
C
ER

N
-T

H
ES

IS
-2

00
9-

20
4

06
/0

5/
20

09

Masking Problematic Channels in the Liquid Argon
Calorimeter for the High-Level Trigger of ATLAS

by

Ryan Paul Taylor

B.Sc., University of Regina, 2006

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the Department of Physics and Astronomy

c© Ryan Paul Taylor, 2009

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part by
photocopy or other means, without the permission of the author.

ii

Masking Problematic Channels in the Liquid Argon
Calorimeter for the High-Level Trigger of ATLAS

by

Ryan Paul Taylor

B.Sc., University of Regina, 2006

Supervisory Committee

Dr. R. Kowalewski, Supervisor (University of Victoria)

Dr. M. Lefebvre, Member (University of Victoria)

Dr. D. Karlen, Member (University of Victoria)

Dr. D. Steuerman, Outside Member (University of Victoria)

iii

Supervisory Committee

Dr. R. Kowalewski, Supervisor (University of Victoria)

Dr. M. Lefebvre, Member (University of Victoria)

Dr. D. Karlen, Member (University of Victoria)

Dr. D. Steuerman, Outside Member (University of Victoria)

Abstract

Read-out channels in the liquid argon (LAr) calorimeter of the ATLAS detector

are susceptible to various kinds of faults, which can impair the selection of events

made by the trigger system. General-purpose software tools have been developed for

dealing with problematic calorimeter channels. In order to give High-Level Trigger

(HLT) algorithms robustness against detector problems, these tools have been applied

in the HLT calorimeter data preparation code to mask problematic channels in the

LAr calorimeter. Timing measurements and optimizations have been conducted to

assess and minimize the impact of these operations on the execution speed of HLT

algorithms. The efficacy of the bad-channel masking has been demonstrated using

cosmic-ray data.

iv

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Figures vi

Acknowledgements viii

1 Introduction 1

1.1 Introduction . 1

2 The ATLAS Detector 5

2.1 Detector Hardware . 5

3 Trigger and Data Acquisition Systems 15

3.1 Data Preparation for HLT Calorimeter Algorithms 17

3.2 Missing ET Trigger Slice . 19

3.3 Monitoring . 21

4 Trigger Robustness 24

4.1 LAr Bad-Channel Software . 24

4.2 Optimization and Timing Tests . 32

v

5 Results and Conclusions 37

5.1 Results of Bad-Channel Masking Tests 37

5.2 Summary . 39

A Attribution of Work 45

B List of Abbreviations 46

vi

List of Figures

1.1 Cross-sections of several benchmark physics interactions at the LHC . 3

2.1 Cut-away view of the ATLAS calorimetry 6

2.2 Layering and granularity of the LAr subcalorimeters 8

2.3 Depiction of a trigger tower in the LAr EMB subcalorimeter 9

2.4 Ideal pulse shape of a LAr channel 10

2.5 FEB schematic diagram . 11

2.6 Table of channel problems . 13

2.7 Summary of known problematic channels in the LAr calorimeter . . . 14

3.1 Schematic diagram of the Trigger and Data Acquisition systems . . . 17

3.2 LAr monitoring histogram showing noise burst 22

3.3 L1 trigger monitoring histogram showing noise burst 23

4.1 LArBadChannelMasker conceptual flowchart 30

4.2 Illustration of LArBadChannelMasker masking logic 31

4.3 Comparison of different LArBadChanTool look-up methods 34

4.4 Scaling of masking time with RoI size 35

4.5 Final timing evaluation of per-event cell masking 36

5.1 SumET distributions with and without masking 38

5.2 MET phi distributions with and without masking 40

5.3 Cell energy differences due to masking 41

vii

5.4 Photons in L2 from cosmic ray data, with and without masking . . . 42

viii

Acknowledgements

I wish to thank my supervisor Bob Kowalewski for his guidance, experience and

patience. I would also like to thank Teddy Todorov and Denis Damazio for the

valuable time they spent collaborating with me; I learned a lot from their expertise.

1

Chapter 1

Introduction

1.1 Introduction

Fundamental discoveries in particle physics are expected at the tera-electronvolt en-

ergy scale. The Large Hadron Collider (LHC), a synchrotron particle accelerator at

the European Organization for Nuclear Research (CERN), has recently been con-

structed in order to explore this new regime of physics.

The primary motivation for the LHC is to understand the nature of electroweak

symmetry breaking, the last part of the Standard Model of particle physics which

remains unknown. Electroweak symmetry breaking is the mechanism which causes

some particles to have mass, while others remain massless. The Higgs mechanism is

postulated as a possible origin of electroweak symmetry breaking, and predicts the

existence of a scalar boson called the Higgs boson [1]. Searching for the existence

of this particle will make it possible to either confirm or rule out the Higgs mecha-

nism, and is therefore one of the main goals of the LHC physics program. Another

important goal is to search for the existence of supersymmetric particles, which are

partners of Standard Model particles but have greater mass, and spin quantum num-

bers differing by 1
2
. Observation of such particles would confirm supersymmetry, a

theoretical framework which solves the hierarchy problem, unifies the electroweak

force with the strong force (forming a grand unified theory), and could lead to a

2

theory of quantum gravity [2]. Additional goals include searching for particles which

constitute dark matter [3], probing for extra hidden dimensions of spacetime [4], and

understanding the asymmetry between the particle and antiparticle content of the

universe [5].

In order to achieve these goals, the LHC [6, 7, 8, 9] has been designed to surpass

the energy and luminosity of previous hadron colliders by orders of magnitude. Lu-

minosity is a measure of the particle flux, or intensity, of the beams. The rate at

which a particle interaction occurs is equal to the cross-section for that interaction

multiplied by the luminosity. Since most of the physics processes of interest at the

LHC have a very small cross-section, a very high luminosity is required in order to

produce enough of those interactions to make a significant observation in a reasonable

amount of time. Figure 1.1 shows the cross-sections of several benchmark interac-

tions at the LHC’s center-of-momentum energy. The design luminosity of the LHC

is 1034 cm−2s−1, or 10 nb−1s−1. The LHC collides two proton beams into each other

with a total energy of 14 TeV in the center-of-momentum frame.1 The protons in

each beam are clustered in bunches, which collide every 25 ns. At the design lumi-

nosity, each of these bunch crossings results in about 23 proton-proton interactions,

most of which are mundane quantum-chromodynamical (QCD) processes. This high

background of QCD processes makes it challenging to detect the few rare interactions

of interest.

