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Chapter 1

Introduction

Neutrino physics has become one of the most active areas of research in par-
ticle physics. There are many reasons for this development, one of the most
important is that neutrino physics is a data driven field – for several years now,
new data are pouring at an astounding rate. It began in  with the first
detection of supernova neutrinos. Although only 19 events were observed [1],
they allowed to confirm the standard picture of core-collapse supernovæ. Fur-
thermore those 19 events also constitute the detection of the oldest neutrinos
ever; they were produced some 150 000 years ago. The fact that there were
detectable neutrinos after this time allows to put stringent bounds on the neu-
trino life time. Furthermore the environment at the production site was a very
special one – a dense and hot proto-neutron star. This offers the possibility
to derive strong bounds on any additional interaction neutrinos could have. A
comprehensive review on the properties of neutrinos which can be deduced from
supernovæ is given in [2].

In  Super-K’s atmospheric neutrino data [3] gave the first clear evidence
for neutrino oscillation. This result was a real turning point for neutrino physics.
Neutrino oscillation implies that neutrinos do have a mass and the finding that
the mixing angle is large was completely unexpected. In analogy to the quark
sector the common belief was that if neutrinos mixed at all then the mixing
angles should be small. The importance of the Super-K result is that it is the
first strong evidence for physics beyond the Standard Model. With the Super-K
result the number of publications per year containing the word neutrino in their
title four-folded1.

The year  was an annus mirabilis for neutrino physics. The solar neu-
trino puzzle was proven to be due to the properties of the neutrino and not of
the Sun. The neutral current data of SNO [4] yielded an independent deter-
mination of the total flux of active neutrinos from the Sun and in combination
with other solar neutrino data proved that solar neutrinos undergo a flavour
transition. Kamland [5] provided an independent check of the oscillation hy-
pothesis by using reactor neutrinos and constrained the mixing parameters to
the so called lma solution. These two results together are extremely difficult to
explain other than by neutrino oscillation. Also the evidence for oscillation in

1According to the hep-ph preprint server of arXive.org

1



2 CHAPTER 1. INTRODUCTION

atmospheric neutrinos could be confirmed independently by K2K [6], which is
the first long baseline experiment. Furthermore two pioneers of neutrino physics
were awarded the Nobel prize. Masatoshi Koshiba was awarded one fourth of
the prize for the detection of neutrinos from a supernova and Ray Davis Jr.
was awarded another fourth for his detection of solar neutrinos. A relatively
recent review on the topic of neutrino oscillations in general is given in e.g. [7].

Massive neutrinos offer a variety of fascinating new phenomenology beyond
oscillation, especially in cosmology. In one scenario, called leptogenesis, heavy
neutrinos are responsible for the baryon asymmetry of the Universe. Light
neutrinos have a sizable impact on structure formation, i.e. the mechanism by
which the homogeneous early Universe developed the rich structure which is
observed today. A rather extensive review on the wide area of neutrinos in
cosmology is given in [8]. Cosmology has undergone a tremendous increase in
the available experimental data as well and is now entering a phase of high
precision measurements. With the data of WMAP [9] and the 2dFGRS [10] the
cosmological limits on the masses of neutrinos are already slightly better than
the laboratory bounds, see e.g. [11].

The Standard Model is in a paradox situation – it is extremely successful
in describing elementary particles and their interactions and still it is strongly
believed to be incomplete. It seems to be the correct description of the physics
which can be observed at low energies but it is obvious from its structure that
it cannot be correct up to the very highest energies. This has inspired many
attempts to provide a convincing model for the physics beyond the Standard
Model. These attempts strongly suffered from the fact that no deviation from
the Standard Model had been found before the discovery of neutrino flavour
transitions. The discovery of neutrino oscillations requires only a minor change
in order to accommodate three massive neutrinos, three mixing angles and one
Dirac-type cp-phase. Neutrinos are the only neutral fundamental fermions and
therefore a Majorana mass term can appear in the Lagrangian. In that case
also two Majorana phases enter into the extension of the Standard Model. The
mixing of neutrinos is very different from that of quarks, since there are two
large mixing angles. Neutrino masses are also peculiar because they are at
least five orders of magnitude smaller than the mass of the electron. These
facts pose a major challenge to any theory of neutrino masses and mixings:
Why are neutrino masses so small? Why is the neutrino mixing pattern so
different from that of the quarks? What is the pattern of neutrino masses?
The observation of neutrino oscillation has stipulated a large effort to answer
these questions. The smallness of neutrino masses is usually accounted for
by the so called see-saw mechanism, i.e. heavy right handed singlet neutrinos
with masses around the gut-scale suppress the neutrino mass to very small
values. In such a scenario neutrino masses are a probe of very high energy
scales which may otherwise be not accessible. It turns out that it is far from
trivial to construct a theory which can account for the observed mixing pattern,
i.e. predict two large mixing angles. Some theories are at least able to avoid
open conflict with the existing oscillation data2. But it seems that there is a far

2To what extent this signifies an explanation or even a deep understanding of the problem
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way to go to fully understand neutrino masses and mixings. This may require a
theory of flavour, which basically should shed light onto the question why there
are three families. For some recent reviews on the vast amount of literature on
these topics see [12].

The next step is to consolidate the general picture and to prove oscillation
unambiguously by observing the typical energy dependence. SNO is expected
to yield improved neutral current data within the next few months. Also Kam-
land is continuing to take data and may very well prove oscillation for the solar
mass splitting. K2K is taking more data and will thus test the atmospheric
oscillation with a better precision. There are several experiments under con-
struction in order to prove the atmospheric oscillation and to narrow down
the allowed ranges for the mass splitting, the most important being Minos and
CNGS. Finally Miniboone will thoroughly test the results of LSND. The most
recent review of neutrino physics is to be found in [13], which also contains an
extensive bibliography.

In order to develop and finally test a theory of neutrino masses and mix-
ings it will be essential to further improve on the knowledge of not only the
oscillation parameters but also the absolute mass scale of neutrinos. Further-
more the observation of neutrino-less double β-decay could shed some light
onto the Majorana nature of neutrinos. The theoretical motivation, the current
status and future experiments for neutrino-less double β-decay are reviewed
in [14], whereas the prospects of determining the absolute mass scale are re-
viewed in [15]. The issue of how to improve the knowledge on the oscillation
parameters beyond what will be achieved by the next generation experiments
is the topic of this work.

Scope & structure of this work

As indicated in the title of this work the focus is on three flavour effects in
future neutrino oscillation experiments. Three flavour effects occur whenever
the two mass scales of the solar and the atmospheric oscillation interfere, i.e. an
experiment is sensitive to effects of both mass splittings. All of the existing ex-
periments and also all of the already approved experiments are sensitive to only
one mass scale. The term “future” in the title thus refers to experiments which
have not been approved yet, albeit the different kinds of experiments considered
in this work have very different time scales. The first ones could be taking data
within a few years, whereas the most sophisticated ones may require more than
ten years before becoming operational. Three flavour effects have not the same
relevance to all measurements connected to neutrino oscillation. They do not
play an essential role in the precision determination of the mass splittings or
the two large mixing angles. For the measurement of the small mixing angle,
however, they are crucial and in many circumstances completely determine the
potential of an experiment. In a certain class of experiments it is possible to
determine the mass hierarchy of the neutrinos by exploiting so called matter
effects. In that case three flavour effects are large and have to be included
in order to evaluate the performance of an experiment. The most important

is left to the judgment of the reader.



4 CHAPTER 1. INTRODUCTION

instance where three flavour effects are essential is leptonic cp-violation. A
prerequisite for observing leptonic cp-violation is that the interference of the
two mass scales is observable. Thus the discussion and comparison of the dif-
ferent experiments is performed for the limiting sensitivity to the small mixing
angle, for the sensitivity to the mass hierarchy and for the potential to discover
leptonic cp-violation. The interference of two mass scales introduces a consid-
erable degree of complexity in the analysis of experimental data and the central
topic of this work is to explore and understand this complexity in its full extent
in order to arrive at quantitatively precise results for the physics potential of
each experiment.

In the first part of chapter 2 a very basic introduction to the quantum me-
chanics of neutrino oscillation, including matter effects, is given. In the second
part of chapter 2 the existing evidence for neutrino oscillations is reviewed with
a special focus on the historical development of the field and the status quo of
neutrino oscillations is described. Chapter 3 deals with the mathematical struc-
ture of oscillation probabilities and the existence of multiple solutions. Some
new analytical results on degeneracies are presented as well. This chapter fur-
thermore provides a showcase of the general analysis strategy used in deriving
the results, which are presented in chapter 5. The various experiments studied
in this work and their simulation are introduced in chapter 4. There, also the
standard values for the oscillation parameters as used for the calculation of the
results in chapter 5 are defined. The final results of this work are presented in
chapter 5. The performance of the various setups is compared with respect to
the possibility to determine the small mixing angle, the mass hierarchy and the
value of the cp-phase. Finally there is a conclusion and an outlook in chap-
ter 6. In appendix A the more technical details of the experiment simulation
are discussed and the numerical values used for the individual setups are given.
Appendix B consists of a detailed description of the statistical methods used in
this work and certain varieties of ∆χ2.

The reader who is familiar with neutrino oscillations may wish to skip chap-
ter 2. Those who are either more interested in a global picture or are familiar
with the various ideas for future experiments can also skip chapter 4. On the
other hand chapter 3 and the appendices may prove a useful resource for those
readers who are working in the field of future neutrino oscillation experiments.



Chapter 2

Primer on neutrino
oscillations

The following chapter will give in its first part an introduction to the basic
formalism of neutrino oscillations. First the simple case of two flavour oscil-
lations in vacuum will be introduced. Starting from this, matter effects and
the msw-resonance are discussed, again in the two neutrino framework. This
is then generalized to the three neutrino case where also the standard param-
eterization of the leptonic mixing matrix is presented. The second part of this
chapter deals with the experimental evidence for neutrino oscillations and the
current global understanding of oscillations. Finally the most recent best fit
values and errors on the neutrino mixing parameters are given and compared
to the existing knowledge in the quark sector.

2.1 Basic vacuum oscillations

Neutrino oscillation is a simple quantum mechanical effect, which can be illus-
trated by a two-state system and was first1 discussed in [17]. Assuming |νi〉 to
be the stationary eigenstates of the free Hamiltonian the time evolution of the
state |νi(t)〉 is given by

|νi(t)〉 = e−iEit|νi〉 . (2.1)

In the context of neutrino oscillations the eigenstates of the Hamiltonian are
called mass eigenstates, since the Hamiltonian Ĥ is proportional to the diag-
onal matrix diag(m2

1,m
2
2), where m1 and m2 denote the masses of the states

|ν1〉 and |ν2〉. Neutrinos are produced and detected with a definite flavour, i.e.
as eigenstates of the weak interaction, which are denoted by |να〉. These weak Mass eigenstates

& weak

eigenstates

eigenstates do not necessarily coincide with the mass eigenstates. Therefore a
linear superposition of mass eigenstates may be created in the neutrino produc-
tion and the transformation between the two bases is determined by a unitary
matrix [18], which is a 2× 2 matrix in the two neutrino case

|να〉 =
∑
i

U∗αi|νi〉 . (2.2)

1Actually, neutrino oscillation was for the very first time discussed in [16], but there the
oscillation between ν and ν̄ was considered only, since νµ and ντ were not known at that time.

5



6 CHAPTER 2. PRIMER ON NEUTRINO OSCILLATIONS

The general vacuum oscillation probability is then given by2

Pνα→νβ =
∣∣〈νβ|e−iEit|να〉∣∣2 =

∑
ij

UαjU
∗
βjU

∗
αiUβie

−i
∆m2

ijL

2E , (2.3)

where ∆m2
ij = m2

i −m2
j is called mass splitting. Thus neutrino oscillations are

only sensitive to mass differences but not to the absolute neutrino mass scale.
In the case of two neutrinos the unitary matrix U can be parameterized in the
following way

U =
(

cos θ sin θ
− sin θ cos θ

)
, (2.4)

where θ is called mixing angle. Inserting this in equation 2.3 yields the following
simple formulæ for the oscillation probabilities

Pνα→νβ = sin2 2θ sin2

(
∆m2L

4E

)
,

Pνα→να = 1− sin2 2θ sin2

(
∆m2L

4E

)
, (2.5)

where L is the distance traveled by the neutrinos and is usually called baseline
and E is the neutrino energy. Pνα→νβ is called appearance probability, since theAppearance &

disappearance flavour β appears as final state and analogously Pνα→να is called disappearance
probability, since the flavour α disappears. Obviously the two probabilities ful-
fill the unitarity condition Pνα→νβ +Pνα→να = 1. Moreover Pνα→νβ is invariant
under time reversal and cp-conjugation, since in the two neutrino case there is
no cp-violation in neutrino oscillations for the same reason as there would be
no cp-violation in the quark sector if only two families existed [19].

The parameters ∆m2 and θ are fundamental constants like the electron
mass or the Cabibbo-angle. However the baseline and neutrino energy can in
principle be chosen by the experimental setup. The signature for the valueSignatures of

∆m2 and θ of the mixing angle in an appearance experiment, i.e. an experiment which
observes Pνα→νβ , is given by the height of the oscillation peak, which is also
indicated by the vertical arrow in the left hand panel of figure 2.1. The value
of ∆m2 is given by the position of the oscillation peak as a function of the
energy, which is shown as horizontal arrow. For a disappearance experiment
the oscillation peak becomes an oscillation dip as shown in the right hand panel
of figure 2.1. The depth of the dip is now the signature for the mixing angle as
indicated by the vertical arrow. The position of the dip yields the value of the
mass splitting and is indicated by the horizontal arrow.

For both kinds of experiments, appearance and disappearance, there can be
a correlation between the measured values of ∆m2 and θ, i.e. an error on the de-
termination of one parameter introduces an additional uncertainty on the other
parameter. Furthermore an experiment needs to have enough energy resolutionSystematical

limitations to clearly determine the position of the peak, otherwise the experiment sees an
energy independent signal proportional to 1/2 sin2 2θ. Another important fac-
tor for the determination of the mass splitting is the energy calibration of the

2in the ultra-relativistic limit, mi � Eν
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Figure 2.1: The oscillation probability as a function of the energy in arbitrary units.
The left hand panel shows the signature of the mixing angle θ (vertical arrow) and the
one of the mass splitting ∆m2 (horizontal arrow) in the case of an appearance experi-
ment, whereas the right hand panel shows the signatures in the case of a disappearance
experiment.

detector – any error on the absolute energy scale directly translates into an er-
ror in the position of the oscillation peak or dip. The major difference between
the two possible experiments is that an appearance experiment is much more
sensitive to small values of θ, because the measurement is performed relative
to zero, whereas a disappearance experiment measures relative to unity. This
implies a different behavior of the two types of experiments with respect to
certain systematical errors. On the one hand, the level of background is crucial
for an appearance experiment, since a large background reduces the sensitivity
to small values of θ. On the other hand, the total normalization is vital for a
disappearance measurement, because a large normalization error makes it im-
possible to detect deviations from unity. These differences become very obvious
in chapter 5, where the performance of both kinds of experiments is compared.

2.2 Matter effects

In many cases the propagation of neutrinos does not take place in vacuo but
in matter. Although the interaction of neutrinos with matter is tiny, matter
can have a substantial impact on the oscillation probabilities. Matter effects in
neutrino oscillations will again be illustrated within a two neutrino framework,
where the principle features are already visible but the algebra stays simple. The
weak interaction couples the neutrinos to matter and besides hard scattering
events there is also coherent forward scattering in very much the same fashion
as for visible light traveling through glass. The point is that the coherent
forward scattering amplitudes are not the same for all neutrino flavours, since
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ordinary matter is made of particles of the first family and does specifically not
contain muons or tau-leptons. All flavours have the same amplitude for neutral
current reactions but the electron neutrinos have an additional contribution
due to charged current reactions. The electron (anti-)neutrino is the only one
which can scatter coherently with the electrons in the matter via the charged
current and this yields an additional contribution to the potential A for electron
(anti-)neutrinos of

A = (−)2
√

2GF neE , (2.6)

where GF is the Fermi coupling constant, ne is the electron density3 and E is the
neutrino energy. The minus sign is for anti-neutrinos. In matter the Schrödinger
equation for neutrino propagation is now modified by a term containing the
potential A and is in the flavour basis given by

i
d

dt

(
να
νβ

)
=

1
2E

[
U

(
m2

1 0
0 m2

2

)
U † +

(
A(t) 0

0 0

)](
να
νβ

)
. (2.7)

For a constant matter density the problem reduces to a stationary one and the
solution can be obtained by a simple diagonalization of the Hamiltonian. The
result is a mapping of the vacuum parameters to new parameters in matter,
which carry the subscript m:

∆m2
m = ∆m2C± = ∆m2

√(
|A|

∆m2
∓ cos 2θ

)2

− sin2 2θ .

sin2 2θm = sin2 2θ C−2
± , (2.8)

where the minus sign is for neutrinos, whereas the positive sign is for anti-
neutrinos. At |A| = ∆m2 the so called msw-resonance occurs [20], i.e. any finite
value of θ is resonantly enhanced to maximal mixing θ = π/4. This resonance
happens for neutrinos in the case of a positive ∆m2 and for anti-neutrinos in
the case of a negative ∆m2. In this way the oscillation probability depends now
on the sign of ∆m2. The sign of ∆m2 is determined by the mass hierarchy, i.e.
whether ν1 is lighter than ν2 (normal hierarchy) or heavier (inverted hierarchy).Matter effects can

distinguish the

mass hierarchy

In vacuo a change of the sign of ∆m2 leaves the oscillation probability in the
two neutrino case invariant as it can be seen from equation 2.3. The resonance
condition |A| = ∆m2 can be recast in the following useful form

Eres = 8.6 GeV
(

|∆m2|
2 · 10−3 eV2

)
·
(

2.8 g cm−3

ρ

)
. (2.9)

Thus the resonance in the upper Earth mantle (ρ = 2.8 g cm−3) occurs at
roughly 9 GeV for a value of ∆m2 around 2 ·10−3 eV2. In matter the oscillation
probabilities are even in the two neutrino case no longer invariant under cp-
conjugation, since the matter potential breaks this symmetry, because it is due
to matter and not anti-matter.

3The electron density is connected to the matter density via the electron fraction Ye, which
is taken to be 0.5.
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2.3 Three flavours

With three neutrino flavours the mixing matrix can be parameterized by three
complex rotations in the following way:

U =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


 1 0 0

0 eiφ1 0
0 0 eiφ2

 , (2.10)

where sij stands for sin θij and analogously cij stands for cos θij . The phases
φ1 and φ2 are Majorana-phases and do not enter into the oscillation prob-
abilities [21], however they can have phenomenological consequences, e.g. in
neutrino-less double beta decay [22]. The most general parameterization of
neutrino mixings can be found in [23]. In the case of three neutrinos there are Six parameters

two mass splittings denoted by ∆m2
21, which corresponds to the mass splitting

that is together with θ12 responsible for the effects in solar neutrinos and ∆m2
31

that together with θ23 governs the oscillation of atmospheric neutrinos. In the
three family case there can be cp-violation in the same way as in the quark
sector. The size of all cp-violating effects is proportional to Jcp [24] whose
value in the above parameterization is

Jcp =
1
8

cos θ13 sin 2θ13 sin 2θ23 sin 2θ12 sin δ . (2.11)

Therefore any cp-violating effect is suppressed by the smallest of the mixing
angles, which is θ13. In matter the cp-phase is not the only source of cp- θ13 suppresses

cp-effectsviolation since there are additional contributions due to the cp-asymmetry of
matter. Furthermore there can be matter-induced t-violation for asymmet-
ric matter density profiles, which however does not play a role for any of the
setups discussed in this work [25]. The detailed form of the oscillation proba-
bilities including matter effects and their phenomenological consequences will
be discussed in chapter 3.

2.4 Present status of neutrino oscillations

All existing data for neutrino oscillations can separately be analyzed in an
effective two neutrino framework, i.e. the data do not indicate any genuine
three flavour effects, in particular all data can be accommodated without any
complex entries in the mixing matrix. The reason for this is that there is a
pronounced hierarchy of mass splittings |∆m2

21| � |∆m2
31| and that the angle

θ13 which couples the two oscillations is small. Therefore the presentation of
the current knowledge on neutrino mixing parameters can be divided into three
subsets: oscillations associated with ∆m2

21, oscillations associated with ∆m2
31

and the non-observation of θ13. Finally some comments on the status of four
neutrino scenarios with respect to the existing data will be made.
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Solar parameters – ∆m2
21 and θ12

The question of how the Sun produces its energy has been a long standing issue
of debate. The earliest scientific theories of the energy production in the SunHistory of early

solar models date back to about  and the most prominent of these theories was that the
Sun gains energy by converting gravitational energy into heat via contraction.
Among the proponents of this theory were Kelvin [26] and Helmholtz [27]. The
flaw of this theory is that it yields an upper bound on the age of the sun of
approximately 20 million years. In  it was realized by Eddington inspired
by the latest results of Aston [28] on the mass difference of four Hydrogen
atoms to one Helium atom that the Sun may produce its energy by nuclear
fusion. Bethe and Weizsäcker proposed then in  a detailed reaction chain
for the fusion processes in the Sun [29]. At this point it was clear that electron
neutrinos would be produced by the nuclear reactions in the Sun. An overview
of the historical development of early solar models is given in [30]. The standard
solar model of today has improved a lot in many aspects to early calculations
and has become quite complex. However it has found an excellent confirmation
by helioseismology. Helioseismology studies the vibrations of the Sun’s surface
by means of the Doppler-shift of certain spectral lines when the surface moves
up and down. This information can be used to infer the speed of sound in
the interior of the Sun in pretty much the same fashion as it is done in the
seismology of the Earth. For a recent review on the topic see [31].

