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Preface

This volume contains the written notes of a series of lectures delivered
at the University of Leuven in the academic year 1988/89. The aim of
the lectures was to give an introduction to the rigorous treatment of the
canonical commutation relation and to demonstrate that the method
of operator algebras in a suitable tool for this purpose. These notes
cover quasifree states, the K M S-condition, central limit theorems and
the equivalence of Fock states. Fundamentals of operator algebras and
functional analysis are required to follow the presentation. Physical
motivation and relevance are slightly commented.

The author is grateful to Mark Fannes and André Verbeure for their
hospitality at the Institute for Theoretical Physics. Without their ex-
pertise on the subject the notes would not have been completed. It is
a pleasure to thank Anita Raets for her skilful wordprocessing.

Leuven 1989.

Dénes Petz
Mathematical Institute

Hungarian Academy of Sciences, Budapest



Chapter 1

Representations of canonical
commutation relations

In the Hilbert space formulation of quantum mechanics one considers
the abstract selfadjoint operators q1, qo, - - -, ¢, P1, P2, - - -, Pn acting on
a Hilbert space H and satisfying the Heisenberg commutation relations
for n degrees of freedom :

lgi,q]] = [pipi] =0
lgi,p;] = 16(i,4) 1 (i,7=1,2,...,n) (1.1)

where for any pair of operators A and B on H the symbol [A, B] stands
for the commutator AB — BA; I is the identity operator. There is no
essential difference between the case n = 1 and the general n, therefore
we restrict ourself for one degree of freedom. Then ¢ is associated to
the position and p to the momentum of a single particle. Since the
early days of quantum mechanics it has been a basic problem to find
concrete operators satisfying the Heisenberg commutation relations.

If one takes the complex Hilbert space L?(R), ¢ as the multiplication
operator by the variable, i.e.

(gs.f)(t) =t f(t) (1.2)

and p the differentiation, i.e.

(psf)(t) = —i f'(2) (1.3)
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then these operators form a representation of the Heisenberg commu-
tation relation on L?(R). (Formally gs and ps may be defined on some
dense set of functions, for example the C'™® ones with compact support.)
This representation is called the Schrodinger representation.

A problem to solve in the matrix mechanics of Heisenberg is to find
selfadjoint matrices ¢ and p satisfying the relation

lg.p] =il. (1.4)

If the Schrodinger representation is unique in a suitable sense, then
all results of the matrix theory must be equivalent to those of the
Schrodinger theory. If p and g were finite matrices satisfying (1.4) then
the trace of the left hand side would be zero in contradiction with the
nonzero trace of the right hand side. Hence Heisenberg did not find
a solution within the set of finite matrices but found a solution in the
form of infinite matrices :

0 1 0 0
1 1 0 vV2 o0

— 1.

qH \/i 0 \/§ 0 \/g ( 5)
0O 1 0 0

—i| -1 0 V2 0 (1.6)

VRl 0 Ve 0 V3 |

This representation (qg,pg) is called the Heisenberg representation.
The Schrodinger and Heisenberg solutions of the representation
problem coincide. One can find an orthonormal basis of the Hilbert
space L?(R) such that the matrix of g5 (ps) in the given basis is gz
(pu)- For any real number ¢ one deduces from equation (1.4) that

(it)*

o 1P [y all +
= q+tl (1.7)
For U(a) = exp(iap) and V (b) = exp(ibq) (a b € R) we have

ztp

ge ™ = q+itp,q]+

U(a) V(b) U(—a Z

n=0

—a) =
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3 (ig"(q +al)™ = exp(ib(q+ al)) = €V (b).

Therefore,
Ula) V(b) = €’V (b) U(a) (a,b € R) (1.8)

which is called the Weyl form of the canonical commutation relation.
(1.8) contains only unitary operators and hence it will be suitable for
a (C*-algebraic approach.

It was von Neumann’s idea to compress the two families of opera-
tors, U and V, in a single one. If one takes

S(a,b) = exp (—%iab) U(a) V(b) (a,b € R)

then U and V' may be obviously recovered from S and (1.8) is equivalent
to the following relation

S(a,b) S(c,d) = exp (%i(ad — bc)) S(a+c,b+d) (1.9)

Let # be a Hilbert space and assume that S(a,b) € B(H). We say
that S is a representation of the canonical commutation relation if the
following conditions hold.

(i) S(a,b) is a unitary (a,b € R).

(ii) S(a,b)* = S(—a,—b) (a,b € R).

(iii) S(0,0) is the identity.

(iv) The relation (1.9) is satisfied for all a,b,¢,d € R.

(v) The mapping (a,b) — S(a,b) is continuous in the weak operator
topology.

Remember that on the group of unitaries the weak and strong operator
topologies coincide. So (v) may be formulated also another way.

From the Schrédinger representation one gets a representation of the
canonical commutation relation (CCR) in the above sense on L*(R).
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Since U and V are given by exponentiation of selfadjoint operators,
they are strongly continuous. So is their product.

A representation of the CC'R on a Hilbert space H is called irre-
ducible if only the trivial closed subspaces of ‘H are invariant under all
S(a,b).

Proposition 1.1 The Schridinger representation of the CCR 1s irre-
ducible.

ps and gs are related by the Fourier transform. If Ff denotes the
Fourier transform of f € L?(R) defined as

Ff(t) = \/%_W / e f(s)ds
then Fqgs F* = pgs.

We show that if f € L?(R) is a nonzero vector and (g, S(a,b)f) =0
for every (a,b) € R? then necessarily g = 0. This gives that the smallest
invariant closed subspace containing f is L?(R) itself.

Since the first factor in

(9,5(a,b)f) = ezt (e iaP g e f)

is nonzero, we concentrate on the second one. By direct computation
we have

2ﬂ_<e—iapg’ eibqf> — /e—ita / eibu / e—itseitug(s)f(u)ds du dt

Assuming that this is 0 we may refer to the uniqueness of the Fourier
transform and conclude that

e f (u) / e " g(s)ds =0
for almost all t,u € R. As f # 0 we arrive at
/e‘itsg(s)ds =0
for almost all t € R. So g must be 0.
The uniqueness theorem of von Neumann asserts that up to a uni-

tary equivalence the Schrodinger representation is the only irreducible
(continuous) representation of the CCR.
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Theorem 1.2 If R* 3> (a,b) — S(a,b) € B(H) and R* > (a,b) —
S'(a,b) € B(K) are irreducible (continuous) representations of the CCR

on the Hilbert spaces H and IC, respectively, then there exists a unitary
U:H — K such that

S(a,b) =U* S'(a,b) U (a,b € R).

For h € L'(R?) the formula

s(f.9) = / h(a,b)(S(a,b)f,g)dadd  (f,g € H)

sets a bounded sesquilinear form and there is an operator S(h) € B(H)
such that

(S(h) f.9)=s(f.9)  (f,geH)
and ||S(h)|| < ||h]|1. We write simply

S(h) = / h(a, b) S(a, b) da db.

It is clear that for a real valued h the operator S(h) is selfadjoint. We
show that the linear correspondence h — S(h) is an injection.
Assume that S(h) = 0 and compute

(S(—a,—b)S(h)S(a,b)g, f) = // e e h(u, v){(S (u,v)g, f)du dv.

By our hypothesis this vanishes for every f, g € H and every (a,b) € R2.
Hence
h(u, v)(S(u,v)g, f) =0 (1.10)
for almost all u,v € R and for every f, g € H. (If you are really pedantic
you should argue by the separability of H at this point.) (1.10) readily
gives h = 0.
Now set a bounded selfadjoint operator A on H as

1
A= // exp (—Z(|a|2 + |b|2)> S(a,b)dadb (1.11)
and one checks that

A S(a,b)A = 27 e~ alal+1b) 4 (1.12)
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In particular, P = %A is a projection and it can not be 0. It is a
projection of rank one. Let f and g # 0 be orthogonal vectors such
that Pf = f and Pg = g. Due to the relation (1.12) we have

(S(a,b)g, fy = (P S(a,b) Pg, f) = constant (g, f)

and the irreducibility of the representation (a,b) — S(a,b) yields that
f = 0. P is a rank one projection indeed and we may assume that
lgll = 1.

We construct similarly a vector n € IC starting from the irreducible
representation (a,b) — S’(a,b). Set

US(a,b)g = S'(a,b)n (a,b € R) (1.13)

and extend U by linearity to the linear span of {S(a,b)g : a,b € R}.
So U will be an inner product preserving densely defined operator with
dense range. It follows immediately from (1.13) that U intertwines
between the representations S and S’.

Von Neumann’s uniqueness theorem is true in any finite dimension
and the above proof with small alteration will go through. (The inter-
ested reader may consult with the nicely written original paper [VvIN].)

Let C(R) stand for the C*-algebra of bounded continuous func-
tion on R (endowed with the sup norm) It contains the characters
xa(z) = e (X € R). Set A(R) as the closure of the linear span of the
characters. A(R) is called the algebra of almost periodic functions. It
possesses a natural inner product

(,9) —hm—/ e

and its completion is a Hilbert space. {x : A € R} forms an orthonor-
mal basis in H and in particular, H is not separable. Define the unitary
operators

Vo(a)xa = Xa+a (a € R)

Uo(b)xr = exp(ibA)xx (b€ R).

Then Uy(a) and Vy(b) satisfy the Weyl commutation relation
Up(a)Vo(b) = exp(iab)Vy(b)Up(a) (a,b € R).
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This representation of the Weyl commutation relation is irreducible and
can not be unitarily equivalent to the Schrodinger representation since
‘H is not separable. It is easy to see that

1060) - Dl ={ 3 1)

hence the strong continuity of the group V;(b) fails completely.

Let (a,b) — S(a,b) be a representation of the CCR. The linear
span of {S(a,b) a,b € R} is a *-algebra. (It is closed under the prod-
uct operation due to (1.9).) Its norm closure is a C*-algebra, call it
for a while A(S). It follows from the uniqueness theorem that for two
irreducible representations S and S’ there is a C*-algebra isomorphism
a: A(S") — A(S) such that «(S'(a,b)) = S(a,b) (a,b € R). The
main subject of the next chapter is to show that the isomorphism ex-
ists independently of the irreducibility of the representations (and even
finite dimensional ”testfunction space” will not be required). The C*-
algebraic point of view prefers the Weyl form of the canonical commu-
tation relation. To show that the question of unicity for the Heisenberg
form is more subtle we describe an example of Fuglede ([Fu]).

As a common dense domain D for the operators ¢ and p he takes
the span of the functions

{z"exp(—az®+bz) : n€ZT, a>0, beC}

All these functions are entire analytic and for f € D and z € C
f(z) makes sense. Denote by T and M the following operators

(Tf)(@) = flz+iven)
(Mf)(z) = exp(V2rz)f(z)

and define

grp = qs+T
pr = ps+ M

(Here (gs, ps) is the Schrédinger representation.) Fuglede proved that

(i) (prf.arg) — (arf,prg) = —i(f,9) (f,9€D)
(ii)  The closure of pr and gr is selfadjoint
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and the pair (pr,@r) is not unitarily equivalent to any direct sum of
Schrédinger representations.

Under additional hypothesis the uniqueness of the Schrodinger rep-
resentation may be proven in the frame of selfadjoint operators. This
subject is out of the scope of the present lecture and we refer to the
monograph [Pul].

In the selection of the material in this chapter, we benefited from
the unpublished notes [Ve|. @



Chapter 2

The C*-algebra of the
canonical commutation
relation

Let H be a real linear space. A bilinear form o is called symplectic
form if o(z,y) = —o(y, z) for every z,y € H. o is nondegenerate if
o(z,y) = 0 for every y € H implies that x = 0. The pair (H, o) will be
refered to as a symplectic space. If it is not stated explicitly otherwise,
all symplectic spaces will be assumed to be nondegenerate.

In Chapter 1 we met already a symplectic form. The bilinear form

((@). c.d)) = 5 (ad = b0

appearing in (1.9) is a nondegenerate symplectic form on R?. More
generally, if A is a complex Hilbert space then o(f,g) = Im(f,g) is
a nondegenerate symplectic form on the real linear space H. In finite
dimension this is the typical way to define a symplectic space. (Hence
the dimension of a nondegenerate symplectic space is even or infinite.)
Let (H, o) be a symplectic space. The C*-algebra of the canonical
commutation relation over (H, o), written as CCR(H, o), is by defini-
tion a C*-algebra generated by elements {W(f) : f € H} such that

@® WwWEH=w) (feHH)
(i) WHW(g) =explio(f,9)W(f+9)  (f,9€ H)

9
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Condition (ii) tells us that W (f)W(0) = W(0)W(f) = W(f). Hence
W (0) is the unit of the algebra and it follows that W (f) is a unitary for
every f € H. Comparing with the previous definition for a (continuous)
representation of the CCR you see that the continuity assumption (v)
is missing here. Weak and strong continuity do not make sense here
(and norm continuity would be really too much as it turns out later.)

Theorem 2.1 For any nondegenerate symplectic space (H,o) the C*-
algebra CCR(H, o) ezists and unique up to isomorphism.

To establish the existence will be easier than proof of the uniqueness.
Consider H as a discrete abelian group (with the vectorspace addition).

I’(H) = {F :H—C: Z \F(x)\2<+oo}

reEH

is a Hilbert space. (Any element of [?(H) is a function with countable
support.) Setting

(R(z)F)(y) = exp(io(y, 2))F(z +y) (2,9 € H) (2.1)
we get a unitary R(x) on [?(H) and one may check that
R(z1)R(z2) = exp(i o(x1, 22) R(x1 + x2).

The norm closure of the set
{Z)‘zR(xz) : /\Z’EC, ISiSR,HEN, ZCzEH}
i=1

in B(I*(H)) is a C*-algebra fulfulling the requirements (i) and (ii). Let
us denote this C*-algebra by A.

Assume that B C B(H) is another C*-algebra generated by elements
W (z) (z € H) satisfying (i) and (ii). We have to show an isomorphism
a : A — Bsuch that a(R(z)) = W(z) (x € H). « will be constructed
in several steps.

We shall need the Hilbert space

P(H,H) = {A cH—™H: Z |A(z)]]? < +oo}.

reH
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Set t® f forx € H and f € H as
_Jf =y
conw={3 15"
(Note that I2(H,H) is isomorphic to [?(H) ® H.) The application

y — m(y) )z f)=(@-y)@W(y)f

is a representation of the CCR on the Hilbert space (*(H,H). = is
equivalent to R. If a unitary U : I?(H,H) — [*(H,H) is defined as

Uz f)=zW(z)f
then
Un(y) = (R(y) ®id)U (y € H).

To prove our claim it is sufficient to find an isomorphism between B
and the C*-algebra generated by {7(y) : v € H}. We show that for
any finite linear combination

(2.2)

= HZ i m(yi)

holds.

Let H stand for the dual group of the discrete group H. H consists
of characters of H and endowed by the topology of pointwise conver-
gence forms a compact topological group. We consider the normalized
Haar measure on H. The spaces [2(H) and L?(H) are isomorphic by
the Fourier transformation, which establishes the unitary equivalence

between the above m and 7 defined below.

#AX) = x@WWWAKX)  (yeH, xe H, Ae L*(H,H))

HZ A (yi) || = HZ i 7t (yi)

A closer look at the definition of 7 gives that 7 (y) is essentially a
multiplication operator (by x(y)W (y)) and its norm is the sup norm.
That is,

HZ Ai 7t (yi)

Hence
(2.3)

:Xeﬁ}. (2.4)

= sup {HZ Ai X (W)W (yi)
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Since the right hand side is the sup of a continuous function over H,
this sup may be taken over any dense set.
Let us set

G ={exp(2io(z, ) : x € H}.