The ATLAS detector [11], one of several particle detectors at the LHC, is a large

general-purpose detector designed to tolerate the intense background conditions and

take full advantage of the high-luminosity environment of the LHC. It is shaped like

a cylinder, about 46 m long and 22 m in diameter, and weighs around 7000 metric

tons. The detector has symmetry and full coverage in φ, the azimuthal angle, and can

1However, the energy of an interaction varies and is usually much less than 14 TeV, since the
interacting quarks and gluons only have a fraction of the protons’ energy.

3

Figure 1.1: Cross-sections of several important physics interactions [10]. Vertical
lines indicate the center-of-momentum energy (

√
s) of the LHC at 14 TeV (the design

energy), and the Tevatron at 2 TeV for comparison. The thicker vertical line at 10
TeV marks the energy of the LHC’s initial run, below the design energy. The cross-
sections to the left of the dotted vertical line are for proton-antiproton interactions;
the ones to the right are for proton-proton interactions.

make precision measurements in the pseudorapidity2 range |η| < 2.5, and coverage

for energy measurement up to |η| = 4.8.

A trigger system is required to reduce the data rate of bunch crossings (40 MHz) to

a manageable level by discarding the uninteresting majority of events [12]. The rate

at which bunch-crossings can be recorded for further analysis is limited to roughly

200 Hz by the available storage capacity and network infrastructure. The trigger

2Pseudorapidity is a convenient measure of the polar angle θ, defined as η ≡ − ln[tan(θ
2)].

4

system must therefore achieve a rejection factor in real-time on the order of 2× 105,

while retaining as many of the rare and interesting events as possible for storage and

further analysis. It is also important for the trigger system to operate robustly, since

the trigger decision dictates the content of the dataset used for physics analysis. The

work presented in this thesis enhances the robustness of the trigger system against

defective detector elements by masking their signals.

The detector will be further described in Chapter 2, and the trigger and data

acquisition systems will be further described in Chapter 3. Chapter 4 will discuss

issues of trigger robustness and the bad-channel and masking software. Chapter 5

will demonstrate the efficacy of the masking software on simulated and cosmic ray

data.

5

Chapter 2

The ATLAS Detector

2.1 Detector Hardware

The ATLAS detector has three categories of particle detection systems, located in

concentric cylindrical formations around the beamline. Closest to the beamline,

within a solenoidal magnet, the Inner Detector measures the trajectories of charged

particles with sub-millimeter precision. Farther out, particles pass through the Elec-

tromagnetic Calorimeter, which measures the energy deposited by electrons and pho-

tons, and then the Hadronic Calorimeter, which measures the energy of jets.1 The

Muon Spectrometer is mounted on the outermost part of the detector amid a toroidal

magnet, and measures the trajectory of muons as they escape the detector, in order

to determine their momenta. For the purposes of this thesis, only the subcalorimeters

which use liquid argon as the sampling medium are directly relevant,2 and will be

further described in this chapter.

2.1.1 Liquid Argon Calorimeter

The ATLAS calorimeters are sampling detectors with full symmetry in φ. Liquid

argon (LAr) is used as the sampling medium for all electromagnetic calorimetry,

1Jets are showers of hadronic particles.
2The other type of calorimeter is the Tile Calorimeter, which is the hadronic calorimeter in the

barrel and extended-barrel regions.

6

and for hadronic calorimetry in the forward and end-cap regions. Liquid argon was

chosen for its intrinsic properties of radiation-hardness and linearity (i.e. deposited

charge ∝ energy of incident particles), and response stability over time [11]. The LAr

calorimetry system is housed in three cryostats: one for the barrel region, and one

for each end-cap region. In the barrel region (i.e. the precision-physics region), the

electromagnetic barrel (EMB) subcalorimeter makes precise energy measurements

with fine granularity. The end-cap subcalorimeters are the electromagnetic end-caps

(EMEC), the hadronic end-caps (HEC), and the forward calorimeters (FCal). Each

subcalorimeter has two halves, called the A side (η > 0), and the C side (η < 0).

The layout of these subcalorimeters within the detector is shown in Figure 2.1. The

table in Figure 2.2 gives the geometric granularity in (η, φ) coordinates of the readout

channels in each layer in depth (or sampling) of each LAr subcalorimeter. Figure 2.3

shows the geometry of channels in the EMB and how they are arranged in sections

called trigger towers (TTs).

Figure 2.1: Cut-away view of the ATLAS calorimetry [11].

7

Front-End Electronics and Signal Readout

When a charged particle impinges on one of the LAr subcalorimeters, an electromag-

netic shower is induced by the absorber material,3 and the charged particles in the

shower ionize the liquid argon. The voltage applied across the liquid argon medium

by the electrodes causes the free electrons to drift towards the positive electrodes.

This drift current constitutes the analog signal read out by a channel; the peak of the

current is proportional to the energy deposited by the incident particle. The analog

signals are carried out of the cryostats by feedthroughs (FTs), then amplified and

sampled at 25 ns intervals and digitized in the Front-end Boards (FEBs). There are

1524 FEBs in total, and each one services 128 channels. An ideal signal is shown in

Figure 2.4, and the FEB electronics are illustrated in Figure 2.5. Since the duration

of the signal is long compared to the bunch-crossing time of 25 ns, it is possible for

particles originating from collisions in different bunch crossings to have overlapping

signals. This is referred to as out-of-time pile-up, and it is a significant source of

noise in the calorimeter energy measurements, especially at high luminosities. The

effect of out-of-time pile-up is reduced by the fact that the integral over time of the

shaped signal is close to zero. Therefore, the small but frequent energy depositions

of soft QCD background activity tend to cancel out on average.

After the pulse is sampled and digitized in the FEBs, the digital samples are trans-

mitted to the Readout Drivers (RODs), where the Optimal Filtering (OF) algorithm

is used to reconstruct the energy of the pulse. For all cells with energy exceeding a

certain threshold, the time of the signal and a data quality factor are also calculated.

The energy and time are calculated by linearly summing the amplitudes of all the

samples and weighting them with the Optimal Filtering Coefficients (OFCs), which

are parameters obtained by minimizing the variation in energy due to electronic and

3The absorber material is lead in the electromagnetic calorimeters, copper in the HEC, and a
combination of copper and tungsten in the FCal.

8

Figure 2.2: This table details the layering, granularity, and number of readout
channels of all regions of the LAr calorimeters [11]. In regions of higher η, where the
background conditions are more intense, the granularity in η decreases. There are a
total of 182468 LAr channels, most of which are in the EMB.

9

Figure 2.3: A depiction of several cells and a trigger tower in the EMB subcalorime-
ter [11]. In this region, a trigger tower is composed of a 4× 4 grid of cells in layer 2,
along with the cells in front and behind in layers 1 and 3. The depth of each layer is
given in radiation lengths, X0.

