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Abstract In this paper, we investigate the localization of
a five-dimensional (5D) Elko spinor field in de Sitter tachy-
onic braneworld models. These branes are generated by grav-
ity coupled to a tachyonic bulk scalar field and include a de
Sitter cosmological background induced on the 3D-brane.
Using Yukawa-type coupling mechanism we show that a free
massless Elko spinor field cannot be localized on tachyonic
de Sitter branes while massive Elko fields are localized if
their bulk mass obeys an upper bound. Also by introduc-
ing a tachyonic function F(T) as Yukawa interaction term
between the Elko spinor and the background tachyonic scalar
field we find that localized massless zero modes are given in
terms of general Heun functions. Furthermore, it is shown
that employing a new derivative coupling term in the action
of Elko spinor fields leads to the Elko field localization on
tachyonic de Sitter branes.

1 Introduction

It is well known that Extra dimensions and braneworld mod-
els can provide new insights to solve some problems in
new physics, such as cosmological constant problems [1],
Casimir force [2] and the gauge hierarchy problem [3]. In the
Randall andSundrum (R–S) model [4,5], the extra dimension
does not need to be compactified and the brane is assumed
very thin. This thin brane does not provide a smallest scale
in a fundamental theory hence realistic branes are needed to
have thickness and inner structure. In order to avoid the use
of singular R-S brane, thick braneworld models have been
proposed as a smooth generalization of the R–S one [6,7]. In
this scenario, the brane is usually generated by a bulk scalar
field with kink configuration by a specific choice of the scalar
potential. Various kinds of bulk scalar fields lead to different
sorts of braneworld models can be found in Refs. [8–12].
In this framework, tachyonic braneworld models generated
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by a tachyon scalar field were introduced with applications
to cosmology and supergravity [13,14]. In Ref. [15] it was
shown that these tachyonic branes have several remarkable
properties such as a regular and stable solution that contains
a relevant 3D-brane with de Sitter (dS) induced metric in
a higher dimensional manifold that are interesting from the
point of view of cosmology. Furthermore, the authors of Ref.
[16] indicated that this tachyonic braneworld allows for a
nontrivial solution with a vanishing 5D cosmological con-
stant.

In the context of the braneworld physics, gravity and var-
ious bulk matter fields must be confined on a brane by a
natural mechanism in order to recover our 4D Universe and
Standard Model of particle physics. In more studies [5,17–
21], it was found that graviton and massless scalar fields can
be localized on branes of different types. In order to trap
vector and tensor gauge fields in the R-S brane or its gen-
eralization thick braneworld models some new mechanisms
are needed [12,22–25]. Fermions can be also localized on
branes in five dimensions by introducing a Yukawa coupling
term between fermions and background scalar field which is
an odd function of extra dimension [26,27]. In Ref. [28], the
authors have investigated a new fermion localization mech-
anism which employed a derivative fermion-scalar coupling
term for which the background scalar field can be an odd
or even function of the extra dimension. There are a lot of
works that study the matter fields localization in braneworld
models. For some comprehensive reviews, see Refs. [29–34].

Recently, a new spin-1/2 quantum field beyond the Stan-
dard Model proposed by the authors of Ref. [35] that well
known as the Elko spinor field. An Elko field which is the
eigenspinor of the charge conjugation operator with one mass
dimension can be considered as a candidate of dark matter
[36,37]. Also, localization of five-dimensional Elko spinor
fields can be achieved inMinkowski thick branes by Yukawa-
type coupling mechanism [38–40] and non-minimal coupling
mechanism [41]. Furthermore, it was found in Refs. [42–44]
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that the zero mode of Elko spinor field can be localized on de
Sitter (dS) and Anti-de Sitter (AdS) branes with both men-
tioned mechanisms.

However, localization of Standard Model matter fields and
gravity except Elko field in de Sitter tachyonic braneworld
models have been considered in Refs. [15,31,45,46]. In this
paper, we are interested to analyze several aspects of local-
ization of the Elko spinor field on these branes. By using the
Yukawa coupling term between the background scalar field
and Elko spinor, we will show that the zero mode of Elko
fields can be localized on de Sitter tachyonic branes. Also,
by introducing a new derivative coupling term in 5D Elko
field action we will investigate the localization of Elko spinor
field.