The solar neutrino puzzle started to emerge in the late sixties and it tookThe solar neutrino

puzzle nearly forty years to resolve it. The first data on solar neutrinos obtained
in the Homestake experiment [32] already displayed a difference of roughly a
factor of 2.5 between the measured flux and the prediction [33], albeit at a
very low confidence level. The first detection of solar neutrinos was awarded
with the Nobel prize in . As more and more data were gathered, the
discrepancy between the observed neutrino flux and the theoretically predicted
flux increased as it can be seen in figure 2.2. With the advent of the first solar
neutrino data from Kamiokande [34] in  the evidence for the solar neutrino
deficit was strengthened. This development continued with the first data from
Sage [35] in  and from Gallex [36] in . The next major breakthrough in
the observation of solar neutrinos was the high quality spectral data delivered by
the successor experiment of Kamiokande, Super-K [37], in . The culmination
and solution to the solar neutrino puzzle then was achieved by the neutral
current data of the SNO experiment [4] in . The neutral current data allowSNO’s neutral

current data to precisely determine the overall flux of all active neutrino flavours from the
Sun and they are found to be in excellent agreement with the predictions. Thus
the only possible conclusion is that the electron neutrinos from the Sun undergo
a transition to another active flavour. This conclusion can be drawn at the very
high confidence level of 5.3σ, i.e. the probability that this result is a statistical
fluctuation is approximately 1 in 107. This by itself does not prove that the
flavour transition is due to oscillation and there can be other mechanisms like
spin-flavour precession [38] or non-standard neutrino properties [39]. A nice
review on the compatibility of the solar data and various mechanisms for flavour
transitions including oscillations is for example given in [40]. A very detailed
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Figure 2.2: Comparison of the measured and predicted total rates of solar neutrinos.
This figure is taken from [42].

description of the impact of the various pieces of evidence and systematical
errors is given in [41].

The Kamland experiment, however, provides an independent check of the
results of the solar neutrino experiments. Kamland measures the survival prob- Kamland confirms

the oscillation

hypothesis

ability of electron anti-neutrinos produced in various nuclear power plants in
Japan. This allows a precise test of the solar oscillation hypothesis without
any astrophysical uncertainties. The first Kamland data were published in 
in [5]. The Kamland result led to a flood of papers [43]4 analyzing the Kamland
data in combination with existing solar data. In all the papers [43] basically the
same result was found, namely that the so called msw-lma oscillation solution
gives the best fit and that any other known mechanism can play at most a
sub-leading role in the explanation of the solar neutrino deficit. The remaining
parameter ranges derived by a fit to all existing data [44] are at 3σ given by [43]

∆m2
21 = +7+23

−3 · 10−5 eV2 , sin2 2θ12 = 0.8+0.2
−0.2 . (2.12)

Atmospheric parameters – ∆m2
31 and θ23

In the Earth’s atmosphere neutrinos are produced by reactions of cosmic ra-
diation and the nuclei in the atmosphere. The main component of the cosmic
radiation at the relevant energies are protons, which in turn produce via strong
interactions mesons. Those mesons are mainly pions and undergo the following
decay chain

π− → µ−

+ν̄µ
→ e− + ν̄e + νµ . (2.13)

This yields a ratio of muon flavour to electron flavour neutrinos of 2. It was
realized in  that the observation of atmospheric neutrinos could be possible
using a large water Cherenkov detector deep underground [45]. The ratio of
course is not exactly 2 since there are many subtleties involved in the prediction
of the atmospheric neutrino flux like the composition of the primary cosmic
rays, the incoming flux of particles a.s.f.. However there exist complete models

4
nb – some of these papers appeared before the Kamland data were publicly available
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Figure 2.3: Comparison of the measured and predicted ratio of muon flavour neutrino
to electron flavour neutrinos. This figure is taken from [7].

for computing the neutrino flux of each flavour with an accuracy of ∼ 20%.
The ratio of electron flavour to muon flavour neutrinos is known with a better
precision of ∼ 5%, since in the ratio many uncertainties cancel. For an extensive
review on the calculation of atmospheric neutrino fluxes see [46].

The first detection of an atmospheric neutrino was independently reported
by two groups [47] in . The first sign that something may be amiss withThe atmospheric

neutrino anomaly atmospheric neutrinos was found by the IMB experiment [48] in . The
number of so called stopping muons was too low compared to the predictions.
Further support for these results came in  by the data of the Kamiokande
experiment [49]. The situation became more confusing when the Frejus exper-
iment [50] found a ratio consistent with the theoretical expectation in .
As more and more data were accumulated by IMB and Kamiokande, and as
the data of Soudan [51] and Macro [52] became available the evidence for some
strange phenomenon in atmospheric neutrinos increased strongly. This is also
to be seen in figure 2.3, where the double-ratio of the measured muon flavour
neutrino to electron flavour neutrino ratio to the predicted value of this ratio is
shown. Finally in  the Super-K collaboration presented their now famousNeutrinos do

oscillate result [3] – atmospheric neutrinos do oscillate. The key to this statement is that
Super-K has a sufficient number of events to observe the baseline dependence of
the ratio of electron flavour to muon flavour neutrinos. The neutrinos coming
from above, who have traveled ∼ 20 km, show the expected ratio of 2, whereas
the neutrinos coming from below, who have traveled ∼ 13 000 km, show a strong
decrease in the ratio to about 1. This can be accounted for by an oscillation of
muon neutrinos to tau neutrinos [53].

The initial evidence of Super-K was further strengthened by the increasing
size of the event sample in Super-K and by the results of the first long baseline
experiment K2K [6]. The global analysis of all atmospheric data [3,54] found a
very good agreement between the different data sets [55,56]. The best fit values
and the allowed range used to be given at 3σ by [57,58]:

|∆m2
31| = 3+3

−2 · 10−3 eV2 , sin2 2θ23 = 1+0
−0.2 . (2.14)

An excellent summary of the atmospheric neutrino anomaly is given in chap-
ter V of [7]. Furthermore it turns out that the interpretation of the atmospheric
neutrino anomaly in terms of active-active oscillations is very robust. A pure
conversion to sterile neutrinos is excluded at more than 5σ. In fact this ro-
bustness allows to constrain exotic scenarios like non-standard interactions of
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neutrinos [59] or de-coherence [58]. Still also in the case of atmospheric neu-
trinos, oscillation has not been unambiguously proven by observing the typical
energy dependence.

During the final stage of this work the Super-K collaboration has presented Latest update

an updated analysis of their existing data [60] and the best fit values have
shifted according to a preliminary combined analysis of the existing data [61].
The most recent best fit values and allowed ranges at 3σ are [61]

|∆m2
31| = 2+1.2

−0.9 · 10−3 eV2 , sin2 2θ23 = 1+0
−0.2 . (2.15)

The global picture

The two instances of a very strong evidence for neutrino oscillations have been
presented and discussed in the previous two sections. There remains now the
combination of these two pieces with the other existing data to a global picture.
There has been a long row of experiments which did not observe any neutrino
transitions. A series of reactor neutrino experiments has provided stringent
bounds on the disappearance of electron anti-neutrinos [62–65] (see also sec-
tion A.2.1). Furthermore a series of short baseline accelerator experiments has
provided rather tight bounds on the transition of νµ and νe to ντ [66].

However there also has been one experiment observing evidence for neu-
trino oscillation – LSND. The results of this experiment indicate that there is
a third mass splitting ∆m2

LSND in the range 0.2 − 10 eV2 [67]. The Karmen
experiment [68] on the other hand excludes a large part of the parameter re-
gion claimed by LSND. In a combined analysis of both data sets there still
remains a combined allowed region [69]. The third mass splitting cannot be ac-
commodated within a three neutrino flavour framework. Basically two possible The LSND

anomalysolutions exist – either there are more than three neutrinos, which means that
the additional neutrinos are sterile in order not to create a conflict with the
decay width of the Z0 (see e.g. [70]), or there is a huge cpt-violation, which
would make the mass splittings of neutrinos and of anti-neutrinos independent
of each other. Both solutions suffer from phenomenological problems, i.e. they
do not fit the existing data very well.

First the four neutrino case is discussed. As it was shown in the previous A sterile neutrino?

two sections each of the data sets from atmospheric and solar neutrinos excludes
a pure sterile oscillation, but some admixture may be admitted. In a combined
analysis however it turns out that for the so called 2 + 2 scheme the parameter
goodness of fit5 is 1.3 · 10−6 [72], i.e. the 2 + 2 scheme is completely ruled
out. This is due to the fact that each of the two data sets disfavors a sterile
neutrino and the tension between the two data sets is too large for the 2 + 2
scheme. In the so called 3 + 1 scheme the situation is somewhat different, here
the parameter goodness of fit is 5.6 · 10−3 [72]. Thus the 3 + 1 scheme cannot
be considered completely ruled out but it is strongly disfavored basically on
account of the existing short baseline data. In [72] it was furthermore shown
that cosmological constraints on the absolute mass scale of the neutrino further
reduce the allowed region in the parameter space for the 3+1 scheme. Recently

5For an exact definition see [71].
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a 3 + 2 scheme has been proposed to account for the result of LSND. In [73] a
combined analysis of LSND and the short baseline data was performed and it
was found that the 3 + 2 scheme fits the data reasonably well6.

The idea of a large cpt-violation to account for the LSND result was pursuedcpt-violation?

in detail in e.g. [74]. In [75] it is claimed that even in the light of the Kamland
data cpt-violation is a viable solution to the LSND result. This claim was
refuted in [76]. There it was shown that in a full analysis of all existing data
there is no evidence for cpt-violation and the solution to the LSND problem
via cpt-violation is rejected at the 3σ level. Summarizing, the status and
interpretation of the LSND result stay unclear, therefore the LSND evidence is
discarded throughout this work. The result itself will be in any case thoroughly
tested by the forthcoming Miniboone experiment [77].

Many authors have performed global analyses of the existing data in a three
neutrino framework [55, 78]. The basic trend is that the oscillation of threeGlobal analysis

active flavours describes very well all data except for LSND and that the cor-
rections to the two neutrino analysis of each of the data sets are non-negligible
but still small. Taking into account the latest Super-K results [60] the best fit
values and ranges at 3σ for the oscillation parameters are [61]

|∆m2
31| = 2+1.2

−0.9 · 10−3 eV2 , sin2 2θ23 = 1+0
−0.2 ,

∆m2
21 = +7+23

−3 · 10−5 eV2 , sin2 2θ12 = 0.8+0.2
−0.2 ,

sin2 2θ13 < 0.25 .

There does not exist any information on the mass hierarchy, i.e. the sign of
∆m2

31, and there is no information on the value of the cp-phase δ either. The
current knowledge in the neutrino sector can now be compared to that in the
quark sector. For a recent review on the ckm-matrix see [79]. The ckm-Mixing parameters

of the quarks parameters and their 3σ ranges are (adopted from [70])

sin2 2θ23 = 6.78+2.1
−1.8 · 10−3 , sin2 2θ12 = 1.89+0.11

−0.10 · 10−1 ,

sin2 2θ13 = 5.18+34
−2.3 · 10−5 , δ = 1.03+0.66

−0.66 .

A large part of the uncertainty on the ckm-parameters is due to theoretical
uncertainties in the translation of measured quantities into the ckm-parameters.
Neutrinos are free of these uncertainties, and this may finally allow a more
accurate determination of the leptonic mixing matrix than it is possible in the
quark sector, e.g. the cp-phase may be determined with a four times smaller
error than in the quark sector [80]. Also the large mixing angles sin2 2θ23

and sin2 2θ12 can be determined for neutrinos with an accuracy at the level of
percent [81,82], whereas sin2 2θ13 can depending on its magnitude be determined
with an accuracy at the level of a few 10% [80]. The possible accuracy on the
two mass splittings is also expected to reach the percent level [81,82].

6
nb – Increasing the number of neutrinos at some point will fit any data.



Chapter 3

Theoretical framework

The aim of this chapter is to provide some theoretical insight into the origin of
the surprising complexity of three flavour neutrino oscillations. The discussion
is focused on total event rates and therefore serves only as a guideline. The
analysis of an experiment including spectral information is considerably more
involved and the inclusion of spectral information in an analytical discussion is
extremely difficult. However, many of the results and relations derived here are
a useful and important ingredient for the full numerical analysis. Furthermore
many features of the results presented in chapter 5 can at least qualitatively
be understood by using the analytical results of this chapter. Starting with
the transition probability for νe → νµ a scheme is developed to arrive in a
simple way at the total number of events in a given experiment. Based on
this method the θ13 sensitivity of experiments with one observable is derived.
Then experiments with two observables are considered and the solutions to
the corresponding equations are presented. From these solutions the so called
eight-fold degeneracy is recovered and closed form expressions for it are given.
With these expressions it will be shown that in fact there are more than eight
degenerate solutions in the most general case. This is illustrated by a simplified
analysis of neutrino factory data and the importance of spectral information
is highlighted. Finally the question of how to summarize the results of a full
analysis in the case of multiple solutions is considered. Some definitions of
sensitivities and limits will be given, which are used throughout this work.

3.1 The oscillation probability Pνe→νµ

The fact that the solar mass splitting is within the lma region implies that
three flavour effects are non-negligible in future neutrino oscillation experi-
ments. Exact results for three flavour oscillation probabilities including matter
effects have been derived [83]. They are, however, somewhat lengthy and com-
plex and therefore not very well suited for further analytical studies. A way
around this is to make use of the fact that we know that sin 2θ13 is small and
that the mass hierarchy parameter α = ∆m2

21/∆m
2
31 is also small. The possible

ranges for these parameters are 0 ≤ sin 2θ13 ≤ 0.32 and 0.004 ≤ α ≤ 0.2 (see
also equation 4.5). Thus it is possible to obtain an accurate approximation by

15
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expanding the exact result simultaneously in both parameters, i.e. for a given
order of the expansion O one has to include all terms of the form αm(sin 2θ13)n

where m + n ≤ O. This task has been performed in [84, 85], and here the
notation of [85] is used. The transition probability νe → νµ does not contain
any zeroth or first order terms, thus the first non-vanishing terms are of second
order1The key to

analytical

understanding Pνe→νµ ≈ sin2 2θ13 sin2 θ23
sin2((Â− 1)∆)

(Â− 1)2

± α sin 2θ13 sin δCP sin 2θ12 sin 2θ23
sin(∆) sin(Â∆) sin((1− Â)∆)

Â(1− Â)

+ α sin 2θ13 cos δCP sin 2θ12 sin 2θ23
cos(∆) sin(Â∆) sin((1− Â)∆)

Â(1− Â)

+ α2 cos2 θ23 sin2 2θ12
sin2(Â∆)

Â2
, (3.1)

∆ =
∆m2

31L

4E
, Â = A/∆m2

31 ,

A = 2E
√

2GFne , Â∆ = 1/
√

2GFneL .

This approximation is based on an expansion of the two neutrino result for
the atmospheric ∆m2

31 and therefore does not cover the solar resonance. This
restricts the validity of the above formula to energies larger than [85]:The validity range

of equation 3.1

|Â| ≥ |α| ⇒ E ≥ 0.45 GeV
(

∆m2
21

10−4 eV2

) (
2.8 g cm−3

ρ

)
. (3.2)

Furthermore the approximation breaks down when the oscillation with the solar
frequency can no longer be linearized. This yields an upper bound on the
maximum baseline up to which this approximation is valid [85]:

∆α ≤ 1 ⇒ L ≤ 8 000 km
(

10−4 eV2

∆m2
21

) (
E

GeV

)
. (3.3)

The condition on the minimum energy in equation 3.2 is slightly violated in the
JHF experiment for the highest possible values of ∆m2

21 and the lowest energies
available in this experiment (0.4 GeV ≤ E ≤ 1.2 GeV). The approximation is,
however, still rather accurate since the baseline of 295 km is too short to develop
strong matter effects. The condition on the baseline given by equation 3.3 can
be violated only by experiments with the longest baselines, which also tend
to have high energies in order to stay tuned with the atmospheric frequency.
Therefore this condition is safely fulfilled by all setups studied in this work.

Next we observe that equation 3.1 depends on ∆m2
21 and sin 2θ12 only via

the product ∆m2
21 · sin 2θ12. We therefore choose to keep sin 2θ12 fixed and to

increase the variation of ∆m2
21 accordingly.

1In the original version of the formula in [85] also some factors of cos θ13 appear in the
second and third term. However, formally they belong already to the fourth order and can
therefore be set to unity, since cosx ' 1− (sin 2x)2/8 + . . ..
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3.2 Application to experiments

In order to predict or at least to understand a posteriori the performance of
a given experiment one cannot simply use the oscillation probability as given
by equation 3.1 for several reasons. The first and most important is that an
experiment does not measure the oscillation probability. Instead it measures a An experiment

measures event

rates, not

probabilities

convolution of the probability with many factors like neutrino flux spectrum,
cross section, detector response, statistical fluctuations, etc. (for a detailed
discussion see appendix A). Second, the probability in equation 3.1 depends on
all six oscillation parameters and the matter density simultaneously. Thus it is
basically impossible to track the influence of all those parameters at the same
time in an analytical calculation. However one can introduce an approximate
scheme which is simple enough to be illuminating and still retains the essential
features of the problem. For quantitative and accurate results it is of course
still necessary to employ a full numerical calculation, the results of which will
be presented in chapter 5.

In order to arrive at useful analytical expressions, the first step is to identify
those parameters which have the most influence and/or are subject to the largest
uncertainties. ∆m2

31 is currently known roughly within a factor of two. However
any experiment looking for the transition νe ↔ νµ will also measure at the same
time the νµ ↔ νµ transition which allows a very precise determination of |∆m2

31|
and sin2 2θ23 at the percent level [86–89]. Therefore we will regard these two
parameters as fixed for our analytical discussion. There is a little caveat: the
νµ ↔ νµ transition does not allow to determine the sign of ∆m2

31 and whether
θ23 is below or above π/4. Thus we will also have to keep in mind that there
can be another set of solutions to our equations with ∆m2

31 → −∆m2
31 [90] and

θ23 → π/2 − θ23 [91]. These discrete transformations constitute a part of the
so called “eight-fold” degeneracy, a name which was introduced in [92]. This
point will be discussed in section 3.5 in more detail.

The matter density is known from geophysics within 5%. This error is only
relevant for neutrino factory setups at large values of θ13 [80, 81]. Thus the
matter density is assumed to be fixed.

The knowledge on ∆m2
21 and sin 2θ12 has improved considerably during

the last two years [44] and is expected to further improve with the ongoing
Kamland [5] experiment. Kamland will finally reduce the error on the product
∆m2

21 · sin 2θ12 to about 15%. Thus there will remain a sizeable uncertainty
in these parameters unless a special purpose experiment is built to reduce the
errors further.

There is no knowledge of any kind on the value of the cp-phase. Also the
information on sin 2θ13 is limited and there is only an upper bound, which is
given by the results of the Chooz experiment [65]. Three parameters

are important –

θ13, ∆m2
21 and δ

We have now identified three parameters which have a large degree of uncer-
tainty: ∆m2

21,2 δCP and sin 2θ13. Introducing the following notation σ := ∆m2
21,

2The variation of sin 2θ12 can be ignored since only the product ∆m2
21 · sin 2θ12 enters

equation 3.1.
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x := sin 2θ13 and δ := δCP, we now can rewrite equation 3.1 as

Pνe→νµ = x2 sin2 θ23︸ ︷︷ ︸
=:c1

sin2((Â− 1)∆̂)
(Â− 1)2︸ ︷︷ ︸

=:f1(E)

± σx
sin 2θ12 sin 2θ23

∆m2
31︸ ︷︷ ︸

=:c2sin δ
sin(∆) sin(Â∆) sin((1− Â)∆)

Â(1− Â)︸ ︷︷ ︸
=:f2a(E)

+ cos δ
cos(∆) sin(Â∆) sin((1− Â)∆)

Â(1− Â)︸ ︷︷ ︸
=:f2b(E)


+ σ2 cos2 θ23 sin2 2θ12

(∆m2
31)2︸ ︷︷ ︸

=:c3

sin2(Â∆)
Â2︸ ︷︷ ︸

=:f3(E)

. (3.4)

Using the new abbreviations we obtain this compact form

P (E) = x2 c1f1(E) + xσ c2 [sin δ f2a(E) + cos δ f2b(E)] + σ2 c3f3(E) . (3.5)

It is common to choose the energy to be e.g. the mean beam energy [92]. This,
however, neglects the energy spread of the beam completely and can in fact give
rise to misleading results. It is straightforward to perform the full convolution
of each energy dependent part fi(E) with the cross section, the detector energy
response and the efficiency as given in appendix A (the convolution kernel is
denoted by K(E) and defined in equation A.6). The advantage in doing so is
that one obtains directly the observed number of signal events n

n = P (E)⊗K(E) = x2 c1 f1(E)⊗K(E)︸ ︷︷ ︸
g1

+ xσ c2

sin δ f2a(E)⊗K(E)︸ ︷︷ ︸
g2a

+ cos δ f2b(E)⊗K(E)︸ ︷︷ ︸
g2b


+ σ2 c3 f3(E)⊗K(E)︸ ︷︷ ︸

g3

. (3.6)

For any given set of input parameters σ0, x0 and δ0 one thus obtains for the
number of observed signal events

n0 = x2
0 c1g1 + x0σ0 c2(sin δ0g2a + cos δ0g2b) + σ2

0c3g3 . (3.7)
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In contrast to analyzing real data it is necessary to simulate the data, since
none of the experiments which are subject of this study has taken data yet.
In order to simulate data, a choice for the physical parameters which are used
for this purpose has to be made. The subscript 0 will denote throughout this True parameters

versus fitted

parameters

work these input or “true” parameters which have been used to simulate the
data of an experiment. It is crucial to keep a clear distinction of those true
parameters from the fitted parameters which are used in the analysis of the
simulated data. The simulated data are generated with the true parameters λ0

and then a fit to these data is performed yielding allowed regions in the space
of fitted parameters λ.

3.3 One observable

In this section the question: “What do we learn by observing a certain number
of events n0?”, will be examined. Or respectively, whether one number is enough
to learn about three parameters, i.e. how many numbers are needed to pin down
x and δ.

