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Resumo

Nesta tese vamos estudar dois aspectos diferentes da fisica da constante
cosmoldgica: a estrutura algébrica do grupo de de Sitter, e as suas implicagoes
na dinamica do Universo. Na primeira parte, apresentaremos uma descri¢ao
da estrutura geométrica do espaco de de Sitter, bem como uma discussao
detalhada da estrutura do grupo de de Sitter. Revisaremos os limites do
grupo de de Sitter obtidos por meio do processo de contracdo de Inonii-
Wigner, e estudaremos o limite formal A — oo. Neste limite, obtem-se um
espago-tempo singular, maximalmente simétrico, transitivo sob transforma-
¢oes conformes préprias, e com propriedades termodinamicas que se ajustam
a idéia de uma condigao inicial para um Universo com “big-bang”. Ainda
neste contexto, proporemos uma “relatividade restrita” baseada no grupo de
de Sitter. Nesta teoria, a constante cosmolégica introduz uma escala de com-
primento invariante: o raio de de Sitter. A introdugao desta escala invariante
nao implica numa violagao da simetria de Lorentz, mas sim numa mudanca
na estrutura causal do espago-tempo, bem como nas definicoes de momento
e energia. Na segunda parte da tese, que trata das aplicacoes cosmolégicas,
apresentaremos um modelo dinamico para a “constante” cosmologica. Neste
modelo, como consequéncia das equacoes de Einstein, uma variacao em A
deve necessariamente ser compensada pela criagao ou destruicao de matéria,
de modo que a energia total seja mantida constante. Um modelo particu-
lar para esta evolugao da constante cosmoldgica é apresentado, o qual esta
baseado no principio hologrdfico. Veremos como o modelo pode incorporar si-
multaneamente a expansao acelerada do Universo, e a coincidéncia na ordem
de grandeza das densidades de energia escura e de matéria.

Palavras Chaves: Espago de de Sitter; Constante Cosmoldgica; Contragao
de Inoni-Wigner; Principio Holografico.

Areas do conhecimento: Gravitacao e Cosmologia
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Abstract

In this thesis we study two different aspects of the physics of the cos-
mological constant: the algebraic structure of the de Sitter group, and its
implications in the large scale dynamics of the Universe. In the first part we
present a general description of the geometrical structure of de Sitter space,
and a discussion about the structure of de Sitter group. We review the con-
traction limits of de Sitter group, obtained by means of the Inoni- Wigner
procedure, and we study in detail the formal limit A — oo. In this limit, one
obtains a maximally-symmetric, singular spacetime, transitive under proper
conformal transformations, and with thermodynamic properties that agreee
with the idea of an initial condition for a “big-bang” Universe. In the same
context, we propose a “special relativity” based on the de Sitter group. In
this theory, the cosmological constant introduces an invariant length scale:
the de Sitter radius. The introduction of this invariant scale does not im-
ply a violation of the Lorentz symmetry, but simply a change in the causal
structure of the spacetime, as well as in the basic notions of momentum
and energy. In the second part of the thesis, that related with cosmological
applications, a dynamic model for the cosmological “constant will be pre-
sented. In this model, as a consequence of Einstein’s equations, a variation
in A must necessarily be compensated by creation or destruction of matter-
energy, in such a way that the total energy remains constant. A particular
model allowing for the evolution of the cosmological constant is presented,
which is based on the holographic principle. We will show how this model
can accommodate simultaneously the accelerated expansion of the Universe
and the coincidence in the magnitude of matter and dark energy densities.
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Capitulo 1

Introducao

1.1 Motivacao e objetivos

Dados observacionais recentes, provenientes das supernovas tipo Ia com ele-
vado “redshift” [1], e de medidas da radiagao césmica de fundo [2], favorecem
fortemente a existéncia de uma constante cosmoldgica positiva e pequena.
Além disso, os dados sugerem que o Universo é espacialmente plano e se en-
contra numa fase de expansdo acelerada [3]. Dadas estas caracteristicas,
o estudo do espaco de de Sitter torna se muito relevante ja que, nestas
circunstancias, a auséncia de gravitacao passa a ser representada por este
espaco, e nao mais por Minkowski. Uma motivagao adicional relaciona-se ao
periodo inflacionario, em que o Universo passou por uma fase de de Sitter,
porém com uma constante cosmoldgica muito grande [4].

Com o interesse renovado na fisica do espago de de Sitter, tem-se explo-
rado recentemente muitas propriedades deste espaco em diferentes contextos.
Nesta tese, vamos fazer um estudo da estrutura algébrica do grupo de de Sit-
ter, principalmente no limite de grandes valores da constante cosmoldgica.
Ao mesmo tempo, estudaremos algumas propriedades geométricas do espaco
de de Sitter subjacente. Uma das principais consequéncias de se incorporar
uma constante cosmoldgica na estrutura do espago-tempo refere-se as mu-
dangas nas defini¢oes de energia e momento. Apesar dessas mudangas serem
pequenas para valores pequenos da constante cosmolégica, as mudangas con-
ceituais envolvidas sao importantes. Em particular, elas implicam em novas
relagoes entre e energia e momento, com eventuais implicacoes para a gra-
vitacdo quantica. Apresentamos a seguir uma breve descricao dos topicos
que serao abordados.

1.1.1 Estrutura algébrica do grupo de de Sitter

Da mesma forma que o espaco de Minkowski, o espago de de Sitter é um
espago maximalmente simétrico e homogéneo. Neste sentido, ele ¢ uma ge-
neralizacao simples do espaco de Minkowski, quando existe curvatura nao
nula (constante comoldgica). A homogeneidade é uma propriedade que per-
mite estabelecer uma relagao estreita entre a estrutura dos grupos de simetria
destes espagos, isto é, entre os grupos de Poincaré para o caso de Minkowski,
e o grupo de de Sitter, que é o grupo de simetria do espaco de de Sitter.



A nocao de transitividade existente no espago de Minkowski se altera pela
existéncia da curvatura. esta, por sua vez, pode ser associada com uma
escala invariante de comprimento, o raio de de Sitter. A presenca desta es-
cala de comprimento introduz uma modificagao nos conceitos de translagao,
distancia e causalidade no espago-tempo. Se pensassemos em modificar o
grupo de simetrias do espago-tempo para incluir a constante cosmologica,
as nocoes fundamentais de energia e momento iriam mudar, e consequen-
temente outras nocoes importantes que dependem destas, como as relagoes
de dispersao entre energia e momento de uma particula classica, e as rela-
¢oes de comutacao e incerteza da mecanica quantica. Naturalmente, estas
modificagoes sao pequenas ja que elas sao proporcionais ao valor da cons-
tante cosmoldgica, a qual é pequena. Porém, estas modificagoes poderiam
se tornar relevantes nas etapas iniciais do Universo, durante o periodo in-
flacionario, onde um espago de de Sitter com constante cosmoldgica muito
grande representa um quadro muito proximo das carateristicas desta época.

1.1.2 Relatividade especial

As modificagoes estruturais no grupo de simetrias devido a presenca de uma
constante cosmoldgica nao nula implica em mudancas fundamentais na ci-
nematica e na geometria do espago-tempo. De fato, como na presenca de A
o espaco de Minkowski nao é mais solucao da equacao de Einstein, a relati-
vidade especial nao sera mais aquela baseada no grupo de Poincaré, que é
o grupo de simetris de Minkowski. De acordo com o presente formalismo, a
relatividade especial deve ser aquela baseada no grupo de de Sitter. Esta re-
latividade inclui uma escala invariante de comprimento /. Como a velocidade
da luz ¢ também se mantém como uma escala invariante, este tipo de teoria
apresenta duas escalas invariantes. Ela é, portanto, um novo tipo de “dou-
bly (ou deformed) special relativity”, com a importante diferenca de manter
inalterada a simetria de Lorentz. Desenvolveremos esta nova relatividade, e
estudamos algumas de suas possiveis aplicacoes fisicas.

1.1.3 Expansao acelerada e o futuro do Universo

Como foi mencionado anteriormente, uma das caracteristicas importantes
das observagoes astronomicas recentes é a expansao acelerada do Universo.
E freqlientemente argumentado que uma conseqiiéncia desta expansao acele-
rada seria dirigir o Universo a um estado de esfriamento gradual e isolamento,
ou a um estado de desintegracao violenta, ou um “big rip” [5] como tem sido
chamado; ou ainda a uma singularidade stibita no futuro [6]. Trabalhando no
contexto de uma constante cosmolégica dependente do tempo e interagindo
com a matéria, iremos propor um novo tipo de estado de estado “final”, carac-
terizado pela presenca de uma constante cosmolégica infinita. Esta solugao
representa uma completa desconexao causal entre todos os pontos do espaco,
o qual se torna transitivo sob transformacoes conformes préprias.

Ao mesmo tempo, é possivel ter neste contexto outras caracteristicas de
interesse, como a “coincidéncia’ entre as ordens de grandeza das densidades



de energia escura associada com a constante cosmoldgica e a de energia da
matéria observada. O chamado problema da coincidéncia cosmica [7).

1.1.4 O problema da constante cosmolégica

Um dos maiores problemas da fisica contemporanea é a enorme diferenca
existente entre as estimativas tedricas e o valor observado da constante cos-
molégica [8]. Na atualidade, tem-se entendido que este parametro é uma
medida da densidade de energia do vacuo dos campos quanticos que ha-
bitam o espago-tempo: “o peso do vacuo”. Quando esta interpretacao é
aceita, enfrentamos um problema dramatico devido a enorme discrepancia
das estimativas tedricas e os valores observados ja que nao existe nenhuma
escala conhecida na fisica de particulas que seja capaz de explicar esta dife-
renca. Por exemplo, aceitando a validade das estimativas da teoria quantica
de campos até a escala de Planck,* o valor esperado da densidade de energia
do vacuo é

pS\QFT) ~ 2 x 10" %rg/cm®. (1.1)

Entretanto, o valor oferecido pelas observacoes recentes é da ordem

pX)bS) ~ 2 x 107 Yerg/cm”®. (1.2)

A razdo entre essas quantias d4 a enorme diferenca de 10'?° ordens de gran-

deza, o que faz o vacuo incrivelmente instavel sob flutuagoes quanticas.

Uma alternativa recente para encarar este problema é por meio do princi-
pio hologrdfico [9], o qual propde, a grosso modo, que o nimero de graus de
liberdade de uma regiao do espaco depende, nao do volume da regiao, mas da
area da superficie que contém a regiao. Esta proposta aponta que a origem
da enorme diferenca nas ordens de grandeza entre as estimativas e o valor
observado da energia do vacuo esta numa enorme sobre-contagem dos graus
de liberdade da estimativa tedrica, muitos deles instaveis gravitacionalmente.
Assim, reduzindo drasticamente os graus de liberdade, as corregoes quanticas
a energia do vacuo poderiam ser estabilizadas.

1.2 Descricao do trabalho

A tese esta organizada da seguinte forma. No capitulo 2, vamos apresentar
uma introdugao a estrutura geométrica, bem como aos aspectos semi-classicos
do espaco de de Sitter. No capitulo 3, revisaremos o processo de contra-
cao de grupos de Inonii-Wigner [23], e aplicdremos este processo ao caso
do espaco de de Sitter. Depois de estudar o limite para A pequeno, e o
limite nao relativistico, vamos nos concentrar no limite formal A — oo, bem
como nas caracteristicas geométricas do espago-tempo resultante nesse limite.
No capitulo 4, vamos apresentar uma generalizacao da relatividade restrita
baseada no grupo de de Sitter. Nos capitulos 5 e 6, faremos aplicagdes dos
estudos anteriores aos problemas da cosmologia atual. Apresentaremos um

*Qutras escalas da fisica de particulas podem ser invocadas, mas o problema continua
sendo igualmente dramatico



esquema, consistente, embora muito simplificado, das consequéncias de um
termo cosmoldgico dependente do tempo, que eventualmente pode realizar
os limites estudados no processo de contragao mediante um processo fisico.
No Capitulo 5, apresentamos o esquema em sua forma basica, e no capitulo 6
apresentamos uma proposta onde o comportamento da energia escura satisfaz
a hipétese holografica, a qual serd revisada nesse capitulo. Ao longo da tese
vamos manter as constantes dimensionais como G, c, kg, h, e o raio de de
Sitter [. A signatura utilizada para a métrica serd (1,—1,—1,—1).



Capitulo 2

Geometria e aspectos semi-classicos

2.1 Introducao

Neste capitulo vamos estudar a geometria do espago de de Sitter. Para este
propésito, vamos utilizar diferentes sistemas de coordenadas nas quais vamos
ter diferentes perspectivas da estrutura deste espaco. Um ponto importante é
a existéncia de um horizonte de eventos independente do observador, um hori-
zonte cosmoldgico, assim chamado pela natureza do espago em consideracgao.
Vamos estudar a estrutura causal gerada pela presenca deste horizonte, e va-
mos estabelecer as semelhancas deste horizonte cosmolégico com os horizon-
tes de eventos que aparecem nas solucoes tipo buraco negro. Nos contextos
classico e semi-classico, é encontrado que os horizontes de eventos dos buracos
negros obedecem leis dinamicas semelhantes com as leis da termodinamica
dos sistemas em equilibrio. Por este motivo as leis da dinamica dos buracos
negros foram propostas como uma generalizacao das leis da termodinamica
para os casos que incluem sistemas interagindo com buracos negros. Vamos
apresentar uma descricao breve destas leis, e a sua conseqiiente generalizacao
ao caso dos horizontes cosmoldgicos. Existem varias referéncias que discutem
de forma mais detalhada os assuntos apresentados aqui, assim como outros
aspectos relacionados; ver, por exemplo, as referéncias [10, 11, 12].

2.2 Geometria classica

O espaco de de Sitter é a solucao de vacuo das equacoes de Einstein com
termo cosmoldégico:

Guw—Nguw =0, prv=0,..,3 (2.1)

Um fato importante é que esta solucao pode ser visualizada como o hiper-
boloide

nasxP=—-1% A B=0,..4 (2.2)
imerso no espaco ambiente E*' com elemento de linha
ds? = napdxdx” = (dx")* = (dx')* — ... = (dx")” (2.3)

onde o raio de de Sitter [ esta relacionado com a constante cosmolégica A
pela relacao:

A=2 (2.4)



A representacao gréafica deste hiperboldide pode ser vista na Figura 2.1.

%0

Figura 2.1: Representacao grafica do hiperboldide (2.2).

Vamos comecar nosso estudo da estrutura geométrica introduzindo dife-
rentes parametrizagoes para o hiperboldide (2.2). Em alguns dos sistemas de
coordenadas que vamos utilizar, usaremos as coordenadas angulares w® na
esfera p-dimensional SP:

wl' = cosb,
w? = sin# cosb
(2.5)
wP™t = sinb;sinbs...sinf, 5 cosb, ;
wP = sinf;sinfy...sin0,_9sinb,_;.

O dominio dos angulos 8, é: 0 < 0, < mparak =1,...,p—2,e0<0, 1 < 27.
As descricoes apresentadas aqui podem ser generalizadas facilmente para um
nimero arbitrario de dimensoes.

2.2.1 Coordenadas globais (7,6;)
Vamos introduzir a parametrizacao
x° =Isinh(7/l) ; x' =w'lcosh(r/l) ; i=1,..,4, (2.6)

com —o0 < 7T < 00. Esta parametrizacao descreve completamente o espago
de de Sitter (2.2). Por este motivo as coordenadas (7,6;) sdo chamadas de
globais. Substituindo em (2.3), o intervalo neste sistema de coordenadas
toma a forma:

ds® = dr* — I? cosh?(1/1)dQ2, (2.7)

onde
dQ; = df} + sin® 0,d03 + sin? 0, sin® ydb;.

Pode-se ver desta expressao que as secoes 7 = constante sao esferas, podendo
ver o espaco de de Sitter como o produto Cartesiano R x S3, onde as esferas
comecam em 7 = —o0 com um raio infinito, contraem-se até atingir o raio
[ em 7 = 0, e expandem-se novamente até o infinito em 7 = co. As regides
assintéticas ZF, caracterizadas por 7 = 400, sao chamadas de passado e
futuro infinito nulo, respectivamente. A transformacao

1

cosh (1/1) = cos (T/1)’

(2.8)
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leva o intervalo infinito —oco < 7 < 0o no intervalo finito —7/2 < T/l < 7/2,
sendo possivel representar o espaco de de Sitter por meio de coordenadas com
dominio finito. A forma do intervalo invariante com esta nova coordenada é

1

ds” = cos?(T'/1) |

dT? — 12dQ3] . (2.9)
Esta forma do intervalo é particularmente util se estamos interessados na
estrutura causal dado que uma geodésica tipo luz (a qual descreve uma fron-
teira entre regides causalmente conexas) com respeito ao intervalo (2.7), é
também tipo luz com respeito ao intervalo

ds® = dT?* — I?dQ;. (2.10)

Apesar de ter uma forma mais simples do que o intervalo (2.7), ele descreve
igualmente a estrutura causal do espaco.

Sao de muito utilidade neste contexto os diagramas de Penrose, ja que
eles permitem visualizar num desenho compacto a conexao causal entre as di-
ferentes regides do espaco-tempo incluindo as regides asintéticas Z+, as quais
estao representadas por T' = £ /2. Apresentamos o diagrama de Penrose na
Figura 2.2.

Neste ponto, comecamos a ver uma diferenca fundamental deste espaco
com o espaco de Minkowski. A estrutura assintética do espago de Minkowski
é tal que um observador ideal nao acelerado eventualmente teria acesso causal
a todo o espaco, sempre que a sua linha de mundo atingir o futuro assintético
infinito t = 400. Esta possibilidade fica excluida no espaco de de Sitter, dado
que um observador inercial ideal em 7 = +o00 sempre vai ter regioes do espaco
inacessiveis desde o seu passado (ver Fig. 2.2).

+

Pélo N Pélo
Norte PR Sul

Figura 2.2: Diagrama de Penrose para as coordenadas globais. As linhas
verticais sao linhas #; = cte. Os pdlos norte e sul estao representados por
0, = m e #; = 0 respectivamente. As linhas horizontais sao linhas 7 = cte.
As diagonais sao geodésicas nulas que unem as regioes I onde 7 = oo, e I~
onde 7 = —o0. Todas as geodésicas nulas sao paralelas as diagonais.



2.2.2 Coordenadas planas ou inflacionarias (¢, z")

Agora, vamos introduzir as coordenadas

x° = lIsinh(t/l) — l@ exp (—t/l)
X' = 2lexp(—t/l) i=1,..,3. (2.11)
x* = lcosh(t/l) — l@ exp (—t/l)

com —o0o <t < oo, —00 < 2! < 0o. Nestas coordenadas o intervalo toma a
forma: ’
ds® = dt* — I? exp (—2t/l)dw;dz’. (2.12)

Nestas coordenadas, as segoes t = constante sao planas, com um fator de
contragao exp (—2t/1). O espago pode ser visto como um produto Cartesiano
R x R3. Fazendo a transformacao t — —t, obtemos o intervalo

ds® = dt* — I? exp (2t/1)dx;dx’, (2.13)

o qual descreve um espaco em expansao, com fator de expansao exponencial
exp(2t/l), préprio do periodo inflacionédrio. Em contraste com as coordenadas
globais, estas coordenadas sé cobrem a metade inferior da diagonal x° = y*
do hiperboléide (2.2) devido ao fato que

X"+ x* =lexp(~t/l) < 0. (2.14)

Nestas coordenadas, para se construir o diagrama conforme de Penrose, in-
troduzimos as coordenadas de Kruskal*

v/l —exp(t/l) B 2 _
B 2 ’ V_exp(t/l)+7°/l ’

U (r? = z;2"), (2.15)

bem como suas relagoes inversas
r/l=1/V4+U ; exp(t/l)=1/V —U. (2.16)

Pode-se ver que estas coordenadas descrevem a regiao V' > 0. A origem
r = 0 corresponde a UV = —1, o infinito passado e infinito futuro ¢t — =400,
corresponde a V =0 e UV = 1, respetivamente. O infinito espacial r — oo
corresponde a UV = 1. A métrica nestas coordenadas é:

47>

onde

dQ5 = do? + sin® 0,d05.