The plan of this paper is as follows. In Sect. 2, we briefly
summarize the de Sitter tachyonic braneworld models. In
Sect. 3, we study the localization of the Elko spinor fields
on this brane by the Yukawa coupling mechanism and inves-
tigate the localization of massless and massive Elko spinor
fields. In Sect. 4, we investigate the Elko spinor field local-
ization mechanism by employing a derivative coupling term.
Finally, a summary and conclusion are given in Sect. 5.

2 The de Sitter tachyonic brane

In this section, we review a de Sitter tachyonic thick brane
setup constructed by gravity and a bulk tachyonic scalar field
in the presence of a 5D cosmological constant. The metric
is given by

ds2 = e2A(w)
[
−dt2 + a2(t)(dx2 + dy2 + dz2) + dw2

]
,

(1)

where e2A(ω) and a(t) are the warp factor and the scale fac-
tor of the brane, respectively. Also, w shows the extra dimen-
sional coordinate. In order to construct the de Sitter tachyonic
brane solution, we start with the 5D following action for a
bulk tachyonic scalar field T which coupled to gravity as
[15],

S =
∫

d5x
√−g

[
1

2κ2
5

R − �5

−V (T )

√
1 + gMN ∂MT ∂N T

]
, (2)

where R is the five-dimensional scalar curvature and �5 is
the bulk cosmological constant and M, N = 0, 1, 2, 3, 5. The
κ2

5 = 4πG5 where the G5 is the five-dimensional Newton
constant. We also notice that such real tachyonic scalar field
T depends only on the extra dimension w and V (T ) is its
self-interaction potential. The matter field equation of motion

resulting from the action (2) is

∂M

[√−gV (T )∂MT√
1 + (∇T )2

]
− √−g

√
1 + (∇T )2 ∂V (T )

∂T
= 0.

(3)

Using the metric ansatz (1) one can obtain following com-
plete solutions [15]

a(t) = eHt A(w) = 1

2
ln[ssech(H(2w + c))], (4)

T (w) = ±
√

−3

2κ2
5 �5

arctan

(
sinh[ (H(2w+c))

2 ]√
cosh[(H(2w + c))]

)

= ±barcsinh(tanh(Hw)), (5)

V (T ) = −�5

√
(1 + sech[H(2w + c)])

(
1 + 3

2
sech[H(2w + c)]

)
,

(6)

where H, c and s are arbitrary positive constants while the 5D
cosmological constant �5 is negative. Also, the constants s
and b are defined by

b =
√

−3

2κ2
5 �5

s = − 6H2

κ2
5 �5

= 4b2H2. (7)

It is clear that the warp factor decays and asymptotically dis-
appears along the extra dimension, while the tachyon scalar
possesses a kink or anti kink-like profile. Moreover, since
the real tachyonic field has a bounded domain so the self-
interaction potential V (T ) which expressed in terms of the
tachyonic scalar field T is a real and bounded potential. Also,
it should be mentioned that as discussed in Ref. [15] this
braneworld scenario is classically stable and capable of local-
izing gravity. It includes a graviton spectrum with a single
massless bound state that corresponds to 4D gravity local-
ized on the brane and has a mass gap between the zero mode
and massive modes that makes the 5D corrections to New-
ton’s and Coulomb’s laws decay exponentially. Further dis-
cussions of this model were presented in [31,45,46], where
it was shown that it is possible to localize gauge, scalar and
fermion fields in dS tachyonic braneworld. The localization
of Elko spinor field on this brane may be very different from
the ones of other matter fields hence we are interested to
investigate this localization problem in the next section.

3 Localization of Elko spinor fields with Yukawa-like
couplings

Elko is a new matter field which can be used to investi-
gate some cosmological problems such as the horizon prob-
lem, the dark energy problem. It will be interesting to know
whether a higher dimensional Elko field can be localized on
various kinds of branes. The localization of the zero mode
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of a 5D Elko spinor fields on Minkowski branes has been
investigated in Refs. [38–40] by using a Yukawa-type cou-
pling term between the five dimensional Elko spinor and the
background scalar field. Recently, the authors of Ref. [41]
has been introduced a new non-minimal coupling mecha-
nism can provide the possibility of localizing the Elko zero
mode on Minkowski branes. Since de Sitter and Anti-de Sit-
ter branes have different properties from Minkowski branes
thus localization of 5D Elko field on these brane has new
results compared to those on Minkowski branes. Localiza-
tion of five-dimensional Elko spinors on dS/AdS thick branes
has bees considered in Refs. [42,43]. The authors of [42]
have found that the massless Elko field can be localized on
the de Sitter brane with the non-minimal coupling mecha-
nism whereas in Ref. [43] it was shown that the localiza-
tion of the Elko zero mode on de Sitter and Anti-de Sitter
thick branes can be realized with both mentioned localiza-
tion mechanisms. In this section, we study the localization of
Elko spinors on de Sitter tachyonic thick braneworld model
generated by a tachyon scalar field by using the Yukawa-type
coupling mechanism. Let us consider the action of an Elko
spinor field λ which is coupled to gravity as [38]