To begin with we assume that we have only one measured number n0. This
is e.g. the case in the Minos, CNGS, JHF and NuMI experiments, where there is
only the νµ → νe transition available. Thus we are looking for solutions of this
equation

n0 = x2 c1g1 + xσ c2 (sin δg2a + cos δg2b)︸ ︷︷ ︸
=:g2(δ)

+σ2c3g3 . (3.8)

In general the solutions of equation 3.8 will constitute a hypersurface in the
three dimensional space spanned by σ, x and δ. For fixed δ, equation 3.8
describes an ellipse centered at the origin in the x-σ-plane. In figure 3.1 the
set of all points in the σ-x-plane is shown which can fulfill equation 3.8 (grey
shaded area). The lower arrow indicates the allowed range for x once σ is known
to exactly equal σ0. In this case still a whole line of solutions remains which is
due to the unknown cp-phase δ. Allowing σ to vary freely yields the interval for
x which is depicted by the upper arrow. In particular, the value x = 0 becomes
now part of the allowed range. In this case there would never be a conclusive
observation of x not being zero. Obviously, having at least some knowledge
on σ helps to reduce the allowed range in x considerably. This result is not
surprising since we have tried to derive information on one quantity x which
depends on two other variables by only one equation. That we can obtain a
finite allowed region at all is due to fact that δ enters the problem only via
trigonometric functions.

There may, however, be other sets of solutions due to the discrete transfor-
mation mentioned above Three discrete

transformations –

four sets of

solutions

Ts := ∆m2
31 → −∆m2

31 ,

Tt := θ23 → π/2− θ23 ,

Tts := Ts ⊕ Tt . (3.9)

These transformations are applied to the coefficients ci and gi in equation 3.8. Ts
was discovered in [90], whereas Tt was first found in [91] and the combination Tts
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Figure 3.1: The grey shaded area shows the set of points in the x-σ-plane which
fulfills equation 3.8 for fixed n0. In case σ is unknown the length of the upper arrow
gives the allowed interval for x. If σ is known to be exactly σ0 the range indicated by
the lower arrow is the allowed range for x.

was introduced in [92]. We introduce the following notation for the transformed
quantities

Ts cigi =: ĉiĝi ,

Tt cigi =: c̃ig̃i ,

Tts cigi =: c̄iḡi . (3.10)

None of the Ti acts on x, σ, δ or n0. In the case that the atmospheric mixing
angle is exactly maximal, θ23 = π/4, Tt becomes the identity transformation
and Tts reduces to Ts. In general there are three additional sets of solutions
which are connected by the three transformations. These additional sets are
shown in figure 3.2. If there is only one observable there will be four sets of
solutions for x in the most general case. Within each of these sets, δ can have
any value, thus we obtain no information on the cp-phase. This is also true in
the case that σ is kept fixed too. Besides there is no possibility to tell which ofWith only one

observable it is

not possible to

measure δ

the four sets is the correct one, i.e. neither the mass hierarchy nor the quadrant
of θ23 can be determined. As it will be shown in chapter 5 this result remains
valid for all the experimental setups studied in this work which observe only
one appearance channel. The energy information in those experiments is not
sufficient to resolve the ambiguities. This can of course be altered by combining
several experiments, which will be discussed in detail in the next section 3.4.

The classification of all the existing solutions is not straightforward and the
complexity of this issue will appear even stronger in the context of sections 3.5
and 3.7. The term “degenerate” or “fake” solution has been brought forth in
the literature to name all the solutions which do not coincide with the true
values (e.g. in [92, 93]). This terminology is adequate in case there are really
topologically disconnected solutions, which is usually the case for the three
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Figure 3.2: The grey shaded area shows the set of points in x-σ-plane which fulfills
equation 3.8 for fixed n0 as in figure 3.1. The black solid lines delimit the set of points
which give solutions to equation 3.8 once the transformations given atop of each panel
are applied. In case σ is unknown the length of the upper arrow gives the allowed
interval for x. If σ is known to be exactly σ0 the range indicated by the lower arrow is
the allowed range for x.

additional sets of solutions generated by the discrete transformations Ts, Tt
and Tts. However the range of x values one obtains due to the unknown cp-
phase within one set of solutions is as “fake” or “degenerate” as the three
additional sets of solutions. They all are real solutions to equation 3.8. The
difference is, however, that the cp-phase is a continuous variable, whereas Ts, Tt
and Tts are discrete. Once the analysis gets more complex by including spectral
information and detector effects the connectivity of the solutions is no longer a
useful classification scheme since it depends sensitively on experiment specific
parameters, like the detector threshold (see e.g. [80]). We will postpone this
issue till section 3.7. However there still remains a problem with combining all
the solutions into only one number like a sensitivity limit. One possible choice
among others is to treat all possible solutions equally and to include all of them
in the limit by defining the one-sided upper limit η̂ to some quantity η by the
maximum of all values for η which are compatible with the null result3 at a
given confidence level. This choice will be justified in detail in section 3.7 and
is the basis for the definition of χ2

l
in equation B.4.

Since it is difficult to map out the surface described by equation 3.8 in the
most general case, it is useful to look at some simpler special cases. It is of
special interest whether the observation of n0 allows us to put an upper limit
on x. Especially the case when x0 is zero, x0 = 0, since this gives the sensitivity
limit on sin2 2θ13. According to the above definition we have to take the largest
value of all possible limits generated by applying Ts, Tt, Tts and simultaneously
leaving δ to vary freely. Inserting x0 = 0 in equation 3.7 yields

n0 = σ2
0c3g3 , (3.11)

thus n0 is in this case independent of the cp-phase δ. Assuming σ to be exactly
3This is the result which would be obtained on average if η0 = 0.
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known, which is not realistic but serves as a starting point, σ becomes fixed to
σ0. Using this assumption and setting the left hand side of equation 3.8 to this
value results insin2 2θ13 limit for

fixed ∆m2
21

0 = x2 c1g1 + xσ0 c2g2(δ) ⇒

x1/2 =

{
0
−σ0

c2g2(δ)
c1g1

. (3.12)

Since there is no previous knowledge on δ, the next step is the determination
of the value of δ which makes x2 extremal. The location of the extrema is given
by

∂g2(δ)
∂δ

= 0 ⇒ (cos δ g2a − sin δ g2b) = 0 ⇒ tan δextrem =
g2a

g2b
. (3.13)

Using some trigonometrical relations we can compute the value of g2(δextrem)

gmax
2 =

√
g2

2a + g2
2b , gmin

2 = −
√
g2

2a + g2
2b . (3.14)

Inserting the values for g2(δextrem) into equation 3.12 and keeping only the
positive solution yields

xup = σ0

c2

√
g2

2a + g2
2b

c1g1
. (3.15)

The first observation is that increasing σ0 increases the sensitivity limit xup,
i.e. the sensitivity of the experiment becomes worse for larger values of σ0 even
if the value of σ0 is known with infinite precision. The second observation is
that the sensitivity limit would be 0 if σ0 became 0. This is of course not
the case for any real experiment for two reasons: We have so far neglected the
statistical nature of a real experiment. It is a counting experiment and therefore
the observed number of events is subject to Poissonian fluctuations. The other
reason is that even if the number of signal events, i.e. n0, approaches zero there
remain background events and their statistical fluctuations. Thus even if an
experiment only observes the expected number of background events, one can
not conclude that x0 ≡ 0.

In order to include the effects of limited statistics and background it is usefulInclusion of

statistical

fluctuations and

backgrounds

to first derive the upper bound on x as a function of n0. The result of this is
shown in the following equation

xmax =
c2

2
√
g2a

2 + g2b
2 σ +

√
c2

4 (g2a
2 + g2b

2) σ2 + 4 c1 g1 (n0 − c3 g3 σ2)
2 c1 g1

for all σ ≤
2
√
c1g1n0√

− (c2
4 (g2a

2 + g2b
2)) + 4 c1 c3 g1 g3

. (3.16)

xmax is a monotonous increasing function of n0, thus the largest value of n0

called nmax
0 which is allowed at a given confidence level yields the limit on x,

which will be called xlim. The largest possible number of events at a certain
confidence level is given by nmax

0 := n0 + γ δn0, where δn0 is the one standard
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deviation error on n0 and γ is a trivial scaling factor for obtaining results at
confidence levels different from one standard deviation. In order to compute δn0

the additional error induced by the background subtraction has to be included.
The total number of events which is observed in an experiment n1 is the sum of
signal events n0 and background events nBG, n1 = n0 +nBG. The computation
of δn1 directly yields δn0. The error δn1 on n1 can be computed by Gaußian
error propagation. We extend the definition of n1 to include systematical uncer-
tainties on the signal normalization anorm and on the background expectation
aBG

n1 = (1 + anorm)n0 + (1 + aBG)nBG ,

(δn1)2 = n0 + nBG︸ ︷︷ ︸
stat.

+

(
∂n1

∂σ0

∣∣∣∣
σ0

δσ0

)2

+
(

∂n1

∂anorm

∣∣∣∣
0

δanorm

)2

+
(

∂n1

∂aBG

∣∣∣∣
0

δaBG

)2

︸ ︷︷ ︸
syst.

,

(δn1)2 = nBG + c3g3σ
2
0

+4c2
3g

2
3σ

2
0 (δσ0)2 + c2

3g
2
3σ

4
0 (δanorm)2 + n2

BG (δaBG)2 . (3.17)

Since n1 is the direct sum of n0 and nBG the error δn0 on n0 is equal to the error
on n1, δn1 = δn0. Putting everything together yields the following formula for
determining the sensitivity limit xlim

xlim =
1

2 c1 g1

(
c2

2
√
g2a

2 + g2b
2 σ0

+
√
c2

4 (g2a
2 + g2b

2) σ0
2 + 4 c1 g1 (n0 + γδn0 − c3 g3 σ0

2)
)
,

(3.18)

where γ is 1 for 68.27% cl, 1.64 for 90% cl and 2 for 95.45% cl. The final limit The final result for

the sin2 2θ13 limitas used throughout this work is given by the supremum of xlim, x̂lim, x̃lim

and x̄lim, where x̂lim, x̃lim and x̄lim are obtained by applying equation 3.18 to
the transformed coefficients ĉiĝi, c̃ig̃i and c̄iḡi as defined in equation 3.10. An
equivalent definition for the numerical calculation is given in equation B.4.

As shown in figure 3.3, equation 3.18 allows a rather precise calculation of
the sensitivity limit for those experiments which measure only one number, i.e.
they have only neutrino running and the number of events is not sufficiently
large to deliver significant spectral information. The rms error of equation 3.18
compared to the full numerical result is smaller than 4% for the whole range of
∆m2

21 shown in the figure.

3.4 Two observables

In the previous section it was demonstrated that only one observable is in-
sufficient to address the measurement of the cp-phase. Furthermore it is not
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Figure 3.3: The sin2 2θ13 limit at 90% cl for different values of ∆m2
21 for the JHF-SK

setup. The dashed line shows the result of a full numerical calculation (see appendix A,
this line is also shown in the right hand panel of figure 6 in [94]), whereas the solid line
shows the result obtained from equation 3.18.

possible to either determine the mass hierarchy or the quadrant of θ23. Obvi-
ously at least a second observable is needed to perform these measurements. In
this section the benefits and limitations of having two observables will be dis-
cussed. The second observable can be provided in several ways: anti-neutrinos
and/or the combination with another experiment. The mathematics, however,
stays the same, instead of having only one equation like 3.8 there are now two
equations, which have to be fulfilled simultaneously. The two equations are in
analogy to the preceeding section

(I) na0 = x2 ca1g
a
1 + xσ ca2g

a
2 + σ2ca3g

a
3 , (3.19)

(II) nb0 = x2 cb1g
b
1 + xσ cb2g

b
2 + σ2cb3g

b
3 . (3.20)

Solving the equations

By a suitable subtraction of I and II, one of the quadratic terms can be elimi-
nated. This yields two equations, each linear in either x or σ

I− ca1g
a
1

cb1g
b
1

II ⇒ (3.21)

na0 −
ca1g

a
1

cb1g
b
1

nb0 = xσ

(
ca2g

a
2 −

ca1g
a
1

cb1g
b
1

cb2g
b
2

)
+ σ2

(
ca3g

a
3 −

ca1g
a
1

cb1g
b
1

cb3g
b
3

)
,

I− ca3g
a
3

cb3g
b
3

II ⇒ (3.22)

na0 −
ca3g

a
3

cb3g
b
3

nb0 = xσ

(
ca2g

a
2 −

ca3g
a
3

cb3g
b
3

cb2g
b
2

)
+ x2

(
ca1g

a
1 −

ca3g
a
3

cb3g
b
3

cb1g
b
1

)
.
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In order to keep the notation concise, the following definitions are made

Nx := na0 −
ca1g

a
1

cb1g
b
1

nb0 , Nσ := na0 −
ca3g

a
3

cb3g
b
3

nb0 ,

Mx := ca2g
a
2 −

ca1g
a
1

cb1g
b
1

cb2g
b
2 , Mσ := ca2g

a
2 −

ca3g
a
3

cb3g
b
3

cb2g
b
2 ,

Qx := ca3g
a
3 −

ca1g
a
1

cb1g
b
1

cb3g
b
3 , Qσ := ca1g

a
1 −

ca3g
a
3

cb3g
b
3

cb1g
b
1 .

Using these and the above two equations, solutions for x and σ can be found

x =
Nx −Qx σ2

Mx σ
(3.23)

σ =
Nσ −Qσ x2

Mσ x
(3.24)

Inserting 3.23 in 3.24 and solving for σ yields

σ2(δ) =
1

2Qx (MxMσ −QxQσ)[
MxMσNx −Mx

2Nσ − 2NxQxQσ

±Mx

√
Mσ

2Nx
2 − 2MxMσNxNσ +Mx

2Nσ
2 + 4NxNσ QxQσ

]
.

(3.25)

Inserting 3.24 in 3.23 and this time solving for x yields

x2(δ) =
1

2Qσ (MxMσ −QxQσ)[
−
(
Mσ

2Nx

)
+MxMσNσ − 2Nσ QxQσ

±Mσ

√
Mσ

2Nx
2 − 2MxMσNxNσ +Mx

2Nσ
2 + 4NxNσ QxQσ

]
.

(3.26)

This result is quite complicated, since Mx and Mσ are functions of sin δ and
cos δ, thus x2 and σ2 depend on the cp-phase δ in a non-trivial way. Further-
more determining which sign in each of the solutions is the correct one is rather
tricky. One can, however, prove the following useful theorem:

Theorem Equations 3.26 and 3.25 constitute a parametric representation of Ellipses are the

solution and vice

versa

an ellipse in the coordinates x2 and σ2, where the parameter is δ.

The proof consists in finding a representation of the space curve described
by equations 3.26 and 3.25 in the form of a general ellipse, with u := x2 and
v := σ2

a11 u
2 + a12 u v + a22 v

2 + a13 u+ a23 v + a33 = 0 . (3.27)
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To this end the algebra of equations 3.21 – 3.24 is repeated but now in order
to isolate sin δ and cos δ instead of x and σ. With a set of new definitions,

Nsin δ := na0 −
ca2g

a
2b

cb2g
b
2b

nb0 , Ncos δ := na0 −
ca2g

a
2a

cb2g
b
2a

nb0 ,

Msin δ := ca2 −
ca2g

a
2b

cb2g
b
2b

cb2g
b
2a , Mcos δ := ca2g

a
2 −

ca2g
a
2a

cb2g
b
2a

cb2g
b
2b ,

Qsin δ := ca3g
a
3 −

ca2g
a
2b

cb2g
b
2b

cb3g
b
3 , Qcos δ := ca3g

a
3 −

ca2g
a
2a

cb2g
b
2a

cb3g
b
3 ,

Ksin δ := ca1g
a
1 −

ca2g
a
2b

cb2g
b
2b

cb1g
b
1 , Kcos δ := ca1g

a
1 −

ca2g
a
2a

cb2g
b
2a

cb1g
b
1 , (3.28)

the results for sin δ and cos δ as functions of x and σ are

sin δ =
Ncos δ − x2Kcos δ − σ2Qcos δ

xσMcos δ
(3.29)

cos δ =
Nsin δ − x2Ksin δ − σ2Qsin δ

xσMsin δ
(3.30)

Using the well-known relation sin2 θ + cos2 θ = 1 and equations 3.29 and 3.30
the following equation is found(

Ncos δ − x2Kcos δ − σ2Qcos δ

)2 +
(
Nsin δ − x2Ksin δ − σ2Qsin δ

)2 =
x2 σ2Msin δ

2Mcos δ
2 , (3.31)

which only depends on x2 = u and σ2 = v. Therefore replacing x2 by u and σ2

by v, expanding the terms and collecting the coefficients we obtain the same
form as given in equation 3.27

a11 u
2 + a12 u v + a22 v

2 + a13 u+ a23 v + a33 = 0 , (3.32)

where the coefficients aij are given by

a11 = Ksin δ
2Mcos δ

2 +Kcos δ
2Msin δ

2 ,

a22 = Msin δ
2Qcos δ

2 +Mcos δ
2Qsin δ

2 ,

a12 = −Mcos δMsin δ + 2Kcos δMsin δ
2Qcos δ + 2Ksin δMcos δ

2Qsin δ ,

a13 = −2Kcos δMsin δ
2Ncos δ − 2Ksin δMcos δ

2Nsin δ ,

a23 = −2Msin δ
2Ncos δ Qcos δ − 2Mcos δ

2Nsin δ Qsin δ ,

a33 = Msin δ
2Ncos δ

2 +Mcos δ
2Nsin δ

2 . (3.33)

This completes the proof of the theorem given above.

3.5 Eight-fold degeneracy

Equations 3.32 and 3.33 allow now to derive the location of each of the eight
solutions in a closed form. The occurrence of eight solutions was shown in [92],
where the discussion is based on two assumptions – σ is known exactly and
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Figure 3.4: The ellipses defined by equation 3.32 for NuFact-II. The colors encode
the cp-phase δ as indicated by the colored disk in the upper left corner of each panel.
The grey horizontal line shows the value of σ0 = 1.4 · 10−4 eV2. The left hand panel
shows the intrinsic set of solutions. The right hand panel shows the set of solutions
obtained by applying Ts, the so called sign of ∆m2

31 degeneracy. In the left hand panel,
the left black cross indicates the location of the true parameters, whereas the right cross
shows the location of the intrinsic ambiguity. The black crosses in the right hand panel
show the two additional solutions for opposite mass hierarchy. The grey ellipse in the
right hand panel is formed by the solutions for the intrinsic case, i.e. the same as in
the left hand panel. The values of δ are given in units of π.

the neutrino beam is mono-energetic. Fixing the value of σ implies that only
a subset of the complete set of possible solutions is studied, i.e. the ellipses of
equation 3.32 are reduced to a set of discrete points. First the so called intrinsic
ambiguity is discussed. It was discovered in [93] and a closed form solution for
its location was given in [92]. It occurs at the same value of σ as the true value
σ0. Solving equation 3.32 for u = x2 yields:

x2
1/2 =

−2 v a12 − a13 ±
√

(2 v a12 + a13)2 − 4 a11 (v2 a22 + v a23 + a33)

2 a11
.

(3.34)
At v = σ2

0 one of the solutions for x2 in equation 3.34 coincides with x2
0. Whereas

the other solution is the so called intrinsic ambiguity. The cp-phase δ of the in-
trinsic ambiguity can now easily be calculated by using equations 3.29 and 3.30.
This shows that in general there are two solutions, even for fixed σ. In the left
hand panel of figure 3.4 a graphical representation of this fact is given. The two
solutions x1/2 are the intersections of the grey line (σ = σ0) and the ellipse (de-
fined by equation 3.32). This example is computed for NuFact-II with x2

0 = 10−3,
σ0 = 1.4 · 10−4 eV2, δ0 = 0, (∆m2

31)0 = +3 · 10−3 eV2 and (θ23)0 = 0.55. Here
the intrinsic ambiguity appears at x2

2 = 0.021 and δ2 = 1.13π.
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Figure 3.5: The ellipses defined by equation 3.32 for NuFact-II. The colors encode
the cp-phase δ as indicated by the colored disk in the upper left corner of each panel.
The grey horizontal line shows the value of σ0 = 1.4 · 10−4 eV2. The left hand panel
shows the set of solutions obtained by applying Tt. The right hand panel shows the
set of solutions obtained by applying Tts. The black crosses show the two additional
solutions for either θ23 > π/4 or for opposite mass hierarchy and θ23 > π/4. The grey
ellipses are the solutions given by the intrinsic case, i.e. the same as in the left hand
panel of figure 3.4. The value of δ is given in units of π.

Next we derive the other solutions generated by the discrete transformations
Ts, Tt and Tts. The transformed versions of equation 3.34 are obtained byApplication of the

discrete

transformations

applying the Ti to each of the coefficients in equation 3.28.

x̂2
1/2 =

−2 v â12 − â13 ±
√

(2 v â12 + â13)2 − 4 â11 (v2 â22 + v â23 + â33)

2 â11
,

(3.35)

x̃2
1/2 =

−2 v ã12 − ã13 ±
√

(2 v ã12 + ã13)2 − 4 ã11 (v2 ã22 + v ã23 + ã33)

2 ã11
,

(3.36)

x̄2
1/2 =

−2 v ā12 − ā13 ±
√

(2 v ā12 + ā13)2 − 4 ā11 (v2 ā22 + v ā23 + ā33)

2 ā11
.

(3.37)
Thus there are alltogether eight possible values for x2, namely x2

1/2, x̂2
1/2,

x̃2
1/2 and x̄2

1/2. These values can now be used with equations 3.29 and 3.30

to compute δ1/2, δ̂1/2, δ̃1/2 and δ̄1/2. In doing so also the coefficients in equa-
tions 3.29 and 3.30 have to be transformed according to the definition of the Ti.
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These eight sets of δ and x2 constitute the “eight-fold” degeneracy as discussed
in [92]. An approximate result for equations 3.35 and 3.36 was presented in [92].
The solution for x̄ is presented here for the first time. Obviously not all of the
equations 3.35 – 3.37 yield real and positive solutions for x2 in all cases, thus
in certain circumstances only a subset of those eight solutions appears in an
experiment.