*A introducdo das coordenadas de Kruskal segue a mesma motivagdo que tem a
sua introdugao na solucao de Schwarzschild, onde elas permitem fazer uma continuagao
analitica da solugao na regiao interna ao horizonte de eventos.



Ante as transfomacoes U — —U e V — —V, esta métrica permanece inva-
riante o que permite a extensao analitica para a regiao V < 0. Com esta
métrica é possivel entao descrever o espago d.S; completamente.

O passo seguinte consiste em colocar estas regioes num dominio finito por
meio das transformacoes :

U = tan <(’0T_C) ; V =tan <(’DT+C) : (2.18)

as quais levam o espago de de Sitter dS; no dominio compacto |( £+ ¢| < 7.
O diagrama conforme resultante é apresentado na Figura 2.3.

e
7/
7
7 //
L.
.
.
s /’7 7
Pdlo T e Pdlo
S
Norte e Sul
Lo P
W7 -
/,// P
R
e ==
P -7
A
l//’

Figura 2.3: As linhas tracejadas sao linhas com ¢ = cte. A regiao assintética
I~ corresponde a t = —oo. A diagonal representa t = co. O Podlo sul esta
em r =0, e o Pélo norte em r = oo.

2.2.3 Coordenadas hiperbdlicas

As coordenadas hiperbdlicas (7,1, 6,) sao descritas pela parametrizagao

X° = Isinh(7/l)cosh
X' = lw'sinh (7/l)sinhey  i=1,2,3 (2.19)
x* = lcosh(7/l),

onde —00 < T < 00, e 0 < 9 < co. Estas coordenadas parametrizam a
regiao do espaco restrida pela condigao

cos 0y cosh(7/1) > 1. (2.20)
O intervalo, neste caso, assume a forma
ds* = —d7* + sinh® (7/1)[di)? + sinh?® ¥d2?_,). (2.21)

As secoes T = cte. sao hiperboléides abertos 3-dimensionais H?, de tal forma
que o espaco pode ser visto como a folhacao R x H3. O diagrama de Penrose
para estas coordenadas é mostrado na Figura 2.4.



Junto com os sistemas anteriores, podemos escrever a métrica do espaco

de de Sitter na forma
ds® = dt* — a®(t) d3j, 5,

(2.22)

onde a coordenada t é qualquer uma das coordenadas tipo-tempo usadas

anteriormente, e
12dQ2  para k=1
dSis =< duida’ parak =0
[?°dO3 para k = —

O fator de escala é
cosh(t/l) para k=1

ar = ¢ exp(—t/l) parak =0
sinh(t/l) para k = —

1

1.

As folhagoes anteriores também afetam a geometria das fronteiras nas regioes
assintéticas, sendo estas dadas por S3, R® e H?, para k = 1,0, —1 respecti-

vamente.

Pélo
Norte

Figura 2.4: As coordenadas hiperbélicas descrevem s
cem as linhas 7 = cte., as quais sao hipérboles aberta
por meio das linhas com flecha.

2.2.4 Coordenadas estaticas
Quando escrevemos!
X' = 14/1— % sinh(¢/])

X = rot i=1,..,d—1,
¢t =1 1—7—22cosh(t/l),

com 0 < r < [, a métrica induzida em (2.2) fica

dr?

ds® = — (1 —r2/1?) dt* + T

Pélo
Sul

0 a parte na qual apare-
s, que sao representadas

(2.23)

+72dQ3. (2.24)

TA coordenada t aqui é diferente da coordenada utilizada nas coordenadas planas.

10



Estas coordenadas descrevem a regiao
XX =101 =72/ Y2 exp (—t/1) > 0 (2.25)
P4 xE=1(1 = r2/12)Y2 exp (t/1) > 0. (2.26)

Este sistema de coordenadas é particularmente ttil pelo fato de apresentar
manifestamente o horizonte de eventos em r = [, e o vetor de Killing 0/0t.
Apesar desse vetor ser um vetor tipo-tempo, deve-se observar que ele nao
preserva este carater de maneira global, mas somente na regiao r < [. Para
a construcao do diagrama de Penrose, é necessario definir as coordenadas
de Eddington-Finkelstein, as quais seguem trajetérias radiais tipo-luz. Elas
estao definidas por meio da equacao

dr
=dot 4+ ———. 2.2
dt = dx p—=yIE (2.27)
Resolvendo, obtemos
1 1 [

mi:tiﬁln(lj;;l) . —o0 < 2% < oo. (2.28)

Vemos assim que a métrica toma a forma
ds* = (1= r*(z*,27)/1?) dotda™ — r?dQ3, (2.29)

+7 —_
com r = tanh *=*.
Para conseguir a extensao analitica completa do espaco d.Sy, introduzimos
as coordenadas de Kruskal

U=exp(x=/l) ; V=—exp(—a/l), (2.30)
nas quais a métrica assume a forma

l2

ds? = ————[dUdV — (1 2d02). 2.31

s (1—UV)2[UV (1+UV)2dQs3] (2.31)

Finalmente, podemos levar tudo num diagrama compacto por meio da trans-
formagao

U= —tan (%) ; V =tan (%) . (2.32)

O resultado deste processo é apresentado no diagrama conforme da Figura
2.5.

O vetor de Killing:
g U9 Vo

—= == 2.
o 1ou 1oV’ (2:33)
divide o espaco dS; em quatro regioes dependendo da sua norma
(0/0t)* =4UV/(1 - UV)? (2.34)

e o seu sentido. Na regiao representada pelo triangulo direito na figura 2.5,
este vetor é tipo tempo e tem sentido orientado do passado para o futuro; por
estas caracteristicas é permitido pensar nele como uma espécie de operador
Hamiltoniano, gerador da evolucao temporal nessa regiao.

11



Pélo Pélo
Norte AN Sul

Figura 2.5: A maior extensao analitica das coordenadas estaticas. O hori-
zonte estd representado pelas diagonais r = [ e divide o espaco dS; em quatro
regioes. As regioes representadas pelos triangulos esquerdo e direito incluem
os polos norte e sul, representados por r = 0. Os triangulos inferior e superior
incluem as regioes assintéticas I~ e I™, respectivamente. As linhas com seta
indicam o sentido do vetor de Killing /9t em cada regiao.

2.2.5 Coordenadas estereograficas

Estas coordenadas sao obtidas da projecao estereografica do hiperboldide
representado pela Eq. (2.2) no espago de Minkowski de quatro dimensoes
com signatura (1, —1,—1,—1). Ela é dada por

2
Y=zt = -1 (1 + Z_l?) (2.35)

onde
1

= (2.36)

onde o2 = g, z"z" e as x* tomam valores no espago de Minkowski onde a
projegao estereografica é feita. Nestas coordenadas, o intervalo de de Sitter
assume uma forma conformalmente plana:

ds® = Q*n,,,dz"dz” . (2.37)

Estas coordenadas serao utilizadas sisteméticamente nos capitulos seguin-
tes. A importancia delas estd em que os geradores de simetria apresentam
uma grande semelhanca com os geradores de simetria do grupo de Poincaré.
Por esta razao, elas sao ideais para as aplicagoes no processo de contragao
que vamos definir no capitulo seguinte. Os geradores do grupo de simetria
nos outros sistemas de coordenadas, que sao de utilidade em outro tipo de
aplicagoes—como o estudo das simetrias assintéticas e as cargas conservadas
consistentes com estas simetrias, ou ainda no estudo das simetrias perto do
horizonte de eventos—sao apresentados no Apéndice A.
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2.3 Propriedades semi-classicas

Vamos agora entrar no terreno semi-classico da fisica no espaco de de Sitter.
Para este propdésito, vamos fazer uso das selelhancas entre a solucao de de
Sitter e as solucoes tipo buraco negro. Uma das caracteristicas de maior
interésse apresentadas na secao anterior € a presenca de um horizonte de
eventos neste espaco. Em particular, as coordenadas estaticas permitem es-
tabelecer uma semelhanca significativa com o horizonte de eventos presente
na solucao de Schwarzschild. A fisica dos buracos negros apresenta uma inte-
ressante interface entre os fendmenos cléssicos e quanticos associados com o
campo gravitacional. Para explorar um pouco melhor esta linha de interface,
nesta se¢ao vamos fazer uma revisao breve das leis classicas e os efeitos semi-
classicos da fifsica dos buracos negros. No final discutimos a generalizacao
destas idéias para o caso do horizonte cosmoldgico do espaco de de Sitter.

2.3.1 Termodinamica de buracos negros

Durante o final da década de 60 e inicio da década de 70, foram descobertas
uma série de leis que descrevem o comportamento classico dos horizontes de
eventos nas solugoes tipo buraco negro. Estes resultados foram chamados as
quatro leis da mecanica dos buracos negros [13]. Estas leis apresentam uma
estreita analogia com as leis que governam a termodinamica de sistemas em
equilibrio, e por isso foram propostas como uma generalizacao das leis da
termodinamica em sistemas que interagem com buracos negros. Por este
motivo, o posterior sucesso desta generalizagao promoveu a denominagao de
lets da termodinamica dos buracos negros.

Lei zero

Em um horizonte de eventos existe uma grandeza chamada de gravidade
superficial ky definida por meio da relacao

K'Y, K" = kg K", (2.38)

onde K" é um vetor de Killing tipo tempo. Esta grandeza assume um valor
constante em toda a superficie do horizonte. Esta caracteristica é semelhante
a condicao de equilibrio térmico onde a temperatura é constante em todo o
sistema.

Primeira lei e o teorema de “no-hair”

O teorema de ‘“no-hair” é um teorema de unicidade para as solucoes tipo
buraco negro. Essencialmente, ele diz que um buraco negro estaciondriot é
caracterizado somente por trés quantidades: massa M, momento angular J
e carga Q[14]. Em um processo geral envolvendo troca de matéria, energia

1Um buraco negro estaciondrio é uma solucdo das equacées de Einstein que apresenta
um horizonte de eventos e um vetor de Killing tipo tempo no “infinito”.
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e carga, os parametros que definem o buraco negro variam diferencialmente
segundo a expressao

SM = Z—HéAH + QpdT + Py, (2.39)
T

sendo Ay, Qy, e ®y, a area, velocidade angular e potencial elétrico do
horizonte, respectivamente. A massa e o momento angular sdo calculadas
usando as defini¢oes dos vetores de Killing tipo tempo K", e o vetor de
Killing que reflete a simetria sob rotacoes da solucao ¢". Esta expressao é
idéntica a primera lei da termodinamica quando pensamos em Ky como um
tipo de temperatura, e na area Ay como um tipo de entropia.

Segunda lei

E conhecida como teorema da drea [15]. Ele diz que a drea de um buraco
negro nunca decresce no tempo:

§Ay > 0. (2.40)

Em particular, quando dois buracos negros colidem, a area do horizonte do
buraco negro resultante é maior do que a soma das areas dos buracos negros
iniciais. Esta lei sugere uma analogia entre a area do horizonte de eventos
com a entropia termodinamica.

Terceira lei

Em analogia com a lei termodinamica que diz que é impossivel chegar até
uma temperatura zero em um sistema por meio de um processo fisico, a ter-
ceira lei diz que € impossivel obter kg = 0 por meio de um processo fisico.

As leis mencionadas acima oferecem uma analogia simples, mas ao mesmo
tempo sugestiva, entre as leis da termodinamica e a dinamica dos buracos
negros. Vamos examinar mais de perto algumas implicagoes dos enunciados
anteriores.

Relacao entre entropia e area: segunda lei generalizada da termo-
dinamica

A entropia conta o ntimero de estados acessiveis 2% de um sistema,
S =kpln , (2.41)

onde kg é a constante de Boltzman. Quando um sistema material complexo,
como por exemplo uma estréla, entra em processo de colapso gravitacional,
o estado final do processo é, segundo o teorema de “no-hair”, um estado
unico caracterizado pelos parametros M, J e (). Este resultado entra em
aberta contradicao com a segunda lei da termodinamica. O estado inicial de

$Vamos estar usando indistintamente os termos “graus de liberdade”, e “estados
acessiveis” de um sistema.
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sistema prévio ao colapso pode ter um numero de estados accesiveis muito
grande, mas, o estado final somente tem s6 um estado accesivel, a entropia
do sistema tem diminuido no processo! A mesma situacao acontece quando
um sistema ¢é jogado no interior de um buraco negro, aparentemente os graus
de liberdade do sistema sao “perdidos” atras do horizonte. Para resolver
esta contradigdo, Bekenstein [16, 17] propds uma rela¢do entre a entropia e
a area do horizonte de um buraco negro, por meio da relagao

Spu = TIAH; (2-42>

sendo 77 uma constante a ser determinada. A proposta de Bekenstein é que a
entropia “perdida” de um sistema jogado no interior de um buraco negro, é
compensada por um incremento na area do horizonte apds o processo. Com
isto, ele sugere que a area do horizonte é de fato a entropia do buraco ne-
gro. Para contornar a contradicao entre a segunda lei da termodinamica e
o resultado cléssico do teorema de “no-hair”, ele propos uma generalizacao
da segunda lei da termodinamica para incluir processos envolvendo interacao
com buracos negros. Nesta proposta, a soma da entropia dos sistemas or-
dindrios e a entropia associada com os horizontes dos buracos negros constitui
a entropia total do sistema. Esta entropia obedece a sequnda lei generalizada
da termodinamica:

0Stotat = 0(Sm + Spr) > 0, (2.43)

onde 5, ¢ a entropia do sistema interagindo com o buraco negro.

Radiacao de Hawking

Se a associacao entre area e entropia proposta por Bekenstein é levada a
sério, a expressao (2.39) leva a pensar em Ky como um equivalente da tem-
peratura do horizonte do buraco negro (salvo um fator numérico). Porém,
se ele tivesse associada uma temperatura, ele deveria emitir algum tipo de
radiacao. No contexto puramente classico, um buraco negro é um objeto que
nao emite nenhum tipo de radiagao. Porém, considerando efeitos ao nivel
semi-classico, Hawking calculou [18] que um observador longe do horizonte
do buraco negro deteta um fluxo de particulas provenientes das vizinhangas
do horizonte distribuidas em um espectro Planckiano de radiacao térmica
com temperatura
hkpc?

N 2rGk B '
Com este resultado o papel de kg como uma temperatura fica bem estabele-
cido, e a0 mesmo tempo é fixada a constante 1 da equagao (2.42) como sendo
1/4. Desta forma

(2.44)

H

k’BAH

4l% ’
(com Ip = (Gh/c*)Y? =~ 1.6 x 10733cm, o raio de Planck) é a entropia do
horizonte de um buraco negro. Este é a equac¢ao de Bekenstein-Hawking para

a entropia de um buraco negro. Em termos destas quantidades, e equacao
(2.39) se escreve

Spr = (2.45)

SM = TydSpy + QudJ + ©16Q. (2.46)
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Como exemplo, vamos tomar a solucao de Schwarzschild:

dr?

2 _ 1 —92GM 2 2
ds* = ( GM/c*r) dt (1= 2GM /)

— r%(df* + sin? 0d¢?). (2.47)

Nesta solucao, Q@ = J =0, e ky = 1/4M. A drea é Ay = 4mr¥, com rg o raio
de Schwarzschild rg = 2GM/c?. E facil verificar que estes valores satisfazem
(2.46).

2.3.2 Horizontes cosmologicos

Vimos na secao 2.2 que o espago de de Sitter tem um horizonte de eventos
para cada observador inercial. Nas coordenadas (2.23) foi facil identificar o
horizonte explicitamente e estabelecer algumas semelhancas com o horizonte
da solugao de Schwarzschild (2.47). Gibbons e Hawking [19] notaram que
este horizonte também apresenta uma gravidade superficial, e por meio de
técnicas Euclidianas semi-classicas, também calcularam um espectro térmico
de particulas provenientes do horizonte com temperatura

Tys = 51 (2.48)
ou, Tys = hc/2mlkp, com todas as constantes dimensionais. Uma forma
simples de entender este resultado ¢ por meio da relagao existente entre a
temperatura e o periodo Euclidiano das fungoes de Green que descrevem um
sistema termodinamico. E um fato conhecido (veja se por exemplo a se¢ao 3.7
de [20]) que quando as fungdes de Green de um sistema possuem um periodo
P no tempo imaginario, o sistema descrito tem uma temperatura associada
T = 1/P. Para calcular o periodo Euclidiano no espago de de Sitter, vamos
usar a métrica nas coordenadas globais (2.7). Fazendo a continuagao analitica
ao tempo imaginario 7 — 47 desta métrica, obtemos

—ds® = ?dr? + 1% cos*(c7 /1)dQ3, (2.49)

a qual tem periodo P = 27l, e consequentemente temperatura Tys = 1/2ml.

Da mesma forma, uma entropia pode ser atribuida ao horizonte de de
Sitter. Na métrica (2.24), a drea do horizonte de de Sitter é Age = 4ml*. A
entropia, segundo a Eq. (2.45), é

A
Sus = f = nl?, (2.50)

ou Sgs = kp Ags/41% = 7 kg l?/Gh, com todas as constantes dimensionais.

Até aqui, a analogia dos dois casos funciona muito bem, mas é um pouco
mas sutil tentar ver se a primeira lei da termodinamica funciona da mesma
forma que no caso de um buraco negro. Numa solucao tipo buraco negro
é relativamente simples entender o significado do termo de massa-energia,
dado que esta é a massa da fonte que origina a solugao. Mas, no caso de de
Sitter, esta fonte nao existe dado que este espago é uma solucao de vacuo
das equagoes de Einstein. Assim, nao é imediato saber que termo colocar
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no lado esquerdo da primeira lei da termodinamica, equacao (2.39). Para
resolver esta dificuldade, vamos usar a identificagdo formal entre o termo
cosmolégico com um fluido perfeito, com equacao de estado

Eys

Pas = —€das = = (2.51)

sendo pgs a pressao, Fys e €45 a energia e a densidade de energia do termo
cosmolégico, e V' o volume contido no interior do horizonte de de Sitter.
Consequentemente, temos que adicionar um termo de trabalho na primeira
lei da termodinamica do horizonte de de Sitter, obtendo

6EdS = TdS 6Sd5 — Pds oV. (252)

Para um termo cosmoldgico constante, é considerando pouco plausivel a pos-
sibilidade de uma evaporacao do horizonte de de Sitter, imagem que sim ¢é
razoavel no caso de um buraco negro. A energia, a entropia e o volume do
horizonte de de Sitter sao constantes de fato, e a equacgao anterior é satisfeita
trivialmente. Agora, se considerassemos um termo cosmoldgico dependente
do tempo, como vamos apresentar no capitulo 5, o raio de de Sitter, e todas
as grandezas envolvidas na equacao (2.52) tornam-se varidveis. Neste caso,
usando que V ~ [3, o qual implica

oV 3
— ==l
Vv 7
a equagao (2.52) pode ser resolvida para a energia, obtendo
ctl
Eijs = ——. 2.
5= (2.53)

Antes de continuar, vamos examinar a origem do sinal negativo na energia
(2.53). Para comegar, observemos que existe uma diferenca fundamental
entre as solugoes de Schwarzschild e de Sitter: a solucao de Schwarzschild
é valida fora do horizonte de eventos, e o vetor de Killing tipo tempo, que
¢é utilizado para calcular a energia da solugao, estd bem definido na regiao
externa ao horizonte. Por outra parte, o vetor de Killing tipo tempo 0/0t,
utilizado na solucao de de Sitter, esta definido no interior do horizonte. Seu
carater e orientacao, portanto, mudam nas regioes exteriores ao horizonte, da
forma como foi explicado na figura 2.5. A energia (2.53) refere-se, entao, a
energia na regiao interior ao horizonte. Agora, se atribuissemos uma energia
negativa ao interior do horizonte, devido a mudanca de orientacao do vetor
de Killing na regiao externa, nos vemos forcados a atribuir uma energia
positiva na regido externa.¥ Feito isto, podemos fazer uma comparacao com
o caso de um horizonte de buraco negro, onde a solucao ¢ valida no exterior
do horizonte. Baseados neste argumento, podemos afirmar que a expressao
correta para a energia associada ao setor externo do horizonte de de Sitter é

c*l
2G°

YUma discussdo detalhada deste ponto pode ser encontrada em [11].