Clearly, G C Hisa subgroup. The following result is at our disposal
(see (23.26) of [H-R]).

If K C H is a proper closed subgroup then there exists 0 # h € H
such that k(h) =1 for every k € K.

Assume that exp(2io(z,y)) = 1 for every € H. Then for every
t € R there exists an integer | € Z such that to(z,y) = 7. This is
possible if o(z,y) = 0 (for every z € H) and y must be 0. According
to the above cited result of harmonic analysis the closure of G must be
the whole H.

Now we are in a position to complete the proof. For

x(-) = exp(2io(z,-) € G
we have

HZ X X (i)W (i)

= W@ X aww-o)| =
= [y

and this is the supremum in (2.4). Through (2.4) we arrive at (2.2).

The previous theorem is due to Slawny [Sl]. We learnt from the
proof that CCR(H, o) has a representation on [?(H) given by (2.1).
The subalgebra

{Z AMz)R(x) : A : H— C has finite support}

zeH

is dense in CCR(H, o) and there exists a state 7 on CCR(H, o) such

that
T (Z A(x)R(x)) = X\(0). (2.5)

It is simple to verify that 7(ab) = 7(ba). Therefore, 7 is called the
tracial state of CCR(H, o). We can use 7 to prove the following.
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Proposition 2.2 If f,g € H are different then
W (f) =W (gl > V2.

For hy # hy , we have 7(W (hy)W (—hs)) = 0.
Hence [W(f) — W(g)|[? > T(W(f) — W(g)" (W(f) — W(g))) = 2.

It follows from the Proposition that the unitary group ¢t — W (tf)
is never normcontinuous and the C*-algebra CCR(H, o) can not be
separable.

Slawny’s theorem has also a few important consequences. Clearly
for (Hy,01) C (Ha,09) the inclusion CCR(Hy,01) C CCR(Hy,09)
must hold. (If H; is a proper subspace of Hy then CCR(H,,09) is
a proper subalgebra of CCR(Hs,05).) If T : H — H is an invertible
linear mapping such that

o(f,g)=0o(TfTg) (2.6)

then it may be lifted into a *-automorphism of CCR(H, o). Namely,
there exists an automorphism vy of CCR(H, o) such that

(W (f)) =W(Tf) (2.7)

A simple example is the parity automorphism

T(W(f)) =W(=/f) (feH). (2.8)

Let (H, o) be a symplectic space. A real linear mapping J : H — H
is called a complex structure if

(i) J?=-id
(i) o(Jf, f) <0 (f € H)
(iii) o(f,9)=0(Jf, Jg) (f,ge H).

If a complex structure J is given then H may be considered as a complex
vectorspace setting

(t+is)f =tf+sJf (s,teR, feH) (2.9)
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The definition
(f,9)=0(f,Jg) +io(f,g) (2.10)

supplies us (a complex) inner product. So to have a symplectic space
(over the reals) with a complex structure is equivalent to being given a
complex inner product space.

Let J be a complex structure over (H, o). The gauge automorphism

YW (f)) =W(cosa f+Jsinaf) (a€l0,2n], fe H) (2.11)

is another example for lifting of a mapping into an automorphism.

We shall restrict ourselves mainly to C*-algebras associated to a
nondegenerate symplectic space but degeneracy of the symplectic form
appears in certain cases. Now this possibility will be discussed following
the paper [M-S-T-V].

Let o be (a possible degenerate) symplectic form on H. We write
A(H, o) for the free vectorspace generated by the symbols {W(h) :
h € H}. So A(H, o) consists of formal finite linear combinations like

>N W (k).
We may endow A(H, o) by a *-algebra structure by setting
W(h)* = W(—h) (h € H) (2.12)
and
W(h)W(g) = exp(io(z,y))W(h+y)  (hye€ H) (2.13)

On the *-algebra A(H, o) we shall consider the so-called minimal reg-
ular norm (cf. [Na], Ch. IV §18.3). We take all *-representations m of
A(H, o) by bounded Hilbert space operators and define

||a|| = sup{||7(a)|| : 7 is a representation} (a € A(H,0)) (2.14)

Another possibility is to take all positive normalized functionals (that
is, states) ¢ on A(H, o) and to introduce the norm

la|| = sup{e(a*a)’/? : ¢ is a state} (a € A(H,0)) (2.15)
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One can see that (2.14) and (2.15) determine the same norm, called
the minimal regular norm. The completion of A(H, o) with respect to
|| - || will be a C*-algebra and it is CCR(H, o) by definition. It follows
from Slawny’s theorem that for nondegenerate o the previous and the
latter definitions coincide.

Now we study the extreme case when o = 0. Then A(H, o) is com-
mutative and a state ¢ of it corresponds to a positive-definite function
F on the discrete abelian group H. We have

e (3o MWy 3 AW hy) 20
for every A\; € C and h; € H if and only if the function
F : h— o(W(h)) (h € H)

is positive-definite. Due to Bochner’s theorem ([H-R], 33.1) there is a
probability measure g on the compact dual group H such that

F = [ x(Wduto  (veH).
Hence
sup {cp(a*a)l/2 : ¢ is a state} = sup {X(a*a)1/2 DX € I:I}

where for a =Y N\, W(h;) € A(H,0) x(a) (or a(x)) is defined as

Z Ai X (hs) -

In this way every element a of A(H, o) may be viewed to be a continuous
function on H and

lall = sup {la()| : x€ A} (e € A(H,0)).

A(H, o) evidently separates the points of H and the Stone-Weierstrass
theorem tells us that CCR(H, o) is isomorphic to the C*-algebra of all
continuous functions on the compact space H.

The case of a vanishing symplectic form does not occur frequently,
however, it may happen that H = Hy & H; and

U(ho@hl, hg@hll)zgl(hl@hll)
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with a nondegenerate symplectic form o; on H;. Then the *-algebra

A(H, o) is the algebraic tensor product of A(Hy,0) and A(H;,07) and
CCR(H,o) will be

(Note that since CCR(Hy,0) is commutative, the C*-norm on the ten-
sor product is unique.)

Now we review briefly the general case. For a degenerate symplectic
form o we set

Hy={zxeH: o(z,y)=0 forevery yeH}

for the kernel of 0. A(Hjy, 0) is the center of the *-algebra A(H, o) and
there exists a natural projection E given by

E (Z A@)W(@) =Y Aa)W(z) (2.17)

reH TEH

and mapping A(H, o) onto A(Hy,0). Having introduced the minimal
regular norm we observe that CCR(H,,0) is the center of CCR(H, o)
and F is a conditional expectation. The maximal *-ideals of CCR(H, o)
are in one-to-one correspondence with those of CCR(Hy,0). In par-
ticular, CCR(H, o) is simple if and only if Hy, = {0}, that is, o is
nondegenerate. Concerning the details we refer to [M-S-T-V].

For a nondegenerate symplectic form Slawny’s theorem provides
readily that CCR(H, o) is simple. 2



Chapter 3

States and fields

Let (H,o) be a symplectic space and 7 : CCR(H,0) — B(H) a rep-
resentation. If

t=> (m(W(tf))Em) EneH)

is continuous then there is a selfadjoint B, (f) due to the Stone theorem
such that
T7(W(tf)) = exp(it B (f)) (t e R) (3.1)

B, (f) is called field operator. Since the unitary group w(W(tf)) is
not normcontinuous (cfr. Proposition 2.2), B,(f) is unbounded. From
physical point of view the field operators are more relevant in may cases
than elements of CCR(H, o). The representation 7 is called regular if
the field B(f) exists for every f in the test function space.

Let us consider the representation R given by (2.1). One computes

that
o) ={ § 420 e,

So it is not regular. We saw another non-regular representation in
Chapter 1 on the Hilbert space of almost periodic functions. On the
other hand, the Schrédinger representation is regular.

A linear functional ¢ of a C*-algebra A is called state if ¢(I) = 1 and
p(z*x) > 0 for every x € A. (The latter condition may be replaced
by ||¢]| = 1.) Every state gives rise to a representation through the
GNS construction. A state ¢ of CCR(H, o) is called regular if the
corresponding G N S-representation is regular.

17
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Let X be an arbitrary (nonempty) set. A function F/ : X x X — C
is called a positive definite kernel if and only if

> it oz ax) >0

jk=1

foralln € N, {z,z9,...,2,} C X and {c,co,...,c,} CC.

Proposition 3.1 Let (H,o0) be a symplectic space and G : H — C a
function. There exists a state ¢ on CCR(H, o) such that

p(W(f)) =G(f) (f € H)

if and only if G(0) = 1 and the kernel

(f,9) = G(f — g) exp(—io(f,9))

18 positive definite.
For x =) ¢; W(f;) we have

A Z Cj Ck W(fj — fk)e_ia(fj’fk) .

Since for a state ¢ p(z*z) > 0 we see that the positivity condition is
necessary.

On the other hand, the positivity condition allows us to define a
positive functional on the linear hull of the Weyl operators and a con-
tinuous extension to CCR(H, o) supplies a state.

Lemma 3.2 Let (H, o) be a symplectic space. (It might be degenerate.)
If a(-,-) is a positive symmetric bilinear form on H then the following
conditions are equivalent.

(1) The kernel (f,g) — a(f,g) —io(f,g) is positive definite.

(ii) a(z,2) a(z,z) > o(z,2)* for every x,z € H.
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Both condition (i) and (ii) hold on H if and only if they hold on all
finite dimensional subspaces. Hence we may assume that H is of finite
dimension.

If a(z, z) = 0 then both condition (i) and (ii) imply that o(z,y) = 0
for every y € H. Due to possible factorization we may assume that «
is strictly positive and it will be viewed as an inner product.

There is an operator () such that

o(z,y) = a(Qz,y) (z,y € H).

and Q* = —Q follows from o(z,y) = —o(y,z). According to lin-
ear algebra in a certain basis the matrix of () has a diagonal form
Diag(A1, Ag, ..., Ax) where A; is a 1 x 1 0-matrix or

0 a;
a0 ).

(The first possibility occurs only if o is degenerate.) It is easy to see
that condition (i) is equivalent to |a;| < 1 and so is condition (ii).

Lemma 3.3 If A = (a;j) and B = (b;;) are n x n positive definite
matrices then the matrizc C = (a;jbi;)i; is positive definite, too.

The entrywise product may be defined for any two matrices of the
same type (and it is called frequently Hadamard product). One can

check that
(C&m) = (B(Extx), (n* ) (3.2)

where * stands for the Hadamard product and ¢ is the kB column of
the matrix A/2. From (3.2) the Lemma follows.

Theorem 3.4 Let (H, o) be a symplectic space and o: H x H - R a
symmetric positive bilinear form such that

o(f,9)" <alf,flalg.g)  (fig€H). (3:3)
Then there ezists a state ¢ on CCR(H,0) such that

(Wi =e(—patn)  UeH).  (34)
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We are going to apply Proposition 3.1. Due to the positivity con-
dition

Zq@exp <—%a’(fj — fro i — fi) —io(f;, fk))

= (cj exp <—%Oé(fj: fj))) (Ek xp (_%a(ﬁ“ fk)))

x exp(a(fj, fx) —i0(f;, fx))
= ijgk exp(a(f;, fx) —io(fj, fr))

should be shown to be nonnegative. According to Lemma 3.2
(a(fy, fr) = io(f, fr))jsk

is positive definite and entrywise exponentiation preserves this property
as it follows from Lemma 3.3.

A state ¢ on CCR(H, o) determined in the form (3.4) is called
quasifree. A quasifree state is regular.

Proposition 3.5 Let ¢ be a state on CCR(H, o). If

lim p(W(tf)) =1 (f € H)

t—0

then ¢ s reqular.

We set G(f) = o(W(f)) (f € H). According to Proposition 3.1 the

matrix

1 G(—f1) G(—f2)
G(f1) 1 G(f1 — f2) exp(—io(f1, f2))
G(f2) G(fy— fi)exp(io(fi, f2)) 1

is positive definite. From this we obtain

G(f2) = G(f1)| <41 = G(f2 = f1) exp(—io(f2, f1))] - (3-5)

Combining (3.5) with the hypothesis we arrive at the continuity of the
function
t—=G(f+9) (t eR)
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for every f,g € H. Let (m,, H,, ®) stand for the GN S-triple. We verify
by computation the continuity of the function

t = (o (tf)me(91)@, Ty (92) @) (t € R)

and the regularity of ¢ is proven.

A state ¢ on CCR(H,o0) is said to be analytic if the numerical
function

t=o(W(tf)) (teR)

is analytic. Quasifree states are obviously analytic.
Assume that 7 is a regular representation of CCR(H, o). The field
operator B(g) is obtained by differentiation of the function

t = m(W(tg))n=exp(itB(g))n  (t€R). (3.6)

More precisely, if (3.6) is weakly differentiable at ¢ = 0 and the deriva-
tive is £ € H,, then 7 is in the domain of B(g) and

iB(g)n =¢.

Proposition 3.6 Let ¢ be an analytic state on CCR(H, o) with GNS
triple (myp, Hyp, ). Then m,(W(g))® is in the domain of

B(fn)B(fn-1) --- B(f1)
for every g, f1, fo,..., fn € H and n € N.

We apply induction and suppose that

n=B(fn1) ... B(fi)m,(W(g))®

makes sense. For the sake of simpler notation we omit 7, in the proof.
It suffices to show that

lim ¢ (W (fu) — I)n, ) = F(¢) (3.7)

t—0

exists if £ is in a dense subset Dy of H, and |F(§)| < C||&]|. This
ensures that
t = W(tfa)n
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is differentiable in the weak sense. Since for & = W (h)® the limit in
(3.7) equals to

8 anfl
—1)" = W(=h)W (tf,) .. Wt L)W
S ey ey, TR A WA SOLAC D) (L)W (9))
at the point ¢t = ¢, 1 =1, o = ... =t = 0, the function F' is defined

on the linear hull Dy, of the vectors
{W(h)®:he H}.

F is linear on Dy, and by differentiation one can see that
.1
O = lim —[[(W(tf,) ~
—0 f

exists and it fulfils [F(£)| < CJ|€]| for € € Dy .

Although B(f) ¢ CCR(H, o) it will be rather convenient to write

o(B(fn)B(fn-1)-.-B(f1)) instead of (B(f,) B(fn_1) ... B(f1)®,®). We
shall keep also the notation Dy, from the above proof. Remember that
Dw as well as the superset Hilbert space H, depend on the state ¢
even if it is excluded from the notation.

Proposition 3.7 Let ¢ be an analytic state on CCR(H, o).
Then for f,g € H and t € R the following relations hold on Dy .

() B(tf) =tB(f)
(it) B(f +9) = B(f) + B(9)
(iii) [B(f), W(9)] = 20(f,9)W(9)
(iv) [B(f), B(9)] = —2ia(f,9)
(i)-(iv) are deduced by derivation from (the Weyl form of) the CCR.
One gets similarly that

¢(B(f)B(9)) = a(f,9) —io(f,g) (3-8)
if ¢ is a quasifree state given by (3.4).

Since

(> @B(fr) Y ciB(fi) >0
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the kernel (f,g) — a(f,g9) —io(f,g) is positive definite. Therefore,
(3.3) in Theorem 3.4 is not only sufficient but also necessary for the
existence of a quasifree state.

Proposition 3.8 Let ¢ be a quasifree state on CCR(H, o) given by
(8.4) and fi, fa, ..., fun € H. Then

QO(B(fn)B(fnfl) . B(fl)) =

if n is odd. For an even n we have

n/2

W(B(fn) (fn 1 ZH fkmafjm (fkm:fjm))

where the summation is over all partitions {Hy, Hy, ..., Hy2} of {1,2,...
such that Hpy, = {jm, km} with jnm, < kyn (m=1,2,...,n/2).