In figures 3.4 and 3.5 an example of the four possible ellipses is shown.
They have been calculated for the NuFact-II setup with σ0 = 1.4 · 10−4 eV2,
∆m2

31 = +3 · 10−3 eV2, θ23 = 0.55, x2
0 = 10−3 and δ0 = 0. The left hand

panel of figure 3.4 shows the intrinsic case. The right hand panel is drawn for
∆m2

31 = −3 ·10−3 eV2. There are two solutions for x̂2 with the values indicated
in the figure. Again for the case of θ23 = π/2 − 0.55 there are two solutions
as shown in the left hand panel of figure 3.5. For the ellipse which has been
obtained by applying both Ts and Tt there are no solutions for σ = σ0 as it
can be seen in the right hand panel of figure 3.5. But already for a value of
σ = 1.52 · 10−4 eV2 a solution appears, i.e. if a ∼ 9% larger value of σ than
σ0 was allowed, at least one solution with both ∆m2

31 = −3 · 10−3 eV2 and
θ23 = π/2 − 0.55 would exist. This illustrates the importance of taking into
account the finite error on σ. In the example shown here, no determination of
the mass hierarchy or the quadrant of θ23 would be possible. Also the test of
cp-conservation would fail since there are additional solutions close to maximal
cp-violation.

3.6 More degeneracies

In section 3.5 the solar mass splitting σ was regarded as fixed, which led to the
eight-fold degeneracy. Relaxing this assumption and treating σ as a free para-
meter yielded the ellipses as defined in equation 3.32 and shown in figures 3.4
and 3.5. In this case, obviously the intrinsic ambiguity does no longer exist as
disconnected solution, it is just one solution amongst many4 others. Thus in
terms of total event rates a picture emerges where there are four sets of solu-
tions generated by the discrete transformations Ts, Tt, and Tts. Each of these
sets is an ellipse in the x2-σ2-plane.

The discussion up to now has focused on total rates only, leaving a set of
four ellipses. The question now is, how many of these points survive in a full
analysis. For this purpose a simplified scheme for the analysis will be used: only
θ13, σ and δ will be considered and only the appearance channels are used. This
ensures a concise presentation and still retains the essential features of the full
analysis technique as described in appendix B. The following example has been A showcase

calculated for NuFact-II and the set of true parameters λ0: (sin2 2θ13)0 = 10−3,
δ0 = 0 and σ0 = 1.4 · 10−4 eV2. The aim is to extract this set λ0. (θ23)0 was
chosen to be 0.55 instead of the current best fit value of π/4 in order to make it
possible to study the θ23 ambiguity Tt as well. This example will also be used
to illustrate the basic features of the analysis technique used for obtaining the
results of chapter 5. The results of the previous section serve as a very useful

4in fact, uncountably many
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Figure 3.6: The left hand panel shows the ellipse of all solutions in the x2-σ-plane of
equation 3.32 for the intrinsic case. The color coding indicates the cp-phase as shown
in the colored circle in the lower right corner of this panel. Here twelve o’clock marks
δ = 0, six o’clock δ = π, a.s.f.. The labels at the frame indicate the allowed range
for x2 = sin2 2θ13. The grey thin curve in the middle and rightmost panel indicates
the location of the solutions of equation 3.32. The grey rectangle shows the region
displayed in the middle panel. In the middle panel the effect of the inclusion of spectral
information is shown. The black lines are the 1, 2 and 3 standard deviations contours
(1 dof) of a fit which leaves δ free. The colored pie slice shows the range of cp-phases
which is still allowed at 99.73% cl. The color coding underneath the contours depicts
the values of δ at which the minimum χ2 occured. The grey box now is the area shown
in the right hand panel. Here the effect of the inclusion of external input on σ is shown.
To this end a 15% uncertainty on σ is assumed. This example has been calculated for
NuFact-II.

tool – their value lies in their ability to predict the approximate location of the
local minima of the χ2-function. This is a crucial ingredient for the numerical
calculation, since there is no general algorithm for finding the global minimum
of the χ2-function. But since the location of all local minima is approximately
known, the exact location and χ2-value of each local minimum can be found,
as discussed in detail in appendix B.

The starting point for this showcase analysis, as for the real analysis, are theTotal rates

solutions for the total rates as shown in the leftmost panel of figure 3.6 for the
intrinsic case. The abscissa is x2 and the ordinate σ. The color indicates the cp-
phase, whereas the colored disk shows the allowed range for δ, which is 2π in this
case. The labels at the abscissa yield the allowed range for x2 = 1·10−4−3·10−2.
The next step is to include spectral information. A χ2-fit to the observed (i.e.Spectrum

with λ0 simulated) data is performed with δ as a free parameter. The resulting
χ2-function is projected onto the displayed x2-σ-plane. This means that for each
pair of x2 and σ the minimum of the χ2 as function of δ is determined. Contours
of this projected χ2-function are shown in the middle panel as black lines,
representing the 1, 2 and 3 standard deviations confidence levels for 1 dof.5

5One degree of freedom was chosen in order to facilitate the visual projection onto the axes
to obtain the allowed ranges.
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The coloring indicates the values of δ for which the minimum was found. The
range in x2 and σ is strongly reduced by the inclusion of spectral information.
This reduction is illustrated by the grey box in the left hand panel – it is the
area covered by the middle panel.

position∆χ2

x2 σ δ
x2-range δ-range

1 0.0 1.0 · 10−3 1.4 0.0
2 3.5 8.4 · 10−3 0.53 -0.42

2.0 · 10−4 1.1 · 10−2 -0.61 0.09

3 3.4 9.7 · 10−4 1.6 0.74 2.7 · 10−4 3.0 · 10−3 0.67 0.77
4 1.1 1.0 · 10−4 0.97 0.41 5.5 · 10−3 1.3 · 10−2 0.32 0.60
5 0.1 3.3 · 10−4 2.3 0.0
6 3.6 3.2 · 10−3 0.90 1.15

7.6 · 10−5 4.1 · 10−3 -0.62 0.09

7 3.5 3.9 · 10−4 2.6 0.74 1.0 · 10−4 1.3 · 10−3 0.31 0.64
8 1.0 3.8 · 10−3 1.5 0.42 1.9 · 10−3 5.1 · 10−3 0.67 0.78

Table 3.1: The ∆χ2 and positions of the local minima for unconstrained σ. Also
given are the three standard deviations allowed ranges for x2 and δ. In the cases,
where one range for two lines is shown, the two minima are connected by the three
standard deviations allowed region. Minima 1 and 2 are marked by black crosses in the
middle panel of figure 3.6. The units are 10−4 eV2 for σ and δ is given in units of π.

The range for x2 is now x2 = 2.0 · 10−4 − 1.1 · 10−2. The χ2 has two local
minima, labeled 1 and 2. They have rather different values for the CP-phase:
minimum 1 has δ = 0, whereas number 2 has δ = −0.42π. The ∆χ2 of minimum
2 is 3.5. The remaining range for the cp-phase is δ = −0.07π − 0.67π. Thus
there are still two solutions for the cp-phase, one is cp-conserving, whereas the
other solution is nearly maximally cp-violating. A summary of the properties
and ranges for each possible minimum at the level of a spectral analysis is given
in table 3.1. Interestingly, in this example the two solutions do not appear at
the same value of the solar mass splitting σ, thus none of the two represents
the intrinsic ambiguity as defined in [93].

As a third step the external information on the value of σ is used and Constraint on

∆m2
21results in the rightmost panel of figure 3.6. A 1 standard deviation error on

σ of 15% is assumed around the central value σ0 = 1.4 · 10−4 eV2. Here only
one solution survives, labeled I, at the location of the true parameters, i.e.
sin2 2θ13 = 10−3, δ = 0 and σ = 1.4 · 10−4 eV2. The range for x2 is further
reduced to x2 = 3·10−4−3·10−3, also the allowed cp-phases are more restricted,
δ = −0.06π− 0.1π, clearly excluding large or maximal cp-violation. Table 3.2
summarizes the location and associated ranges for each of the possible minima
in the final result. The solutions to equation 3.32 are very well suited to predict Finding all local

minima of ∆χ2the location of each of the three minima 1,2 and I. This can be seen again in
figure 3.6 – the thin grey curve in the middle and right panel is formed by the
solutions to equation 3.32. All minima (black crosses) lie near or even exactly
on this curve, thus a simple line search along this curve allows to determine an
approximate location for each of the minima. This line search basically consists
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Figure 3.7: The same as the rightmost panel of figure 3.6, but now for the three
other sets of solutions generated by Ts, Tt and Tts.

in calculating the full χ2 along the curve of solutions defined by equation 3.32
and then in identifying all local minima. The advantage is that the dimension
of the search space has been reduced from 3 to 1 – this makes the problem
of finding all local minima of the χ2-function, which would have been nearly
intractable in three dimensions, a comparatively easy task.

position∆χ2

x2 σ δ
x2-range δ-range

I 0.0 1.0 · 10−3 1.4 0.0 2.6 · 10−4 3.0 · 10−3 -0.1 0.08
III 4.1 1.2 · 10−3 1.6 0.74 4.2 · 10−4 2.9 · 10−3 0.70 0.77
IV 5.2 1.1 · 10−2 1.0 0.40 7.5 · 10−3 1.3 · 10−2 0.32 0.51
V 6.9 1.1 · 10−3 1.6 -0.09 6.7 · 10−4 2.3 · 10−3 -0.27 -0.03

VIII 1.3 3.8 · 10−3 1.5 0.42 2.2 · 10−3 5.0 · 10−3 0.33 0.61

Table 3.2: The ∆χ2 and positions of the local minima for σ constrained to ±0.15σ0

at 68.27% cl. Also given are the three standard deviations allowed ranges for x2 and
δ. Minimum I is marked by a black cross in the rightmost panel of figure 3.6, whereas
minima III and IV are shown in the leftmost panel of figure 3.7. Minimum V is shown
in the middle panel of this figure and finally minimum VIII is given in the rightmost
panel. The units are 10−4 eV2 for σ and δ is given in units of π.

The exercise done for the intrinsic ellipse has now to be repeated for the
three other ellipses, i.e. for the cases ∆m2

31 → −∆m2
31, θ23 → π/2 − θ23 and

∆m2
31 → −∆m2

31 ⊕ θ23 → π/2−θ23. Again, first the solutions in terms of total
rates according to equation 3.32 are computed. Then the spectral information is
added and the local minima are found. All minima on this level of the analysis
are listed in table 3.1. Number 1 and 2 are the intrinsic case, whereas number
3 and 4 are for Ts, number 5 and 6 are for Tt and the last two 7 and 8 are for
Tts. Thus there are two minima in each set of solutions. In this example there
are indeed eight local minima, which however is not the eight-fold degeneracy
as defined in [92], since only three minima (number 1, 3 and 8) appear at
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approximately σ0, and no pair of them belongs to one set, which would be
expected if they indeed belonged to the intrinsic ambiguity as found in [93].
Thus the absence of a second solution at σ = σ0 does in general not imply that
no second solution exists. For two sets, namely the intrinsic one and Tt the
two minima are connected into one solution (at 99.73% cl). Furthermore there
is a great variety in the value of the cp-phase in each minimum and also the
ranges for δ given in table 3.1 cover a fraction of ∼ 57% of the unit circle. Even
more problematic, they completely blur the distinction of cp-violation and cp-
conservation. Thus the presence of several solutions is a veritable obstacle in
the quest for leptonic cp-violation.

The third step of the analysis is once more to include an external constraint
on the solar mass splitting σ. The final result for all three cases is shown in
figure 3.7. Each panel in this figure corresponds to the rightmost panel in
figure 3.6. The thin grey curves show again the location of the solutions of
equation 3.32 in each case. Also here the local minima (black crosses) are very
close to these lines which demonstrates that the analysis method described here
works for those cases as well. The respective locations of the minima, the al-
lowed ranges etc. are given in table 3.2. The number of remaining solutions is
reduced to five. Only for the case Ts there are two solutions left. The Ts trans-
formation maps the cp-conserving true phase δ0 = 0 into two other, clearly
cp-violating phases (solutions III and IV). This phenomenon has already been
observed and discussed in detail in [80]. On the other hand the Tt transforma-
tion (solution V) does not affect the value or range of the cp-phase very much,
as described in e.g. [80,92]. In the combined case Tts (solution VIII), however, cp-conservation

and cp-violation

are mixed by the

multiplicity of

solutions

the influence of Ts is very strong and the shift in the cp-phase is rather pro-
nounced. Thus even in the full analysis several solutions are present, and some
of them do strongly mix cp-violation and cp-conservation. Also the determi-
nation of θ13 strongly suffers from the presence of several solutions. Especially
solution IV, belonging to the Ts set, extends the allowed range upwards by some
factor of 30 compared to (sin2 2θ13)0. It is therefore a necessity to take the ex-
istence of multiple solutions into account in assessing the physics potential of
future experiments.

∆χ2 x2-range δ-range
1 0.0 7.6 · 10−4 1.3 · 10−3 -0.07 0.05
3 5.9 1.7 · 10−3 2.4 · 10−2 0.70 0.76
5
6

7.3 1.3 · 10−3 1.6 · 10−3 -0.16 -0.10

8 4.7 2.8 · 10−3 4.1 · 10−3 0.40 0.54

Table 3.3: The ∆χ2 of the local minima for σ fixed to σ0. Also given are the three
standard deviations allowed ranges for x2 and δ, where δ is given in units of π.

Since most of the published results have been derived with keeping σ fixed6,
i.e. neglecting the errors on the solar parameters, also the results for fixed

6The exceptions are [80,81,94–96].
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σ are shown in table 3.3. Obviously the ranges for both δ and sin2 2θ13 are
significantly reduced within each solution. Furthermore one solution around
δ ' 0.5π disappears. Thus the fraction of the unit circle covered by δ decreases
from 57% by a factor of 2.7 to 21% and no cp-violating solution remains at
the 95.45% cl. In fact, at this confidence level, only one solution would remainKeeping ∆m2

21

fixed is not a good

approximation

and the fraction of the unit circle covered by δ would reduce to less than 6%.
This one example already illustrates the importance of taking into account the
limited accuracy in the knowledge of the solar parameters. Keeping in mind
that the solar parameters enter the oscillation probability in equation 3.1 via the
product ∆m2

21 · sin 2θ12, the errors on the angle and the mass splitting give an
equal contribution to the total uncertainty. Kamland will determine ∆m2

21 with
high precision, but its performance on sin 2θ12 will be rather poor [5,97]. Thus
the error on the product will be around 15%, unless a dedicated experiment
for a high precision measurement of θ12, like the one described in [82], is built.
This experiment could reduce the error on the product to a few percent.

3.7 Inclusion of degeneracies in the final result

In the example of the previous section five solutions were left in the analysis,
even after the inclusion of spectral information and a constraint on the solar
parameters. In the full analysis as described in appendix B and used to obtain
the results of chapter 5 the multiplicity of solutions persists. This raises the
question how to separate and classify the, in this context frequently used, terms
degeneracy and correlation and how to present the results of the analysis in a
concise way.

One scheme to be found in the literature (e.g. in [92]) is to assign the term“Degeneracy”

degenerate solution to any solution which fulfills the equations 3.19 and 3.20.
Since the solar mass splitting is kept fixed, this is equivalent to defining degen-
eracy as the existence of disconnected solutions. The connectivity of solutions
is, however, not a unique criterion for the classification since a complete anal-
ysis of degeneracies has to include spectral information, systematical errors,
statistics and the state of knowledge on all parameters including the matter
density. Once all those ingredients are taken into account a solution which was
a point in parameter space becomes an extended region. The size of this region
may be large enough to overlap with one or several of the regions around the
other solutions, even neglecting the variation of the solar mass splitting. The
extension of each region, in turn, depends sensitively on many factors, like the
chosen confidence level or the detector performance (see appendix A). In many
cases the χ2-function retains an imprint of each of the possible solutions in
the form of a local minimum. Whether this minimum is acceptable at a given
confidence level can only be determined by a complete numerical calculation,
the results of which will be presented in chapter 5. There are, however, also
cases where there is no additional local minimum and the only consequence of
the existence of a degenerate solution (at the level of total rates) in the full
analysis is a strangely shaped allowed region. Thus there is no unique way to
classify degenerate solutions, but there is a natural way to account for multiple
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solutions in the full analysis. This is going to be discussed at the end of this
chapter, and precise definitions are given in equations B.4 – B.6.

On the other hand the term correlation is used in statistics whenever the
error on one quantity q gives a contribution to the error in the determination “Correlation”

of another quantity p. The degree of correlation is quantified by the correlation
coefficient. This correlation coefficient is determined by the Taylor expansion
of the logarithm of the likelihood function around its minimum (see, e.g. [70]).
Thus the assumption enters that the error δq is small enough for being taken
into account by means of a Taylor expansion around the minimum. Expanding
around an extremum leaves as first non-vanishing terms of the expansion the
quadratic ones. Usually only these are considered for the estimation of the cor-
relation coefficients. Thus correlation includes only the local dependence on δq.
If the higher order derivatives are non-negligible or if there is another minimum,
this definition is no longer useful as a scheme to identify the impact of δq on
δp. It is thus very difficult to uniquely assign the errors on the determination
of the cp-phase and θ13 to either correlation or degeneracy.

Adding to these problems is the question, how to present the results in view
of the existence of multiple solutions. If there were real data this task would
be straightforward – each solution would be treated equally. Thus there would
be an island in the parameter space for each possible7 solution. This would
resemble very much the situation in which solar neutrino data has been for
nearly four decades [44]. There, a plethora of solutions like low, vac, sma,
lma etc. existed and all of them were considered as being real, i.e. when quoting
a lower bound on ∆m2

21 the lowest value of all solutions for ∆m2
21 at a given

confidence level was used. However when the issue is the physics potential of
a future experiment, there are evidently no data. Therefore the data have to
be simulated. For this simulation a set of physical input parameters λ0 has to
be chosen. This choice is of course guided by existing knowledge, like that on
the atmospheric mass scale, however, there remains a great freedom. Otherwise
there would be already conclusive evidence for a unique set λ0 and there would
be no need for a further measurement. Thus the dimension of the problem gets
doubled, i.e. if the parameter space has dimension N , a comprehensive study
has to deal with dimension 2N . It is therefore mandatory to condense as much The need for data

compression in the

presentation of

results

information regarding the physics reach of an experiment as possible into one
or at least very few numbers for each set λ0. This is basically a kind of data
compression, which of course involves a loss of information to some extent. This
loss of information is, however, preferable to being overwhelmed by the sheer
amount of information. Thus the task is to find a set of numbers which allows in
an optimal way to decide on the scientific “value” of an experiment. Of course
the problem is the definition of “value” in this context. The community seems
to have settled8 on three main aspects which constitute the scientific “value”
of an experiment for oscillation physics.

7Here “possible” refers to being statistically acceptable at a certain confidence level.
8at least according to the author’s perception
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The angle θ13

θ13 is the primary goal, either to determine its value or to push the upper limit
as far as possible. Its importance is due to the fact that any cp-effects scale
proportional to sin 2θ13. There are two quantities of interest, the sensitivity
limit and the accuracy. The latter only plays a minor role in the literature,
whereas the sensitivity limit is the focus of attention. Since there are no theo-
retical predictions for the value of θ13 an experiment which is sensitive to lower
values of θ13 is more likely9 to find a finite value of θ13. In the two flavour
case this limit was defined as the upper limit on θ13 which is derived from a
null result, i.e. a result which gives no indication for a finite value of θ13. For
example, this was the case in the Chooz experiment [65]. The Chooz collabora-
tion shows their exclusion plot as a two dimensional picture where the axes are
sin2 2θ13 and ∆m2

31 to express the fact that within the two neutrino framework,
used in their analysis, the two quantities are not independent but correlated.
This result on its own would not imply any upper bound on sin2 2θ13 since for
very small values of ∆m2

31 there is no bound any more. The virtue of this way
of presenting their result is that there are other experiments like Super-K and
other atmospheric neutrino experiments [3, 54] which yield an accurate mea-
surement of ∆m2

31. Using this information the Chooz result can be converted
into the usual bound on sin2 2θ13. If this information changes it is straightfor-
ward to update the bound on sin2 2θ13, this is for example the case with the
latest update of Super-K [60].

In a three flavour framework the situation is much more complicated. There
are basically three additional problems: the correlation with δ, the presence of
disconnected solutions within one set Ti and the presence of four sets Ti. ADefinition of the

sin2 2θ13 limit very practical and simple definition for the sensitivity limit even in this case
is to regard the limit as the largest of all possible values of sin2 2θ13 which is
compatible10 with the data set simulated for (sin2 2θ13)0 = 0. A larger value
of sin2 2θ13 will thus be found by the experiment, whereas a lower value might
be found if and only if there is additional information on either the cp-phase,
the mass hierarchy or the quadrant of θ23. It does not make sense to show the
resulting limit as a function of the fitted δ. A result which is compatible with
sin2 2θ13 = 0 does not allow any inference on the value of δ, since the cp-phase
becomes undefined in the case sin2 2θ13 = 0. Thus if there is information on the
value of the cp-phase then there necessarily must be also information on θ13. In
that case a combined analysis of both experiments will become necessary. The
same line of reasoning also applies to the three additional limits obtained for
each of the Ti, however, in a somewhat less stringent way. It is very difficult or
even impossible to determine the mass hierarchy (see e.g. [80]) or the quadrant
of θ23 (see e.g. [98, 99]) when sin2 2θ13 is very small. The above definition
was introduced in [80] and was later on adopted by the authors of [100]. A
mathematical definition is to be found in equation B.4.

9This likelihood of course depends on a probability measure in θ13, which would have to
be specified to make this a quantitative statement.

10at the confidence level at which the limit is given
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The mass hierarchy

Usually the determination of the mass hierarchy is regarded as an intermediate
goal – it will be achieved on the way to leptonic cp-violation. Long baseline ex-
periments are sensitive to the mass hierarchy by virtue of matter effects. Thus
if sin2 2θ13 = 0 there is no sensitivity to the mass hierarchy since the matter
effects can no longer be detected. The mass hierarchy can be determined when-
ever there are only solutions for one mass hierarchy at a given confidence level.
The existence of a single point at a given confidence level with opposite mass hi-
erarchy destroys the sensitivity. Thus for a given set of input parameters λ0 one
has to look for the global minimum of the χ2-function with opposite mass hier-
archy. This definition is the basis for the exact definition in equation B.5. The
sensitivity strongly depends on (sin2 2θ13)0, the solar mass splitting (∆m2

21)0

and the cp-phase δ0. For any experiment11 the sensitivity has a lowest value
for one cp-phase δlow

0 and a highest value for another cp-phase δhigh
0 ' δlow

0 +π.
The value of δlow

0 depends only on the relative weight of the sin δ and cos δ
terms in equation 3.1. Thus a fair comparison of several experiments has to
involve the same choice of δ0 in terms of δlow

0 or δhigh
0 . It would, for example, be

inadequate to compare two experiments A and B with a single value of δ0 which
coincides with δlow

0 for experiment A and with δhigh
0 for experiment B. There-

fore all sensitivity limits should be given either at δlow
0 or δhigh

0 . In this work all
limits are given for δlow

0 , which is a conservative choice, i.e. there may be lower
values of sin2 2θ13 where the mass hierarchy could be determined. However,
conservative as this choice may be, it ensures that the sensitivities of different
experiments can be compared in a consistent way.