Eus =+ (2.54)
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E importante observar que a unica grandeza que vai mudar de sinal ao ul-
trapassar o horizonte é a energia. A consisténcia deste resultado pode ser
verificada observando que para uma energia positiva a equacao de estado
(2.51) d& origem a uma pressao negativa, como é requerido pela energia es-
cura.

Utilizando agora a analogia com o caso do buraco negro, podemos esperar
que a energia associada ao lado externo de horizonte coincida com a energia
no interior do horizonte. Quando existe um vetor de Killing tipo tempo
e = (1, 6) associado com as translagoes no tempo 0/0t, esta energia pode
ser escrita na forma (veja-se por exemplo [21])

Eug = / Vh T, & n’ d*z, (2.55)
r<l

sendo h o determinante da métrica induzida em uma secao t = constante,
T,, representa a densidade de energia-momento do termo A, e n* = &*/¢.
Agora, no sistema de coordenadas estaticas (2.23), temos que

§= 18" = (gup &) = (go0)'/* e Vh = (g11)"? r*sin 6.
Fazendo uso da defini¢ao invariante da densidade de energia-momento
eqs = Ty n*' 0,
é facil ver que afim de obter a energia (2.54), devemos ter

3ct

€ds
Desta expressao inferimos que a energia associada ao horizonte de de Sitter
coincide com a densidade de energia escura relacionada com um termo cos-
molégico positivo. Note-se adicionalmente que a energia cresce linearmente
com [ entretanto que a densidade de energia decai com [~2. Finalmente, ¢
importante observar que um decaimento no termo cosmolégico implica neces-
sariamente criagdo de matéria no interior do horizonte [22] (este aspecto vai
ser discutido no capitulo 5). Naturalmente, quando o Universo se expande
e a matéria é criada, este deixa de ser um Universo de de Sitter. Porém, a
nocao de horizonte vai continuar existindo, e as propriedades termodinamicas
associadas com ele ainda vao estar bem definidas. E claro que um tratamento
completo do problema requer da introducao das fungoes termodinamicas da
matéria criada.
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Capitulo 3

Contracoes do grupo de de Sitter

3.1 Introducao

O espacgo de de Sitter é semelhante ao espaco de Minkowski no sentido que
compartilham a propriedade de serem espacos homogéneos e maximalmente
simétricos. Neste capitulo, vamos explorar estas semelhancas e apresentar as
implicagoes da presenca da constante cosmoldgica A no grupo de simetria. O
capitulo esta organizado da seguinte forma: na segao 3.2 vamos apresentar
uma revisao geral do procedimento de contragao de grupos de Lie [23, 24, 25];
na sec¢ao 3.3 vamos aplicar este procedimento ao caso particular do grupo de
de Sitter e vamos obter os diferentes limites possiveis com os parametros c e A.
Os limites nao relativisticos que vamos revisar seguem as referéncias [26, 27].
No final desta secao, em 3.4.3, vamos nos concentrar no limite formal A — oo
cujo resultado é o chamado sequndo grupo de Poincaré [28]. Finalmente,
vamos dedicar a secao 3.5 ao estudo das propriedades geométricas do espago-
tempo resultante neste limite [29, 30].

3.2 Contracao de grupos de Lie

O processo de contracao de grupos consiste em obter de um grupo deter-
minado GG, um outro grupo G’ nao isomorfo ao primeiro por meio de um
procedimento de limite. Uma das motivacoes originais para estudar o pro-
cesso de contracao, foi ver como o grupo de Galilei podia ser obtido como o
limite nao relativistico do grupo de Lorentz. E natural pensar que o grupo
de Galilei aparece como o limite para uma velocidade da luz infinita, ja que
as transformagoes de Galilei sao obtidas como limite das transformacgoes de
Lorentz neste limite. Porem, este processo de “tomar o limite” do grupo de
Lorentz para obter o grupo de Galilei, deve ser definido de forma precisa,
dado que o resultado pode depender da representacao inicial escolhida. Para
ter uma idéia de como isto acontece, vamos tomar a representagao matricial
do grupo de Poincaré em uma dimensao

coshA sinh A a,
A= sinhA coshA a; |,
0 0 1
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onde /
1 v/c

simth\= ———— ; coshA\= ——M—
[1—v2/2]/2 [1— 02/
v € a velocidade relativa entre os dois sistemas de referencia, ¢ é a velocidade
da luz e a,, a; sdo as componentes de um vetor que representa as translagoes
no espago-tempo. Tomando o limite nao relativistico ¢ — 0o, a representagao

anterior transforma-se em

(3.1)

1 0 a,
A — 0 1 Qg 5
00 1

a qual é uma representacao do grupo das translagoes em um espaco com
uma dimensao espacial e uma translagao no tempo, mas nao é uma repre-
sentacao do grupo nao homogeéneo de Galilei em uma dimensao. Porem, se
aplicassemos uma transformacao de similaridade com a matriz dependente
de ¢

C:

S OO0
O = O
_ o O

e redefinissemos os parametros por meio de b, = ca,, e depois aplicassemos
o limite ¢ — oo, o resultado é

1 v b,
CAC'—= 01 a |,
0 0 1

a representacao apropriada do grupo de Galilei!.

Por meio deste exemplo simples, vemos que o processo de obter um grupo
como caso limite de um outro nao isomorfo requer uma parametrizagao apro-
priada das representagoes. Muitas vezes, como vamos ver no caso do grupo
de de Sitter, é necessario fazer manipulagoes e redefini¢oes apropriadas nos
parametros e nos geradores do grupo para se obter o resultado desejado. Em
seguida vamos revisar a definicao precisa do processo de contragao.

3.2.1 Definigcao

Considere-se um grupo de Lie n-dimensional G, com X; (i = 1,...,n) e a’ os
geradores e os parametros do grupo respectivamente. Os geradores satisfazem
as relagoes de conmutacao :

sendo cfj as constantes de estrutura do grupo. Agora vamos efetuar uma

transformagao linear nao singular no grupo mediante a matriz U], obtendo
os novos geradores:

Y, =U/X;. (3.3)
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Neste processo também ficam redefinidos os parametros, as relagoes de con-
mutagao e as constantes de estrutura do grupo
a =UY ; [Vi,V]=CLY, ; CL=UU"G, (UL (34)

n

Se a matriz U é nao singular, a estrutura do grupo permanece inalterada,
mas com U singular, a estrutura do grupo ird mudar, e vamos obter um novo
grupo como resultado da transformacao. Vamos considerar uma matriz U
que depende linearmente num parametro € > 0 na seguinte forma

J_,J J
Ul =u +ew! (3.5)

(2

e vamos supor que a matriz U é nao singular quando € é finito, mais torna-se
singular no limite em que ¢ — 0. Adicionalmente, vamos assumir que as
matrizes u e w podem ser escritas na forma

. I, O _W_UO
- 0 O ’ SN0 Ly )

onde v é uma matriz com posto r < n, e p =n —r. Nem sempre é possivel
escrever as matrizes da forma anterior, e assim uma condigao para a possibi-
lidade de efetuar o processo de contracao é que esta decomposicao possa ser
feita. A fim de distinguir os geradores do subgrupo respeito do qual a contra-
¢ao é feita, vamos definir subindices adicionais nos geradores X e Y. Assim,
aplicando a transformacao (3.5) da forma indicada acima, vamos obter

Yie = Xu+ed vhXy,  (v=1,...7) (3.6)
pn=1

Yo = eXoy A=r+1,..,n) (3.7)

os parametros de grupo vao mudar da forma

r

aV = b+ EZ bl (v=1,..,7) (3.8)
pn=1

a® = e* A=r+1,..,n), (3.9)

se o limite € — 0 resultasse bem definido, vemos como o grupo G vai ficar
contraido ao subgrupo definido pelos parametros a'*. Isto explica o motivo
do nome contragao para este processo.

Agora, vamos analisar as condi¢oes nas quais este limite resulta de fato
bem definido. Como vamos nos interessar sé no limite em que € vai para
zero, vamos manter s a parte singular em e. Por exemplo, fazemos isso nas
relagoes de comutagao

T ; 1 n
Vi, Yiu] = ; ClpYin + Az; G Yor +0(e), (3.10)

onde O(e) representa os termos lineares e de ordens maiores em €. A fim
de obter um limite finito nas relacoes de comutagao quando € vai para zero,
devemos ter que

Ay, =0 myr=1..mA=r+1,..n (3.11)
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isto ¢é os geradores X, expandem um subgrupo em G. Pode-se verificar que
de fato (3.11) ¢ a tnica condigao para o limite € — 0 existir. Com a condi¢ao
(3.11) as novas constantes de estrutura no limite ¢ — 0 tomam os valores

Clls,ly = Ciz,lw 012;,\,11/ = 0122,111 =0 (312>
Cllz,m = 0, 012;1\,2)\ = 012:,2)\ (3-13>
0215,21/ = 022;);,21/ =0 (314>

as quais satisfazem a relacao de Jacobi
Ci;Cii + C3Cif + CLCi = 0, (3.15)

que é a condicao para formarem um grupo de Lie. No final do processo
obtemos um novo grupo G’ nao isomorfo com o grupo inicial G, mas com o
mesmo numero de dimensoes. O grupo é contraido com respeito do grupo S
expandido pelos geradores X, e os geradores Xy, tem sido contraidos. A
relagao (3.12) mostra que existe um subgrupo S’ C G’ isomorfo com S. As
relagoes (3.13) e (3.14) expressam que existe um subgrupo invariante abeliano
A em G. O subgrupo S é isomorfo ao grupo fator A em G'.

3.2.2 Exemplos

Agora, vamos revisar um par de exemplos com o objetivo de deixar mais
clara a definicao do processo. Os dois exemplos que vamos dar aqui, sao a
contracao do grupo de rotacoes para o grupo de translacoes, e o segundo, a
contracao do grupo de Lorentz no grupo de Galilei.

Rotacgoes

Os geradores do grupo de rotagoes em trés dimensoes J;, (i = 1,2, 3) satisfa-
zem a algebra
[Jm Jj] = €ijkjk (3-16>

Para maior clareza, vamos abrir a notacao acima e vamos escrever a algebra
na forma explicita

i, o) =3 5 oy sl =1 5 [Js, i) = Ja (3.17)

Vamos contrair o grupo respeito do subgrupo gerado pelo operador Js, e
vamos redefinir os geradores na seguinte forma

[3 = Jg 3 Il = 8J1 3 [2 = 8J2. (318)
No limite € — 0, a algebra (3.17) fica
[11,12] =0 3 [Ig,]g] = Il X []3, Il] == ]2. (319)

Esta é a algebra do grupo de translagoes e rotacoes no plano Euclidiano.
O que esta acontecendo geometricamente neste exemplo pode ser entendido
da seguinte forma: o gerador das rotagoes no eixo z permanece inalterado,
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entanto que os geradores nos eixos x e y sao restringidos para agir infinitesi-
malmente. Infinitesimalmente estes geradores agem como sendo translacoes
no plano x — y, eles comutam entre sim mas nao com o gerador das rotacoes
no eixo z. O parametro usado neste processo de contragao é o angulo de
rotagao nos eixos z, € .

Lorentz

O segundo exemplo que vamos ver é a contragao do grupo de Lorentz respeito
do grupo de rotagdes . O grupo é expandido pelos geradores Log (o, 3 =
0,...,3) que satisfazem a &lgebra

[Labs Led] = ObeLiad + aalive — ObaLac — acLlpa (3.20)
[La07 Lbc] = (sabLOc - 5aCLOb (321)
[La07 LbO] = me (322>
onde (a,b,... = 1,2,3). Redefinindo os geradores da forma
Lab = Lab ) Ta = 8LaO (323>

onde € = 1/c. Indo para o limite £ — 0, obtemos a dlgebra
[Taa Lbc] - 5ach - 5ach ; [Tm Tb] =0 (324)

que ¢é a algebra do grupo homogéneo de Galilei que contem as rotacoes, e
as transformacoes a um sistema de referencia em movimento relativo em 3
dimensoes. Desta forma vemos como no limite em que a velocidade da luz vai
para infinito o grupo de invariancia da relatividade especial contrai-se para
o grupo de simetria da mecanica newtoniana. Um procedimento semelhante
leva do grupo de Poincaré para o grupo nao homogéneo de Galilei que inclui
as translacoes no espaco e no tempo.

3.3 Os espacgos e grupos de de Sitter

Nesta secao vamos nos concentrar nas propriedades algébricas do espago de
de Sitter. Para os nossos objetivos vai ser de particular interesse o uso das
coordenadas estereograficas (2.35) definidas no capitulo anterior. Nestas co-
ordenadas é possivel ressaltar as semelhancas estruturais entre o grupo de
Poincaré e os grupos de de Sitter e anti-de Sitter, os quais vamos tratar si-
multaneamente. O estudo das propriedades fundamentais do grupo de de
Sitter, assim como as suas representacoes e a contragao para o limite A — 0,
pode se encontrar no trabalho de Giirsey [31].

3.3.1 Os espacgos de de Sitter

Espagos com curvatura escalar R constante sao maximalmente simétricos,
o que significa que eles tém o maior niimero possivel de vetores de Killing,
geradores do grupo de simetrias. Dada uma signatura na métrica, existe um
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unico espago para cada valor de R [32]. O espago de Minkowski M, com
curvatura escalar nula, é o exemplo mais simples. Seu grupo de simetrias
é o grupo de Poincaré P = L ©® 7, o produto semi-direto entre o grupo de
Lorentz £ = SO(3,1) e o grupo Abeliano das translagoes 7. Este tltimo
age transitivamente em M, e a sua variedade de grupo pode ser identificada
com M. De fato, o espaco de Minkowski é um espaco homogéneo sob P, na
verdade o quociente

M =P/L.

Entre os espacos curvos, o espago de de Sitter, e o de anti-de Sitter sao os
unicos possiveis com curvatura escalar negativa e positiva respectivamente (o
sinal da curvatura escalar depende da convencao na signatura da métrica ado-
tada.). Assim como foi apontado no capitulo anterior para o caso do espago
de de Sitter, estes espacos podem ser definidos como hipersuperficies nos
espacos “ambiente” pseudo-Euclideanos E*! ¢ E32, com coordenadas Carte-
sianas (x?) = (X% x% x% X%, x*) satisfazendo respectivamente

nasxX' X" = (X" - () -0 - )P - () =0

UABXAXB = (XO)Q . <X1)2 o <X2)2 o (X3)2 + (X4)2 — 12'
Vamos usar o alfabeto Latino (a,b,c... = 0,1,2,3) para denotar indices na
algebra e no espaco tangente. Utilizando a notagao n,, para a métrica de
Minkowski n = diag (1, —1, —1, —1), e introduzindo a notacdo s = n,
podemos estudar os dois casos simultaneamente:

Nab Y +s (X4)2 =s/? (3.25)

Definindo a coordenada adimensional x* = x*/I, temos que

1
B+ S0 = (3.26)
Para s = —1, temos o espago de de Sitter dS(4, 1), cuja métrica é induzida

da métrica pseudo-Euclidiana nap = diag (+1,—1,—1,—1,—1). Ele tem o
grupo pseudo-ortogonal SO(4,1) como grupo de simetrias. O caso s = +1
corresponde ao espago de anti-de Sitter space, denotado por dS(3,2). Ele
provem da métrica nap = (+1,—1,—1,—1,+1), e tem SO(3,2) como grupo
de simetrias. Ambos s@o espagos homogéneos [33]:

dS(4,1) = SO(4,1)/L e dS(3,2) = SO(3,2)/L.

Adicionalmente, cada variedade de grupo é um fibrado com o correspondente
espago de de Sitter ou anti-de Sitter como espaco base, e o grupo de Loretnz
L como fibra [34]. Estes espagos sao solugao das equacoes de Einstein sem
fontes, sempre que a constante cosmoldgica A e o parametro de de Sitter [

estejam relacionados por
3s
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Nas coordenadas estereograficas (2.35) com métrica (2.37), a conexao de
Christoffel assume a forma

I = 10207, + 6,07 — nwn’] 05 [In Q(x)], (3.28)

e o tensor de Riemann

A
R'uz/pa = - § [5upgya - 5“091//)] . (329>

Consequentemente, o tensor de Ricci e a curvatura escalar sao ,
R, =—-Ag, and R=—4A (3.30)

Na convengao adotada aqui, o espaco de de Sitter (anti-de Sitter) possui
curvatura escalar negativa (positiva).

3.3.2 Os grupos cinematicos

O grupo de isometrias de um espaco tempo sempre vai ter um subgrupo que
da conta da isotropia do espaco e a equivaléncia de sistemas de referencia em
movimento relativo. Além disso, existe uma parte do grupo de simetrias que
¢é responsavel da homogeneidade do espaco-tempo. Esta parte do grupo ¢
chamada geralmente de translagoes a qual pode ser comutativa ou nao. Isto
acontece naturalmente na cinematica Galileana e outros tipos de cinematicas
nao relativisticas concebivel [35]. O caso melhor conhecido de cinemdtica
relativistica é o grupo de Poincaré P. Ele estd associado naturalmente com o
espaco de Minkowski M, sendo seu grupo de simetria. O grupo de Poincaré
esté constituido pelo produto semi-direto do grupo de Lorentz £ = SO(3,1) e
o grupo das translagoes 7. Este ultimo age de maneira transitiva em M. De
fato, o espago de Minkowski M é um espaco homogéneo sob P, na verdade o
quociente M =7 = P/L. A invariancia de M sob P reflete a uniformidade.
O subgrupo de Lorentz proporciona a nocao de isotropia localmente, e a
invariancia sob translacoes faz que a simetria seja obtida em qualquer outro
ponto do espaco. Este é o significado usual da nogao de uniformidade, no qual
T é responsavel pela equivaléncia entre todos os pontos do espago-tempo.

