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Abstract: The notion of background independence is a distinguished feature that should characterize
the conceptual foundation of any physically-acceptable theory of quantum gravity. It states that the
structure of the space-time continuum described by classical General Relativity should possess an
emergent character, namely, that it should arise from the quantum-dynamical gravitational field. In
this paper, the above issue is addressed in the framework of manifestly-covariant quantum gravity
theory. Accordingly, a statistical formulation of background independence is provided, consistent
with the principle of manifest covariance. In particular, it is shown that the classical background
metric tensor determining the geometric properties of space-time can be expressed consistently in
terms of a suitable statistical average of the stochastic quantum gravitational field tensor. As an
application, a particular realization of background independence is shown to hold for analytical
Gaussian solutions of the quantum probability density function.

Keywords: quantum gravity; background independence; emergent space-time; stochastic quantum
gravity; manifest covariance
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1. Introduction

The notions of background independence and diffeomorphism invariance, that is,
General Covariance or General Relativity frame independence, are often claimed to repre-
sent distinctive physical properties and compelling requirements for models of Quantum
Gravity (QG) theories. In the literature, they have been investigated in terms of either exact
or approximate mathematical methods, including the case of perturbative renormalization
schemes [1-5]. In fact, it is believed that the ultimate theory of quantum gravity should
actually be able to predict the emergence of the classical background structure of the space-
time continuum from quantum degrees of freedom of some sort [6,7]. The latter, however,
should be selected on physical grounds, i.e., suitable boundary conditions. This means
also that they should be (possibly non-uniquely) rooted in the corresponding classical
Hamiltonian representations on which the same QG theory must rely [8-10].

1.1. The Two Routes to the Hamiltonian Representation of GR and QG

Two possible routes are available to establish a Hamiltonian representation of classical,
and consequently quantum, gravity theories. These are respectively based on two possible
variational settings, i.e., either the constrained {g(r)}. or corresponding unconstrained
{g(r)}; setting [10,11]. The two settings can also be referred to as “Multi-verse space-time”
and respectively “Uni-verse or background space-time” since they correspond to two
different possible choices of space-time.

The first choice is adopted in Quantum Geometrodynamics (QGD), i.e., either the Wheeler-
DeWitt (WDW) equations [12,13] of QGD or the Ashtekar-variable representation [14], as well
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as the Loop Quantum Gravity (LQG) approach [15]. In this case, the generic classical tensor
g(r) € {g(r) = guv(r)} is itself identified with a metric tensor. This means that each virtual
variational tensor g(r) underlying the theory generates its own, and in principle different,
space-time. The structure of the corresponding classical space-time is therefore identified
with the differential manifold

{Q'gn}. (1)

This implies that the counter and covariant components of the symmetric g(r),
namely, {g,v(r)} and {g""(r)}, are necessarily constrained. Namely, they are subject to
the orthogonality conditions

guv(r)g™ (r) = &y, @

which must hold identically for any g(r) evaluated at arbitrary 4—positions r = {r#}
spanning {Q% ¢(r)} and for arbitrary indices y,« = 0,3. The consequent implication is
that the functional setting {g(r)} is represented by constrained tensor functions subject to
the orthogonality constraints (2), i.e., a suitably-defined constrained-function space with
{g(r)} = {8(r) }¢ (see[10]).

The unconstrained variational setting {g()}; is instead adopted in the context of
the so-called manifestly-covariant QG theory (CQG-theory) [16]. For this purpose, the
assumption is introduced that there exists a suitable and possibly non-unique quantum
background metric field tensor g(r) = {g.,(r)} = {g§""(r)}, with (r) itself belonging to
an appropriate functional set {g(r) }. The metric tensor g(r) is allowed to be determined
consistently by the same quantum gravity theory, that is, to represent an emergent space-
time metric tensor. In this case, g(r) has to be suitably determined such that it coincides
with an appropriate (and yet to be prescribed) quantum expectation value of underlying
quantum variables or degrees of freedom. Correspondingly, the associated background
“quantum” space-time is introduced as

{Q' s} ®)

In the unconstrained setting, the generic classical variational g(r) introduced above is
not required to be a metric tensor, which means that it remains unconstrained. However,
its tensorial properties remain defined unambiguously. In fact, the same g(7) is assumed to
be a 4—tensor with respect to the space-time (7).