We benefit from the formula

112

PBUNBa) - BUL)) = (' 5 oW (1) - W (1)

Since we have
W(tnfn)W(tn—lfn—l) et W(tlfl) = W(fnfn + tn—lfn—l +...+ tlfl)

X exp 1 (Z titeo (f1, fk))

>k

(3.4) yields

oW (tnfn) . - W(fif1)) = exp <__ tfna(fma fm))

m=1

exp (Ztltk o(fi, fr) +ZU(fl,fk))) : (3.9)

>k

What we need is the coefficient of t1t,...¢, in the power series expan-
sion. Such term comes only from the second factor of (3.9) and only in
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the case of an even n. In the claim it is described exactly the possibil-
ities for getting t1t5...%, as a product of factors t;t (I > k).

By means of (3.8) we have also

@(B(fn)B(fa-1) - =Y 1[eBU)B(f)  (3.10)

were summation and product are similar to those in Proposition 3.8.
The expression (3.10) makes clear that the value of a quasifree state ¢
on any polynomial of field operators is completely determined by the
two-point-functions ¢(B(f)B(g)) (f,g9 € H).

Let H be a real Hilbert space with inner product (-,-) and let o be
a nondegenerate symplectic form on H such that

lo(f,9) < (f. f)(9,9)  (f.g € H) (3.11)
holds. There exists a contraction D on H such that
o(f,9)=(Df,9g) (f,g€ H). (3.12)

Evidently D* = —D. If Df = 0 then due to the nondegeneracy of o
f =0 and hence D is invertible. Consider the polar decomposition

D =J|D|. (3.13)
The property D* = —D gives that
J|D|J* = —J*|D|

and the uniqueness of the polar decomposition (applied for the positive
operator J|D|J*) guarantees that

—J?*=1 and J|D|=|D|J. (3.14)

The state space of a C*-algebra is a compact convex subset of the
dual space if it is endowed with the weak topology. A state is called
pure if it is an extremal point of the state space.

Proposition 3.9 Let ¢ be a (quasifree) state on CCR(H, o) so that

W) =ep (=30} . (e H)

If ¢ is pure then |D| (given by (3.13)) is the identity.
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We shall argue by contradiction. Assume that there exists f € H
such that

(IDIf.f)=1 and (D' =12 f#0. (3.15)

Set L = |D|'?(|D|™* — I)'/? and note that L is a contraction. We
define a symmetric bilinear form as

(LS, |DIY2f)?

S(g1.02) = (91,92) ~ (Low,IDI"2f) - (L. ID[V2) =7

and show that
S(g,9) > (|Dlg, 9) (9 € H) (3.16)

or equivalently

((I = D))g, 9)(Lf, Lf) > (Lg, |D['2f)*(Lf, IDI'"2f)*. (3.17)
(3.17) is a consequence of the Schwarz inequality :

(Lf,|IDI*?f)* < (Lf,LF)(DIf, f) = (Lf, Lf)
(Lg,|DI"?f)* < (L%g,9)(IDIf, f)= (I —=|Dl)g,9)-

By means of (3.12) and (3.13) we infer from (3.16) that
lo(h, 9)|* = (JIDIh, 9)* < (| DIk, h)(|Dlg, g) < S(h, h)S(g,9)

Now Theorem 3.4 tells us that there is a (quasifree) state w on CCR(H, 0)
such that

W(W(h)) = exp (—%S(h, h)) . (heH)

We can see from Proposition 3.1 that if w is any state of CCR(H, o)
and F'is a linear functional on H then there exists a state wg such that

wr(W(h)) = w(W(h)) exp(iF (h)) .-

Writing a for (Lf,|D|*2f)(Lf, Lf)~'/? we set a state wy, for A € R as
follows.

wr(W(h)) = exp (—%S(h, h) + iA(Lh, \D\I/Qf)a) (h€ H).
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With the shorthand notation b for (Lh, |D|/2f) we have

* e XN —L(h,h) —1/2
/ GV = e H0en)

X exp(—A?/2 + b%a®/2 + iba)d\
— efé(h,h)(2ﬂ_)—1/2

X exp (—%()\ + iab)2) d\

> 8

D=

and this means that
0= (27r)_1/2/ exp(—A?/2)wad) .

(3.18) is in contradiction with the starting assumption on ¢. Hence the
proof has been completed.

The unitary operator J in the polar decomposition (3.13) of D is
a complex structure. (2.9) and (2.10) tell us that by means of J the
spaceH may be regarded as a complex inner product space. Then

_U(fag) :Im<fag> and (|Q‘fﬂg) :R€<f,g>

Assume that a complex structure J is given on a Hilbert space H
the creation B*(f) and annihilation operator B~(f) are defined for
f € H by the formula

B*(f) = 3(B(f) 7 iB(J)). (3.19)
Since
B(if) = BY(7f) = 5 (B(Jf) ~ iB(~f)) = iB* (/)

the creation operator B (f) is a linear function of f € H. From Propo-
sition 3.7 we can deduce the commutation relations of the annihilation
and creation operators.

[BY(f),B™(9)] =[B~(f), B (9)] =0 (3-20)
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(B (f),B™(9)] = 0o(Jf,g9) —io(f,9)- (3.21)

Proposition 3.6 tells us that if the GN.S representation of an analytic
state is considered then B=(f) is defined on the dense domain Dy, and
on this the relations (3.20) and (3.21) hold.

Since both sides of (3.10) are multilinear in B(f;), the formula re-
mains valid if some or all the B(f;)’s are replaced by B (f;) or B~(f;).

Let ¢ be as the quasifree state in Proposition 3.9. It is called a Fock
state if |D| given in (3.13) is the identity. Fock states will be treated
in the next chapter in detail.

Among several sources the book [Ho2| and [M-V] were used to
write this chapter.
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CHAPTER 3



Chapter 4

Fock states

Let ¢ be a quasifree state on CCR(H, o) given by the formula

W) =ew (~30(r0) (e H),

@ is said to be a Fock state if H is a complex Hilbert space with an
inner product (-, -) such that

o(f,g9) =Im(f,g), a(f,g9) = Re(f, g) (f,g€e H).

(It is assumed that the real vectorspace structure of the symplectic
space is the same as that of the Hilbert space.) This definition is
obviously equivalent to the previous one given at the end of Chapter 3.

The GNS representation corresponding to a Fock state is called
Fock representation and the cyclic vector is frequently referred as vac-
uum vector. Field, creation and annihilation operators will be consid-
ered in this chapter in the Fock representation. From (3.21) we have
the basic commutation relation :

[B~(f),B™(9)] =9, )  (f.g€H). (4.1)
Lemma 4.1 B~(f)® = 0.
We use (3.12-14) to compute that
|B(7)a| = SRe(( ~ D)1, f).

Now we see that B, (f)® = 0 if and only if |D| = I, that is, ¢ is a
Fock state. This is slightly more than the lemma.

29
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Lemma 4.2 For k € 7 we have
B™(f)B*(f)*® = k| fI*B* ()" @ (feH).

We apply induction. The case k£ = 0 is contained in the previous
lemma. Due to the commutation relation (4.1) we have

B~ (f)B*(f)*'e = (BT (/)B () +(f, /B (f)e
= (k=DIfI’BT(N)*@ +IfI”B*(f)*®.

One obtains by induction again the following.
Proposition 4.3 Ifn,k € N and f € H then

. i [0 if n>k
B ) B+(f)‘1’—{ @l /B (e i n<k.

(3.8) gives that
¢(B(f)B(9)) = {f,9) -
Therefore
o(B*(f)B*(g)) =0
if f L g. If the sequence fi, fo,..., f, in H has the property that any
two vectors are orthogonal or identical then in the expansion (3.10) of

@(B*(fa) B (fa-1) ---B*(f1))

we may have a nonzero term if always identical vectors are paired to-
gether. We benefit from this observation in the next proposition.

Proposition 4.4 Assume that g1, ¢o,...,qgx are pairwise orthogonal
vectors in H. Then

B*(g1)™B*(g2)™ ... B*(gx)™®

and
B+(gl)n1B+(g2)n2 . B-I-(gk)nkq)

are orthogonal whenever m; # n; for at least one 1 < j < k.
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Suppose that m; # n; and ny > m;. The inner product of the
above vectors is given by

© (B*(gk)"’c .. B (g1)™B*(g1)™ .. .B+(gk)m’“)
and equals to
¢ (B~ (91)™B*(92)™) ¢ (B~ (g&)™ ... B (g2)"B* (g2)™ ... B*(gx)™) .

Here the first factor vanishes due to n; > m;.
We are able to conclude also the formula

|1B (1) Bt (g2)™ ... BT (g&)™* ®||”> = ni!ny! ... ny! (4.2)
provided that ||g1|| = ||g2ll = - - = ||gk]| = 1.
Lemma 4.5 For g1,92,...,9n, f € H with ||f|| =1 we have
IB(f)B(g1)B(92) - - - B(g)®l < 2vn +1||B(g1) ... B(ga) @]l -

We consider the linear subspace spanned by the vectors f, g1, 92, ..., 9n
and take an orthonormal basis f; = f, fo, ..., fr. We may express B(g;)
by creation and annihilation operators corresponding to the basis vec-
tors and get

n=DB(g)...B(g.)® =Y An,...,ne) B (f1)" ... B (fi)" @

(Here the summation is over the k-triples (ny, ..., ny) such that n; € Z
and Y n; <n.) Since

IB()nll < [IBT(fonll + 1B~ (fu)nl]

it suffices to show that

IB=(fo)nll* < (n+1)Inl*.

Now we estimate as follows.

|1 B*(f1)nll’
= Z M1y, ... ,ng) BT (f)™TIBT ()™ ... BT ()" ®|>

=D A, o) BY ()" B (fo)™ .. BY(fi)" @)

=S (m + DIAM, o) BE ()™ . B (fo) 0|
< (n+1)|B(gr)--- B(g.)®|”.
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Similarly,

1B~ (fmll*
= || Z )\ ’I’Ll, N nlB+(f1)”1 1B+(f ) . B+(fk)”k(1)||2

n1>1

=D oA, ) PIBT ()™ T BY (o) BY(fi) " @
= Z?'Ll”)\ Ny, ... nk)B+(f1)"lB+(f2)"2 . B+(fk)"kq)||2
< nz IA(n1, ..., ne) BT (F)™ BT (f2)™ ... BT (f)"®||* = n|n||*.

Lemma 4.2 and the explicit norm expression (4.2) have been used.

Let the Fock representation act on a Hilbert space H containing the
vacuum vector ®. The linear span of the vectors B(g;)B(g2) - - - B(gn)®
(91,92,---,9n € H,n € N) and B (g1)B*(g2) ... B (92)® (91,92, - -,
gn € H, n € N) coincide. It will be denoted by Dg. So far it is not
clear whether Dp is complete. This is what we are going to show.

Let A be a linear operator on a Hilbert space . A vector £ € K is
called entire analytic (for A) if £ is in the domain of A" for every n € N

and
o

ko
>l At < +oo

k=0
for every ¢t > 0. If £ is an entire analytic vector then exp(zA)¢ makes
sense for every z € C and it is an entire analytic function of z.

Theorem 4.6 Dpg consists of entire analytic vectors for B(f) (f € H).

Let £ = B(f1)B(f2)...B(f,)® € Dp. By a repeated application of
Lemma 4.5 we have

(n—i—k)

IB(f)*ell < 28y ——I€ll

and it is straightforward to check that the power series

oo

- Ikl

k=0
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converges for every t. Since the entire analytic vectors form a linear
subspace, the proof is complete.

Due to Theorem 4.6 every vector W (f)® = exp(iB(f))® can be
approximated (through the power series expansion of the exponential
function) by elements of Dp. This yields, immediately that Dp is dense
in H. According to Nelson’s theorem on analytic vectors (see [R-S],
X.39), Dpisa core for B(f) (f € H), in other words, B(f) is the closure
of its restriction to Dp. It follows also that Dp is core for B*(f) and
B(f)" = B*(f).

Assume now for a while that H is of one dimension (over C). Fix a
unit (basis) vector n in H and set

fu= %Bﬂn)"@ (nez.). (4.3)

Then {fo, f1,-..} is an orthonormal basis in H. If we write a™ for
B*(n) and a for B~(n) then

0" fo =V + i afn:{ \/ﬁg nz1

and
[a,a] =1.

With the choice

1= Jsla+a’)  p=—s(a*—a)
the Heisenberg commutation relation (1.4) is satisfied and in the basis
(fn) the matrices of ¢ and p are given by (1.5) and (1.6), respectively.
The vector f, is called n-particle vector in the physics literature.
Transforming f, into f,,; the operator a™ increases the number of
particles. This is the origin of the term ”creation operator”. The
operator a annihilates in the similar sense.
Let {n; : i € I} be an orthonormal basis in the complex Hilbert
space H. We set

n n n 1 n n
|77i11§77¢22§---§77ikk> = ,B+(fi1) 1---B+(fik) ‘. (4.4)

ni!. .. nyg!
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So for every choice of different indices 71, 49, ...,ig in I and ny, ng,...,ng €
N we get to a unit vector in ‘H. The vectors

Nk
|77n""’77ik and |77J1 ""’7731

are different if ((ny,41), ..., (nk, %)) is not a permutation of ((mq, 1),
., (my, 5;)) and in this case they are orthogonal. All such vectors form
a canonical orthonormal basis in H.

Theorem 4.7 The Fock representation s irreducible.

We have to show that for any 0 # n € H the closed linear subspace
‘Hi generated by {W(f)n : f € H} is H itself. Let M be the von
Neumann algebra generated by the unitaries {WW(f) : f € H} in B(H).
Clearly, Mn C H;.

We consider a canonical basis in H consisting of vectors (4.4). n € H
has an expansion as (countable) linear combinations of basis vectors.
Assume that a vector

5 0% f) (4.5)

has a nonzero coefficient.
The operator

BT (f1)B™(f1)... B*(fx) B~ (fx) (4.6)

is selfadjoint and (4.5) is its eigenvector with eigenvalue n; +ng+. . .+ny.
Since (4.6) is affiliated with M, its spectral projections are in M. In
this way we conclude that the vector (4.5) lies in #;.

It is easy to see that

Bi(f)Hl C Hy

for every f € H. By application of the annihilation operators B~ (f;)
(1 < i < k) we obtain that the cyclic (vacuum) vector ® is in H;.
Therefore, H; = H must hold.

Corollaries 4.8 Let the quasifree state ¢ defined on CCR(H, o) be
given by a complete inner product o(-,+) as

oW (1) = exp — 5l

Then ¢ is pure if and only if it is a Fock state.
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This corollary makes Proposition 3.9 more complete. Remember
that a state on a C*-algebra is pure if and only if the corresponding
G NS representation is irreducible (see [B-R], Thm. 2.3.19). Theorem
4.7 tells us that Fock states are pure and Proposition 3.9 yields that
the other states are not so.

Now we are going to see that every quasifree state is a restriction of
a Fock state of a bigger CC R-algebra. Let (H, (+,-)) be a real Hilbert
space and

o(f,g)=(Df,g) (f,.g € H)

a nondegenerate symplectic form on H such that ||D|| < 1. Then there
exists a quasifree state ¢ on CCR(H, o) such that

1
o (1) = exp (~5l17°) (47)
Let D = J|D| be the polar decomposition of D.

Theorem 4.9 Let Hy = H® H be the direct sum Hilbert space and set
a contraction Dy of Hy by the matrix

D2:< D J\/I+7D?>-

IWITD? -D (48)

Then the bilinear form
1 2
oa(W(f2)) = exp —§||f2|| (f2,92 € Hy)
is a symplectic form and the quasifree state
1
V) =eso (<IEI7)  (heH) (9

on CCR(H,,09) is a Fock state.