Uma vez estabelecidas estas nogoes, vamos analisar o grupo de simetria
dos espacos de de Sitter e anti-de Sitter. Nas coordenadas cartesianas y“, os
geradores das transformagoes infinitesimais sao

0 0
c c
Jap = nac x oy 1BOX i (3.31)

que satisfazem as relagoes de comutacao
[JaB, Jep] = neeJap +NapJsc — nppJac — NacIBo- (3.32)

Em termos das coordenadas estereograficas {x}, estes geradores assumem a
forma
Jab = Lab = Nac x€ Pb — Nbe x¢ Pa (333)
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S
Jia = —s (l Pat Ka> , (3.34)
onde 5
Po= o= and K, = (20ap2°2° — 0°8,°) P. (3.35)

sao respetivamente os geradores das translagoes e as transformagoes confor-
mes proprias. Para s = —1, elas dao lugar ao grupo de de Sitter, e para
s = +1, dao origem ao grupo de anti-de Sitter SO(3,2). Os geradores J,;, se
referem ao subgrupo de Lorentz SO(3,1), en tanto que J,4 definem a transi-
tividade nos correspondentes espacos homogeneos, e transformam como ve-
tores sob transformacoes de Lorentz. Em termos da decomposicao anterior,
podemos ver explicitamente estas propriedades nas relagoes de comutacao

[Jaba ch] = nchad + nadec - ndeac - nachd7 (336>
[J4a7 ch] = nabJéLc - 77acJ4b7 (337>
[J4a, J4b] = —SJab. (338)

Vemos na Eq. (3.34) que estes espagos sao transitivos sob uma mistura
de translagoes e transformagcoes conformes proprias. A importancia relativa
destas duas componentes é pesada pelo valor da constante cosmologica. Em
particular, para uma constante cosmoldgica nula, como vamos ver, os dois
espacos de de Sitter e anti-de Sitter transformam-se no espago de Minkowski
M com o grupo de Poincaré como grupo de simetrias.

3.4 Limites de contracao

Agora vamos apresentar os varios limites de contracao dos grupos de de
Sitter. Para obter os diferentes limites é necessario fazer redefini¢oes apro-
priadas dos parametros e os geradores. Nestas redefinicoes vamos sempre
levar em conta as duas constantes ¢ e [ e vamos apontar como elas entram na
redefinicao dos parametros, e o significado dos limites que estamos tomando.
Uma ampla discussao dos aspectos algébricos e geométricos da contragao no
limite nao relativistico encontra-se em [26].

3.4.1 Constante cosmoldégica nula

Para o estudo do limite (I — o0), é conveniente escrever os geradores de de
Sitter na seguinte forma

Jab = Lab = Nac ¢ Pb — TN x° Paa (339>
¢ J, 1
_ Yad
Ha:T—S(Pa+S @Ka>- (340)

Os geradores Ly, dao origem as transformgoes de Lorentz usuais agindo no
espago de Minkowski e satisfazem as relagoes de comutacao

[Lab7 Lcd] = nbcLad + nadLbc - 77bclLac - nacLbd- (341)
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As outras relagoes de comutacao as quais descrevem o setor transitivo, escre-
vem se

[HCL? LbC] = nabHc - nacHln (342)

[, 0, = ——Ly, (3.43)

-5
Para | — oo, os geradores II, se reduzem as translacoes ordindrias, e o grupo
de de Sitter contrai-se ao grupo de Poincaré P = L @ 7. Junto com as
modificagoes na algebra e no grupo, o espago de de Sitter transforma-se no

espago de Minkowski
M =7P/L,

o qual é transitivo sob translacoes ordinarias.

3.4.2 Limite nao relativistico: espagos de Newton—Hooke

Os espacos de Newton-Hooke podem ser considerados como limites nao re-
lativisticos do espago de de Sitter. A principal caracteristica destes espagos
é que apresentam uma curvatura constante nao nula herdada do espago de
de Sitter. O efeito da curvatura aparece explicitamente nos geradores de
translacao. A redefinicao apropriada neste caso é:

I—ab = Jab ) I—iO = JaO/C ’ Ta = SJa4/C7— ) TO = SJO4/7_> (344)

onde a,b,... = 1,2,3 sao indices na algebra, e 7 = /¢ é mantido constante

no processo. Estas redefinigdes nos geradores correspondem a modificar os

parametros de grupo w®?, de tal forma que w® — w®; W — cw®; W* —

ectw®, e w® — erw®. Os fatores sao absorvidos nos parametros de grupo
redefinidos, e estes adquirem dimensionalidade. Em termos dos geradores

redefinidos, a algebra de de Sitter resultante de (3.32) toma a forma

[I—aba I—de] = 5bd|—ae + 5ae|—bd - 6be|—ad - 5ad|—be (345)
[Lab, Lao] = Obalao — Saaleo (3.46)
1
[Lob, Loe] = nge (3.47)
[Lavs Ta] = 0paTa — baaTo (3.48)
1
[La(]aTb] = g(sabTO (349)
[LCLO)TO] - _Ta (350)
[Laps To] = 0 (3.51)
s
Ta Tl = ——zlw (3.52)
s
[Ta, To] = §La0 (3.53)
[To,To) = 0 (3.54)
(3.55)
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Esta é a parametrizacao apropriada para obter a algebra do grupo de
Newton—Hooke. Tomando o limite ¢ — oo obtemos

[Lab, Lae] = Obalac + daclia — Obelad — daalse (3.56)
[Labs Lao] = Obalao — Gaaleo ; (3.57)
[Lov, Loe] = 0 (3.58)
Lo, Ta] = paTa — daaTy ; (3.59)
[Laos o] = 0 (3.60)
Laos Tol = —Taj; (3.61)
[Lab, To] = 0; (3.62)
[T, o) = 0; (3.63)
[Ta, To] = %Lao; (3.64)
[To, To] = 0, (3.65)

o qual reproduz a dlgebra do grupo de Galilei, com a importante diferenca
exibida na equagao (3.64), que mostra a ndo comutatividade entre as transla-
¢Oes espaciais e temporais. Este efeito é originado pela curvatura nao -nula
destes espacos herdada da curvatura do espaco de de Sitter [26]. E importante
observar que 7 deve permanecer finito no processo para ter um resultado bem

definido.

3.4.3 Constante cosmoldgica infinita

E importante enfatizar que o limite A — oo deve de ser entendido como
um limite formal puramente cldssico j4 que neste caso estariamos tomando
valores arbitrariamente pequenos para o raio de de Sitter [. Para as escalas
de comprimento implicadas neste limite, espera-se uma influencia impor-
tante de efeitos de natureza quantica, podendo aparecer como um impe-
dimento para atingir escalas arbitrariamente pequenas. O interesse funda-
mental deste limite estd em que ele proporciona um modelo consistente da
estrutura algébrica do grupo de simetrias quandoé introduzida uma escala
de comprimento pequena, como por exemplo a escala de Planck, e pode ser
de eventual relevancia no estudo da fisica por tras desta escala.
Neste caso vamos rescrever os geradores da forma:

Z_—Jab - J_4Jab = ﬁac x* Pb - 7?bc x° Pa (366)

[, = 4l Loy = s(41*P, + sK,,). (3.67)

A diferenga com relacao as redefinigoes apresentadas anteriormente é que,
neste caso, estamos introduzindo o fator ¢~* nos geradores de Lorentz. A
justificativa para se introduzir este fator vai ser entendida melhor na seguinte
secao na qual definimos uma métrica invariante conforme no espago-tempo
resultante no limite. De qualquer forma, a presenca deste fator nao vai alterar
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as relagoes de comutacgao do setor de Lorentz, dado que ele é um invariante de
Lorentz. Com estas redefini¢oes, as relagbes de comutagao (3.32) se escrevem

[zaln Z_-/cd} = ﬁbciad + ﬁadibc - ﬁbd[_/ac - 77(101_—de (368>
L, IL,] = —si’Ly (3.69)
[]-:[ay Ebc} - nabl:-[c - 'r]acl:-[b‘ (37())

No limite [ — 0, os geradores I, se transformam nos geradores das trans-
formagoes especiais conformes K, e as relagoes de comutagao (3.70) tomam
a forma

[ﬁaa ]-:[b] =0 ; [ﬁaa I_/bc] = 7f/abl:Ic - nacﬁba (371)

entretanto, a parte correspondente as transformacoes de Lorentz permane-
cem iguais. O grupo resultante contrai-se para o chamado sequndo grupo
de Poincaré (28], o grupo de Poincaré conforme P = L @ T, isto é o pro-
duto semi-direto do grupo conforme de Lorentz £ e o grupo coforme proprio
7. Consequentemente, com a contracdo do grupo, o espaco de de Sitter
transforma-se em
N=7P/L.

Este é um novo tipo de espago maximalmente simétrico [29], ao qual va-
mos nos referir como espaco cone N. Vamos estudar as suas propriedades
geométricas na segao seguinte.

3.5 O espaco cone

Agora, vamos apresentar o enfoque geométrico das carateristicas do espago-
tempo resultante da contracao formal A — oco. O primeiro que temos a dizer,
é que desde o ponto de vista mético, este espago nao resulta bem definido.
O limite [ — 0 na métrica (2.37) leva em
lim g, =0, lim g" — oo. (3.72)
Porém, ainda é possivel definir una métrica compativel com este grupo de
simetrias e que ao mesmo tempo reflete a estrutura métrica nas regioes
asintoticas do limite | — 0. A métrica que é invariante sob o grupo de
simetrias P é*
ds? — d3? = Ty daxda®, (3.73)

onde
ﬁab = 0_4 Nabs ﬁab = 04 Uab- (374)
A invariancia de (3.74) sob P vai ser mostrada explicitamente ao calcular os
vetores de Killing. E interessante observar que os espagos de Minkowski M e
o espacgo cone N e os seus geradores de simetria podem ser relacionados por
meio da inversao espacgo-temporal
xa

A —— (3.75)

o2

*Vamos utilizar também os indices latinos para denotar coordenadas no espaco cone.
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De fato, sob a inversao espacotemporal (3.75), os pontos no infinito em M,
sao levados no vértice do cone N, e os pontos no cone de luz da origem em
M sao levados em pontos no infinito em /N. Adicionalmente, utilizando esta
inversao, o intervalo de M é levado no intervalo de N

ds® — d5* = T darda’. (3.76)

Ao mesmo tempo, é um fato conhecido [36] que a inversao (3.75) relaciona
as translagoes com as transformagoes conformes préprias:

P, — K,. (3.77)

Por tltimo, é conveniente escrever os geradores das transformagoes de Lorentz
em termos da métrica do espaco onde eles agem. Desta forma, como foi
anunciado previamente na secao 3.4.3, estes geradores sao definidos na forma

Loy = 0 Jap = Tae 2 Py — e € P,. (3.78)

Antes de continuar, vamos resumir algumas das caracteristicas importan-
tes deste espaco. Ele é transitivo sob transformacoes conformes préprias,
representa um espago-tempo vazio, onde toda a energia esta concentrada na
forma de uma densidade de energia escura infinita [29]. Ele é resultado de um
tratamento puramente cldssico, e por esta razao, efeitos quanticos poderiam
evitar que um processo determinado chegasse até este estado. Um esquema
grafico do que acontece no processo de contracao apresenta-se na figura 3.1.

3.5.1 Geometria

A métrica (3.74) do espago cone leva na conexao de Christofell
D¢ = 20 2% (1ad 0% + 1o 0°a — Tab 0a).- (3.79)
Em termos de 7, escrevemos
T = 0 = 2622 (1aa 6% + Toa 0% — Tab 6%a), (3.80)

onde 62 = 7, 2. E f4cil ver que os correspondentes tensores de Riemann
e Ricci se anulam e consequentemente a curvatura escalar também se anula.
Exceto na origem, onde a métrica ¢ singular e o tensor de Riemann nao pode
ser definido, o espago cone N é um espaco plano.

3.5.2 Vetores de Killing

Agora, vamos resolver a equagao de Killing para a métrica invariante com-
forme (3.74). Os vetores de Killing resultantes &,, serao chamados de vetores
de Killing comformes.! A equacdo de Killing L¢fj,, = 0, pode se escrever da
forma

V& + Vi&a = 0, (3.81)

"Estes vetores nao devem de ser confundidos com os vetores solucdo da equacdo de
Killing conforme Le¢g,, = Q%g,..
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Figura 3.1: A figura da uma idéia esquematica do que esta acontecendo no
processo de contragao no limite A — oco. Tanto dS como AdS se aproximam
a0 mesmo espaco conico N no limite A — oc.

onde V, é a derivada covariante na conexao I'%,. Usando a equagao (3.80),
esta pode se reescrever na forma

ﬁac abgc + ﬁbc aaéc + ﬁab 80(111 5_4> gc =0. (3'82>

A correspondente solucao é

£(z) = a%(6%6," — 2Meq 2 ) + B 2, (3.83)
sendo ¢ and (% = — 3° constantes de integracao. Assim, os dez vetores de
Killing

5&) (l’) = 62 5ca - 277cd $d x* (384)
e
ggcd) ($) = 5(10 Tq — 6ad L, (385)

geram o conjunto de solugoes da equagao de Killing. Os quatro vetores
32 (x) representam as transformagoes conformes préprias, entanto que os seis
vetores §gcd)(x) representam as “rotacoes” no espaco-tempo. A existéncia de
dez vetores de Killing, mostra o carater maximalmente simétrico do espago

N.

3.5.3 Invariantes de Casimir

Os campos relativisticos ordinarios, e as particulas associadas a eles, estao
classificadas como representacoes do grupo de Poincaré P = L @ 7. As
representacoes estao determinadas pelo valor dos dois operadores invariantes
de Casimir do grupo que estao associados com a massa (m), e o spin (s) de
cada particula. Entre todas as possiveis representagoes do grupo de Poincaré
[38], a Natureza parece dar preferéncia as séries discretas, cujas representa-
¢oes se classificam segundo os autovalores dos dois operadores invariantes

Cy = e P*P" = O = —m?¢? (3.86)

31



Cy = Y WW? = —m?c?s(s + 1), (3.87)
sendo W% o vetor de Pauli-Lubanski
1

we = §eabcdpbscd. (3.88)

Qualquer métrica v, invariante sob a a¢ao do grupo proporciona redefini¢oes
destes invariantes, porém a escolha mais direta é a métrica de Lorentz 1,,. O
primeiro invariante de Casimir s6 envolve os geradores das translacoes, fixa
a massa, define o operador Laplaciano, e a equacao de Klein-Gordon que é
satisfeita por todos os campos relativisticos, se escreve

(O +m?c®)p = 0, (3.89)

O segundo invariante, é o quadrado do vetor de Pauli-Lubanski, o qual fixa
o spin da particula.

De maneira analoga, os operadores de Casimir do grupo de Poincaré con-
forme P = L @ T podem ser construidos com a métrica v, = 74 € 0S
geradores Sy, e K, ¥, resultando

Cy = Ny KK* =0 = —m?c?, (3.90)
m é o equivalente comforme da massa. Identificando 9°9, = m?, encontramos
m? = o* m?. (3.91)
Consequentemente, a equacao de Klein-Gordon conforme é
(O + m?c®)¢ = 0. (3.92)
Por outra parte, o segundo invariante de Casimir ¢é
Cy = Ny WW° = —m?c?s(s + 1), (3.93)

sendo W o vetor de Pauli-Lubanski conforme
17a 1 abed
wWe = 56 KbScd- (394)

3.5.4 Propriedades termodinamicas

Vamos agora analisar o comportamento das propriedades termodinamicas
deste espaco limite. Segundo as nogoes introduzidas na segao 2.3.2, a tem-
peratura (dstemp) torna-se infinita, enquanto a entropia (2.50) anula-se. Fi-
nalmente, a energia §2.53) associada com o horizonte de de Sitter também

¢é nula neste limite. E importante enfatizar ainda que a energia é nula, sua
densidade (2.56), torna-se infinita. A razado deste comportamento, é que o

tOu alternativamente, os operadores de Casimir podem ser obtidos tomando o limite
I — 0 dos operadores de Casimir do grupo de de Sitter.
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volume delimitado pelo horizonte, anula-se a uma velocidade maior do que a
energia.

Pode-se dizer que as condi¢oes mencionadas acima correspondem muito
bem com a idéia das condicoes iniciais para um Universo tipo big-bang. E
interessante também observar o fato de que o espaco de Minkowski, sendo
obtido no limite de uma constante cosmoldgica nula, apresenta temperatura
nula, entropia infinita,® e energia infinita com densidade nula.

50 conceito de entropia estd intimamente ralacionado com a nocdo de informacio
acessivel a um observador. A informacao acessivel a um observador no espago de de
Sitter esta limitada pela presenca de um horizonte de eventos. No espago de Minkowski,
a inexisténcia de um horizonte de eventos para um observador inercial permite dizer que
a informacao acessivel para ele ¢ ilimitada.
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Capitulo 4

A relatividade de de Sitter

4.1 Introducao

Neste capitulo, vamos apresentar as nocoes do que seria uma relatividade
restrita baseada no grupo de de Sitter. Vamos manter sempre a analogia
com o caso de relatividade restrita baseada no grupo de Poincaré, de tal
forma que em cada passagem do estudo vamos estar revisando as nogoes
usuais e comparando-as com as novas nocoes introduzidas.

Uma idéia assumida geralmente é que a escala de Planck representa um
limite de interface entre os fenomenos gravitacionais e a mecanica quantica.
Em particular, argumentos de consisténcia sustentam a idéia de que os efei-
tos quanticos da gravitagao levam a uma quebra da simetria de Lorentz e
consequentemente a relatividade restrita é invalidada perto desta escala [39)].
A fim de obter este tipo de quebra da simetria de Lorentz perto da escala de
Planck sem produzir modificacoes significativas na relatividade restrita longe
desta escala, tem se apresentado recentemente a idéia de uma “relatividade
deformada”[40]. Neste tipo de teoria, a simetria de Lorentz é deformada
por meio da introducao de um parametro s proporcional ao comprimento
de Planck [41]. Esta deformagcao sugere que perto desta escala, o grupo de
simetrias de uma teoria quantica da gravitacao é este grupo “k-deformado”
o qual reduz para o grupo de Poincaré longe desta escala. Neste capitulo
vamos apresentar uma abordagem diferente baseada no grupo de de Sitter,
o qual incorpora de forma natural uma escala invariante de comprimento
dentro de sua estrutura, mas nao implica uma quebra da simetria de Lorentz
(tratamentos semelhantes podem ser encontrados em [42, 43]).

Pare ter uma melhor idéia de como podemos pensar numa relatividade de
de Sitter, vamos brevemente relembrar a relacao existente entre os grupos de
de Sitter e Galilei por meio do processo de contracao visto no capitulo ante-
rior e no processo inverso, o chamado processo de expansao [24, 25]. Podemos
pensar que o grupo de Poincaré apresenta as conseqiiéncias de se introduzir
uma escala fundamental de velocidade no grupo de Galilei. Inversamente,
o ultimo pode ser obtido do grupo de Poincaré tomando o limie formal, em
que esta escala de velocidade tornasse infinita (o limite nao relativistico).
Da mesma forma, podemos pensar que o grupo de de Sitter apresenta as
implicacoes de introduzir uma escala de comprimento e uma escala de velo-
cidade invariantes dentro do grupo de Galilei. No limite formal em que dita
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escala de comprimento tornasse infinita, o grupo de de Sitter, contrai-se ao
grupo de Poincaré onde somente temos a escala de velocidade invariante. E
interessante observar que a ordem em que os processos sao efetuados nao é
relevante. Se introduzimos no grupo de Galilei uma escala invariante de com-
primento, vamos obter como resultado o grupo de Newton-Hooke estudado
na secao 3.4.2 (ou em [26]), o qual descreve uma cinematica nao-relativistica
na presenga de uma constante cosmoldgica (curvatura) [44]. Adicionando
a este grupo a escala invariante de velocidade, vamos obter como resultado
novamente o grupo de de Sitter. Inversamente, o limite de baixas velocidades
do grupo de de Sitter da como resultado o grupo de Newton-Hooke, o qual
contrai-se para o grupo de Galilei no limite de uma constante cosmoldgica
nula.