S =
∫

d5x
√−g

[
−1

4
gMN

(
DMλDM λ̄

+DM λ̄DMλ
)

− ηF(w)λλ̄

]
, (8)

where η is the coupling constant and F(w) is a general scalar
function of the extra dimensional coordinate w. The covariant
derivatives are also given by

DMλ = ∂Mλ + 	Mλ, DM λ̄ = ∂M λ̄ − λ̄	M . (9)

The non-vanishing components of the spin connection	M

are [43]

	μ = 1

2
(∂z A)γμγ5 + 	̂μ. (10)

where μ, ν, μ̄, ν̄ = 0, 1, 2, 3 and the γμ and γ5 are the four-
dimensional gamma matrixes on the brane and the γμ sat-
isfy γμ, γν = 2ĝμν , and 	̂μ is the spin connection on the
brane. From the action (8) with the metric (1) and using the
non-vanishing components of the spin connection (10), the
equation of motion for the Elko spinor field can be expressed
as

1√−g
DM

(√−ggMN DNλ
)

− 2ηF(w)λ = 0. (11)

In order to solve the above equation, as was proposed in
Ref. [38], we use a KK decomposition of five-dimensional
Elko spinor field as λ = λ+ + λ− with

λ± = e− 3A
2

∑
n

[
αn(w)ςn±(x) + αn(w)τ n±(x)

]
, (12)

where ςn±(x) and τ n±(x) are two linear independent four-
dimensional (4D) Elko spinor fields which satisfy

γ μ(∂μ + 	̂μ)ςn±(x) = ∓iςn∓(x),

γ μ(∂μ + 	̂μ)τ n±(x) = ±iτ n∓(x). (13)

γ 5ςn±(x) = ±τ n∓(x), γ 5τ n±(x) = ∓ςn∓(x) (14)

(∂μ + 	̂μ)(∂μ + 	̂μ)ςn±(x) = m2
nς

n±(x),

(∂μ + 	̂μ)(∂μ + 	̂μ)τ n±(x) = m2
nτ

n±(x) (15)

Where mn is the mass of Elko spinor field on the brane.
Also the KK modes αn(w) satisfy the following equation of
motion

´́αn −
[

3

2
´́A + 13

4
Á2 + 2ηe2AF(w) − m2

n + imn Á

]
αn = 0

(16)

Where the prime denotes derivative with respect to extra
dimension coordinate w. Furthermore, in order to getting the
effective action on the brane for the four-dimensional mass-
less Elko spinor field, we need the following orthonormality
condition for the KK modes αn(w) [38]
∫ +∞

−∞
αnαndw = δmn, (17)

We now focus on the localization of the zero mode of a 5D
Elko spinor on de Sitter tachyonic branes. For the zero mode,
i.e., the 4D massless Elko spinor field, by setting mn = 0
in Eq. (16) the following schrödinger-like equation can be
easily obtained
[
−∂2

w + V0(w)
]
α0(w) = 0, (18)

where the effective potential is given by

V0(w) = 3

2
´́A + 13

4
Á2 + 2ηe2AF(w), (19)

The potential (19) depends on the warp factor exponent A(w)

and the function F(w). Because of existing freedom in the
form of the Yukawa coupling one can include different forms
of the function F(w). In Refs. [38,39] this function is made of
a background scalar field while in Ref. [40], it was assumed to
be a function of Ricci scalar R. Furthermore, in Refs. [38,43]
it was shown that by using similarities between the Elko field
and the scalar field, the form of F(w) in the Yukawa-type cou-
pling mechanism is determined by the warped factor which