The proof is rather straightforward. We recall the relations

JD=DJ,D*=-D,J=J",J*=—id
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These give that
Dy =-D, and Dj=—id,

in other words, D, is a skewadjoint unitary. Hence o, is an antisym-
metric form and (4.9) defines a quasifree state. By the definition at the
end of Chapter 3, @5 is a Fock state.

Since

o(f@0, f@0)=(Do(f©0), f ®0) = (DS, f') = o(f, ')

the mapping
W(f)—»W({fe0) (f € H)

gives rise to an embedding of CCR(H, o) into CCR(H,,02). Fock
states are pure and that is the reason why the procedure described in
Theorem 4.9 is called purification. Due to the direct sum Hy = H&® H,
doubling is another used term.

Purification is a standard way to reduce assertions on arbitrary
quasifree states to those on Fock states. For example, we have

Corollaries 4.10 For an arbitrary quasifree state ¢ the linear mani-
fold DY, is dense in the GNS Hilbert space H, and consists of entire
analytic vectors for every field operator B,(f) (f € H).

Returning to the Fock representation we introduce some vectors of
special importance by means of the Weyl operators. For f € H set

1
e(f) = exp (Gl12) Wi)e, (4.10)
which is called exponential vector. One may compute that

(e(f),e(g)) = exp(g, f) (f,g € H) (4.11)

Proposition 4.11 {e(f) : f € H} is a linearly independent complete
subset of H.
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We use the fact that the family {e* : z € R} of exponential func-
tions is linearly independent.

Let f1, fo,-.., fn € H be a sequence of different vectors and assume
that Y Aje(f;) = 0. We choose a vector g € H such that the numbers

pi = (fi, 9) (1<i<n)

are distinct. For any t € R we have

= (e(tg), Z)\ie(fi» = Z/\i exp(t(fi. 9))

and we may conclude that \; = 0 for every 1 <7 <n.

Due to the cyclicity of the vacuum vector ® the set {e(f): f € H}
is complete. A little bit more is true. The norm expression

le(f) — e(9)|I* = exp([|fII*) + exp[lg]|* — 2Re exp(f,g)  (4.12)

tells us that the mapping f +— e(f) is norm continuous. Therefore
{e(f): f € S} is complete whenever S is a dense subset of H.

Consider again the example of the one dimensional testfunction
space H = C. We compute the coordinates of the exponential vec-
tors in the basis {f, : n € Z} given in (4.3).

(W(2)®, fn) = (exp(iB*(2) +1iB™(2))®, fa)
_ exp( %zB+ (z)]> (exp(iB* (2))®, f,)
_ exp( ;m?) ) N fons fo)

Hence for any z € C the associated exponential vector e(z) is the

sequence (1, . (f/z; » (\Z/ZT)TT N > (4.13)
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Chapter 5

Fluctuations and central
limit

In Chapter 2 the C*-algebra of the canonical commutation relation
was introduced as a C*-algebra containing a representation of the Weyl
commutation relation. A probabilisticly natural way leading up to the
CC R-algebra and its quasifree states goes through a central limit the-
orem. Let A be an arbitrary C*-algebra with a fixed faithful state ¢.
Setting

(@b = p(b'a)  (a,beA)

(i.e., the inner product of the GN S-representation) we possess a com-
plex inner product space (A, (,),).
Let

o(a,b) = Im{a,b), and «(a,b) = Re({a,b), (a,be A).

Then on the C*-algebra CC R(A, o) there exists a quasifree state p such
that

(W (a)) = exp (—%a(a, a)) (a € A) (5.1)

We know that p is a Fock state and we denote by B(a) (a € A) the
field operators in the corresponding representation.
Consider the infinite tensorproduct C*-algebra

B:®§il
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where A;’s are copies of A. Each z € A will be indentified with
rQRIQI®...

and so A becomes a subalgebra of B. The right shift endomorphism ~
of B is determined by the property

Y21 RTe® .., QRIRIQR.. 2 IR11Q...01, QIR ...

On the language of algebraic probability B with the state ¥ = pRe®. ..
forms a probability space and A C B corresponds to a randon variable.
Speaking this language

A, v(A),7*(A), ...

is a sequence of identically distributed independent randon variables,
that is, a Bernoulli process (cf. [Kii]). For xz € A

Fy(z) = (v'(z) = ¥ ()) (5-2)

is called the kth fluctuation of z.
Theorem 5.1 Let ay,ao,...,a; € A*®. Then

nll_)Iglo Y(Fp(a1)Fy(ag) ... Fy(ag) = p(B(ay — p(ay)) ... Blax — ¢(ag)) .

The proof consists of an enjoyable combinatorical argument. First
of all, we may assume that ¢(a;) = 0 for every 1 < i < k. The idea is
to group the terms in the product

Sn(a1)sn(az) ... sp(ax) (5.3)

in a certain way where s, (a;) stands for \/nF,(a;). The general term
in the expansion of (5.3) is of the form

7 (@m )Y (s ) - Y™ (@) (5.4)

Since v*(a) commutes with 77 (b) if i # j and a,b € A, we may reorder
the monomial (5.4) as

n—l(

fyo(a,-oa)aw(g) .. .aiO(m(O)) LY Qjn—1(1) - - - U,in—l(m(n_l))) (55)
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where

{i°(1),...,i%(m(0)},..., 5"t (1),...,i" Hm(n — 1))} (5.6)

form a partition of the set {1,2,..., k}. Since n is going to be very big,
many of the sets in (5.6) will be empty. We denote by [ the number
of the non-empty ones. The possible values of [ are 1,2,...,k. At the
tensor (5.4) v takes the value

¢ (an0) - ajiay) - - @ (@500 - - 4100) (5.7)

where the empty sets of the pariton (6) of {1,2,...,k} are not counted
anymore and therefore the number of factors is exactly [. The multi-
plicity of (5.7) in the expression of

¥(sn(ar) - . sn(ar))

isn(n—1)(n—2)...(n—I+1). (You may arrive at this number by choos-
ing [ different values for an exponent of 7y from the set {0,1,...,n—1}.)
Therefore we have

Fntn—1)...(n—1+1)

Y(Fu(ar) ... Folay) = Z nk/2

=0
X Y plapqy . ape)) - e(ana) - G

where the second summation is over all partition of {1,2,...,k} into [
sets

{7'),5'@),.... 3 )}, ... {5'(1),5'(2), ... 5 (D)} -

(Note that in each product

a5t (1)Ajt(2) - - - gt (p(t))

the subscripts are ordered increasingly.) If a partition contains a single-
ton then due to the assumption ¢(a;) = 0 the contribution of the cor-
responding term vanishes. If [ > g then any partition into [ nonempty
sets must contain at least one singleton. Hence we may neglect these
values of [. On the other hand for | < k/2 the coefficient

nn—1)(Mn—-2)...(n—1+1)
k2
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tends to 0 as n — oo while

‘Z pajiq) - ay) - 9(a5) - - 4a))

remains bounded. The only [ that may contribute to the limit is k/2
provided that k£ is even. So for an odd &

n—oo

and for an even k = 2/ we have

lim ¢(Fn(a1) .. Fn(ak)) - Z (p(aj1(1)aj1(2)) .. .(p(ajz(l)ajz(g))

n—oo
where the summation is over all partition of {1,2,...,k} into {5'(1) <
7'@)}A7*(1) < 7*@)}. ... {5'(1) < j'(2)}. Since
plaia;) = (aj,a:), = Refai, a;), — i Im(ai, aj),

= ofa;,a;) —io(a;, a;)

reference to Proposition 3.8 makes the proof complete.

What we proved in an example of convergence ”in distribution” or
”in law”. The sequence of fluctuations converge to Bose fields in the
sense that all correlation functions converge.

In probability theory it is a frequently used fact that convergence in
distribution is equivalent to the convergence of characteristic functions
([Fe],XV.3). For the moment there is no similar theorem in quantum
probability. So we treat independently the characteristic function ver-
sion of the central limit theorem and show other methods.

For bounded selfadjoint operators a and b we introduce the notation

L(a,b) = exp(ia) exp(ib) — exp(ia + ib) exp <—%[a, b]) :

Inserting the power series expansion of the exponential function we find
that only monomials (of a and b) with degree greater than 2 are present.
Therefore the following lemma is straightforward.
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Lemma 5.2 There exists a constant C > 0 such that for € > 0 small

enough
IL(a,b)| < C€®

provided that ||a|| < ¢ and ||b]| < e.

Lemma 5.3 If [a;, b;] = [ai, aj] = [b;,b;] = 0 for i # j then
1
1 L(a1 + az, b1 + by)|| < [[L(ax, b1)|| + ([ L(az, ba)|| exp <§||[a1,b1]||> :

Under the hypothesis the equality
L(ay + ag,by +b2) = L(a1,br)exp(iag) exp(iby)

1
+ exp(ial + ’Lbl) exp <—§[a1, b1]> L(ag, bg)

holds and provides clearly the estimate of the norm.

Recall that for a € A and n € Z, we write s,(a) for
0410+ 47 a).

Proposition 5.4 Let a,b € A*®. Then

HL(%sn(a),%sn(b))H%O and n— oo

We represent n in the form n = k-m+1[ where logn < m < 1+logn
(i.e., m is the integer part of logn) and 0 < [ < m. Application of
Lemma 5.3 yields

I (G Gaeo) < [ (oo o)
|- (\F )] o ()

First we concentrate on the second term. Since
1
——s;(a

‘ ol )‘

< l||a|| 1+logn

=Vn S Um
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(and similarly with b) the norm continuity of L(-,-) tells us that the
first factor converges to 0 while the second remains bounded. Hence
the second term tends to 0 and we have to show that so does the first
one.

A repeated use of Lemma 5.3 gives that

Em——
(o

Zmsn(@) =) )| (1+ G+ CE )
i

where
Cp = exp(m?|lal|[|b]|n"").

One can easily see that
1+C,+--+CHt=0(k).
According to Lemma 5.2

() <2

if n is big enough. Since

we arrive at the end of the proof.

After the preparation we are ready to state another version of the
central limit theorem.

Theorem 5.5 For ai,as,...,a; € A% we have

Tim 4 (exp(iFy(a1)) exp(iFa(ay) . .- exp(iFy(ar)
— (W (a1 — p(ar)) W (az — @(as)) ... W (ax — () .
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We may assume that ¢(a;) =0 (1 <i < k) and apply induction by
k. Since v is a product state we have

P(exp(ifn(a)) = ¢ (exp %)n = (1 + % (mp (exp %) - n))n :

It follows from the power series expansion of the exponential function
that

nep (exp %) —n= —90(;2) +0(n~1?).

Consequently,

S(expliF (@) — exp (3 ola?))

which is the value of p(W(a)). (Remember that ¢(a) = 0 was assumed.)
Now we are going to carry out the induction step. Proposition 5.4
tells us that

exp(iFy, (ag)) exp(iF, (aky1)) — exp(iFy, (ag + agy1) €xp (%sn(x))
(5.8)

converges to 0 in norm if x abbreviates [ax, axt1].
Let us represent B on the GN S Hilbert space H with cyclic vector .
We apply von Neumann’s statistical ergodic theorem for the isometry

V : H — H defined by the formula
Vow = ~(b)y (beB).

Set E for the projection onto the fixed point space of V. We claim that
FE is of rank one. It is easy to see that for local elements a,b € B the
relation

o (Sonla)p) = w(a )

holds. Equivalently,

(U, —(I+V +--- V" )al) — (¥, al) (b, T)

1
n
Therefore we have

(b0, Ea¥) = (U, a¥) (6T, )
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for every a,b € B. Being ¢ cyclic
Ea¥ = (a¥, V)V = )(a)¥

must hold and F is really of rank one.
Let a € A and (b,) C B be a bounded sequence. We show that

. 1 .
nh_)rgolﬁ (bn exp (5371(@))) = exp ¢(a) nh_)rrolo ¥ (by) (5.9)
whenever the right hand side makes sense. Indeed,
(b exp(n™"sn(a) — ¢(a)) ¥, T)
0 -1 *) *\\k
(=t s(0) — @) g

— <bn\11, \Il> + <n_15n(a)\11 - gp(a)\l/, Z (k + 1)!

where the second term converges to 0 obviously. Benefiting from the
induction hypothesis and (5.9) we obtain

T (exp(iFa(@)) .- exp(iFa (a1)) exp(iFa(ax11)
= nh_)n;lo Y(exp(iFy(ar)) . ..exp(iFy(ak_1))

< exp(iF (on + axen)) exp ( (o))
= nh_)n;lo Y(exp(iFy(ar))...exp(iFy(ak_1))
x exp(iFy, (ag + ag+1))) exp(—io(ag, ax+1))
= p(W(ay)...W(ag—1)W(ar + ax+1)) exp(—io(ag, ag+1))
= p(W(ay)...W(ag)W(aks1) -
It was used that

Y([ag, agy1]) = —io(Tk, Trya) -

It is worthwhile to point out that the above proof of Theorem 5.4
has two critical points.

(i) li_>m Y(expiFy(a)) = exp (—%a(a, a)) for every 1z € A%
with  (a) =0
(ii) lim l(I + V4 V" U = o(2)T  forevery z€A.

n—oo N
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In the language of ergodic theory (ii) means that the isometry V is
ergodic. The proof works with a nonproduct state 1 if conditions (i)
and (ii) are satisfied.

Let A be a parameter set. A process (indexed by A) means that for
every a € A an element 7(a) of an algebra B is given and a state 1 of
B is fixed. It is said that the sequence

(T Bn, tn)

of process converges in law to a process (1, B, 1) if for every ay,ay, ...,
ar € A and k € N the limit relation

Jim 4y, (17 (@1) 1 (a2) - - - 1m(ax)) = P(n(ar)n(as) - . n(ar))
holds. Due to Theorem 5.4 the process
(a — exp(iFy,(a)), B, )
converges to the Weyl process
(@ — W(a), CCR(A*,0),p)
where p is a certain quasifree state and
A={ae A :p(a) =0}.

Quasifree states are analogues of Gaussian distributions. (The cen-
tral state is not quasifree in the sense of our definition. It would corre-
spond to a degenerate normal distribution in probability theory.)

The presentation of this chapter benefited from [G-vW], [A-B] and
[G-V-V].
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Chapter 6

The KMS condition

Let A be a C*-algebra and ¢t — «; a homomorphism of the additive
group of reals into the automorphisms of A. A state ¢ of A satisfies
the Kubo-Martin-Schwinger, or KMS, condition if for every a,b € A
there is a function Fj; such that

(i) Fup is defined on the strip {z € C: 0 < Imz < 1}.

(ii) F,p is continuous and bounded.

(iii) F,p is analytic on the open strip {z € C: 0 < Imz < 1}.
(iv) Fup(t) = p(acy (b)) for every t € R.

(V) Fup(i+1t) = o(au(b)a) for every t € R.

On the boundary Fp; is fixed by ¢ and (o). Sometimes we shall
call F,, KMS-function. In mathematical physics the KMS-condition
describes the equilibrium states for the dynamics (o;). In particular, a
KMS-state is time invariant. We can see this by choosing ¢ = I. The
function Fjj takes the same value at ¢ and ¢ + ¢ and may be continued
periodically to the whole complex plane into an entire analytic function
which is bounded. Liouville theorem says that such a function must be
constant. So ¢(ay(b)) is independent of ¢ € R.