Uma propriedade crucial do grupo de de Sitter é que ele conserva o carater
de quociente e, portanto a nocao de homogeneidade. Assim como na rela-
tividade restrita, cujo espaco subjacente de Minkowski é o quociente dos
grupos de Poincaré e Lorentz, o espaco subjacente da relatividade de de Sit-
ter, é o quociente dos grupos de de Sitter e Lorentz, isto é o espaco de de
Sitter [43]. Agora, um espago e chamado de transitivo sob certo conjunto
de transformagoes—ou homogéneo sob ele—quando qualquer par de pontos
nele podem ser colocados em contato por meio de uma das transformagoes
pertencentes ao conjunto. Por exemplo, o espaco de Minkowski é transitivo
sob translagoes espaco-temporais. O espaco de de Sitter, por outra parte
como foi mostrado no capitulo anterior, é transitivo sob uma mistura das
translagoes e as transformacoes conformes proprias cuja importancia relativa
¢é determinada pelo valor da constante cosmoldégica.

Em termos muito gerais, a relatividade de de Sitter pode ser interpretada
como a composicao de duas relatividades diferentes: a relatividade ordinaria
que esta relacionada com as translagoes, e um tipo de relatividade conforme
que estd relacionada com as transformacoes especiais conformes. Devido ao
carater de quociente, o espaco de de Sitter vai ser modificado quando acon-
tecer alguma modificacdo no grupo de simetrias. Ao longo deste capitulo
vamos desenvolver esta idéia, e explorar a relacao existente entre a estrutura
algébrica nos limites de contragao, bem como a resposta destas modificagoes
nos respectivos espagos subjacentes. A importancia dos limites apresenta-
dos aqui, em particular o limite formal de A — o0, é que espera-se que o
grupo de simetria seja de interesse para a fisica além da escala de Planck, no
mesmo sentido que o limite nao-relativistico descreve a cinematica por trés
da mecanica cldssica. E claro que esta expetativa é de carater puramente es-
peculativo, porém o fato dos grupo de simetria estarem bem definidos nestes
limites permite considerar seriamente este tipo de expectativa.

4.2 A relatividade de de Sitter

Vamos comegar a construcao da uma relatividade restrita baseada no grupo
de simetrias de de Sitter. Como foi apresentado no capitulo anterior, na
reatividade especial o espaco de Minkowski subjacente aparece como um
quociente entre o grupo de Poincaré e o grupo de Lorentz. De maneira

35



similar, numa relatividade de de Sitter o espaco subjacente é o quociente
entre o grupo de de Sitter e o grupo de Lorentz. Este aspecto é crucial ja
que isto garante a permanéncia da nocao de homogeneidade. Em vez do
espaco de Minkowski, o espaco homogéneo aqui vai ser o espago de de Sitter
dsS(4,1) =S0(4,1)/L.

O alfabeto grego (u, v, p,... =0,1,2,3) serd usado para denotar os indices
nos espago de de Sitter; assim, por exemplo, {z*} denota as coordenadas
do espago. O alfabeto latino (a,b,c... =0,1,2,3) denota a dlgebra quadri-
dimensional de de Sitter, assim como em ambos limites do espaco de de Sitter,
isto é no Minkowski M, e no espaco cone N. Isto permite a introducao de
uma tetrada holonomica 0%, a qual satisfaz

N = 5au5bu Nab, ﬁuu = 5(1“(51711 Nab- (41>
Como conseqiiéncia, podemos escrever também

0% =g xta’ = N 2" (4.2)

2 = Mab 2%l = Nw 2H 2, (4.3)

onde temos identificado z* = 0%, ,2*.

4.2.1 Transitividade e a nocao de distancia

Os dois tipos de transformacao concorrentes na definicao dos geradores que
definem a transitividade no espaco de de Sitter, dao origem a duas nocoes
diferentes de distancia: uma que estd relacionada com as translacoes, e outra
relacionada com as transformacoes especiais conformes. A importancia rela-
tiva destas duas nocoes depende do valor de A. O valor de referéncia para
estabelecer a magnitude relativa das escalas de comprimento vai ser a escala
de Planck [p; assim no contexto de uma relatividade de Sitter, os limites de
“altas e baixas energias” estarao caracterizados por Al% — 1 e Al% — 0,
respectivamente.

Distancia translacional

A primeira nocao de distancia estd relacionada com as translagoes. Esta
nocao como sabemos é importante para valores pequenos de A, para os quais
as translacoes sao a parte dominante nos geradores de transitividade. Neste
regime, é apropriado utilizar a reparametrizacao proporcionada pela equacao
(3.26),

Ko (z) o + () =1, (4.4)

onde

Kg=—1/1 (4.5)

representa a curvatura Gaussiana do espaco de de Sitter. Vamos introduzir
a tetrada nao-holonoma
ht, =Qdo*,. (4.6)
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Se ng denota a métrica de Minkowski, a métrica de de Sitter neste caso
pode-se escrever

G = 0% B, 0y = Q2 (2) My (4.7)
Esta métrica define a nocao de “distancia translacional”, cujo intervalo é
dr* = g, datdz” = Q*(z) ny, datdz”. (4.8)
Para [ — 0o (A — 0), ele reduz-se ao intervalo invariante de Minkowski:
dr? — ds® = 1, dztdx". (4.9)
Por outra parte, para [ — 0 (A — o0), ele vira singular, o que significa que
esta nocao de distancia nao faz sentido no espaco cone N.
Distancia conforme

A segunda nocao de distancia é aquela relacionada com as transformacoes
conformes proprias. Dado que estas transformacoes sao de importancia domi-
nante no limite A — 00, seu estudo apropriado requer re-escrever a equacao
(3.26) na forma

Ko Q*(x)a* + (}X)? =1, (4.10)
onde ) .
Q(z) = % Ue) = = T am7en (4.11)

¢ o novo fator conforme e )
Kg=—161° (4.12)

¢ a curvatura Gaussiana conforme. Introduzimos agora a tetrada nao-holo-
noma

he, = Q(z) 6%, (4.13)

Se 74, denota a métrica do espaco cone, a correspondente métrica de de Sitter
neste caso pode-se escrever

Guw = huR°, Ty = Q% (2) Ty (4.14)

Esta define a nocao de “distancia conforme”no espago de de Sitter, cujo
intervalo invariante tem a forma

d7* = gy, da'da” = QO () 7, detdx”. (4.15)

Para | — 0 (A — o0), de Sitter contrai-se para o espaco cone N, e d72
reduz-se ao intervalo invariante conforme em N:

d7* — ds* = 0, dztdz”. (4.16)

Dada a nocao de transitividade neste tipo de espaco, esta é a tnica nog¢ao de
distancia que pode ser introduzida de maneira consistente em N. Paral — oo
(A — 0), ela torna-se singular, o que indica que esta nocao de distancia nao
faz sentido em Minkowski M.
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Duas métricas, uma curvatura

Como foi indicado no capitulo anterior, a conexao de Christoffel e o tensor
de Riemann para a métrica de de Sitter g,, sao respetivamente,

F’\W = [(V‘M(WV + 5>\u50u — 7]“”77)“’] 0, [In Q(x)] (4.17)
¢ 1
Rty = — B (0" ,Gv0 — 0" 5G] - (4.18)

Por outra parte, a conexao de Christoffel para a métrica g, ¢
F/\;w = [5’\“5% + 5/\1150# — ﬁm,ﬁ’\"} Oy [ln Q(x)} ) (4.19)
Similarmente, o tensor de Riemann é
R* e = —160% [6" 000 — 0" 5Gup) - (4.20)

Os dois tensores de Riemann R*,,, e R“l,pa representam a curvatura do
espaco de de Sitter. A diferenca estd em que enquanto que R",,, representa
a curvatura apropriada para o limite de uma constante cosmolégica pequena,
R“,,p,, representa o tensor de curvatura apropriado para o outro limite. Pode-
se ver que os dois limites levam a um espaco-tempo com curvatura nula. Esto
indica que tanto M como N sao espacgos planos.

4.2.2 As transformacgoes de de Sitter

As transformagoes de de Sitter podem ser pensadas como rotagoes em um
espaco-tempo de cinco dimensoes,

X’C =Ap P, (4.21)

onde A®p é o elemento do grupo na representacao vetorial. Dado que estas
transformacoes deixam invariante a forma quadratica

—napx*x" =1, (4.22)

elas deixam invariante o préprio parametro [ (pela prépria definigao do
grupo). A forma infinitesimal destas transformagoes é

1
5}(0 = égABLAB Xc, (423)

gAB

onde sao os parametros do grupo, e Lap os geradores.

Constante cosmolégica pequena

Para A pequena, analogamente com as identificacoes (3.33) e (3.40), defini-

mos os parametros
et =E% e =" (4.24)
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Neste caso, em termos das coordenadas estereograficas, as transformacgoes
infinitesimais assumem a forma

1
dxf = 3 €® Loyt + €I,2°, (4.25)
ou equivalentemente
eb
0z = € x® + € — - (Qxbxc — 026bc) ) (4.26)

No limite A — 0, estas transformacoes reduzem-se as transformacoes de
Poincaré, como ja vimos no capitulo anterior, as quais deixam invariante a
forma quadratica

Nap '’ = 1, (4.27)

sendo u® = dx®/ds a quadri-velocidade.

Constante cosmolégica grande

Para A grande, analogamente as identificagdes (3.66) e (3.67), definimos os
parametros

e =0'&% and & =E&™/4l (4.28)

Neste caso, em termos das coordenadas estereograficas, as transformacoes
infinitesimais assumem a forma

1 _ _
oz = 3 €% Loy ¢ + €11, 2, (4.29)
ou equivalentemente

01 = €42 — €@ (2zpa° — 0°0,°) + 4I%€, (4.30)

€, = €My = €. imi — Z -
onde €° cb = ¢%. No limite A oo, elas reduzem a uma trans

formagao conforme de Poincaré, as quais deixam invariante a orma quadrética
Ny 0" = 1, (4.31)

onde @* = dx®/ds é a cuadri-velocidade conforme.

4.2.3 Os geradores de Lorentz

Até agora temos estudado as transformacoes de de Sitter em um espaco-
tempo de Minkowski. Na sequéncia, iremos estudar a forma dos geradores
correspondentes em um espaco de de Sitter, que é o espaco-tempo de uma re-
latividade especial de de Sitter. Isto sera feito contraindo-se os geradores que
agem no espaco-tempo de Minkowski com as tetradas apropriadas. Vamos
comegcar considerando os geradores de Lorentz.
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Constante cosmolégica pequena

Para A pequena, os geradores das transformacoes infinitesimais de Lorentz
sao (ver a segao 4.2.2)

Loy, = Nacx®Py — npexP,. (4.32)

Os correspondentes geradores agindo no espago de de Sitter podem ser obti-
dos contraindo L, com a tetrada h®,, dada em (4.6):

L, =hh, Ly = g,,2" P, — g,,2" P,. (4.33)
Equivalentemente, podemos escrever
L, =, 2" P, —n,,2" P,). (4.34)
A correspondente matriz da respresentacao vetorial é

(S/u/))\p = Gux 51//) — Gux 5up' (435)
Por outra parte, a representacao espinorial é
7
(S,LLV))\p - Z[’Y,ua ’Yu]a (436)
onde v, = h%,7, sao as matrices de Dirac dependentes do ponto. Para
[l — o0, de Sitter reduz-se a Minkowski, e os correspondentes geradores de
Lorentz reduzem-se aos geradores usuais das transformagoes de Lorentz em

Minkowski.
Agora, os geradores £, satisfazem as relacoes de comutacao

[»C;w; Lp)\] = gz/pﬁ,u)\ + g,u)vcz/p - gl/z\ﬁ,up - gupﬁu)\- (437>

Mesmo agindo no espaco de de Sitter, estes geradores apresentam uma es-
trutura algébrica bem definida, isomorfa a dlgebra de Lie usual do grupo de
Lorentz. Esta é uma propriedade fundamental no sentido que ela permite a
construcao de uma relatividade bem definida, no sentido algébrico, no espago
de de Sitter.

Constante cosmolégica grande

Para A grande, os geradores das transformacoes infinitesimais de Lorentz
(ver a secao 4.2.2)

I_/ab = ﬁaCZECPb — ﬁbcIcPa. (438)
Num espago de de Sitter, sua forma explicita pode se obter contraindo (4.38)
com a tetrada h®,, dada pela equagdo (4.13):

L, =h,h° Loy = §up2” P, — Gup 2’ Py, (4.39)

p =

ou equivalentemente,

L, =Ny 2’ P, — i, P,). (4.40)
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Estes geradores satisfazem as relagoes de comutacao

[E,uua Epk} = f]ypﬁ_;m + gu/\/jv,o - gu)\‘c_,up - gupﬁ_v% (4-41>

Da mesma forma que £,,, eles apresentam uma estrutura algébrica tipo
Lorentz. A correspondente matriz da representagao vetorial, é neste caso,
dada por

(SMV))\p = g,u)\ 5Vp - gy)\ 5;/)’ (442)

enquanto a representacao espinorial é

(SMV))\p = i[%m /?V]a (443)

com 7, = f_la# Y. as matrizes de Dirac dependentes do ponto. Para [ —
0, o espaco de de Sitter, reduz-se ao espaco cone N, e os correspondentes
geradores de Lorentz reduzem-se aos geradores das transformagoes de Lorentz
conformes.

Relatividade conforme

A relatividade de de Sitter pode ser vista como a composicao de dois tipos
diferentes de relatividades: a usual, relacionada com as translagoes, e a con-
forme, relacionada com as transformagoes especiais conformes. E uma tnica
relatividade que interpola estes dois casos extremos. No limite da contracao
de uma A nula, a relatividade de de Sitter reduz-se a relatividade restrita
ordinaria. O espaco subjacente reduz-se ao espaco de Minkowski M, o qual
¢é transitivo somente sob translagoes. No limite de contracao oposto, de uma
A infinita, a relatividade de de Sitter reduz-se a relatividade conforme. O
espago subjacente vai ser o espaco cone N, o qual é transitivo somente sob
transformacoes conformes préprias.

Podemos dizer que a relatividade conforme é o limite da relatividade de
de Sitter para uma constante cosmoldgica infinita. Esta é a relatividade que
governa a equivaléncia entre os sistemas de referéncia no espaco cone N.
Note-se que esta é uma equivaléncia no sentido conforme. De fato, lembre-
se que dois pontos no espaco cone nao podem ser relacionados por meio
de uma translagao, mas somente por meio de uma transformacao conforme
prépria. De acordo com isto, a cinematica serda governada pelo chamado
grupo conforme de Lorentz cujos geradores sao

Lab = T_]ac x¢ Pa — T_]bc ¢ Pa. (444)

As correspondentes representacgoes vetorial e espinorial sao os casos limites
das expressoes (4.42) e (4.43), e sao dadas por

(Sab)d” = Tad 0° — 7ba 0o (4.45)

- 1
Sab = Z_l [f_yaa f_Yb]a (446>
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onde 7, = —0 27, é um tipo de matiz conforme de Dirac. Observe-se que o
anti-comutador das 7,’s gera a métrica do spaco cone:

{f_}/aa i/b} =2 ﬁab‘ (447)

Naturalmente, assim como o espaco cone N, esta teoria limite deve ser in-
terpretada como puramente formal. Esta teoria é o que a fisica classica
conduziria, sendo entao a relatividade classica por tras da fisica quantica na
escala de Planck.

4.2.4 Os geradores das “translacoes” de de Sitter

Assim como no caso dos geradores de Lorentz, a forma dos geradores II* e
I1* agindo no espago de de Sitter pode ser obtida por meio das contragoes
com a tetrada apropriada. Para A pequena, eles sao dados por

I, =hr, 1= Q [P, — (1/4P)K,] , (4.48)
onde
P,=0/0z" e K,= (2n,2'2" —05°,")P,. (4.49)

Por outra parte, para A grande, eles sao
I, =nr0°=Q (P, — (1/4*)K,) . (4.50)

Vemos destas expressoes que o espago de de Sitter é transitivo sob uma
combinacao dos geradores das translacoes e as transformacoes conformes
proprias. Para A — 0, II,, reduzem-se ao gerados das translacoes, as quais
definem a transitividade em M, entretanto que para A — 0, II,, reduzem-se
ao gerados das transformacoes conformes préprias, os quais definem a tran-
sitividade em N.

4.2.5 Relagoes de energia-momento

Agora, vamos considerar a mecanica das particulas puntuais no espaco de de
Sitter. As correntes de Noether conservadas associadas com uma particula
de massa m s@o, neste caso, o momento angular em cinco dimensoes [31]

dx? dx*
AB _ A _ B
AP =me <X X ) (4.51)

com dr o elemento de linha de de Sitter (4.8). A fim de ter contato com as
defini¢oes usuais de energia e momento, vamos re-escrever as correntes acima
em termos das coordenadas estereograficas {z®} e o elemento de linha de
Minkowski ds. O resultado é

NP = g9 pb — 2P p” (4.52)

A% = Ip® — (1) ke, (4.53)
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onde

d a
p* =mc) ’ (4.54)
s
é o momento, e
k= (200 2 2% — 0 6,%) p° (4.55)

¢ o chamado momento conforme. Sua forma no espago de de Sitter pode ser
obtida por meio da contracao com as tetradas apropriadas.
Limite de baixas energias

Para Al% — 0, analogamente aos geradores, definimos o momento de de
Sitter

)\a4 ka
¢ = =p* - —. 4.56
T 42 (4.56)
A correspondente versao espago-temporal é
= ht oo M 4.57
= hot'nt =t - s (4.57)
onde I
p— e 4.58
¢ o momento de Poincaré, e
k' = (2my, 2° 2" — o §,7) p* (4.59)

é o correspondente momento conforme de Poincaré.* Observamos que 7 é o
momento de Noether conservado relacionado com as transformagoes geradas
por II,. Sua componente zero

0 o K
=p — — 4.60
representa a energia, enquanto as componentes espaciais (¢,7,...=1,2,3
t=p'— — 4.61
=0 (4.61)

representam o momento. A presenca da constante cosmoldgica, em conse-
qiiéncia, muda as definigbes usuais de energia e momento [45]. Como resul-
tado, as relagoes de energia-momento também vao ser modificadas [46].

De fato, a relacao de energia-momento na relatividade de de Sitter vem
dada por

14 1 14 1 14
gt =%, (p“p — ﬁp"’k + Wk“k ) . (4.62)

As componentes do momento de Poincaré p* sao

P = (g—cpp> : (4.63)

*Analoga a identificacdo p* = T"°, com TH" a corrente de energia-momento, o momento
conforme k* é definido por k* = K*Y, com K" a corrente conforme [36].
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onde ¢, e p’ sdo respetivamente a energia e o momento usuais. Como ¢ bem
conhecido, eles satisfazem a relagao 1, p'p” = m*c?, onde m?c? é o primeiro
Casimir do grupo de Poincaré. Analogamente, as componentes do momento
conforme k* sao

Ek ;
k= (—, k;) , (4.64)
c
sendo ¢, a nocao conforme de energia, e k! as componentes espaciais do
momento conforme. O momento conforme satisfaz 7, k"k” = m?c?, onde

m2c? é o primeiro invariante de Casimir do grupo conforme de Poincaré.

