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Quantum Grothendieck rings as quantum cluster algebras

Léa Bittmann

Abstract

We define and construct a quantum Grothendieck ring for a certain monoidal subcategory of the
category O of representations of the quantum loop algebra introduced by Hernandez–Jimbo. We
use the cluster algebra structure of the Grothendieck ring of this category to define the quantum
Grothendieck ring as a quantum cluster algebra. When the underlying simple Lie algebra is of
type A, we prove that this quantum Grothendieck ring contains the quantum Grothendieck ring
of the category of finite-dimensional representations of the associated quantum affine algebra. In
type A1, we identify remarkable relations in this quantum Grothendieck ring.
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1. Introduction

Let g be a simple Lie algebra of Dynkin type A, D or E (also called simply laced types),
and let Lg “ g b Crt˘1s be the loop algebra of g. For q a generic complex number, Drinfeld
[17] introduced a q-deformation of the universal enveloping algebra UpLgq of Lg called the
quantum loop algebra UqpLgq. It is a Hopf algebra over C and therefore the category C of
its finite-dimensional representations is monoidal. The category C was studied extensively, in
particular to build solutions to the quantum Yang–Baxter equation with spectral parameter
(see [1, 12–14, 24, 27, 38, 42, 46] to name but a few).

Using the so-called ‘Drinfeld–Jimbo’ presentation of the quantum loop algebra, one can define
a quantum Borel subalgebra Uqpbq, which is a Hopf subalgebra of UqpLgq. We are here interested
in studying a category O of representations of Uqpbq introduced by Hernandez–Jimbo [32]. The
category O is a monoidal category which contains all finite-dimensional Uqpbq-modules, as well
as some infinite-dimensional representations, however, with finite-dimensional weight spaces.
In particular, this category O contains the prefundamental representations. These are a family
of infinite-dimensional simple Uqpbq-modules, which first appeared in the work of Bazhanov,
Lukyanov, Zamolodchikov [3] for g “ sl2 under the name q-oscillator representations.
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These prefundamental representations were also used by Frenkel–Hernandez [22] to prove
Frenkel–Reshetikhin’s conjecture on the spectra of quantum integrable systems [25]. More
precisely, quantum integrable systems are studied via a partition function Z, which in turns
can be scaled down to the study of the eigenvalues λj of the transfer matrix T . For the 6-vertex
(and 8-vertex) models, [2] showed that the eigenvalues of T have the following remarkable
form:

λj “ ApzqQjpzq´2q
Qjpzq ` DpzqQjpzq2q

Qjpzq , (1.1)

where q and z are parameters of the model, the rational functions Apzq, Dpzq are universal and
Qj is a polynomial. This relation is called the Baxter relation. In the context of representation
theory, relation (1.1) can be categorified as a relation in the Grothendieck ring of the category
O. For g “ sl2, if V is the two-dimensional simple representation of UqpLgq of highest loop-
weight Yaq´1 , then, in the Grothendieck ring K0pOq,

rV b Là s “ rω1srL`
aq´2s ` r´ω1srL`

aq2s, (1.2)

where r˘ω1s are one-dimensional representations of weight ˘ω1 and Là denotes the positive
prefundamental representation of quantum parameter a.

Frenkel–Reshetikhin’s conjecture stated that for more general quantum integrable systems,
constructed via finite-dimensional representations of the quantum affine algebra Uqpĝq (of which
the quantum loop algebra is a quotient) the spectra had a similar form as relation (1.1).

Let t be an indeterminate. The Grothendieck ring of the category C has an interesting
t-deformation called the quantum Grothendieck ring, which is contained in some quantum torus
Yt. The quantum Grothendieck ring was first studied by Nakajima [42] and Varagnolo–Vasserot
[45] in relation with quiver varieties. Inside this ring, one can define for all simple modules
L classes rLst, called pq, tq-characters. Using these classes, and the knowledge of characters of
fundamental modules, Nakajima was able to compute the characters of all simple modules L,
thanks to a Kazhdan–Lusztig type algorithm.

One would want to extend these results to the context of the category O, with the ultimate
goal of (algorithmically) computing characters of all simple modules in O. In order to do that,
one first needs to build a quantum Grothendieck ring KtpOq inside which the classes rLst can
be defined.

Another interesting approach to this category O is its cluster algebra structure (see
below). Hernandez–Leclerc [34] first noted that the Grothendieck ring of a certain monoidal
subcategory C1 of the category C of finite-dimensional UqpLgq-modules had the structure of
a cluster algebra. Then, they proved [36] that the Grothendieck ring of a certain monoidal
subcategory O`

Z of the category O had a cluster algebra structure, of infinite rank, for which
one can take as initial seed the classes of the positive prefundamental representations (the
category O`

Z contains the finite-dimensional representations and the positive prefundamental
representations whose spectral parameter satisfy an integrality condition). Moreover, some
exchange relations coming from cluster mutations appear naturally. For example, the Baxter
relation (1.2) is an exchange relation in this cluster algebra.

In order to construct of quantum Grothendieck ring for the category O, the approaches used
previously are not applicable anymore. The geometrical approach of Nakajima and Varagnolo–
Vasserot (in which the t-graduation naturally comes from the graduation of cohomological
complexes) requires a geometric interpretation of the objects in the category O, which has
not yet been found. The more algebraic approach consisting of realizing the (quantum)
Grothendieck ring as an invariant under a sort of Weyl symmetry, which allowed Hernandez to
define a quantum Grothendieck ring of finite-dimensional representations in non-simply laced
types, is again not relevant for the category O. Only the cluster algebra approach yields results
in this context.
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 163

In this paper, we propose to build the quantum Grothendieck of the category O`
Z as a

quantum cluster algebra. Quantum cluster algebras are non-commutative versions of cluster
algebras, they live inside a quantum torus, generated by the initial variables, together with
t-commutation relations:

Xi ˚ Xj “ tΛijXj ˚ Xi. (1.3)

First of all, one has to build such a quantum torus Tt, and check that it contains the quantum
torus Yt of the quantum Grothendieck ring of the category C . This is proven as the first result
of this paper (see Theorem 5.2.1) :

Theorem. There is an injective homomorphism of Zptq-algebras :

J : Tt Ñ Yt.

Next, one has to show that this quantum torus is compatible with a quantum cluster algebra
structure based on the same quiver as the cluster algebra structure of the Grothendieck ring
K0pO`

Z q. In order to do that, we exhibit a compatible pair (see Proposition 6.2.5) :

Proposition. The quiver appearing in the cluster algebra structure of K0pO`
Z q and the

quantum torus Tt form a compatible pair, in the sense of quantum cluster algebras.

From then, the quantum Grothendieck ring KtpO`
Z q is defined as the quantum cluster algebra

defined from this compatible pair.
We then conjecture (Conjecture 7.2.1) that this quantum Grothendieck ring KtpO`

Z q contains
the quantum Grothendieck ring KtpCZq. We propose to demonstrate this conjecture by proving
that KtpO`

Z q contains the pq, tq-characters of the fundamental representations rLpYi,qr qst, as
they generate KtpCZq. We state in Conjecture 7.2.6 that these objects can be obtained in
KtpO`

Z q as quantum cluster variables, by following the same finite sequences of mutations used
in the classical cluster algebra K0pO`

Z q to obtain the rLpYi,qr qs. Naturally, Conjecture 7.2.6
implies Conjecture 7.2.1. Finally, we prove Conjecture 7.2.6 (and thus Conjecture 7.2.1) in the
case where the underlying simple Lie algebra g is of type A (see Theorem 8.1.1).

Theorem. When the underlying simple Lie algebra is of type A, the constructed quantum
Grothendieck ring KtpO`

Z q contains the quantum Grothendieck ring KtpCZq.

The proof is based on the thinness property of the fundamental representations in this case.
When g “ sl2, some explicit computations are possible. For example, we give a quantum version
of the Baxter relation (8.5), for all r P Z,

rVq2r´1st ˚ rL`
1,q2r st “ t´1{2rω1srL`

1,q2r´2st ` t1{2r´ω1srL`
1,q2r`2st.

Additionally, we realize a part of the quantum cluster algebra we built as a quotient of the
Drinfeld double of the full quantum group Uqpsl2q. This is a reminiscence of the result of Qin
[43] who constructed Uqpgq as a quotient of the Grothendieck ring arising from certain cyclic
quiver varieties.

The paper is organized as follows. The first three sections are mostly reminders. In Section 2
we recall some background on cluster algebras and quantum cluster algebras, including some
recent and important results, such as the positivity theorem in Section 2.6, which we require
later on. In Section 3 we introduce some notations, the usual notations for the Cartan data
associated to a simple Lie algebra, as well as what we call quantum Cartan data, which is
related to the quantum Cartan matrix and its inverse. In Section 4 we review some results for
the category O, its subcategories O˘ and O˘

Z and their Grothendieck rings. In Section 5, after
recalling the definition of the quantum torus Yt, we define the quantum torus Tt in which
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164 LÉA BITTMANN

KtpO`
Z q will be constructed and we prove the inclusion of the quantum tori. In Section 6 we

prove that we have all the elements to build a quantum cluster algebra and we define the
quantum Grothendieck ring KtpO`

Z q. In the concluding Section 7, we state some properties of
the quantum Grothendieck ring. We present the two conjectures regarding the inclusion of the
quantum Grothendieck rings in Section 7.2. Finally, in Section 8 we prove these conjectures in
type A, and we prove finer properties specific to the case when g “ sl2.

2. Cluster algebras and quantum cluster algebras

Cluster algebras were defined by Fomin and Zelevinsky in the 2000s in a series of fundamental
papers [4, 18, 20, 21]. They were first introduced to study total positivity and canonical bases
in quantum groups but soon applications to many different fields of mathematics were found.

In [6], Berenstein and Zelevinsky introduced natural non-commutative deformations of
cluster algebras called quantum cluster algebras.

In this section, we recall the definitions of these objects. The interested reader may refer to
the aforementioned papers for more details, or to surveys such as [19].

2.1. Cluster algebras

Let m ě n be two positive integers and let F be the field of rational functions over Q in m
independent commuting variables. Fix of subset ex Ă �1,m� of cardinal n.

In what follows, we use the usual notation: rxs` “ maxpx, 0q.

Definition 2.1.1. A seed in F is a pair px̃xx, B̃q, where

• x̃xx “ tx1, . . . , xmu is an algebraically independent subset of F which generates F .
• B̃ “ pbi,jq of B̃ is a m ˆ n integer matrix with rows labeled by �1,m� and columns labeled

by ex such that

(1) the n ˆ n submatrix B “ pbijqi,jPex is skew-symmetrizable.
(2) B̃ has full rank n.

The matrix B is called the principal part of B̃, xxx “ txj | j P exu Ă x̃xx is the cluster of the
seed px̃xx, B̃q, ex are the exchangeable indices and ccc “ x̃xxzxxx is the set of frozen variables.

For all k P ex, define the seed mutation in direction k as the transformation from px̃xx, B̃q to
μkpx̃xx, B̃q “ px̃xx1, B̃1q, with

• B̃1 “ μkpB̃q is the m ˆ n matrix whose entries are given by

b1
ij “

#
´bij if i “ k or j “ k,

bij ` rbiks`bkj ` bikrbkjs`.
(2.1)

This operation is called matrix mutation in direction k. This matrix can also be obtained
via the operation

B̃1 “ μkpB̃q “ EkB̃Fk, (2.2)

where Ek and Fk are the m ˆ m and n ˆ n matrices with entries

pEkqij “
$’&
’%

δij if j ‰ k,

´1 if j “ i “ k,

r ´ biks` if i ‰ j “ k,

pFkqij “
$’&
’%

δij if i ‰ k,

´1 if j “ i “ k,

rbkjs` if i “ k ‰ j.

