do termo cosmológico variável modificar a
estrutura causal pode ser entendido melhor se observarmos que os horizontes
causais de todo observador devem mudar quando a constante cosmológica
decai, dando origem à criação de matéria.

6.4.2 Limites para a entropia

Existem outros limites e relações para os parâmetros b e ω que podem ser
obtidos do prinćıpio holográfico. Como exemplo, apresentamos nesta seção o
limite holográfico para a entropia seguindo o esquema adotado em [52] para
soluções cosmológicas homogêneas. Para o horizonte de part́ıcula

RH(t) =

∫ t

0

dt

a(t)
, (6.30)

o prinćıpio holográfico afirma que a entropia total σ + σm = σΛ dentro do
horizonte não excede a área do horizonte:

σR3
H < (aRH)2 . (6.31)

Utilizando o fator de escala a(t) da equação (6.16), este prinćıpio implica que

σ

a3
0

H0β(β − 1) (1 +H0βt)
3(β−1)

β
−2 < 1, (6.32)

onde β = 3(1 + ω)(1− b)/2. Agora, supondo uma densidade de entropia na
forma (em [62] pode-se encontrar a expressão para o caso de Λ constante)

σ ∼ εγ/(1+ω) ∼ a−3γ(1−b), (6.33)

onde γ > 0 é outro parâmetro indeterminado. Esta expressão vale indistin-
tamente para ε = εm ou para ε = εΛ. Juntando tudo obtemos

k0

a3
0

H0β(β − 1)a
−3γ(1−b)
0 (1 +H0βt)

−2+
3(β−1)

β
− 3γ(1−b)

β < 1, (6.34)

onde k0 é uma constante conhecida determinada pelos outros parâmetros do
modelo. No limite em que o tempo vai para o infinito (afim de garantir a
validade do limite para um tempo arbitrariamente alto), obtemos que:

ω <
b

1− b
+

1

1− b
+ 2γ. (6.35)

Dado que γ > 0, este limite para ω é menos restritivo que aquele que foi ob-
tido com as condições para a energia, e não vamos, por esta razão, considera-
lo.
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6.4.3 Regime Acelerado

Tomando a segunda derivada no tempo do fator de escala (6.16), e supondo
que ela seja positiva, obtemos que

ω <
b

1− b
− 1

3(1− b)
. (6.36)

Esta é a condição para um Universo em expansão acelerada. É interessante
notar que no presente caso, o parâmetro ω não é necessariamente nulo, o que
significa que a expansão acelerada pode acontecer em qualquer época, mesmo
quando a matéria dominante não é poeira.‡ Dado que b < 1, o segundo termo
no lado direito da equação (6.36) é positivo, e consequentemente ele sempre
obedece os limites obtidos das condições para a energia e para a entropia.
O ponto importante para ressaltar aqui é que a expansão acelerada não está
determinada somente pela energia escura, como acostuma se argumentar; a
axpansão acelerada é obtida como uma consequëncia do caracter interagente
e holográfico da energia escura. De fato, a condição para a expansão acelerada
na desigualdade (6.36) é regulada pelo parametro holográfico b. Desta forma,
vemos que para os parâmetros dentro dos limites impostos pelas restrições na
energia e na entropia, é posśıvel obter um regime de expansão acelerada, como
é indicado pelas observações experimentais. Finalmente, podemos observar
que no caso b < 1/3, o parâmetro ω torna-se negativo. Porém, esta situação
a qual representa um tipo de matéria exótica com pressão negativa, não é
necessaria para produzir aceleração. De fato, para 1/3 < b < 1, ω é negativo
e a aceleração é ainda positiva.