The cp-phase

The determination of the cp-phase δ is considered to be the ultimate goal of
oscillation physics. For this measurement three different quantities of interest
can be defined. First, the sensitivity to maximal cp-violation, i.e. can δ0 = Sensitivity to

maximal

cp-violation

±π/2 be distinguished from cp-conservation which occurs at δ = 0 or δ = π.
This test is especially simple and includes multiple solutions in a natural way
– any solution fitting δ = 0 or δ = π has to be considered. Second, the
sensitivity to any cp-violation, which is the same as the sensitivity to maximal
cp-violation, besides that δ0 now can take any value. A mathematical definition
is given in equation B.6. Third, the accuracy in the determination of δ. It is not
possible to assign a simple Gaußian error to δ if there are multiple solutions,
which generally is the case. Even if it might be possible to assign a Gaußian error
to each of the solutions, the problem of choosing one of them would still remain,
especially since the errors have a large variation for the different solutions. An
alternative quantity of interest has therefore been defined in [80]: the coverage Coverage in δ

in δ. Here all values of δ which are acceptable at a given confidence level are
considered, i.e. the union of all allowed ranges is given in units of 2π. This
quantifies the amount of the unit circle which remains as a possible solution for
δ. The coverage in δ depends on δ0 and the worst (i.e. largest) value is given.

11with the exception of reactor neutrino experiments
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Chapter 4

Dramatis personæ

In this chapter the various experimental setups studied in this work are in-
troduced. A special focus will be to highlight the similarities and differences
between different experimental approaches for determining the neutrino mixing
parameters. Furthermore a description of the employed analysis techniques is
given as well as the definition of the standard parameters used throughout this
work.

4.1 The experiments

In general a neutrino oscillation experiment will be tuned such that the ob-
served energy range covers the first oscillation maximum1. The condition for
the oscillation maximum is given by

∆m2 L/E = π/2 . (4.1)

The experiments considered here are all optimized for the measurement of ef-
fects associated with the atmospheric mass splitting ∆m2

31. Before introducing
these experiments in detail a simple comparison of their sampling of the L/E-
space is given in figure 4.1, where the number of signal events is given as a
function of L/E. All superbeam experiments (JHF-SK, NuMI, and JHF-HK) L/E sampling

have their highest event rates in that L/E region where the oscillation maxi-
mum for ∆m2

31 ' 3.0 · 10−3 eV2 is located. The sampled range in L/E of the
NuMI setup is somewhat smaller than the ones of the JHF experiments, which
leads to a stronger ∆m2

31-dependence of the physics reach of NuMI which is dis-
cussed in detail in section 5.2. The range in L/E covered by a neutrino factory
is rather large compared to the other experiments. The maximum of the event
rates however occurs at L/E ' 150 km GeV−1, which is clearly far off the value
for which the oscillation maximum occurs for the currently favored values of
∆m2

31 ' 3.0 · 10−3 eV2. This has severe consequences regarding the impact of
multiple solutions as shown in section 5.5. The L/E sampling of the reactor
setups is not shown in figure 4.1, since they are disappearance experiments and

1For an exception see [101]. There the possibilities which are offered by observing higher
order maxima are discussed.

39
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Figure 4.1: The number of signal events per bin (equidistant in energy) as a function
of L/E for the setups indicated by the corresponding labels. On the upper edge of
the frame the position of the first oscillation maximum for a given value of ∆m2

31 is
depicted. The horizontal error bars give the bin size in units of L/E. The event numbers
are calculated for the lma-i numbers which are defined in equation 4.5 with sin2 2θ13 =
0.1 and δ = 0. They include the detector efficiencies and the energy resolution as
defined in appendix A.2.

the number of signal events is a misleading quantifier of the obtainable accu-
racy. The sampled range roughly corresponds to the one covered by the JHF
experiments.

4.1.1 Reactor

Reactor neutrino experiments have a long and successful history. The first de-
tection of a neutrino was achieved by a reactor experiment in  [102] and
awarded with a Nobel prize in . This great start was succeeded by a num-
ber of neutrino oscillation experiments, the most important are: Gösgen [62],
Bugey [63], Palo Verde [64], and Chooz [65]. The Chooz experiment provides
today the most stringent limit on sin2 2θ13. Most recently the Kamland exper-
iment has provided the solution to the longstanding solar neutrino puzzle [5].
The basic idea behind these experiments is that a nuclear reactor is a very
powerful and pure source of ν̄e, which are then detected by inverse β-decay

ν̄e + p −→ e+ + n , (4.2)

with a threshold energy of 1.804 MeV. This reaction has a very distinct signa-
ture consisting of the prompt γ-rays of the annihilation of the positron and the
delayed signal of the capture of the neutron. This delayed coincidence is the
key for the rejection of most of the backgrounds. The relation of the observed,
i.e. in the detector visible, energy Evis to the true neutrino energy Eν̄e is partic-
ularly simple and allows a unique determination of the true energy (for details
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see appendix A.2.1). These experiments can measure only the disappearance of
ν̄e. The oscillation probability for this transition is taken from [94] and given Pν̄e→ν̄e is

independent of δ

and θ23

by

Pν̄e→ν̄e ' 1− sin2 2θ13 sin2 ∆31 − α2 ∆2
31 cos4 θ13 sin2 2θ12 , (4.3)

where the dependence on ∆m2
21 and θ13 has been approximated by an expansion

of the full three neutrino probability in the spirit of equation 3.1. At the
baselines and energies considered here matter effects can safely be neglected.
Clearly Pν̄e→ν̄e does neither depend on the cp-phase δ nor on θ23 and therefore
this transition channel is free of degeneracies.

In view of the Chooz experiment is has been proposed to build a new reactor
neutrino oscillation experiment to improve the Chooz bound [98,103–105]. The
new ingredient for an improved reactor experiment is to use a near and a far
detector in order to reduce the various systematical errors to the necessary
low levels. The main problem with a disappearance experiment is that the
normalization uncertainty strongly affects the sensitivity of the experiment.
This can to some extent be alleviated by using a near and a far detector. The Spectrum vs.

normalization

uncertainty

remaining uncertainty is due to the relative normalization uncertainty between
the two detectors. Furthermore the spectral shape is uncertain at some level due
to the limited knowledge on the fuel composition and the neutrino spectra. This
error is again strongly reduced by the comparison of near and far detector and
only the relative energy calibration error of the two detectors remains. Thus the
systematical error can be parameterized by a normalization uncertainty σnorm

of 0.8% and an energy calibration error σcal of 0.5% (for an exact definition see
appendix A.2.1). All reactor setups in this work have a baseline of 1.7 km for
the far detector and a baseline of 170 m for the near detector2. The size of the
event sample is determined by the thermal reactor power (GW), the fiducial
detector mass times efficiency (t) and the operation time of the experiment (y),
thus the integrated luminosity is given by the product of these three factors
and has the unit t GW y. Two setups with different integrated luminosities are
used in this work: Reactor-I with 400 t GW y and Reactor-II with 8 000 t GW y.
The latter setup roughly corresponds to a Kamland sized detector at a typical
nuclear power plant running for a few years.

4.1.2 NuMI

The NuMI experiment will use the same neutrino beam line as Minos and thus
has a pion decay based muon neutrino beam. NuMI will therefore be able to
observe the νµ → νe transition. One difference to the Minos experiment will be
that NuMI uses the beam in the so called off-axis configuration, i.e. the detector The off-axis

conceptis placed several kilometers from the beam direction from Fermilab to Soudan.
The off-axis concept was introduced in [106] and is based on simple relativistic
kinematics. At a certain angle γ to the flight direction of the pion the energy of
the neutrino produced in the decay of the pion becomes practically independent

2The consequences of relaxing this assumption are discussed in detail in [94] and it is found
that near detector baselines up to several hundred meters do not degrade the performance
significantly.
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of the pion energy. A detector placed at this angle γ with respect to the decay
pipe thus receives a beam, which has a very narrow energy spectrum compared
to the on-axis beam. The high-energy tail is practically absent, which offers a
strong reduction of the neutral current background3. The mean energy of this
off-axis beam is 2.2 GeV. The other difference is that the NuMI detector will be
a rather highly segmented low-Z calorimeter. The main types of interactions
at those energies for νe are quasi elastic and inelastic4 charged current events,
thus requiring a detector which also measures the hadronic energy deposition,
i.e. a calorimeter. The high segmentation is necessary to provide a sufficient
discrimination of νe events against π0’s produced in neutral current interac-
tions. Another irreducible source of background to the νe appearance is the
presence of a small fraction ∼ 0.5% of electron neutrinos in the beam. The
whole project is described in detail in a letter of intent [88] and the parameter-
ization of the experiment follows closely this letter of intent and can be found
in appendix A.2.2. The detector will have a fiducial mass of 17 kt and will be
placed at a distance of 712 km at an off-axis angle of 0.72◦. The power on target
is scheduled to be 0.4 MW and the experiment is going to run for five years.
This setup will be denoted by NuMI throughout this work.

4.1.3 JHF

The JHF experiment uses a neutrino beam which is produced in the Japan
proton accelerator research complex (jparc) and directed towards the Kamioka
mine, which currently houses Kamland and Super-K. The beam is again a pion
decay based muon neutrino beam, very similar to the NuMI beam. The JHF
experiment will also use the off-axis technique described in the previous section
in order to reduce the high-energy tail of the beam. The off-axis angle for JHF is
2◦. The baseline is with 295 km much shorter than the one of NuMI. Therefore a
lower beam energy is required to meet the condition for the oscillation maximum
in equation 4.1. The lower mean beam energy of 0.8 GeV implies that the
fraction of quasi-elastic interactions is much larger and therefore there is no
need to determine the hadronic energy deposition in the detector. This allows
to use the Super-K detector, a water Cherenkov detector with a fiducial mass of
22.5 kt. Super-K has a very good ability to identify electron neutrino charged
current events and to reject neutral current events, mainly π0’s. The JHF beam
also contains a contamination of νe at the level of ∼ 0.5%. The power on target
is planned to be 0.77 MW and the running time is five years. This initial stage
will be denoted by JHF-SK.

There also exists a plan to increase the size of the event sample by im-Upgrade to

JHF-HK proving the proton intensity from 0.77 MW to 4 MW and to build a new water
Cherenkov detector with a fiducial mass of 1 000 kt, which is called Hyper-K.
This second stage will include running with an anti-neutrino beam. The total
running time of eight years is split into two years of neutrino running and six
years of anti-neutrino running. This distribution of running times is chosen
such that the number of events in both modes is roughly the same. The three

3Neutral current events tend to feed down from high energies into the analysis range.
4mainly pion production
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times longer anti-neutrino running is necessary to compensate for the much
lower anti-neutrino cross section. This upgraded version of the experiment is
denoted by JHF-HK. A detailed description of both stages can be found in a
letter of intent [87]. The parameterization of the experiment used in this work
closely follows this paper and can be found in appendix A.2.3.

4.1.4 Neutrino factory

A neutrino factory is based on the idea of using muon decay instead of pion
decay to produce neutrinos [107]. The muons are circulated in a storage ring
with long straight sections. The decay of muons in these straight sections
produces an intense and pure beam of νµ and ν̄e. The possibility to store
anti-muons5 also exists and in this case the beam consists of ν̄µ and νe. The
muons are produced by pion decay and have to be cooled in phase space in
order to make a beam which can be accelerated. This cooling is planned to Muon cooling

be achieved by means of so called ionization cooling, a technique which has
not been demonstrated so far. The Mice experiment is dedicated to prove
this concept [108]. There exist other approaches to this problem and detailed
information can be gained from several design studies performed in Europe, the
United States and Japan [109]. A nice overview is also given in a cern yellow
book [89]. The next step is to accelerate the muons to the desired storage energy
and to transfer them into the storage ring where they are circulated until they
have decayed. The appearance signal ν̄e → ν̄µ in a neutrino factory experiment
consists of anti-muons (in case muons are stored) produced by charged current
deep inelastic scattering. The anti-muons have to be cleanly separated from
the muons produced by the surviving νµ. These anti-muons are called wrong Wrong sign muons

sign muon events, since they have the opposite charge relative to the muons
in the storage ring. The charge identification is achieved by a magnetized
iron calorimeter, which is similar to the Minos detector and described in detail
in [110]6. The calorimeter also provides a reasonable energy resolution for the
hadronic part of each event, thus an event-by-event energy reconstruction of
the neutrino energy is possible. The optimum combination of muon energy
and baseline is considered to be around 50 GeV and 3 000 km (see e.g. [111]).
The neutrino factory setup considered in this work has a total of 4.24 · 1021

useful muon decays at a muon energy of 50 GeV, divided into 50% muons and
50% anti-muons. This corresponds to a power on target of 4 MW and a total
running time of eight years [109]. The fiducial mass of the detector is 50 kt and
the baseline is 3 000 km. This setup is labeled NuFact-II and the details of the
parameterization can be found in appendix A.2.4.

4.2 Analysis technique & standard parameters

In order to assess the physics potential of an experiment, the result of the
experiment is simulated for a given set of true oscillation parameters λ0. The

5by selecting π+ instead of π− at the target
6There are some subtleties concerning the detector performance discussed in detail in the

appendices of [80].
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calculation of the event rates is described in detail in appendix A.1. In a second
step the simulated data are analyzed in very much the same fashion as real data
would be – a fit to the data is performed. The fit is based on a χ2-function, which
is defined in appendix B. The χ2-analysis proceeds in the usual way in order to
obtain the allowed ranges for each parameter of interest. In the computation
of the χ2 the full spectral information of all bins is included7. Also the data
of both appearance and disappearance channels are used simultaneously forLong baseline

setups NuMI, JHF-SK, JHF-HK and NuFact-II. The data of the disappearance channel
constrain the atmospheric parameters ∆m2

31 and θ23. The solar parameters
∆m2

21 and θ12 enter the oscillation probability in equation 3.1 only in the form
of

πsol := ∆m2
21 · sin 2θ12 , (4.4)

therefore only this product is considered a free parameter in the analysis. All
setups studied in this work cannot determine πsol accurately and therefore ex-
ternal information is used to constrain πsol. This information is provided by
the Kamland experiment and the expected accuracy for three years of Kamland
data is ∼ 15% error at 1σ on πsol [97, 112], thus an error of this size is as-
sumed. The above mentioned setups all have to a varying extent non-negligible
matter effects and the matter density uncertainty can strongly influence the
result. Therefore also the matter density is treated as a free parameter and a
1σ error of 5% is assumed [113]. Furthermore the effects of various systematical
uncertainties are included (see appendix B).

For the reactor setups Reactor-I and Reactor-II no appearance data is avail-
able and the disappearance channel cannot provide an accurate determinationReactor setups

of ∆m2
31. Therefore the assumption is made that ∆m2

31 will be well constrained
by the next generation of long baseline experiments, Minos and CNGS. The 1σ
error on ∆m2

31 is therefore taken to be 10% [114], the results do not change even
for errors as large as 50%. The survival probability of ν̄e does not only depend
on πsol as it can be seen from equation 4.3 and therefore the approximation of
using only πsol is abandoned and ∆m2

21 and θ12 are treated as separate para-
meters with a 1σ error of 10% each [97,112]. Matter effects do not play a role
for the reactor setups and therefore the matter density is fixed to ρ = 0, restor-
ing the vacuum case. Again the effects of various systematical uncertainties are
included (see appendix B).

Besides the above given approximations the oscillation probabilities are
computed numerically exact in the three flavour scheme with constant mat-
ter densities of 2.8 g cm−3 for NuMI, JHF-SK and JHF-HK and of 3.5 g cm−3 for
NuFact-II. The numerical complexity introduced by treating all oscillation pa-
rameters as free is considerable, e.g. for the computation of figure 5.12 a total
of 108 probabilities, 5 · 106 convolutions with the detector response function
and 106 evaluations of the χ2-function were needed, consuming a total of 48 h
cpu-time on a Pentium IV8 with 2.4 GHz.

Finally the standard values of the oscillation parameters are introduced.
7The required energy response functions and the respective number of bins are given for

each experiment in appendix A.2.
8Pentium IV is a registered trademark of the Intel corporation.
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The lma-i numbers are lma-i and lma-ii

∆m2
31 = +3.0 · 10−3 eV2 ,

sin2 2θ23 = 1 ,
∆m2

21 = +7 · 10−5 eV2 ,

sin2 2θ12 = 0.8 , (4.5)

and the lma-ii numbers are given by

∆m2
31 = +3.0 · 10−3 eV2 ,

sin2 2θ23 = 1 ,
∆m2

21 = +1.4 · 10−4 eV2 ,

sin2 2θ12 = 0.8 . (4.6)

For sin2 2θ13 only values below the Chooz bound of 0.1 are considered, whereas
the cp-phase can assume any value.

During the final stage of this work the Super-K collaboration has presented Latest Super-K

resultsan updated analysis of their existing data and the new best-fit value for the
atmospheric mass splitting has been shifted downwards to 2.0 · 10−3 eV2 [60].
The analysis presented in [60] does not include any new data but the detector
parameterization has been changed. The lower value of ∆m2

31 implies that all
sensitivities presented in chapter 5 will deteriorate. For the sin2 2θ13 sensitivity
the dependence on the true value of ∆m2

31 is explicitly given. The Super-K
collaboration has presented an updated analysis of the day/night asymmetry in
solar neutrinos as well [115]. It seems that this new analysis excludes the lma-ii

solution at 3σ. However this conclusion can depend sensitively on details of
the analysis and is therefore to be considered with caution.
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Chapter 5

Main results

The results shown in the following present an update and extension of those
obtained in [80,94–96]. They are organized according to the scheme introduced
in chapter 3. First those experiments which have only one observable, i.e.
exclusively only neutrino or anti-neutrino sources available, are discussed and
their ability to determine sin2 2θ13 is studied in dependence of ∆m2

31 and ∆m2
21.

As it was shown in section 3.3 they cannot have any sensitivity to the mass
hierarchy or restrict the cp-phase δ. Therefore it is necessary to combine these
initial experiments in order to gain some physics potential concerning the mass
hierarchy and cp-effects. The next logical step is to consider setups which have
two observables in a single experiment, i.e. both neutrino and anti-neutrino
sources available. The combination of neutrino and anti-neutrino data is a
very powerful tool to alleviate the consequences of not knowing the cp-phase in
advance and thus improves the ability to measure sin2 2θ13 considerably. The
determination of the mass hierarchy becomes feasible for those experiments
which have sufficiently long baselines and high enough energies in order to have
large matter effects. These experiments have a very good potential to measure
the leptonic cp-phase and to discover cp-violation in the lepton sector. Finally
the issue of combining several of these setups in order to resolve degeneracies
is discussed.

5.1 Reactor

The two reactor setups which are discussed in the following do not fit neatly into
the organizing principle of this chapter, since they use instead of the apperance
transition νe ↔ νµ the disappearance mode ν̄e → ν̄e. This poses considerable
experimental challenges as discussed in section A.2.1 and in more detail in [94].
The big advantage is however that the transition probability Pν̄e→ν̄e does not Pν̄e→ν̄e is

independent of

the cp-phase

depend on the cp-phase δ. Furthermore by choosing the baseline such that the
first oscillation peak of the atmospheric mass splitting ∆m2

31 is clearly within
the energy range of the experiment the influence of the solar parameters ∆m2

21

and θ12 becomes very small. Thus a reactor experiment provides a theoretically
very clean laboratory to study θ13.

47



48 CHAPTER 5. MAIN RESULTS

0.005 0.01 0.02 0.03 0.05 0.1
Limit on sin2 2

�

13

1

2

3

4

5

6

7

T
ru

e
va

lu
e

of

�m
312

10

� 3
eV

2

Reactor �I
Reactor �II

0.005 0.01 0.02 0.03 0.05 0.1
Limit on sin2 2

�

13

1

2

3

4

5

6

7

T
ru

e
va

lu
e

of

�m
312

10

� 3
eV

2

Figure 5.1: The sensitivity limits on sin2 2θ13 as functions of the true value of ∆m2
31.

They are shown for the Reactor-I and Reactor-II setups at the 90% confidence level. The
variation of the limit with ∆m2

21 is negligibly small and therefore not shown.