(2.3)
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 165

• x̃xx1 “ px̃xxztxkuq Y tx1
ku, where x1

k P F is determined by the exchange relation

xkx
1
k “

ź
iPr1,ms
biką0

xbik
i `

ź
iPr1,ms
bikă0

x´bik
i . (2.4)

Remark 2.1.2. px̃xx1, B̃1q is also a seed in F and the seed mutation operation is involutive:
μkpx̃xx1, B̃1q “ px̃xx, B̃q. Thus, we have a equivalence relation: px̃xx, B̃q is mutation-equivalent to
px̃xx1, B̃1q, denoted by px̃xx, B̃q „ px̃xx1, B̃1q, if px̃xx1, B̃1q can be obtained from px̃xx, B̃q by a finite sequence
of seed mutations.

Graphically, if the matrix B̃ is skew-symmetric, it can be represented by a quiver and the
matrix mutation by a simple operation on the quiver. Fix B̃ a skew-symmetric matrix. Define
the quiver Q whose set of vertices is �1,m�, where the vertices corresponding to ccc are usually
denoted by a square ˝ and called frozen vertices. For all i P �1,m�, j P ex, bij is the number of
arrows from i to j (can be negative if the arrows are from j to i).

In this context, the operation of matrix mutation can be translated naturally to an operation on
the quiver Q. For k P ex, the quiver Q1 “ μkpQq is obtained from Q by the following operations:

• For each pair of arrows i Ñ k Ñ j in Q, create an arrow from i to j.
• Invert all arrows adjacent to k.
• Remove all 2-cycles that were possibly created.

Definition 2.1.3. Let S be a mutation-equivalence class of seeds in F . The cluster algebra
ApSq associated to S is the Zrccc˘s-subalgebra of F generated by all the clusters of all the seeds
in S.

2.2. Compatible pairs

A quantum cluster algebra is a non-commutative version of a cluster algebra. Cluster variables
will not commute anymore, but, if they are in the same cluster, commute up to some power of
an indeterminate t. These powers can be encoded in a skew-symmetric matrix Λ. In order for
the quantum cluster algebra to be well defined, one needs to check that these t-commutation
relations behave well with the exchange relations. This is made explicit via the notion of
compatible pairs.

Definition 2.2.1. Let B̃ be a m ˆ n integer matrix, with rows labeled by �1,m� and
columns labeled by ex. Let Λ “ pλijq1ďi,jďm be a skew-symmetric m ˆ m integer matrix. We
say that pΛ, B̃q forms a compatible pair if, for all i P ex and 1 ď j ď m, we have

mÿ
k“1

bkiλkj “ δi,jdi, (2.5)

with pdiqiPex some integers, all positive or negative. Relation (2.5) is equivalent to saying that,
up to reordering, if ex “ �1, n�, the matrix B̃TΛ consists of two blocks, a diagonal n ˆ n block,
and a n ˆ pm ´ nq zero block: ¨

˚̊̊
˝

d1

d2

. . . p0q
dn

˛
‹‹‹‚.
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166 LÉA BITTMANN

Fix a compatible pair pΛ, B̃q and fix k P ex. Define, in a similar way as in (2.2),

Λ1 “ μkpΛq :“ ET
k ΛEk, (2.6)

with Ek from (2.3).

Proposition 2.2.2 [6]. The pair pΛ1, B̃1q is compatible.

We say that pΛ1, B̃1q is the mutation in direction k of the pair pΛ, B̃q, and we will use the
notation:

μkpΛ, B̃q :“
´
μkpΛq, μkpB̃q

¯
“ pΛ1, B̃1q. (2.7)

Proposition 2.2.3 [6]. The mutation of a compatible pair is involutive. For any compatible
pair pΛ, B̃q and any mutation direction k P ex, μkpμkpΛ, B̃qq “ pΛ, B̃q.

2.3. Definition of quantum cluster algebras

We now introduce the last notions we need in order to define quantum cluster algebras.
Let t be a formal variable. Consider Zrt˘1{2s, the ring of Laurent polynomials in the variable

t1{2.
Recall that any skew-symmetric integer matrix Λ of size m ˆ m determines a skew-symmetric

Z-bilinear form on Zm, which will also be denoted by Λ:

Λpei, ejq :“ λi,j , @i, j P �1,m�, (2.8)

where tei | 1 ď i ď mu is the standard basis of Zm.

Definition 2.3.1. The (based) quantum torus T “ pT pΛq, ˚q associated with the skew-
symmetric bilinear form Λ is the Zrt˘1{2s-algebra generated by the tXe | e P Zmu, together
with the t-commuting relations:

Xe ˚ Xf “ tΛpe,fq{2Xe`f “ tΛpe,fqXf ˚ Xe, @e, f P Zm. (2.9)

The quantum torus T pΛq is an Ore domain (see details in [6]), thus it is contained in its
skew-field a fractions F “ pF , ˚q. The field F is a Qpt1{2q-algebra.

Definition 2.3.2. A toric frame in F is a map M : Zm Ñ Fzt0u of the form

Mpcq “ φpXηpcqq, @c P Zm, (2.10)

where φ : F Ñ F is a Qpt1{2q-algebra automorphism and η : Zm Ñ Zm is an isomorphism of
Z-modules.

For any toric frame M , define ΛM : Zm ˆ Zm Ñ Z, a skew-symmetric bilinear form, by

ΛM pe, fq “ Λpηpeq, ηpfqq, @e, f P Zm. (2.11)

Then,

Mpeq ˚ Mpfq “ tΛM pe,fq{2Mpe ` fq “ tΛM pe,fqMpfq ˚ Mpeq. (2.12)

Definition 2.3.3. A quantum seed in F is a pair pM, B̃q, where

• M is a toric frame in F ;
• B̃ is an m ˆ ex integer matrix;
• the pair pΛM , B̃q is compatible, as in Definition 2.2.1.
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 167

Next, we need to define mutations of quantum seeds. Let pM, B̃q be a quantum seed, and
fix k P ex. Define M 1 : Zm Ñ Fzt0u by setting

M 1pfq “
$&
%
řk

p“0

`
fk
p

˘
tdk{2MpEkf ` pbkq if fk ě 0,

M 1p´fq´1 otherwise,

where Ek is the matrix from (2.3), bk P Zm is the kth column of B̃ and the t-binomial coefficient
is defined by„

r

p

j
t

:“ ptr ´ t´rqptr´1 ´ t´r`1q ¨ ¨ ¨ ptr´p`1 ´ t´r`p´1q
ptp ´ t´pqptp´1 ´ t´p`1q ¨ ¨ ¨ pt ´ t´1q , @0 ď p ď r. (2.13)

Recall the definition of the mutated matrix B̃1 “ μkpB̃q from Section 2.1. Then the mutation
in direction k of the quantum seed pM, B̃q is the pair μkpM, B̃q “ pM 1, B̃1q

Proposition 2.3.4 [6]. (1) The pair pM 1, B̃1q is a quantum seed.

(2) The mutation in direction k of the compatible pair pΛM , B̃q is the pair pΛM 1 , B̃1q.

For a quantum seed pM, B̃q, let X̃ “ tX1, . . . , Xmu be the free generating set of F , given by
Xi :“ Mpeiq. Let X “ tXi | i P exu, we call it the cluster of the quantum seed pM, B̃q, and let
C “ X̃zX.

For all k P ex, if pM 1, B̃1q “ μkpM, B̃q, then the X 1
i “ M 1peiq are obtained by:

X 1
i “

#
Xi if i ‰ k,

M
`´ek ` ř

biką0 bikei
˘ ` M

`´ek ´ ř
bikă0 bikei

˘
if i “ k.

(2.14)

The mutation of quantum seeds, as the mutation of compatible pairs, is an involutive process:
μkpM 1, B̃1q “ pM, B̃q. Thus, as before, we have an equivalence relation: two quantum seeds
pM1, B̃1q and pM2, B̃2q are mutation equivalent if pM2, B̃2q can be obtained from pM1, B̃1q by
a sequence of quantum seed mutations. From (2.14), the set C only depends on the mutation-
equivalence class of the quantum seed. The variables in C, pXiqiRex, are called the frozen
variable of the mutation-equivalence class.

Definition 2.3.5. Let S be a mutation-equivalence class of quantum seeds in F and C
the set of its frozen variables. The quantum cluster algebra ApSq associated with S is the
Zrt˘1{2s-subalgebra of the skew-field F generated by the union of all clusters in all seeds in S,
together with the elements of C and their inverses.

2.4. Laurent phenomenon and quantum Laurent phenomenon

One of the main properties of cluster algebras is the so-called Laurent phenomenon which was
formulated in [4]. Quantum cluster algebras present a counterpart to this result called the
quantum Laurent phenomenon.

Here, we follow [6, Section 5]. In order to state this result, one needs the notion of upper
cluster algebras.

Fix pM, B̃q a quantum seed, and X̃ “ tX1, . . . , Xmu given by Xk “ Mpekq. Let ZPrX˘1s
denote the based quantum torus generated by the pXkq1ďkďm; it is a Zrt˘1{2s-subalgebra of
F with basis tMpcq | c P Zmu, such that the ground ring ZP is the ring of integer Laurent
polynomials in the variables t1{2 and pXjqjRex. For k P ex, let pMk, B̃kq be the quantum
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168 LÉA BITTMANN

seed obtained from pM, B̃q by mutation in direction k, and let Xk denote its cluster,
thus:

Xk “ pXztXkuq Y tX 1
ku.

Define the quantum upper cluster algebra as the ZP-subalgebra of F given by

UpM, B̃q :“ ZPrX˘1s X
č
kPex

ZPrX˘1
k s. (2.15)

Theorem 2.4.1 [6, Theorem 5.1]. The quantum upper algebra UpM, B̃q depends only on
the mutation-equivalence class of the quantum seed pM, B̃q.

Thus we use the notation: UpM, B̃q “ UpSq, where S is the mutation-equivalence class of
pM, B̃q, one has

UpSq “
č

pM,B̃qPS
ZPrX˘1s. (2.16)

Theorem 2.4.1 has the following important corollary, which we refer to as the quantum Laurent
phenomenon.

Corollary 2.4.2 [6, Corollary 5.2]. The cluster algebra ApSq is contained in UpSq.
Equivalently, ApSq is contained in the quantum torus ZPrX˘1s for every quantum seed
pM, B̃q P S of cluster X.

2.5. Specializations of quantum cluster algebras

Fix a quantum seed pM, B̃q and X its cluster. Using notations from Section 2.1, the based
quantum torus ZPrX˘1s specializes naturally at t “ 1, via the ring morphism:

π : ZPrX˘1s Ñ Zrx̃˘1s, (2.17)

such that

πpXkq “ xk, p1 ď k ď mq
πpt˘1{2q “ 1.

If we restrict this morphism to the quantum cluster algebra ApSq, it is not clear that we
recover the (classical) cluster algebra ApB̃q. This question was tackled in a recent paper by
Geiss, Leclerc and Schröer [26].

Remark 2.5.1. For a combinatorial point of view, the cluster algebras ApSq and ApB̃q
are constructed on the same quiver B̃, and the mutations have the same effect on the quiver.
Assume the initial seeds are fixed and identified, via the morphism (2.17). Then, each quantum
cluster variable in ApSq is identified to a cluster variable in ApB̃q.