6.5 Comentários

O resultado principal deste caṕıtulo, é que a energia escura interagindo com
a matéria pode eventualmente “responder”algumas das perguntas chaves da
cosmologia contemporânea desde que se adote a hipótese de que a energia
escura tem um comportamento “holográfico”. De fato, nas equações (6.13)
e (6.36) pode-se observar que para alguns valores permitidos dos parâmetros
do modelo é posśıvel obter simultaneamente a “coincidencia”na ordem de
grandeza das densidades de energia escura e matéria e o regime de expansão
acelerada do Universo. Não são necessárias estruturas adicionais além do
carácter holográfico da energia escura. Adicionalmente, dado que a energia
escura está sendo interpretada como uma entidade geométrica, não é neces-
sario introduzir uma equação de estado de um fluido exótico. Neste modelo,
energia escura e matéria podem se transformar uma na outra, geometria
em matéria e vice-versa. Em particular, é posśıvel conceber que tal cenário
dinâmico para a energia escura pode estar conectado com uma configuração
inicial para o Universo do tipo descrito pela geometria do espaço cone N .

‡Esta é uma diferença importante com relação aos trabalhos anteriores [55, 56], nos
quais se assume que ω = 0.
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Finalmente, é necessário mencionar que este modelo somente aponta uma
perspectiva para encaixar num marco consistente e simples algumas das ca-
racteŕısticas da cosmologia atual. Não é um modelo completo, mas apresenta
suficientes caracteŕısticas interessantes para motivar um estudo mais deta-
lhado no futuro.
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Caṕıtulo 7

Conclusões e comentários finais

Nesta tese, estudamos alguns aspectos fundamentais relacionados à cons-
tante cosmológica. Um primeiro resultado importante é que a presença de
uma constante cosmológica modifica a noção de transitividade do espaço-
tempo. De fato, em vez das translações, o espaço de de Sitter é transitivo
sob uma combinação de translações e transformações conformes próprias.
Como conseqüência, as noções de momento e energia, as quais estão inti-
mamente relacionadas ao espaço-tempo, vão ser modificadas. Naturalmente
que, devido ao pequeno valor da constante cosmológica, estas modificações
são pequenas. No entanto, mesmo pequenas, são mudanças conceituais que se
propagam por todas as áreas da F́ısica.∗ Por exemplo, a definição de campo
relativ́ıstico muda: em vez de ser uma representação do grupo de Poincaré,
um campo deve ser entendido como uma representação do grupo de de Sitter.
A mecânica estat́ıstica também deve mudar, bem como a própria mecânica
quântica, cujas relações de incerteza passam a envolver novos termos vindos
das mudanças das definições de energia e momento [45].

Além das mudanças descritas acima, ocorre também uma mudanças fun-
damentais na cinemática e na geometria do espaço-tempo. De fato, como
na presença de Λ o espaço de Minkowski não é mais solução da equação de
Einstein, a relatividade especial não é mais aquela baseada no grupo de Poin-
caré, mas sim uma relatividade baseada no grupo de de Sitter. Um ponto
crucial é que esta relatividade inclui uma escala invariante de comprimento l.
Como a velocidade da luz c também se mantém como uma escala invariante,
este tipo de teoria apresenta duas escalas invariantes. Ela é, portanto, um
novo tipo de “doubly (ou deformed) special relativity”, com a importante
diferença de manter inalterada a simetria de Lorentz. Desenvolvemos esta
nova relatividade, e estudamos algumas de suas aplicações e consequências
f́ısicas [30].

Numa tentativa de entender o comportamento das noções f́ısicas relevan-
tes nos regimes de grandes valores de Λ, estudamos o limite formal Λ → ∞
[29]. O resultado é um espaço-tempo maximalmente simétrico, transitivo sob
transformações conformes próprias, onde a noção métrica usual não existe.
Consequentemente, a noção de causalidade neste espaço também é indefi-

∗Além disso, se o Universo passou por uma fase de grandes valores da constante cos-
mológica, como parece ter sido o caso durante a fase inflacionária, essas mudanças podem
ter desempenhado um papel importante.
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nida, dado que o horizonte causal do espaço de de Sitter adquire um raio
nulo, reduzindo o domı́nio causal de todos os observadores neste espaço a
um único ponto. Este espaço apresenta caracteŕısticas interessantes desde
o ponto de vista termodinâmico. É um espaço com temperatura infinita,
entropia zero, e densidade de energia infinita. Com estas caracteŕısticas ele
se ajusta muito bem ao que se esperaria de um estado inicial singular para o
Universo no modelo do big bang. Porém, como enfatizamos anteriormente,
este é simplesmente um limite formal, pois efeitos quânticos podem evitar
que este limite seja atingido.

