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Abstract

This doctoral thesis presents an extensive study on the applications of generalized coherent
states (GCS) for the quantum dynamics of many-body systems. The research starts with
exploring the fundamental properties of generalized coherent states, which are created by
generators of the SU(M) group acting on an extreme state, and demonstrating their role in
representing ideal quantum condensates. A significant feature is the relationship between
generalized coherent states and the more standard Glauber coherent states (CS). Similarities
in their overcomplete and non-orthogonal nature are shown, alongside crucial differences
with respect to U(1) symmetry and entanglement properties, which generalized coherent
states solely adhere to.

Furthermore, this thesis delves into the nonequilibrium dynamics of GCS as well as Glauber
CS under nonlinear interactions. Combining analytical analysis and numerical calculations, it
is found that while their two-point correlation functions are equivalent in the thermodynamic
limit, their autocorrelation functions exhibit distinctly different characteristics. It is proven
analytically that the autocorrelation functions of the evolved GCS relate to the ones of the
corresponding Glauber CS through a Fourier series relation, which arises due to the U (1)
symmetry of the GCS.

A substantial part of this thesis is dedicated to investigating the dynamics of the Bose-Hubbard
model, incorporating both nonlinear interaction and tunneling term. This investigation intro-
duces a novel approach which employs an Ansatz for the wave function in terms of a linear
combination of GCS, where the differential equations of all the variables are determined
by the time-dependent variational principle without truncation. This innovative method
is adeptly applied to the nonequilibrium dynamics in various scenarios, from the bosonic
Josephson Junction model where some fundamental quantum effects can be revealed by a
handful of GCS basis functions, to large system size implementations of the Bose-Hubbard
model, where the phenomenon of thermalization can be observed. The proposed variational
approach provides an alternative way to study the time-dependent dynamics in many-body
quantum systems conserving particle number.

The final focus of this thesis is on the boson sampling problem within a linear optical network

framework. Again adapting a linear combination of GCS, an exact analytical formula for



iv

the output state in standard boson sampling scenarios is derived by means of Kan’s formula,
showcasing a computational complexity that increases less severely with particle and mode
number than the super-exponential scaling of the Fock state Hilbert space. The reduced
density matrix of the output state is obtained by tracing out one subsystem. This part of
the study extends to examining the properties of the subsystem entanglement creation, and
offering novel perspectives on entanglement entropy differences between global and local
optical networks.

This thesis makes several contributions to the field of quantum many-body systems, partic-
ularly highlighting the potential applications of GCS. The presented research offers a new
variational method to the nonequilibrium dynamics, and paves the way for future explorations
and applications in quantum simulations, quantum computing and beyond.
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Chapter 1
Introduction

In his seminal 1972 paper "More is Different" [1], P.W.Anderson argued that the behavior of
complex systems markedly differs from that of their simple constituents, which are governed
by fundamental laws. This concept is exemplified in the contrast between the behavior of
a single electron, deeply understood through quantum electrodynamics, and the collective
behavior of numerous electrons in crystals, which cannot be simply deduced by summing the
behaviors of individual electrons. Such many-body systems, involving more than a handful
of interacting particles, necessitate tailored concepts and methods for their study. Over
recent decades, experimental progress in many-body physics has unveiled a plethora of novel
phenomena, including high-temperature superconductivity, topological materials, many-body
localization, and quantum simulation in ultra-cold atomic systems [2-9]. These discoveries
have significantly enhanced our understanding of many-body systems and propelled the
development of new materials.

However, the theoretical exploration of these systems presents formidable challenges. A
prime example are qubit systems, where the complexity grows exponentially with the number
of spins, rendering fully quantum simulations on classical computers for even moderately
sized systems extremely challenging [10]. Further complicating matters, the ineffectiveness
of perturbation theory in strongly correlated systems precludes straightforward analytical
solutions. Recently, methods leveraging quantum information concepts such as tensor net-
works, have shown that the rapid increase in entanglement entropy poses significant barriers
to efficient numerical simulations [11]. The exponential growth of computational require-
ments with entanglement entropy renders simulations of higher-dimensional systems or
non-equilibrium dynamics even in one-dimensional systems particularly intractable, symbol-
izing an "exponential wall" for efficient many-body system simulations.