In figure1 5.1 the sensitivity limit to sin2 2θ13 as a function of ∆m2
31 is

shown at 90% cl. It is clearly visible that the baseline of 1.7 km is optimized for
a value of ∆m2

31 around 3.0·10−3 eV2. The limit does not change perceptibly for
different values of ∆m2

21, therefore the dependence on ∆m2
21 is not shown. The

only oscillation parameter whose correlation is sizeable is ∆m2
31. In principle

a reactor experiment can also measure ∆m2
31 via the position of the oscillation

dip in the event rate spectrum, whose depth depends on the value of sin2 2θ13.
This determination, however, is much less accurate even for large values of
sin2 2θ13 than what will be achieved by long baseline experiments like Minos
and CNGS [114]. Thus the constraint on ∆m2

31 which will be derived by MinosLong baseline data

constrains ∆m2
31 and CNGS is used in order to minimize the impact of this correlation. It turns

out that an error on ∆m2
31 of around 30− 50% is tolerable and the result does

not improve once this error is reduced.
The obtainable sensitivity depends crucially on the level of systematic er-

rors and backgrounds. On the basis of the total event rate the sensitivity for
a disappearance experiment is given by the overall normalization uncertainty,
e.g. a normalization error of 1% would wash out any disappearance signal at
the same level of ∼ 1%. However if the number of events is large enough, the
spectral signature of oscillations is very distinct and cannot be destroyed by an
overall normalization uncertainty. In fact, for very high statistics experiments
like Reactor-II it becomes possible, by exploiting the spectral information, toSpectrum allows

to measure the

normalization

determine the normalization as an independent parameter simultaneously with
sin2 2θ13 to a very good accuracy. In that case the limit is rather independent of
the normalization uncertainty and other error sources become dominant. The
most relevant source of additional systematical errors is the limited knowledge

1All figures in this chapter are calculated for the lma-i numbers as true parameters, with
exception of those true parameters shown on the axes.
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Figure 5.2: The sensitivity limits on sin2 2θ13 as functions of the true values of ∆m2
31

(left plot) or ∆m2
21 (right plot), respectively. They are shown for the JHF-SK and NuMI

setups at the 90% confidence level. In the right figure, only the Kamland-allowed region
is shown.

on the isotope composition of the reactor and the accuracy of the neutrino
spectra. These uncertainties can be largely canceled by the comparison of near
and far detector. To which extent this cancellation occurs is however strongly
dependent on the degree of equality of the energy response of the near and the
far detector. For example an energy calibration error may spoil this cancella-
tion. Another limiting factor is the possible presence of backgrounds, which
are not the same for near and far detector. The different background levels
have their origin in several factors like the different overburden and counting
rate of near and far detector. The level to which the cancellation works can
only be determined by an intensive r&d program. In [94] a detailed study of
the impact of different levels of systematical errors is presented and the main
conclusion is that with a moderate improvement on previous experiments like
Chooz it seems possible to reach sensitivities to sin2 2θ13 at the order of 10−2,
which is a one order of magnitude improvement compared to the existing limit.

5.2 Initial superbeam

The initial superbeam experiments JHF-SK and NuMI will provide a measure-
ment of ∆m2

31 and sin2 2θ23 of unprecedented accuracy by observing with very
high statistics the νµ → νµ transition [87, 88]. Their main purpose however is NuMI and

JHF-SK are very

similar

either to measure θ13 or to improve the limit. Both experiments are in their
current configuration optimized for a value of ∆m2

31 around 3.0 ·10−3 eV2. This
can also be clearly seen in the left hand panel of figure 5.2, where the limit
on sin2 2θ13 at 90% cl is shown as a function of ∆m2

31 for both setups. The
performance of both experiments is very similar, which is not surprising, since
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both experiments observe the νµ → νe transition in the first oscillation peak.
The dependence of the limit obtained at NuMI on ∆m2

31 is somewhat more
pronounced since the beam is relatively narrower than the one of JHF-SK (see
also figure 4.1). The dependence of the limit on ∆m2

21 is shown in the right
hand panel of figure 5.2. Again the behavior of the experiments is very similar
for the same reasons as already stated. In contrast to a reactor experiment,
JHF-SK and NuMI suffer a strong reduction of their capability to improve theNo improvement

on Chooz for large

∆m2
21

limit on sin2 2θ13 when the solar mass splitting ∆m2
21 becomes larger. At the

largest currently allowed value of ∆m2
21 ' 3.0 · 10−4 eV2 they can no longer

yield any improvement compared to the Chooz bound. This behavior is nicely
described by equation 3.16 and explained in section 3.3. Its origin is the fact
that the cp-phase is not known and strongly correlated with θ13.

Both JHF-SK and NuMI have the same level of background (∼ 20 events)
due to a contamination of the beam with νe (∼ 10 events) and a certain fraction
of neutral current events misidentified as νe event (∼ 10 events). Even if it was
possible to improve the neutral current rejection by a factor of ten the overall
background would be only reduced by a factor of 2, which in turn would improve
the performance only by a factor of

√
2. A reduction of the beam contamination

is not possible for this kind of beams. The systematical uncertainty of these
backgrounds of approximately 5% is not relevant since the statistical error is
with ∼ 20% much larger. Thus the only major improvement possible is to
increase either the luminosity, the detector mass or the running time, i.e. the
cost of the experiment.

5.3 Combinations of initial experiments

None of the so far discussed experiments has on its own the ability to test the
mass hierarchy or to restrict the cp-phase, albeit for different reasons. The
reactor setups Reactor-I and Reactor-II are not sensitive to the mass hierarchy,
since there are no matter effects at those energies and baselines2. The cp-phase
cannot be accessed by reactor experiments, because Pν̄e→ν̄e does not depend on
δ. JHF-SK and NuMI have only one observable and can access neither the mass
hierarchy nor the cp-phase for the reasons described in section 3.3.

However, the limitations of these experiments can, to some degree, be cir-
cumvented by combining their data in a suitable way. This issue has also been
studied in [95,117].

Sensitivity to the mass hierarchy

The determination of the mass hierarchy requires sufficiently large matter effects
and a second observable to break the ambiguity introduced by the cp-phase.
Thus any combination of experiments has to involve NuMI, since NuMI has the
largest baseline and highest energy of all the initial experiments and therefore

2In [116] it was pointed out that there is an interference effect in the transition probability,
which leads in principle to a sensitivity to the mass hierarchy even in the absence of matter
effects. This was studied in great detail with a simulation of the experiment in [82]. It turns
out that this effect is not relevant for the setups under consideration here.
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Figure 5.3: The sensitivity to a positive sign of ∆m2
21 (normal mass hierarchy) as

a function of the true values of sin2 2θ13 and ∆m2
21 within the Kamland-allowed region.

Sensitivity at the 90% confidence level exists on the right-hand sides of the curves. It
is shown for several combinations of experiments: for JHF-SK combined with NuMI at
a baseline of 890 km [95], for NuMI at a baseline of 890 km combined with Reactor-II,
and for JHF-SK combined with NuMI at a baseline of 890 km and Reactor-II. The lma

best-fit values are marked by the horizontal grey lines. This figure is taken from [94].

the largest matter effects. However, it turns out that even NuMI in its original Large matter

effects are

essential

configuration with a baseline of 712 km is not optimal. The best choice is
to build the NuMI far detector at a baseline of 890 km, which is the longest
baseline at the off-axis angle of 0.72◦. The second observable could be delivered
by an anti-neutrino run at NuMI itself, however the cross section and the beam
luminosity make this an unfavorable scenario. A better choice is to use the
data of the JHF-SK neutrino run to break the δ ambiguity. The resulting
sensitivity is shown in figure 5.3 at 90% cl as a function of sin2 2θ13 and ∆m2

21.
Again there is a strong degradation of the sensitivity for increasing ∆m2

21,
since the matter effects become weaker relative to the increasing cp-effects.
Adding the data of Reactor-II improves the situation considerably, since they
strongly restrict the possible values of sin2 2θ13, which in turn excludes certain
values of the cp-phase. In that case the sensitivity is nearly independent of the
solar mass splitting and a determination of the mass hierarchy is possible for
sin2 2θ13 > 0.05.

Sensitivity to δ

The measurement of the cp-phase requires either the inclusion of anti-neutrino
data or a precise determination of θ13. The first possibility is shown in figure 5.4
with the label JHF-SKcc, where the subscript cc indicates a sharing of the total
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(neutrino running only) combined with Reactor-II. The lma-ii best-fit value is marked
by the horizontal grey line. This figure is taken from [94].

running time on neutrinos and anti-neutrinos in such a way that the number of
events for both modes is approximately the same. In figure 5.4 the sensitivity
to maximal cp-violation for the case δ0 = +π/2 is shown as a function of
sin2 2θ13 and ∆m2

21. Those two parameters determine the size of cp-effects,
since cp-effects are suppressed by the smallest mass splitting (∆m2

21) and the
smallest angle (θ13). The curve labeled JHF-SKcc barely touches the lma-ii

value of ∆m2
21. A better option is to run JHF-SK exclusively with neutrinosAvoid

anti-neutrino

running

and to use the reactor data to constrain sin2 2θ13, which is shown as the curve
labeled JHF-SK+Reactor-II. This combination has a much better reach in both
∆m2

21 and sin2 2θ13. The reason for this is that the reactor data can replace
the anti-neutrino run at JHF-SK with a much better statistical accuracy.

5.4 Advanced superbeam

An advanced superbeam experiment like JHF-HK has both neutrino and anti-
neutrino running, therefore it belongs to the category of experiments which have
intrinsically two observables. The physics reach is strongly improved by this,
however the parameter dependence of the corresponding sensitivities is rather
involved because of the existence of multiple solutions as already discussed in
sections 3.5 and 3.6. In the presence of multiple solutions it can become very
difficult to summarize the results of an experiment in only a couple of numbers,
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Figure 5.5: Sensitivity limit on sin2 2θ13 for JHF-HK as a function of the true value
of ∆m2

31 (left hand panel) and of ∆m2
21 (right hand panel). Shown are contours of

constant χ2
l
, the thick black lines have a value of χ2

l
given by the corresponding labels,

whereas the thin grey lines are separated by ∆χ2
l

= 1.

as it was discussed in detail in section 3.7. Therefore the presentation of the
results will differ from the previous section. At some points it will be necessary
to go into more detail and to highlight the complexity which originates from
multiple solutions.

θ13 sensitivity

The combination of neutrino and anti-neutrino data restricts the set of possible
solutions of equations 3.8 considerably and once spectral information is included
disconnected solutions can appear. As a consequence χ2

l
may no longer be

monotonous, there can even appear additional local minima. In those cases the
limit as a function of the confidence level may become discontinuous. Therefore
the limit at a fixed confidence level may cease to be a meaningful quantity. For
this reason the contours of constant χ2

l
are shown in figure 5.5. The sensitivity

limit as defined in section 3.7 at a certain confidence level is then given by the
position of the rightmost point on the contour with the corresponding value of
χ2

l
for a fixed value of the true parameters3.
The dependence of the sin2 2θ13 limit on ∆m2

31 has not changed very much in
comparison to figure 5.2 as it can be seen from the left hand panel in figure 5.5.
However the right hand panel clearly shows that the dependence on ∆m2

21

is very different. It does no longer break away at large values of ∆m2
21, in Anti-neutrino data

improves ∆m2
21

dependence

fact at low confidence levels, below 3σ, the limit improves for large values of
∆m2

21 in contrast to the result of section 5.2. The reason for this different
behavior is that the possible combinations of the cp-phase δ and sin2 2θ13 are

3χ2
l is defined in equation B.4.
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Figure 5.6: Sensitivity to normal mass hierarchy for JHF-HK as a function of the
true values of sin2 2θ13 and δ. Shown are contours of constant χ2

h
, the thick black lines

have a value of χ2
h

given by the corresponding labels, whereas the thin grey lines are
separated by ∆χ2

h
= 1.

highly restricted and the degree of rejection of certain cp-phases increases with
increasing ∆m2

21. At even larger values of ∆m2
21 (not allowed by Kamland and

not shown in figure 5.5) a second minimum in χ2
l

appears due to the intrinsic
ambiguity as defined in equation 3.34. Within the Kamland-allowed range of
∆m2

21 a sensitivity limit at 90% cl of ∼ 2 · 10−3 can be reached. A further
improvement on this value is hardly possible since the limit is already dominated
by the systematical background uncertainty. For an even lower limit a neutrino
factory is necessary.

Sensitivity to the mass hierarchy

JHF-HK is not very well suited to determine the mass hierarchy since its baseline
is too short and its energy too low to develop sizeable matter effects. However,JHF-HK has too

little matter

effects

there exists a proposal to direct a high energy beam from the Brookhaven
National Laboratory towards the Homestake mine onto a megaton water Che-
renkov detector [101]. This experiment would be much more suited to perform
a measurement of the mass hierarchy since the matter effects are much larger.
However no reliable background estimates for this proposal have been presented
and it is not clear whether a water Cherenkov detector has a sufficient neutral
current rejection at those energies. Therefore this idea is not considered further
here and instead the capabilities of JHF-HK to determine the mass hierarchy
are discussed.

In figure 5.6 the contours of constant χ2
h

are shown4 as a function of the true
values of sin2 2θ13 and δ. The true data set was computed with a normal mass
hierarchy and the lma-i values. For every point on the contour where χ2

h
= 9

the inverted mass hierarchy is excluded at 3σ cl. First of all the dependence
4χ2

h is defined in equation B.5
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Figure 5.7: Sensitivity to maximal cp-violation for JHF-HK as a function of the true
values of sin2 2θ13 and ∆m2

21. In the left hand panel contours of constant χ2
cp

(−π/2) are
shown, whereas in the right hand panel contours of constant χ2

cp
(+π/2) are depicted.

The thick black lines have a value of χ2
cp

(±) given by the corresponding labels, whereas
the thin grey lines are seperated by ∆χ2

cp
(±) = 1.

on δ is very pronounced, the 2σ contour (χ2
h

= 4) varies by nearly one order
of magnitude in sin2 2θ13. Second there is a cusp at δ0 ' π/2 which originates
from a jump by π in the fitted value of δ. The reason for this jump is that
there are two local minima in the χ2-function separated by π and at δ0 = π/2
the global minimum jumps from one to the other local minimum. Some details
to this mechanism can be found in [118]. This nicely illustrates the complexity
introduced by the presence of multiple, disconnected solutions. The strong
dependence on δ0 makes it very difficult to quote a single value of sin2 2θ13 down
to which the mass hierarchy can be determined. Furthermore the sensitivity to
the mass hierarchy also strongly depends on the true value of ∆m2

21. It tends
to decrease with increasing values of ∆m2

21 and for very large values it improves
again. The value of ∆m2

21 where the turnover happens is also dependent on the
value of δ0.

Sensitivity to δ

As already discussed in section 3.7 there are several quantifiers for the ability
to measure δ. In this section two of them are used in order to illustrate the
performance of JHF-HK for the determination of the cp-phase – the sensitivity
to maximal cp-violation and the sensitivity to any cp-violation. The exact
definitions of maximal cp-violation χ2

cp
(±) and any cp-violation χ2

cp
are given

in equation B.6.
In figure 5.7 the sensitivity to maximal cp-violation is shown as a function of

the true values of sin2 2θ13 and ∆m2
21. The lines are contours of constant χ2

cp
(±),
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Figure 5.8: Sensitivity to any cp-violation for JHF-HK as a function of the true
values of sin2 2θ13 and δ. Shown are contours of constant χ2

cp
, the thick black lines

have a value of χ2
cp

given by the corresponding labels, whereas the thin grey lines are
separated by ∆χ2

cp
= 1.

where the thick black lines have a value of χ2
cp

(±) given by the corresponding
labels, whereas the thin grey lines are separated by ∆χ2

cp
(±) = 1. In the left

hand panel the case δ0 = −π/2 is shown. In this case the sensitivity has a very
simple behavior – it improves when sin2 2θ13 and/or ∆m2

21 get larger. This
reflects just the fact that cp-effects are supressed by both ∆m2

21 and sin2 2θ13.
Furthermore the simplicity of the curves indicates that in this case multiple
solutions do not play an important role. In contrast the case δ0 = +π/2 shown
in the right hand panel of figure 5.7 exhibits an interesting structure for low
values of ∆m2

21 and the largest values of sin2 2θ13. This valley in the lower
right corner of the plot is due to the phenomenon called π-transit. The solution
in the halfspace where ∆m2

31 < 0 has a different value for the cp-phase than
δ0, and for changing true values of sin2 2θ13 δ0 is continuously mapped to any
fitted value of the cp-phase. For a specific true value of sin2 2θ13 δ0 = +π/2 is
mapped to δ = π [80]. The position of the π-transit depends also on the trueApproximate

π-transit value of ∆m2
21, therefore the locations of the π-transit map out a line in the

sin2 2θ13-∆m2
21 plane. In the case of JHF-HK the π-transit only occurs in an

approximate sense, since δ0 = +π/2 is never exactly mapped to δ = π.
The feature of an approximate π-transit is also visible in the upper half of

figure 5.8 (see also [118]). In this figure the sensitivity to any cp-violation is
shown as a function of the true values of sin2 2θ13 and δ. The lines are contours
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of constant χ2
cp

, where the thick black lines are labeled with the values of χ2
cp

.
The thin grey lines are separated by one unit in χ2

cp
. As already mentioned the

two valleys for positive δ0 and large sin2 2θ13 are due to the π-transit. Except
for the region where the π-transit occurs JHF-HK offers an excellent discovery
potential for leptonic cp-violation provided sin2 2θ13 is larger than ∼ 10−2.
From figures 5.7 and 5.8 it is also obvious that in some cases the problem of
multiple solutions is a severe limitation in the search for cp-violation.

5.5 Neutrino factory

The presence of multiple, disconnected solutions at a neutrino factory is much
more pronounced than for superbeam experiments. A neutrino factory with
a baseline of 3 000 km does not operate at the first oscillation maximum; for
a value of ∆m2

31 = 3.0 · 10−3 eV2 the first maximum occurs at 7.3 GeV, an
energy at which the detector efficiency is very low. Most events at a neutrino
factory are coming from energies around 30 GeV. Therefore a neutrino factory
is operating clearly off-peak (see also figure 4.1) and this strongly increases the
problems associated with multiple solutions as it will be shown in the following.

θ13 sensitivity

On the basis of a simple two neutrino approximation the sensitivity of a neutrino
factory to sin2 2θ13 should be exceedingly good, since the background levels
are extremely low and the statistics is very large. In the original paper [107]
sensitivities around 10−5 are found. It was, however, realized later5 that within
a three neutrino framework and with the currently favored values for ∆m2

21

this picture has to be revised [80, 81, 84, 92, 93, 96]. The main problem is that
sin2 2θ13 and the cp-phase are highly correlated, which was discussed in the
context of a neutrino factory in [119, 120]. Earlier works on cp-effects can be
found in [121]. The cp-phase is not only correlated with θ13 but, even worse,
may give rise to multiple solutions (see sections 3.5 and 3.6).

The χ2
l

at a neutrino factory usually has a second minimum which makes
the definition of a limit somewhat ambiguous. This is illustrated in figure 5.9,
where the limit on sin2 2θ13 is shown as a function of the true values of ∆m2

31

(left hand plot) and of ∆m2
21 (right hand plot). The lines are contours of

constant χ2
l
. The dependence on ∆m2

31 does not exhibit the typical oscillation
feature as for example in the left hand panel of figure 5.2, because at a neutrino
factory most events do not originate from the oscillation maximum. For small Multiple solutions

– two minima in

χ2
l

values of ∆m2
31 χ2

l
clearly has a second minimum around sin2 2θ13 ' 10−2.

Its origin is the intrinsic ambiguity as defined in equation 3.34. This second
minimum is rather deep and appears already at the 1σ cl. With increasing
∆m2

31 the position of the second minimum moves to lower values of sin2 2θ13

and at the same time it becomes shallower. The reason for this behavior is
that with increasing ∆m2

31 the ratio α of ∆m2
21 to ∆m2

31 decreases. Thus the
terms containing the cp-phase dependence in equation 3.1 loose relative weight

5In the development of the field the neutrino factory came a long time before superbeams,
thus basically all initial works dealt with the case of a neutrino factory.
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Figure 5.9: Sensitivity limit on sin2 2θ13 for NuFact-II as a function of the true value
of ∆m2

31 (left hand panel) and of ∆m2
21 (right hand panel). Shown are contours of

constant χ2
l
, the thick black lines have a value of χ2

l
given by the corresponding labels,

whereas the thin grey lines are separated by ∆χ2
l

= 1.

and the effects of the cp-phase are smaller. A similar argument applies also for
the dependence on ∆m2

21, which is shown in the left hand panel of the same
figure. With increasing ∆m2

21 the ratio α also increases and the position of the
second minimum is moved to larger values of sin2 2θ13. At the same time the
cp-effects and the statistics become larger, thus improving the rejection of the
second solution. The confidence level at which the second minimum appears
therefore increases with ∆m2

21.
Figure 5.9 also illustrates the problems associated with the definition of the

sensitivity limit as in section 3.7. At 3σ cl the limit as a function of ∆m2
21

would exhibit a discontinuity at ∆m2
21 ' 1.1 ·10−4 eV2, immediately below this

value the limit is 2 · 10−3 and immediately above it is 10−4. The position of
this discontinuity obviously depends sensitively on the chosen confidence level.

Sensitivity to the mass hierarchy

The sensitivity to the mass hierarchy at a neutrino factory is in principle very
good, since the baseline is very long and the energy is high enough to savely
cover the msw-resonance energy of roughly 10 GeV. In a two neutrino approxi-
mation, i.e. ∆m2

21 = 0 the sensitivity to the mass hierarchy is approximately the
same as for sin2 2θ13 [122]. This is no longer true for values of ∆m2

21 > 10−5 eV2.
The basic effect of changing the mass hierarchy is that the msw-resonance is
moved from neutrinos to anti-neutrinos, thus the relative number of events in
both channels is shifted. The cp-phase can have the same effect due to thecp-phase versus

matter effects different sign of the sin δ term in equation 3.1 for neutrinos and anti-neutrinos.
Therefore it is in principle possible to mask the effect of the mass hierarchy by
changing the fitted value of the cp-phase. The extent to which this masking is
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Figure 5.10: Sensitivity to normal mass hierarchy for NuFact-II as a function of the
true values of sin2 2θ13 and δ. Shown are contours of constant χ2

h
, the thick black lines

have a value of χ2
h

given by the corresponding labels, whereas the thin grey lines are
separated by ∆χ2

h
= 1.

possible strongly depends on the true value of the cp-phase, e.g. for δ = 0 the
difference between neutrino and anti-neutrino transition probabilities is mini-
mal6 and therefore a shift of the fitted cp-phase can compensate for changing
the mass hierarchy in the fit. If on the other hand the difference between neu-
trino and anti-neutrino probability due to the cp-phase is already maximal it
may become very difficult to do so. Therefore the sensitivity to the mass hier-
archy should show a strong dependence on both the true value of sin2 2θ13 and
the true value of δ.