Tendo em mente que o termo cosmológico, na atualidade, apresenta um
valor muito menor do valor adquirido no peŕıodo inflacionário, é natural pro-
curar um mecanismo de decaimento, ou em termos mais gerais, uma dinâmica
para ele. Estudamos assim um modelo simples baseado numa interpretação
geométrica para o termo cosmológico, permitindo a interação entre matéria e
energia escura, mantendo a energia total constante. Vimos que os parâmetros
introduzidos são suficientes para dar conta das principais caracteŕısticas as-
sinaladas pelas observações recentes, sem necessidade de considerar estrutu-
ras adicionais na descrição da evolução do termo cosmoógico. Ainda neste
contexto, apresentamos uma nova possibilidade de caminho ao “colapso gra-
vitacional”onde o estado final da evolução do Universo é representado por
um espaço-tempo singular cônico, onde toda a energia encontra-se na forma
de energia escura [37].

Finalmente, incorporamos uma proposta recente que limita o valor da
energia escura por meio do prinćıpio holográfico [63]. A principal carac-
teŕıstica deste modelo é que ele introduz uma modificação nas condições
causais que limitam a equação de estado para a matéria. Esta modificação
é de caráter intrinsecamente holográfico, já que ela depende diretamente do
parâmetro holográfico introduzido no modelo. Ao mesmo tempo, a incor-
poração do prinćıpio holográfico na descrição da energia escura abre uma
nova possibilidade para estabilizar as flutuações da energia do vácuo, dimi-
nuindo de maneira drástica o número de graus de liberdade que contribuem
com a energia do vácuo. Naturalmente, este não é um modelo completo para
a dinâmica do Universo. O interesse fundamental dele é criar um marco con-
sistente, onde podem ser discutidas as principais caracteŕısticas e problemas
da cosmologia atual. Certamente, é necessário ainda muito trabalho para
incorporar de forma completa e consistente todos os dados observacionais.
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Apêndice A

Geradores de simetria nos diferentes sistemas

de coordenadas

Aqui, vamos apresentar expressões expĺıcitas para os geradores de simetria
nas coordenadas globais, planas e estáticas descritas no caṕıtulo 1. Eles são
de relevância no estudo da estrutura assintótica e na definição de condições
de fronteira consistentes com as cargas conservadas no espaço. Também
apresentam utilidade no estudo da geometria perto do horizonte de eventos.

A.1 Coordenadas globais

Neste sistema de coordenadas, os geradores do grupo de simetria JAB tomam
a forma:

Jij =
(
ωi ∂

∂ωj
− ωj ∂

∂ωi

)
,

com (i, j = 1, ..., 4). Por outra parte, os geradores J0i são

J01 = − tanh(cτ/l) sin θ1
∂

∂θ1

+
l

c
cos θ1

∂

∂τ

J02 = tanh(cτ/l)
(

cos θ1 cos θ2
∂

∂θ1

− sin θ2

sin θ1

∂

∂θ2

)
+
l

c
sin θ1 cos θ2

∂

∂τ

J03 = tanh(cτ/l)
(

cos θ1 sin θ2 cos θ3
∂

∂θ1

+
cos θ2 cos θ3

sin θ1

∂

∂θ2

− sin θ3

sin θ1 sin θ2

∂

∂θ3

)
+
l

c
sin θ1 sin θ2 cos θ3

∂

∂τ

J04 = tanh(cτ/l)
(

cos θ1 sin θ2 sin θ3
∂

∂θ1

+
cos θ2 sin θ3

sin θ1

∂

∂θ2

−

sin θ3

sin θ1 sin θ2

∂

∂θ3

)
+ +

l

c
sin θ1 sin θ2 sin θ3

∂

∂τ
.