Proposition 2.5.2 [26, Lemma 3.3]. The restriction of π to ApSq is surjective on ApB̃q,
and quantum cluster variables are sent to the corresponding cluster variables.

They also conjectured that the specialization at t “ 1 of the quantum cluster algebra is
isomorphic to the classical cluster algebra, and gave a proof under some assumptions on the
initial seed.

Nevertheless, by applying Proposition 2.5.2 to different seeds (while keeping the identification
(2.17) of the initial seeds), one gets
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Corollary 2.5.3. The evaluation morphism π sends all quantum cluster monomials to the
corresponding cluster monomials.

2.6. Positivity

Let us state a last general result on quantum cluster algebras: Davison’s positivity theorem
[15].

We have recalled in Section 2.4 that each (quantum) cluster variable can be written as
a Laurent polynomial in the initial (quantum) cluster variables (and t1{2). For classical
cluster algebras, Fomin–Zelevinski conjectured that these Laurent polynomials have positive
coefficients. The so-called positivity conjecture was proven by Lee–Schiffler in [40].

For quantum cluster algebras, the result is the following.

Theorem 2.6.1 [15, Theorem 2.4]. Let A be a quantum cluster algebra defined by a
compatible pair pΛ, B̃q. For a mutated toric frame M 1 and a quantum cluster monomial Y , let
us write:

Y “
ÿ

ePZm

aept1{2qM 1peq, (2.18)

with ae P Zrt˘1{2s. Then ae “ t´ degpbeq{2be for some be P Nrts.

3. Cartan data and quantum Cartan data

We fix here some notations for the rest of the paper.

3.1. Root data

Let the g be a simple finite-dimensional Lie algebra of type A,D or E, and let I :“ t1, . . . , nu
be the indexed set of its Dynkin diagram.

Fix simple coroots pα_
i qiPI of g and let pαiqiPI , pωiqiPI be the corresponding sets of simple

roots (respectively, fundamental weights). We will use the usual lattices Q “ À
iPI Zαi, Q` “À

iPI Nαi and P “ À
iPI Zωi. Let PQ “ P b Q, endowed with the partial ordering : ω ď ω1 if

and only if ω1 ´ ω P Q`.
The Dynkin diagram of g is numbered as in [39], and let a1, a2, . . . , an be the Kac labels

(a0 “ 1).
The Cartan matrix of g is the n ˆ n matrix C such that Ci,j “ αjpα_

i q. As g is of simply
laced type:

Ci,j “
$’&
’%

2 if i “ j,

´1 if i „ j (i and j are adjacent in the Dynkin diagram of g ) ,

0 otherwise.

3.2. Quantum Cartan matrix

Let z be an indeterminate.

Definition 3.2.1. The quantum Cartan matrix of g is the matrix Cpzq with entries,

Cijpzq “
$’&
’%
z ` z´1 if i “ j,

´1 if i „ j,

0 otherwise.
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170 LÉA BITTMANN

Remark 3.2.2. The evaluation Cp1q is the Cartan matrix of g. As detpCq ‰ 0, then
detpCpzqq ‰ 0 and detpCpzqq is invertible as a formal Laurent series with degree bounded
from below. Thus we can define C̃pzq, the inverse of the matrix Cpzq. The entries of the matrix
C̃pzq belong to Qppzqq.

One can writexc
Cpzq “ pz ` z´1q Id ´A,

where A is the adjacency matrix of the Dynkin diagram of g. Hence,

C̃pzq “
`8ÿ
m“0

pz ` z´1q´m´1Am.

Therefore, we can write the entries of C̃pzq as power series in z. For all i, j P I,

C̃ijpzq “
`8ÿ
m“1

C̃
pmq
i,j zm P Zrrzss. (3.1)

Example 3.2.3. (i) For g “ sl2, one has

C̃11 “
`8ÿ
n“0

p´1qnz2n`1 “ z ´ z3 ` z5 ´ z7 ` z9 ´ z11 ` ¨ ¨ ¨ (3.2)

(ii) For g “ sl3, one has

C̃ii “ z ´ z5 ` z7 ´ z11 ` z13 ` ¨ ¨ ¨ , 1 ď i ď 2

C̃ij “ z2 ´ z4 ` z8 ´ z10 ` z14 ` ¨ ¨ ¨ , 1 ď i ‰ j ď 2.

We will need the following lemma:

Lemma 3.2.4. For all pi, jq P I2,

C̃
pm´1q
ij ` C̃

pm`1q
ij ´

ÿ
k„j

C̃
pmq
ik “ 0, @m ě 1,

C̃
p1q
ij “ δi,j .

Proof. By definition of C̃, one has

C̃pzq ¨ Cpzq “ Id P MnpQpzqq. (3.3)

By writing C̃pzq as a formal power series, and using the definition of Cpzq, we obtain, for all
pi, jq P I2,

`8ÿ
m“0

˜
C̃

pmq
ij pzm`1 ` zm´1q ´

ÿ
k„j

C̃
pmq
ik zm

¸
“ δi,j P Crrzs. (3.4)

This is equivalent to

C̃
pm´1q
ij ` C̃

pm`1q
ij ´

ÿ
k„j

C̃
pmq
ik “ 0, @m ě 1,

C̃
p1q
ij ´

ÿ
k„j

C̃
p0q
ij “ δi,j ,

C̃
p0q
ij “ 0. l
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3.3. Infinite quiver

Next, let us define an infinite quiver Γ as in [37]. Let Γ̃ be the quiver with vertex set I ˆ Z

and arrows

ppi, rq Ñ pj, sqq ðñ pCi,j ‰ 0 and s “ r ` Ci,jq. (3.5)

This quiver has two isomorphic connected components (see [37]). Let Γ be one of them, and
let Î be the set of its vertices.

Example 3.3.1. For g “ sl4, fix Î to be

Î :“ tp1, 2pq | p P Zu Y tp2, 2p ` 1q | p P Zu Y tp3, 2pq | p P Zu,
and Γ is the following:

4. Category O of representations of quantum loop algebras

We now start with the more representation theoric notions of this paper. We first recall
the definitions of the quantum loop algebra and its Borel subalgebra, before introduc-
ing the Hernandez–Jimbo category O of representations, as well as some known results
on the subject. We will sporadically use concepts and notations from the two previous
sections.

4.1. Quantum loop algebra and Borel subalgebra

Fix a non-zero complex number q, which is not a root of unity, and h P C such that q “ eh.
Then for all r P Q, qr :“ erh is well defined. Since q is not a root of unity, for r, s P Q, we have
qr “ qs if and only if r “ s.

We will use the following standard notations:

rmsz “ zm´z´m

z´z´1 , rmsz! “ śm
j“1rjsz.

The z-binomial being already defined in Section 2.3:„
r

s

j
z

“ rrsz!
rssz!rr ´ ssz! .
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172 LÉA BITTMANN

Definition 4.1.1. The quantum loop algebra UqpLgq corresponding to g is the associative
C-algebra generated by ei, fi, k

˘1
i , 0 ď i ď n, subject to the relations, for 0 ď i, j ď n :

kikj “ kjki, kik
´1
i “ k´1

i ki “ 1, ka0
0 ka1

1 ¨ ¨ ¨ kan
n “ 1,

rei, fjs “ δi,j
ki ´ k´1

i

q ´ q´1
,

kiejk
´1
i “ qCijej , kifjk

´1
i “ q´Cijej ,

1´Cijÿ
r“0

p´1qrep1´Cij´rq
i eje

prq
i “ 0, pi ‰ jq,

1´Cijÿ
r“0

p´1qrf p1´Cij´rq
i fjf

prq
i “ 0, pi ‰ jq,

(4.1)

where x
prq
i “ xr

i {rrsq!, pxi “ ei, fiq.

Definition 4.1.2. The Borel algebra Uqpbq is the subalgebra of UqpLgq generated by the
ei, k

˘1
i , for 0 ď i ď n.

Both the quantum loop algebra and its Borel subalgebra are Hopf algebras.
From now on, except when explicitly stated otherwise, we are going to consider representa-

tions of the Borel algebra Uqpbq. Particularly, we consider the action of the 	-Cartan subalgebra
Uqpbq0: a commutative subalgebra of Uqpbq generated by the so-called Drinfeld generators
(generators appearing in the Drinfeld presentation [17] of UqpLgq):

Uqpbq0 :“ @
k˘1
i , φ`

i,r

D
iPI,rą0

.

4.2. Highest 	-weight modules

Let V be a Uqpbq-module and ω P PQ a weight. One defines the weight space of V of weight ω
by

Vω :“ tv P V | kiv “ qωpα_
i qv, 1 ď i ď nu.

The vector space V is said to be Cartan diagonalizable if V “ À
ωPPQ

Vω.

Definition 4.2.1. A series ΨΨΨ “ pψi,mqiPI,mě0 of complex numbers, such that ψi,m P qQ for
all i P I is called an 	-weight. The set of 	-weights is denoted by P�. One identifies the 	-weight
ΨΨΨ to its generating series :

ΨΨΨ “ pψipzqqiPI , ψipzq “ ř
mě0 ψi,mzm.

Let us define some particular 	-weights which are important in our context.
For any ω P PQ, define rωs P P� by

rωsipzq “ qωpα_
i q, 1 ď i ď n. (4.2)

Furthermore, for all i P I, a P Cˆ, define ΨΨΨi,a, Yi,a P P� as

pΨΨΨi,aqjpzq “
"

1 ´ az if j “ i
1 if j ‰ i

. (4.3)

Then, define Yi,a P P� as

Yi,a :“ rωisΨΨΨi,aq´1pΨΨΨi,aqq´1. (4.4)
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 173

The set P� is a group with respect to the component-wise multiplication of formal power
series, as the components Ψi of 	-weights satisfy ψip0q P qQ. Moreover, for all ΨΨΨ P P�, if one
writes ψip0q “ qbi , for all i P I, then the element ω “ ř

iPI biωi P PQ satisfy ψip0q “ qωpα_
i q. Let

� be the surjective group morphism � : P� Ñ PQ such that ψip0q “ q�pΨΨΨqpα_
i q, for all ΨΨΨ P P�

and all i P I.
Let V be Uqpbq-module and ΨΨΨ P P� an 	-weight. One defines the 	-weight space of V of

	-weight ΨΨΨ by

VΨΨΨ :“ tv P V | Dp ě 0,@i P I,@m ě 0, pφ`
i,m ´ ψi,mqpv “ 0u.

Remark 4.2.2. With the usual convention φ`
i,0 “ ki, one has VΨΨΨ Ă V�pΨΨΨq.

Definition 4.2.3. Let V be a Uqpbq-module. It is said to be of highest 	-weight ΨΨΨ P P� if
there is v P V such that V “ Uqpbqv,

eiv “ 0,@i P I and φ`
i,mv “ ψi,mv, @i P I,m ě 0.

In that case, the 	-weight ΨΨΨ is entirely determined by V , it is called the 	-weight of V , and v
is the highest 	-weight vector of V .

Proposition 4.2.4 [32]. For all ΨΨΨ P P� there is, up to isomorphism, a unique simple highest
	-weight module of 	-weight ΨΨΨ, denoted by LpΨΨΨq.

Example 4.2.5. For ω P PQ, Lprωsq is a one-dimensional representation of weight ω. We
also denote it by rωs (tensoring by this representation is equivalent to shifting the weights by
ω).