Despite these challenges, various numerical methods like mean-field theory, exact diag-

onalization, quantum Monte Carlo, density matrix renormalization group as well as the
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above mentioned tensor networks have been developed [12—17]. These methods, based on
various approximations, have been instrumental in advancing our understanding of quantum
phase transitions, critical phenomena, non-equilibrium dynamics, and quantum simulations
[18-21].

In the realm of quantum chemistry, novel approaches for solving time-dependent Schrodinger
equations in molecular systems have been developed based on Gaussian basis functions,
which correspond to the Glauber CS in quantum optics. Eric J. Heller originally used a
single Gaussian wavepacket incorporating several time-dependent parameters to model the
dynamics of the molecular nuclei [22]. This method’s validity stems from the fact that
Gaussian wavepackets yield precise results for harmonic potentials. For more complex
scenarios, a more adaptable solution has been suggested: instead of using a single Gaussian
basis function, a set of basis functions should be employed [23]. In this method, each basis
function follows its own classical trajectory, and the overall state is represented by a collective
summation of these individual trajectories. Similarly, the renowned Herman-Kluk method
is constructed by approximating the quantum mechanical propagator using a collection of
independent Gaussian basis functions and including the correct semiclassical prefactor [24].
These time-dependent coefficients in front of each Gaussian basis function were introduced
by Herman and Kluk to enhance the solution’s effectiveness. The coefficients, alongside the
Gaussian basis functions’ characteristic parameters form the total set of variables.

By retaining the linear combination of Gaussian basis functions but employing fully quan-
tum variational principles, including the Dirac-Frenkel [25], McLachlan’s [26], and time-
dependent variational principles [27], one can derive optimal differential equations for these
variables, which leads to the so-called variational multi-configurational Gaussian (VMCG)
method, where a good view for this method can be found in [28]. Crucially, the coefficients
interconnect all trajectories, enabling the uncovering of quantum effects, which could possi-
bly be missed by uncoupled trajectories. In principle, using a sufficient number of Gaussian
basis functions should yield the exact quantum results which is granted by the overcom-
pleteness of Glauber CS and the fully quantum variational principles. However, vMCG’s
requirement to solve a complex set of mutually coupled nonlinear differential equations
presents a significant challenge. To overcome this, the Coupled Coherent State (CCS) method
was proposed [29]. CCS simplifies the process by allowing the coefficients to follow the
fully quantum variational principle, while propagating the Gaussian basis functions along
classical trajectories. While CCS offers a simpler set of equations to solve, its effectiveness
heavily depends on the sampling of the initial basis function parameters [30].

In our study, we will adopt the spirit of the vMCG approach adapted to a new set of basis

functions, tailored for many-body systems. Rather than using standard Gaussian basis func-



tions, we will employ the generalized coherent states (GCS) developed through group theory
[31, 32], and leverage their advantages to facilitate numerical simulations.

The second chapter introduces the GCS concept, providing a physical interpretation in quasi-
momentum space. We will also explore the nuanced connection between multimode Glauber
CS and GCS, delineating their similarities and differences. This includes examining the
expansion of CS in terms of GCS, the impact of the annihilation operator on these states, their
correlation functions, the overlap between two CS or two GCS, and their overcompleteness
properties. Additionally, we will investigate the entanglement properties of GCS that Glauber
CS lack.