In this chapter we see quasifree states on the C'C'R-algebra satis-
fying the KMS-condition. Let H be a complex Hilbert space and L
a selfadjoint operator on H. We consider the C*-algebra CCR(H, 0)
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where o(f,g) = Im(f,g) (f,9 € H). The automorphism ¢ is given by
the Bogoliubov transformation exp(—2itL), that is,

ay(W(f)) =W(exp(—2itL)f) (t€eR, feH). (6.1)

Theorem 6.1 If there is an € > 0, such that L > €l then a quasifree
state ¢ given by

(1) =exp (~pRelcoth LA.1))  (Fe ) (62)

satisfies the KMS condition for (o). Moreover, ¢ is the only KMS
state such that f — (W (f)) is continuous.

First we note that coth L > I is a bounded selfadjoint operator and
for the positive form

a(f,g) = Re{coth Lf, g)

the condition (3.3) holds. Therefore (6.2) determines a state .
Denote by D the set of all entire analytic vectors of L. For h € D
the function

: HZOZ—T;HthH (6.3)
is analytic on the whole complex_plain.
Lemma 6.2 Let n € H and h € D. The function
F(t) = a(n, exp(—2itL)h) (t € R)
admits an entire analytic extension and

F(i/2) = «(n,cosh Lh) —ia(n,isinh Lh)
F(—i/2) = «(n,cosh Lh) + ia(n,isinh Lh).

We work with the real linear structure of . Since « is bounded

the function
5
n!

n=0

n

a(n,i"L"h) (6.4)



THE KMS CONDITION 51

is an entire analytic function and supplies the extension of F'. Further-
more,

T

F(-i/2) = ra(n, 1" L"h)

g L[M]¢
3|@

1 n , 1 o
= Z E(H’L h) +1i Z ma(n,zL h)
n even nodd

= «a(n,cosh Lh) + ic(n,isinh Lh) .

The computation for F(i/2) is similar.
Let us write T} for exp(—2itL). Since D is stable under T; we obtain
from Lemma 6.2 that

F(i/2+S) = a(n,cosh LTsh) —ia(n,isinh LTsh)  (6.5)
F(—i/24+ S) = «(n,cosh LTsh) + ia(n,isinh LTsh)  (6.6)

for every S € R.
Set for t € R

Gi(t) = p(W ()W (T;h'))  and  Gaft) = (W(Th)W (h))

where h, h' € H are fixed. By simple computation we have
1 2 1 112 ! . . !
Gi(t) = exp | —5llhlI" = SIFI" — a(h, Th') + ia(tgh Lh, iT: )
1 1
Ga(t) = exp <—§||h||2 — SlIXI° = a(h, T') — ia(tgh Lh, iTth'))

In the light of Lemma 5.2 the function G; and G5 admit entire analytic
extensions. From (6.5) and (6.6) we obtain

1 1
G1(i/2 + s) = exp <—§||h||2 — §||h'||2 +A+C+ D+ B) (6.7)
and

1 1
Go(—i/2 + 5) = exp <—§||h||2 — §||h'||2 +A—-C—-D+ B) (6.8)
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where

A = —a(h,cosh LT;h')

B = o(h,isinh LTh')
C =ia(h,isinh LT,h) D

io(h,cosh LT;h').

Since C'+ D = 0 we arrive at the equality
G1(i/2+ 5) = Ga(—1/2 + 5)

for every s € R. It follows from the uniqueness of analytic continuations
that Gy(z) = G1(z + 1) for every z € C.

For « = W(h) and b = W (h') we have succeeded in the construc-
tion of the KM S-function. (In fact, our F,;, is an entire analytic
function.) The next task is to obtain the KM S-function for arbitrary
a,b € CCR(H, o) by approximation.

When a and b are linear combinations of Weyl operators the K M S-
function Fyy is at our disposal.

We carry out the GNS construction with ¢ and get the triple
(Hyp, Ty, ). The representation m, is injective since CCR(#H, o) is sim-
ple and we simply omit 7, from the formulas.

Lemma 6.3 Let &,,& € H and assume that &, — & in the norm of H.
Then W (&,) — W (§) in the strong operator topology.

On the unitaries the strong and weak operator topologies coincide.
It is sufficient to check that

W)Y MW (9@, D ANHW()P)

converges to

W@ MW ()@, D AHW(f)®)

for arbitrary linear combinations > A(g)W(g) and > A(f)W(f). This
is, however, clear from the explicite expressions.

For a while we denote by 4 the linear hull of the set {W(h) : h €
D}. Kaplansky’s density theorem tells us that for a,b € CCR(H,0)
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(or rather a,b € m,(CCR(H,0))") there are sets (a;) and (b;) in A
such that the following conditions hold.

(1) llasll < llall, {1bs]] < [[ol]
(ii) a; >a and @] — o in the strong operator topology.
(iii) b; —»b and b —b" in the strong operator topology.

Let F; = F,, 5, be the K MS-function for a; and b;. We prove that
lim Fj(z) = F(z) exists of 0 < Imz < 1 and F is the KM S-function of
a and b.

One can see that there exists a unitary u; on H, for every ¢ € R
such that

W (h)® = W (T;h)® (heH).

To prove that F; converges uniformly on the strip we estimate on the
boundary as follows.

Fi(t) = Fi(t) = ¢(aion(bi)) — p(aju(by))

(uh;®, a; @) — (ub;®, a;®)
((b:i® — b;®), uja; @) + (b;®, u;(a), — a,)P)

Hence
[Fi(t) = E5 ()] < [1(6: = b)) @[l[all + [[(ai — a5)®]|[|o]
and similarly,
|Fi(i+t) — Fj(i + )] < [l(ar — a;) @[l [[]] + [| (6 — ) @]l l|a]| -

F; — F} is a bounded analytic function which for big ¢ and j is small on
the boundary. Therefore, it must be small everywhere and F; converges
uniformly on the strip to a bounded analytic function F'. Since

o(aion(b;)) = (uh; @, a; ®) — (ub®, a* @) = p(acy (b))

and similarly
p(u(bi)as) — p(x(b)a),

the function F satisfies the necessary boundary conditions (iv) and (v).
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We have not checked the boundedness of the K M S-functions yet.
It is enough to do this in the case a = W(h) and b = W (h') with
h' € D. Returning to (6.7) we have

] 1 1
‘Gl (% + s) ‘ — exp <—§||h||2 - §||h’||2) — a(h, cosh SLT, ')

+ o(h,isinh §LT,h')
We estimate in terms of the inner product.

|a(h,cosh 6 LTsh')| |{(coth Lh,cosh § LTsh")|
|| coth Lh|||| cosh LA ||
\(h, i sinh 6 LTsh')|

||h]]|| sinh 6 LA'||

|o(h,isinh 6 LTsh')|

VAN VAN VANVAN

Since h' € D the norm ||e~H’|| is bounded if § is in any compact interval.
It follows that || cosh LA'|| and || sinh §LA'|| are bounded as well. It is
worthwhile to note that we showed a bit more than the boundedness
of the K M S-function. Namely, we obtained that

e K <|Gi(2)] <X (0 < Rez <1) (6.9)

for certain K > 0.

So far we have proven that (6.2) really gives a K M S-state and now
we turn to the uniqueness.

Suppose that w is another K M S-state. We consider for f,g € H
the K M S-functions

F“(f,g) and F*(f,g)

corresponding to the operators a = W(f) and b = W(g). Set

oy (2) = U0
T = Fe(f,9)(2)

Due to the estimate (6.9) for g € D the function vy, is bounded. It is
also clear that it is analytic on the open strip and continuous on the
closed strip. On the one hand we have for t € R

oy o(t) = w(W (f)W (Trg)) _ wW(f+T.9))
fg e(W( )W (Tig)) oW(f+Tg))
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and on the other hand

wW(Tg)W(f)) _ w(W(f+Ty))
eW(Tig)W(f)) W(f+Tyg))

Since vyy(i +t) = vy,y(t) we may apply the same trick used in the
proof of the invariance of the K M S-state. v, has an entire bounded
analytic continuation which should be constant. If

vg(i+1) =

_wW) (1
) = 20— e (a(s.1)
then we have
u(f +g) = u(f +Tig) (teR) (6.10)

We have to show that under the continuity condition on A +— w(W(h))
the function wu is identically 1.

First of all, u is continuous on H. A repeated application of (6.10)
yields that

u(g) =u (% ZTt’g) (geH,teR). (6.11)

S|

u(g) =u ( z_:Tf/ng>

and letting n — oo we obtain

Using (6.11) once more we have

u(g) = u (%gn </01Ttgdt>> =u (% /Onngdt> : (6.12)

The ergodic theorem tells us that

1 n
—/ Tigdt — Eg
n Jo



o6 CHAPTER 6

strongly where E is the orthogonal projection onto the kernel of L.
Since L is injective and u is continuous from (6.12) we conclude that
u(g) = u(0) for every g € H.

Now we try to follow the lines of the above proof without the as-
sumption L > ¢. Assume that L is a positive selfadjoint operator on
the Hilbert space H. Let H be the set of all entire analytic vectors for
L. Then we have

(i) :HCH (t € R)
(ii) tanh LH C H

since tanh L is a bounded operator. We denote tanh L(H) by Hy and
set

ao(fo,9) = Re{coth Lfy,g9) (fo € Ho, g € H) (6.13)

Theorem 6.4 If there exists a positive symmetric nondegenerate bilin-
ear form o : H X H — R which is the extension of ag given by (6.13),
then the quasifree state

W) =ew (-parn))  Uem)

is defined on CCR(H, o) and satisfies the K M S-condition for the group
(W(f)) = Wlexp(~2itL))  (t€R, f€ H).

Lemma 6.5 |o(f,9)|* < a(f, f)a(g, 9) (f,g€ H)

Let D = —itanh L|H and D|H, = D,. Simple verification shows
that

a(Df,g) = o(f,9) (f,9 € H)
a(Df,g) = —a(f,Dg) (f,g € H). (614

Since

a(Dq fo, Do fo) = (fo, tanh L f;) < (coth L fo, fo) = a(fo, fo)
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for every fy € Hy, we get that Dy is a contraction for a. Forming the
completion H of H with respect to o we obtain a real Hilbert space
and we denote by P the orthogonal projection onto the closure of Hy.
Let D' be DyP where D, stands for the closure of Dy (defined on Hy).
For f,g € H we have

a(D'g,Df) = a(DoPyg,Df)=—a(Pg,DyDYf)

—Oé(g,Pbon) = —(X(g,Eon) = —Oé(g,DQf)
= a(Dg,Df)

that is,
a(D'g—Dg,Df)=0 (f,ge H).

This gives that D'g — Dg L Ho. But D'g — Dg € H,, therefore
D'g = Dg for every g € H. D' is a contraction on H and the Schwarz
inequality yields

o (f, 9)|?

la(Df,9)|> = |a(D'f, g)?
< a(D'f,D'g)a(g,9) < alf, fla(g, 9)

for every f,g € H.

Lemma 6.5 provides the existence of the quasifree state ¢ on the
algebra CCR(H, o). The rest of the proof of Theorem 6.1 works with-
out modification. In the framework of Theorem 6.5 the description of
all "reasonable” KMS states seems to be a delicate problem.

KMS states for the free evolution are treated in [R-S-T]. The chap-
ter uses several ideas of that paper, which, however, contains some

gaps.
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Chapter 7

The duality theorem

In axiomatic field theory one associates with every region O in space-
time a von Neumann algebra M(O). Let O’ be the causal complement
of O. Then duality means that the commutant of M(O) is equal to
M(O"). Without entering field theory in the present chapter we show
an abstract duality theorem in the frame of C'C' R-algebras. First, how-
ever, we treat some elements of the Tomita-Takesaki theory.

Let M be a von Neumann algebra acting on a Hilbert space H. For
a set D C B(H) we denote by D' its commutant {a € B(H) : [a,d] =0
for every d € D}. Von Neumann’s bicommutant theorem tells us that
for a von Neumann algebra M we have M = M" (see [S-Zs|, 3.2).
The main point of the Tomita-Takesaki theory is to establish a deep
connection between a von Neumann algebra M and its commutant M’
provided that M admits a cyclic and separating vector.

A vector 2 € H is called cyclic for M if M) is dense in H. The
vector € is said to be separating for M if a € €2 and a2 = 0 imply that
a = 0. By means of the bicommutant theorem one can easily verify
that 2 € H is cyclic for a von Neumann algebra M if and only if it is
separating for its commutant M’. Below we assume that € is a cyclic
and separating vector for M.

Lemma 7.1 The conjugate linear operator given by the formula
So : afd — a* ) (a € M)
1s densely defined and closable.

99
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Sy is densely defined because (2 is cyclic for M. Set another conju-
gate linear operator as

Fy : dQ—ad*Q (a' e M")

which is densely defined, too. One sees that Sy C F and therefore S
must be closable.

Denote by S the closure of Sy and consider the polar decomposition
S =JAY? (7.1)

where A = §*S is a positive selfadjoint operator. It follows from S =
S~1 that J is an antiunitary, i.e. conjugate linear and J* = J*. The
relation

PAVE = JAT2 g
combined with the uniqueness of the polar decomposition gives that
JP=id and AY?2=JA V2], (7.2)

Let us consider the example of a finite dimensional von Neumann
algebra N. Such an algebra always possesses a faithful tracial state 7.
We perform the G NS-construction with 7. So we get an inner product

(a,b) = 7(b*a) (a,beN)
and a representation
L,b=ab (a,beN)

of the von Neumann algebra N on the Hilbert space N. If w is any
state of N then it may be written in the form

w(a)=7(pa)  (a€N)

by means of a density operator p € A. Suppose that p is invertible.
Then the vector Q = p'/? is cyclic for the von Neumann algebra

M={L,: aeN}.
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It is a simple computation that
M ={R, : a e N}
where R, is defined as
R,b =ba. beN)
In our concrete example
St apt’? s a*pt? (a € N)
and we find that

Ja=a" and A=L,R,:. (7.3)
By computation
AitLaA_itb = Lpitap—itb. (a,b € N)
Hence . .
A*MA™™ Cc M. (7.4)

On the other hand
JL,Jb = ba* = R,«b (a,b € N)

yields
JMJ Cc M. (7.5)

Tomita’s theorem states that (7.4) and (7.5) hold generally.

Theorem 7.2 Let Q) € H be a cyclic and separating vector for a von
Neumann algebra M C B(H). Then the relations (7.4) and (7.5) hold
if the modular conjugation operator J and the modular operator A are
given by (7.1).

We shall sketch the proof in the case where M may be approxi-
mated by finite dimensional subalgebras (cf. [Lo]). We assume that
there exists a sequence M; C My C ... C M of subalgebras such that
each M,, is finite dimensional and U{M,, : n € N} is strongly dense in
M. Let H, = M,Q and M,, = M,|H,. Then M,, and M, are alge-
braically isomorphic and for the triplet (H,, M,, Q) Tomita’s theorem
has been proven. Let J, and A, be the corresponding conjugation and
modular operators, P, the orthogonal projection onto H,. Due to our
hypothesis we have P, — I strongly.
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Lemma 7.3 Set A, = AnPn—i-PnL (n € N). Then A, — A strongly in
the resolvent sense where A denotes the modular operator corresponding

to (M, H,9Q).

Let H' be the domain of the closure S of the operator af) — a*2
(a € M). So H' becomes a Hilbert space with the scalar product

(€, ms = (&,m) + (Sn, SE) Enen).

We show that U{H,, : n € N} is a core for S, or equivalently, it is dense
in H' with respect to the graph norm || - ||s. Fix a € M. According
to to Kaplansky’s density theorem ([S-Zs], 3.10) we can find nets (a;)
and (b;) from the selfadjoint part of U{M,, : n € N} such that

*

] :
aj—>§(a+a*) and bj—>%(a —a)

strongly. Then
(aj +1b;)Q2 = a2 and (a; —ib;)Q2 = a™ 2.

This means that U{H,, : n € N} is really a core for S.
Let @, be the orthogonal projection of H' onto #,, with respect to
the inner product (-, -)s. There exists a contraction 7" on H' such that

(&m) =(T&n)s Enen).