is arising from the regulation of coefficient numbers of ´́A
and Á2 in the effective potential of Schrodinger-like equa-
tion of Elko spinor field. This specific choice of the function
F(w) leads to the zero mode solution with the exponential
form that can be localized on dS/AdS braneworld models. We
notice that in their formalism, the F(w) is a function of extra
dimension coordinate in thick braneworld model and has a
constant value in the RSII thin braneworld model. While in
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our study in this section, we have solved the Schrodinger-like
equation of massive and massless Elko spinor field with-
out any restriction on the effective potential as well as the
Yukawa coupling term similar to the one discussed in Ref.
[45] for the scalar field localization on the tachyonic de sit-
ter brane. In this work, we first consider two simple choices
for the F(w) such that the function F(w) has a zero value
and a non-zero constant value which corresponds to massless
and massive Elko spinor fields respectively. Next, we inves-
tigate Elko field localization on tachyonic de Sitter brane by
demanding the function F(w) to be a function of tachyon
scalar field.

3.1 Case I: F(w) = 0

In this case we will consider a simple function F(w) = 0 in
the action (8) that describes a 5D free massless Elko spinor
field. For this case, by using the solution (4) the effective
potential (19) can be rewritten as

V0(w) = 1

4
H2

[
13 − 25sech2(2Hw)

]
, (20)

where we have sat c = 0 for simplicity. Considering the
behavior of the above effective potential, we can study the
localization of the zero mode of the massless Elko spinor field
on the de Sitter tachyonic branes. In order to get a localized
zero mode, the value of the effective potential at its min-
ima must be negative. one can easily find that the effective
potential (20) has a negative minimum −3H2 at z = 0 and
a positive maximum 13

4 H2 at z = ∞ which mean that this
potential has the shape of the well known modified Pöschl–
Teller one and the zero mode of massless Elko spinor field
may be trapped by this potential. After some calculations we
can rewrite the Eq. (18) with the potential (20) as :
[
−∂2

w̄ − 25

16
sech2(w̄)

]
α0(w̄) = −13

16
α0(w̄), (21)

where we have used w̄ = 2Hw. The zero mode of massless
Elko spinor, α0(w̄), reads

α0(w̄) = c1P
η
υ (tanh(w̄)) + c2Q

η
υ (tanh(w̄)) , (22)

where c1, c2 are integral parameters, P and Q represent the
first and second associated Legendre functions respectively.
The degree υ and order η are

η =
√

13

4
, υ = −1

2
+

√
29

4
. (23)

In order to get a localized mode the solution (22) should be
vanish at infinity. Considering the properties of the associated
legendre functions expressed in Refs. [38,42], one can easily
find that the solution α0(w̄) cannot converge at w → ±∞ for
these values of η and ν given by Eq. (39). Thus we conclude
that the free massless Elko spinor field can not be localized

on de Sitter tachyonic branes. By following the procedure
of Refs. [41,42] we have examined localization of massless
Elko fields on de Sitter tachyonic branes with non minimal
coupling mechanism by choosing two different forms of the
auxiliary function K (w) = 0 and K (w) = tanh(w). Results
are similar to the ones obtained in the case of de Sitter brane in
Ref. [42]. We have found that by setting p = 1

2 in the results
of Ref. [42] free massless Elko spinor field localization can
be resorted in our braneworld model.

3.2 Case II: F(w) = M2
Elko

Here, in contrast to the Ref. [43], we have especially assumed
that the Yukawa coupling function F(w) has a non zero con-
stant value. Therefore, we expect the zero mode solution of
our model be different from those results. We now study
the localization of bulk massive Elko spinor fields on the
above presented tachyonic de Sitter thick braneworld by set-
ting F(w) = M2

Elko where MElko is the 5D Elko mass. With
this choice for the function F(w) the effective potential (19)
of massive Elko field is given by

V0(w) = 1

4
H2

[
13 − 25sech2(2Hw)

]

+2ηsM2
Elkosech(2Hw), (24)

The values of this potential at w = 0 and w → ±∞ can be
obtained as

V0(w = 0) = −3H2 + 2ηsM2
Elko

V0(w → ±∞) = 13

4
H2. (25)

Since the effective potential V0(w) tends to a constant
value at the infinity so the asymptotic behavior shows that
the potential is of pöschl–Teller type with a massless KK state
localized on the brane. Also, the potential has a minimum at
w = 0 which is always negative for

0 < M2
Elko < −κ2

5 �5

4η
, (26)

which indicates that the potential may trap the zero mode of
a massive bulk Elko spinor field. The effective potential (24)
is plotted in Fig. 1 for various values of M2