As a remark, we recall that for the quantum treatment the validity of the unconstrained
setting is implied by the corresponding synchronous unconstrained variational principle
holding in classical General Relativity [16,17], which realizes a deDonder-Weyl represen-
tation of Lagrangian variational theory for the continuum gravitational field [18-20]. In
fact, the synchronous variational approach is expressed by a 4—scalar Lagrangian function
depending on both variables g;, and g;y. According to the language of variational theory,
this implements a superabundant variable approach. In this setting, the variational tensor
¢ = {guv } remains distinguished from the background metric tensor § = {g,,, }, which is
to be regarded as non-variational. This latter is a fundamental element of the theory, as its
inclusion permits the definition of the covariance properties of the theory and ultimately
the proper definition of background independence holding for the quantum theory, as
displayed below. The tensor g is assumed to be determined a posteriori by the extremal
(and possibly quantum-modified) Einstein field equations. Hence, the metric tensor g is
endowed with a geometric connotation, that is, it satisfies the orthogonality condition
§HV§Vk = 6k, Because of this, g can be used to raise or lower tensor indices, satisfies the
so-called metric compatibility condition of vanishing covariant derivative @,ng =0, and
as such permits the definition of the standard Christoffel connections and the curvature
tensors of space-time. On the contrary, in the unconstrained framework the variational
tensor g is such that g,y gk £ ok, Tt must be noted that the distinction between ¢ and
g is true only within the variational principle, as the identity ¢ = g is restored in the
extremal field equations identified with the classical Einstein field equations. The same
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distinction applies to the definition of the invariant 4-volume element as well, which takes
the “synchronous” form dQ = d*r\/— |g|, such that its variation vanishes and does not
contribute to the variational calculus. This volume-preserving property permits us to
establish an interesting formal connection between the synchronous setting and certain rel-
evant approaches in the literature sharing a similar conceptual viewpoint. More precisely,
we refer here to non-metric volume forms or modified measures, defined for example
in [21,22]. Additionally, it is worth mentioning the so-called non-Riemannian space-time
volume elements [23], which instead suggest variational models for the GR equations in
which the volume elements of integration in the action principles are assumed to be metric
independent. This requirement is met by demanding that the latter ones be determined
dynamically through additional degrees of freedom, which are, for example, associated
with the inclusion of additional scalar fields.

1.2. The Concept of Background Space-Time

In classical gravity the concept of background space-time, i.e., a Riemannian differ-
ential manifold formed by the couple {Q* g(r)}, and respectively that of background
metric tensor g(r) = {guw(r)} = {g§"(r)}, is related to the Einstein Field Equations
(EFE) [24]. Here, g},u(r) and g"" () denote the covariant and counter-variant components of

g(r), which by construction satisfy the orthogonality conditions g« (r)g"f (r) = 38 More
precisely, the background space-time metric tensor g(r) is an in principle arbitrary and
particular solution of EFE [25].

However, in QG, g(r) should more generally identify a suitable quantum-modified
metric tensor. In this regard, the question is whether, in the context of QG,

*  3(r) can actually acquire the meaning of a classical metric field tensor and can be
identified with the quantum expectation value of a suitable quantum observable, i.e.,
correspondingly acquiring, in a sense, a kind of “statistical interpretation”.

*  3(r) can be ultimately determined by a suitable “dynamical equation” having a well-
defined Hamiltonian character, to be identified with quantum-modified (tensor) EFE
following from the quantum-gravity wave equation.

e  The same tensor field g(r) fulfills the property of background independence, i.e., its
representation is not assigned, and it is rather determined a posteriori as a solution of
the same quantum-modified EFE.

Accordingly, in order to be acceptable a QG theory should not depend on the particular
realization of g(r), to be identified, for example with a continuum classical metric tensor
provided by the solution of the said quantum-modified EFE. This means that QG should
not be formulated in a given space-time to be imposed a priori. Rather, QG itself should be
able to generate the background space-time through gravitational quantum dynamics.

From the outset, however, two crucial difficulties arise, i.e., the identification/construction
of the quantum-modified EFE, and consequently the definition of background space-time.

In fact, in the framework of QGD there is, first, no obvious way to identify and cast
in explicit 4—tensor form the said quantum-modified EFE; second, the very definition of
the concept of background space-time remains to be defined. In fact, in the literature a
precise mathematical formulation of the concept of background may actually depend on
the choice of the setting implemented for the development of QG [26]. The same notion
nevertheless places stringent constraints on the validity of a given QG theory, requiring the
establishment of a precise relationship between the structure and geometrical interpretation
of the quantum gravitational field and its classical limit provided by the four-dimensional
continuum space-time of GR [27].

In contrast, the approach adopted in the context of CQG-theory appears quite different.
The reasons for this are as follows. First, one can show that the quantum-modified EFE
emerges from the quantum-wave equation which determines the evolution of the quantum
wave-function (a hyperbolic first-order PDE) [28,29]. Second, the background space-time
2(r) acquires an “emergent character”, in the sense that it can be determined as the quantum
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expectation value of a suitable quantum (second order symmetric) tensor field. As a
consequence, in such a context the concept of background independence holding in QG
becomes intrinsically related with that of emergent space-time applying to the classical
field. Reversing the perspective, this means that the structure of the continuum space-time
described by classical GR should possess an emergent character, that is, it should arise from
the quantum-dynamical gravitational field [30,31].

1.3. Background Independence

In the context of both GR and QG, a possible viewpoint is that background indepen-
dence might/should be identified with the property of the metric tensor of space-time to
be the general solution (i.e., an arbitrary particular solution) of a “dynamical equation” of
some sort, i.e., actually a PDE subject to prescribed boundary conditions. Such an equation
should be related to the existence of a suitable Hamiltonian structure, both classical and
quantum, underlying an abstract dynamical field description of GR and QG. Therefore, in
order to qualify the property of background independence, the preliminary requirement
remains that of determining a prescription of the same Hamiltonian structure. This restricts
the selection of candidate QG theories to those that truly possess the requisite Hamiltonian
character [32]. In the setting of CQG-theory, such an equation has a natural 4—tensor
character and is represented by the quantum-modified EFE.