10

Figure 2.4: The triangular current pulse from a LAr cell, and the FEB output signal
after shaping [11]. Dots indicate the sampled points at 25 ns intervals. Up to 32
samples can be taken, but only 5 samples are read out during normal data taking, in
order to reduce the volume of data transferred to and processed in the RODs. The
integral of the shaped signal is close to zero.

pile-up noise. The data quality factor is a measure of how closely the measured pulse

shape conforms to the ideal pulse shape, similar to a χ2 statistic. It can be used to

flag cells with large pile-up noise or other problems which distort the pulse shape.

The front-end electronics include calibration boards which inject pulses of a pre-

cisely known magnitude at the electrode readout. Calibration runs are conducted

with charge injection, to measure the response per unit of input charge over a wide

dynamic range, and without charge injection, to measure the mean and standard

deviation (σ) of cell energies in the absence of any signal. This calibration data is

regularly collected and processed in order to produce new OFCs, maintaining the cal-

ibration of the energy reconstruction. Calibration runs are also important for testing

11

Figure 2.5: Schematic diagram of the signal processing in a FEB [11]. The SCA
(Switched-Capacitor Array) is the pipeline memory which stores the analog signals
during the L1 latency. Some parts of the readout chain are split into three parallel
signal paths, one for each gain (labelled 100, 10 and 1 for high, medium and low
gain, respectively). A FEB has 32 pre-amplifiers, shapers and SCAs, each of which
processes 4 channels.

the electronic read-out chain and detecting many types of anomalous behaviour in

the readout electronics.

Problematic Channels

A LAr channel is susceptible to various kinds of faults, whether in the front-end elec-

tronics, readout signal line, or the detector element itself. A common source of most

types of problems is defective or damaged electronic connections or circuit compo-

nents. Most types of problems can be broadly categorized in terms of the symptoms:

increased standard deviation or mean of the channel’s energy readings (referred to as

“noisy” or “hot”, respectively), weakening or loss of the signal, distortion of the pulse

shape, or complications in the calibration system. Specific classifications of problems

have been defined for use in the LAr bad-channel software. The deadPhys prob-

lem means that the signal is cut off within the detector, and does not arrive at the

front-end electronics. Since these types of faults are inaccessible inside the detector,

they are irreparable. In contrast, channels with the deadReadout problem have

their signal cut off within a FEB. This is often due to a poorly soldered connection

or a bent pin on a pre-amplifier or other circuit component, which can be repaired

during long-term accelerator shutdowns. The deadCalib problem signifies that the

calibration signal of a channel is distorted, due to defects or damage in its calibration

12

board. As a result, good OFCs can not be obtained for channels with this problem;

the average of OFCs of channels neighbouring in φ is used instead. This problem

often affects channels in large groups, since up to 32 channels can share the same cal-

ibration line. Channels classified as distorted have either a distorted pulse shape,

or an atypical amplitude. In either case, the difference from a nominal pulse is not

severe, and the impact on physics performance is expected to be minor. There are

several classifications for increased noise levels, according to the severity and intermit-

tency of the problem. Since noise problems can manifest independently for each gain,

each category of noise is broken down into three classifications for high gain (HG),

medium gain (MG) and low gain (LG). There are many possible causes for increased

noise, including problems in pre-amplifiers, high-voltage supplies, cabling or shield-

ing. The sporadicBurstNoise problem is caused by faulty pre-amplifiers, so it

occurs in groups of four consecutive channels connected to the same pre-amplifier.

All the bad-channel problem classifications are summarized in the table in Figure 2.6,

and all known bad channels are shown in Figure 2.7.

13

Status Description
deadReadout Signal is cut off at front-end electronics (both

physics and calibration signals)
deadCalib Distortion of calibration pulse
deadPhys Signal is cut off at the detector (both physics

and calibration signals)
almostDead Pulse shape is normal but the amplitude is

very small
short Electrical short merges two cells
unstable The signal changes over time
distorted Distortion of calibration and physics pulses
lowNoiseHG Noise of 5 to 10 σ at high gain
highNoiseHG Noise of at least 10 σ at high gain
unstableNoiseHG Erratic noise at high gain
lowNoiseMG Noise of 5 to 10 σ at medium gain
highNoiseMG Noise of at least 10 σ at medium gain
unstableNoiseMG Erratic noise at medium gain
lowNoiseLG Noise of 5 to 10 σ at low gain
highNoiseLG Noise of at least 10 σ at low gain
unstableNoiseLG Erratic noise at low gain
missingFEB The channel is part of a FEB which is absent
peculiarCalibrationLine For example, a calibration line that leaks sig-

nal into nearby channels
problematicForUnknownReason An undiagnosed problem
sporadicBurstNoise Erratic bursts of noise occur due to a pre-

amplifier problem

Figure 2.6: A list of problems defined for use in the LAr bad-channel software.

14

Figure 2.7: A map showing known problematic channels in the LAr calorimeters,
by channel number and feedthrough (courtesy of M. Vincter). From top: EMBA,
EMBC, endcap A and endcap C. The majority of problems are either related to
the calibration signal (deadCalib and peculiarCalibrationLine), or minor
distortions (distorted, categorized as “other” in the legend). In total, there are
approximately 1300 problematic LAr channels, which is about 0.7% of all LAr chan-
nels.

15

Chapter 3

Trigger and Data Acquisition Systems

The ATLAS trigger system [12] is divided into three levels: level 1 (L1), level 2 (L2),

and the Event Filter (EF). L1 is a hardware-based system, while L2 and EF, which

are collectively referred to as the High-Level Trigger (HLT) [13], are software-based

and massively parallel. L1 reduces the input rate to about 75 kHz, with an average

time budget per event of around 2.2 µs, and makes selections based on the presence

of objects with high momentum transverse to the beamline. L2 reduces the rate from

75 kHz to about 2 kHz, and each processing node must make a decision within about

40 ms, so fast reconstruction algorithms must be used. Finally, the EF reduces the

rate to around 200 Hz, and is allotted roughly 4 seconds to process an event, which

allows sophisticated (offline-like) reconstruction algorithms to be run, including basic

calibration and alignment corrections. The HLT processor farm contains about 2300

nodes (500 for L2 and 1800 for the EF), each of which contains two quad-core 2.5

GHz processors.

Trigger algorithms are categorized according to the different types of physics

signatures that exist. These categories are called slices; some examples of trigger

slices are electron/photon, muon, jet, tau, and missing transverse energy (which is

discussed in Section 3.2). Each slice contains a number of chains, which are sequences

of algorithms executed in a step-wise manner, from L1 to L2 to the EF, with each

16

result seeding the next step. If the event features do not satisfy the thresholds (or

other criteria) at any point of a chain, that chain is terminated, so usually only a

subset of trigger chains are satisfied on any given event. It is important to use this

principle of early rejection to discard unwanted events as quickly as possible. Since

the majority of events are ultimately rejected, the amount of time spent on rejected

events is the dominant contribution to the total processing time.