For this reason in figure 5.10 the sensitivity to the mass hierarchy is shown
as a function of the true values of sin2 2θ13 and δ. The lines are contours of
constant χ2

h
and the black lines are labeled with the values of χ2

h
, whereas the

grey lines are separated by ∆χ2
h

= 1. As expected from the previous paragraph
the dependence on both parameters is strong. The 5σ curve behaves in a
nice sinusoidal way. However at lower confidence levels many features appear,
especially for δ0 = −π/2. The reason is that also for this measurement the
interplay of the cp-phase and matter effects is very important and as it will
be explained in more detail in the next section a very interesting effect occurs
at δ0 = −π/2. As already mentioned for JHF-HK the sensitivity first decreases
with increasing ∆m2

21, but recovers for even larger values of ∆m2
21. Also for

NuFact-II the value of ∆m2
21 where this turnover happens is dependent on the

true value of the cp-phase.
Due to the problems associated with the interplay of matter and cp-effects Very long baseline

helpsit could be necessary to go to longer baselines around 7 000 km where the cp-
effects are completely supressed by matter effects. This observation has been

6This is true for negligible matter effects, once they are sizeable the value at which the
minimal and maximal difference occurs is shifted (see section 3.4).
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Figure 5.11: Sensitivity to maximal cp-violation for NuFact-II as a function of
the true values of sin2 2θ13 and ∆m2

21. In the left hand panel contours of constant
χ2

cp
(−π/2) are shown, whereas in the right hand panel contours of constant χ2

cp
(+π/2)

are depicted. The thick black lines have a value of χ2
cp

(±) given by the corresponding
labels, whereas the thin grey lines are separated by ∆χ2

cp
(±) = 1.

independently made by several authors [84, 92, 120, 122] and was pursued in
detail in [96] where it was shown that at the magic baseline of ∼ 7 300 km it is
possible to determine the mass hierarchy at 3σ cl down to values of sin2 2θ13 of
10−4 independently of δ and ∆m2

21.

Sensitivity to δ

As for JHF-HK in the previous section the sensitivity to maximal cp-violation
and the sensitivity to any cp-violation will be used in order to quantify the per-
formance of NuFact-II for the determination of the cp-phase (for the definition
of these quantities see equation B.6).

In figure 5.11 the sensitivity to maximal cp-violation is shown as a function
of the true values of sin2 2θ13 and ∆m2

21. The lines are contours of constant
χ2

cp
(±) and the black lines are labeled accordingly. The grey lines are separated

by one unit in χ2
cp

(±). In both cases δ0 = ±π/2 there is a valley in χ2
cp

(±).
The origin of the valley in the left hand panel (δ0 = −π/2) is the alreadyπ-transit

described π-transit. The valley is very deep and basically reaches χ2
cp

(±) ' 0
for most values of ∆m2

21. The valley in the right hand panel (δ0 = +π/2) is
far less pronounced and originates from a similar source as the valley in the
sin2 2θ13-sensitivity shown in the right hand panel of figure 5.9. The simple
reason is that there are multiple solutions which in some cases lie exactly at
the fitted value of δ = π. Obviously the presence of multiple solutions also
presents a severe problem at a neutrino factory. The strong upward bending
of the contours in both panels at large sin2 2θ13 > 10−3 is exclusively due to
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Figure 5.12: Sensitivity to any cp-violation for NuFact-II as a function of the true
values of sin2 2θ13 and δ. Shown are contours of constant χ2

cp
, the thick black lines

have a value of χ2
cp

given by the corresponding labels, whereas the thin grey lines are
separated by ∆χ2

cp
= 1.

the matter density uncertainty of 5%. A reduction of this error to 1% would Matter density

uncertainty is the

dominant error

source for large

sin2 2θ13

strongly reduce this effect and the sensitivity at sin2 2θ13 ' 10−3 would prevail
up to the Chooz bound. The issue of the impact of matter density uncertainties
and different parameterizations is discussed in very great detail in e.g. [123],
whose references furthermore provide a detailed picture of the large number of
works dealing with this topic.

The sensitivity to any cp-violation exhibits an even more complex depen-
dence on the true values of sin2 2θ13 and δ as it is shown in figure 5.12. The
lines are now contours of constant χ2

cp
and once more the thick black lines are

labeled with the according values of χ2
cp

and the grey lines are separated by one
unit. The semilunar valley for negative values of δ is due to the π-transit and
becomes very deep (χ2

cp
< 1) at around sin2 2θ13 = 10−3 and δ = −π/2, clearly

reflecting the valley in the left hand panel of figure 5.11. For positive values of
the cp-phase there is now a much shallower valley, which becomes relevant only
for sin2 2θ13 smaller than ∼ 5 · 10−4. Also this feature has a clear correspon-
dence in the right hand panel of figure 5.11. The deterioration of the sensitivity
for relatively large values of sin2 2θ13 > 10−3 is again solely due to the matter
density uncertainty. This effect makes JHF-HK a more accurate experiment at
large values of sin2 2θ13 > 10−2 (see figure 5.8). Therefore it seems necessary
to improve the knowledge of the matter profile along the specific baseline of a
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neutrino factory considerably. Clearly the issue of improving the accuracy of
the knowledge of the matter profile deserves further intensive studies once a
neutrino factory enters into the stage of having a proposal submitted.7

5.6 Possible strategies to resolve degeneracies

In the previous sections it was shown that the presence of multiple solutions
considerably impairs the physics capabilities of the second generation experi-
ments. For this reason a number of possible remedies have been proposed. They
all have in common that they rely on the inclusion of complementary data in
the analysis in order to lift at least some degeneracies.

In [124] the combination of an advanced superbeam experiment with theSuperbeam &

neutrino factory data of a neutrino factory was studied. In this paper it was found that this
combination can successfully remove degeneracies for values of sin2 2θ13 larger
than 10−3 in an approximation where only θ13 and δ were considered as free pa-
rameters in the fit. The complementarity of neutrino factories and superbeams
is due to the fact that the latter work at the oscillation peak whereas a neutrino
factory does not. The different energy dependence of the four terms in equa-
tion 3.1 then allows to reject many of the multiple solutions. For small values of
sin2 2θ13 below 10−3 the problem arises that the superbeam data is completely
dominated by background and systematical errors and therefore ceases to be
useful.

Another possibility is to extend the class of possible final states in the oscil-Silver channel

lation, i.e. the detection of ντ ’s. This was studied in detail in [99], the so called
“silver” channel allows to resolve degeneracies very cleanly down to values of
sin2 2θ13 around 10−3. Again these studies were performed in the approxima-
tion of only two free parameters: θ13 and δ. The value of the νe → ντ transition
lies in its complementary behavior with respect to δ and θ23. The experimental
challenge imposed by the routine detection of ντ ’s is considerable and in [99] a
detailed study of the performance of an Opera-like detector [125] is performed,
with the result that for sin2 2θ13 below 10−3 the silver channel becomes back-
ground dominated. Another possibility for the clean detection of ντ ’s could be
the liquid argon technology currently under development for the Icarus [126]
experiment.

A novel idea for a very bright and clean source of νe has been proposed
in [127] – the β-beam. Here the decay of relatively short-lived β-unstable nucleiβ-beam

is used to produce an intense beam of νe in very much the same fashion as a
neutrino factory exploits the decay of muons. It is also possible to produce ν̄e
by using a different nucleus. The advantage of this type of beam compared
to conventional beams is that the beam is very clean – there are only νe or
ν̄e in the beam and the spectrum is very well known. The main technological
challenges are the production of the radioactive nuclei in a sufficient abundance
and the issue of radioactive contamination of the whole facility. The β-beam
would be highly complementary to a superbeam since it would observe the same

7
nb – Seismometers are very cheap compared to the estimated cost of a neutrino factory.

One seismometer has roughly the same price as one photomultiplier.
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probability however with interchanged initial and final state. Thus the sign of
the sin δ term in equation 3.1 is opposite. However up to now no study on
this option has been performed in order to demonstrate its capability to resolve
degeneracies. It is to be expected that this combination should work excellently
down to sin2 2θ13 ' 10−3. At this point the superbeam data become dominated
by backgrounds and systematical errors. The β-beam itself however may go
down much further in sin2 2θ13 provided it is possible to reach the required
luminosities. The physics potential of a β-beam is studied in [128], however not
including multiple solutions.

Finally the possibility exists to have two baselines at a neutrino factory
simultaneously, since the shape of the storage ring easily offers two baselines. Magic baseline

The optimal combination would be to have one detector at ∼ 3 000 km and the
other at around 7 200 km. This observation has been independently made by
several authors [84,92,120,122]. The usefulness of this combination for resolving
degeneracies has been demonstrated in [96]. The longer baseline has the special
feature that at this specific baseline the dependence of the oscillation probability
on ∆m2

21 and δ vanishes due to matter effects. Therefore this baseline is called
magic and the condition for it is

sin(∆Â) = 0 ⇔
√

2GFneL = 2π , (5.1)

yielding a value for L of 7 250 km for a realistic matter profile. The magic
baseline allows to cleanly resolve degeneracies down to values of sin2 2θ13 below
10−4. The technical challenge here is to build the storage ring at a rather steep
angle.

Each of these possibilities offers its advantages but also has some drawbacks. Testing the ckm

mechanismEspecially the size of sin2 2θ13 will play an important role in deciding which
option is the most suitable. It is however very important to keep in mind that in
the light of possible deviations from the ckm-like mixing of three lepton flavours
it will be crucial to have several independent measurements of the oscillation
parameters. Furthermore it will be necessary for high precision neutrino physics
to drastically reduce the errors on the solar parameters.
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Chapter 6

Conclusion & outlook

The flavour transitions of atmospheric and solar neutrinos have now been con-
vincingly proven and they are the first clear evidence for physics beyond the
Standard Model. The most plausible mechanism for these flavour transitions is
neutrino oscillation and therefore a broad experimental program is underway to
test this mechanism. Under the assumption that neutrinos oscillate the results
of Kamland rule out any other solution than lma, with a relatively large solar
mass splitting and mixing angle. The size of both the mass splitting and the
angle imply that three flavour effects cannot be neglected for precision neutrino
oscillation physics and even the discovery of leptonic cp-violation may now be
possible. Although neutrino oscillation has been discovered with natural neu-
trino sources, the road to high precision experiments leads inevitably to the use
of artificial neutrino sources. The uncertainties connected with the production
of neutrinos in natural sources are already now larger than most other experi-
mental errors, therefore any improvement of the experiments has to start with
the source.

The proposed new neutrino sources include nuclear reactors, superbeams,
β-beams and neutrino factories. For many of the new experiments also advances
in detector technology are envisaged like megaton scale water Cherenkov detec-
tors. In this work the physics potential of a subset of the possible combinations
of sources and detectors for future experiments was discussed. Specifically the
sensitivities to the small mixing angle θ13, to the mass hierarchy and to cp-
violation were studied and the obtainable sensitivities for reactor experiments,
initial and advanced superbeams and a neutrino factory were given. Moreover
some possible combinations of the different setups were evaluated and their
potential to resolve degeneracies was discussed. The analysis strategy was pre-
sented in detail based on an analytical description of the problem. New results
on the location of degenerate solutions were obtained and a classification scheme
for experiments was introduced. For a subset of experiments an analytical ex-
pression for the sensitivity limit to θ13 was derived, which agrees very well
with the full, numerical calculation. The statistical analysis was performed in a
full three flavour framework, where the correlation of all oscillation parameters
is included as well as the existence of multiple solutions. Matter effects can
substantially alter the oscillation probabilities and were therefore accurately
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treated and specifically a possible uncertainty was taken into account. The
basis for the statistical analysis was the computation of the event rates in each
experiment. A detailed simulation of the detector response was performed to
calculate the event rates and the most relevant sources of systematical errors
have been considered. The detector simulation has been carefully calibrated
against the available literature.

The reactor setups Reactor-I and Reactor-II do not have any sensitivity to
the mass hierarchy or to cp-violation due to the form of the electron neutrino
disappearance probability. This implies that the reactor setups are free of any
degeneracy and therefore allow an unambiguous extraction of θ13. In order to
keep the systematical errors at bay it is mandatory to use a near detector. The
sensitivity1 to the small mixing angle was found to be around sin2 2θ13 ' 10−2,
which is comparable to what initial superbeams can achieve. The determination
of θ13 at a reactor experiment is independent of the value of the solar mass
splitting, which is a big advantage especially for large ∆m2

21.
Two possible initial superbeam experiments have been studied: NuMI and

JHF-SK. Both setups are rather similar with the main difference that NuMI has
a much longer baseline and therefore matter effects are more pronounced. NuMI
and JHF-SK each can probe sin2 2θ13 down to ∼ 10−2 for the lma-i parameters.
However the sensitivity to θ13 completely breaks away for large values of ∆m2

21.
None of the two can achieve any sensitivity to the mass hierarchy or cp-violation
in their initially proposed configuration.

Several combinations of the initial superbeam and reactor setups were in-
vestigated and it was found that the various combinations largely increase the
physics potential. For the determination of the mass hierarchy the optimal
combination involves Reactor-II, to fix the value of θ13, JHF-SK, to alleviate the
effects of the unknown cp-phase, and NuMI with a longer baseline, to obtain
sufficient matter effects. This combination is able to determine the mass hi-
erarchy down to sin2 2θ13 ' 0.05 independent of the value of the solar mass
splitting. The optimal combination for the discovery of cp-violation is given
by JHF-SK running exclusively with neutrinos and Reactor-II. Again Reactor-II
was found to be useful to constrain θ13. With this combination the first step
towards leptonic cp-violation is possible, however the parameters, especially
the solar mass splitting, have to be favorable.

JHF-HK was chosen as a representative of an advanced superbeam experi-
ment. Its sensitivity to θ13 was found to go down to sin2 2θ13 ' 2 · 10−3 for the
lma-i parameters. This limit is rather stable under a change of the solar mass
splitting. The sensitivity to the mass hierarchy is poor because the baseline and
energy do not give rise to sizeable matter effects. JHF-HK was shown to have a
good discovery potential for cp-violation for all values of the solar mass split-
ting provided sin2 2θ13 is bigger than 10−2. For very large values of sin2 2θ13

this setup can yield a high precision measurement of the leptonic cp-phase.
The ultimate tool for oscillation physics is a neutrino factory. The NuFact-

II setup was therefore expected to outperform all other options studied in this
work. In the case of NuFact-II it became obvious, however, that the structure

1All results in this chapter are given at 90% cl.
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of the oscillation probabilities introduces a considerable amount of complexity
in the analysis of the data. Therefore it is not straightforward to summarize
the sensitivities of NuFact-II in just a couple of numbers. The numbers given in
the following should be considered as a rough guideline and for a more accurate
picture the corresponding figures should be consulted. With this caveat in mind,
the sensitivity to sin2 2θ13 is around 10−4 at the lma-i parameters but changes
strongly for different parameter values and confidence levels (see figure 5.9).
The sensitivity of NuFact-II to the mass hierarchy is very good and reaches
down to sin2 2θ13 ' 10−3. However it displays a pronounced dependence on
the true value of the cp-phase and the solar mass splitting (see figure 5.10).
Finally a neutrino factory can discover maximal cp-violation down to very small
values of sin2 2θ13 ' 2 · 10−5 quite independent of the true value of the solar
mass splitting (see figure 5.11). However the determination of the cp-phase
is hindered at large values of θ13 due to the matter density uncertainty (see
figure 5.12). The topology of the projected χ2 is in general rather complicated.
Therefore it depends strongly on the exact location in the parameter space how
well the cp-phase can be constrained. This is the most impressive example for
the degree of complexity which is induced by the presence of multiple solutions.

Several possibilities to resolve degeneracies and thus to improve the perfor-
mance of the experiments have been briefly discussed. For instance the magic
baseline is able to resolve the degeneracies for sin2 2θ13 ≥ 10−4.

The techniques presented in this work are well suited to study other new
experiments like β-beams. They seem to offer a very competitive option even
compared to a neutrino factory. However it is very difficult to compare the
results presented here with the published results on β-beams, since the latter
results have been obtained with a much less sophisticated analysis technique.
Also the effects of including the silver channel, i.e. the possibility to detect tau
neutrinos, clearly deserve further studies. Beyond the precision determination
of neutrino mixing parameters testing the three neutrino mixing is a very in-
teresting and important topic as well. Similar to the quark sector, where a
large effort is under way to measure the ckm-matrix with a very high precision,
the same program is necessary for neutrinos. The first step could be to test
the unitarity of the leptonic mixing matrix. In case leptonic cp-violation is
discovered it will become of paramount importance to clarify which mechanism
is responsible for this effect. It could be caused by the cp-phase in the mixing
matrix, but also other origins are conceivable, e.g. non-standard interactions of
neutrinos. Many models for generating neutrino masses give rise to such inter-
actions and therefore the interplay of oscillation and non-standard interactions
is a rich area for further research. Summarizing, neutrinos have provided us
with the first clear evidence for physics beyond the Standard Model and it is
to be expected that many more surprises lie ahead in neutrino physics.

Note added in proof

During the very last stage of this work the SNO collaboration has released
improved neutral current results on solar neutrinos [129]. The new data are in
good agreement with previous results and the hypotheses of no flavour transition
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is excluded with more than 7σ. The constraint on the solar mixing has improved
as well and maximal mixing is now rejected at 5.4σ. The lma-ii solution is
disfavored at more than 99% cl. The analysis presented in [129] does not yet
include the latest result of Super-K on the day/night asymmetry [115], which
by themselves seem to exclude lma-ii at 3σ. Thus it is to be expected that in
a combined analysis lma-ii will be ruled out at more than 3σ.
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Appendix A

Experiment simulation

A.1 Simulation of the detector response

A neutrino detector is a very complex system composed of many different parts
and its performance is computed by means of a Monte-Carlo simulation. Typi-
cally these simulation programs include a detailed description of the geometry,
materials, electronics a.s.f. and the propagation of each particle through all the
various parts is followed step by step from the primary interaction vertex till
the reconstructed event. This procedure is repeated for a large number of parti-
cles and on the basis of this sample it is possible to determine properties of the
detector like efficiencies, energy resolution etc.. These Monte-Carlo programs
are however very slow and can therefore not be used for the type of analysis
presented in this work. An alternative to the use of a full detector simulation is The detector as

abstract functionto regard a detector as an abstract entity, which maps the incident neutrino flux
to the reconstructed neutrino flux. In general the properties of the mapping
function can be derived from the results of a full detector simulation. In this
work these properties are not reconstructed from the full Monte-Carlo results
since these results are not publicly available. Instead they are retrieved from the
information given in the corresponding references, where summaries of the full
simulation are presented. However it turns out that the available information
is sufficient to accurately reproduce the published results for each setup.

The mapping function used in this work takes into account the most im-
portant interaction modes of all neutrino flavours, the energy response of the Interaction types –

itdetector and the corresponding efficiencies. The basic interaction types (it)
for the long baseline setups (i.e. NuMI, JHF-SK, JHF-HK and NuFact-II) are:
neutral current (nc), total charged current (cc) and quasi–elastic (qe). The
corresponding total cross sections are shown in figure A.1 and taken from [130].
Errors on the cross sections are not taken into account, although the current
knowledge is not very accurate. For all long baseline experiments subject to
this work it is implicitly assumed that there will be a near detector experiment
which will determine the relevant cross sections precisely. From figure A.1 it is
obvious that the relative contribution of each it varies with the energy of the
neutrino, e.g. qe events play a major role only for energies well below 10 GeV.
For the reactor experiments Reactor-I and Reactor-II the only relevant it is in-
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verse β-decay and the cross section for this reaction is approximately given
by

σ(Ee+) ' 2π2
~

3

m5
efτn

pe+Ee+ , (A.1)

where τn is the lifetime of a free neutron and f is the free neutron decay phase
space. In the numerical calculation the cross section from [131] is used, which
includes higher order corrections.

Calculation of raw event rates

For the calculation of event rates, the first step is to compute the number of
events for each it in the fiducial mass of the detector for each neutrino flavour
and energy bin. The second step is to include the detector effects like energy
resolution or the misidentification of particles. The combination of those steps
yields the differential event rate spectrum for each flavour and it as seen by the
detector. This spectrum is called a “channel”. The channels for all its thenChannels & rules

are assembled into pairs of signal and background, each such pair is called a
“rule”1. In the construction of each rule the fact that certain its cannot be
completely separated either due to physical reasons (e.g. the flavour–blindness
of nc interactions) or because of detector effects (e.g. charge misidentification)
is taken into account. In one experiment there can be several rules, i.e. pairs of
signal and background, for example the νµ events of the disappearance transi-
tion and the νe events of the appearance transition in a superbeam experiment
constitute the signals of two different rules.

The master formula for the computation of the differential event rate for
each channel, i.e., the final flavour f and the interaction type it, is given byDifferential event

rate

dnit

f

dE′
= N

∑
fi

∫ ∫
dE dÊ Φfi(E)︸ ︷︷ ︸

Production

×

1
L2
Pνfi→νf (E,L, ρ; θ23, θ12, θ13,∆m2

31,∆m
2
21, δCP)︸ ︷︷ ︸

Propagation

×

σit

f (E)kit

f (E, Ê)︸ ︷︷ ︸
Interaction

×

Tf (Ê)Vf (Ê, E′)︸ ︷︷ ︸
Detection

, (A.2)

where fi is the initial flavour of the neutrino, E is the incident neutrino energy,
Φfi(E) is the flux of the initial flavour at the source, L is the baseline length, N
is a normalization factor, and ρ is the matter density. The interaction term is
composed of two factors, which are the total cross section σit

f (E) for the flavour
f and the interaction type it, and the energy distribution of the secondary

1The term rule is used because in the actual software a set of rules has to be defined in
order to implement a pair of signal and background.
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particle2 kit

f (E, Ê) with Ê being the visible energy of the secondary particle.
The detector properties are modeled by the threshold function Tf (Ê), coming
from the limited resolution or the cuts in the analysis, and the energy resolution
function Vf (Ê, E′) for the secondary particle. Thus, E′ is the reconstructed
neutrino energy.

