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Abstract
Connectivity between qubits plays an irreplaceable role in quantum computation. An urgent task of quantum
computation based on atomic arrays is to generate effective coupling between two distant qubits, thereby
enhancing connectivity. In this paper, we investigate the realization of two-qubit gates utilizing buffer-atomic
configuration, where the non-coding atoms serve as quantum buses to connect the computational qubits.
Geometric control is achieved through globally-shined laser pulses in the Rydberg blockade region. It is found that
acceleration based on shortcut to adiabaticity can be realized by reshaping the original control waveforms. The
proposed distant two-qubit gate demonstrates robustness against systematic errors and random noise. Further
numerical simulations indicate that high-fidelity control is maintained even when considering
next-nearest-neighbor coupling among the atoms. Thus, our proposal provides a fast and experimentally feasible
method for realizing distant two-qubit gates in atomic arrays, which may contribute to improving the scalability of
quantum computations.
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1 Introduction
Atomic arrays in optical tweezers have emerged as promis-
ing physical platforms for large-scale quantum informa-
tion processing [1–6]. These platforms have successfully
demonstrated single-atom initialization, quantum gates,
addressing, and readout. Two-qubit gates with neutral
atoms are typically implemented by driving them to highly
excited Rydberg states, which utilize strong and long-range
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interactions [7–9]. Over the past decade, significant ad-
vancements have been made to enhance gate fidelity, lead-
ing to the realization of two-qubit gates between neigh-
boring atoms that surpass the quantum error-correction
threshold [10–17]. It has been shown that quantum al-
gorithms across N qubits demand a gate depth of N1/D,
where D is the dimension, assuming only nearest-neighbor
couplings among qubits [18]. Quantum systems with high
connectivity can perform quantum algorithms more effi-
ciently than those with only local connections. Therefore,
a crucial next step for single-atom platforms is the exten-
sion of two-qubit gates from neighboring to distant qubits
[19, 20].

There are mainly two strategies to introduce effective in-
teraction between two distant atoms. The first scheme is
using optical or microwave photons as quantum buses to
connect distant atoms [21–24]. However, these schemes
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require precise experimental control of numerous param-
eters and must contend with photon loss in the cavity. The
second strategy employs the so-called buffer-atom config-
uration, wherein non-encoding atoms in the array func-
tion as quantum buses. The Rydberg excitation of these
buffer atoms can effectively couple computational qubits.
This approach was proposed in [19], where the controlled-
phase gates are realized by off-resonant coupling between
ground states and Rydberg states to generate the appropri-
ate phase shift [25–29]. The results are further generalized
to accelerate the process by resonant coupling (between
ground states and Rydberg states) via optimized algorithm
[30]. Additionally, global laser pulses that simultaneously
drive computational qubits and buffer atoms to implement
distant two-qubit gates have been proposed [31]. However,
adiabatic condition should be satisfied and the Rydberg in-
teraction should switch its sign to realize the geometric
control. Thus, further investigations are needed to achieve
fast and robust control of distant two-qubit gates.

2 Physical model and the geometric manipulation
In the following, we describe the buffer-atomic configu-
ration of N atoms employed for the realization of dis-
tant two-qubit gates. As illustrated in Fig. 1(a), two dis-
tant atoms, labeled by red points, are encoded as compu-
tational qubits. The blue points represent buffer atoms,
which are used to induce effective coupling between the
computational qubits via global excitation. The coupling

Figure 1 Illustration of quantum control with buffer-atomic
configuration. (a) The buffer-atomic configuration of N atoms. Red
points: computational qubits. Blue points: buffer atoms. Effective
coupling between the computational qubits is achieved by exciting
both the computational qubits and buffer atoms to Rydberg states.
The coupling strength between nearest-neighboring atoms is
denoted by VNN . The next-nearest-neighbor coupling between the
computational qubits and buffer atoms is labeled as VNNN1 , while the
next-nearest-neighbor coupling among buffer atoms is labeled as
VNNN2 . (b) The energy levels of the atoms. The states |0〉 and |1〉 are
the ground states and |r〉 is the Rydberg state. The ground state |1〉 of
each atom is coupled to the Rydberg state with Rabi frequency �,
detuning �, and phase ϕ . At the beginning of the operation, all
buffer atoms are prepared in the state |1〉, while the states of the
computational qubits are arbitrary

strength between nearest-neighbor atoms is denoted by
VNN. Due to the 1/R6 scaling law of Rydberg interactions
(R the distance between atoms), the coupling strength be-
tween next-nearest-neighbor atoms is significantly weaker
than VNN, yet it may still introduce unwanted effects. Since
the linking patterns of buffer-atomic configuration may
not be straight, the next nearest-neighboring couplings
of the computational qubits-buffer atoms (as labelled by
VNNN1) and the buffer atoms-buffer atoms (as labelled by
VNNN2) maybe different.