We have
(I+A)e=T¢ EeH)

and

T+A,) " =ATQr+Qp)¢  (E€HK, N>E).

Since
QnTQn+Qy =T
strongly in the graph norm we obtain

(I+A,) - T+A)Y (€ U{H, : neN)})

in the norm of H. Being UH, total and the sequence (I + A,)™"
bounded we have completed the proof of the Lemma.
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According to a simple topological argument it is sufficient to prove
(7.4) for a € My, (k € N). Tt follows from Lemma 7.3 that A% — A%
strongly for every t € R (cf. [R-S], VIIL.7). Therefore

A g AT — At g A (t € R)
strongly. However

At aAS"P, € MP, (n>k)
and (7.4) has been shown.

Lemma 7.4 If J is the modular conjugation operator corresponding to
(M, H,Q) then )
InPp — J

strongly.

Since the strong convergence is equivalent to weak convergence and
convergence of the norms, we shall prove weak convergence only. For
&,m € Hy and n > k we have

(T Pu€ym)y = (Ju€,m) = (AY2SE, )
_ 3/ (A (I +£20,)1SE, )t
0

™

Lemma 7.3 tells us that
(An(I +1°A,)71SE M) — (A 4+ °A)71SE, n)

and using Lebesgue’s theorem on the convergence of integrals we get
~ 2 o0
uPaem = = [ (AU +28)75¢ nyat.
T™Jo

The limit is just (J&,n) and the proof is complete.

In order to complete the proof of Theorem 7.2 we show (7.5). To
do this it suffices to prove that

[JakJ, al] =0 (76)
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for ap € M;, and a; € M. Since

JouJay = lim JyapJpa P,

i
—00
and
aJagJ = lim a;J,a,J, P,
n—0o0

as a consequence of Lemma 7.4, (7.6) follows from its finite dimensional
version.

It is worthwhile to emphasize that we proved the continuity of the
main ingredients, the modular operator and the modular conjugation,
of the Tomita-Takesaki theory with respect to an increasing sequence
of subalgebras.

Let K be a complex Hilbert space with inner product (-, -). Setting

o(f.9)=—Im(f,9)  (f,9€K)
the C*-algebra CCR(K, o) and its Fock state

Wi =e (-300) €K

are at our disposal. If K C K is a subspace then we write CCR(K) for
the subalgebra of CCR(K) = CCR(K, o) generated by the unitaries
{W(f): f € K} and we assume that all these algebras act on the Fock
space H containing the cyclic vector ®.

Lemma 7.5 The mapping

(f1, f2r - &) = BY(f1)BT(f2) ... BT (fx)®

1s normcontinuous from IC X IC X ... X K into H for every k € N.

To show the Lemma it is enough to see that

(91,92, - -+, 9n) = ©(B(g1)B(g2) - - - B(fn))

is normcontinuous. This is obvious from Proposition 3.8.
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Lemma 7.6 Let K C K be a real subspace and set Hy for the closure
of CCR(K)®. Then

BY(f1)B™(fo) ... BT (fr)® € Ho
whenever fi, fo,..., fr € K and k € N,

We apply induction on k. For £ = 0 the statement is trivial. In
order to carry out the induction step we write

B (fe+1)B*(fi) .- B(f1))® =

B(fr+1)B*(fx) ... B(f1)¢ — B (frs1) BT (f) ... BT (f1)®.
Due to the induction hypothesis
B*(fu) B (fe-1) --- B'(f1)® € Ho

and differentiating

t = W(tfer) B (fx) ... BT (f1)®

we obtain that

B(fr41)B*(fi)B" (fr-1) ... BT (f1)® € Ho.

If we use the commutation relation

[B™(f), B™(9)] = (9, /)
repeatedly, we find that the vector
B (fi+1) B (fe) B (fe-1) ... BT (1)@
is a linear combination of the vectors
B (fe)B* (fx-1) .- B (fix1) B (fie1) ... BT (f1)®

where 1 <[ < k. The latter vectors lie in Hy by the induction hypoth-
esis.

Proposition 7.7 If K C K is a real subspace such that K + iK 1is
dense in IKC then ® is cyclic for the algebra CCR(K).
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Denote by H, the closure of the subspace CCR(K)®. We know
from Lemma 7.6 that

B (fe) B (fr-1)--- BT (f1)® € Ho (7.7)

for every fi, fx_1,--.,f1 € K. Since BT (f) is complex linear in f (7.7)
holds also for fx, fx—1,..., f1 € K+1K. If K +iK dense then reference
to Lemma 7.5 yields that (7.7) is true for every f, fx—1,..., f1 € K and
k € N. Hence Dg C Hy and Hy = H follows.

For a real linear subspace K C K let us denote by M(K) the von
Neumann algebra generated by CCR(K). According to Proposition
7.7 ® is cyclic for M(K) provided that K + iK is dense in K.

Set
L={feK :oh f)=0 forevery fe€K}. (7.8)

L is the symplectic complement of K and it is nothing else but i K+ if |
is understood with the real inner product (f, g) = Re(f,9) (f,g € K).
Since [W(h), W (f)] =0for h € K and f € L we have M(L) C M(K)'.
Assume that K N ¢K = {0}. Then L + iL is dense in K. (Indeed,
(L+iL)t = KNiK.) Thanks to Proposition 7.7 ® is cyclic for M(L)
and so is for M(K)". Hence under the hypothesis K + iK is dense
and K NiK = {0} the vector ® is cyclic and separating for the von
Neumann algebra M(K).

The following result was obtained in [Ar1] and the presented proof
comes from [E-O].

Theorem 7.8 Let K C K be a closed real subspace such that K + iK
is dense in K and K NiK = {0}. Then the commutant of M(K) is
M(L) where L is given by (7.8).

The theorem will be proven in the important special case when the
subspaces K and L are in generic position. By this we mean that any
two of the subspaces K, K+, L, L* have trivial intersection. Then K
may be identified with a direct sum K, @ KC, and there exists a positive
contraction T on /C, such that

ker T = ker(I —T) = {0},
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K={h®Th:hek,}) , K'={-Th®h:hek,
L={Thoh:hek,} , L*={h®-Th:heck.,}.

Concerning the existence of I, and T we refer to [Ha].
The mapping
f= BT (f)2 (f €K)

is an inner product preserving embedding of I into H. Hence we may
identify IC with a subspace of H. Our first goal is to show that the
closure S of the operator

a® — a*® (a € M(K)),

which is central in Tomita’s theorem, leaves K invariant.
Since
(W (£tf) — 1)® — +iB(f)®

as t — 0, we obtain that B(f)® € D(S) and SB(f)® = B(f)® for
every f € K. It follows that

SBY(f +ig)® = B*(f —ig)®. (f,9 € K) (7.9)
Using the assumption that K is closed it is easy to see that the operator
Si: BY(f +ig)p— B (f —ig)¢  (f, g€ K)

is closed. Hence S; is the restriction of S to /. One finds that

0 7!
(7 ')

with respect to the decomposition K = K, @ K,. (Note that K = L*.)

Let S, = JlAi/Q and S = JA'Y? be the polar decompositions. In
order to conclude that

we have to establish that S* leaves K invariant, too. Denote by L the
orthogonal complement of K in #, ie. L ={ € H : ({,n) = 0 for
every n € K}. Let n € D(S)N K and £ € D(S)N L. Then

(8™, &) = (n, SE)



68 CHAPTER 7

and we need to know that D(S) N L is dense in £ and S leaves L
invariant. This requires a bit more analysis and we sketch how to do
it. First by differentiation we get

SB(f1)B(f2) ... B(fn)® = B(fa)B(fn-1) .- B(f1)®

for every fi, fo,..., fn € K and n € N. Then we deduce

SB(f)B*(f2)...B*(f,)® = B*(f)B*(fs)...B*(f)® (7.11)

(The detailed proof of (7.11) may be similar to that of Lemma 7.6.)
The linear subspace spanned by the vectors

B*(g1)B*(g2) ... B (92)®

(where n = 0 or n > 2 and g; € K + ¢K) is in the domain of S,
contained £ and stable under S.
It is straightforward to see that

0 7 T2 0
J1 = < I 0 ) and Al = ( 0 T72 ) (712)

So .J; is a bijection of K onto L. We prove that
JB(f)J = B(Jif). (f € K) (7.13)

For f € K the selfadjoint operator B(f) is affiliated with the von
Neumann algebra M(K). Tomita’s theorem tells us that JB(f)J is
affiliated with the commutant M(K)'. For f,g € K we have

JB(f)IW(g)® = W(g)JB(f)J® =
W(g)JB(f)® = W(g)JB"(f)®=
W(Q)B+(J1f) = W(g)B(J:f)®.

Since B(J:f) is affiliated with M(L) C M(K)' we obtain

)
o

JB(f)JW (g)® = B(JLf)W (¢g)® (7.14)

whenever f, g € K. Here we interrupt the proof of the theorem to state
a lemma which is interesting also in its own right.
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Lemma 7.9 Assume that K C K s a real linear subspace such that
K +iK is dense in IC. Then the linear hull D of the set {W (h)® : h €
K} is a core for every field operator B(f) (f € K).

This statement improves Proposition 7.7. We know that Dpg is a
core for B(f). So it suffices to show that the closure of D with respect
to the graph norm associated with B(f) contains Dg. We may follow
the proof of Proposition 7.7 and get that

BY(f)B*(fs)... B (f,)® (7.15)

is in the closure of D for fi, fo,..., fn € K 4+ iK. Then by means of
Lemma 7.5 we conclude that the vector (7.15) is in the closure of D
also for every fi, fo, ..., fn € K. (It is rather straightforward that the
continuity in Lemma 7.5 holds if on H the graph norm is considered.)

Now we resume the proof of Theorem 7.8. Let Dy be the (complex)
linear subspace spanned by {W(g)¢ : g € K}. It follows from (7.14)
that

JB(f)J > B(J1f)|Do -

Since the latter operator is B(.J; f) according to Lemma 7.9 and JB(f)J
is selfadjoint we arrive at (7.13). Finally we infer

JW(f)J =J i —B(f)"J =B

Z (_i)nB(Jlf)n =W(=/f)

for every f € K. So the mapping A — JAJ sends CCR(K) into
CCR(L) and the proof is completed.
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Chapter 8

Completely positive maps

Let A be a C*-algebra. We denote by M,,(A) the set of all nxn-matrices
a = (a;;) with entries a;; in A. With the obvious matrix multiplication
and involution M, (A) is a x-algebra and may be identified with AQ M,,.

Let A and B C*-algebras. For each linear map o : A — B we
define a linear map «, : M,(A) = M,(B) by

an(aij) = (a(aij)) - (8.1)

If o, is positive for all n, then « is said to be completely positive.
Completely positivity is the "right” generalization of a positive func-
tional both from mathematical and physical point of view. Assume
that the C*-algebra acts on a Hilbert space H, that is, B C B(H).
Then o : A — B is completely positive if and only if for every
a1,q9,...,ar €A, &,&,...,§s € Hand for all k € N

kEk
ZZ a(aia;)é;, &) > (8.2)
j=1

i=1

holds.

Let (H,o0) and (H',0') be symplectic spaces. A linear map S :
CCR(H,0) — CCR(H',0") is called quasifree if there are a linear map
B : H— H' and a function F' : H — C such that

B(W(h)) = F(hW'(Bh)  (h € H). (8.3)

Clearly, the composition of quasifree maps is quasifree. In this chapter
we shall deal with completely positive quasifree maps.

71
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Theorem 8.1 A quasifree map f : CCR(H,0) - CCR(H',0") given
by (8.3) is completely positive if and only if the kernel

(f,9) = F(g— f)exp i(o(g, f) — o'(Bg, Bf)) (f,ge H) (84)
18 positive-definite.

First we assume that (8.4) is positive-definite and show completely
positivity in the form of (8.2). It suffices to choose

as = Z)‘skW(fsk) (1 <s< k) .
k

Simple computation yields for & € H (1 < s < k) the following.

> (Blara)&, &) =

s,t

DD MadaF(fu — o) exp i(o(fus far) — o' (Bfu, Bfak)) X

st Lk

<WI(Bftl)£ta WI(stk)£s>

Here on the right hand side one recognizes the product of two kernels.
The first one is positive-definite due to our hypothesis and the second
one,

((s,k), (£, 1)) = (W'(B fu)ée, W' (B for)Es) »

is positive-definite by a straightforward checking. Since the product
of positive-definite kernels is also positive-definite (see Lemma 3.3) we
have obtained that 3 is completely positive.

Let us recall that the C*-algebra CCR(H',o') possesses a tracial
state 7 (defined by (2.5)). Stand (7, K, 2) for the corresponding GN S-
triplet. Consider the Hilbert space X ® C* and set a vector

= 7(W'(-Bf)Q e

where (eq,es,...,¢e,) is the canonical basis in C*. If § is completely
positive then for every x € CCR(H,0) ® M, the inequality

((m ®@id)fn(2"2)€, &) 2 0 (8.5)
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must hold. Choose .
=Y mW(f)®Ey
=1

(where Ej,;’s form a system of matrix units in M,,), and compute

Bn(z*z) = ZﬁsutF(—fs + fi) exp io(—fs, fi)W(=Bfs + Bf;) ® Eg

S,t

and

(7 @ id)Ba(a" 2, ) =
> AmF(fi = f)exp ilo(fi £) - o'(Bfi, BS))

s,t

which is nonnegative in consequence of (8.5). Hence we have verified
that the kernel (8.4) is positive-definite.
Let H and H' be complex Hilbert spaces. Write

o(f,g) =Im(f,g) (f,g €H)

and define ¢’ similarly on H'. We are going to show that for every linear
contraction A : H — H' there exists a completely positive quasifree
map ay : CCR(H,0) - CCR(H',0') such that

aa(W(9) =Wan e (GIAfE - SIA7) ()

for every f € H. In the light of Theorem 8.1 we need to show that the
kernel

1 1 . .
(f,9) = exp <§||A(g = NIP = 5llg = FI° +io(g, f) —io"(Ag, Af))
is positive-definite. It is so if and only if the kernel
(f,9) > exp (Re((I — A" A)g, f) +iIm((I — A"A)g, f))

is positive-definite. Lemma 3.2 tells us that

(f,g) — Re{((I — A*A)g, f)+iIm((I — A*A)g, f)



74 CHAPTER 8

is positive-definite and the pointwise exponentiation preserves this prop-
erty.

On the language of categories the above example hides a functor.
Let us consider the category whose objects are complex Hilbert spaces
and whose morphisms are contractions. The correspondence A — a4
is functorial in the sense that

QAR = QL40B (8.7)

whenever B : ‘H; — H, and A : Hy — H3 are contractions. To the
zero operator « associates the Fock state

enW() =exo (=3IfP)  (Fe).

Since 0A = 0 we have
Oy, O Qg = Py, - (8.8)

['(H) is a frequently used notation for the GNS Hilbert space corre-
sponding to CCR(H, o) and 4. It follows from (8.9) and the Schwarz
inequality that the linear application

W (hy)®1 — ag(W(h))P, (hh € H4)

extends to a contraction I'(B) : I'(H;) — I'(Hz). (Here ®; and ®, are
the cyclic vectors.) B +— I'(B) is also a functorial correspondence and
it is called Fock functor. It is convenient to know the action of I'(B)
on exponential vectors (see (4.10)). We have

P(B)e(f) =e(Bf)  (f€H). (8.9)

Let A; be a C*-algebra and ¢; a faithful state on it (s = 1,2). If
the unital linear map 7" : A; — A, satisfies the inequality

T(a*a) > T(a)*T(a) (a € A) (8.10)

then it is called a Schwarz map. It is well known that a completely
positive map is of Schwarz type. For a;,b; € A; and i = 1,2 we set

ai(ai,bi) = Re goz(b;ka,)
O'i(ai,bi) = Im QDZ(b:CLZ)
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and denote by CCR(A;, ¢;) the CC R-algebra associated with the sym-
plectic space (A;,0;) (i =1,2). On the algebra CCR(A;, ¢;) the Fock
state

(W (as)) = exp (—%ai(ai,ai)) (€ As, i =1,2)

is at our disposal.