The trigger system is integrated with the Data Acquisition (DAQ) system, which

buffers data and transfers it from one trigger level to the next, and finally to storage.

Figure 3.1 schematically illustrates the combined trigger and DAQ systems. The

readout from the calorimeters and muon spectrometer branches into two independent

and parallel paths: coarse information1 is sent to the central L1 trigger processing unit

in the form of analog signals, while the fully-detailed information remains buffered

in pipeline memories, for potential delivery to the HLT. Since L1 and the HLT have

parallel readout chains, it is possible for problems to affect L1 data but not HLT

data, and vice versa. L1 identifies Regions of Interest (RoIs) in the event wherever

significant energy deposits or muon tracks are found, and determines which RoIs pass

which thresholds. If any RoIs pass, the full event information is sent from the pipeline

memories to the Read-Out Drivers (RODs) and Buffers (ROBs), and those RoIs are

assigned to a node in the L2 trigger, in continuation of the trigger chain. The L2

algorithms seeded by those L1 RoIs retrieve event information (in full granularity)

from the ROBs as needed, based on the RoI locations, using a software interface that

will be described in further detail in Section 3.1. Since L2 reconstruction is seeded

by the RoIs received from L1, only a small portion (about 2% [12]) of the event

information is retrieved at this stage, in order to minimize network data transfer

time. If L2 accepts an event, the Sub-Farm Input (SFI) nodes collect all data for

that event from the ROBs, and assemble it for a node in the EF farm, where the EF

1The information used by L1 must be low-resolution in order to expedite the data transfer and
processing. The L1 calorimeter information has the geometric granularity of Trigger Towers.

17

algorithms seeded by successful L2 chains are executed. If the EF accepts the event,

the data are sent to the Sub-Farm Ouput (SFO) nodes for storage, in the form of

bytestream files.

Figure 3.1: Schematic diagram of the Trigger and DAQ systems [12].

3.1 Data Preparation for HLT Calorimeter Algorithms

An understanding of the HLT data preparation software, described in this section,

will be important for Chapter 4. This software is part of the interface between

the raw bytes of data transmitted from the calorimeter read-out electronics, called

18

a bytestream, and the object-oriented cell information used in HLT algorithms.

Broadly speaking, this interface is made up of two layers: the bytestream decoding

(LArRodDecoder), which converts bytestream data into cell information and assigns

it to the appropriate cell objects, and the data access mechanism (TrigDataAccess),

which serves the prepared cell data to HLT algorithms corresponding to the geomet-

ric region requested. These interfaces are the only way to access calorimeter data in

the HLT, so they are used by many HLT algorithms.

Calorimeter cells are represented in software by CaloCell objects, which contain

basic information such as a cell’s energy, the gain at which it was read out, and

a unique identifier.2 CaloCells are organized in vectors called collections (LArCell-

Collection), each of which holds the cells corresponding to one ROD (two FEBs, at

most 256 cells). All of the collections are further organized in a container called

LArCellCont, which is a helper class for TrigDataAccess. At the beginning of a run,

LArCellCont prepares a map which associates each trigger tower (TT) with the cells

contained in it. Also, in order to avoid time-consuming dynamic memory allocation,

all cells and collections are allocated at the beginning of a run, so during event pro-

cessing, the cell information for an event (energy, time, quality, etc.) is written into

the pre-allocated cell objects. The TrigDataAccess interface keeps track of which

cells have been accessed in an event, so that cell information is only unpacked into a

CaloCell object the first time in an event that that cell is accessed. Subsequent ac-

cess to a calorimeter region during the same event uses cached data, and is therefore

faster than the initial access.

The data preparation process is initiated when an algorithm requests the calorime-

ter information in a specified geometric region. First, a service called RegionSelector

is used to determine which ROBs must be accessed in order to fulfill the request.

It is essentially a large matrix containing the minimum and maximum (η, φ) coor-

2Identifiers will be discussed further in Section 4.1.

19

dinates of each trigger tower, and the ROD identifier(s) associated with each TT.

Then, a data request is sent on the network to the relevant ROBs, and bytestream

conversion is initiated on the ROD fragments when they are received. The collection

which should be filled by the decoded data is determined based on the ROD fragment

identifier, and the collections are filled with the decoded data. Finally, the maps in

LArCellCont are used to return all cells in the trigger towers encompassed by the

(η, φ) region requested by the HLT algorithm.

3.2 Missing ET Trigger Slice

The Missing ET (MET) trigger slice consists of two types of signatures: the vector

sum of missing transverse energy,

6ET ≡ −
∑

ET = −
∑

i

(Exi x̂ + Eyi ŷ)

and the scalar sum of transverse energy (denoted SumET),

∑
|ET | =

∑
i

√
Exi

2 + Eyi
2.

Here energy is considered a vector; it is essentially equivalent to momentum. The

summations comprise all energy measured by the detector: the energy deposited in

the hadronic and electromagnetic calorimeters, and the energy of muons traversing

the muon spectrometer. There are different types of elements i over which the sum-

mation can be conducted: individual calorimeter cells or coarser detector elements

such as FEBs (as discussed later in this section), or reconstructed physics objects,

as in the case of offline MET algorithms. In any case, the vectorial direction of each

element in the sum is simply its geometric position (projected in the transverse plane)

with respect to the center of the detector. Missing transverse energy is the deficit

by which the net transverse energy in an event is ostensibly not conserved, which

20

should ideally equal the amount of undetected transverse energy carried away by

weakly-interacting particles. However, instrumental effects, such as spurious energy

signals due to problematic calorimeter channels, are a source of fake MET that can

degrade the measurement of such particles or mimic their presence. The impact of

instrumental effects on the trigger will be discussed further in Chapter 4.

The L2 MET algorithm only takes the MET result from L1 and adds the trans-

verse energy contribution of muons detected by the Muon Spectrometer system, which

is generally small compared to the calorimeter contribution. For this reason, the L2

decision is rarely different from the L1 decision, so the L2 MET trigger has lit-

tle potential to refine the L1 selection. This limitation comes about because only

calorimeter data within RoIs can be accessed in L2, and MET is a global quantity

that requires information from the entire calorimeter. Therefore, the EF is the only

stage at which MET can be calculated using cell-level granularity.