As depicted in Fig. 1(b), each atom in Fig. 1(a) has three
levels labeled by |0〉, |1〉, |r〉, where |0〉 and |1〉 are the
ground states, and |r〉 is the Rydberg state. The ground
state |1〉 of each atom is coupled to |r〉 with Rabi frequency
�, detuning �, and phase ϕ. Initially, all buffer atoms are
prepared in the state |1〉, while the states of the compu-
tational qubits are arbitrary. The total Hamiltonian of N
interacting atoms is given by

H =
�

2
∑

k

(cosϕσ k
x + sinϕσ k

y ) + �
∑

k

nk +
∑

j,k

Vj,knjnk ,

(1)

where σ k
x = |1〉k〈r| + |r〉k〈1|, σ k

y = i(|1〉k〈r| – |r〉k〈1|), nk =
|r〉k〈r|, and ℏ = 1. Here, Vj,k represents the Rydberg inter-
action strength between the jth and kth atoms. It is well-
established that a system governed by Hamiltonian (1)
evolves within a Hilbert space of dimension 3N . To further
elucidate the features of the dynamics, we focus on the four
computational basis: |0̃0〉 = |01 · · · 10〉, |0̃1〉 = |01 · · ·11〉,
|1̃0〉 = |11 · · · 10〉, and |1̃1〉 = |11 · · ·11〉. Notably, an inde-
pendent subspace associated with each computational ba-
sis state can be defined when the Rydberg blockade condi-
tion Vj,k � �, � is satisfied.

For a system prepared in one of the basis states, it
will evolve within the associated subspace. For example,
in the case of N = 3 (one buffer atom), the four sub-
spaces are constructed by {|0̃0〉, |0r0〉}, {|0̃1〉, |0r1〉, |01r〉},
{|1̃0〉, |1r0〉, |r10〉}, and {|1̃1〉, |r̃1

1〉, |r̃2
1〉, |r̃3

1〉, |r̃2〉}. Here,
|r̃1

1〉 = |r11〉, |r̃2
1〉 = |1r1〉, and |r̃3

1〉 = |11r〉 represent the sin-
gle Rydberg excitation states, while |r̃2〉 = |r1r〉 represents
the dual Rydberg excitation state (simultaneous excitation
of two neighboring atoms is forbidden due to the Rydberg
blockade condition). The Hamiltonian for each subspace is
computed by Hjk

s = 〈j|H|k〉, where |j(k)〉 are the basis of the
corresponding subspace s = 0̃0, 0̃1, 1̃0, 1̃1, and we obtain

H0̃0 = (
�

2
eiϕ |0̃0〉〈0r0| + H.c.) + �|0r0〉〈0r0|, (2a)

H0̃1 = (
�

2
eiϕ |0̃1〉〈01r| +

�

2
eiϕ |0̃1〉〈0r1| + H.c.)

+ �(|0r1〉〈0r1| + |01r〉〈01r|), (2b)



He et al. Quantum Frontiers            (2024) 3:25 Page 3 of 8

H1̃0 = (
�

2
eiϕ |1̃0〉〈1r0| +

�

2
eiϕ |1̃0〉〈r10|

+ H.c.) + �(|r10〉〈r10| + |1r0〉〈1r0|), (2c)

H1̃1 = (

√
3�

2
eiϕ |1̃1〉〈R3| +

√
2�

2
eiϕ |r̃2〉〈R2| + H.c.)

+ �(
∑

k

|r̃k
1〉〈r̃k

1 | + 2|r̃2〉〈r̃2|), (2d)

where |R3〉 =
∑

k |r̃k
1〉/

√
3, |R2〉 = (r̃1

1 + r̃3
1)/

√
2. The Hamil-

tonian of subspace can be parameterized by Hs = Hs(θ ,ϕ)
and tan θ = �/�. We adopt the orange-slice model to drive
the system of which of the control parameters of Hamilto-
nian (1) are given by:

� = �0 sin(π t/T),� = �0 cos(π t/T),ϕ = 0, (3)

for t : 0 → T , T is the evolution period.