Assume that T"is a Schwarz map and @07 = ;. Then T becomes a
contraction with respect to the GN S-norms and there exists a quasifree
completely positive map a : CCR(A;, p1) = CCR(As, @) such that

o(W(a))) = W(Tay) exp %ﬂ(al, a)  (aeA) (8.11)

where
Blai,b1) = a(T(b1)"T(a1)) — p1(biar) .

We are going to prove that the quasifree mapping « is in some sense a
central limit.

Consider the n-bold tensorproducts A7 = A; ® ...® A; and A} =
A ® ... QA Let T, : A} - A3 beTRT®...®T and w, =
Vo ® P @ ... QR wo. We recall that for a € A; its nth fluctuation is
defined as

1 n
Fpla)=—=> 1V®..0I" V@ (a—p(a) @I e...0 1"
=
Theorem 8.2 Let ayj,as,...,ar € A® and assume that 1(a;)) = 0
(1<1<k). Then
lim wy, (T, (exp i Fy(ay)) ... Th(exp @ F,(ag))
n—oo

= po(a(ar)a(as) ... a(a)) (8.12)

In order to prove the theorem, we compute both sides of (8.13).
First

wn (Tn(exp i Fy(ar)) ... Th(exp i Fp(ag)))

o)1 ()
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and

T (eXp %) T (exp %) - [+Xk:iT7(js)

. Z L&g) _ Z T(asle(at) + O(ng/g) '

2n
s<t

Since 3T (as) = 1(as) = 0 by assumption we obtain that the left hand
side of (8.13) equals to

exp (—; > ne) - meas)T(at)) SN 8% )

s<t

Applying (8.12) and using the CC R-relation we see that the right
hand side of (8.13) is exactly

k k k
1 1 .
exp <—§a2 (Z T, ZTal) -5 Zﬂ(al,al) + ZZJQ(TU,S,Tat)> )
I=1 I=1 1=1

s<t

It is straightforward to check that the latter expression is identical with
(8.14).

More complicated central limit theorems for completely positive
maps have been obtained in [Qu]. Here we presented a simpler gener-
alization of Theorem 5.5.

Let H be a real Hilbert space with inner product (-,-) and @ a
skewadjoint operator on H with ||Q] < 1 and Ker @ = {0}. Setting
o(f,g) = (Qf,g) we get a nondegenerate symplectic form and there is
a quasifree state ¢ on CCR(H, o) such that

Wi =ew(-3(0)  Uem e

For a subspace (Hy, 0¢) C (H, o) we have

CCR(Hy,00) C CCR(H,0)
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and we shall construct a completely positive quasifree map
E, : CCR(H,0) — CCR(Hy, 0y)

which may be viewed a conditional expectation with respect to the
quasifree state (8.15).
It is possible to express () as

Q= Jtanh L (8.15)
where J is a complex structure and L is a selfadjoint operator on H

satisfying
[L,J]=0 and L >ce. (8.16)

It was shown in Chapter 6 that the automorphism group o, given by
a(W(f)) = W(T,f), Ti = exp(-2tJ L) (teR, feH)

satisfies the KM S-condition with the state ¢. Therefore, for every
a,b € CCR(H, o) the function

t — @(aoy(h))

admits an analytic extension to the strip {z € C : 0 < Imz < 1}. We
set
< a,b>= p(a"0i2(b))

(i.e., the value of the extension at i/2). The three lines theorem tells
us that

| < a,b> | <|la] [[ol (a,b € CCR(H,0))
and for every fixed a € CCR(H, o)
Yo i b a,b>

is a linear form on CCR(H, o). Let us compute < W(f), W(g) >. To
do this we continue analytically the function

¢ oV (W (Tig) = exp (@S, Tig) = ST = HolP + (1. Ti))
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Lemma 6.2 yields

(Qf,Ti29) = (Qf, cosh Lg) —i(Qf, J sinh Lg)
(f,Tin9) = (f,cosh Lg)—i(f,J sinh Lg).

Using
cosh L=(I-QQ)~Y* | Jsinh L=QUI—-Q*Q)*/?
we obtain
W)W =0 (-300) - 0.0+ (.- QQ )

(8.17)
Denote by P the orthogonal projection of H onto Hj.

Theorem 8.3 There exists a completely positive map E, : CCR(H,0) —
CCR(Hy,09) such that
(i) <ap,b>=<ay,E,(b) >0 for every ay €
CCR(Hp,00) and beCCR(H, o).

(i) B W) = WTfesp (ST - JIAP)  wher
T = (I - PQ"PQP)™*P(I - QQ)"/*.
Since
(I — PQ*PQP)Y2TT*(I — PQ*PQP) = P— PQ*QP < P— PQ*PQP

we see that 7 is a contraction. Theorem 4.9 tells us that there are
complex Hilbert spaces H D H and Hy D Hj such that

a(f,9) = Im(f, g) (f,9 € H)
OO(f:g) = (PQPfag) :Im<fag>0 (fag € HO)

and (8.6) yields a quasifree mapping exactly in the form (ii).
Having the concrete formula (8.18) at our disposal it is a simple
verification that E, defined by (ii) satisfies also (i).

E, is the dual of the embedding CCR(H,,00) - CCR(H, o) with
respect to the sesquilinear form < -, - >. The peculiarity of the latter
form is in the fact

La,b>>0
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whenever a,b > 0. E, is called ¢-conditional expectation in [A-C] and
it was computed in the CCR setting in [Fr|. The paper [Pe] is a review

on the subject.
Note that in the case [P, Q)] = 0 we have T = P and

E,(W(fo)W(9)) = W(fo)E,(W(9)) (8.18)

holds for every f, € Hy, g € H.
We used [E-L] and [D-V-V] to prepare the general part of this
chapter.
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Chapter 9

Equivalence of states

Let A be a C*-algebra and 7; its representation on a Hilbert space KC;
(1 =1,2). It is said that m; and m, are unitary equivalent if there is a
unitary V : K; — Ky such that

Vri(a)V* = m(a) (ae A).

Two states are unitary equivalent if the corresponding G N S-representations
are unitary equivalent.

Let H be a complex Hilbert space and consider CCR(H, o) where
the symplectic form o is the imaginary part of the inner product. For
A > 1 there is a quasifree state @) on CCR(#H, o) such that

W) =ew (<3102) (e, @D

If A =1 we obtain a pure state due to Theorem 4.7. The other states
are not pure as it follows from Proposition 3.9. Therefore, ¢, can not
be unitary equivalent with ¢, if A > 1.

Let (H,o) be a 2n-dimensional symplectic space and choosing a
symplectic basis in H we have an isomorphism 6 : H — C" such that

o(f,g) =1Im(0f,09) (f,g€ H).

Since C* ~ R?", the Lebesgue measure on R?" induces a measure dg
on H. This measure seems to depend on # but it is not so. In order to
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see that it suffices to show that every symplectic transformation 7" on
H preserves dg. Let

o(f,9) = Re(Df,g) (f,g € H).
Since T' is supposed to be symplectic we have
Re(Df,g) = Re{DT f,Tg)

and it follows that
D=T*DT.

det D # 0 and we arrive at |det7| = 1. As a consequence of the
above argument we may speak of the Lebesgue measure on a finite
dimensional symplectic space.

Let ¢ be a Fock state on CCR(H, o). The integral

— /H oW (g)W (g)dg = P (9.2)

is norm convergent and defines an element P of CCR(H, o). For a
2m-dimensional subspace Hy of H we set

Py=r /H oW ()W (9)dg (9.3)

The following two lemmas are obtained by direct manipulations with
Gaussian integrals in a symplectic basis.

Lemma 9.1 For every h € H we have
PW(h)P = (W (h))P
Lemma 9.2 PPy, =P

The following result is a reformulation of von Neumann’s uniqueness
theorem.

Theorem 9.3 For a finite dimensional nondegenerate symplectic space
(H,o0) any two Fock states of CCR(H, o) are unitary equivalent.
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We follow the proof of Theorem 1.2. If ¢ is a Fock state then 7, (P)
is a projection of rank one because 7, is an irreducible representation.
(Here the projection P is given by (9.2).) One can construct the inter-
twining unitary as in Chapter 1.

We shall see that over an infinite dimensional symplectic space there
are nonequivalent Fock states on the CC R-algebra.
The representations m; and 7y are called quasi-equivalent (m; & 7y in

notation) if there exists a von Neumann algebra isomorphism « between
m(A)" and mo(A)" such that

a(mi(a)) = ma(a) (a€e A).

Quasi-equivalence is weaker than unitary equivalence but they coincide
on the class of irreducible representations.

Let H = L?(0,1). We show that the states o, given by (9.1) are
not quasi-equivalence for different \’s. Let A > p > 1 and argue by
contradiction. Suppose that « is a von Neumann algebra isomorphism
of m\(CCR(H))" onto 7,(CCR(H))". Since the field operators are
affiliated with m\(CCR(H))", o acts on them. Clearly,

a(B(f)") = Bu(f)?  (feH).

Denote by h the characteristic function of the interval [(k—1)/n, k/n]
and set

1
AT = -5 (Ba(hp)? + ...+ By(h)?)

exp A} is a positive contraction in m\(CCR(H))" and A} is defined
similarly. We have
afexp AY) = exp A} .

Compute

(exp AZW (9)®r, W(g)®y) =

(27)_n/2/n<exp (—izka(hlﬁ)> W(g)®@x, W(g)®x)

k=1

1 n
X exp (—5 Zx%) dxidzs . ..dx, .

k=1
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By evaluation of the Gaussian integrals we obtain

—n/2 n
(exp AW ()8, W) = (143)  exp (—L > ol hii)) .

Since
n

o(g,hk) =0
k=0

for every real function g we have

A

(exp A3 (5)2, W (9)2) — ex (3 )

One gets in this way that

exp A} — e M2

and exp A) — e M2
in the weak operator topology. Since « is continuous in this topology
(on bounded sets) we arrive at a contradiction.

Let H be a real Hilbert space with scalar product (-,-). On the
space H=H O H

o(f1® f2,01 ® 92) = (f2,91) — (f1,92)

defines a nondegenerate symplectic form. The standard Fock state ¢
on CCR(H, o) is given by

1 1
oW (f1 ® f2)) =exp (—i(fl,fl) - §(f2,f2)> . (9.4)
Let T be a positive bounded operator on H and suppose that T has a
bounded inverse. The map Ty : (f1 @ f2) — T fL ® T~ f, is symplectic

and

W) =ew (5@mi ) Genw)  ©09)

defines another Fock state. Our next aim will be to discuss the equiv-
alence of ¢ and . Below we shall assume that H and H are infinite
dimensional separable Hilbert spaces.
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Theorem 9.4 Let (Hy,04) be a finite dimensional symplectic space
and m : CCR(Hy,09) — B(K) a continuous representation. Then
7 is the direct sum of (irreducible) Fock representations.

Let P, be the projection in CCR(H,, 0y) given by (9.3) and (&;) an
orthonormal basis in the subspace Ky = Py)K. K; = [7(CCR(Hy, 09))&i]
and m; = 7|K;. Since

(W ()&, W (9)&) = @Dy (W (f — 9))(&, &)

we get KC; L IC; if i # j. From the fact that m;(F) is a projection of
rank one it follows that 7; must be irreducible.
Let £ be the orthogonal complement of the sum Z @ K;. This is

the place to use the continuity hypothesis. It yields that £ = {0} (cf.
the proof of Theorem 1.2.).

One can guess from the above proof that every representation of
CCR(Hy,0p) is the direct sum of a continuous and a ”singular” one.

Lemma 9.5 Let Hy be a finite dimensional subspace of H and 7 a
representation of CCR(H) such that 1|CCR(Ho) is continuous. Then

T(COR(Ho)) Na(CCR(H))" = m(CCR(Hy))"

The point is the containment C. It follows from the previous theo-
rem that the von Neumann algebra My = 7(CCR(H,))" is the direct
sum of type I factors. Therefore, the identity is a sum of pairwise or-
thogonal minimal projections of My. It suffices to show that for every
minimal projection E of M,. We have

T(CCR(H)) Nw(CCR(H))"E C 7(CCRHI)"E.  (9.6)
Evidently,
T(CCR(Ho)) N7 (CCR(H))"E C Ex(CCR(H))"E . (9.7)

The mapping 8 : T +— ETEF is strongly continuous. The von Neumann
algebra m1(CCR(H))" is generated by m(CCR(H,)) and 7(CCR(Hy)).
For A € 7(CCR(H,)) and B € 7(CCR(H;y)) we have

B(AB) = EAEB € n(CCR(Hy))"FE.
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(because EAE is a multiple of E.) Hence
En(CCR(H))"E C n(CCR(Hy))"E .

This combined with (9.7) yields (9.6).

We say that (#,) is an absorbing net of subspaces if

(i) For every o H, is a finite dimensional complex linear subspace of

H.

(ii) For every o and f3 there is a 7 such that H,, Hz C H,.

(iii) | JH, is dense in 7.

Proposition 9.6 Let (H,) be an absorbing net of subspaces and 1y, 1
factor states of CCR(H). Assume that my, and my, are continuous.
Then 1 and 1, are quasi-equivalent if and only if for every e > 0 there
18 an « such that

1(1 — )| CCR(H,) | < €. (9.8)

Consider m = 7y, @ 7y, acting on the Hilbert space Ky @ Ky. Since
11 and 9 are factor states the centre of the von Neumann algebra
M = 71(CCR(H))" is contained in CaC. It is well-known that ¢); & 1)y
if and only if M is a factor (see [Di], 5.3).

Set v, and 1), for the vector states on M generated by ¥; & 0 and
0 @ U,. Assume that (9.8) is not true. Then

Lo ={z e MN7(CORMH,))" : llzll 1, [(vy — ¥,) ()| > €}

is a weakly compact nonempty subset of M. There exists
Ze() La.

Since
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for every o, Z must be in the centre of M. This yields that the centre
is actually C & C and M is not a factor.
The centre of M is

(7 (CCR(H,)) N M.

o

Due to Lemma 9.5 this equals to

(7(CCR(H,))".

o

To prove the converse we assume that M is not a factor. Then
Z1 =1 (—1) belongs to the von Neumann algebra

m(CCR(HZ))"
for every a. Then

141 = Y2)[CORM,)|| = [1(¥1 — o) I7(CCRHL))" || = [¥1(1) — 92 (1))
= 2

and (9.8) does not hold.
We return now to the Fock states ¢ and ¢r given in (9.4) and (9.5).

Lemma 9.7 If ¢ and o1 are quasi-equivalent then I — T is compact.

For a given ¢ > 0 Proposition 9.6 provides a finite dimensional
subspace H, such that

exp <—%(h, h)) _ exp (—%(Tzh, h))‘ <e (9.9)

whenever h € Hy. (Note that 7, is continuous thanks to the bound-
edness of T and T—'.) We deduce from (9.9) that

1
‘1 — exXp <—§((IQ - Tz)h, h)) ‘ < Ce
for h € Hi with ||h|| < 1. Using the continuity of the exponential

function one gets
(I = T2)h, h)| < d(¢) (9.10)
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if h € Hy and ||h|| < 1. In the identity
A — EfAEy — EyAE; — EyAEy) = Ey AEy

we choose A = I, — T, and Ej is the orthogonal projection onto Hyg.
We infer from (9.10) that I, — T, may be approximated in operator
norm arbitrary close by finite rank operators. This yields that I, — T5
is compact as well as I — T and I — 7!,

Let {e1, e, ...} be a basis of the real Hilbert space H such that every
ex is an eigenvector of 7'. Set H " for the complex linear subspace of H

spanned by the vectors {e,, €nt1,...,€n} (n < m). Lemma 9.1 tells us
that .
Pl=—5 | oW(@)W(gdg  (k=m-n+1)
HE

is a projection in CCR(H). Lemma 9.2 gives that
Pm <

if [m,n] D [m/,n’].
©(P™) =1 and we compute @7 (P").