In the third chapter we will delve into the comparison between Glauber CS and GCS with
regard to the description of nonequilibrium dynamics. The model we study is a multimode
nonlinear system which only involves on-site interaction among bosons. We begin by an-
alyzing the Husimi function of the temporal state initiated as a multimode Glauber CS to
highlight nonlinear effects. Due to the factorization of the Hamiltonian and the multimode
Glauber CS, our focus will be on the dynamics of a single mode. We then derive two-point
correlation functions from the GCS-initiated temporal state. This analytical expression
reveals that the GCS solution becomes equivalent to the CS one in the thermodynamic limit
of large particle numbers. Another key topic in this chapter is the survival probability and the
related concept of dynamical free-energy as well as dynamical phase transitions. Employing
the generating function approach, we obtain exact numerical results for the evolved GCS’s
survival probability. Most notably, we demonstrate that in the thermodynamic limit, the
survival probability of the evolved GCS correlates to that of the evolved Glauber CS through
a Fourier series, providing a framework to interpret our numerical findings.

In the forth chapter, we will investigate the non-equilibrium dynamics in the more generic so-
called Bose-Hubbard (BH) model. The key point of this part is our basis function employed
to solve the time-dependent Schrodinger equation. The initial state is formulated as a linear
combination of a set of GCS. Analogous to the vMCG, we integrate both the expansion
coefficients and the characteristic parameters of the basis functions. Their differential equa-
tions are derived using the time-dependent variational principle. We will apply these basis
functions to various scenarios to validate our methodology. The first scenario we thoroughly
investigate is the bosonic Josephson junction, described by a two-mode BH model. Initially,
we use a single GCS to derive mean-field equations for the relative phase and site population
imbalance, examining their stability properties using the Jacobi matrix. Then, we implement
our Ansatz composed of different GCS to replicate some quantum effects, including plasma
oscillation and spontaneous symmetry breaking. A notable discovery is that employing just

a few GCS can significantly surpass mean-field theory predictions. Our second case study
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focuses on the three-site BH model, whose classical counterpart exhibits traces of chaotic
behavior. This model serves to explore the dynamics of site-specific populations and the
condensate fraction, both of which are of experimental interest. Additionally, we aim to show
how interaction strength influences the efficacy of our method.

In the fifth chapter, a multi-layer GCS basis function method is developed to analyze dy-
namics initiated by multimode Glauber CS in an 11-site system. The study examines
thermalization using both quantum variational methods and the classical Truncated Wigner
Approximation (TWA), revealing that interaction strength (J/U) and average particle number
(V) significantly influence the approach to thermal equilibrium.

In the sixth chapter, our focus shifts to the application of our basis functions to the Boson
sampling (BS) problem. A typical BS setup comprises three components: 1) the input state,
which is usually a Fock state; 2) a linear optical network; and 3) detectors at the output
ports. This system adheres to particle number conservation, which is advantageous for the
application of GCS. The primary challenge is to devise a method for representing Fock states
in terms of GCS, a problem addressed by Kan’s formula. This representation allows us to
obtain the output state through a straightforward, analytical unitary transformation. Once the
exact output state is determined, its corresponding density matrix can be readily calculated.
By dividing the output state into two parts, we obtain the reduced density matrix by tracing
out one part of the total state. This reduced density matrix will be our tool to study the
entanglement properties of the output state.

To maintain the clarity and flow of the main text, more intricate derivations and discussions

have been relegated to the appendix.



Chapter 2
Properties of generalized coherent states

In this chapter, the concept of a GCS will be introduced along with a comprehensive
discussion of its fundamental properties, which include a physical explanation of the state,
some fundamental properties, and an analysis of its entanglement entropy. The understanding
of these properties will establish a solid foundation for subsequent sections of this thesis.
Additionally, a key focus of this chapter is to build up the relationship between the generalized
coherent states and the more standard, so-called Glauber CS. This relationship will be

elucidated by highlighting their similarities and differences across various scenarios.

