

Ionization and Excitation in Collisions between Antiprotons and Hydrogen Atoms

Thomas G. Winter

Department of Physics, Pennsylvania State University, Wilkes-Barre Campus, Lehman, Pennsylvania 18627,
USA

Synopsis Coupled-state cross sections have been determined for ionization and excitation in collisions between 1-16000 keV antiprotons and H(1s) atoms using two- and one-center Sturmian bases.

Coupled-state cross sections have been determined for ionization and excitation to states up to H(3d) in collisions between 1 keV to 16 MeV antiprotons and H(1s) atoms [1] using the same two-center 176-Sturmian s, p, d and 220-Sturmian s, p, d, f bases as well as a one-center 280-Sturmian s, p, d, f basis as for proton projectiles [2]. The two-center bases are used at energies up to 200 keV, while in the present case one-center bases are used at energies of at least 5 keV rather than being restricted to higher energies as for proton projectiles. The sensitivity of cross sections to basis size and type has been studied in detail. Differences between 176-state and 220-state cross sections for ionization and each individual excitation process oscillate with energy within a range of about $2 \times 10^{-18} \text{ cm}^2$, leading to percent differences of only a few percent for the dominant channels (ionization and excitation to the 2p state) and 10-20% for excitation for the weaker channels (3s, 3d). Conservation of probability, integrated over impact parameters, is usually found to hold to at least 0.0007%. A comparison and strong contrast at lower energies is made with results for proton projectiles, while all cross sections approach the high energy (first-Born) limits to better than 1% by 16 MeV, the same for both protons and antiprotons. The use of a double-center basis for

antiproton projectiles, in spite of there being no capture channels, was suggested and carried out by Toshima with a large Gaussian basis [3], providing both additional variational freedom and allowance for effects centered on the antiproton, including depletion of the charge-cloud. These effects appear to be unimportant at the considered energies, and so the main effect of the two-center basis may be to somewhat speed basis convergence. The present cross sections will be compared with recent [4] and earlier coupled-state and numerical results, as well as with experimental ionization results [5].

References

- [1] Winter T G 2011 *Phys. Rev. A* **83** 022709
- [2] Winter T G 2009 *Phys. Rev. A* **80** 032701
- [3] Toshima N 2001 *Phys. Rev. A* **64** 024701
- [4] McGovern M, Assafrão D, Mohallem J R, Whelan C T and Walters H R J 2009 *Phys. Rev. A* **79** 042707
- [5] Knudsen H, Mikkelsen U, Paludan K, Kirsebom K, Møller S P, Uggerhøj E, Slevin J, Charlton M and Morenzoni E 1995 *Phys. Rev. Lett.* **74** 4627