4.3. Definition of the category O
As explained in the Introduction, our focus here is a category O of representations of the
Borel algebra, which was first defined in [32], mimicking the usual definition of the BGG
category O for Kac–Moody algebras. Here, we are going to use the definition in [36], which is
slightly different.

For all λ P PQ, define Dpλq :“ tω P PQ | ω ď λu.

Definition 4.3.1. A Uqpbq-module V is in the category O if

(1) V is Cartan diagonalizable;
(2) for all ω P PQ, one has dimpVωq ă 8;
(3) there is a finite number of λ1, . . . , λs P PQ such that all the weights that appear in V are

in the cone
Ťs

j“1 Dpλjq.

The category O is a monoidal category.

Example 4.3.2. All finite-dimensional Uqpbq-modules are in the category O.

Let P r
� be the set of 	-weights Ψ such that, for all i P I, Ψipzq is rational. We will use the

following result.

Theorem 4.3.3 [32]. Let Ψ P P�. Simple objects in the category O are highest 	-weight
modules. The simple module LpΨq is in the category O if and only if Ψ P P r

� . Moreover, if V
is in the category O and VΨ ‰ 0, then Ψ P P r

� .
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174 LÉA BITTMANN

Example 4.3.4. For all i P I and a P Cˆ, define the prefundamental representations L˘
i,a as

L˘
i,a :“ LpΨΨΨ˘1

i,aq, (4.5)

for ΨΨΨi,a defined in (4.3). Then from Theorem 4.3.3, the prefundamental representations belong
to the category O.

4.4. Connection to finite-dimensional UqpLgq-modules

Throughout this paper, we will use results already known for finite-dimensional representations
of the quantum loop algebra UqpLgq with the purpose of generalizing some of them to the
context of the category O of representations of the Borel subalgebra Uqpbq. Let us first see why
this approach is valid, as the representation theories of these two algebras are similar.

Let C be the category of all (type 1) finite-dimensional UqpLgq-modules.

Proposition 4.4.1 [8; 11, Proposition 2.7]. Let V be a simple finite-dimensional UqpLgq-
module. Then V is simple as a Uqpbq-module.

Using this result and the classification of finite-dimensional simple module of quantum loop
algebras in [12], one has

Proposition 4.4.2. For all i P I, let Pipzq P Crzs be a polynomial with constant term 1.
Let ΨΨΨ “ pΨiqiPI be the 	-weight such that

Ψipzq “ qdegpPiq Pipzq´1q
Pipzqq , @i P I. (4.6)

Then LpΨΨΨq is finite-dimensional.
Moreover the action of Uqpbq can be uniquely extended to an action of UqpLgq, and any

simple object in the category C is of this form.

Hence, the category C is a subcategory of the category O and the inclusion functor preserves
simple objects.

Example 4.4.3. For all i P I and a P Cˆ, consider the simple Uqpbq-module LpΨΨΨq of highest
	-weight Yi,a, as in (4.4), then by Proposition 4.4.2, LpYi,aq is finite-dimensional. This module
is called a fundamental representation and will be denoted by

Vi,a :“ LpYi,aq. (4.7)

In general, simple modules in C are indexed by monomials in the variables pYi,aqiPI,aPCˆ ,
called dominant monomials. Frenkel–Reshetikhin [25] defined a q-character morphism χq (see
Section 4.8) on the Grothendieck ring of C . It is an injective ring morphism

χq : K0pC q Ñ Ŷ :“ ZrY ˘1
i,a siPI,aPCˆ . (4.8)

Example 4.4.4. In the notation of Example 4.4.3 we have, for g “ sl2 and for all a P Cˆ,

χqpLpY1,aqq “ Y1,a ` Y ´1
1,aq2 . (4.9)

4.5. Categories O˘

Let us now recall the definitions of some subcategories of the category O, introduced in [36].
These categories are interesting to study for different reasons; here we use in particular the
cluster algebra structure of their Grothendieck rings.
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Definition 4.5.1. Consider the submonoids P˘
� of P r

� generated by the rωs, ω P PQ, the
Yi,a and the ΨΨΨ˘1

i,a , i P I, a P Cˆ. An 	-weight of P`
� (respectively, P´

� q is said to be positive
(respectively, negative).

Definition 4.5.2. The category O˘ is the full subcategory of O whose objects are modules
whose simple constituents are LpΨΨΨq with ΨΨΨ P P˘

� .

Remark 4.5.3. As for the classical category O the multiplicity of a simple module in a
module is well defined, see Section 4.7.

The category O` (respectively, O´) contains the category of finite-dimensional represen-
tations, as well as the positive (respectively, negative) prefundamental representations L`

i,a

(respectively, L´
i,a), defined in (4.3.4), for all i P I, a P Cˆ.

Theorem 4.5.4 [36]. The categories O` and O´ are monoidal categories.

4.6. The category O`
Z

Recall the infinite quiver Γ from Section 3.3 and its set of vertices Î.
In [33, Section 3.7], Hernandez and Leclerc defined a subcategory CZ of the category

C . Let YYY Z be the submonoid of P� generated by the Yi,qr`1 for pi, rq P Î. Then CZ

is the full subcategory of C whose objects have simple constituents LpΨΨΨq such that
ΨΨΨ P YYY Z.

This subcategory is interesting to study because each simple object in C can be written
as a tensor product of simple objects which are essentially in CZ (see [33, Section 3.7]).
Thus, the study of simple modules in C is equivalent to the study of simple modules
in CZ.

Consider the same type of restriction on the category O. Let P˘
�,Z be the submonoids of P�

generated by the ΨΨΨ˘1
i,r for pi, rq P Î, respectively.

Definition 4.6.1. Define O˘
Z as the subcategories of representations of O whose simple

constituents have a highest 	-weight ΨΨΨ belonging to the monoids P˘
�,Z.

Let us note that our definition of CZ is slightly different from that of [33]. As the Yi,a are
expressed in terms of ΨΨΨ˘1

i,aq˘1 , the definition of CZ is shifted for it to be a subcategory of O˘
Z .

From now on, we will consider the ΨΨΨi,qr and the Yi,qr`1 , for pi, rq P Î.

4.7. The Grothendieck ring K0pOq
Hernandez and Leclerc showed that the Grothendieck rings of the categories O˘

Z have some
interesting cluster algebra structures.

First of all, define E as the additive group of maps c : PQ Ñ Z whose support is contained
in a finite union of sets of the form Dpμq. For any ω P PQ, define rωs P E as the δ-function at
ω (this is compatible with the notation in Example 4.2.5). The elements of E can be written
as formal sums

c “
ÿ

ωPsupppcq
cpωqrωs. (4.10)

E can be endowed with a ring structure, where the product is defined by

rωs ¨ rω1s “ rω ` ω1s, @ω, ω1 P PQ.
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176 LÉA BITTMANN

This product is well defined because the supports of the maps c in E are contained in a finite
union of cones.

If pckqkPN is a countable family of elements of E such that for any ω P PQ, ckpωq “ 0 except
for finitely many k P N, then

ř
kPN ck is a well-defined map from PQ to Z. In that case, we say

that
ř

kPN ck is a countable sum of elements in E .
The Grothendieck ring of the category O can be viewed as a ring extension of E . Similar to

the case of representations of a simple Lie algebra (see [39, Section 9.6]), every object in this
category O has a (generalized) Jordan–Hölder series, thus the multiplicity of an irreducible
representation in a given representation of the category O is well defined. The Grothendieck
ring of the category O is formed of formal sumsÿ

ΨΨΨPP r
�

λΨΨΨrLpΨΨΨqs, (4.11)

such that the λΨΨΨ P Z satisfy ÿ
ΨΨΨPP r

� ,ωPPQ

|λΨΨΨ| dimpLpΨΨΨqωqrωs P E .

In this context, E is identified with the Grothendieck ring of the category of representations
of O with constant 	-weight.

A notion of countable sum of elements in K0pOq is defined exactly as for E .
Now consider the cluster algebra ApΓq defined by the infinite quiver Γ of Section 3.3, with

infinite set of coordinates denoted by

zzz “
!
zi,r | pi, rq P Î

)
. (4.12)

By the Laurent phenomenon (see 2.4.2), ApΓq is contained in Zrz˘1
i,r spi,rqPÎ . Define χ :

Zrz˘1
i,r s bZ E Ñ E , the E-algebra homomorphism by

χpz˘1
i,r q “

”
¯r

2
ωi

ı
, ppi, rq P Îq. (4.13)

In particular, the map χ is defined on ApΓq bZ E , and for each A P ApΓq bZ E , one can write
χpAq “ ř

ωPPQ
Aωrωs P E . Define |χ| by |χ|pAq “ ř

ωPPQ
|Aω|rωs.

Consider the completed tensor product

ApΓqb̂ZE , (4.14)

of countable sums
ř

kPN Ak of elements Ak P ApΓq bZ E , such that
ř

kPN |χ|pAkq is a countable
sum of elements of E , as defined above.

Theorem 4.7.1 [36, Theorem 4.2]. The category O`
Z is monoidal, and the identification

zi,r b
”r
2
ωi

ı
” rL`

i,qr s,
´

pi, rq P Î
¯
, (4.15)

defines an isomorphism of E-algebras

ApΓqb̂ZE » K0pO`
Z q. (4.16)
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 177

Example 4.7.2. We mentioned in the introduction that the Baxter relation (1.2) was an
exchange relation for this cluster algebra structure, let us detail this. For g “ sl2, the quiver Γ is

Moreover, the new cluster variable z1
1,0 identifies to a fundamental representation:

z1
1,0 “ rLpY1,q´1qs. (4.17)

Remark 4.7.3. An analog theorem could be written for K0pO´
Z q, as these are isomorphic

as E-algebras [36, Theorem 5.17].

4.8. The q-character morphism

Here we detail the notion of q-character on the category O. This notion extends the q-character
morphism on the category of finite-dimensional UqpLgq-modules mentioned in Section 4.4.

Similar to Section 4.7, consider E�, the additive group of maps c : P r
� Ñ Z such that the

image by � of its support is contained in a finite union of sets of the form Dpμq, and for
any ω P PQ, the set supppcq X �´1ptωuq is finite. The map � extends naturally to a surjective
morphism � : E� Ñ E . For ΨΨΨ P P r

� , define the delta function rΨΨΨs “ δΨΨΨ P E�.
The elements of E� can be written as formal sums

c “
ÿ

ΨΨΨPP r
�

cpΨΨΨqrΨΨΨs. (4.18)

Endow E� with a ring structure given by

pc ¨ dqpΨΨΨq “
ÿ

ΨΨΨ1ΨΨΨ2“ΨΨΨ

cpΨΨΨ1qdpΨΨΨ2q, pc, d, P E�,ΨΨΨ P P r
� q. (4.19)

In particular, for ΨΨΨ,ΨΨΨ1 P P r
� ,

rΨΨΨs ¨ rΨΨΨ1s “ rΨΨΨΨΨΨ1s. (4.20)

As in Section 4.7, this multiplication is well defined thanks to the support condition on E�.
For V a module in the category O, define the q-character of V as in [25, 32]:

χqpV q :“
ÿ

ΨΨΨPP r
�

dimpVΨΨΨqrΨΨΨs. (4.21)

By definition of the category O, χqpV q is an object of the ring E�.
The following result extends the one from [25] to the context of the category O.