� = �0 sin(π(t – T)/T),� = �0 cos(π(t – T)/T),

ϕ = �ϕ,
(4)

for t : T → 2T . Since the energy gaps of each subspace are
proportional to �0 =

√
�2 + �2, the condition �0T � π is

sufficient to ensure adiabatic evolution. For a system pre-
pared in each computational basis |�s〉 = {|0̃0〉, |0̃1〉, |1̃0〉,
|1̃1〉}, it will evolve along the lowest eigenstate of the
Hamiltonian Hs, as |�s〉 is the lowest energy states and
θ starts from 0 according to the control scheme. It can
be verified that θ evolves along 0 → π → 0. The com-
putational basis |�s〉 will evolve along a closed path in
the Hilbert space to gain the geometric phase given by
γ s

g =
∫ 2T

0 i〈�s|∂t|�s〉. The dynamical phases of |�s〉 are can-
celed due to the time-reversal operations of Eqs. (3) and (4)
of which the dynamical phases are γ s1

d =
∫ 2T

0 i〈�s|Hs|�s〉
and γ s2

d = –γ s1
d , respectively [32–41]. For N-atom sys-

tem in Fig. 1(a) prepared in the state |�0〉 =
∑

k ak|�s〉,
the final state after the geometric control will be |�f 〉 =∑

k akeiγk |�s〉, where k = 1, 2, 3, 4 denote the case of 0̃0, 0̃1,
1̃0, and 1̃1, respectively. Therefore, by carefully designing
the control parameters, a δγ controlled-phase gate can be
achieved with δγ = γ1 + γ2 + γ3 – γ4.

In the following, we investigate the acceleration of adi-
abatic control for Hamiltonian (1), as long control times
required by the adiabatic condition can lead to reduced
fidelity due to decoherence. According to the shortcut to
adiabaticity theory for non-degenerate states, the auxil-
iary terms that cancel the diabatic effects are given by
Ha

s = i
∑(|∂tλ

s
k〉〈λs

k| – 〈λs
k|∂tλs

k〉|λs
k〉〈λs

k|
)
, where λs

k is the
eigenstate of subspace s [42–47]. We consider the case of
N = 3. When s = 0̃0, 0̃1, and 1̃0, Ha

s = i�a/2eiϕ |�s〉〈rs| +
H.c., �a = θ̇ as computed by the eigenstates of Hs. Here,
|r0̃0〉 = |0r0〉, |r0̃1〉 = |01r〉, and |r1̃0〉 = |1r0〉. When s = 1̃1,
the auxiliary Hamiltonian will be more complicated and

different from the other cases. Since the four subspaces s
are embedded in the same Hamiltonian (1) and are manip-
ulated synchronously, we adopt �a as the auxiliary Rabi
frequency. The modified control waveform for Hamilto-
nian (1) is given by �m =

√
�2 + �2

a, �m = �, and ϕm = ϕ +
arctan�a/�. The modified waveforms used for geometric
control are shown in Fig. 2(a). Here, we set �0 = 2π × 10
MHz, T = 250 ns, and δϕ = π/2.

For the system prepared in the computational basis 0̃0,
0̃1 (1̃0), and 1̃1, the dynamics is shown in Fig. 2(b), 2(c),
and 2(d), respectively. The black-dashed lines represent
the population Pk , while the red-solid lines correspond
to the accumulating phases γk . As can be observed, the
populations return to their initial values after the geomet-
ric control. The additional acquired phases are γ1 = γ2 =
γ3 = –π/2 and γ4 = –π , resulting in a phase difference of
�γ = –π/2, as indicated by the results in Fig. 2. Conse-
quently, a geometric –π/2 controlled-phase gate between
distant qubits using buffer atoms can be achieved.

3 Robustness of the distant two-qubit gate
In Fig. 3, the acceleration of the modified pulses shown in
Fig. 2(a) is investigated for N = 3. The initial state is set
to |�i〉 = (|0̃0〉 + |0̃1〉 + |1̃0〉 + |1̃1〉)/2 to ensure generality.
The final state of the controlled-phase gate, after the ma-
nipulation of the modified or adiabatic pulses, is denoted
as |�f〉. The dynamics are computed by the Schrödinger
Equation with the complete Hamiltonian given by Eq. (1).
The parameters are set to T = 250 ns and �T change from
4π to 16π . The Rydberg interaction strength is chosen as
Vj,j+1 = V = 2π × 400 MHz to satisfy the Rydberg blockade
condition, with Vj,k = 0 for |j – k| > 1. The fidelity is derived
by F = |〈�cp|�f〉|2, where |�cp〉 represents the ideal state
after the controlled-phase gate. It is evident that the fidelity
F of the modified pulse (red-dashed line) is more robust
than that of the adiabatic pulse (black-solid line). Due to
the non-synchronous dynamics of the computational ba-
sis, the diabatic effect is not perfectly canceled, leading to
a slight drop in the fidelity of the modified pulse as �T de-
creases. However, the fidelity of the modified pulse is above
0.995 for �T > 10π , which is sufficiently high for quantum
computation.