Utilizando as expressoes acima, a relagao (4.62) fica

8—12’—1)2:m202+L [epsk —ﬁ-/;—mmf—i (i—k‘z—mzc2 } .
812 \ 2
(4.65)
Para valores pequenos de A, o parametro de de Sitter [ é grande, e as mo-
dificagoes nas relacoes de energia-momento vao ser pequenas. Até primeira
ordem em A, temos

2
€ 1 r1e,e
P 2 2 2 pck
= —p">2m-c + =
c? 2012 L ¢?

—ﬁ-E—mmCQ]. (4.66)

No limite de A — 0, as nogoes ordinérias de energia e momento sao recupe-
radas, e a relatividade de de Sitter reduz-se a relatividade restrita ordinaria,
na qual a simetria de Poincaré é exata. A relacao de energia-momento, neste
caso, reduz-se a expressao usual

2

C—g —p*=m?c (4.67)

Limite de alta energia

Para Al% — 1, em analogia com os geradores, definimos o momento de de
Sitter

7 = 4\ = 41%p* — k. (4.68)

A correspondente versao espago-temporal é
*“—B“*a—4l2 41Ppt — k" 4.69
W:aﬂ—g(p—). (4.69)

Observamos que 7 é o momento de Noether relacionado com as trans-
formagoes geradas por II,. Sua componente zero,

70 = 4 41%p° — kY 4.70
7= S (P — k), (4.70)

representa a energia conforme, enquanto as componentes espaciais

) 412 ) )
7= — (4%p' — k) (4.71)

o2
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representam o momento conforme. A relagdo energia-momento neste caso é
dada por

Gu 'R =161 Q% 0~ 1, [160'p"p" — 8PPpIK” + kME”] . (4.72)

Em termos das componentes de energia e momento, ela fica

6—%—1{;2 = m2c? + 812 {@ —ﬁ-%—mrth—%Q (8—72’ —p2—m2c2)}
c c c
(4.73)
Para valores grandes de A, o raio de de Sitter [ é pequeno. Até primeira
ordem em [?, temos que
£k

— kK ~m?c? + 81 [%—ﬁ-g—mfncﬂ. (4.74)

c? c?

No limite formal Al% — oo, somente permanecem as nogoes conformes da
energia e do momento, e a relatividade de de Sitter reduz-se a relatividade
conforme pura. Neste caso, a relagao energia-momento fica

+ kP =m?c (4.75)

E importante observar que, dado que as nocoes de energia e momento mu-
dam na presenca da constante cosmoldgica, a mecanica quantica também
muda [45]. Em particular, as relacdes de incerteza vao ser modificadas, e no
limite acima, elas estarao dadas em termos das nogoes conformes de energia
e momento.

4.3 Observacoes finais

Devido ao caracter homogéneo do espaco de de Sitter, existe um subgrupo
isomorfo ao grupo de Lorentz. Neste sentido, este esquema de modificagao do
grupo de simetrias respeita a simetria de Lorentz como parte das simetrias.
Da mesma forma que a introdugao de uma escala invariante de velocidade
na cinematica Galileana leva a uma estrutura causal por meio da introdugao
do cone de luz, a introducao de uma escala invariante de comprimento leva
a uma modificagao na estrutura causal do espago-tempo. A maneira como
é modificada a estrutura causal é por meio da introdugao de um horizonte
de eventos para cada observador inercial, na forma como foi apresentado no
capitulo 2. Vimos que o horizonte tem uma descricao simples em termos
das coordenadas estaticas: ele é a superficie com coordenada radial r =
[. Em termos das coordenadas estereograficas que temos usado de maneira
sistematica ao longo deste capitulo, a expressao para o horizonte de eventos

7

(§
2?42+ 22 =12/ and (2°) =13(2 - 1/Q)% (4.76)

Para A pequeno, o “raio” do horizonte tende a infinito, e assim um observador
tem acesso causal a uma regiao maior do espacgo-tempo. No caso limite
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de Minkowski, um observador inercial tem eventualmente acesso ao espaco-
tempo inteiro. Por outra parte, para um A muito grande (isto é, para A% —
1), esta regiao é da ordem da escala de Planck, onde espera-se mudancas
profundas na estrutura causal do espaco-tempo. Em conclusao, a introducao
de uma escala de comprimento invariante nao leva a uma quebra da simetria
de Lorentz, mas a sua presenca reflete-se numa modificagao no dominio causal
para qualquer observador inercial neste espago.

Na relatividade restrita existe um limite superior para a velocidade: a ve-
locidade da luz. Na relatividade de de Sitter, o parametro [p aparece como
um limite inferior de distancia. Diferentemente do caso do limite superior
para a velocidade, este limite para [ nao aparece como conseqiiéncia da ci-
nematica ou da causalidade, mas sim como conseqiiéncia de consideracoes
quanticas. Para ver isto, observe que a area do horizonte de de Sitter é
proporcional a (2

AdS ~ l2. (477)

Dado que a entropia associada com esta superficie é proporcional ao logaritmo

do nuimero de estados,
l2
n = Ags/l5 ~ R (4.78)
P

e dado que o minimo valor atingivel acontece com n = 1, vemos que o minimo
permitido para [ estd na ordem do comprimento de Planck.

Finalmente, é importante mencionar as mudancas na definicao dos cam-
pos relativisticos. Se o grupo de simetria muda, isto deve se refletir no
conceito de campo relativistico. Por exemplo, no contexto da relatividade de
de Sitter, um campo escalar deve ser interpretado como uma representacao
singleto do grupo de de Sitter, e nao do grupo de Lorentz. FEntre outras
conseqiiéncias, a equacao de Klein-Gordon vai ter uma forma diferente. Para
A arbitrario, temos que

O¢ +m2c ¢ — %qﬁ =0, (4.79)

onde O é o operador de Laplace-Beltrami na métrica (4.7), e R = —12/I>.
Note-se que nesta expressao aparece naturalmente o termo R/6, o qual é
interessante no caso em que m = 0 ja que as equacoes tornam-se invariantes
sob transformagoes conformes da métrica [47]. E claro que no limite de uma
constante cosmoldgica nula, vamos recuperar a equacao ordinaria de Klein-
Gordon. Por outra parte, no limite de A muito grande, a equacao anterior
assume a forma

O¢ +m2c ¢ — ?qb =0, (4.80)

onde O é o operador de Laplace-Beltrami da métrica (4.14). No limite formal
A — o0, ela se reduz a equagao conforme de Klein-Gordon (3.92).
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Capitulo 5

Termo cosmolégico dependente do tempo

5.1 Introducao

Nos capitulos 3 e 4 exploramos algumas conseqiiéncias algébricas de tomar
limites extremos da constante cosmoldgica. A motivacao foi puramente
cineméatica e nao pensamos em nenhum mecanismo que desse conta das
possiveis mudancas no valor da constante cosmoldgica. Porém, observagoes
recentes [1, 2] e a teoria inflaciondria [4] sugerem que o Universo pode ser
aproximado pela geometria do espacgo de de Sitter, tanto no passado como no
futuro remoto, com valores diferentes da constante cosmodgica. Isto torna
necessario pensar em algum tipo de mecanismo dinamico para explicar a
evolugao do termo cosmologico. Neste capitulo vamos apresentar um modelo
plausivel e simples para um termo cosmoldgico dinamico que consegue in-
corporar de forma consistente as caracteristicas do Universo atual sugeridas
pelas observagoes cosmoldgicas recentes.

5.2 Energia escura dinadmica e as equacgoes de Einstein

Vamos comecar relembrando a forma das equagoes de Einstein na presenca
de uma constante cosmoldgica e uma fonte de matéria:
4
c*A
vt oMl
8tG

(5.1)

onde T*, é o tensor de energia-momento do campo fonte. Estas equacoes,
junto com a identidade de Bianchi

Vv,.G", =0, (5.2)
e a lei covariante de conservacao da fonte
v, =0 (5.3)

implicam que o termo cosmolégico nao admite nenhuma dependéncia nas
coordenadas espacgo-temporais, isto €, A é uma constante de fato. Por outro
lado, dado que os modelos inflacionarios requerem uma constante cosmoldgica
muito grande nas etapas iniciais da evoluc¢ao do universo [4], e as observagoes
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recentes oferecem um valor muito menor na época atual [1, 2], esta constancia
aparece como um dos principais problemas da cosmologia atual [8].

Naturalmente, o cancelamento da uma divergéncia covariante, como na
equagao (5.3), nao corresponde a uma “lei de consevacao”ja que ela nao
fornece uma “carga”conservada. O papel desta “lei de conservacao” é re-
gular o intercambio de energia-momento entre as diferentes fontes (chamada
genericamente de matéria de agora em diante) e o campo gravitacional. Adi-
cionalmente, esta “lei” nao é necessariamente verdadeira em todas as cir-
cunstancias. Ela nao ¢ valida, por exemplo, no caso em que matéria esteja
sendo criada por alguma outra fonte independente. Como tem sido apontado
na literatura (por exemplo [22]) um termo cosmolégico decaindo, (ou energia
do vécuo decaindo), poderia ser esta fonte independente.

Para comecar, na presenga de um termo cosmoldgico nao constante, a
imposicao colocada pela identidade de Bianchi (5.2) nas equagoes de Einstein
(5.1), em vez de ter a forma em (5.3), assume a forma

V., [T, + A" =0, (5.4)

onde A¥, = g50",, é o tensor de energia-momento associado com o termo
cosmoldgico, sendo

A
- 8nG
a correspondente densidade de energia, a qual vamos nos referir como den-
sidade de energia escura. Em conseqiiéncia, o tensor de energia-momento
da matéria nao é conservado covariantemente. Somente a soma com o ten-
sor de energia-momento do termo cosmoldgico é que é conservado. A lei de
conservagao covariante (5.4) pode ser interpretada como uma restrigdo que
regula o intercambio de energia-momento entre a matéria, a gravitacao e a
energia escura. Em outras palavras, ela expressa a forma como a energia
escura é transformada em matéria, e vice-versa. Assumindo que A depende
somente no “tempo cosmolégico” ¢, a lei de conservagao (5.4) equivale a*

EA (5.5)

v, T =0, (5.6)
‘ 3 dA
C
I = ——
VT = g == (5.7)

com 7, j, k,=1,2,3. Vemos na equacao (5.7) que um termo com A decaindo
no tempo implica um tensor de energia-momento nao conservado covari-
antemente, e consequentemente matéria deve ser criada para compensar o
decaimento do termo cosmologico. Note-se que a energia total desta solucao
¢é conservada, apesar da criacao de matéria. Isto pode ser entendido melhor
quando colocamos as equacoes de Einstein com termo cosmoldgico na forma
potencial [48]

G

Cc

Op(V/—gS™,) =

*Nao vamos considerar casos com dependéncia espacial que podem levar em espagos
nao isotrépicos.

[V=g(t", +T", + A")], (5.8)
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onde §7*, = —S**, é o chamado superpotencial, e t*, é o pseudo-tensor de
energia momento do campo gravitacional. Devido a anti-simetria do super-
potencial nos primeiros dois indices, a densidade total de energia-momento,
a qual inclui o campo gravitacional, de matéria e do termo cosmoldgico, é
conservada:
O [V—=g(t", + T, + A*,)] = 0. (5.9)

Na verdade, esta ¢ a lei de conservagao de Noether devido a invariancia sob
transformacoes gerais de coordenadas.

E importante reforcar que a lei de conservacio covariante (5.7) ¢ diferente
da que aparece nos modelos de quintesséncia [49] ou “phantom fields” [50],
onde nao existe criacao de matéria pela interacao com o termo cosmoldgico.
Nestes modelos, de fato, o tensor de energia-momento do campo escalar que
modela o termo cosmoldgico é a entidade conservada. Por ultimo, apesar
da criacao continua de matétria neste cendario, devemos ressaltar que este
mecanismo ¢é diferente do apresentado pelo modelo do campo C' introduzido
por Hoyle e Narlikar [51], dado que neste modelo nao se introduz um campo
escalar como modelo para a evolugao do termo cosmologico.

5.3 Equacoes de Friedmann

O ponto inicial das nossas consideracoes serda um espaco-tempo preenchido
somente com um termo cosmolégico muito grande (possivelmente infinito
[57]), com a possibilidade de decair e evoluir no tempo. As propriedades do
espaco-tempo resultante do limite A — oo foram ja apresentadas na secao
3.5. Assumindo que a matéria criada pelo decaimento do termo cosmoldgico
é isotrépica e homogeénea na forma de um fluido ideal, é natural pensar que
o tensor métrico resultante na presenca deste tipo de campo gravitacional
assume a forma da métrica de Friedmann-Robertson-Walker (FRW)

2

"
1 — kr?

ds? = A2dt* — a?

+ r2(d6? + sin” 0d¢?) | ,

onde a = a(t) é o fator de escala, e k é o parametro de curvatura das segoes
espaciais. As coordenadas sao as de um observador co-mével com as linhas
de fluxo do fluido perfeito, cujo tensor de energia-momento tem a forma

Tlul/ = (Em +pm>uuuu - pméww (510)

com p,, € &,, a pressao e a densidade de energia da matéria. Usando a
notacio 2 = ct, 2! =1, 22 = 0, e 2® = ¢, as componentes nao nulas de
(5.10) para este fluido serdo

T11 = T22 = T33 = — DPm,

TOO = &m-
A lei de conservagao (5.7), neste caso, fica
de, dep
Em L 3H(e,, + py) = — =2 5.11
o S H (et ) = — (5.11)
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com
Lo

T adt
o parametro de Hubble. Esta é uma das equacoes de Friedmann. De fato,
pode-se mostrar que esta equagao é obtida das equacoes de Friedmann usuais

da\> [87G Ac?T
) = |2 — | a®— ke 12
(dt) {302 Em T 3}a c (5.12)
¢ d? At 4ArnG
a c T
Z == 1
I [ 3 20 (Em ~|—3pm)} a, (5.13)

sempre que A seja dependente do tempo. E importante enfatizar que neste
tipo de modelo a matéria nao ¢ criada no momento do big bang: ela emerge
gradualmente a medida que o termo cosmoldgico decai.

Vamos supor que a matéria criada neste processo de decaimento do termo
cosmoldgico satisfaz uma equagao de estado da forma

Pm = Wi Em, (5.14)

onde 0 < w,, <1 é um parametro que depende do tipo especifico de matéria.
E claro que o conteudo de matéria do universo pode ter mais do que uma
componente, cada uma com um parametro w diferente na equacao. Estas
possibilidades devem de ser consideradas quando se pretende uma descri¢ao
completa da evolucao do universo. Aqui, longe de uma descricao detalhada
da histéria térmica do universo, vamos considerar uma tnica componente.
Neste caso, a equagao (5.11) fica

_dey
dt -

dem
Em L 3H(1 + wp)em =

- (5.15)

Por outra parte, a segunda equacao de Friedmann pode se escrever na forma

d?a 871G 1
== % en— 5 (14 3wn) en| a. (5.16)

5.4 Analise da evolugao

5.4.1 Caso geral

A equagao de Friedmann (5.15) estabelece um vinculo na evolugao de €,, e €,.
De fato, as duas densidades vao evoluir com a mesma dependéncia temporal
através do fator de expansao a(t). Em principio, qualquer comportamento
é possivel para estas densidades, mas é usual supor que &, evolui com uma
poténcia do fator de expansao,

Em=aa ", (5.17)
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sendo o uma constante de integracao das equacgoes, e n um nimero arbitrario,
nao necessariamente inteiro’. Neste caso, a equacio (5.15) implica

1+ wp) —
en = +°:l) Do, (5.18)

onde estamos supondo uma constante de integragao aditiva nula. Na presenca
de um termo cosmologico dinamico, dependendo dos parametros n e w, as
densidades de energia ¢, e ¢4 podem eventualmente ter a mesma ordem de
grandeza, como ¢ claramente indicado pelas observagoes recentes [3]. E claro
que estes parametros também podem levar a regimes em que as densidades
sao completamente diferentes. E interessante observar que o caso n = 0, que
corresponderia a um equilibrio entre a criagdo de matéria e a expansao (&, =
constante), é excluido pelas equagoes de Friedmann. Note-se adicionalmente
que para €j constante, a equacao (5.15) fornece a solucdo ¢, ~ q~30Fwm)
Nao entanto, para uma £, decaindo no tempo, é requerido que n esteja no
intervalo

0<n<3(14+wn). (5.19)

Dado que a matéria esta sendo criada continuamente, é natural para e,
evoluir a uma velocidade menor do que a=20+“m) o qual seria seu compor-
tamento se a matéria nao estivesse sendo criada.

Por outro lado, usando a equagao (5.14), assim como as relagoes (5.17) e
(5.18), a equagao de Friedmann (5.16) fica

d*a  3(1+ wp)F? (2 - n) i

n

a2 2

(5.20)

onde 3? = 87Ga/3c%. Desta equagao podemos ver que paran = 2, n > 2 e
n < 2, a expansao acelerada do universo seria respectivamente zero, negativa
e positiva. Esta propriedade explicaria eventualmente porque a aceleracao
era negativa no passado, e positiva hoje, como é também sugerido pelas
observacoes recentes. Adicionalmente, no caso de uma aceleracao positiva
(n < 2), os intervalos n > 1 e n < 1 representam respectivamente casos em
que a aceleracao é decrescente ou crescente, com o valor n = 1 representando
um universo com expansao acelerada constante, determinada por

d?a 31+ wy,)6?

dt? 2 '
Neste caso, a ~ t2, e temos as relacoes

A~a b~ H? ~t72

Finalmente notamos que, dado que os parametros w,, e n tém intervalos
muito limitados, nao se espera uma mudanca sensivel nos resultados anteri-
ores se w,, varia adiabaticamente com o tempo, ou se o conteiido de matéria
de universo tem mais de uma componente.

TA solugio (5.17) é certamente imposta a mao, mas é uma extrapolacio do caso em
que A é constante e n = 3w,.
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5.4.2 O caso plano

Observagoes recentes favorecem o valor £ = 0 para as secoes espaciais. Neste
caso, ¢ possivel encontrar explicitamente a dependéncia temporal do termo
cosmoldgico, a qual é valida para qualquer valor dos paramteros n e w,,. De
fato, para k = 0, a equagao de Friedmann (5.12) pode se escrever na forma

da\* 2(1 + wi,
(d_‘D _ 30 +wm) n“" ) g2en, (5.21)
ou equivalentemente
2\ 1/2
a2 da = (W) dt. (5.22)

Assumindo a constante de integragao nula (escolha da origem do tempo), a

solucao fica
In(1 - 2\ 2/n
a= (W) 12/ (5.23)

Consequentemente, as densidades de energia apresentam o comportamento*
Em ~EA~ T2 (5.24)
Devido a relagao (5.5), e usando a equacao de Einstein, temos também que
A~R~t2 (5.25)

Esta dependéncia é valida para qualquer valor dos parametros n e w,. Deste
comportamento podemos observar que tanto A como R divergem no tempo
inicial, o qual aponta para a existéncia de uma singularidade inicial.