Proposition 4.8.1 [32]. The q-character map

χq : K0pOq Ñ E�
rV s ÞÑ χqpV q, (4.22)

is an injective ring morphism.
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178 LÉA BITTMANN

Example 4.8.2. For any a P Cˆ, i P I, one has [22, 32],

χqpL`
i,aq “ rΨΨΨi,asχi, (4.23)

where χi “ χpL`
i,aq P E does not depend on a.

For example, if g “ sl2,

χ1 “ χ “
ÿ
rě0

r´2rω1s. (4.24)

5. Quantum tori

Let t be an indeterminate. The aim of this section is to build a non-commutative quantum torus
Tt which will contain the quantum Grothendieck ring for the category O. For the category
C of finite-dimensional UqpLgq-modules, such a quantum torus already exists, denoted by Yt

here. Thus one natural condition on Tt is for it to contain Yt. We show it is the case in
Theorem 5.2.1.

We start this section by recalling the definition and some properties of Yt. Here we use the
same quantum torus as in [31], which is slightly different from the one used in [42, 45].

5.1. The torus Yt

In this section, we consider UqpLgq-modules and no longer Uqpbq-modules. We have seen in
Section 4.4 that for finite-dimensional representations, these settings were not too different.

As seen in (4.8), the Grothendieck ring of C can be seen as a subring of a ring of Laurent
polynomials

K0pC q Ď Ŷ “ ZrYi,a | pi, rq P Îs.
In order to define a t-deformed non-commutative version of this Grothendieck ring, one first

needs a non-commutative, t-deformed version of Ŷ, denoted by Yt.
Following [31], we define

Y :“ ZrY ˘1
i,qr | pi, rq P Îs, (5.1)

the Laurent polynomial ring generated by the commuting variables Yi,qr .
Let pYt, ˚q be the Zpt1{2q-algebra generated by the pY ˘

i,qr qpi,rqPÎ , with the t-commutations
relations:

Yi,qr ˚ Yj,qs “ tNi,jpr´sqYj,qs ˚ Yi,qr , (5.2)

where Ni,j : Z Ñ Z is the antisymmetrical map, defined by

Ni,jpmq “ C̃
pm`1q
i,j ´ C̃

pm´1q
i,j , @m ě 0, (5.3)

using the notations from Section 3.2.

Example 5.1.1. If we continue Example 3.2.3, for g “ sl2, in this case, Î “ p1, 2Zq, for
r P Z, one has

Y1,2r ˚ Y1,2s “ t2p´1qs´r

Y1,2s ˚ Y1,2r, @s ą r ą 0. (5.4)

The Zpt1{2q-algebra Yt is viewed as a quantum torus of infinite rank.
Consider the bar-involution , the antiautomorphism of Yt defined by:

t1{2 “ t´1{2, Yi,qr`1 “ Yi,qr`1 ,
´

pi, rq P Î
¯
. (5.5)
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 179

For a family of integers with finitely many non-zero components pui,rqpi,rqPÎ , on can consider
the bar-invariant monomial

ś
pi,rqPÎ Y

ui,r

i,qr , invariant under the bar-involution:ź
pi,rqPÎ

Y
ui,r

i,qr :“ t
1
2

ř
pi,rqăpj,sq ui,ruj,sNi,jpr,sqÝÑ̊

pi,rqPÎY
ui,r

i,qr , (5.6)

where on the right-hand side an order on Î is chosen so as to give meaning to the sum, and
the product ˚ is ordered by it (note that the result does not depend on the order chosen).

The bar-invariant monomials form a basis of the free Zpt1{2q-module Yt.

5.2. The torus Tt

We now want to extend the quantum torus Yt to a larger non-commutative algebra Tt which
would contain at least all the 	-weights, and possibly all the candidates for the pq, tq-characters
of the modules in the category O`

Z .
In particular, Tt contains the ΨΨΨi,qr , for pi, rq P Î, and these t-commutes with a relation

compatible with the t-commutation relation between the Yi,qr`1 (5.2).
We start as in Section 5.1. First of all, define

T :“ Z

”
z˘1
i,r | pi, rq P Î

ı
, (5.7)

the Laurent polynomial ring generated by the commuting variables zi,r.
Then, build a t-deformation Tt of T , as the Zrt˘1s-algebra generated by the z˘

i,r, for pi, rq P Î,
with a non-commutative product ˚, and the t-commutations relations

zi,r ˚ zj,s “ tFijps´rqzj,s ˚ zi,r,
´

pi, rq, pj, sq P Î
¯
, (5.8)

where, for all i, j P I, Fij : Z Ñ Z is an antisymmetrical map such that, for all m ě 0,

Fijpmq “ ´
ÿ
kě1

mě2k´1

C̃
pm´2k`1q
ij . (5.9)

Now, let

Tt :“ Zrt˘1{2s bZrt˘1s Tt. (5.10)

This based quantum torus will be enough to define a structure of quantum cluster algebra,
but for it to contain the quantum Grothendieck ring of the category O`

Z , one needs to extend it.
In order to do that, we draw inspiration from Section 4.7. Recall the definition of χ from (4.13).
We extend it to the E-algebra morphism χ : Tt bZ E Ñ E defined by imposing χpt˘1{2q “ 1, as
well as

χpz˘1
i,r q “

„ˆ¯r

2

˙
ωi

j
, ppi, rq P Îq.

As before, for z P Tt bZ E , one writes χpzq “ ř
ωPPQ

zωrωs and |χ|pzq “ ř
ωPPQ

|zω|rωs.
Define the completed tensor product

Tt :“ Ttb̂Zrt˘1{2sE , (5.11)

of countable sums
ř

kPN zk of elements zk P Tt bZ E , such that
ř

kPN |χ|pzkq is a countable sum
of E , as in Section 4.7.

The bar involution defined on Yt has a counterpart on the larger quantum torus Tt.
There is unique E-algebra antiautomorphism of Tt such that

t1{2 “ t´1{2, zi,r “ zi,r, and rωis “ rωis, ppi, rq P Îq.
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180 LÉA BITTMANN

Similarly, we define the bar-invariant monomials in Tt asź
pi,rqPÎ

z
vi,r

i,qr :“ t
1
2

ř
pi,rqăpj,sq vi,rvj,sFi,jpr,sqÝÑ̊

pi,rqPÎz
vi,r

i,qr . (5.12)

Consistently with the identification (4.15), and the character of the z˘1
i,r , we use the following

notation, for pi, rq P Î,

rΨΨΨ˘1
i,qr s :“ z˘1

i,r

„˘r

2
ωi

j
P Tt. (5.13)

Theorem 5.2.1. The assignments

Yi,qr`1 ÞÑ t´ 1
2 zi,r ˚ z´1

i,r`2 “ t´ 1
2 rωisrΨΨΨi,qr s ˚ rΨΨΨ´1

i,qr`2s, (5.14)

where the products on the right-hand side are bar-invariant, defines an injective homomorphism
J : Yt Ñ Tt of Zptq-algebras.

Proof. One needs to check that the images of the Yi,qr`1 satisfy (5.2). Thus, we need to
show that, for all pi, rq, pj, sq P Î,`

zi,rz
´1
i,r`2

˘ ˚ `
zj,sz

´1
j,s`2

˘ “ tNi,jps´rq`zj,sz´1
j,s`2

˘ ˚ `zi,rz´1
i,r`2

˘
,

which is equivalent to checking that

2Fi,jps ´ rq ´ Fi,jps ´ r ` 2q ´ Fi,jps ´ r ´ 2q “ Ni,jps ´ rq. (5.15)

Suppose s ě r ` 2, let m “ s ´ r.

2Fi,jpmq ´ Fi,jpm ` 2q ´ Fi,jpm ´ 2q “ ´
ÿ
kě1

mě2k´1

C̃
pm´2k`1q
ij

`
ÿ
kě0

mě2k´1

C̃
pm´2k`1q
ij `

ÿ
kě2

mě2k´1

C̃
pm´2k`1q
ij “ ´C̃

pm´1q
ij ` C̃

pm`1q
ij .

Thus 2Fi,jpmq ´ Fi,jpm ` 2q ´ Fi,jpm ´ 2q “ Ni,jpmq, using (5.3).
If s “ r ` 1, the left-hand side of (5.15) is equal to

3Fi,jp1q ´ Fi,jp3q “ C̃
p2q
ij “ Ni,jp1q. l

Example 5.2.2. Let us continue Examples 3.2.3 and 5.1.1. For all r P Z. One has

z1,2r ˚ z1,2s “ tfps´rqz1,2s ˚ z1,2r ,@r, s P Z, (5.16)

where f : Z Ñ Z is antisymmetric and defined by

f|N : m ÞÑ p´1qm ´ 1
2

. (5.17)

And this is compatible with the relations (5.4).

Definition 5.2.3. Define the evaluation at t “ 1 as the E-morphism

π : Tt Ñ E�, (5.18)

such that

πpzi,rq “
„´r

2
ωi

j
rΨΨΨi,qr s,

πpt˘1{2q “ 1.
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 181

Remark 5.2.4. The identification (4.15) is between the element zi,rrrωi{2s and the class
of the prefundamental representation rL`

i,qr s. But this identification is not compatible with
the character χ defined in (4.13), as the character of L`

i,qr is χi, as in (4.23). Here, we choose
to identify the variables zi,r with the highest 	-weights of the prefundamental representations
(up to a shift of weight), in particular, this identification is compatible with the character
morphism χ.

6. Quantum Grothendieck rings

The aim of this section is to build KtpO`
Z q, a t-deformed version of the Grothendieck ring of the

category O`
Z . This ring will be built inside the quantum torus Tt, as a quantum cluster algebra.

Let us summarize the existing objects in this context in a diagram:

A natural idea to build a t-deformation of the Grothendieck ring K0pO`
Z q is to use its cluster

algebra structure and define a t-deformed quantum cluster algebra, as in Section 2.3, with the
same basis quiver. One has to make sure that the resulting object is indeed a subalgebra of
the quantum torus Tt.

6.1. The finite-dimensional case

We start this section with some reminders regarding the quantum Grothendieck ring of the
category of finite-dimensional UqpLgq-modules.

This object was first discussed by Nakajima [42] and Varagnolo–Vasserot [45] in the study of
perverse sheaves. Then Hernandez gave a more algebraic definition, using t-analogs of screening
operators [30, 31]. This is the version we consider here, with the restriction to some specific
tensor subcategory CZ, as in [35].

6.1.1. Definition of the quantum Grothendieck ring. As in Section 4.6, consider CZ the
full subcategory of C whose simple components have highest 	-weights which are monomials
in the Yi,qr , with pi, rq P Î.

For pi, r ´ 1q P Î, define the bar-invariant monomials

Ai,r :“ Yi,qr`1Yi,qr´1

ź
j„i

Y ´1
j,qr P Yt. (6.1)

For all i P I, let Ki,tpCZq be the Zpt1{2q-subalgebra of Yt generated by the

Yi,qr p1 ` A´1
i,r`1q, Yj,qs

´
pi, rq, pj, sq P Î , j ‰ i

¯
. (6.2)

Finally, as in [31], define

KtpCZq :“
č
iPI

Ki,tpCZq. (6.3)

Remark 6.1.1. Frenkel–Mukhin’s algorithm [23] allows for the computation of certain
q-characters, in particular those of the fundamental representations. In [31], Hernandez
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182 LÉA BITTMANN

introduced a t-deformed version of this algorithm to compute the pq, tq-characters of the
fundamental representations, and thus to characterized the quantum Grothendieck ring as
the subring of Yt generated for those pq, tq-characters:

KtpCZq “
A

rLpYi,qr qst | pi, rq P Î
E
. (6.4)

6.1.2. pq, tq-Characters in KtpCZq. Let us recall some more detailed results about the
theory of pq, tq-characters for the modules in the category CZ.