2.1 Definition of generalized coherent states

In fact, there exist several different kinds of GCS which are obtained by generalizing the
concept of Glauber CS via group theory [33]. In this thesis, we focus on one class of them,
which are known as SU(M) CS. The most widely accepted representations of the GCS we
used is given by [31, 32]:

S
- 1 M

where &j represents the bosonic creation operator acting on the j-th mode or site in a lattice

system and the bosonic commutator relation

[d;,a%] = & (2.2)
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is fulfilled by the ladder operators, which act on the number states as follows

aln) = /njn—1), (2.3)
a'ln) = Vn+1jn+1). (2.4)

Furthermore, the ket |0,0, --- ,0) denotes the multi-mode vacuum state, and S is the number
of bosons in the GCS. The set of complex numbers {&;} are characteristic parameters of the

GCS, satisfying the normalization condition
3 2
YIS =1, (2.5)
Jj=1

where M is the number of different modes. The physical interpretation of |& j]2 is the
normalized population density or probability for the particles to be located on the j-th site.
With the general binomial (or multinomial) theorem from Equation (A.5), a GCS can be

expanded in terms of the Fock states
1S, &) = Z \/_H &al)"0,0,---,0), (2.6)

where the sum )., g is the short-hand notation of }_,, 1, ... {5),—s, Which accounts for all
possible configurations satisfying the constraint on the total particle number. The parameters

S and M characterizing the system size determine the dimension of the Hilbert space

M+S—1
M— 1

spanned by the Fock states. This is the same as the number of configurations produced by
placing S identical balls into M different boxes.

2.1.1 A simple example

It is instructive to write out the definition in Eq. (2.1) explicitly for small numbers such as
M =2 < § to convince oneself of the fact that the GCS is a superposition of Fock states with
coefficients to be determined from a generalized binomial formula. For instance, we can

consider the GCS |2, 73 f> where 2 modes are occupied by 2 particles, and this state can
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be expanded within the Fock state basis as

R 1
V2'V2 V2

where all possible Fock states with same particle number are involved. It is also evident that

) = 1120y + \11>+%|02> 2.8)

12,
2

this state is an entangled state, since it cannot be factorized.

2.1.2 Group theoretical background

Alternatively, the GCS can be generated by applying an element of the SU(M) group to an
extreme state in which all the particles occupy a single mode [31, 33]. To show that, we

define the operator
AT=Y &l (2.9)

with the help of which the GCS can be written as ﬁ (A")5]0,0,--- ,0). The operator A™ can

be generated by a unitary transformation such as
At =TalT", (2.10)

where T is a unitary operator. We note that the choice of d} is arbitrary; without loss of
generality, we can set d; = cf{. Since AT is just a linear combination of creation operators,

using the Baker-Haussdorff formula, it can be proven that the unitary operator of the form

T — iDL (nfala+majan) 2.11)

leads to the required AT, where the vector 7 contains the information of the characteristic
parameters &. Now the form of the GCS becomes

L(A*)ﬂo 0,--,0) = LT*(&*)SNO 0,---,0) = LTWS 0,---,0) (2.12)

\/E » I \/ﬁ 1 » ) \/§ » ) I

where the second equality is due to the fact that 7|0,0,--- ,0) =0,0,---,0), and |S,0,---,0)
is the extreme state mentioned before. As the generator of T is a traceless Hermitian operator
Zﬁz(nfdfdl + md;&l ), T is an element of the SU(M) group. In the literature, the GCS is
therefore also called SU(M) coherent state. Although Eq. (2.12) encompasses the symmetry
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information of GCS, in practice, the equivalent form given by Eq. (2.1) is much more useful

to facilitate numerical implementations, as we will see in the remainder of this thesis.

2.1.3 Momentum space

From the definition in Eq. (2.1), a GCS can be understood as a special form of condensate,
where all particles macroscopically occupy a single-particle state given by ijzl & jéj- |0,0,---,0).
This non-local nature of the single-particle state implies that any particle can be found at any
site, with probabilities determined by |&;|?.

To further illustrate the concept of a condensate, we can represent the GCS in the quasi-
momentum frame. To this end, we consider a 1D lattice characterized by a lattice constant a.
Next, we introduce a set of creation operators l;T, which act on the quasi-momentum k, and

are related to the dj- through a Fourier transformation:

. 1 oMo
by = —=Y alelika (2.13)
k
VM ]:Zl o
with k ranging from —% to % Particularly noteworthy is the case of zero quasi-momentum,

for which we have

A

1 M
bi_o=—~) a. (2.14)
k=0

VM =

Homogeneous characteristic parameters of the GCS, i.e., & = \/LM for all sites will cause all

the particles to condense into the zero-momentum state

L y Ly L oae s
«/S!<Z ‘/Maj> 0,0,---,0) = \/§<bk:0) 0,0,---,0), (2.15)
©oj=l !

which is the so-called Bose-Einstein condensate [34].