Elko. From this
figure, we can find that as M2

Elko increases, the minimum of
the potential tends to a zero value and then becomes positive

when − κ2
5 �5
4η

< M2
Elko < − 25κ2

5 �5
24η

. Finally, when M2
Elko >

− 25κ2
5 �5

24η
the potential has only a maximum in the origin,

making evident that there are no localized modes at all.
In order to get the zero mode solution, by inspiring the

process of Ref. [45] we use the following change of variables

w̄ = arcsech(u) α0(w̄) = sechξ (w̄)ρ0(w̄), (27)
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(a)

Fig. 1 The profile of the potential V0(w) for M2
Elko = 0 (dotted line),

M2
Elko = 1.5 (dashed line), M2

Elko = 3 (thin line), M2
Elko = 5 (thick

line) and s, H, b=1.

where ξ = − 1
2 +

√
29
4 . Substituting Eqs. (24) and (27) in Eq.

(18) and using w̄ = 2Hw we can get

d2ρ0(w̄)

du2 +
[

2(ξ + 1)u2 − (2ξ + 1)

u(u2 − 1)

]
dρ0(w̄)

du

+
⎡
⎣

13
16 + ηsM2

Elko
2H2 u − ξ2

u2(u2 − 1)

⎤
⎦ ρ0(w̄) = 0. (28)

The corresponding solution for the localized zero mode of
massive Elko field is given in terms of general Heun functions
by solving Eq. (28) as

α0(w̄) = sechξ (w̄)ρ0(w̄)

∝ sech
√

13
4 (w̄)

√
1 − sech(w̄)HeunG[

−1, a+, b+, c+, d+,
1

2
,−sech(w̄)

]
. (29)

The coefficients of the solution (29) are given by

a+ = ηsM2
Elko

2H2 + d+
2

, (30)

b+ = 1 + ξ + d+
2

(31)

c+ = 8ξd+ + 4ξ + 6d+ − 25

4 + 4
√

29
, (32)

where d+ = 1 +
√

13
2 . Since the general Heun functions tend

to the constant one at infinity [47], it is easy to find that the

α0(w̄) → e−
√

13
4 |w| as w → ±∞. Thus the orthonormality

condition
∫

α2
0dw < ∞ is satisfied that means the zero mode

of massive Elko fields can be localized on the tachyonic de
Sitter thick braneworld within the range of allowed values for

the bulk mass of the Elko field, i.e. for 0 < M2
Elko < − κ2

5 �5
4η

.
We finally mention that if we follow the process of Ref. [43]
and take

F(w) = − H2

2ηs
cosh(2Hw)

×
[
(p2 + p − 25/4) tanh2(2Hw) − 2p + 3

]
,

(33)

then the zero mode solution is given by

α0(w) ∝ epA(y) = s
p
2 sech

p
2 (2Hw) (34)

where p is a real constant parameter that must be positive for
a localized zero mode.

3.3 Case III: F(w) = sinh2( Tb )

1−sinh2( Tb )

In this subsection we examine Elko field localization by con-
sidering a tachyonic function F(w) as the Yukawa interaction
between Elko spinor field and background tachyonic scalar
field. These types of functions have been used in Ref. [31]
in order to study fermion field localization in a tachyonic de
Sitter thick braneworld. With the choice of F(w)

F(w) = sinh2( Tb )

1 − sinh2( Tb )
= cosh(w̄) − 1

2
, (35)

the effective potential (19) can be rewritten as

V0(w̄) = 1

4
H2

[
13 − 25sech2(w̄)

]
+ ηs(1 − sech2(w̄)),

(36)

where we have used the solution (5) for the tachyon scalar
field T . Also it is mentioned that this effective potential has
the shape of the well known modified Pöschl–Teller one and
the value of the potential at its minimum is always negative
that means the zero mode of Elko field may be exist. Using
definitions (27) and the above potential (36) in Eq. (18) one
can easily found the following schrodinger-like equation

d2ρ0

du2 +
[

2(ξ + 1)u2 − (2ξ + 1)

u(u2 − 1)

]
dρ0

du

+
[

13
16 + γ (1 − u) − ξ2

u2(u2 − 1)

]
ρ0 = 0, (37)

that leads to following zero mode solution for the Elko spinor
field
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(a) (b)

Fig. 2 The profile of a the potential V0(z) and b the zero mode α0(w̄) for b = 1, H = 1, η = 0.005

α0(w̄) ∝ sech
√

13+16γ
4 (w̄)