With these premises, in this paper the meaning of background independence and its
mathematical formulation are addressed for the non-perturbative manifestly-covariant
quantum gravity theory (CQG-theory [33,34]). This framework in fact admits a well-
defined Hamiltonian structure and is consistent with the Principle of Manifest Covariance
(PMC), namely, the property of dynamical equations and physical observables of being
cast in 4—tensor form [35]. Specifically, in the following, we contend that in the context of
CQG-theory the property of background independence requires the existence of a classical
background space-time with respect to which the notion of covariance can be defined. On
the other hand, the background metric field tensor (3) associated with such a space-time
and determining its geometric properties does not possess an independent character; rather,
it can be prescribed in terms of the quantum expectation value of a suitable stochastic
quantum observable. Accordingly, a statistical formulation of background independence is
proved to hold for CQG-theory. To reach the target, the mathematical setting identified with
the so-called generalized Lagrangian-path (GLP) theory of the quantum-wave equation
is implemented, which relies on an appropriate statistical formulation of the Bohmian
trajectory-based representation peculiar of CQG-theory [28].

The scheme of the investigation is structured as follows. First, the fundamental ele-
ments of CQG-theory, the validity of quantum hydrodynamic equations and their Hamil-
tonian character are recalled. Second, the theoretical formulation of statistical trajectory-
based representation of CQG-theory in terms of GLP approach is revised. The composite
framework established in this way permits a non-perturbative formulation of statistical
background independence holding for CQG-theory to be addressed and the main physical
properties to be pointed out. The final part of the research is dedicated to the study of a
particular realization of the background independence principle, which concerns the case
of analytical Gaussian solutions of the quantum probability density function consistent
with the Principle of Entropy Maximization.

2. Quantum Hydrodynamic Equations

The starting point of CQG-theory is provided by the manifestly-covariant 4—scalar
quantum-gravity wave equation (CQG-wave equation) determined in [34,36]. Consistent
with the unitarity principle for the quantum wave-function, this equation is formally
equivalent to the Schrodinger equation of quantum mechanics, and takes the form of the
Eulerian and hyperbolic PDE given by

i p(s) = Hp (). @
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Here, s belongs to the time axis I = R and plays the role of the evolution-time

parameter, so that % = % + % denotes the covariant s—derivative in Eulerian form. More
S

precisely, s represents the proper time along a massive graviton geodetics, which, according
to the prediction of CQG-theory [34], is expressed on the background metric tensor g(r)
through the differential identity ds? = g,,,dr"dr". Furthermore, 1 (s) identifies (in principle
for arbitrary s) the 4—scalar quantum wave function associated with a graviton particle,

while H I({q) is a suitable self-adjoint quantum Hamiltonian operator for which the definition
can be found in [34]. In particular, the functional dependence included in (s) is of the type
P(s) = (8,8, 1,5), with r = r(s) being a geodesic trajectory and g(r) = {g,v ()} being the
generalized-coordinate field (continuum Lagrangian coordinates) spanning the quantum
configurations space, namely, the 10—dimensional real vector space Uy C R!? on which

the quantum probability density function p(s) = |¢(s) 1 (quantum PDF) is normalized.
Notice that here, without possible ambiguities, the distinction is made between the
tensor gy, which identifies the continuum Lagrangian coordinate associated with the
quantum gravitational field, and the background metric tensor g, which takes into
account the geometric properties of the background space-time. Thus, by construction,
the tensor g() belongs to {g(r) };; while the orthogonality conditions g"" g, = (5;5 apply
only to the background field. Accordingly, the quantum field g, is distinguished from g,
meaning that it is subject to a quantum dynamical evolution and is characterized by a non-
vanishing quantum momentum. Finally, we remark that at this stage only formal algebraic
properties of g, are imposed, which means that the representation of the background
tensor g, remains arbitrary and undetermined, and has yet to be properly assigned in
agreement with the background independence principle. On the other hand, the role of
Suv is fundamental, as it permits the raising and lowering of tensor indices; therefore, it
enters the definitions of 4—scalar quantities, realizing a formalism consistent with PMC. In
addition, we stress that in order to warrant the uniqueness of the solution, the quantum
wave Equation (4) needs to be supplemented with initial boundary conditions of the type

¥(gs0) = Y(g.87(s0)), (5)
P(9g,s) = (ag, g r(s),s) =0, (6)

where 1(9g, so) denotes the value of ¢(g,s) on the boundary dU (i.e., the improper domain
on Ug) and ¥ (g, g, 7(s0)) denotes an appropriate and smooth initial wave function.