A.2 Coordenadas planas

Nestas coordenadas, os JAB podem ser classificados da forma (Jij, J0i, J4i, J04)
com i, j, ... = 1, 2, 3. Desta forma temos:

Jij = xi
∂

∂xj
− xj

∂

∂xi
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J0i = − 1

2l
(x2δk

i − 2xix
k)

∂

∂xk
+
l

2
(exp (2ct/l)− 1)

∂

∂xi
+
xi

c

∂

∂t

J4i =
1

2l
(x2δk

i − 2xix
k)

∂

∂xk
− l

2
(exp (2ct/l) + 1)

∂

∂xi
− xi

c

∂

∂t

J04 =
l

c

∂

∂t
+ xk ∂

∂xk
.

O operador J04 apresenta uma mistura entre as translações no tempo e as
transformações de escala. Ele gera a simetria t → t + α, ~x → exp (cα/l)~x.
Também são úteis as combinações lineares:

Li+ = J4i + J0i = −l∂i

Li− = J4i − J0i = −1

l
(x2δk

i − 2xix
k)

∂

∂xk
− 2xi

c

∂

∂t
+ l exp(ct/l)

∂

∂xi
.

A.3 Coordenadas estáticas

Vamos fazer uma decomposição igual ao caso anterior para os JAB. Para os
Jij, os quais refletem a simetria sob rotações, temos

J12 = cos θ2
∂

∂θ1

− sin θ2 cot θ1
∂

∂θ2

J13 = cos θ2 cot θ1
∂

∂θ2

+ sin θ2
∂

∂θ1

J23 =
∂

∂θ2

.

Para os J0i temos:

J01 = −lH(r) sinh (ct/l)

(
cos θ1

∂

∂r
− 1

r
sin θ1

∂

∂θ1

)
−

− r cos θ1

cH(r)
cosh (ct/l)

∂

∂t

J02 = lH(r) sinh (ct/l)

[
sin θ1 cos θ2

∂

∂r
− 1

r

(
sin θ2

sin θ1

∂

∂θ2

− cos θ2 cos θ1
∂

∂θ1

)]
−

− r sin θ1 cos θ2

cH(r)
cosh (ct/l)

∂

∂t

J03 = −lH(r) sinh (ct/l)

[
sin θ1 sin θ2

∂

∂r
+

1

r

(
cos θ2

sin θ1

∂

∂θ2

+ sin θ2 cos θ1
∂

∂θ1

)]
−

− r sin θ1 sin θ2

cH(r)
cosh (ct/l)

∂

∂t
,

onde H(r) = (1− r2/l2)1/2. Para os J4i temos:

J41 = lH(r) cosh (ct/l)

(
cos θ1

∂

∂r
− 1

r
sin θ1

∂

∂θ1

)
+

+
r cos θ1

cH(r)
sinh (ct/l)

∂

∂t
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J42 = lH(r) cosh (ct/l)

[
sin θ1 cos θ2

∂

∂r
− 1

r

(
sin θ2

sin θ1

∂

∂θ2

− cos θ2 cos θ1
∂

∂θ1

)]
+

+
r sin θ1 cos θ2

cH(r)
sinh (ct/l)

∂

∂t

J43 = lH(r) cosh (ct/l)

[
sin θ1 sin θ2

∂

∂r
+

1

r

(
cos θ2

sin θ1

∂

∂θ2

+ sin θ2 cos θ1
∂

∂θ1

)]
+

+
r sin θ1 sin θ2

cH(r)
sinh (ct/l)

∂

∂t
.

Finalmente, o gerador das translações no tempo é

J04 =
l

c

∂

∂t
.