Como exemplo relacionado com o periodo inicial do Universo, vamos as-
sumir a hipdtese na qual a matéria criada satisfaz a equagao de estado ultra-
relativistica (radiacdo) [32]

Em = 3 DPm, (5.26)

que corresponde a w,, = 1/3. Neste caso, o traco da equagao de Einstein fica
R=—4A\, (5.27)

onde usamos que 7' = T#, = €, — 3p, = 0. Quando é criada somente
matéria ultrarelativistica, a curvatura escalar é determinada de pelo valor
de A, e neste sentido este tipo de Universo pode ser considerado uma fase
aproximadamente de de Sitter. Deve-se enfatizar que, dado que o termo
cosmolégico nao é constante, este caso nao corresponde a um espaco de de
Sitter no sentido usual. Em termos do parametro de de Sitter [, no caso
de uma constante cosmologica positiva, a curvatura escalar vem dada por
R = —12/1? e a densidade de energia escura (5.5) fica

B 3¢t
&Gl

fCom a constante de proporcionalidade despendente dos parametros n e wyy,.

EA (5.28)
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Por outro lado, a equagao de Friedmann (5.15) assume a forma

dSm o d€A

Para €, constante, obtém-se a solucao usual &, ~ a=*

uma ¢, dependente no tempo, temos a relagao

, enquanto que para

4—n

EA = Em, (5.30)
onde agora 0 < n < 4. As expressoes (5.28) e (5.30) implicam que sempre
que a matéria seja ultrarelativistica, o raio e o horizonte de de Sitter [ vai se
expandir de acordo com

2_6_2 n n
l_362<4—n>a' (5.31)

5.5 Comentarios

No contexto de uma cosmologia com constante cosmolégica A nao nula, po-
demos dizer que durante as épocas iniciais na evolugao do Universo, isto é,
durante o periodo inflacionario, a dinamica do Universo foi regida por uma
constante cosmolégica positiva e muito grande. Num caso extremo de A indo
para infinito (I — 0), este tipo de espago poderia estar bem representado pelo
espago cone N que estudamos no capitulo 3. Flutuagoes quanticas, neste mo-
mento, poderiam dar origem a um espago de de Sitter com raio finito [ # 0.
Se no tempo de Planck, por exemplo, o raio de de Sitter assume o valor [p,
o termo cosmolégico assumiria o valor

A=3/(lp)* ~1.2 x 10 cm™2.
A densidade de energia escura associada é
ex ~ 10" erg/cm?,

Nesse momento, a maior parte da energia do universo estaria na forma de
energia escura. A idéia que quer se apresentar aqui é que o processo de
decaimento da constante cosmoldgica em matéria, poderia eventualmente
dar conta da diferenca deste valor nas etapas primordiais, com o valor atual
e) ~ 1078 erg/cm?, sugerido pelas observagoes recentes. Neste processo, A
decai, o Universo se expande, e a matéria é criada, dando origem assim a
um Universo tipo FRW. Como ja mencionado, a matéria nao é criada num
Unico instante no big bang, mas sim de maneira continua durante o processo.
Apesar do processo de criacao de matéria, a energia total do sistema, que
inclui a energia do termo cosmolégico e a energia do campo gravitacional, é
conservada durante o processo.

Modelos apresentando decaimento de A tem sido estudados extensamente
na literatura [22]. A idéia principal desses trabalhos é oferecer um mecanismo
plausivel para explicar a diferenga entre os valores do termo cosmolégico nas
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diferentes etapas da evolucao do Universo, e a maioria deles tem um enfo-
que essencialmente fenomenolégico do problema, baseado principalmente em
argumentos dimensionais. No modelo apresentado aqui, nao estamos abor-
dando o problema baseados em argumentos fenomenolégicos, mas apresenta-
se um enfoque tedrico baseado essencialmente nas equagoes de Friedmann,
e na equagao de estado para a matéria. Dado que um grau de liberdade
dinamico é adicionado, torna-se necessario um principio adicional para regu-
lar a dinamica deste grau de liberdade. Na forma apresentada neste capitulo,
nao temos este principio adicional para completar o sistema de equagoes que
regem a evolucao do sistema. Desta forma, foi introduzida uma descri¢ao
plausivel da evolucao da densidade de energia com o fator de escala por meio
da equagao (5.17). No capitulo seguinte, vamos apresentar um principio
alternativo para justificar qualitativamente esta escolha.

Um ponto importante a observar é que a fim de permitir a formacao das
estruturas césmicas da forma como as observamos na atualidade (galéxias,
aglomerados de galaxias, etc), o Universo necessariamente tem que ter pas-
sado por um periodo de expansao nao acelerada, o que indica que o termo
cosmoldgico deve ter assumido valores pequenos nas etapas iniciais da historia
do Universo. Por outra parte, observacoes recentes indicam que o universo na
atualidade apresenta um periodo de espansao acelerada. Apesar de nao ter
um entendimento apropriado dao principios basicos que regulam a evolucao
do termo cosmoldgico, os fatos mencionados acima sugerem um Universo
primordial caracterizado por um A muito grande, incluindo eventualmente a
possibilidade de um A indo para infinito, seguido por uma época de decai-
mento de A, atingindo um valor minimo mantido durante um certo periodo,
e posteriormente entrando numa nova época de expansao acelerada, e um
conseqjiiente incremento no valor de A.%

Agora, é frequentemente argumentado que se uma nova fase de expanssao
acelerada estivesse acontecendo de fato, o Universo poderia estar se dirigindo
a um estado indspito de solidao césmica, ou eventualmente a um estado de
completa desintegracao, ou “big-rip”como tem sido chamado [5]. Porém, no
esquema, apresentado aqui, um crescimento em A implica que a matéria es-
taria sendo transformada em energia escura, e a continuar neste ritmo, este
mecanismo poderia eventualmente levar em um estado em que toda a energia
estaria em forma de energia escura. Em outras palavras, um crescimento em
A nao implica necessariamente que o Universo vai se dispersar, ou se esfriar,
mas pode estar se dirigindo a um novo tipo de estado singular. Se vamos
ao caso extremo de uma densidade infinita de energia escura, o estado do
Universo estaria caracterizado por um espaco-tempo vazio, desconexo cau-
salmente e conformalmente transitivo, como o espaco cone que descrevemos
na secao 3.5. Naturalmente, se os efeitos quanticos excluem ou nao a possi-
bilidade do “colapso”total é uma questao em aberto.

Para finalizar, é claro que uma compreensao completa de todas as carac-
teristicas que apontam as observagoes recentes, como por exemplo a coin-

$Naturalmente, afim de permitir um A crescente no tempo, o intervalo de valores para
n necessariamente vai ser diferente da forma apresentada em (5.19).
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cidéncia nas ordens de grandeza das densidades de energia ¢, e €, na atuali-
dade, o porque da aceleracao ter sido negativa no passado, e positiva hoje, re-
querem um modelo que de conta de forma precisa da evolucao de A. O ponto
importante a ser ressaltado aqui é que um termo cosmoldgico junto com uma
prescricao apropriada para sua evolucao temporal, tem suficientes parametros
livres para permitir uma ampla variedade de cénarios possiveis, incluindo as
principais caracteristicas apontadas pelas observacoes astronomicas, sem a
necessidade de incluir qualquer outro ingrediente ou estrutura exdtica para
descrever de forma consistente a dinamica da evolucao do Universo.
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Capitulo 6

Cosmologia e o principio holografico

6.1 Introducao

Neste capitulo vamos continuar discutindo a dinamica de uma cosmologia
com um termo cosmoldgico dependente do tempo. Vamos interpretar a
energia escura, nao como um fluido, mas como uma quantidade puramente
geométrica. Neste caso, nao ¢ introduzida uma equacao de estado associada
com o termo cosmoldgico ja que ela tem um sentido puramente formal [10].
Esta hipdtese estda baseada no fato notavel de que a equacao de Einstein
tem uma solugao sem fontes com curvatura nao nula: a solugao de de Sitter.
Que este espaco nao esteja relacionado com nenhuma fonte material pode ser
entendido como conseqiiéncia de ele nao ser assintoticamente chato. Dado
que um espago curvo tem uma densidade de energia intrinseca, isto significa
que o espaco-tempo pode armazenar energia por sim proprio. Esta energia
armazenada, na forma de energia escura, nao precisa estar ligada com uma
fonte material. Adicionalmente, vamos implementar o principio hologrdfico
como um principio adicional na descrigao da dinamica do termo cosmolégico.
Na se¢ao 6.2, vamos introduzir o principio holografico, discutir os limites na
entropia de um sistema, e motivar a relevancia no contexto da cosmologia.
Nas segoes posteriores, vamos aplicar o modelo holografico a energia escura,
e analisar as caracteristicas gerais das solucoes resultantes no cendrio do
termo cosmoldgico interagindo com a matéria. Vamos mostrar como dentro
deste modelo, podem ter cabida algumas das carcteristicas das observacoes
astronomicas recentes como a coincidéncia nas ordens de grandeza das den-
sidades de energia escura e matéria ordinaria, e a expanssao acelerada do
Universo. O interessante do modelo é que ele oferece um esquema simples
para discutir as caracteristicas observaveis sem ter que utilizar estruturas de
maior complexidade, e ao mesmo tempo oferece possibilidades interessantes
ao respeito do problema da constante cosmoldgica.

6.2 O principio holografico

Nesta se¢ao vamos discutir uma proposta para incorporar apropriadamente os
efeitos da gravitacao no contexto quantico. A idéia esta baseada no compor-
tamento termodinamico peculiar dos buracos negros, particularmente na rela-
cao existente entre area e entropia e a conseqiiente generalizacao da segunda
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lei da termodinamica. A generalizagao da segunda lei da termodinamica im-
plica mudancas significativas no comportamento da entropia para os sistemas
macroscopicos e para as teorias efetivas que descrevem os graus de liberdade
destes sistemas. Existem numerosas revisoes do principio holografico na li-
teratura recente com os mais diversos enfoques, uma revisao excelente com
numerosas referencias encontra-se em [58].

6.2.1 Limites da entropia

Como foi discutido na secao 2.3.1, a segunda lei generalizada apresenta-se
como uma solugao ao problema da “perda” dos graus de liberdade de um
sistema que é jogado no interior de um buraco negro. Para ter uma idéia
de como a segunda lei generalizada leva num limite para a entropia de um
sistema material, vamos pensar num processo em que um objeto é absorvido
completamente por um buraco negro. Desta forma, para um observador
externo os graus de liberdade do sistema material perdem-se no interior do
horizonte. Porém, esta “perda” vem acompanhada de um acréscimo na area
do horizonte compensando a entropia S,, do sistema absorvido. Para este
tipo de processo, a segunda lei generalizada eq. (2.43), estabelece que

Stinal = Sr + 0SBH = Siniciat = SBH + Sm,

isto é
S < 0SBH.

Para sistemas ordinarios gravitacionalmente estaveis num espaco assintotica-
mente plano, Bekenstein argumentou que a segunda lei generalizada implica

Spm < 2wk ER/hc, (6.1)

sendo E a energia do sistema, e R o raio da menor esfera que circunscreve
o sistema. A expressao (6.1) é conhecida como limite de Bekenstein para a
entropia de um sistema material. E importante observar que o limite de Be-
kenstein é uma restri¢ao para o nimero de graus de liberdade de um sistema
material arbitrario contido dentro de uma regiao com raio caracteristico R
independente da sua natureza ou complexidade. Este limite é conseqiiéncia
direta da segunda lei da termodinamica.

Um outro tipo de processo no qual um sistema arbitrario sofre colapso
gravitacional e se transforma num buraco negro leva a um outro tipo de
limite dado por

Sy < kpAJAl3, (6.2)

onde A é a area da menor esfera que circunscreve o sistema*. Este limite
chamado de limite esférico, é mais préoximo da formulagao moderna do limite
covariante [53], o qual em vez de contar o nimero de graus de liberdade dentro
da regiao espacial, conta o nimero de graus de liberdade dentro da regiao

*Deve-se notar o imenso valor que acompanha a drea. Esta expressao pode ser entendida
como se a area A estivesse sendo dividida em pequenas celas cuja area é da ordem da area
de Planck Ap ~ [?
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espaco-temporal das folhas de luz gerada pela borda da regiao contendo o
sistema. Este limite é mais apropriado para aplicagoes na cosmologia [52, 53].

Independente dos detalhes técnicos envolvidos, o que se deve ser obser-
vado nestes limites é que eles implicam uma restricao para o conteido de
graus de liberdade de um sistema restrito pela area da superficie da regiao
espaco-temporal que contem o sistema. Isto aponta para a existéncia de um
vinculo entre o nimero de graus de liberdade de um sistema e uma carac-
teristica geométrica da regiao espago-temporal que o contém. Naturalmente,
¢é de se esperar que uma regiao espaco-temporal nao tenha uma capacidade
arbitraria para a armazenagem de graus de liberdade, mas o que se espera
também é que o conteido de informacao de um sistema seja extensivo e li-
mitado pelo volume, nao pela area da superficie que contém o sistema, como
sugere a expressao (6.2) por exemplo. Este tipo de restri¢ao no contetido
de informagao dentro de uma regiao do espaco-tempo é o que esta por tras
do principio hologrifico, formulado inicialmente por 't Hooft e Susskind [9].
A proposta indica que as teorias de campo locais, as quais apresentam um
comportamento extensivo na entropia, fazem uma sobrecontagem excessiva
dos graus de liberdade quanticos do sistema.

6.2.2 Teorias efetivas e os limites da entropia

Vamos discutir as implicagoes do principio hologréafico na descricao das teo-
rias efetivas que descrevem a fisica de particulas. A discussao apresentada
nesta segao estd baseada fundamentalmente na ref. [54].

E importante sinalar que a descricao dos fenomenos fisicos fundamentais
pode ser obtida mediante uma teoria efetiva de campos com um “cutoft”
ultravioleta (UV) menor do que a escala de Planck sempre que todos os
momentos envolvidos sejam suficientemente pequenos comparados com uma
poténcia apropriada deste cutoff. Para teoria efetiva numa caixa com com-
primento caracteristco L e um cutoff UV Ay a entropia escala de forma
extensiva com o volume da caixa Sy ~ L3A},,. Porém, como foi discutido
antes, en sistemas onde os efeitos gravitacionais sao dominantes, o limite pro-
posto para a entropia apresenta o comportamento nao extensivo S,, ~ L2
Para conciliar estas duas visdes, Cohen et al [54] propuseram uma relagao
entre o cutoff UV e o cutoff infravermelho (IV) nas teorias de campo efeti-
vas. O argumento é como segue: o limite holografico da entropia deve ser
satisfeito numa teoria de campos efetiva se o volume do sistema ¢é limitado
de acordo com

L?’A%[V S SBH = 7TL2M]23, (63)

sendo Spy a entropia de um buraco negro de raio L, e Mp a massa de Planck.
Para obedecer esta restricao, o comprimento L que age como um cutoff IV,
nao pode ser mais escolhido independente do cutoff UV. Sendo assim, existe
uma relagao de escala entre estes dois cutoffs na forma

L~ MG

Apesar do limite (6.3) ser pouco convencional, é de se esperar que as teorias
locais efetivas nao sejam apropriadas para descrever estados de particulas
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cujo volume seja menor do que o volume correspondente ao seu raio de
Schwarzschild. Uma teoria efetiva local que satura a rela¢ao (6.3) necessari-
amente vai incluir estados cujo raio de Schwarzschild é muito maior do que
o tamanho do parametro da caixa L. Para ver isto, temos que ter em conta
que uma teoria efetiva descreve razoavelmente bem um sistema a tempera-
tura finita 7', sempre que 7' < Ayy; assim, quando 7' > 1/L, este sistema
possui energia térmica E ~ L3T* (a relacio de Steffan-Boltzman), e a en-
tropia (S,, = OE/OT) escala com S,, ~ L3T3. Assim, quando a expressao
(6.3) é saturada em T ~ (M2/L)'?, o correspondente raio de Schwaszchild
(Ls = 2M/M?) do sistema seria Lg ~ L(LMp)*3 > L.

Para contornar este problema, Cohen et al propuseram um limite ainda
mais restritivo ao cutoff IV 1/L de forma todos os estados dentro do raio
de Schwarzschild sejam excluidos. A energia contida no interior do raio de
Schwarzschild é Eg = LgM?%/2, a méxima energia (isto é quando T = Ayy)
do sistema em uma teoria efetiva ¢ E.;; ~ L>Af;,. Desta forma, a condigao
de excluir todos os estados dentro do raio de Schwarzschild se expressa da
seguinte forma:

L*Afy < LM3. (6.4)

Em termos da densidade de energia, ele assume a forma
e < Mp/L2. (6.5)

A imposicao deste tipo de limites implica uma restricdo na contagem de graus
de liberdade na descricao de um sistema. Vimos que a motivacao principal
destes limites é poder levar em conta de forma apropriada os efeitos da gra-
vitacao na descricao de um sistema ao nivel quantico. Ao mesmo tempo,
esta diminuicao no numero de graus de liberdade relevantes é de especial
interesse no problema da constante cosmoldgica, onde aparece uma diferencga
enorme entre as estimativas tedricas calculadas com teorias efetivas locais e
o valor observado atualmente para a energia do vacuo. Esta possibilidade foi
apontada em [54, 59].

Este tipo de comportamento na densidade de energia exibido na relagao
(6.5) levou ao Li [55] propor um modelo para a densidade de energia escura
exibindo este comportamento: um modelo hologrdfico para a energia escural
Posteriormente, Pavén e Zimdhal [56] consideraram este tipo de modelo num
cénario com energia escura interagindo com a matéria, e mostraram que
escolhendo o parametro caracteristico do sistema como sendo o inverso do
parametro de Hubble H, podia-se dar conta da coincidéncia nas ordens de
grandeza da energia escura e da matéria na atualidade.

Continuando nesta linha, vamos utilizar o modelo hologrdfico para a ener-
gia escura no cénario de um termo cosmoldgico puramente geométrico e de-
pendente no tempo como foi indicado na introducao deste capitulo.
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6.3 Holografia e modelos com A dependente do tempo

Vamos iniciar relembrando as equacoes de FRW no contexto de um termo
cosmolégico dependente no tempo:

a? = K2Pen + enla? (6.6)
1

i = K2cen — 5(1 + 3w)emla (6.7)

e+ BH(1+w)en = —£. (6.8)

Como foi enfatizado no capitulo anterior, este sistema apresenta trés variaveis
independentes e s6 duas equacgoes independents. No capitulo anterior fizemos
uma escolha “plausivel”para o comportamento da densidade de energia da
matéria por meio da equacao (5.17), mas foi enfatizado que esta é uma escolha
feita a mao pela semelhanca com a solucao do caso com termo cosmoldgico
constante. Segundo a idéia do principio holografico apresentada na segao
anterior, vamos usar um modelo no qual a densidade de energia escura escala
com a area da superficie que delimita o sistema, em vez de ter dependéncia
com o volume. Desta forma, vamos assumir o comportamento

e < br2L72 (6.9)

para a densidade de energia escura. Aqui b é um parametro adimensional
livre, e L é um parametro de comprimento caracteristico do sistema. A fim
de ter uma densidade de energia escura positiva, a condicao b > 0 deve ser
satisfeita. O passo seguinte é a escolha de L. Uma escolha natural seria
identificd-lo com o inverso do raio de Hubble: L = cH~!. Alem de ser a
escolha mais simples, ele fornece um valor para a densidade de energia do
vacuo que é comparavel com as observagoes atuais [59]. Neste caso, a condi-
¢ao (6.9) pode se expressar na forma

en <bc k2 H?. (6.10)

Usando o fato de que b é um parametro livre, é possivel saturar a desigualdade
impondo restrigoes adicionais a b. Desta forma, uma equacgao adicional é
obtida, e o sistema de equagoes (6.6-6.8) pode ser resolvido de forma fechada
em termos do parametro holografico b. A solucao para as densidades de
matéria e de energia escura € , em consequeéncia,

Em = g 20F@)10) (6.11)
¢ b
er = ——aq 31HW0-0), (6.12)
1-0
com « uma constante de integracao . Elas satisfazem a relacao
1-0
Em = —7 €A (6.13)
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Agora, a fim de preservar a positividade de ¢,,, vemos que da Eq. (6.13)
obtemos a restrigao b < 1. O parametro holografico b fica entao restrito no
intervalo

0<b< 1 (6.14)

Para um valor apropriado de b dentro deste intervalo, a relacao (6.13) pode
incorporar como uma caracteristica do modelo a igualdade na ordem de gran-
deza das densidades de energia escura e a matéria, conhecida como o problema
da coincidéncia.