2.2 Relation with Glauber coherent states

The GCS described above exhibit a close connection with the Glauber CS, which are defined

through the action of the displacement operator on the ground state of the harmonic oscillator
[35]

+—%2 (2.16)
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and read

’(X> = eigea‘ﬁ“)) =e 2 Z o ]n) (217)

As can be inferred from its definition above, the Glauber CS is the eigenstate of the annihila-

tion operator
dla) = ala) (2.18)

where the eigenvalue o is a complex number
B wl/2q+ia)_1/2

V2

in terms of the expectation values of position and momentum, denoted by g, respectively p,

14

(2.19)

and also the width parameter @, which determines the uncertainty of position and momentum.
We note that the mass of the oscillator as well as the reduced Plank constant / are set to unity
here and in the remainder of this thesis.

The wavefunction of the Glauber CS in position representation is given by

(x|ar) = (%) : exp [—%(x— q)* +ip(x— g)] : (2.20)

The corresponding probability distribution |(x|a)|? is a Gaussian function as shown in Fig.
2.1.

The concept can be further extended to the multimode Glauber CS, which is represented
as the product state of individual single-mode Glauber CSs. As demonstrated in [31] and
corroborated by the Taylor expansion of the exponential function, the multimode Glauber CS
denoted by |&) = [TM, | &), is linked to the GCS through the following expression:

&) = e 2 X il X Ofiﬁf|0,0’ .+,0)

M g e L&
— e 2 L= ol Szbﬁ(ﬁaiaj)sloaov”'ao)
= 1=

15,€). 2.21)
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0 L L L
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X

Fig. 2.1 The probability distribution |({x|c)|? in position representation. @ is set to be 1 and
(g,p) = (0,1).

Here, N = Y, |0;|* denotes the average number of bosons in |¢). We note that the relation-
ship between &; and ¢ is given by

2 2 = la?

which is reasonable, because |;|* denotes the average number of particles while |&;

corresponds to the normalized population density as shown in Sec.2.1. Furthermore, we note
that if all the o; share the same phase, the corresponding parameter &; = %’% as the phase is
treated as a global one in GCS. Finally, the expansion coefficient

/VS!

_N
2

[SS1]e2]

e 2N
proves that the total number of particles follows the Poisson distribution with the mean N.
Eq. (2.21) establishes that the multimode Glauber CS is a superposition of GCS with varying
particle numbers S, or equivalently speaking, one GCS with particle number S can be acquired
by projecting the Glauber CS onto the S-particle subspace. Consequently, it is natural to
construct a one-to-one mapping between the GCS and multimode Glauber CS.

The similarities and difference are summarized in Table 2.1, while some results for the GCS
case are proven in Appendix. A. The definitions of multimode Glauber CS and GCS are
presented in the second line of the table, where it becomes evident that the Glauber CS is a
product state, while the GCS cannot generally be factorized. In the third line, we examine the

impact of annihilation operators on the two states. The Glauber CS emerges as an eigenstate



2.3 Completeness of coherent state bases 11

Multi-mode Glauber CS GCS
- o aial M z 1 Mg\
@) =TT e % e vac) = o for) | 15,€) = o5 (XM, &d] ) Ivac)
a;|) = oyl @) 4ilS, &) = V/S&[S —1,E)
(@lalaj|a) = ooy (S,E|alaj|s, &) = SEFE;

—

(@|B) =exp [T, o Bi— S|P+ [BI?)] | (S, €]S,7)

(T, &)’ 8s g

overcomplete in whole Hilbert space overcomplete in S-particle subspace

Table 2.1 Comparison between multi-mode Glauber CS and GCS

of the annihilation operator d; with the eigenvalue ¢;. In contrast, 4; annihilates a particle
from the original GCS and generates a new GCS with the particle number S — 1. Moving
to the fourth line, the computation of the two-point correlation function is facilitated by the
insights from the third line. The correlation functions of both states remain independent of
the spatial separation between points i and j, which proves that Glauber CS and GCS have
long-range coherence. In the next line, we present the inner product between two Glauber CS
and two GCS, respectively, both of which are non-orthogonal. The overlap of two different

Glauber CSs has an exponential form, and for GCS, the overlap is expressed as a polynomial.