Figure 4(a) illustrates the robustness of distant
controlled-phase gate against the variations of Rabi fre-
quencies. These variations typically arise from the ther-
mal motion of atoms due to the tight focusing of the
Rydberg excitation lasers on the atoms. The initial state
|�i〉 is the same with Fig. 3 (as also as Fig. 4(b) and 4(c)).
Here, we rewrite the Rabi frequencies by �′ = �0(1 + η�),
η� ∈ [–0.1, 0.1]. As shown in Fig. 4(a), the fidelities of N = 3
(red-solid line) and N = 4 (black-dashed line) atoms are
higher than 0.995 and robust against variations of � in the
range of ±0.1. As the number of buffer atoms increases,
more eigenstates become involved in the dynamics, lead-
ing to greater leakage to the outside space. The increase of
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Figure 2 Geometric control of two distant qubits under the Rydberg blockade condition. (a) Control waveforms. Time-reversal operations are
adopted to cancel the dynamical phases and shortcut to adiabatic theory is used to accelerate the adiabatic control. Red-dashed line: Rabi
frequency. Black dashed-dotted line: detuning. Blue-solid line: phase. (b), (c), (d) The dynamics of the computational basis |0̃0〉, |0̃1〉, |1̃0〉, |1̃1〉 for
N = 3 atoms under the driving of Hamiltonian (2a) to (2d). Black-dashed lines: population. Red-solid lines: the accumulating phases. The parameters
are chosen to be �0 = 2π × 10 MHz, T = 250 ns, and �ϕ = π /2. According to the simulation results, a geometric –π /2 controlled-phase gate
between distant qubits is achieved

Figure 3 Fidelity F of distant two-qubit gate versus different �T .
Here, N = 3 buffer-atomic configuration is adopted. Black-solid line:
adiabatic control using Eq. (3) and (4). Red-dashed line: modified
pulse using waveforms in Fig. 2(a). The initial state is set to be
|�i〉 = (|0̃0〉 + |0̃1〉 + |1̃0〉 + |1̃1〉)/2. It is evident that geometric control
based on the modified pulse is more robust against variations of �T

Rabi frequencies results higher fidelity by relaxing the adi-
abatic condition, and thus, for N = 5 (blue dashed-dotted
line), the fidelity ramps slightly as �′ increases. In Fig. 4(b),
the robustness of the proposed gate against random noise
of the Rabi frequencies is investigated. The random noise
of Rabi frequencies is introduced by �′′ = �0(1 + ηr

�), ηr
�

are random numbers in the region [–0.1, 0.1] with zero
mean values. The fidelities F of N = 3, 4, 5 are robust
against the fluctuation of Rabi frequencies since the fluc-
tuation does not affect the cancellation of the dynamics
phase. In Fig. 4(c), the robustness of the proposed gate
against random noise of the detuning is investigated where
the actual detuning are replaced by �′′ = �0(1+ηr

�), ηr
� are

random numbers in the region [–0.1, 0.1] with zero mean
values. The fidelities F of N = 3, 4, 5 are all higher than 0.99
in the range of [–0.05, 0.05] since the proposed gate uti-
lizes the geometric phases. Note that the data of the case of
random niose have been averaged for 100 times. The pro-
posed gate is also robust against the deviation of detuning.
In actual experiments, the detuning can be controlled ac-
curately and the inhomogeneity of detuning is small. Thus,
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Figure 4 Robustness of distant two-qubit gate with geometric control. (a) Fidelity F versus the variation of the Rabi frequency �. (b) Fidelity F
versus the random noise in the Rabi frequency �. (c) Fidelity F versus the random noise in the detuning �. Red-solid lines: N = 3 buffer-atomic
configurations. Black-dashed lines: N = 4. Blue dashed-dotted lines: N = 5

Figure 5 (a) Fidelity F of distant two-qubit gate versus different decay rate κ of Rydberg state. Red-solid lines: N = 3 buffer-atomic configuration.
Black-dashed lines: N = 4. Blue dashed-dotted lines: N = 5. (b) The effect of finite next nearest-neighboring coupling upon fidelity F of distant
two-qubit gate. In the line-shape configuration, VNNN1 = VNNN2 while in th Z-shape VNNN1 	= VNNN2 . There are optimal Rydberg interaction
strength after considering the next nearest-neighboring coupling

the distant two-qubit gate based on buffer atoms with geo-
metric control demonstrates robustness against both sys-
tematic errors and random noise.