Let M be the set of monomials in the variables pYi,qr`1qpi,rqPÎ , also called dominant

monomials. From [31] we know that for all dominant monomial m, there is a unique element
Ftpmq in KtpCZq such that m occurs in Ftpmq with multiplicity 1, and no other dominant
monomial occurs in Ftpmq. These Ftpmq form a Cpt1{2q-basis of KtpCZq.

For all dominant monomial m “ ś
pi,rqPÎ Y

ui,rpmq
i,qr`1 P M, define

rMpmqst :“ tαpmqÐÝ̊
rPZ

Ft

˜ź
iPI

Y
ui,rpmq
i,qr`1

¸
P KtpCZq, (6.5)

where αpmq P 1
2Z is fixed such that m appears with coefficient 1 in the expansion of rMpmqst

on the basis of the bar-invariant monomials. The specialization at t “ 1 of rMpmqst recovers
the q-character χqpMpmqq of the standard module Mpmq.

Remark 6.1.2. By definition, the subring KtpCZq is invariant under the bar-involution
defined in Section 5.

Using Lusztig’s lemma [41, 7.10] and the triangularity of the basis prMpmqstqmPM with
respect to the bar-involution, there is a unique family trLpmqst P KtpCZq | m P Mu such
that

(i)

rLpmqst “ rLpmqst, (6.6)

(ii)

rLpmqst P rMpmqst `
ÿ

m1ăm

t´1Zrt´1srMpm1qst, (6.7)

where m1 ď m means that mpm1q´1 is a product of Ai,r (see [42]).

Lastly, we recall this result from Nakajima, proven using the geometry of quiver varieties.

Theorem 6.1.3 [42]. For all dominant monomial m P M, the specialization at t “ 1 of
rLpmqst is equal to χqpLpmqq.

Moreover, the coefficients of the expansion of rLpmqst as a linear combination of products of
Y ˘1
i,r belong to Nrt˘1s.

Thus to all simple modules LpΨΨΨq in CZ is associated an object rLpmqst P KtpCZq, called the
pq, tq-character. It is compatible with the q-character of the representation.

Remark 6.1.4. With the cluster algebra approach, we shed a new light on this last
positivity result. We interpret the pq, tq-characters of the fundamental modules (and actu-
ally all simple modules which are realized as cluster variables in K0pO`

Z q) as quantum
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 183

cluster variables (Conjecture 7.2.6). Thus using Theorem 2.6.1, we recover the fact that
the coefficients of their expansion on the commutative monomials in the pY ˘1

i,r q belong to
Nrt˘1s.

Remark 6.1.5. In order to fully extended this picture to the context of the category O, and
implement a Kazhdan–Lusztig type algorithm to compute the pq, tq-characters of all simple
modules, one would need an equivalent of the standard modules in this category. These do
not exist in general. This question was tackled by the author in another paper [7], in which
equivalent of standard modules where defined when g “ sl2.

6.2. Compatible pairs

We now begin the construction of KtpO`
Z q.

First of all, to define a quantum cluster algebra, one needs a compatible pair, as in Section 2.2.
The basis quiver we consider here is the same quiver Γ as before (see Section 3.3).

Explicitly, the corresponding exchange matrix is the Î ˆ Î skew-symmetric matrix B̃ such
that, for all ppi, rq, pj, sqq P Î2,

B̃ppi,rq,pj,sqq “

$’’’’’’&
’’’’’’%

1 if i “ j and s “ r ` 2
or i „ j and s “ r ´ 1,

´1 if i “ j and s “ r ´ 2
or i „ j and s “ r ` 1,

0 otherwise.

(6.8)

Let Λ be the Î ˆ Î skew-symmetric infinite matrix encoding the t-commutation relations
(5.8). Precisely, for ppi, rq, pj, sqq P Î2 such that s ą r,

Λpi,rq,pj,sq “ Fi,jps ´ rq “ ´
ÿ
kě1

mě2k´1

C̃
pm´2k`1q
ij . (6.9)

Remark 6.2.1. In [36], it is noted that one can use sufficiently large finite subseed of
Γ instead of an infinite rank cluster algebra. For our purpose, the same statement stays
true, but one has to check that the subquiver still forms a compatible pair with the torus
structure. Hence, we have to give a more precise framework for the restriction to finite
subseeds.

For all N P Zą0, define ΓN , which is a finite slice of Γ of length 2N ` 1, containing an upper
and lower row of frozen vertices. More precisely, define ÎN and ĨN as

ÎN :“
!

pi, rq P Î | ´2N ` 1 ď r ă 2N ´ 1
)
, (6.10)

ĨN :“
!

pi, rq P Î | ´2N ´ 1 ď r ă 2N ` 1
)
. (6.11)

Then ΓN is the subquiver of Γ with set of vertices ĨN , where the vertices is ĨNzÎN are frozen
(thus the vertices in ÎN are the exchangeable vertices).

This way, all cluster variables of ApΓq obtained from the initial seed after a finite sequence
of mutations are cluster variables of the finite rank cluster algebra ApΓN q, for N large enough.
With the same index restrict on B̃, we will be able to define a size increasing family of finite
rank quantum cluster algebras.
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184 LÉA BITTMANN

Example 6.2.2. Recall from Example 3.3.1 the infinite quiver Γ when g “ sl4. Then the
quiver ΓN is the following:

where the boxed vertices are frozen.

For N P Zą0, let B̃N be the corresponding exchange matrix. It is the ĨN ˆ ÎN submatrix of
B̃, thus its coefficients are as in (6.8).

For all N P Zą0, let ΛN be the ĨN ˆ ĨN submatrix of Λ. It is a finite pnp2N ` 1qq2 skew-
symmetric matrix, where n is the rank of the simple Lie algebra g.

Example 6.2.3. For g of type D4, let us exhibit a finite slice of Γ of length 4, containing
an upper and lower row of frozen vertices (which is thus not Γ1, of length 3, nor Γ2, of length
5):
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 185

If the set Ĩ “ tpi, rq P Î | i P �1, 4�,´5 ď r ď 2u is ordered lexicographically by r then i (reading
order), the quiver is represented by the following exchange matrix:

B̃ :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̋̊

´1 0 0 0 0 0 0 0
0 ´1 0 0 0 0 0 0
0 0 ´1 0 0 0 0 0
1 1 1 ´1 0 0 0 0
0 0 0 1 ´1 0 0 0
0 0 0 1 0 ´1 0 0
0 0 0 1 0 0 ´1 0

´1 ´1 ´1 0 1 1 1 ´1
1 0 0 ´1 0 0 0 1
0 1 0 ´1 0 0 0 1
0 0 1 ´1 0 0 0 1
0 0 0 1 ´1 ´1 ´1 0
0 0 0 0 1 0 0 ´1
0 0 0 0 0 1 0 ´1
0 0 0 0 0 0 1 ´1
0 0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (6.12)

The principal part B of B̃ is the square submatrix obtained by omitting the first four rows
and the last four rows. One notes that B is skew-symmetric.

Moreover, using Formula (6.9), one can compute the corresponding matrix Λ. We get the
following 16 ˆ 16 skew-symmetric matrix (with the same order of Ĩ as before):¨

˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˚̋̊

0 0 0 0 1 0 0 1 1 1 1 2 2 1 1 2
0 0 0 0 0 1 0 1 1 1 1 2 1 2 1 2
0 0 0 0 0 0 1 1 1 1 1 2 1 1 2 2
0 0 0 0 0 0 0 1 1 1 1 3 2 2 2 4

´1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 2
0 ´1 0 0 0 0 0 0 0 1 0 1 1 1 1 2
0 0 ´1 0 0 0 0 0 0 0 1 1 1 1 1 2

´1 ´1 ´1 ´1 0 0 0 0 0 0 0 1 1 1 1 3
´1 ´1 ´1 ´1 ´1 0 0 0 0 0 0 0 1 0 0 1
´1 ´1 ´1 ´1 0 ´1 0 0 0 0 0 0 0 1 0 1
´1 ´1 ´1 ´1 0 0 ´1 0 0 0 0 0 0 0 1 1
´2 ´2 ´2 ´3 ´1 ´1 ´1 ´1 0 0 0 0 0 0 0 1
´2 ´1 ´1 ´2 ´1 ´1 ´1 ´1 ´1 0 0 0 0 0 0 0
´1 ´2 ´1 ´2 ´1 ´1 ´1 ´1 0 ´1 0 0 0 0 0 0
´1 ´1 ´2 ´2 ´1 ´1 ´1 ´1 0 0 ´1 0 0 0 0 0
´2 ´2 ´2 ´4 ´2 ´2 ´2 ´3 ´1 ´1 ´1 ´1 0 0 0 0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (6.13)

From here, it is easy to check that the product B̃TΛ is of the form:

B̃TΛ “

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

0 0 0 0 ´2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ´2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ´2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ´2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ´2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ´2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ´2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ´2 0 0 0 0

˛
‹‹‹‹‹‹‹‹‹‹‚
. (6.14)

Thus, pΛ, B̃q is a compatible pair.
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186 LÉA BITTMANN

Remark 6.2.4. Note the coefficients appearing of the diagonal here are all negative. From
the definition of compatible pair from [6], for pΛ, B̃q to be a compatible pair, these should be
positive. That is why in Definition 2.2.1, the coefficients are of constant sign (the properties of
quantum cluster algebras are still satisfied by taking negative coefficients in the compatibility
condition). This allows for our t-commutation to be coherent with that of the quantum torus
Yt.

We show that this result is true in general. Furthermore, the specific form we obtain in
Equation (6.14) is what we get in general.

Proposition 6.2.5. We have

In particular, pΛ, B̃q and ppΛN , B̃N qqNą0 are compatible pairs, in the sense of structure
condition for quantum cluster algebras.

As in Definition 2.2.1, up to reordering of the variables (placing the mutable variable first),
the resulting matrix is of the form rD 0s, with D diagonal with sign coherent entries.

Proof. Let ppi, rq, pj, sqq P Î2. Let us compute:´
B̃TΛ

¯
pi,rq,pj,sq

“
ÿ

pk,uqPÎ
bpk,uq,pi,rqλpk,uq,pj,sq. (6.15)

This is a finite sum, as each vertex in Γ is adjacent to a finite number of other vertices.
Suppose first that r ‰ s. Without loss of generality, we can assume that r ă s. Then, using

the definition of the matrix Λ in (6.9) and the coefficients of B̃ in (6.8), we obtain´
B̃TΛ

¯
pi,rq,pj,sq

“ ´C̃
ps´r´1q
ij ´ C̃

ps´r`1q
ij `

ÿ
k„i

C̃
ps´rq
kj . (6.16)

By Lemma 3.2.4, for all pi, jq P I2,

C̃
pm´1q
ij ` C̃

pm`1q
ij ´

ÿ
k„i

C̃
pmq
kj “ 0, @m ě 1.