2.3 Completeness of coherent state bases

In the following, we highlight that both sets of states can serve as overcomplete bases, despite
GCS being limited to the S-particle subspace, which implies that a large number of Glauber
CS or GCS can be employed to represent an arbitrary state. We will make extensive use of

this fact in later parts of this thesis.

2.3.1 Glauber CS

The well-established overcompleteness of CS is reflected in the expansion of the identity

operator,

L e
I_E/ood ala) (. (2.22)
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Eq. (2.22) 1s tailored for the single-mode case, and the generalization to the multimode case
is straightforward with the direct product of sets of identities acting on different modes.
However, this expansion expressed by continuous integration, is not a favorable form for
the numerical application. It is worth noting that a subset of an overcomplete basis may
still retain completeness. In last century, two independent contributions have proven the

statement that a discretized version of the identity operator is given by

Y o) ( Q7 (oy| =1, (2.23)
k.l

with the overlap matrix Q with elements
le = <(Xk|061>, (2.24)

if the requirement
oy = B(m+in), (2.25)

with k = (m,n) where m,n are integers and 0 < § < /7, for the spacing of the grid points is
met [36, 37]. Physically, this means that the cells in (p,q) phase space defined in Eq. (2.19)
that are spanned by the grid points must have an area less than or equal to the Planck cell
area of 27 in the present units (where i = 1, w = 1), such cell is display by the shadow area
in Fig. 2.2. The limiting case of 8 = /7 for the spacing of the grid points has already been
postulated long before by von Neumann [38, 39].

The discrete version of the identity operator in terms of multimode Glauber CS is written as

|G (@ (| = 1. (2.26)
k.l
Here, the parameters of Glauber CSs are vectorized as G = {1, , ®;, -, O } to handle

various degrees of freedom, where k is the vector index. Each element ¢y is sampled from
the independent grids displayed in Fig. 2.2. The matrix Q is an overlap matrix consisting of
the elements Q;; = (G |dy).

A heuristic examination of the closure relation can be obtained in the following way: Given
any two coherent |@&,,) and |&,) and inserting unity in the multi degree of freedom case yields

<6‘m|an> = Z<am’ak>(g_])kl<al|an> (2.27)
il
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where the equation is justified by the matrix multiplication Q = QQ~'Q.

232 GCS

Inspired by the one-to-one mapping between multimode Glauber CS and GCS, it is natural
to infer that a set of discrete GCS could also serve as a complete basis. This intuition is
substantiated by considering two arbitrary states, |ys) and |@s) both of which contain S
particles. From Eq. (2.21), it is evident that only the GCS with § particles have non-zero

Im(ay) Im(a;)
B B
. . y . . . . . 3 . . .
B B
) ) ) ) Re('al) ) ) ) ) Re('dz)
. . y . . . . . ) . . .

Fig. 2.2 The two independent complex grids for o and o.,.
contribution to the overlap with the state |yy) or |¢s). Consequently,
_ 3 (01 (G
(Wslos) = (Ws| Y 10k) (Q ) (0| - |os)
k.l

— (5| YIS, (@ (S, & - 9s). (2.28)
k,l

where the expansion coefficients in Eq. (2.21) are incorporated into the Q_] , SO ﬂ_l is

written as follows

LQ Yy (2.29)
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where Ny = Y | |oyi|* and Q7! is defined by Eq. (2.26).
Eq. (2.28) underscores that the discrete GCS derived from corresponding Glauber CSs can
indeed constitute a complete basis within the S-particle subspace, leading to the expression:

YIs, Ek>(ﬁil)kl<s»§l’ =1. (2.30)

k,l

We now consider the two-mode case as an instructive example. Taking samples from these
two grids for o and o, randomly from Fig. 2.2, every produced pair of { &1, 0, } forms a
two-mode Glauber coherent state |y, 02 ). The {1, 042} correspond to a set of couples
of parameters {&1,&} = { i aklakl < } for the SU(2) GCS, but due to the

2Howa 2" v/ lowt [P+ oy |?
normalization condition &;; and &, adhere to, they cannot be presented on two independent

complex planes. We are now rewriting the GCS parameters in the form

&1 = cos <%> (2.31)
&p = sin <%) e, (2.32)

where 0 < 6, < 7 and 0 < ¢, < 27 are the angles and the relative phases, respectively.
Because we have just two angles for every k and because of the factor of 1/2 that comes along
with the angle 6, this allows us to represent the GCS parameters as points on the northern
hemisphere of the Bloch sphere.

For a visualization, we first generated 50 random pairs of {0y, %, }. Using the angles
{6, ¢}, the corresponding 50 pairs of {&, &} can be expressed via

{cos(6x/2) cos(Py),cos(6/2)sin(@y),sin(6;/2)}, (2.33)

as displayed in Fig. 2.3.

2.4 Entanglement entropy of GCS

In this section, we will explore some entanglement properties of the GCS. In many-body
systems such as a 1D chain of sites, we can divide the system into two parts, and trace out
one part to get the bipartition entanglement which can be used to account for the quantum
correlation between the subsystems depicted in Fig. 2.4.

The following derivation is based on the Schmidt decomposition [40] and focuses on single
GCS with M sites and S particles. The same result can be obtained by using the reduced
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Fig. 2.3 Some of the 50 grid points {&1, &} on the surface of the unit sphere. There are
more points on the back, which are invisible from the present perspective.

L R

Fig. 2.4 Bipartite system consisting of left part and right part.

density matrix [41]. The single GCS in one dimension can be divided into a left and a right

part via the binomial theorem

1 (& ’
i=1
1 My M §
=—,<Zéid§+ ) &aj) 100---0)
SE\i3 =My 41
1 S g My S—n M n
-k () (Esa) (£ ) oo
* n=0 i=1 i=Mp+1
1 & (S - .
— 3 () vas=nis—n&) oln. o, 234
n=0
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where the two non-normalized GCSs are given by

. M, S—n
1S —n,&) = \/% (Z gi&j) 00---0), (2.35)
n,Ep) = T ( Y 51”) 00---0). (2.36)

The norms of the two states are expressed as
i=1

. . M; S—n
<S_ n, éils_ n, §Z> = (Z |€z|2) ) (2.37)

— — M .
<n,éR\n,5R>=< Y |£§l~|2> : (2.38)

i:ML+l

S—n
and by introducing the normalization factors 1/ \/ (Zﬁﬁ |§,|2> and 1/ \/ (XM, 1 &)

we can rewrite the GCS as

M; S—n M n . .
5,8) = Z() 5= n)l (D(mz) ( y |§,~|2> S—m,&) @ |n, &)

i=1 i=M;+1
S

Z oS —n, &) @ |n, &) (2.39)

where the states |S — n, EL) and |n, §R> denote the normalized GCSs as well as orthonormal

bases with respect to the index n because of the inner products (S — n &S —n &) =

n " < gR‘n §R>

The parameters 7Ln, known as Schmidt coefficients, are given by

i=Mp+1

g M; S—n M n
() (ZV;P) y |5,~|2>. @40
i=1 i=Mp+1

_%(S)m\ (jfléﬂ)“< y |@~\2>n
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The von Neumann entropy which is a widely used measure of entanglement between the left

and right system is expressed as [42]

s
S =—Y A;In(A7). (2.41)
n=0
In the homogeneous case with & =& =--- =&y = \/LM’ we have
S\ M (M — My)"
2 _ L
Ay = (n) S (2.42)
and it is easy to check the normalization condition is satisfied:
s s S—n n s
S\ M; " (M —M, M+M—-M
ZﬁzZ() L - L' (Mt . Ly, (2.43)
n=0 n=0 \1 M M

For the equal bipartition My = %4 where the maximal entropy is reached, 1> = ZLS (i) and this
result suggests that the maximal entropy is solely dependent on the total particle number S.