The EF MET algorithm loops over all cells in the Tile and LAr calorimeters, and

over the muons obtained from the EF muon algorithm, summing up their energies

to calculate the global quantities ΣEx, ΣEy and ΣET , among others. This task is

modularized by the use of TrigMissingEtComponent objects, which contain partial

sums of Ex, Ey, and ET . Each component corresponds to one subdetector sampling,

with an additional component for the contribution of muons.3 The global results are

obtained by combining the partial sums in all the components, applying to each a

calibration to adjust the slopes and offsets of the energy distributions to provide a

better estimate of the true deposited energy.

There are three variations of the EF MET algorithm: the cell-based one described

here, one that suppresses noise by skipping all cells with energy less than two stan-

dard deviations above the mean, and one that is FEB-based instead of cell-based.

3This is the default configuration. It amounts to 25 components, corresponding to: 4 EMB
samplings, 4 EMEC samplings, 4 HEC samplings, 3 FCAL samplings, 3 samplings each in the Tile
barrel, extended barrel, and gap, and lastly the muon collection.

21

Instead of retrieving energy information from every cell, the FEB-based tool con-

structs global sums using sums of each FEB (calculated in the RODs), which greatly

reduces the data-retrieval time. However, the disadvantage of FEB-level granularity

is slightly decreased resolution, and more importantly, less flexibility in dealing with

problematic channels, since individual channels can not be masked in this approach.

3.3 Monitoring

All systems of the ATLAS detector make use of an extensive monitoring framework.

The monitoring assembles histograms in real-time for display in the ATLAS control

room and elsewhere, and also produces more detailed histograms for further analysis

offline. These histograms are useful for assessing data quality and diagnosing instru-

mental problems. For example, the trigger monitoring histograms can show sudden

increases in trigger rates, and the LAr monitoring histograms can reveal problems

such as noisy cells or dead regions, and help characterize problematic channels with

the statuses listed in Table 2.6. The monitoring histograms in Figures 3.2 and 3.3

show noise bursts (the sporadicBurstNoise problem classification) occurring in

cosmic ray runs, due to problems in the preamplifiers of certain FEBs.

22

Figure 3.2: This monitoring histogram shows the frequency of cells registering en-
ergies more than 3σ away from the mean in EMECC. Cells with Gaussian energy
distributions are expected to deviate from the mean by at least 3σ in 0.27% of events.
The proportion is much higher in one of the FEBs, indicating a problem in it. The co-
ordinates “Half Crate” and “Slot” refer to pieces of hardware, parts of which are not
associated with this subcalorimeter; this explains the blank spaces in the histogram.

23

Figure 3.3: This sudden spike in the L1 trigger rate is symptomatic of a noise burst.

24

Chapter 4

Trigger Robustness

Instrumental issues such as problematic calorimeter channels can have an adverse

effect on the trigger. The spurious energy signals of hot or noisy channels can be

mistaken for the energy genuinely deposited by particles. Also, dead channels (espe-

cially in contiguous groups) can degrade and bias the measurement of MET. Transient

problems such as sporadic bursts of noise can also occur. These effects, among others,

can inflate the trigger rate with unwanted events, which increases operational dead-

time and pollutes the dataset. Even a single hot or noisy channel can be detrimental

if it fires often and at a high energy. The trigger system must be robust against

these problems, and in particular, it is important for the HLT to have the capability

to mask channels which are known to be consistently problematic. The following

subsections describe the LAr bad-channel software (Section 4.1) and the timing tests

and optimizations done to assess and minimize the impact of masking bad channels

on the HLT processing time (Section 4.2).

4.1 LAr Bad-Channel Software

The LAr bad-channel software consists of two main tools, the LArBadChanTool

and the LArBadChannelMasker, some helper tools used by the LArBadChanTool,1

1For example, the LArBadChannelParser, LArBadChannelDecoder, and some tools for transac-
tions with the bad-channel database. These will not be described in full detail.

25

and several simple but essential classes which form the groundwork for the LAr bad-

channel software environment. The main tools will be described in Sections 4.1.1 and

4.1.2, and their use for masking bad channels in Sections 4.1.3 and 4.1.4. First, some

of the aforementioned simple foundational classes and other introductory material

will be presented here.

The status of a channel is encoded in a LArBadChannel object, as a 32-bit word,

allowing up to 32 problems to be defined.2 The problems are defined by an enumer-

ation in the LArBadChannelEnum class, and are listed in the table in Figure 2.6.

To obviate widespread coding of bitwise operations (which can be error-prone and

not very human-readable), a bit-packing class, LArBadChanBitPacking, is used to

manipulate the bits of LArBadChannel objects: the user has only to specify the enu-

merator or string corresponding to a given problem in order to set the appropriate bit.

An additional benefit of this data abstraction layer is the capability to transparently

change the assignment between problems and bits, so that bits can be rearranged

or redefined in a new format if needed, with backwards-compatibility such that all

formats remain readable.

All bad-channel problems are currently represented by associating a status object

(LArBadChannel) with a channel identifier.3 Two kinds of identifiers are commonly

used in the ATLAS calorimeter software: the Identifier class, and the HWIdentifier

class. A HWIdentifier, or hardware identifier, can represent a channel or any other

piece of hardware, such as a LAr FEB. This type of identifier is commonly used

in offline reconstruction, and in low-level calorimeter data preparation code. An

Identifier (sometimes called “offline identifier”) can represent any LAr or Tile channel,

so this type of identifier is required when handling LAr and Tile channels together

in the unified Calorimeter context, and is used in higher-level parts of the HLT code.

2This number can be expanded if needed.
3This may not be the case in a future implementation; more complex forms of bad-channel

information, such as crosstalk and shorts, could be represented by associating a problem with two
or more channels.

26

The bad-channel software accommodates both types of identifiers.

4.1.1 LArBadChanTool

The LArBadChanTool is the central piece of the LAr bad-channel software infras-

tructure. It provides access to all known bad-channel information about the LAr

calorimeter. As such, it is a widely-employed tool in ATLAS software, used in on-

line and offline monitoring, some calibration algorithms, and in the treatment of

problematic channels in offline reconstruction and the HLT. Its public interface is:

LArBadChannel status(HWIdentifier id) const; (4.1)

LArBadChannel status(const HWIdentifier& FEBid,

int chan) const; (4.2)

LArBadChannel offlineStatus(Identifier id) const; (4.3)

bool febMissing(HWIdentifier febId) const; (4.4)

bool febAllGood(HWIdentifier febId) const; (4.5)

Functions 4.1 and 4.3 return the status of a channel, given a hardware or offline

channel identifier, respectively. Function 4.2 is a more optimized form of Function

4.1, for use with the FEB-based hash described later in this section. Function 4.4

is used to query whether a FEB is absent from the detector read-out (due to failure

of a power supply, for example), and Function 4.5 is used to query whether a FEB

contains any bad channels.