Since it is rather cumbersome to numerically solve this double integral, the Splitting the

integrationsintegral is split into pieces and the integral over Ê is evaluated first. The
only terms containing Ê are kit

f (E, Ê), Tf (Ê), and Vf (Ê, E′), and the following
definition can be made

Rit

f (E,E′) εitf (E′) ≡
∫
dÊ Tf (Ê) kit

f (E, Ê)Vf (Ê, E′) . (A.3)

The integrand for the integration with respect to Ê does not depend on any
oscillation parameter and needs therefore to be evaluated only once for each
experiment. Furthermore the approximation of Rit

f by the following analytical
expression is used

Rit

f (E,E′) =
1

σE
√

2π
exp

(E − E′)2

2σ2
E

. (A.4)

The values for the effective relative energy resolution σE and the effective effi-
ciency εitf are in general energy dependent and can be found in appendix A.2
for each setup. The reason for using this approximation is that the full en-
ergy transfer function as derived by a full detector simulation is not publicly
available.

The final step in the event rate calculation is the integration of equation A.2
with respect to E′ in order to obtain the number of events ni in each bin i

ni =

Eui∫
Eli

dE′
dnit

f

dE′
, (A.5)

where Eli denotes the lower bin boundary and Eui the upper bin boundary.
The only part in equation A.2 which depends on E′ is Rit

f (E,E′) εitf (E′) and
therefore the integration with respect to E′ can be computed immediately and
the result is the convolution kernel Ki(E) for each bin i

Ki(E) =

Eui∫
Eli

dE′ Rit

f (E,E′) εitf (E′) . (A.6)

Reassembling the various parts, the final expression for the calculation of the
number of events in the i-th bin is given by

ni = N
∑
fi

∫
dE Φfi(E)× 1

L2
Pνfi→νf (E,L,λ)× σit

f (E)×Ki(E) , (A.7)

2In cases with several secondary particles, kf is the average of the distribution functions
for each type of secondary particle weighted with the corresponding branching ratio.
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Figure A.1: The cross sections for the total charged current (solid curves, left
hand plot), quasi–elastic charged current (dotted curves, left hand plot), and neutral
current (right hand plot) neutrino (black curves) and anti-neutrino (gray curves) in-
teractions [130]. This figure is taken from [80].

where λ denotes the oscillation parameters. By decomposing the various in-
tegrals the triple integral3 for the calculation of the number of events in oneOnly one

integration

remains

bin has been reduced to a simple integration with respect to the true neutrino
energy E. This reduction of the dimension from three to one is crucial for the
numerical efficiency of the code and improves the speed by roughly three orders
of magnitude.

A.2 Experiment description

A.2.1 The reactor experiment

The detector technology for a reactor neutrino experiment is very similar to
that of Chooz [65], Kamland [5] and the Borexino counting test facility [132].
All these detectors use a liquid scintillator, which is based on mineral oil. The
scintillator is contained in a plastic balloon and viewed by a large number of
photomultipliers. In between the balloon and the photomultipliers a buffer liq-
uid is needed in order to shield the fiducial inner volume from the radioactivity
of the photomultipliers. The signature of a ν̄e event is the delayed coincidence
of the prompt γ-rays due to the annihilation of the positron and the γ-rays
emitted in the neutron capture. The neutrino energy is uniquely determined
by the visible energy Evis via the relation

Eν̄e = Evis − 511 keV + (mn −mp) +O(Eν̄e/mn) , (A.8)

3i.e. the two integrations in equation A.2 plus the integration in equation A.5



A.2. EXPERIMENT DESCRIPTION 75

where the 511 keV have to be subtracted in order to account for the rest mass
of the electron which is co-annihilated with the positron. The typical energy
resolution is roughly (5− 10)%/

√
Evis [5,133] and a value of σE = 5%/

√
Evis is

used. The results do not change for a value of 7.5%/
√
Evis, the value obtained

in the Kamland experiment. The visible energy range used for the analysis is
(1−7.2) MeV and divided into 62 bins. The normalization is the same as in [133]
and such that at a distance of 1 km 227.5 events are observed in one fiducial ton
of detector within one year at a reactor with a thermal power of 1 GW. The
efficiency is taken to be unity and constant. The deviations from 1 should be at
most of the order of a few percent. Furthermore no backgrounds are considered
for two reasons: First, it would require a detailed background computation
for a specific site. Second and more important, it should be possible to build
an essentially background free detector [133]. For a more detailed description
of the experiment appendix B of [94] can be consulted. The near detector is
assumed to be identical to the far detector and to be located so close that no
oscillation has developed.

For the neutrino flux from the reactor the parameterization of [134] is used
and the fuel composition of [5] is adopted.

A.2.2 The NuMI experiment

The detector of the NuMI experiment will be a low-Z calorimeter4 in order to
obtain a measurement of the hadronic energy deposition and to separate νe cc

events from nc events. The low mass number of the absorber material ensures
that the hadronic shower has a sufficient size in order to be reliably detected.
The detector is described in detail in [88]. The energy resolution is expected to
be very similar to the one of Minos [135] and therefore σE = 0.15·Eν is used. The
analysis range is (1.6− 2.8) GeV and divided into 20 bins. The signal consists
of the νe cc events from the appearance transition and the νµ cc events from
the surviving νµ. The backgrounds to the appearance measurement are the
misidentified nc events and the νe cc events due to the contamination of the
beam with νe. The only background which is considered for the disappearance
measurement is the fraction of nc events which is identified as νµ cc event. The
efficiencies and rejection factors are taken from [88] as far as they have been
provided in this work, whereas the missing information was obtained from [136].
The efficiencies are given in table A.1.

The beam flux is taken from [137] and has been provided as data files
by [136].

A.2.3 The JHF experiment

The detector for the JHF experiment is the Super-K (JHF-SK) detector or its
1 000 kt version Hyper-K (JHF-HK). It is assumed that the 1 000 kt detector has
the same characteristics as the Super-K detector. This type of water Cherenkov
detector has an excellent capability to identify electrons and muons based on

4Other detector technologies like a liquid Argon tpc are also under consideration.
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Disappearance
Signal 0.9⊗ (νµ → νµ)cc

Background 0.005⊗ (νµ → νx)nc

Appearance
Signal 0.4⊗ (νµ → νe)cc

Background 0.005⊗ (νµ → νx)cc

Beam background 0.4⊗ (νe → νe)cc 0.4⊗ (ν̄e → ν̄e)cc

Table A.1: The efficiencies for the signals and backgrounds of the NuMI experiment.
This table is taken from [95].

the topology of the Cherenkov ring. Furthermore, the lepton momentum can
be measured with a high precision [87].

The signal events for the neutrino beam are given by νµ and νe cc in-
teractions, whereas the backgrounds are given by the νµ nc events and the
νe cc events coming from the νe contained in the beam. Furthermore the
misidentification of νµ events as νe event acts as an additional background to
the appearance measurement. The background rejection factors and the signal
efficiencies are taken from table 2 in [87]. They are assumed to be constant,
which should be a reasonable approximation.

Disappearance
Signal 0.9⊗ (νµ → νµ)qe

Background 0.0056⊗ (νµ → νx)nc

Appearance
Signal 0.505⊗ (νµ → νe)cc

Background 0.0056⊗ (νµ → νx)nc 3.3 · 10−4 ⊗ (νµ → νµ)cc

Beam background 0.505⊗ (νe → νe)cc 0.505⊗ (ν̄e → ν̄e)cc

Table A.2: The efficiencies for the signals and backgrounds of the JHF-SK and JHF-

HK experiments. This table is taken from [80].

Since a water Cherenkov detector cannot measure the hadronic energy de-
position in a neutrino interaction, the analysis of the energy spectrum has to
be constrained to the qe event sample. The accuracy of the energy recon-
struction is limited by the Fermi-motion of the nucleons, inducing a width of
about (80 − 100) MeV [138]. The distribution is, up to very good accuracy,
Gaußian [138]. The Fermi-motion is energy independent and causes by far the
largest error in the energy reconstruction. A constant width of 85 MeV is used
in this work i.e., σE = 0.085 GeV.

In order to use the spectral information, the signal event samples are sep-
arated into qe events and non-qe events. In the disappearance channel, there
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are enough events to completely discard the non-qe events, as it is done in [87].
For the appearance channel, the following strategy is adopted to optimally ex- Separation of rates

and spectrumploit the information in the data: the total number of all cc events in the
range 0.4 − 1.2 GeV is used, as well as the qe spectrum in the same energy
range divided into 20 bins with a free normalization in order to avoid a double
counting of the qe events. This separation of rates and spectra is a well-known
technique, which is used e.g. in the solar analysis of Super-K data in [139].

The beam fluxes used are the same as in [87] and have been provided as
data files by [138].

A.2.4 The neutrino factory experiment

The detector which is considered to be optimal for a neutrino factory is a mag-
netized iron calorimeter, similar to the Minos [135] or Monolith [140] detectors.
This detector type measures the leptonic as well as the hadronic energy depo-
sition, albeit with a different resolution. nc events can be very well rejected
due to the absence of the long muon track. The magnetic field is necessary
to improve the lepton momentum measurement and to determine the charge.
The energy resolution of this type of detector is very well approximated by a
Gaußian with the width σE = 0.15·Eν , which is very similar to the resolution of
Minos [135]. This approximation is justified in detail in the appendices of [80].
The spectrum is evaluated in the analysis range from 4 GeV to 50 GeV and is
divided into 20 bins.

The requirement of a very precise charge determination in order to obtain
a clean wrong sign muon sample imposes the need for a cut on the minimum
muon momentum and the minimum missing transversal momentum [110, 141].
The values for these cuts in turn determine the background levels and the low
energy efficiencies, which have some relevance to the issue of the confidence level
at which certain multiple solutions appear in the fit. The muon momentum cut
here is 4 GeV. This value yields an efficiency for νµ linearly rising from 0 at
4 GeV to 0.45 at 20 GeV and staying constant from there on, whereas for ν̄µ
the efficiency rises linearly from 0 at 4 GeV to 0.35 at 20 GeV. This roughly
corresponds to an interpolation between the values given in [110, 141] and is
approximately the same as in [89]. The corresponding background levels are
given in table A.3. A very detailed discussion of this issue is given in the
appendices of [80].

The signal at a neutrino factory consists of the νµ disappearance and the
wrong-sign muon appearance signal. The backgrounds for the disappearance
measurement are a certain fraction of the nc events. In the appearance tran-
sition there is additionally a fraction of misidentified right sign muon events.
The values used in this work are shown in table A.3.
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Disappearance – µ− stored
Signal 0.45⊗ (νµ → νµ)cc

Background 10−5 ⊗ (νµ → νx)nc

Disappearance – µ+ stored
Signal 0.35⊗ (ν̄µ → ν̄µ)cc

Background 10−5 ⊗ (ν̄µ → ν̄x)nc

Appearance – µ− stored
Signal 0.45⊗ (ν̄e → ν̄µ)cc

Background 5 · 10−6 ⊗ (νµ → νx)nc 5 · 10−6 ⊗ (νµ → νµ)cc

Appearance – µ+ stored
Signal 0.35⊗ (νe → νµ)cc

Background 5 · 10−6 ⊗ (ν̄µ → ν̄x)nc 5 · 10−6 ⊗ (ν̄µ → ν̄µ)cc

Table A.3: The high energy efficiencies for the signals and backgrounds for NuFact-II.
This table is taken from [80].



Appendix B

Statistics and the treatment of
systematical errors

In this appendix the statistical analysis methods and the parameterizations of
the various systematical uncertainties are explained. The statistical analysis is
divided into two parts. The first one deals with the systematical errors, whereas
the second one deals with the retrieval of the oscillation parameters. The rea-
son for this division is that the first part does not require the recalculation of
event rates and therefore is numerically much faster to solve separately. For the
analysis of the systematical errors the so called pull method is used [41]1. In The pull method –

nuisance

parameters

the pull method k systematical errors are included by introducing k additional
variables ζk, which will be called nuisance parameters in the following. The
nuisance parameters describe the dependence of the event rates on the various
sources of systematical errors, e.g. an error on the total normalization is in-
cluded by multiplying the expected number of events in each bin by a factor
(1 + ζ1). The variation of ζ1 in the fit is constrained by adding a penalty p1

to the χ2-function. In case of a Gaußian distributed systematical error this
penalty is given by

pi =
(ζi − ζ0

i )2

σ2
ζi

, (B.1)

where ζ0
i denotes the mean and σζi the standard deviation of the corresponding

nuisance parameter, i.e. the amount of systematical uncertainty. The resulting
χ2 is then minimized with respect to all nuisance parameters ζi and this yields
χ2

pull

χ2
pull(λ) := min

{ζi}

χ2(λ, ζ1, . . . , ζk) +
k∑
j=1

pj(ζj)

 , (B.2)

where λ denotes the oscillation parameters including the matter density ρ. One
advantage of the pull method is that whenever the number N of data points is
much larger than k, it is numerically easier to compute χ2

pull than to invert the
N×N covariance matrix. For the experiments considered here N is typically 20
and k ∼ 4, thus the pull method is numerically much faster. Moreover it is more

1In fact the pull method was employed already in [80] before [41] appeared.
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flexible and allows the inclusion of systematical errors also for a Poissonian χ2-
function. In [41] it was shown that the pull method and the covariance based
approach are equivalent for a Gaußian and linear model. In general there is
a separate (χ2

pull)
α for each rule α, i.e. pair of signal and background spectra,

with a separate set of nuisance parameters ζαi . In this case χ2
pull is the sum of

all individual (χ2
pull)

α.

In this way the dependence on the k nuisance parameters has been elim-
inated from χ2

pull and only the dependence on the physical parameters λ re-
mains. Usually only one of the parameters λi is of interest, which is denoted by
η. The set of remaining physical parameters is denoted by λ̄. Furthermore the
experiment may have no reasonable accuracy for a certain number I of other
parameters {λj}, this set of insufficiently measured parameters2 is called κ. ForInsufficiently

determined

parameters –

external input

the parameters κ external input from other experiments is included in order to
improve the overall performance of the experiment. The external information
is again taken into account by adding a penalty πj for each of the κj but in this
case to χ2

pull. The form of the πj is in the Gaußian case given again by equa-
tion B.1. The sum of χ2

pull and the penalties πj is then minimized with respect
to the set of the remaining physical parameters λ̄. This yields the projected χ2

η

χ2
η(η|λ0) = min

λ̄

(
χ2

pull(η, λ̄) +
I∑
i=1

πi(κi)

)
. (B.3)

χ2
η(η|λ0) is now only a function of η and has to be interpreted with one degree

of freedom, thus the confidence level in units of σ is given by
√
χ2
η. Of course

χ2
η(η|λ0) retains a dependence on the values of the true parameters λ0, which

will be dropped in the notation for convenience. In the case that several experi-
ments are combined the sum of the unprojected χ2

pull(η, λ̄) for each experiment
is added to the sum of all the πi and the minimization with respect to λ̄ is
performed for the complete sum3. The definition of χ2

η in equation B.3 already
implies the inclusion of the degenerate solutions created by the transformation
Ti (as defined in equation 3.9), i.e. the fit runs over all values of ∆m2

31, includingDegeneracies

included both normal and inverted mass hierarchy. It also runs over all values of θ23, i.e.
the case π/2− θ23 is included.

Specifically some exact definitions of sensitivities and errors are made in ac-sin2 2θ13

cordance with the discussion in section 3.7. For the sensitivity limit to sin2 2θ13

this quantity is useful

χ2
l
(θ13) := χ2

θ13
(θ13|(θ13)0 = 0) . (B.4)

The sensitivity limit as defined in section 3.7 in terms of χ2
l

is given by the
largest value of sin2 2θ13 where χ2

l
(θ13) is below the threshold for the given

confidence level, e.g. for a 2σ limit this threshold is 4.

2This set can in principle contain η. In this case the projected χ2 of η is dominated by the
external input πη.

3i.e. the external information is counted only once
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The sensitivity to the mass hierarchy is defined by the value of the global
minimum of χ2

θ13
with the opposite sign of ∆m2

31, i.e. ∆m2
31 is restricted to the The mass

hierarchyhalf-space where the fitted ∆m2
31 has the opposite sign than the true value of

∆m2
31. Thus for the true ∆m2

31 being larger than 0, the sensitivity is given by

χ2
h

:= min
η,∆m2

31<0
χ2
η(η|(∆m2

31)0 > 0) . (B.5)

Finally the sensitivity to any cp-violation is defined by the minimum χ2

separation of the true value of the cp-phase δ0 from any of the cp-conserving cp-violation

values of the cp-phase, π and 0

χ2
cp

(δ0) := min
{
χ2
δ(0|δ0), χ2

δ(π|δ0)
}
. (B.6)

The sensitivity to maximal cp-violation is the special case where δ0 = ±π/2,
i.e. χ2

cp
(±π/2).

Definition of χ2 for the long baseline setups

For the long baseline setups the set λ consists of ∆m2
21 · sin 2θ12, ∆m2

31, θ23,
θ13, δCP and ρ. The product ∆m2

21 · sin 2θ12 is called πsol and is used because
the transition probability in equation 3.1 depends on the solar parameters only
via this product. This is the only approximation introduced for the treatment
of the oscillation probabilities. The insufficiently determined parameters κ are
the matter density ρ and the solar product πsol. The external input for ρ is
assumed to come from geophysics and to constrain the matter density to within
5% at 1σ [113]. The solar product will be well constrained by Kamland data
and the expected final accuracy after three years of data taking will be 15% for
the solar product πsol, again at 1σ [97, 112].

As basis for the analysis of the long baseline setups, the standard χ2-function Poissonian χ2

for Poissonian distributed quantities, as given for example in [70], is used

χ2 =
b∑
i=1

(
2[〈xi〉 − xi] + 2xi log

xi
〈xi〉

)
. (B.7)

Here, b is the number of bins, xi is the number of events in the ith bin, and 〈xi〉
is the expectation value of the number of events in the ith bin. For each bin i,
the total number of events is the sum of signal and background events, i.e.,

xi = si + bi, (B.8)

where si is the number of signal events and bi is the number of background
events, as defined in the previous appendix. The systematical errors in xi and Normalization &

tiltbi are included by modifying the signal s0
i and background b0i raw event rates

of the previous appendix by

si = si(ζ1, ζ2) = s0
i (1 + ζ1 + ζ2 · Ei/(Emax − Emin)) ,

bi = bi(ζ3, ζ4) = b0i (1 + ζ3 + ζ4 · Ei/(Emax − Emin)), (B.9)

where Ei is the average energy in the ith bin, Emax is the maximum energy,
and Emin is the minimum energy of all bins. The nuisance parameters ζ1 and



82 APPENDIX B. STATISTICS

ζ3 are called “normalization” and describe the effect of an overall change in
the magnitude of signal or background, whereas the parameters ζ2 and ζ4 are
called “tilt” and describe a linear distortion in the spectral shape of the signal
or background. This distortion can come from limited knowledge of the back-
ground or an energy calibration error. This way of parameterizing an energy
calibration error was for example used in the analysis of the Bugey data [63].
The total number of events in the ith bin xi now becomes

xi = xi(ζ) = si(ζ1, ζ2) + bi(ζ3, ζ4). (B.10)

Note that ζ1 to ζ4 are independent parameters and there is a different set of
these four parameters for each rule α. In order to implement the uncertainties of
the nuisance parameters, the values of ζ1 to ζ4 are assumed to follow a Gaußian
distribution with mean 0 and a standard deviation of σζi . The values of σζi for
each long baseline experiment and rule are given in table B.1.

σζ1 σζ2 σζ3 σζ4
Disappearance – NuMI 0.05 0.05 0.05 0.05
Appearance – NuMI 0.05 0.05 0.05 0.05
Disappearance – JHF 0.05 0.025 0.2 0.025
Appearance – JHF 0.05 0.025 0.05 0.05
Disappearance – NuFact-II 0.01 0.05 0.05 0.05
Appearance – NuFact-II 0.01 0.05 0.2 0.05

Table B.1: Systematical uncertainties for the long baseline setups from [110,140,142,
143] for NuFact-II, from [87, 144–147] for the JHF experiments and from [88, 136] for
the NuMI setup.

Definition of χ2 for the reactor setups

For the reactor setups the set λ consists of ∆m2
21, sin 2θ12, ∆m2

31 and θ13,
since the disappearance probability Pν̄e→ν̄e in equation 4.3 does not depend
on any other parameter. The insufficiently determined parameters κ are the
solar parameters ∆m2

21 and θ12 and the atmospheric mass splitting ∆m2
31. The

external input for the solar parameters is assumed to come from the Kamland
data and the expected final accuracy after three years of data taking will be
better than 10% for each of the solar parameters [97, 112]. The results do not
depend strongly on this number and therefore a conservative value of 10% is
used. The external input on ∆m2

31 will be due to e.g. the Minos experiment
and the error is assumed to be 10% at 1σ.

The starting point for the analysis of the reactor setups is the usual Gaußian
χ2 (see e.g. [70])Gaußian χ2

χ2 =
b∑
i=1

(〈xi〉 − xi)2

xi
. (B.11)
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A Gaußian χ2 can be used since the number of events in each bin is very large.
The systematical errors are parameterized in the following way

xi = (1 + ζ1)s0
i + ζ2Mi , (B.12)

where ζ1 describes the relative normalization and ζ2 the energy calibration error. Relative

normalization &

energy calibration

An energy calibration error shifts the visible energy from Evis to (1 + ζ2)Evis,
this can be expressed up to first order in ζ2 by

xi(ζ2) ' xi(ζ2 = 0) + ζ2Mi with Mi =
∂xi
∂ζ2

∣∣∣∣
ζ2=0

. (B.13)

The relative normalization error σζ1 is given by

σ−2
ζ1

= (σsource
ζ1 )−2 + (σdetector

ζ1 )−2 , (B.14)

where σsource
ζ1

and σdetector
ζ1

describe the individual contributions of the normal-
ization uncertainty of the source and of the two detectors. The conditions for
which this relation holds are given in appendix A of [94]. The values for σζ1
and σζ2 are given in table B.2.

σζ1 σζ2
Disappearance – Reactor 0.008 0.005

Table B.2: Systematical uncertainties for the reactor setups from [65, 148].

Numerical issues

For all the necessary function minimizations a fast “direction set” method is
used. The algorithm and its implementation in C are taken from [149]. The
advantages of using this minimization algorithm are its high speed and its
excellent accuracy compared to grid–based methods. Furthermore, it does not
require the computation of derivatives of the function to be minimized, which
is rather important because derivatives of numerical functions can be unstable
and are quite slow to be computed. All numerical calculations are performed
with double precision, i.e. 32-bit numbers.
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