Thus, for allpi, jq P I2 and r ă s, equation (6.16) gives´
B̃TΛ

¯
pi,rq,pj,sq

“ 0. (6.17)

Suppose now that r “ s. In that case,´
B̃TΛ

¯
pi,rq,pj,rq

“ ´2C̃p1q
ij “ ´2δi,j ,

using the other result from Lemma 3.2.4. Thus,

B̃TΛ “ ´2 IdÎ . (6.18)

Now, for all N P Zą0, let pi, rq P ÎN and pj, sq P ĨN . Let us write:´
B̃TΛ

¯
pi,rq,pj,sq

“
ÿ

pk,uqPĨN
bpk,uq,pi,rqλpk,uq,pj,sq. (6.19)

 14697750, 2021, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12369, W

iley O
nline L

ibrary on [17/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 187

As pi, rq P ÎN is not a frozen variable, the pj, sq P Î such that bpk,uq,pi,rq ‰ 0 are all in ĨN . Hence
the rest of the reasoning is still valid, and the result follows. l

6.3. Definition of KtpO`
Z q

Everything is now in place to define KtpO`
Z q. Recall the based quantum torus Tt, defined in

Section 5.2. By construction, the associated skew-symmetric bilinear form Λ identifies with the
infinite skew-symmetric Î ˆ Î-matrix from the previous section:

Λpepi,rq, epj,sqq “ Λpi,rq,pj,sq “ Fijps ´ rq, pi, rq, pj, sq P Î , (6.20)

where pepi,rqqpi,rqPÎ is the standard basis of ZpÎq.
Let F be the skew-field of fractions of Tt. We define the toric frame M : ZpÎq Ñ Fzt0u by

setting

Mpepi,rqq “ zi,r P F , @pi, rq P Î . (6.21)

Then the infinite rank matrix ΛM satisfies

ΛM “ Λ. (6.22)

Remark 6.3.1. From the result of Proposition 6.2.5, S “ pM, B̃q is an infinite rank quantum
seed, and one would want to define our quantum Grothendieck ring as the corresponding
quantum cluster algebra. However, the definition of quantum cluster algebra recalled in
Section 2 does not typically cover infinite rank quantum cluster algebras. Nonetheless, in
[29], Grabowski–Gratz gave a construction of certain infinite rank quantum cluster algebra
as (co)limits of sequences of finite rank quantum cluster algebras. We give here an explicit
construction of this result.

Fix N P Zą0. Let m “ p2N ` 1q ˆ n, where n is the rank of the simple Lie algebra g.
Consider LN , the sublattice of Tt generated by the zi,r, with pi, rq P ĨN (recall the definition

of ĨN in (6.11)). LN is of rank m. Consider the toric frame MN which is the restriction of M
to LN . In that case,

ΛMN
“ ΛN , from the previous section.

Thus, from the result of Proposition 6.2.5

SN :“
´
MN , B̃N

¯
(6.23)

is a quantum seed.

Definition 6.3.2. We define AtpΓN q to be the quantum cluster algebra associated to the
mutation-equivalence class of the quantum seed SN .

Then, let us define AtpΓq to be the quantum cluster algebra associated to the mutation-
equivalence class of the infinite rank quantum seed S. As the mutation sequences are finite,
one can always assume we are working in the quantum cluster algebra AtpΓN q, with N large
enough.

Definition 6.3.3. Define

KtpO`
Z q :“ AtpΓqb̂E , (6.24)
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188 LÉA BITTMANN

where the tensor product is completed as in (5.11). The ring KtpO`
Z q is a Ert˘1{2s-subalgebra

of Tt.
For N P Zą0, with the same completion of the tensor product, define

KtpO`
Z,N q :“ AtpΓN qb̂E . (6.25)

7. Properties of KtpO`
Z q

7.1. The bar involution

Recall the bar-involution maps defined on Yt and Tt in Section 5. We have seen in
Section 6.1.2 that the pq, tq-character of simple modules in CZ are bar-invariant by def-
inition. Thus it is natural for pq, tq-characters of simple modules in O`

Z to also be
bar-invariant.

What is crucial to note here is that the definition of the bar-involution on Tt is compatible
with the bar-involution defined in general on the quantum torus of any quantum cluster algebra
(see [6, Section 6]). However, this latter bar-involution has an important property: all cluster
variables are invariant under the bar involution.

Proposition 7.1.1. All elements of KtpO`
Z q of the form χt b 1, where χt P AtpΓq is a

cluster variable, are invariant under the bar-involution on Tt.

7.2. Inclusion of quantum Grothendieck rings

As stated earlier, one natural property we would want to be satisfied by the quantum
Grothendieck ring KtpO`

Z q is to include the already-existing quantum Grothendieck KtpCZq of
the category CZ.

Note that those rings are contained in quantum tori, which are included in one another by
the injective morphism J from Theorem 5.2.1:

Thus it is natural to formulate the following conjecture:

Conjecture 7.2.1. The injective morphism J restricts to an inclusion of the quantum
Grothendieck rings

J : KtpCZq Ă KtpO`
Z q. (7.1)

Recall that the quantum Grothendieck ring KtpCZq is generated by the classes of the
fundamental representations rLpYi,qr`1qst, for pi, rq P Î (see Section 6.1.1). Hence, in order
to prove Conjecture 7.2.1, it is enough to show that the images of these rLpYi,qr`1qst belong to
KtpO`

Z q.
In Example 4.7.2 we saw how, when the g “ sl2, the class of the fundamental representation

rLpY1,q´1qs could be obtained as a cluster variable in ApΓq after one mutation in direction
(1,0).

This fact is actually true in more generality, as seen in [36], in the proof of Proposition 6.1.
Let us recall this process precisely.
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 189

Fix pi, rq P Î. We first define a specific sequence of vertices in Γ, as in [37]. Recall the
definition of the dual Coxeter number h_.

g An Dn E6 E7 E8

h_ n ` 1 2n ´ 2 12 18 30

Let h1 “ rh_{2s. Fix an ordering pj1, . . . , jnq of the vertices of the Dynkin diagram of g by
taking first j1 “ i, then all vertices which appear with the same oddity as i in Î (the j such
that pj, rq P Î), then the vertices which appear with a different oddity (pj, r ` 1q P Î). For all
k P t2, . . . , h1u, j P t1, . . . , nu, define the sequence Sj,k of k vertices of the column j of Γ in
decreasing order:

Sj,k “ pj, r ` 2h1 ´ εq, pj, r ` 2h1 ´ ε ´ 2q, . . . , pj, r ` 2h1 ´ ε ´ 2k ` 2q, (7.2)

where ε P t0, 1u, depending of the oddity. Then define

Sk “ ÝÑď
j

Sj,k, (7.3)

with the order defined before. Finally, let

S “ Sh1 ¨ ¨ ¨S2 pi, r ` 2h1q,

by reading left to right and adding one last pi, r ` 2h1q at the end.

Example 7.2.2. For g of type D4, and pi, rq “ p1, 0q, the sequence S is

S “p1, 6q p1, 4q p1, 2q p3, 6q p3, 4q p3, 2q
p4, 6q p4, 4q p4, 2q p2, 5q p2, 3q p2, 1q
p1, 6q p1, 4q p3, 6q p3, 4q p4, 6q p4, 4q
p2, 5q p2, 3q p1, 6q.

Using [37, Theorem 3.1] and elements from the proof of [36, Proposition 6.1], one gets the
following result.

Proposition 7.2.3. Let χi,r be the cluster variable of ApΓq obtained at the vertex pi, r `
2h1q after following the sequence of mutations S, then, via the identification (4.15)

χi,r ” rLpYi,qr`1qs. (7.4)

To see this result differently, if one writes χi,r as a Laurent polynomial in the variables pzj,sq,
then χi,r is in the image of J , and

χi,r “ J pχqpLpYi,qr`1qq. (7.5)

Example 7.2.4. Let g “ sl3 and pi, rq “ p1, 0q. The sequence of vertices S is

S “ p1, 4q p1, 2q p2, 3q p2, 1q p1, 4q. (7.6)
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190 LÉA BITTMANN

Let us compute the sequence of mutations S:
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 191

The associated cluster variables are

z
p1q
1,4 “ z1,2z

´1
1,4z2,5 ` z´1

1,4z1,6z2,3,

z
p1q
1,2 “ z1,0z

´1
1,4z2,5 ` z1,0z

´1
1,2z

´1
1,4z1,6z2,3 ` z´1

1,2z1,6z2,´1,

z
p1q
2,3 “ z2,1z

´1
2,3 ` z1,2z

´1
1,4z2,5z

´1
2,3 ` z´1

1,4z1,6,

z
p2q
1,4 “ z1,0z

´1
1,2 ` z´1

1,2z1,4z2,1z
´1
2,3 ` z´1

2,3z2,5.

Thus, χ1,0 “ z
p2q
1,4 is in the image of J , and

χ1,0 “ J pY1,q ` Y ´1
1,q3Y2,q2 ` Y ´1

2,q4q “ J pχqpLpY1,qqqq. (7.7)

Note also that z
p1q
2,3 was already in the image of J and that z

p1q
2,3 “ J pχqpLpY2,q2qqq.

Thus, for each pi, rq P Î, consider the quantum cluster variables χ̃i,r P KtpO`
Z q obtained from

the initial quantum seed pzzz,Λq via the sequence of mutations S.

Example 7.2.5. Suppose g “ sl2. Consider the quiver Γ1 a well as the skew-symmetric
matrix Λ1,

As seen in Example 4.7.2 (with a shift of quantum parameters), the fundamental representation
rLpY1,q´1qs is obtained in K0pO`

Z q after one mutation at (1,0) (here S “ p1, 0q).
The quantum cluster variable obtained after a quantum mutation at (1,0), written with

bar-invariant monomials, is

χ̃1,´2 “ z1,´2z
´1
1,0 ` z1,2z

´1
1,0 “ J pY1,q´1 ` Y ´1

1,q q “ J prLpY1,q´1qstq,
“ J

`
Y1,q´1p1 ` A´1

1,1q˘ P J pKtpCZqq,
Thus, we note that in this particular case, the quantum cluster variable χ̃1,´2 recovers the
pq, tq-character rLpY1,q´1qst of the fundamental representation LpY1,q´1q.

In particular, Conjecture 7.2.1 is satisfied in this case.

This example incites us to formulate another conjecture.

Conjecture 7.2.6. For all pi, rq P Î, the quantum cluster variable χ̃i,r recovers, via the
morphism J , the pq, tq-character of the fundamental representation LpYi,qr`1q:

χ̃i,r “ J
`rLpYi,qr`1qst

˘
. (7.8)

The author plans to prove this conjecture for all simply laced types in a follow-up work.

Remark 7.2.7. Note that Conjecture 7.2.6 implies Conjecture 7.2.1, and that Conjec-
ture 7.2.6 is already proven when g “ sl2, from Example 7.2.5.
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192 LÉA BITTMANN

What can be said, in general, of the quantum cluster variables χ̃i,r ?

Proposition 7.2.8. For all pi, rq P Î, the quantum cluster variable χ̃i,r satisfies the following
properties:

(i) invariant under the bar involution:

χ̃i,r “ χ̃i,r; (7.9)

(iI) the coefficients of its expansion as a Laurent polynomial in the initial quantum cluster
variables tzi,ru are Laurent polynomials in t1{2 with non-negative integers coefficients:

χ̃i,r P à
uuu“ui,rPZpÎq

Nrt˘1{2szzzuuu (7.10)

with zzzuuu “ ś
pi,rqPÎ z

ui,r

i,r denoting the bar-invariant monomial;

(iii) its evaluation at t “ 1 (as seen in (5.18)), recovers the q-character of the fundamental
representation LpYi,qr`1q:

πpχ̃i,rq “ χqpLpYi,qr`1qq. (7.11)

Proof. The first property is a direct consequence of Proposition 7.1.1 and the second is a
direct consequence of the positivity result of Theorem 2.6.1.