Bad-channel information can be input to the LArBadChanTool in two ways: from

the conditions database, and from ASCII files. In order to read ASCII files, the

LArBadChanTool uses the LArBadChannelParser to parse the text and check that

27

it is correctly formatted. The textual information is then passed to the LArBad-

ChannelDecoder, where it is converted into status and identifier objects, and further

checked for validity before finally being passed to the LArBadChanTool. This mode

of operation is needed for the LArBadChanTool to initially populate the database

with information and update it thereafter,4 and it is also useful for testing purposes.

One can write a set of ASCII files containing any desired state of bad channels, and

use that in replacement of the conditions database, or to augment the information

from the database. However, during normal live running, the conditions database

is the sole source of input. The LArBadChanTool retrieves bad-channel information

from the database at the beginning of every run. The HLT farm can only access the

online replica of the database, which can only be updated between runs. As a result,

if a new problematic channel arises during a run, it can not be masked in the HLT

without stopping the run, updating the database, and starting a new run.

Once the input data is read from ASCII files and/or the conditions database, the

LArBadChanTool stores it in main memory5 for the duration of the run, in order

to have low-latency access to it. Throughout its evolution, the LArBadChanTool

has used several different container classes to store its information. In the first im-

plementation, pairs of LArBadChannels and identifiers were stored in a STL vector,

sorted by the value of the identifier. A binary search was used to look up a given

identifier, giving speed performance that scaled logarithmically with the number of

bad channels stored. This data structure was later replaced in favour of a hash ta-

ble, which occupies more memory but allows any channel to be retrieved in constant

time. The data structure has since been further revised such that the hash table is

segmented by FEB: 1524 LArBadChanFebState objects are stored in a vector, each

4The ASCII files used for database uploads are compiled and maintained by members of the LAr
Offline Commissioning community, and contain all bad-channel information which is known to and
vetted by them.

5It is important for the LArBadChanTool to use memory sparingly, since the ATLAS software is
running close to the 2 GB limit, and must not exceed it in order to run on most current computers.

28

of which represents a FEB and therefore contains a miniature hash table of 128 (or 0

if empty) LArBadChannel objects. This structure retains constant-time access, but

has the benefit of smaller memory occupation: if a FEB has no bad channels, the

corresponding LArBadChanFebState object will remain at size 0, instead of being ex-

panded to contain 128 empty elements (i.e. good channels). When using Function 4.2,

the correct channel can be quickly retrieved by accessing the chanth element of the

LArBadChanFebState object corresponding to FEBid, where FEBid and chan are

the input parameters of the function. The LArBadChanTool creates an auxiliary

container indexed by Identifier only when required by a call to Function 4.3, so as

to conserve memory. The structure of this auxiliary container is the type which re-

quires binary searching, so querying a channel’s status via Identifier is slower than

querying by HWIdentifier, which is in turn slower than querying by channel number

and HWIdentifier of a FEB.

4.1.2 LArBadChannelMasker

The LArBadChannelMasker is a simple interface to the LArBadChanTool. Its utility

is due to two main characteristics: it allows user-level configurability in the usage

of bad-channel information retrieved from the LArBadChanTool, and it distills the

complete status information of a LArBadChannel object into a boolean value which

indicates whether the channel satisfies the user-specified criteria. The LArBadChan-

nelMasker’s public interface consists of Functions 4.6 - 4.8. Functions 4.6 and 4.7 tell

whether a given channel meets the user-specified status criteria, based on the cor-

responding hardware or offline identifier, respectively. Function 4.8 is an optimized

form of Function 4.6, used in conjunction with Function 4.2.

29

bool cellShouldBeMasked(

const HWIdentifier& hardwareId,

const int gain=CaloGain::UNKNOWNGAIN) const; (4.6)

bool cellShouldBeMasked(

const Identifier& offlineId,

const int gain=CaloGain::UNKNOWNGAIN) const; (4.7)

bool cellShouldBeMaskedFEB(

const HWIdentifier& FEBid,

const int channelNumber,

const int gain=CaloGain::UNKNOWNGAIN) const; (4.8)

A configurable user-level interface to the LArBadChanTool is not just convenient,

but necessary: there may be many clients of the LArBadChanTool, each of which may

wish to use its information in a different way, but there should be only one instance

of the LArBadChanTool, since it is the definitive source of bad-channel information

and it occupies a significant amount of memory. Each software client therefore config-

ures its own instance of the LArBadChannelMasker with which to interface with the

common LArBadChanTool. The most important configurable property of the LAr-

BadChannelMasker is a set of problems called ProblemsToMask, which constitutes

the user-specified criteria for selecting channels. The flowchart in Figure 4.1 gives a

conceptual illustration of the use and configuration of the LArBadChannelMasker.

30

The logic used to distill the 32-bit status information of a LArBadChannel object

to a boolean value is illustrated by an example in Figure 4.2. A logical AND operation

is carried out between two or three bitwords. The first bitword is the channel status,

which the LArBadChannelMasker retrieves from the LArBadChanTool. The second

bitword comprises the problems specified by the user in the ProblemsToMask prop-

erty. If the gain at which the channel was read out is known, it can be provided as

an optional parameter in the function call. Then, a third bitword is also used, which

filters out any problems which are not relevant at the given gain. If the result of the

AND operations is non-zero, the return value is true, indicating that the channel has

at least one of the problems specified by the user, and if applicable, that the problem

is manifest at the given gain.

Figure 4.1: A conceptual flowchart of the use and configuration of the LArBadChan-
nelMasker. Queries from the end-user are forwarded to the LArBadChanTool. The
status information obtained from the LArBadChanTool is filtered according to the
problems given in the ProblemsToMask property, and the gain at which the channel
is read out, if applicable. The resulting boolean value is returned to the end-user.

31

Figure 4.2: In this example, a typical noisy cell is read out at low gain. The value
of the ProblemsToMask property corresponds to the default criteria used for HLT
masking. The low-gain mask excludes any problems which only manifest at medium
or high gain. This channel would be masked due to the highNoiseLG problem.

4.1.3 Per-run HLT Masking

Here the first, most basic implementation of masking bad channels in the HLT is

described. This implementation of masking is installed in the LArCellCont container

described in Section 3.1. Cells are masked by omitting them from the map which

associates each trigger tower with the cells contained in it. This does not alter the

masked cells themselves, but causes them to be left out of the collections that are

returned by TrigDataAccess. Since the TT-cell map is constructed at the beginning

of the run and persists throughout the duration of the run, the result is that the

masked cells are inaccessible to all HLT algorithms and appear to be missing, for the

duration of the run.