The effect of decoherence on the proposed gate is an-
alyzed in Fig. 5(a). We primarily consider the decay from
the Rydberg states of which is introduced by �′ = � + iκ ,
and the dynamics are obtained by solving the Schrödinger
Equation. The control parameters and initial state are the
same as those in Fig. 3. For the case of N = 3 (red-solid
line), the fidelity F is higher than 0.995 when κ < 2π × 1
kHz [48]. As more buffer atoms are included, the fidelities
become increasingly sensitive to the decay rate, with the
black-dashed line representing the result for N = 4, and
the blue dash-dotted line for N = 5. As a consequence, the
decay rate of the Rydberg states emerges as a primary lim-
itation for the scalability of buffer-atom mediated quan-
tum computation. It matters that the potential scalability
of the system after considering the decay. The infidelity

of the proposed gate for N atoms can be estimated as
Finfd = 7π

4�τ
(1 + �2

ω2
10

+ (N–1)2�2

7V 2
d

) + (N–1)2�2

8V 2
d

(1 + 6 V 2
d

ω2
10

), where τ

is the lifetime of the Rydberg state, ω10 is the energy split-
ting between |1〉 and |0〉, and Vd is the Rydberg interaction
strength [1]. Considering the Rydberg state |n = 79〉 of Rb87
with 2 μm atom spacing, ω10 = 6.8 GHz, τ = 200μs [48],
and Vd = 36 GHz. By setting � = 0.05 GHz [17], one finds
that the maximum number N to achieve Finfd < 0.05 will be
N = 10.

In Fig. 5(b), the effect of next-nearest-neighbor coupling
is considered. Due to the 1/R6 scaling law (R is the distance
between two atoms), the strength of the next-nearest-
neighbor coupling is 1/64 that of the nearest-neighbor
coupling when the distance between atoms is doubled.
There are primarily two types of linking patterns for buffer
atom configurations in two-dimensional square arrays: the
line-shaped configuration (where the connecting lines be-
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tween computational qubits and buffer atoms are parallel
to the inter-chain of buffer atoms) and the Z-shaped con-
figuration (where the connecting lines are perpendicular
to the inter-chain of buffer atoms). In the case of the line-
shaped configuration, VNNN1 = VNNN2 = V /64, V is the
nearest-neighbor coupling strength between two atoms,
VNNN1 is the next-nearest-neighbor coupling strength be-
tween the computational qubit and the buffer atoms, and
VNNN2 is the next-nearest-neighbor coupling strength be-
tween two buffer atoms. For the Z-shaped configuration,
VNNN1 = V /8 and VNNN2 = V /64. In the simulation shown
in Fig. 5(b), the initial state |�i〉 is the same as in Fig. 3.
The system is operated with the pulses in Fig. 2(a). The
parameters are set as � = 2π × 1 MHz, �T = 10π , and the
nearest-neighbor coupling strength is V = ηvV0, with V0 =
2π × 100 MHz. The fidelities of the distant controlled-
phase gate are shown in Fig. 5(b): the red-solid line repre-
sents the Z-shaped configuration, and the blue-dashed line
represents the line-shaped configuration. Decoherence is
not considered in this simulation. As can be seen, after
considering the next nearest-neighbouring coupling, the
Rydberg interaction strength V must be 100 times larger
than the Rabi frequencies �. There is an optimal value
of V where the ratio ηv for the Z-shaped configuration
is smaller, while the line-shaped configuration exhibits
greater robustness against variations in V near the opti-
mal value. These results suggest that further optimization
of the buffer-atomic configuration could enhance robust-
ness and reduce the required interaction strength.

4 Discussions
In the following, we discuss the influence of the relative
phases of buffer atoms, the acceleration of modified pulses,
and the comparison between the buffer-atom configura-
tion and other schemes.