In full analogy with quantum mechanics [37], the CQG-wave Equation (4) together
with the associated initial boundary conditions (5) and (6) is equivalent to an appropriate set
of quantum hydrodynamics equations. These are obtained upon introducing the so-called
Madelung representation for the wave function ¢ (s), i.e., a complex 4—scalar field which
in exponential form can be written as

P(8,875) =P exp{;8<q>}- @)

Here, {p, S<‘7)} = {p(g, g,7,5), S (£,8, r,s)} identify two 4—scalar quantum fluid
fields, respectively the quantum PDF and the quantum phase-function. As a result, it
follows that the same quantum fluid fields satisfy the set of GR-quantum hydrodynamic
equations which are identified with the continuity and quantum Hamilton-Jacobi (H-J)
equations, namely,

dp 0 _
A Erm (oVw) = 0, 8)
as@) W — o )
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Here, V), = ﬁ %,(ﬁ,) is the tensor “velocity” field, while one can show that the dimen-
sional 4—scalar constant «L is related to the graviton mass estimate provided in [34]. In
addition, here H®) identifies the effective quantum Hamiltonian density in the absence of
classical sources,

@ _ Lag(q) 9S (1)
~ 2aL 9" 9guy

Vom + Vo, (10)

so that V, and Vo) respectively denote the vacuum effective potential and quantum Bohm
interaction potential [38] given by

1 ~
Vo =k (2 -1 g gw) $"PRyp, (11)

v — M alnpdlnp B 9%
QM = 8xL aghv oguy  4aL pdg,u,08M’

(12)

with R\a/g being the Ricci tensor evaluated in terms of the background metric tensor g,4 and
x now identifying the 4—scalar dimensional constant k = 87tG/c*.

Based on the quantum Hamilton—Jacobi Equation (9), and again in analogy to quan-
tum mechanics [37], a quantum Hamiltonian structure can be established for the quantum
hydrodynamic state as well. This is represented by the set {x, H® }, where the 4—tensor
canonical state x(s) = (guv(s), IT"(s)) identifies the Hamiltonian (quantum) hydrody-
namic state, with [T" = %EZ) and H@ respectively denoting the canonical momentum
and the effective quantum Hamiltonian density (see Equation (10) above). This implies that
Equation (9) can be equally represented in terms of a set of manifestly-covariant quantum
Hamilton equations, taking the form of evolution equations with respect to the proper-time
invariant parameter s introduced above. Thus, in vacuum these equations are expressed as

d T#v

ol =

dsS L’ (13)
d 0
%H;w = _Tg]“’ (Vo + VQM)/ (14)

with x(s) = (guv(s), [1"(s)) being subject to generic initial conditions of the type x(s,) =
Xo = (g?:) = ¢"(so), Moy = H}W(so)) The existence of a manifestly-covariant Hamilto-
nian structure governing the quantum hydrodynamic equations for the quantum-gravity
state represents a feature that distinguishes CQG-theory from alternative approaches to
the problem in the literature. At the same time, it provides a consistency property that
establishes the connection with the corresponding Hamiltonian structure underlying the
Einstein field equations and that can be recovered by means of an appropriate semi-classical
limit (see proof in [29,34]).

3. Statistical Background Independence

In order to proceed, we need to obtain a trajectory-based (i.e., Lagrangian) represen-
tation of the quantum hydrodynamic equations. The framework implemented here is
provided by the generalized Lagrangian-path (GLP) parametrization (sometimes called
GLP-theory) of CQG-theory, which realizes a statistical formulation of the Bohmian repre-
sentation first proposed in quantum mechanics [37]. The physical principles motivating the
GLP theory can be found in [28,37]. For completeness, here we report the main steps that
are needed to establish the mathematical formulation of statistical background indepen-
dence. Thus, in the context of CQG-theory it is reasonable to assume that the Lagrangian
trajectories spanning the 10-dimensional quantum configuration space U, C R'? cannot be
deterministic, and as such should have a stochastic character. The GLP parametrization
provides an explicit realization of this type based on the introduction of a suitable set of
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stochastic trajectories, which are referred to as generalized Lagrangian paths (GLPs). The
GLP-formalism is achieved by first introducing the decomposition

8(r,s) = g(r) +8(r,s), (15)

assumed to apply for the quantum-gravity Lagrangian coordinate g(r,s) = {gu(7,5)},
with 8g(r,s) = {0 (r,s) } denoting the corresponding quantum displacement fluctuation.
We then introduce the GLP tensor G(s) = { G, (s) } satisfying the decomposition

G(s) = &(r(s)) +6G(s), (16)

with 6G(s) = {6G(r(s),s)} denoting the GLP-displacement tensor field. Each GLP
trajectory is then parameterized in terms of the displacement field, to be regarded as a
stochastic field tensor of the type

Ag = g(s) = G(s) = 6g(s) = 6G(s). (17)

Here, Ag = {Aguy } identifies a second-order tensor field referred to as the stochastic
displacement field tensor, which by construction is such that identically

D D
—A = —A¢" = 1
Ds 8m = pg8 0. (18)

D - . . .
where ; is the Lagrangian derivative operator

D d d
Z =4 Vi (2(s),8) = (19)
Ds = ds 58 (s) n(8(s) )aég,w(s)

Because Agyy and AgM are related via the background metric tensor g(r(s)), they
remain generally s—dependent, as the components g(r(s)) are non-constant as well. How-
ever, we may require that the mixed co- and counter-variant components Ag} (s) =
Agvﬁ(s)gﬁﬂ(r(s)) be constant, i.e., independent of s, letting (at arbitrary proper-times s
and s,)

Agy(s) = Agy(so) = Agy- (20)

As a consequence, provided each GLP trajectory is represented in terms of its mixed (co-
and counter-variant) tensor components, it can actually be represented by a configuration-
space curve of the type