Também são de interesse as combinaões lineares: Ji± = J0i ± J4i:

J1± = exp (∓ct/l)
[
±lH(r)

(
cos θ1

∂

∂r
− 1

r
sin θ1

∂

∂θ1

)
− r cos θ1

cH(r)

∂

∂t

]
J2± = ± exp (∓ct/l)lH(r)

[
sin θ1 cos θ2

∂

∂r
− 1

r

(
sin θ2

sin θ1

∂

∂θ2

− cos θ2 cos θ1
∂

∂θ1

)]
−

− exp (∓ct/l)r sin θ1 cos θ2

cH(r)

∂

∂t

J3± = ± exp (∓ct/l)lH(r)

[
sin θ1 sin θ2

∂

∂r
+

1

r

(
cos θ2

sin θ1

∂

∂θ2

+ sin θ2 cos θ1
∂

∂θ1

)]
−

− exp (∓ct/l)r sin θ1 sin θ2

cH(r)

∂

∂t
.
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74



586, 1 (2004); A. Feinstein and S. Jhingan, Mod. Phys. Lett. A 19,
457 (2004); E. Elizalde, S. Nojiri and S. D. Odintsov, Phys. Rev. D
70, 043539 (2004).

[51] F. Hoyle and J.V. Narlikar, Proc. Roy. Soc. A 290, 162 (1966); J.V.
Narlikar, Introduction to Cosmology, 3rd edition, (Cambridge Univer-
sity Press, Cambridge, 2002).

[52] R. Fischler and L. Susskind, Holography and Cosmology, arXiv: hep-
th/9806039.

[53] R. Bousso, JHEP 06, 028 (1999), arXiv: hep-th/9906022.

[54] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Phys. Rev. Lett. 82, 4971
(1999).

[55] M. Li, Phys. Lett. B603, 1 (2004).

[56] D. Pavón and W. Zimdahl, Phys. Lett. B 628, 206 (2005); D. Pavón
and W. Zimdahl, Holographic dark energy and present cosmic accele-
ration, Proceedings of the XXVIII Spanish Relativity Meeting, arXiv:
hep-th/0511053.

[57] B. Mashhoon and P.S. Wesson, Class. Quant. Grav. 21, 3611 (2004);
E. Alvarez, “The infinite curvature limit of AdS/CFT”, arXiv: gr-
qc/0401097.

[58] R. Bousso, Rev. Mod. Phys. 74, 825 (2002), arXiv:hep-th/0203101.

[59] S. Thomas, Phys. Rev. Lett. 89, 081301 (2002).

[60] R. Bousso, JHEP 11, 038 (2000).

[61] R. Wald, General Relativity (University of Chicago Press, Chicago,
1984).

[62] W. Fischler, A. Loewy and S. Paban, JHEP 09, 024 (2003).

[63] J. P. Beltrán Almeida and J. G. Pereira, Phys. Lett. B 636, 75 (2006),
arXiv: gr-qc/0602103

75



Livros Grátis
( http://www.livrosgratis.com.br )

 
Milhares de Livros para Download:
 
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas

http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_1/administracao/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_2/agronomia/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_3/arquitetura/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_4/artes/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_5/astronomia/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_6/biologia_geral/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_8/ciencia_da_computacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_9/ciencia_da_informacao/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_7/ciencia_politica/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_10/ciencias_da_saude/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_11/comunicacao/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_12/conselho_nacional_de_educacao_-_cne/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_13/defesa_civil/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_14/direito/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_15/direitos_humanos/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_16/economia/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_17/economia_domestica/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_18/educacao/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_19/educacao_-_transito/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_20/educacao_fisica/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_21/engenharia_aeroespacial/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_22/farmacia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_23/filosofia/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_24/fisica/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_25/geociencias/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_26/geografia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_27/historia/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1
http://www.livrosgratis.com.br/cat_31/linguas/1


Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo
 
 

http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_28/literatura/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_30/literatura_de_cordel/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_29/literatura_infantil/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_32/matematica/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_33/medicina/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_34/medicina_veterinaria/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_35/meio_ambiente/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_36/meteorologia/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_45/monografias_e_tcc/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_37/multidisciplinar/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_38/musica/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_39/psicologia/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_40/quimica/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_41/saude_coletiva/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_42/servico_social/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_43/sociologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_44/teologia/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_46/trabalho/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1
http://www.livrosgratis.com.br/cat_47/turismo/1