Para completar o analise anterior, vamos apresentar a forma explicita das
expresoes para a evolucao da funcao de Hubble e do fator de escala, as quais
sao dadas por

Hy
H = 6.15
1+ 2Hy(1 4 w)(1 —b)(t — to) (6.15)
€
3 2/[3(1+w)(1-b)]
a=aq [1+§H0(1+w)(1 —b)(t—to)] . (6.16)

Como consequéncia, as densidades de matéria e energia escura escalam da
forma

e~ SN~ [1 + gHo(l W) (1 —b)(t— to)rz. (6.17)

6.4 Limites Holograficos

Vamos analisar agora as restrigoes impostas pelo principio holografico nos
parametros do modelo, em particular no parametro arbitrario b introduzido
no termo para a energia escura (6.9), e no parametro w da equagao de estado
da matéria. Enfatizamos que nao vamos supor nenhuma restricao a priori
no parametro w, o qual é livre para assumir valores arbitrarios, inclusive
na época atual. Desta forma, nao estamos supondo que na época atual a
dinamica do Universo esteja sendo regida por um fluido em forma de poeira.
Adicionalmente, vamos supor que estas equacoes sao validas para qualquer
época da histéria do Universo, e consequentemente para qualquer fluido, ou
ainda qualquer mistura de fluidos interagentes com o termo cosmoldgico. Isso
significa que os limites que vamos obter tém validade em qualquer época da
histéria do Universo. Deve ser enfatizado que a energia escura nao sera in-
terpretada como um fluido, senao como uma entidade puramente geométrica
para a qual ndo ha necessario de introduzir uma equagao de estado [10].

6.4.1 Limites da energia

Impondo condicoes razoaveis ao sistema matéria + energia escura, vamos
encontrar novos limites para os parametros livres do modelo. O primeiro
conjunto de restricdes sao as assim chamadas condicées da energia,” as quais
no cenario de A interagindo com a matéria, devem se aplicar ao tensor de
energia-momento total

O =Ty + A, (6.18)

"Veja, por exemplo, [61]

61



onde
T = emtyty + P (G + upuy) (6.19)

¢é o tensor de energia-momento da matéria, e

A,u,z/ = —E€AGuv (620)

é o tensor de energia-momento associado ao termo cosmolégico. Como con-
sequéncia da identidade de Bianchi (5.3), temos que

V,0", = V[T, + A"] = 0. (6.21)

Usando a equagao de estado da matéria p,, = we,,, assim como as equagoes
(6.13), pode-se escrever

b
@“V = Em(l + C(J)UMUV + Em (W — m)QMV. (622)

Como é bem conhecido, as condigbes para a energia sao [61]:

1. Condicao nula para a energia: para todo vetor tipo luz n”,
On'n” >0, (6.23)
o que significa que os raios de luz sao enfocados pela matéria.

2. Condigao fraca para a energia: para todo vetor tipo tempo v”,

O ,,v"” > 0. (6.24)

3. Condicao Causal para a energia: para todo vetor tipo tempo v”,
O!,v,0",v* <0, (6.25)

que a grosso modo expressa o fato da matéria-energia nao poder viajar
mais rapido do que a luz.

Aplicadas ao tensor de energia-momento (6.22), obtemos da condigdo nula
que
w> -1, (6.26)

que ¢é o resultado usual para matéria normal. Por outra parte, das condicoes
fraca e causal, obtemos, respectivamente,

O,V = em(1 + w)(u'v,)? + e <w - —)02 >0 (6.27)

Guuvu@’/(xva = 52 [(1 + W)2U2<UMUN)2 +

m

21 +w) (w - %)(u%ﬁ + <w - %b)gqﬂ] <0.  (6.28)
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Dado que estas relacoes sao validas para qualquer vetor tipo-tempo v*, as
duas condigoes implicam que

(6.29)

Esta é uma caracteristica nova do modelo holografico interagente. De fato, no
contexto da relatividade geral sem o termo holografico interagente, a condicao
de positividade da energia requer que w < 1 afim de preservar a causalidade.
Em consequéncia é obtido um novo tipo de restri¢ ao causal regulada pelo
parametro holografico b. O fato do termo cosmoldgico varidvel modificar a
estrutura causal pode ser entendido melhor se observarmos que os horizontes
causais de todo observador devem mudar quando a constante cosmoldgica
decai, dando origem a criagao de matéria.

6.4.2 Limites para a entropia

Existem outros limites e relacoes para os parametros b e w que podem ser
obtidos do principio holografico. Como exemplo, apresentamos nesta se¢ao o
limite holografico para a entropia seguindo o esquema adotado em [52] para
solugoes cosmologicas homogéneas. Para o horizonte de particula

Rpu(t) = /0 %, (6.30)

o principio hologréfico afirma que a entropia total o + ¢, = o, dentro do
horizonte ndo excede a area do horizonte:

oR} < (aRp)*. (6.31)

Utilizando o fator de escala a(t) da equagao (6.16), este principio implica que

3(8-1

T HoB(3 — 1) (1 + Hobt) 7 2 < 1, (6.32)
0

onde = 3(1 + w)(1 —b)/2. Agora, supondo uma densidade de entropia na
forma (em [62] pode-se encontrar a expressao para o caso de A constante)

o~ e 0F) g3 1b) (6.33)

onde v > 0 ¢é outro parametro indeterminado. Esta expressao vale indistin-
tamente para € = g, ou para € = €5. Juntando tudo obtemos

k _3n(1—
5 Hy8(8 — 101+ Hy)
0

243D _390b)

<1, (6.34)

onde kg é uma constante conhecida determinada pelos outros parametros do
modelo. No limite em que o tempo vai para o infinito (afim de garantir a
validade do limite para um tempo arbitrariamente alto), obtemos que:

w < L + L +2 (6.35)

1—b 1-b " ‘
Dado que v > 0, este limite para w é menos restritivo que aquele que foi ob-
tido com as condicoes para a energia, e nao vamos, por esta razao, considera-

lo.
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6.4.3 Regime Acelerado

Tomando a segunda derivada no tempo do fator de escala (6.16), e supondo
que ela seja positiva, obtemos que

b 1
YT 3 (6.36)

Esta é a condicao para um Universo em expansao acelerada. E interessante
notar que no presente caso, o parametro w nao é necessariamente nulo, o que
significa que a expansao acelerada pode acontecer em qualquer época, mesmo
quando a matéria dominante nao é poeira.! Dado que b < 1, o segundo termo
no lado direito da equagao (6.36) é positivo, e consequentemente ele sempre
obedece os limites obtidos das condigoes para a energia e para a entropia.
O ponto importante para ressaltar aqui é que a expansao acelerada nao esta
determinada somente pela energia escura, como acostuma se argumentar; a
axpansao acelerada é obtida como uma consequéncia do caracter interagente
e holografico da energia escura. De fato, a condicao para a expansao acelerada
na desigualdade (6.36) é regulada pelo parametro holografico b. Desta forma,
vemos que para os parametros dentro dos limites impostos pelas restrigoes na
energia e na entropia, é possivel obter um regime de expansao acelerada, como
¢ indicado pelas observacoes experimentais. Finalmente, podemos observar
que no caso b < 1/3, o parametro w torna-se negativo. Porém, esta situagao
a qual representa um tipo de matéria exotica com pressao negativa, nao é
necessaria para produzir aceleragdo. De fato, para 1/3 < b < 1, w é negativo
e a aceleragao é ainda positiva.

6.5 Comentarios

O resultado principal deste capitulo, é que a energia escura interagindo com
a matéria pode eventualmente “responder”algumas das perguntas chaves da
cosmologia contemporanea desde que se adote a hipdtese de que a energia
escura tem um comportamento “holografico”. De fato, nas equagoes (6.13)
e (6.36) pode-se observar que para alguns valores permitidos dos parametros
do modelo é possivel obter simultaneamente a “coincidencia’na ordem de
grandeza das densidades de energia escura e matéria e o regime de expansao
acelerada do Universo. Nao sao necessarias estruturas adicionais além do
caracter hologréafico da energia escura. Adicionalmente, dado que a energia
escura esta sendo interpretada como uma entidade geométrica, nao é neces-
sario introduzir uma equacao de estado de um fluido exético. Neste modelo,
energia escura e matéria podem se transformar uma na outra, geometria
em matéria e vice-versa. Em particular, é possivel conceber que tal cenario
dinamico para a energia escura pode estar conectado com uma configuragao
inicial para o Universo do tipo descrito pela geometria do espaco cone N.

{Esta é uma diferenca importante com relacio aos trabalhos anteriores [55, 56], nos
quais se assume que w = 0.
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Finalmente, é necessario mencionar que este modelo somente aponta uma
perspectiva para encaixar num marco consistente e simples algumas das ca-
racteristicas da cosmologia atual. Nao é um modelo completo, mas apresenta
suficientes caracteristicas interessantes para motivar um estudo mais deta-
lhado no futuro.

65



Capitulo 7

Conclusoes e comentarios finais

Nesta tese, estudamos alguns aspectos fundamentais relacionados a cons-
tante cosmolégica. Um primeiro resultado importante é que a presenca de
uma constante cosmologica modifica a nocao de transitividade do espaco-
tempo. De fato, em vez das translacoes, o espaco de de Sitter é transitivo
sob uma combinagao de translagoes e transformacoes conformes préprias.
Como conseqiiéncia, as nogoes de momento e energia, as quais estao inti-
mamente relacionadas ao espago-tempo, vao ser modificadas. Naturalmente
que, devido ao pequeno valor da constante cosmoldgica, estas modificacoes
sao pequenas. No entanto, mesmo pequenas, sao mudancas conceituais que se
propagam por todas as areas da Fisica.* Por exemplo, a definicao de campo
relativistico muda: em vez de ser uma representacao do grupo de Poincaré,
um campo deve ser entendido como uma representagao do grupo de de Sitter.
A mecanica estatistica também deve mudar, bem como a prépria mecanica
quantica, cujas relacoes de incerteza passam a envolver novos termos vindos
das mudancas das defini¢oes de energia e momento [45].

Além das mudancas descritas acima, ocorre também uma mudancas fun-
damentais na cinematica e na geometria do espago-tempo. De fato, como
na presenca de A o espaco de Minkowski nao é mais solucao da equacao de
Einstein, a relatividade especial nao é mais aquela baseada no grupo de Poin-
caré, mas sim uma relatividade baseada no grupo de de Sitter. Um ponto
crucial é que esta relatividade inclui uma escala invariante de comprimento [.
Como a velocidade da luz ¢ também se mantém como uma escala invariante,
este tipo de teoria apresenta duas escalas invariantes. Ela é, portanto, um
novo tipo de “doubly (ou deformed) special relativity”, com a importante
diferenca de manter inalterada a simetria de Lorentz. Desenvolvemos esta
nova relatividade, e estudamos algumas de suas aplicacoes e consequéncias
fisicas [30].

Numa tentativa de entender o comportamento das nogoes fisicas relevan-
tes nos regimes de grandes valores de A, estudamos o limite formal A — oo
[29]. O resultado é um espago-tempo maximalmente simétrico, transitivo sob
transformacoes conformes préprias, onde a no¢ao métrica usual nao existe.
Consequentemente, a nogao de causalidade neste espago também é indefi-

*Além disso, se o Universo passou por uma fase de grandes valores da constante cos-
moldgica, como parece ter sido o caso durante a fase inflacionéria, essas mudangas podem
ter desempenhado um papel importante.
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nida, dado que o horizonte causal do espaco de de Sitter adquire um raio
nulo, reduzindo o dominio causal de todos os observadores neste espaco a
um unico ponto. Este espaco apresenta caracteristicas interessantes desde
o ponto de vista termodinamico. E um espago com temperatura infinita,
entropia zero, e densidade de energia infinita. Com estas caracteristicas ele
se ajusta muito bem ao que se esperaria de um estado inicial singular para o
Universo no modelo do big bang. Porém, como enfatizamos anteriormente,
este é simplesmente um limite formal, pois efeitos quanticos podem evitar
que este limite seja atingido.

Tendo em mente que o termo cosmoldgico, na atualidade, apresenta um
valor muito menor do valor adquirido no periodo inflacionario, é natural pro-
curar um mecanismo de decaimento, ou em termos mais gerais, uma dinamica
para ele. Estudamos assim um modelo simples baseado numa interpretacao
geométrica para o termo cosmologico, permitindo a interacao entre matéria e
energia escura, mantendo a energia total constante. Vimos que os parametros
introduzidos sao suficientes para dar conta das principais caracteristicas as-
sinaladas pelas observacoes recentes, sem necessidade de considerar estrutu-
ras adicionais na descricao da evolucao do termo cosmodgico. Ainda neste
contexto, apresentamos uma nova possibilidade de caminho ao “colapso gra-
vitacional”onde o estado final da evolucao do Universo é representado por
um espago-tempo singular conico, onde toda a energia encontra-se na forma
de energia escura [37].

Finalmente, incorporamos uma proposta recente que limita o valor da
energia escura por meio do principio hologrdfico [63]. A principal carac-
teristica deste modelo é que ele introduz uma modificacao nas condigoes
causais que limitam a equacao de estado para a matéria. Esta modificacao
é de carater intrinsecamente holografico, ja que ela depende diretamente do
parametro holografico introduzido no modelo. Ao mesmo tempo, a incor-
poracao do principio holografico na descrigao da energia escura abre uma
nova possibilidade para estabilizar as flutuacoes da energia do vacuo, dimi-
nuindo de maneira drédstica o niimero de graus de liberdade que contribuem
com a energia do vacuo. Naturalmente, este nao é um modelo completo para
a dinamica do Universo. O interesse fundamental dele é criar um marco con-
sistente, onde podem ser discutidas as principais caracteristicas e problemas
da cosmologia atual. Certamente, é necessario ainda muito trabalho para
incorporar de forma completa e consistente todos os dados observacionais.
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Apéndice A

Geradores de simetria nos diferentes sistemas
de coordenadas

Aqui, vamos apresentar expressoes explicitas para os geradores de simetria
nas coordenadas globais, planas e estaticas descritas no capitulo 1. Eles sao
de relevancia no estudo da estrutura assintética e na definicdo de condigoes
de fronteira consistentes com as cargas conservadas no espago. Também
apresentam utilidade no estudo da geometria perto do horizonte de eventos.

A.1 Coordenadas globais

Neste sistema de coordenadas, os geradores do grupo de simetria J,g tomam

a forma: 5 9
s = ('35~ 57)

com (i,7 = 1,...,4). Por outra parte, os geradores Jy; sdo

. 0 l 0
J01 = — tanh(CT/l) Sin 918_(91 + ECOS 6’15
0 sinfy, O [ .
Joa = tanh(w/l)(cos 0, cos 02_601 " S _802) + Esm 0, cos 4925

Jos = tanh(er/l) ( cos 0 sin 0, cos 936191 + %2863;62

sin 93 0 l ) .
— —————— ) + —sinf; sin 0, cos 03—
sin 0 sin 0, 893) * o U1 s b2 COs 3o

0  cosbysinfs 0

Jos = tanh(er/Il) ( cos 0y sin 6 sin 938_91 + s 96,
sin (93 0

9 { B
sin 6, sin Oy 893> + -I—C sin #1 sin f5 sin 05 P

A.2 Coordenadas planas

Nestas coordenadas, os J4p podem ser classificados da forma (J;;, Jo;, Jai, Joa)
com 1, 7,... = 1,2,3. Desta forma temos:

0 0

J; = r— —xi—
! ' Oxd T Ot
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R N S P AL 9 mo
Joi = 2l(m 07 — 2w )820"3 + 2(exp(20t/l) 1)a Ry
T L 0 =l
Jy = 2l(x 07 — 2w )('hk 2(exp (207f/l)+1)a T
T = 20l
% ot Dk

O operador Jy, apresenta uma mistura entre as translagoes no tempo e as
transformagoes de escala. Ele gera a simetria t — t + a, 7 — exp (ca/l)Z.
Também sao tteis as combinacoes lineares:

Liy = Jyu+ Joi = —10;
0 2x; 0

1 0
Li, = J4z‘ — Jgi = —7<$25f — 21’137’6)@ — a + leXp(le/l)a—'r

A.3 Coordenadas estaticas

Vamos fazer uma decomposicao igual ao caso anterior para os J4p. Para os
Jij, os quais refletem a simetria sob rotacoes, temos

0
Jig = cosly— a6, — sin @, cot 8 — a0,
Jis = cosbycot 6139 + 811192891
0
Joz = —.
23 90,
Para os Jy; temos:
1

Joo = —lH(r)sinh (ct/l) <COS 0, (';97“ —sin 6, 621)

7 cos by

0
~CHO) cosh (ct/l)a

: : 0 1 (sinfy, 0 0
Joo = [H(r)sinh (ct/l) [sm 6 cos 925 - (sin 5. 06, — cos 03 cos 6, 801>]
rsin 01 cos O

3}
) cosh (ct/l)a

. ) ) 0 1 (cosby O 0
Jog = —lH(r)sinh (ct/l) [smel smegg + . (31116128_92 + sin 6, cos 6, 801)]

rsin 0, sin 0,

0
CH () cosh (ct/l)a )

onde H(r) = (1 — r?/12)}/2. Para os J; temos:

0 1 0
Jy = [H(r)cosh (ct/l) (cos 915 - = sm91 891> +

r cos 0, 0
CH () sinh (ct/l)
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Jio = [H(r)cosh (ct/l) [sin 0, cos QQ% — % (22 ZT% — cos 05 cos 018301)} +
%&3892 sinh (ct/l)%

Jis = [H(r)cosh (ct/l) {sin 0, sin 92% + % <:)§zf (9192 + sin 6 cos 91(%1)1 +
% sinh (ct/1) 2

Finalmente, o gerador das translacoes no tempo é

Também sao de interesse as combinades lineares: J;o = Jgo; = Ju;:

o 1. 0 0, 0
Jix = exp(Fet/l) [j:lH(r) <cos 915 — ;sm@la—gl) — 7;(;-([)?7’)1 E}

_ 0 1 (sinfy 0 0
Jox = tLexp(Fet/D)IH(r) {sm&l cos 025 - (sin01 56, cos B cos 916—01)} _
rsin @y cosfy 0
— /) ———————=—
exp (Fet/l) cH(r) Ot
‘ ) 0 1 [cosfy O . 0
- 4 H 0+ - By N 90, )|
Jag exp (Fet /1)L H(r) [Slnﬁl smﬁzar + " (Sin61 06, + sin 6, cos 91881)]
_ exp (et 1) SO sin bz 0

cH(r) ot
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