For the third property, note we have used two evaluation maps so far, with the same notation.

• The evaluation map defined in (2.17) on the bases quantum torus of a quantum cluster
algebra:

π : AtpM, B̃q Ñ ZrX̃˘1s,
• The evaluation map defined in (5.18) on Tt:

π : Tt Ñ E�.
These notations are coherent because the map π from (5.18) is the evaluation map defined

on a based quantum torus (of infinite rank) of a quantum cluster algebra, extended to a E-
morphism on Tt. In this case, the Laurent polynomial ring ZrX̃˘1s is Zrz˘1

i,r | pi, rq P Îs, which
becomes ErΨΨΨ˘1

i,r s after extension to a E-morphism and via the identification (4.15).
Thus we can apply Corollary 2.5.3 to this map π. As χ̃i,r is a quantum cluster variable, its

evaluation by π is the cluster variable χi,r, which is obtained from the initial seed z, via the
same sequence of mutations S (the initial seed and quantum seeds are fixed and identified by
the evaluation π on the quantum torus Tt). By Proposition 7.2.3,

πpχ̃i,rq “ χi,r “ χqpLpYi,qr`1qq. (7.12)

l

These two properties imply that the χ̃i,r are good candidates for the pq, tq-characters of the
fundamental representations, as stated in Conjecture 7.2.1.

7.3. pq, tq-Characters for positive prefundamental representations

Recall the q-characters of the positive prefundamental representations in (4.23), for all i P I, a P
Cˆ,

χqpL`
i,aq “ rΨΨΨi,asχi,

where χi P E is the (classical) character of L`
i,a.
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QUANTUM GROTHENDIECK RINGS AS QUANTUM CLUSTER ALGEBRAS 193

Definition 7.3.1. For pi, rq P Î, define

rL`
i,qr st :“ rΨΨΨi,qr s b χi P KtpO`

Z q, (7.13)

using the notation from (5.13).

Remark 7.3.2. It is the quantum cluster variable obtained from the initial quantum seed,
via the same sequence of mutations used to obtain rL`

i,qr s in K0pO`
Z q, which in this case, is no

mutation at all.

In particular, the evaluation of rL`
i,qr st recovers the q-character of rL`

i,qr s:
πprL`

i,qr stq “ rΨΨΨi,qr s b χi “ χqpL`
i,aq P E�. (7.14)

8. Results in type A

Throughout this section we suppose that g is of type A.

8.1. Proof of the conjectures

In this case, the situation of Example 7.2.5 generalizes.

Theorem 8.1.1. Conjecture 7.2.6 holds for g of type A.

In this case, the key ingredient is the following well-known result (see, for example, [24,
Section 11], and references therein).

Theorem 8.1.2. When g is of type A, all 	-weight spaces of all fundamental representations
LpYi,aq are of dimension 1.

Proof. Fix pi, rq P Î. From the second property of Proposition 7.2.8, we know that χ̃i,r can
be written as

χ̃i,r “
ÿ

uuuPZpÎq
Puuupt1{2qzzzuuu, (8.1)

where the Puuupt1{2q are Laurent polynomials with non-negative integer coefficients. Using the
third property of Proposition 7.2.8, we deduce the evaluation at t “ 1 of equality (8.1):

χqpLpYi,qr´1qq “
ÿ

uuuPZpÎq
Puuup1q

ź
pi,rqPÎ

prΨΨΨi,qr sr´rωi{2squi,r P E�. (8.2)

From the above theorem, this decomposition is multiplicity-free. Thus, the non-zero coefficients
Puuupt1{2q are of the form tk{2, with k P Z. Finally, as χi,r is bar-invariant, from the first property
of Proposition 7.2.8, and the zzzuuu are also bar-invariant, we know that the Laurent polynomials
Puuupt1{2q are even functions:

Puuup´t1{2q “ Puuupt1{2q. (8.3)

Thus the variable t1{2 does not explicitly appear in the decomposition (8.1), and so:

χi,r “
ÿ

uuuPZpÎq
Puuup1qzzzuuu,

“ J
`
χqpLpYi,qr´1qq˘.
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194 LÉA BITTMANN

Moreover, with the same arguments, as rLpYi,qr´1qst is bar-invariant by definition,

rLpYi,qr´1qst “ χqpLpYi,qr´1qq, (8.4)

written in the basis of the bar-invariant monomials.
Hence we recover the fact that the quantum cluster variable χi,r is equal, via the inclusion

map J , to the pq, tq-character of LpYi,qr´1q and Conjecture 7.2.6 is satisfied. l

8.2. A remarkable subalgebra in type A1

When g “ sl2, we can make explicit computations. Retain the notation of Example 5.2.2.
For all r P Z, the pq, tq-character of the prefundamental representation L`

1,q2r defined in (7.13)
is

rL`
1,q2r st “ rΨΨΨ1q2r sχ1.

Proposition 8.2.1. With these pq, tq-characters, we can write a t-deformed version of the
Baxter relation (1.2), for all r P Z,

rLpY1,q2r´1qst ˚ rL`
1,q2r st “ t´1{2rω1srL`

1,q2r´2st ` t1{2r´ω1srL`
1,q2r`2st. (8.5)

We call this relation the quantized Baxter relation.

Remark 8.2.2. If we identify the variables Y1,q2r and their images through the injection J ,
this relation is actually the exchange relation related to the quantum mutation in Example 7.2.5
(for a generic quantum parameter q2r).

Now consider the quantum cluster algebra ApΛ1,Γ1q, with notations from Section 6.2 (Λ1

and Γ1 are given explicitly in Example 7.2.5).
It is a quantum cluster algebra of finite type (if we remove the frozen vertices from the quiver,

we get just one vertex, which is a quiver of type A1). It has two quantum clusters, containing
the two frozen variables z1,2, z1,´2 and the mutable variables z1,0 and z

p1q
1,0, respectively. Thus,

it is generated as a Cpt1{2q-algebra by

E :“ rLpY1,q´1qst p“ z
p1q
1,0q, F :“ rL`

1,1st p“ z1,0q,
K :“ rω1srL`

1,q´2st p“ z1,´2q, K 1 :“ r´ω1srL`
1,q2st p“ z1,2q. (8.6)

This algebra is a quotient of a well-known Cpt1{2q-algebra.
Let q be a formal parameter. The quantum group Uqpsl2q can be seen as the quotient

Uqpsl2q “ D2{@KK 1 “ 1
D
, (8.7)

where D2 is the Cpqq-algebra with generators E,F,K,K 1 and relations:

KE “ q2EK, K 1E “ q´2EK 1
KF “ q´2FK, K 1F “ q2FK 1
KK 1 “ K 1K, and rE,F s “ pq ´ q´1qpK ´ K 1q.

(8.8)

Remark 8.2.3. • As in [44, Remark 3.1], note that the last relation in (8.8) is not the usual
relation

re, f s “ K ´ K 1

q ´ q´1
.

But both presentations are equivalent, given the change of variables

E “ pq ´ q´1qe, F “ pq ´ q´1qf.
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The presentation (8.8) also appeared in the work of Bridgeland [9], as it is more natural from
the point of view of Hall algebras than the usual presentation.
• D2 is the Drinfeld double [16] of the Borel subalgebra of Uqpsl2q (the subalgebra generated

by K,E), see also [5, equation (1.2)].

Proposition 8.2.4. The Cpt1{2q-algebra ApΛ1,Γ1q is isomorphic to the quotient of the
Drinfeld double D2 of parameter ´t1{2,

ApΛ1,Γ1q „ÝÑ D2{C´t1{2 , (8.9)

where C´t1{2 is the quantized Casimir element:

C´t1{2 :“ EF ´ t´1{2K ´ t1{2K 1. (8.10)

Proof. One has, in ApΛ1,Γ1q,
E ˚ F “ t´1{2K ` t1{2K 1. (8.11)

This is the quantized Baxter relation (8.5). Thus,

rE,F s “ p´t1{2 ` t´1{2qpK ´ K 1q.
We check that the other relations in (8.8) are also satisfied using the structure of the quantum
torus Tt (which is given explicitly in Example 5.2.2).

Hence the map

ApΛ1,Γ1q θÝÑ D2,

sending generators to generators is well defined and descends onto the quotient

ApΛ1,Γ1q Ñ D2{C´t1{2 .

Moreover, from [10], the cluster monomials in a given cluster in a cluster algebra are linearly
independent. In this case, the quantum cluster algebra ApΛ1,Γ1q is of type A1 (without frozen
variables), thus of finite-type. It has two (quantum) clusters : pE,K,K 1q and pF,K,K 1q. Thus,
the set of bar-invariant quantum cluster monomials	

EαKβK 1γ | α, β, γ P Z
( Y 	

KβK 1γFα | α, β, γ P Z
(
, (8.12)

forms a Cpt1{2q-basis of ApΛ1,Γ1q.
Consider the PBW basis of D2:	

EαKβK 1γF δ | α, β, γ, δ P Z
(
. (8.13)

From the expression of the Casimir element C´t1{2 (8.10), we deduce a Cpt1{2q-basis of
D2{C´t1{2 , of the same form as (8.12):	

EαKβK 1γ | α, β, γ P Z
( Y 	

KβK 1γFα | α, β, γ P Z
(
. (8.14)

Hence, the map θ sends a basis to a basis, thus it is isomorphic. l

Remark 8.2.5. The basis obtained in (8.14) is related to the double canonical basis of
Uqpsl2q introduced by Berenstein–Greenstein [5] . Their work also adopts the presentation
(8.8), moreover it uses crucially the quantum Heisenberg algebra, which is also related to
Bridgeland’s Hall algebra (see [28, Remark 4.8]).

This result should be compared with the recent work of Schrader and Shapiro [44], in which
they recognize the same structure of D2 in an algebra built on a quiver, with some quantum
X -cluster algebra structure. In their work, they generalized this result in type A (Theorem 4.4).
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196 LÉA BITTMANN

Ultimately, they obtain an embedding of the whole quantum group Uqpslnq into a quantum
cluster algebra. The result of Proposition 8.2.4, together with their results, gives hope that one
could find a realization of the quantum group Uqpgq as a quantum cluster algebra, related to
the representation theory of UqpLgq.

Furthermore, define in this case O`
1 , the subcategory of O`

Z of objects whose image in the
Grothendieck ring K0pO`

Z q belongs to the subring generated by rL`
1,q´2s, rL`

1,1s, rL`
1,q2s and

rLpY1,q´1qs. Then O`
1 is a monoidal category.

From the classification of simple modules when g “ sl2 in [36, Section 7], we know that the
only prime simple modules in O`

1 are

L`
1,q´2 , L

`
1,1, L

`
1,q2 , LpY1,q´1q. (8.15)

Moreover, a tensor product of those modules is simple if and only if it does not contain
both a factor L`

1,1 and a factor LpY1,q´1q (the others are in so-called pairwise general position).
Thus, in this situation, the simple modules are in bijection with the cluster monomials:"

simple modules
in O`

1

*
ÐÑ

"
bar-invariant quantum cluster

monomials in ApΛ1,Γ1q
*

´
L`

1,q´2

¯bα b `
L`

1,1

˘bβ b
´
L`

1,q2

¯bγ ÞÑ KαF βK 1γ ,
´
L`

1,q´2

¯bα1

b
´
L`

1,q2

¯bβ1

b LpY1,q´1qbγ1 ÞÑ Kα1
K 1β1

Eγ1
.
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