1
QOT(P:Ln) = 7T exp( 2 _[2+T2 h h>) dh

_ ﬁ<1—;/\) <1+)\1 )1/2
)

=N
m 1/2
- I (1 + % (9.11)
i=n
where
Ni+ A2
o=

Theorem 9.8 The Fock states ¢ and @7 of CCR(H,o0) (defined by
(9.4) and (9.5)) are quasi-equivalent if and only if the operator I —T
15 in the Hilbert-Schmadt class.
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Assume that ¢ ~ ¢7. Then Lemma 9.7 tells us that I — T is
compact. (H7)m, is an absorbing net of finite dimensional subspaces.
Due to Proposition 9.6

(¢ = )| CCR(HT]
can be arbitrary small if n big enough. Since
(e = )| CCRMH) = (¢ — ) (P)| = 1 — or(Fy")

we have

1
1+¢
for big n and m > n. The next elementary inequality may be varified
easily.

or(P) > (9.12)

1 ; 1
1+ 5% < 11 (1 + %) < exp (§Eui> 9.13)

Combination of (9.11), (9.12) and (9.13) yields that

1 S m\—2 2
L+5 ) m<er(P) < (1+e)

i=n
o0
if n is big enough. This shows that Z,ui is convergent. Since
i=1

2mp; < (1= N)% < 2M (9.14)

o0
for M > )\; > m we conclude that Z(l — X\;)? is convergent, or in

i=1
other words, I — T is a Hilbert-Schmidt operator.
Before proving the converse we state a lemma.

Lemma 9.9 If w; and we are states of B(K) given by vectors & and
&y then

llwr — wal| < 2(1 — [(&, &)[H)2.
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Let P; be the projection onto C¢; (i = 1,2). It is easy to compute
that P, — P, has spectral decomposition

A1 — AQo  with X = (1 —[(&,&)H)Y2.
Hence
wi(A) = wa(A)| = [ATT AQr — AT AQ,| < 2A[A].

Now we go back to the proof of Theorem 9.8. Let (7,2, ) be the

G'N S-triplet associated with CCR(H]") and ¢r|CCR(H]?). It follows
from Lemma 9.1 that

(W (h)) = or(B)~Hm(W (h)m(Pr)Q, m(Pr)Q) .
Lemma 9.9 is applicable and yields
I(¢ — @) |ICCRH)| < 2(1 — pr(Py)Y2. (9.15)

Suppose that I — T is Hilbert-Schmidt. Then »u; < +o0o thanks
to (9.14). We are going to benefit from Proposition 9.6 and to verify
condition (9.8). On the one hand

(¢ = ¢r)[CCRM,)IIP < limsup [|(¢ — ¢r)| CORH)|?

m—oQ
< limsup4(1 — ¢r(P7))
m—oQ
' m L1\ —1/2
imsup ( 215 )

and on the other hand from (9.13)

m 1 “1/2 1 m
Here the right hand side is arbitrary small when n is large enough. The
proof of Theorem 9.8 is complete.

Let H be an infinite dimensional separable complex Hilbert space.
Let A be a real linear bounded operator on A such that A~! is bounded
and

Im(f,g) =Im(Af, Ag) .
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So A is symplectic with respect to the standard symplectic structure
of # and there is a (Bogoliubov) automorphism a4 of CCR(#H) such
that

as(W()=W(Af)  (feH).
We denote by ¢ the standard Fock state on CCR(H) and set

eV (1) = exp (=548 ) = plar(V (1),

So ¢4 is another Fock state (sometimes called squeezed Fock state).
Denoting by 7 the Fock representation associated with ¢ and acting on
IC we are ready to state and to prove Shale’s theorem [Sh].

Theorem 9.10 The following conditions are equivalent.
(i) A*A — I is in the Hilbert-Schmidt class.
(ii) The states ¢ and p4 on CCR(H) are quasi-equivalent.

(iii) There ezists a unitary operator U on K such that m(aa(W(h)) =
U*n(W (h))U for every h € H.

We note that A* is the adjoint of A with respect to the real inner
product on H. We may assume that H = L?(0,1). Let H be the real
part of L?(0,1), then H = H & H. Every linear operator on % may be
given by a 2 x 2 matrix with entries in B(H). If

_ [ An A (0 I
A= < Ay Ay, ) and J= ( I 0 ) (9.16)
then A is symplectic if and only if

A" JA=J (9.17)

and a real linear operator on H & H is complex linear on A if and only
if it commutes with J. Let

A = V]_H]_
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be the polar decomposition of A. From (9.17) by the uniqueness of the
polar decomposition we obtain

JVi=ViJ and H,=J'H'J.

Hence V] is complex linear and analysis of the second condition gives a
unitary V5 such that

JVo=VoJ and Hy=VoLVy

where L is diagonal in the decomposition H & H and has the form

T 0
(1)

where 1" > 0 has a bounded inverse. It follows from the decomposition
A= WVVoLVy

that ¢4 = @p. Therefore, ¢ = @, if and only if ¢ = ;. On the
other hand, A*A — I = V5(L? — I)Vy and A*A — I is Hilbert-Schmidt
if and only if L? — I is so. It is not difficult to see that L? — I is in
the Hilbert-Schmidt class if and only if 7" — I is Hilbert-Schmidt. This
way we have succeeded in reducing the equivalence of (i) and (ii) to
Theorem 9.8.

The equivalence of (ii) and (iii) is based on the fact that ¢ and ¢4
are pure states. Set (my,Hi,®;) for the GNS-triplet of 4. Assume
that there exists a unitary V' : K — K; such that

(W (h)) = V*m (W (h))V (heH).
Then we have
pa(W(h)) = (m(W(h))Q, Q) (heH)
for 2 = V*®4. Define a unitary by the formula
U:7n(W(h)Qw n(W(A 'h)®

and simple computation shows the U implements the automorphism
©@a. The inverse implication (iii) — (ii) is trivial.

The study of quasi-equivalence of non-Fock quasifree states may go
through the purification as it is done in the papers [VD] and [Hol].
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We do not enter this subject but give another proof of the fact that on
an infinite dimensional Hilbert space # the states ¢, in (9.1) are not
quasi-equivalent.

More generally, let A and B be bounded operators on # such that
A,B > (1+¢)I for some ¢ > 0. Consider the quasifree states

oW (h)) = exp (-%(Ah,h)) on(W(h)) = exp (—%(Bh, h))

on CCR(H). Using Theorem 6.1 one can get that 4 and ¢p are factor
states. (A nontrivial central element gives rise to another K M S-state
for the appropriate group.) We are in a position to apply Proposition
9.6 and can use the argument in Lemma 9.7. Instead of (9.9) we have

exp (—%(Ah, h)) — exp (—%(Bh, h))‘ < (9.18)

whenever h € H;. The scalar product
(h1,ho)p = (Bhq, hs)
is equivalent with the original one and from (9.18) we obtain
(I — B Y2AB~Y%)h, h) < §(¢)

whenever h € Hi. Hence the assumption ¢4 & @p yields that I —
B~'?2AB~'/? and so B — A must be compact. This is enough to see
that ¢, and ¢, are not quasi-equivalent if A > p > 1.
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Chapter 10

The selfdual approach

In this section we present the selfdual approach to the algebra of the
canonical commutation relation. This formalism was developed mainly
by Araki ([Ar2],[A-S]) and lays the emphasis on creation and annihi-
lation operators rather than on Weyl unitaries.

A triplet (K,~,T") is called phase space if K is a complex linear
space, 7 is a symmetric sesquilinear form and I' is a conjugate linear
involution (i.e., I'> = 4d) such that

v(Tf,Tg) = —v(g, f) (f,9€K). (10.1)

If (K,~,T) is a phase space then on the real linear subspace {f € K :
['f = f} v is a symplectic form (it may be degenerate). On the other
hand, if (H, o) is a symplectic space then H @& H may be endowed with
a complex linear structure by letting

The operator I'(f,g) = (f,—g) is an involution and o extends to a
symmetric form v on H @ H. Hence phase space and symplectic space
are somewhat close notions.

The CC R-algebra A(K,~,I") over the phase space (K,~,I') is the
quotient of the free *-algebra generated by a(f), its conjugate a*(f)
and the identity over the two-sided x-ideal generated by the following
relations :

(i) a(f) is complex linear in f,

95



96 CHAPTER 10

(i) a(f)a*(9) - a* (g)a(f) = =1/, 9),
(iii) a(Tf) = a*(f).

A linear mapping U of K into itself satisfying v(U f,Ug) = v(f, g)
and 'U = UT preserves the relations (i)-(iii) and there exists a *-
endomorphism 7(U) of A(K,~,T') such that 7(U)a(f) = a(U f) holds.

An operator P on K satisfying

(i) P2=P

(i) v(f,Pf)>0if Pf#0
(iii) v(Pf,9) =~(f, Pg)
(iv) TPL=1-P

is called a basis projection. Let P be a basis projection and consider the
complex linear subspace # = rng P. It follows from property (ii) that -y
is a separating inner product on . So we may consider the C*-algebra
CCR(H,Im~) over the symplectic space (H,Im~) and we let it act
in the standard Fock representation where creation and annihilation
operators appear. Denote by I'(#) the Fock space. For f € K we
define an application « by the formula

a(a(f)) = BT (Pf)+ B~ (PTf). (10.2)
Since
[B*(Pf)+ B~ (Pr'f), B*(Pl'g) + B~ (Py)]
and

a(a”(f)) = ala(T'f)) = afa(f))*
« extends to a *-algebra homomorphism of A(K,~,T).
When A is a *-algebra then by a state ¢ of A we mean a linear
functional such that ¢(I) = 1 and ¢(z*x) > 0 for every z € A. A state
¢ on A(K,~,T) is called quasifree if
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(i) e(a(fi)a(f2) .. a(fas1)) =0 (keZ", f; € K)

(ii) ¢(a(fi)a(f2)- . a(fw) = X115, ela(fi,)alfin))
(keN, fi e K)

where the summation is over all partitions {Hi, Hy,..., Hy} of
{1,2,...,2k} such that H,, = {jm, b} With jp, < lp.

Proposition 10.1 If P is a basis projection over the phase space
(K,~,T) then there exists a unique quasifree state  on A(K,~,T') such
that

p(a*(g9)a(f)) =~(Pf,g). (10.3)

The uniqueness is obvious. To establish the existence we use the
x-algebra homomorphism « defined above. Setting

o(x) = {a(x)®, D) (x € A(K,v,T)) (10.4)

we obtain a state on A(K,v,T'). (¢ is the vacuum vector here.) It
follows from Proposition 3.8 and simple properties of the Fock states
that ¢ is a quasifree state in the above sense and its two-point function
is really given by (10.3).

It is worthwile to point out that the basis projection P determines
that a(f) becomes creation or annihilation operator in the correspond-
ing representation.

Let s be a positive hermitian form on K such that

Then s is called a polarization of v. Observe that if P is a basis pro-
jection then

sp(f,9) =v(Pf,9)

is a polarization.

Lemma 10.2 If s is a polarization of v then

(9, f)s =s(g, f) +s(Lf,Tg)
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s a positive form such that

(g, NI* < {f, )s(g, 9)s (10.6)
holds.

We estimate simply as follows

(g, f)| , P)ls + (T£,Tg)ls

g>1/2<f Y2+ (f,Tf) (g, Tg)/?
,9)s + (Tg,Tg)s) > ({f, f)s + (DL, T f)s)

g>1/2<f N

IA N IA

Proposition 10.3 Let (K,v,T') be a nondegenerate phase space and
let s(-,-) be its polarization. Then there exists a quasifree state ¢ on
A(K,~,T') such that

p(a*(9)a(f)) = s(f,9) (f,9 € K).

We perform a doubling procedure and reduce the problem to Propo-
sition 10.1.

Since v is assumed to be nondegenerate, Lemma 10.2 gives that
(-,-)s is an inner product. By completion with respect to {-,-)s we
obtain (K’,+',I"). There is a contraction S on K’ such that

v(f,9) = (Sf,9)s (f,9e K').

We have

S*=S5 and I'SI"=-85. (10.7)
Set

K”:K,@KI F”:FI@FI
and

Y'(f1 ® f2, 01 ® g2) = (Sf1,91)s — (Sfa, 92)s -
In this way we arrive at the doubled phase space (K”,~",T"). Since

S(faf):<f:f>s_s(rfarf)S<faf>5
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there is a positive contraction S on K’ such that

s(f,9) = (Sf,9) (f,ge K').

It satisfies also the conditions
'sr'=1—-S and S-—-I'SI'=S. (10.8)
Set

(1® f201©92) = (f1,91)s + (fo, 92)s
+2(5"(1 = 8)' 1, go),

+2(5(1 = 5) o).
This form is I-invariant because (-, -)s is ['-invariant and

/21

s’ T =(I-29)"2.

The identity

1/2 1/2

(i@ fo, i@ fo) =[S fit U=5)hll+IS"fot+ (I =L

shows that (-,-) is nonnegative. Assume that

(f1® fo, 1® fo) = 0.

Short computation yields that this implies

25-1)f;=0 (i=1,2).

We get from (10.8) that f; € Ker S = {0} and (-, -) is an inner product.
We deduce from the relation

VLD for 1 @ g2) = (S f1 + (I = 8)V2f5, 5 g1 + (I — §)2gs),
—((I _ §)1/2f1 4 §1/2f2, (I . ?)1/291 i §1/292)S

that
V'(f1D fo, 1 @ g2)| < ||f10 L2l - |91 D g2]| -
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We may assume that (K", (-,-)) is a complete inner product space. Let
H, and H, be the closed subspaces spanned by the vectors

{§1/2f®_(1_§)1/2f : feK’} , {(1_3)1/2f@—§1/2f : feKl} ;

respectively. One can check that K" = H, @& H,, moreover H, and Hy
are orthogonal with respect to +”. The operator T given by

Y'(f.9)=(Tf,9) (f,ge K")

is diagonal in the decomposition H; & Hs. In fact,

ThHh=f (i€eH) and Tfo=—f, (f:€ Hy)

and P = %(T—l—l ) is a projection. It is straightforward to verify that Py
is a basis projection. Proposition 10.1 tells us that there is a quasifree
state ¢"” on (K",~",T") such that

¢"(a"(9)a(f)) =~"(P:f, 9) .

The embedding f; — f1®0 of (K,~,T") into (K", ~",T") gives rise to an
embedding « of A(K,~,T) into A(K",7",T"). ¢ = ¢" o is a quasifree
state on A(K,~,I"). The only thing remained to show is

Y'(Ps(f®0),(g®0)=5(f,9)  (f,9€K).

However,
V'(P(f@0),(920) = (%T(I +T)(f@0),(9®0))
— %7”(f@0,g€90)+%<f@0,9@0>
1 1
_ %V(f, g)+ %s(f, 9)+ >5(19,T)

2
which is s(f, g) due to (10.5).

For degenerate v the doubling is slightly more complicated but also
this case is treated in the original paper [A-S]. The quasi-equivalence
of quasifree states in a very general frame is contained in [A-Y].
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