This method has the advantage of taking place only at the beginning of the run,

so that no additional CPU time is required during event processing. However, the

corresponding disadvantage of the permanency of this masking method is the lack

of flexibility to deal with channels on an event-by-event basis, based on the gains at

32

which they are used. Channels can only be masked for the entire run, or not at all.

This “all or nothing” approach can cause channels with gain-specific problems to be

masked needlessly in events where they are functioning correctly, which decreases the

acceptance of the detector.

4.1.4 Per-event HLT Masking

This method of masking channels avoids the drawback of the previous method. It

is installed in the LArRodDecoder tool, which is part of the bytestream conversion

code discussed in Section 3.1. This tool fills cell collections with energy and gain

information extracted from the ROD data fragments. Before the energy is written

into a cell, an instance of the LArBadChannelMasker checks whether the cell should

be masked, taking its gain into account. If the cell should be masked, then its

energy is set to zero instead of the value extracted from the ROD data.6 Since this

process occurs on every event, it costs extra CPU time and slows down the HLT

data access somewhat. However, the capability to make the decision to mask on an

event-by-event basis, taking the gain into account, can potentially save channels from

needlessly being masked if they have gain-dependent problems.

4.2 Optimization and Timing Tests

The operations involved in the per-event method of masking must be stringently

optimized, since they are part of the bytestream conversion which is performed on

every cell that is accessed by the HLT. This is a concern at both L2 and the EF, since

the L2 trigger has a very tight time budget, and when the EF MET algorithm is run,

every calorimeter cell is accessed. A series of timing tests were conducted in order to

assess the impact of the masking operations on the execution time of the calorimeter

data preparation code, and several simple optimizations were implemented in the

LArBadChannelMasker to ensure that it would run quickly enough for this purpose.

6This method of cell masking does not alter the bytestream files recorded for offline processing;
only the HLT is affected.

33

The most basic optimization was to allow the client of the LArBadChannelMasker

to query whether masking was activated. This way, when masking is deactivated,

the client code can simply check a local boolean variable instead of making a virtual

function call, which reduces the overhead of the masking code to a negligible level

when masking is deactivated. Before this optimization (among others), the presence

of the masking code contributed to a significant slowing of the bytestream decoding

even when masking was switched off.7

More speed gains were made by simply checking whether a channel is good before

conducting the bitwise AND operations explained in Figure 4.2. Since the majority

of channels have no problems, this almost always obviates the bitwise operations,

allowing a result of 0 to be returned immediately. Using the Valgrind code-profiling

suite revealed a less obvious opportunity for optimization: the ToolHandle class (the

standard “smart pointer” used to configure, retrieve and access tools in ATLAS soft-

ware) was prohibitively slow to dereference in this specialized application. By using

a ToolHandle only for the configuration, and caching and dereferencing a bare C++

pointer during algorithm execution, the time to query one cell’s status was decreased

by about 10%, and the total execution time of the EF MET feature extraction algo-

rithm decreased by about 4%. The most significant speed improvement was changing

the search method of the LArBadChanTool from a binary search to a FEB-based hash

method, as described in Section 4.1.1. A comparison of different look-up methods be-

fore optimization is shown in Figure 4.3, and Figure 4.4 shows how the time required

for masking scales with RoI size. The final impact on the EF MET feature extraction

algorithm of per-event cell masking after all optimizations is shown in Figure 4.5.

The timing tests shown in Figures 4.3 and 4.4 were conducted with the Valgrind

profiling tool, so they are completely reproducible; the same test run twice will pro-

duce identical results. The test shown in Fig. 4.5 measures the real time spent by the

7This can be noticed in Figure 4.4.

34

CPU, so care was taken to ensure that the standard deviations of the measurements

were small, and they were reproduced several times to ensure consistency.

Figure 4.3: Comparison of different look-up methods tested in the LArBadChan-
Tool. The speed of the binary search scales logarithmically with the number of bad
channels in the database, and the hash methods have constant speed. The “hash via
Offline ID” method has a high overhead due to a cumbersome method of calculating
hash values from offline IDs. The “direct hash” method circumvents the computing
of the hash values by looking up pre-calculated hashes instead. The final method
chosen uses a simplified hash calculation based on FEB and channel numbers, and
has performance similar to but slightly better than the “direct hash” method shown
here.

35

Figure 4.4: Scaling of masking time with RoI size, before optimizations. The slower
binary search method was used to look up cells. The time increase due to the masking
code is shown relative to the case where no masking code is installed in the bytestream
converter. The legend indicates data points where masking was installed but switched
off, and switched on with varying numbers of bad channels stored in the database
(0, 612 and 1371). The point at an RoI width of 0.60 with masking turned on and
zero bad channels is slightly slower than the other points in that series, because it
was measured before a minor optimization.

36

Figure 4.5: Summary of the increase in execution time due to masking bad channels
on each event, after all optimizations. The feature extraction algorithm for EF MET
is used as a gauge. The total time increase due to turning on masking is about 8%.

37

Chapter 5

Results and Conclusions

5.1 Results of Bad-Channel Masking Tests

5.1.1 Software Tests Using Simulated Data

The first demonstration of the bad-channel masking was a simple proof-of-concept

test. In this test, the method of masking cells was the same as described in Sec-

tion 4.1.3 - cells were masked by omitting them from the map which associates cells

to trigger towers. However, the LArBadChannelMasker and LArBadChanTool tools

were not yet fully developed; instead, a decision was hard-coded in the LArCellCont

container to arbitrarily mask cells based on their identifiers. About 14% of the cells

in the top half (φ > 0) of the LAr calorimeter were masked in this way, distributed

sparsely and fairly uniformly. Two types of simulated QCD di-jet data were used

for this test: di-jets with energy ranging from 35 to 70 GeV (denoted J2), and from

280 to 560 GeV (denoted J5). The ATLAS data simulation does not emulate the

effects of problematic channels, so the cells masked in this exercise are nominally

good; however, the purpose of this software test was only to demonstrate that the

mechanism of masking cells worked as intended. Figure 5.1 shows that masking 7%

of the cells in the calorimeter causes a commensurate decrease in the scalar sum of

deposited transverse energy of about 7%, as expected. Since all the masked cells are

38

in the region of positive φ, the direction of the MET vector is accordingly biased in

that direction, as shown in Figure 5.2.

In a later test, the cell-level energy differences due to masking were examined.

This test also exercised the ASCII-based method of input to the LArBadChanTool.

A text file containing a preliminary list of bad channels (identified by the LAr Com-

missioning community using calibration runs and cosmic ray data) was parsed and

loaded into the LArBadChanTool. Most of the bad channels identified at this time

were in end-cap A. Figure 5.3 shows that most of the masked energy is accordingly

in the region η > 1.50. This confirms that the correct channels are being masked.