{G(s) =Gl'(s),s € 1} = {gy(r(s)) + 69l (r(s)) — Agl,s € 1}, 1)

meaning that under variation of the stochastic displacement field tensor Ag} it actually
gives rise to a statistical family of trajectories. Nevertheless, in terms of the mixed-
component tensor Gf,’ (s) the corresponding co- and counter-variant components remain
defined as well, because

Guw(s) = Gﬁ‘(s)g}m(r(s)), (22)

GM(s) = Gi(s)g"(r(s)). (23)

Therefore, the stochastic character of CQG-theory in this representation emerges

as a natural consequence of Equation (21). Its meaning is that for each (deterministic)
Lagrangian (or Bohmian) trajectory {(5g(s) =0gh(s),s el } there are infinite stochastic

GLPs, each one obtained for a different value of A gff .
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From the condition (20), it additionally follows that &5 dgu/(s) = 5:0Gu(s) =
Viv(G(s),Ag,s), with V,,(G(s), Ag,s) denoting the tensor “velocity” field in the GLP-
representation:

1 989(G(s),Ag,5)

VP‘V(G(S)'Ag/S> = al aégyv(s)

(24)

In consequence of these definitions, for all s € I the GLP-map s — JG(s) is established
such that for each realization of the stochastic displacement Ag expressed in arbitrary tensor
components, G(s,Ag) = G(s) belongs to a well-defined curve {G(s), Vs € I} identifying
a GLP which spans the quantum configuration space Uy. More precisely, a generic GLP
curve {G(s), Vs € I} is determined by integration of the GLP-initial-value problem

{ %5(3;41/(5) = Viw(G(s),Ag,s),

25
0Guv(so) = (5g,(ﬂ/) — Aguv- @)

Here, it can be observed that the map G(s,) < G(s) defines a classical dynamical
system having a Jacobian determinant

_ exp{/ds’av’*”(G“/)’Ag’S/) } (26)

dG(s)
‘aG(SO)

9guu(s’)

Therefore, the ensemble of integral curves {G(s), Vs € I} obtained by varying Ag in U,
identifies an infinite set of GLP which depend on the tensor velocity field V},, (G(s), Ag, s).
However, it must be stressed that, actually,

Vin(G(s),Ag,5) = Vi (g(s),5), (27)

which means that the same infinite set of GLP remains always associated with the same
local value of the tensor velocity field V},,(g(s),s). This means that the non-uniqueness
characteristic of the GLP is only induced by the property of the stochastic tensor Ag.

The next step requires us to specify the GLP-representation of CQG-theory, namely, the
type of parametrization of the CQG wave-function (g, r,s) and the corresponding quan-
tum fluid fields, in terms of the GLP-displacement dG(s) = dg(s) — Ag. In analogy with
the GLP-approach to non-relativistic quantum mechanics [37], a general parametrization
of relevant functions that includes the explicit dependence on the stochastic displacement
tensor field Ag = {Agy, } is allowed. Therefore, this amounts to introducing the composed
mapping ¢(g,7,s) — P(G(s),Ag, g, 1,s), in which ¥(G(s),Ag,g,7,s) denotes the GLP-
parametrized quantum wave-function. Similarly, the corresponding GLP-parametrization
of the quantum fluid fields becomes

{050} = {p(G(5),83,5), SV (G(s), ag,5) | 28)

Nevertheless, the quantum hydrodynamic Equations (8) and (9) remain formally
analogous when expressed in the GLP-parametrization, meaning that they continue to

determine the map
{p'S(q)}(sa) = {Po/ S‘(ﬂ)} - {p'S(q)}(s)’ @)

with {po, S[(ﬂ) } identifying the initial quantum fluid fields to be assumed, for consistency,
of the type

{P0, 67} = {po(Gls0),88), 5,7 (G(s0), 89) }- (30)
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As a result, in the GLP-representation, the quantum hydrodynamic equations are
realized by the PDEs

WV (G(s),Ag,
{ 5:0(G(s),8g,s) = —P(G(S),Ag,S)w, 1)
%S(q)(G(s),Ag,s) = KW(G(s),Ag,5),

which are respectively denoted as the GLP-parametrized quantum continuity and H-J
equations, where

35 (G(s), Ag,s)

K(q)(G(S),AgrS) = VVV(G<S)/A8/5) achW(s)

— HY(G(s),Ag,5).  (32)

Here, H(7) (G(s), Ag, s) identifies the effective quantum Hamiltonian density (10) ex-
pressed in terms of the GLP-parametrization. The continuity equation in (31) can equiva-
lently be written as

_BV;,V(G(S),Ag,s)
908v(s)

which allows it to be formally integrated. This yields the map p(G(s,), Ag, o) — p(G(s),Ag,s),
with p(G(s), Ag, s) denoting the proper-time evolved quantum PDF, namely,

(33)

D
Ds np(G(s),8g,5) =

(34)

p(G(S),Ag,S) — p(G(so),Ag,sg)exp{— /ds/aVMV(G(S/)/Ag/S/) }

968 (s’)

Notice that the integration on the rhs is performed along the GLP-trajectory {G(s), Vs € I},
i.e, for a prescribed stochastic displacement 4—tensor Ag, while p, = p(G(s,),Ag,So)
identifies the initial, and in principle still arbitrary, PDF.