To consider the influence of the relative phases of the
buffer atoms, the computational basis of the N atoms can
be rewritten as |� ′̃

jk〉 = |j〉⊗ |b1〉⊗ |b2〉⊗ · · ·⊗ |bN–2〉⊗ |k〉,
j, k = 0, 1, and |bm〉 = |1m〉eiφm , bm is the mth buffer atom.
One can find that |� ′̃

jk〉 = |�j̃k〉ei
∑

m φm , the summation is
over the numbers of buffer atoms. Therefore, the relative
phases of the buffer atoms only bring a global phase to the
computational basis |�j̃k〉. In our proposed scheme, the
population of buffer atoms is driven from the initial state
|1〉 and returns to the same state. The buffer-atomic config-
uration remains reusable, provided that the control fidelity
is sufficiently high.

In the discussion of Sect. 2, modified pulses are put for-
ward to accelerate the dynamics. We cancel the diabatic
effect through shortcut to adiabatic theory, yet the formu-
lation is incomplete because of the asynchronous dynam-
ics of the four subspaces. To fully address this issue, one
could derive the eigenstates of Hamiltonian (1) to compute
the auxiliary Hamiltonian Ha, which is a challenging task

for many-body systems. Experimental challenges also arise
since the form of Ha is likely to be complex and difficult to
realize experimentally. A compromising strategy is to use
the parallel adiabatic passage. The adiabatic condition can
be characterized by β = θ̇/�λmin, β � 1. �λmin is the min-
imal energy gap between the ground state and the first ex-
cited state, which is proportional to �/(V – �) + �/(2V –
�) [31]. Therefore, given certain values of θ , β , and V , we
will derive �0 and thus the protocol can be determined.

It may also be essential to compare the quantum control
based on buffer-atom configuration with existing meth-
ods, for example, the distant connection by coherently
transporting atoms [49] and cavity-mediated interactions
[50]. The success possibility of transporting atoms will be
the vital limitation of the transporting atom scheme. In
typical experiments [49], the success possibility of trans-
porting atoms St decreases linearly with a relationship St =
1 – 0.004N with short distance, N are the separation num-
bers. The success possibility of a forward-backward con-
trol will be given by S2

t and smaller than 0.97 when N > 4.
The main limitation of promoting St is the background
vacuum. To raise the St, a science chamber with high vac-
uum is needed [51]. An intelligent experiment shows that
atoms can be manipulated within optical cavity. Entangle-
ment is generated with 6 atoms at most. The generation
probability exceeds 97%, and the fidelity is over 87%, and
the limitation is due to the overall transmission and detec-
tion efficiency. The scaling of atom numbers is restricted
to the finite cavity mode size.

Finally, we compare the connectivity of atomic arrays
based on buffer-atomic configurations with the trapped
ion systems that rely on phonon-mediated gates. The es-
sential two-qubit logic gate in trapped ion systems based
on single-mode phonon is typically performed in an adia-
batic regime. This results in slower two-qubit gate speeds
compared to the characteristic motional frequencies of
the ions in the trap, which are on the order of 10 kHz
[52, 53]. Additionally, the single-mode approach is diffi-
cult to scale because isolating individual modes becomes
increasingly challenging as the number of ions grows.
Multi-mode schemes are scalable but limited to pairwise
gates. As shown in Figs. 5(a) and 5(b), a distant two-qubit
gate with high fidelity for N = 5 atoms can be achieved
based on the experimental parameters. The gate speed ex-
ceeds 100 kHz. Further improvements, such as increas-
ing the Rydberg interaction strength, reducing the decay
rate of Rydberg states, and optimizing buffer-atom config-
urations, can extend the distance between computational
qubits. Therefore, the distant two-qubit gate based on geo-
metric control presents an effective approach for realizing
large-scale quantum computation.

5 Conclusion
In summary, we have introduced a new protocol for the
realization of controlled-phase gates upon two distant
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qubits, using the buffer-atom configuration in atomic
arrays. Geometric control is achieved through global-
shinning laser pulses, with parameters satisfying the Ry-
dberg blockade condition. It is found that acceleration can
be achieved by reshaping the original control waveforms,
which is experimentally friendly. The proposed distant
two-qubit gate is shown to be robust against systematic
errors and random noise. Further numerical simulations
demonstrate that high-fidelity control can still be main-
tained, even when accounting for next-nearest-neighbor
coupling of the atoms. Therefore, our proposal provides a
fast and experimentally viable approach to realize distant
two-qubit gates in atomic arrays with analytical control
waveforms.
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