Figure 5.1: SumET distributions without (left) and with (right) cell masking. Two
types of simulated QCD di-jet data were used; J2 (top) and J5 (bottom). The means
of the SumET distributions decrease by about 7% when 7% of cells are masked
arbitrarily.

39

5.1.2 Validation Using Cosmic Ray Data

The bad-channel masking underwent a more realistic test using cosmic-ray data from

the M7 (Milestone 7) commissioning runs. In run 69373, there were several miscal-

ibrated FEBs in addition to noisy channels, which caused large spikes in the (η, φ)

distributions of L2 photons. By masking the miscalibrated FEBs and noisy channels,

the spikes are removed from the distribution of photons, significantly improving the

data quality, as seen in Figure 5.4.

5.2 Summary

A software framework for cataloguing and querying the status of LAr channels has

been developed, and put to use in the HLT data preparation code to provide two

mechanisms for masking problematic LAr channels. These tools have been strin-

gently optimized in order to minimize the impact on the execution speed of HLT

algorithms. Following the testing and validation described in Section 5.1, the per-

run method of cell masking was enabled in ATLAS production software. The LAr

cell masking is now ready to be used when the LHC starts running, to safeguard the

HLT from instrumental effects and improve the data quality of events recorded for

physics analysis.

40

Figure 5.2: Distributions in φ of MET without (left) and with (right) cell masking.
Two types of simulated QCD di-jet data were used; J2 (top) and J5 (bottom). This
software test confirms that arbitrarily masking 14% of the cells in the top half (φ > 0)
of the LAr calorimeter results in a bias of the direction of MET towards positive φ.

41

Figure 5.3: Lego plot showing the change in energy due to masking (cell energies
without masking minus cell energies with masking). η is on the left axis and φ is on
the right axis. The unit of energy is MeV. Twenty J5 simulated di-jet events were
used.

42

Figure 5.4: Distributions in η (left) and φ (right) of photons in L2 from cosmic ray
data, without (top) and with (bottom) masking.

43

Bibliography

[1] W.-M. Yao et al. “Higgs Bosons: Theory and Searches.” J. Phys. G 33 (2006)

and 2007 partial update for the 2008 edition available on the PDG webite:

http://pdg.lbl.gov/2007/reviews/higgs_s055.pdf

[2] S. Dimopoulos and H. Georgi. “Softly Broken Supersymmetry and SU(5).” Nucl.

Phys. B 193 (1981): 150-162.

[3] G. Polesello and D. R. Tovey. “Constraining SUSY Dark Matter with the ATLAS

detector at the LHC.” JHEP Issue 05 (2004): 12pp.

[4] A. Gupta (for the ATLAS Collaboration). “Search of extra space dimensions

with ATLAS.” Pramana 62 Issue 3 (2004): 607-610.

[5] D. Rousseau. “CP Violation with the ATLAS detector.” Nucl. Phys. B, Proc.

Suppl. 75 Issue 3 (1999): 351-355.

[6] L.R. Evans. “The Large Hadron Collider.” Proceedings of the 1995 Particle

Accelerator Conference, Vol. 1 (1995): 40-44.

http://epaper.kek.jp/p95/ARTICLES/FPD/FPD04.PDF

[7] O. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, P. Proudlock.

“LHC Design Report, Volume 1: The LHC Main Ring.” CERN-2004-003-V-1,

CERN-2004-003 (2004): 556pp.

44

[8] O. Bruning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, P. Proudlock.

“LHC Design Report, Volume 2: The LHC Infrastructure and General Services.”

CERN-2004-003-V-2, CERN-2004-003 (2004): 230pp.

[9] M. Benedikt, P. Collier, V. Mertens, J. Poole, K. Schindl. “LHC Design Report,

Volume 3: The LHC Injector Chain.” CERN-2004-003-V-3, CERN-2004-003

(2004): 356pp.

[10] J. M. Campbell, J. W. Huston and W. J. Stirling. “Hard interactions of quarks

and gluons: a primer for LHC physics.” Rep. Prog. Phys. 70 (2007): 89-193.

[11] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large

Hadron Collider.” JINST 3 S08003 (2008): 407pp.

[12] K. Kordas et al. “The ATLAS Data Acquisition and Trigger: concept, design

and status.” Nucl. Phys. B, Proc. Suppl. (172) (2007): 178-182.

[13] ATLAS HLT/TDAQ/DCS Group. “ATLAS High-Level Trigger, Data Acqui-

sition and Controls Technical Design Report.” CERN/LHCC/2003-22 (2003):

364pp.

http://atlas-proj-hltdaqdcs-tdr.web.cern.ch/atlas-proj-hltdaqdcs-tdr/

45

Appendix A

Attribution of Work

The LAr bad-channel software framework was designed and implemented by T.

Todorov. I contributed by coding and testing the LArBadChannelParser, a class

which parses channel information from ASCII files and provides it to the LArBad-

ChanTool as input. I then expanded the functionality of the LAr bad-channel soft-

ware framework by proposing, designing, implementing and testing the LArBadChan-

nelMasker, a useful and efficient interface to the LArBadChanTool. In addition, I

assisted T. Todorov with ongoing maintenance and debugging of the LAr bad-channel

software, and a few minor improvements.

In order to apply the bad-channel tools to mask channels for the HLT, I worked

with D. Damazio in the area of the HLT calorimeter data preparation code. This

entailed testing the methods of masking cells, and conducting extensive timing tests

and profiling to assess the efficiency of the per-event masking operations. I identified

several opportunities for optimization in the LAr bad-channel code (including the

LArBadChannelMasker), and continued to collaborate with T. Todorov to quicken

it.1

1I also brought about significant optimizations in the MET feature extraction code and the
calorimeter cell code, but those optimizations are not directly relevant to, nor described in, this
thesis.

46

Appendix B

List of Abbreviations

CERN European Organization for Nuclear Research
DAQ Data Acquisition
EF Event Filter
EMB Electromagnetic Barrel calorimeter
EMEC Electromagnetic End-cap calorimeter
FCal Forward Calorimeter
FEB Front-end Board
FT Feedthrough
HEC Hadronic End-cap calorimeter
HLT High-Level Trigger
LAr Liquid Argon
LHC Large Hadron Collider
L1 Level-1 Trigger
L2 Level-2 Trigger
MET Missing ET ; Missing Transverse Energy
OF Optimal Filtering
OFC Optimal Filtering Coefficient
QCD Quantum Chromodynamics, Quantum Chromodynamical
ROB Readout Buffer
ROD Readout Driver
RoI Region of Interest
SCA Switched-capacitor Array
SFI Sub-Farm Input
SFO Sub-Farm Output
TT Trigger Tower