The stochastic character of Ag;,y demands that it must be endowed with a stochastic
PDF as well, which is denoted by f and at this stage remains to be prescribed. Thus, because
Ag is an independent stochastic variable, we assume that the same PDF is a stationary and
spatially uniform probability distribution, that is, a function independent of , s as well
as 61 (s), but which is allowed to depend in principle on the background metric tensor
Suv(r). This means that f must be represented in terms of a smoothly differentiable and
strictly positive function of the form

f=f(88.3). (35)

The consequence is that, for arbitrary smooth functions X(Ag,,s), the correspond-
ing notion of the stochastic average over Ag is defined by the weighted integral on the
configuration space Uy as

(X(B,7,5) soer = [ ABR)X(Ag,1,5)f(83,8). (36)
UX

In order to be acceptable as a physical theory, the GLP approach must warrant the
ontological equivalence of the GLP-parametrization for the quantum state i with the
“standard” Eulerian representation of the same quantum wave-function. This in turn
demands that the prescription of the stochastic PDF f(Ag, ) should be possible, leaving
the axioms of CQG-theory unchanged. In fact, for CQG-theory and similarly for Quantum
Mechanics (see [37]), the independent prescription of f(Ag, g) may potentially give rise
to additional conceptual difficulties related to the notions of quantum measurement and
quantum expectation values. In order to prevent such an inconvenience and support the
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ontological equivalence mentioned here, the PDF f(Ag, g) is required to coincide with the
initial quantum PDF p,, assuming the identity

f(88,8) = p(G(s0),Ag,50)- (37)

Having established the conceptual framework for the validity of CQG-theory and its
statistical trajectory-based representation in terms of stochastic GLP formalism, we can
now address the main target of the investigation, namely, the formulation of statistical
background independence and the proof of its validity for CQG-theory. The first consid-
eration concerns the analysis of the quantum hydrodynamic Equation (31) parametrized
in GLP variables. Consistent with PMC, these are expressed as 4—scalar equations for the

two 4—scalar quantum fluid fields {p, s } . The 4—scalar character is warranted by the

B}
existence of the background space-time, and is effectively realized by index saturation of

tensor quantities through the background space-time metric tensor g. Therefore, the depen-
dence on g in the quantum hydrodynamic equations is twofold, through possible direct
functional dependence and through 4—scalar products. At this stage, while the background
tensor g is included in the formalism, and its algebraic properties are specified, it continues
to represents an unknown quantity to be properly determined. Its prescription, however,
cannot come from the solution of the quantum hydrodynamic equations, as g is neither
a quantum functional dependence nor a dynamical variable of the theory that evolves
according to the same equations. Necessarily, the representation of ¢ must be assigned in
agreement with the foundational principles of GQC-theory and the GLP approach. We
then require that the background tensor g be generated by the quantum gravitational field,
and in particular from its stochastic fluctuations. This amounts to introducing the identity

g\ﬂ‘/ = <Ag}“’>stoch’ (38)

where the stochastic average is expressed by Equation (36), while from the vanishing of its

covariant derivative require gy, to be subject to the orthogonality condition g, g% = (55 .
As a result, the validity of the following relationship applies:

S = <A8;W>stoch = /d(Ag)Ang(Ag,g), (39)
Ug

which expresses the mathematical content of the concept of statistical background indepen-
dence holding for CQG-theory. The implications of such a realization are as follows. First,
the classical background space-time metric tensor arises consistently from the quantum
nature of the gravitational field, and in particular from its intrinsic stochastic behavior.
This is evident from the fact that the integral explicitly contains the stochastic tensor Agy,
as well as the PDF f(Ag,g), which is related to the initial quantum PDF p, by the iden-
tity (37). Second, this result appears unique to CQG-theory, as it is a consequence of its
Hamiltonian character and the consequent admitted trajectory-based representation of
the quantum-wave equation. Third, it establishes a connection between the stochastic
properties of quantum trajectories obtained in GLP theory and the stochastic character of
the quantum gravitational field with its averaged expression, in turn identified with the
classical metric tensor. Fourth, Equation (39) realizes the emergent character of the classical
field from its quantum degrees of freedom. Finally, thanks to Equation (39), the quantum
hydrodynamic equations become a set of integro-differential equations that consistently
solve the quantum fluid fields. In particular, the form of the quantum PDF p(G(s), Ag, s)
must be determined by the continuity equation under the assumption (39) and the suitable
prescription of the initial PDF p,.
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4. Gaussian Probability Density and Emergent Gravity

In order to illustrate the validity of the theoretical result obtained above, we are now in
position to discuss an application of the principle of background independence, considering
the particular case in which the quantum PDF admits an analytical representation in terms
of Gaussian distribution. This problem arises in connection with the determination of the
stochastic PDF for Ag and of the quantum PDEF. The goal here is the proof that, consistent
with the principle of entropy maximization [39], the initial quantum PDF f(Ag, ) can be
effectively realized by a shifted Gaussian PDEF. In turn, this permits us to display explicitly,
in terms of the analytical solution, the validity of the emergent gravity picture of quantum
gravity associated with the background independence character of the theory.