√
1 − sech(w̄)HeunG

×
[
−1, ã+, b̃−, b̃+, d̃+,

1

2
,−sech(w̄)

]
, (38)

where

γ = ηs
4H2 d̃+ = 1 + 1

2

√
13 + 16γ , (39)

ã+ = 1 − γ + d̃+
2

b̃± = 1

2
±

√
29

4
+ d̃+

2
(40)

Since the general Heun function has only a constant contribu-
tion at infinity of the extra dimension, the zero mode α0(w̄)

tends to e
−√

13+16γ
4 |w̄| az w̄ → ±∞. Hence, it is clear that

the orthonormali t y condition (17) is also satisfied, and the
zero mode can be localized on the tachyonic de Sitter branes
for any positive γ . The profile of the effective potential (36)
and the zero mode (38) are shown in Fig. 2. As the Fig. 2b
shows this kind of uncommon zero mode can be localized
on the brane. We also mention that there exists a split at the
point w = 0 for the zero mode solution (38) as well as (29)
which comes from the expression (

√
1 − sech(w̄)).

4 Localization of Elko field with derivative coupling

In this section, we study Elko spinor field localization on
the tachyonic de Sitter brane by using a non-Yukawa deriva-
tive coupling term in the 5d action. This mechanism was
employed in order to solve the problem of fermion localiza-
tion in thick braneworld models generated by an even back-
ground scalar field [28]. Also, the authors of Refs. [29,48]
shown that fermion localization can be achieved on the Bloch

branes and Deformed branes with the derivative coupling
mechanisms. In this work, we are interested to know what
happens when one tries to introduce a non-Yukawa cou-
pling term in the bulk Elko field action. The five-dimensional
action for a Elko spinor coupled to the background tachyon
scalar fields with derivative coupling is

S =
∫

d5x
√−g

[
−1

4
gMN (DMλDM λ̄ + DM λ̄DMλ)

+η̃λ̄γ M∂MF(w)γ 5λ

]
, (41)

where η̃ is a coupling constant. γ M = eM
M̄

γ M̄ where

γ M̄ and eM
M̄

are used for the gamma matrix in flat space
time and the vierbein respectively. These parameters sat-
isfy the orthonormality relation gMN = eM̄MeN̄N ηM̄ N̄ and
{γ M , γN } = 2ηMN

I with I = eμ
ν̄ . M̄, N̄ , . . . = 0, 1, 2, 3, 5

stand for the five-dimensional local Lorentz indices and
ηMN = diag(−,+,+,+,+). The equation of motion for
the five-dimensional Elko spinor arising from the above
action with the metric (1) is

1√−g
DM

(√−ggMN DNλ
)

+ 2η̃eA∂wF(w)λ = 0. (42)

Using the decomposition (12) and the relations (13–15) for
the Elko spinor λ , one can easily find that the massless zero
mode satisfy the following schrödinger-like equation

[−∂2
w + V0(w)]α0(w) = 0, (43)

where the effective potential is given by

V0(w) = 3

2
´́A + 13

4
Á2 − 2η̃eA∂wF(w). (44)
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We note that this effective potential is different from the one
considered in the previous section for the usual Yukawa cou-
pling. Also, it is well known that there exist many similarities
between the Elko field and the scalar field [38,43]. The scalar

effective potential with the form Vφ = 3
2

´́A + 9
4 Á

2 is capa-
ble to trap the massless zero mode of scalar field while the
five-dimensional free massless Elko spinor field can not be

localized by the effective potential V0 = 3
2

´́A+ 13
4 Á2 because

of existing an additional term Á2. When the coupling func-
tion F(w) is used, the coefficient numbers of A and A2 can
be adjusted as

3

2
´́A + 13

4
Á2 − 2η̃eA∂wF(w) = p ´́A + (p Á)2. (45)

where p is a real parameter. It is clear that the equation (45)
leads to the following solution for the function F(w)

F(w) = − 1

2η̃

∫
e−A

[(
p − 3

2

) ´́A +
(
p2 − 13

4

)
Á2

]
,

(46)

that satisfy the condition F(0) = 0. By substituting the Eq.
(46) in the effective potential (44), one can easily find the
Elko zero mode solution from the Eq. (43) which is α0(w) ∝
epA(w). Next, we will investigate localization of Elko field on
tachyonic de Sitter branes stated in section 2 by using the new
derivative coupling mechanism presented here. Considering
the solution (4) and recent discussions, the effective potential
and the Elko zero mode solution are given by

V0(w) = p ´́A + (p Á)2 = p2H2 tanh2(2Hw)

−2pH2sech2(2Hw), (47)

α0(w) ∝ epA(w) = s
p
2 sech

p
2 (2Hw). (48)

It is easy to show that the zero mode (48) is normalizable for
any positive p, so it is localized on the tachyionic ds brane.
The profiles of the effective potential which is a PT potential
and the zero mode are plotted in Fig. 3 for s = 1, H = 1/2
and p = 1.