To start with, we invoke the prescription (35) and require additionally that f(Ag,3)
should fulfill the following stochastic averages:

<1>stoch Euf d(Ag)f(Ag,g\) =1,
<A35> = [d(bg)Aghf(Ag,3)) = £8) = +61,
stoch A (40)
Uig = <(Ag - <Ag>stoch)2> =

stoch -
uf d(Ag)(Ag — (AZ)ocn) (A8, 8) =12,

8

with

(Ag - <Ag>stoch)2 = [Ag‘}j N <Ag5>stoch} [Ag‘z B <Ag5>stoch} (41)

and op, denoting the standard deviation of Ag to be identified with the dimensionless
4—scalar parameter rfh > 0, assumed to be independent of both (7, s). Then, we assume that,
among the admissible choices for the initial PDF f(Ag, g), the latter takes the representation

f(Ag,8) = po(Bg£3(10)), (42)

which additionally fulfills the constraint conditions indicated above in Equation (40).

As to the validity of the identification (42), the constraints (40) then prescribe the
form of the initial PDF p,(Ag £ g(7,)). In fact, upon introducing the Boltzmann-Shannon
entropy associated with the same initial PDF and provided by the functional

S(pa(Ag £8(10)) = = [ d(8g)po(dg £8(r)) npo(Ag £2(r0),  (43)

8

one can show that the PDF p,(Ag £ g(r,)) which fulfills the principle of entropy maximiza-
tion and maximizes S(p,(Ag £ g(7,))) when subject to the same constraints (40) is unique.
In detail, we find that in the configuration domain Uy this PDF reads

~ 1 (Ag £ 3(ro))?
pO(Agig(TO)) Wexp{l’%h}
= pc(Ag£g(1)), (44)

with pg(Ag + g(r,)) denoting a shifted Gaussian PDF in which both r% and (Ag + 3(ry))?
are 4—scalars, with

(Ag £ 8(ro))" = (Ag £ &(ro))1,(Ag +8(ro))] (45)

Thus, thanks to Equation (20),

(Ag £8(ro))* = (Ag(s) £ 8(r))7, (46)
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where r, = r(s,) and r = r(s). Hence, the Gaussian PDF (44) realizes the most likely PDF,
i.e., the one which, when subject to the constraints (40), maximizes the Boltzmann-Shannon
entropy S(po(Ag = g(70))) in Equation (43).

More generally, denoting by

N 1 Ag+3(r)?
pc(Ag£8(r)) = Mexp{—(grf(r))} (47)
th th

the Gaussian PDF (44) evaluated for a generic 4—position r(s) # r, = r(s,), it is then
possible to prove that a formal solution p(Gy (s), Ag,s) of the quantum continuity equation
can be realized in terms of the function

(G(s'),A8,5")
068 (s")

F Vi
p(G(s),88,5) = po(Ag £ 3(1) expq — [ a5’ )

The main consequence of this analysis is that an exact analytical solution for the
quantum PDF which solves the continuity equation has been obtained. The same solution
additionally realizes the emergent gravity relationship of space-time. In fact, from the
second of Equation (40) and the shifted Gaussian solution (47), selecting the root pg(Ag —

Q(r)) yields

Gw = [ d(89)Dgupc (B3 —§(r), (49)
Ug

meaning that (Agyy )., , = &uv remains satisfied for any arbitrary proper-time s, as we

stoc
nv

. . . WV . .
can notice that, under suitable assumptions, the 4—scalar ; g 11 Equation (48) does not

depend explicitly on the displacement tensor Ag.

The explicit Gaussian realization of the PDF provides a different, but still admissible
and eventually analogous, point of view to the mathematical problem associated with
the solution of the quantum hydrodynamic equations. In fact, in the general case dis-
cussed previously, the representation of the background metric tensor is assigned through
Equation (39) and this is replaced in Equation (31), which is then solved for the two
4—scalar fluid fields. Instead, in the analytical realization considered here for Gaussian
PDEF, the mathematical problem is translated into that of determining the 4—scalar phase
function S\ through the second quantum hydrodynamic equation and the still-unknown
background tensor g,y In fact, according to Equation (48), the solution of the continuity
equation for the quantum PDF p(G(s), Ag, s) is analytically known. The background inde-
pendence principle is automatically satisfied by construction through the shifted Gaussian
solution.

In such a setting, the metric tensor g(r) is obtained a posteriori as the solution of
the quantum-modified Einstein field equations that follow from the quantum Hamilton
Equations (13) and (14). In the case of vacuum (i.e., absence of external sources), they take
the general expression

1

where the source term By, (7, s) is due to quantum gravity and carries the contributions
generated by both potential and quantum momentum terms, e.g., the non-linear Bohm
interaction and I'T*V # 0 in Equation (13), respectively. Examples of implementations of
these occurrences can be found in [29,40]. In particular, in the case of potential origin, the
source term By, (7,s), evaluated at Ag,, = 0, takes the form

1 0
Byv(i’, S) = _% agWVQM Agl/w:O. (51)
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As shown in [29], B;,V(r,s) is therefore produced by an intrinsic quantum gravity
effect, e.g., the vacuum non-linear Bohm interaction, for which the explicit form depends
on the precise (i.e., not necessarily Gaussian) realization of the quantum PDF p(G(s), Ag, s).
We stress that the tensor equation (50) holds for arbitrary boundary conditions. Thus, its
solution g(r) can be interpreted as its general solution, i.e., identified with an arbitrary
particular solution of the same equation, thereby realizing the property of background
independence in the context of QG.

5. Conclusions

In the context of quantum gravity (QG), the intuitive notion of background inde-
pendence refers to the property that the corresponding QG theory is independent of the
particular realization of space-time structure on which the same theoretical model holds.
This means that the QG theory, which might possibly be a non-unique one, should apply
to any background space-time. However, the precise meaning of this notion needs to be
specified on mathematical grounds, while the realization of this feature, and consequently
the prediction of its possible physical existence, is not assured a priori for any QG theory or
any quantum theoretical framework. On the other hand, the same QG theory should satisfy
a number of physical requirements. The first refers, indeed, to the prescription of the same
background space-time, which should be emergent in character. This means that it should
be determined self-consistently by the same QG theory under suitable initial/boundary
conditions. The effective realization of this property identifies the so-called emergent
gravity phenomenon. A further basic requirement, however, refers to the property of
General Covariance. This implies that the QG theory should be frame-independent, that is,
it should hold for arbitrary choices of coordinates. Notably, such a property is fulfilled if the
same theory is set in a 4—tensor form with respect to the same aforementioned background
space-time, i.e., it acquires a so-called manifestly-covariant form.

Among past and more recent approaches to QG in the literature, one model theory ex-
hibiting all these properties at the same time, namely, background independence, emergent
character, and frame-independence, is the so-called covariant theory of QG (CQG-theory).
In this paper, we have displayed its basic mathematical structure, and in particular, have
shown that:

*  CQG-theory, in addition to being manifestly covariant by construction, exhibits the
characteristics of both emergent gravity and background independence.

*  The latter two are a consequence of the explicit stochastic configuration-space rep-
resentation of the quantum wave equation achieved by means of an appropriate
trajectory-based formalism. This is realized by the generalized Lagrangian-path trajec-
tories of CQG-theory, denoted as stochastic GLP-representation.

¢  The same quantum wave equation, with its intrinsic unitary character and Hamilto-
nian structure, permits a representation of the quantum state in terms of manifestly-
covariant quantum fluid fields that are peculiar for the same CQG-theory.

¢  Finally, the emergent gravity phenomenon and the prescription of the background
space-time are found to be accomplished.

A comparison with earlier works on CQG-theory is instrumental in order to clarify the
novelty reported here. Two main results have been achieved. First, the background inde-
pendence of QG theory has been formulated in general form based on the requisite validity
of the principle of emergent gravity relating the quantum and continuum metric classical
tensors of the gravitational field. The same concepts of background independence and
emergent gravity are exclusively established in terms of a statistical relationship holding for
a generic quantum probability density function. In this way, the theory proposed here pro-
vides a mathematical proof of the possible realization of a statistical description underlying
CQG-theory and its classical limit counterpart, and as such is consistent with the principle
of manifest covariance. This picture yields a comprehensive conceptual framework for
the theory of stochastic trajectory-based description developed in previous work [28] for
the representation of the quantum-gravity hydrodynamic equations in terms of statistical
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ensemble of generalized Lagrangian-path (GLP) formalism. Second, it has been shown that
an explicit realization of emergent gravity can be reached in terms of a Gaussian solution
for the quantum PDEF. This outcome extends the theoretical results established in [29]. In
fact, the target here is not only that of determining or prescribing the analytical form of the
solution for the quantum PDF; the true goal is to highlight the statistical connotation of such
a Gaussian solution in reference to the validity of the Principle of Entropy Maximization
(PEM).

Altogether, these theoretical achievements permit the setting up of a convenient
framework for the realization of the novel notion of statistical background independence
proposed here for the classical and quantum theories of gravitational fields. In fact, as
a characteristic feature of CQG-theory, background independence and emergent gravity
acquire a statistical meaning expressed in terms of averages performed over stochastic
quantum degrees of freedom. In this way, the proposed model relies uniquely on the axioms
of quantum mechanics and its probabilistic interpretation as well as on the foundations
of relativistic statistical mechanics. More precisely, the distinguished feature of the theory
proposed in this research is the construction of a statistical theory describing the stochastic
ensemble of Lagrangian-path trajectories, which is in turn built consistently over the
existing CQG-theory. Remarkably, this model leaves unchanged the fundamental axioms
and probabilistic interpretation of the same quantum theory. This represents an advance
for CQG-theory and its mathematical structure, as well as for the investigation of the
connection between quantum and classical gravitational fields and prediction of measurable
quantum effects. As illustrated in the paper, an example of the application of such statistical
formalism is provided by the determination of the quantum cosmological constant and
its role in the corresponding quantum-modified Einstein field equations for the Gaussian
solution of the quantum PDEF. Accordingly, the two settings of classical and quantum gravity
retain their independent character, while the information associated with the microscopic
quantum degrees of freedom can be consistently transferred to the continuum macroscopic
classical domain through appropriate integral relationships (i.e., statistical averages) among
observable quantities.

In conclusion, the conceptual results determined in this paper appear to have promis-
ing features for the analytical study of quantum-gravity field dynamics and related stochas-
tic behavior, as well as its semi-classical limit and the connection with the continuum
description of space-time emerging in General Relativity.
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