4.1 Example: F(w) = − 1
H ElipticF(cosh w̄

2 ,
√

2)

In the previous subsection, we have found that in order to
obtain the Elko zero mode on a tachyonic de Sitter brane, the
form of F(w) in the derivative coupling mechanism must
be determined by adjusting the coefficient of the Á in the
effective potential (44) same as the one of the scalar case.
Here, by an example it is shown that an appropriate form of
F(w) leads to the Elko zero mode localization on tachyonic
dS brane without needing to regulate the coefficient of the
effective potential. We assume that

(a)

Fig. 3 The profile of the potential V0(z) (solid line) and the zero mode
α0(w̄) (dotted line) for s = 1, H = 1/2, p = 1

F(w) = − 1

H
ElipticF(cosh(Hw),

√
2), (49)

where ElipticF(u, v) gives the elliptic integral of the first
kind F(u, v). Furthermore, the derivative of the function
F(w) is

∂wF(w) = 2√
2 cosh2(Hw) − 1

. (50)

Using above equation and relation (4) in the effective poten-
tial (44) we get

V0(w̄) = 1

4
H2

[
13 − 25sech2(w̄)

]
− 4η̃

√
ssech(w̄). (51)

It is clear that the effective potential (51) is a pöschl–Teller
potential which always has a negative value at its minimum
for positive values of η̃. Following the process explained in
Sect. 3, the Elko zero mode solution can be obtained from
Eq. (43) as

α0(w̄) ∝ sech
√

13
4 (w̄)

√
1 − sech(w̄)HeunG

×
[
−1,

d+
2

− 4η̃
√
s, b+, c+, d+,

1

2
,−sech(w̄)

]
, (52)

where the parameters b+ and c+ are same as Eqs. (31) and
(32) respectively. We mention that the zero mode (52) is very
similar to the localized one obtained in Sect. 3.2 for massive
Elko spinor field. Hence we adopt more discussion about it
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and conclude that by choosing an adequate form of F(w) the
Elko field can also be localized on tachyonic de Sitter brane
with derivative coupling mechanism.

5 Conclusions

In this work, we have investigated the localization of Elko
spinor fields on a tachyonic de Sitter thick brane generated
by a tachyon scalar field. Using the Yukawa-type coupling
mechanism, we have analytically investigated the zero mode
solution. For the case of massless Elko spinor field we have
found that the zero mode was given in terms of associated
Legendre functions which cannot be localized on tachyonic
de Sitter brane. However, massive Elko spinor fields can only
be localized on this brane when the bulk mass bounded as
0 < M2

Elko < − κ2
5 �5
4η

. Furthermore, we have studied the
Elko field localization by considering a tachyonic function
F(T (w)) as the Yukawa interaction between Elko spinor and
background tachyonic scalar field. It was shown that the zero
mode is given in terms of general Heun functions that its

behavior at infinity is e
−√

13+16γ
4 |w̄| which means such zero

modes can be localized on the tachyonic de Sitter brane for
any value of γ .

In order to localize the Elko spinor fields, following the
Ref. [28] we have also applied a new mechanism i.e., the
derivative coupling between the five-dimensional Elko spinor
and the background tachyon scalar field. In this mechanism,
the function F(w) is determined by adjusting the coefficient
of the Á in the effective potential and the zero mode of Elko
spinor field has the form of epA that is localized on the brane
under the condition p > 0. Finally, we focused on the case
of F(w) = − 1

H ElipticF(cosh(Hw),
√

2) and found that
the Elko zero mode can be trapped on tachyonic dS brane
without needing to regulate the coefficient of the effective
potential. For both mechanisms, it was shown that the effec-
tive potential of Elko spinor zero mode in the corresponding
Schrödinger equation is PT-like effective potential which is
not applicable for studying the massive KK modes. It will be
interesting to consider the excited modes of the theory. This
and other related issues are presently under consideration and
will be investigated in our further work.
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