In thermodynamic limit S — oo and M — oo, with filling factor

A= i (2.44)

|2 = % Using the approximation strategy in [41], lnz can be rederived from Eq.

2= () (%) (-4

s oY
~ (S—n)!n! S S | — A

= e M ()" (2.45)

we have |&;
(2.40) as




18 Properties of generalized coherent states

where for convenience, we have replaced n with § — n, and the normalization condition is

still satisfied. Correspondingly, the entanglement entropy in the thermodynamic limit is

51 1
Sy == X e 2 ()" [me—w 2y |

— e MiA Z ML)u —Inn! —MpA +nln(MpA))

S n S n
_MLAM A Z MLA) _e—MLl 1n<MLl> Z EnMLAi))' _I_e—MLl Z (MII:lfL) 1
n=0 n=0 )
= MUA[1 — In(MA)] + e Mih Z ML’I (2.46)

From Eq. (2.46), we find that the scaling behavior of the entanglement entropy depends on
the combined parameter M; A, which represents the ratio of the subsystem size to the inverse
of the filling factor. Specifically, if My A is much less than 1, the entropy is dominated by the
term My A[1 —In(MpA)]. Otherwise the value of the entropy is influenced by both terms.

In Fig. 2.5 (a), we plot Syn as a function of the bipartition M;, with different particle numbers
S, and My, only ranging up to %4, as the curve is symmetric with respect to equal bipartition.
We can see that the entropy grows slowly, and increasing S leads to larger entropy. Fig. 2.5
(b) shows the maximal values of entropy as a function of S with fixed M = 100, and it can be

observed that for small S and larger S, the entropy will grow in different ways.

35 ; ; ; , 35
(a) (b)

3t

w
T

25F

N
tn

Maximum of SN
=
wm [S]

—

S=100
0 . . . . 0.5 . .
10 20 30 40 50 0 50 100 150

ML S

Fig. 2.5 (a) The Von Neumann entropy of the homogeneous GCS as a function of the
bipartition, the number of modes is M = 100. (b) The maximum entropy as a function of the
total particle number inside the interval [1,150).



Chapter 3
Dynamics driven by strong interaction

In this section, we will discuss various dynamical phenomena induced by strong interaction in
quantum many-body systems, which involves the evolution of Husimi functions, population
dynamics in quasi-momentum space, and the autocorrelation function. These results can
reveal the relationships between CS and GCS initial states and contain some interesting
physics related to dynamical phase transitions which can be observed in the quench dynamics
governed by Bose-Hubbard type Hamiltonian.

3.1 Dynamics of Glauber CS in deep lattice

For simplicity, let’s consider a nonlinear Hamiltonian
22 Uy v 7
Y a4 =5) ali—1)=) h (3.1)

where 7; is the number operator djci,- acting on the i-th site and fz,- stands for the local
Hamiltonian %ﬁi(ﬁi — 1) with on-site interaction strength U. This Hamiltonian is the limiting
case of vanishing inter-site hopping of the Bose-Hubbard model to be considered in Chapter.
4 and can be realized in experiment by increasing the intensity of the optical lattice laser
beams [43, 44].

If the initial state is a Glauber CS as given in Eq. (2.21), taking advantage of the factorization
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of the state and Hamiltonian, the time-evolved state can be obtained as follows:

M _la? o’ —iY%ni(ni—1)t
=@ie ) —=e T ), (3.2)
l.

ni=0

This result highlights that it is possible to concentrate on the dynamics of a single mode in
the homogeneous case ¢; = « for Vi. In Fig. 3.1, we present the time evolution of the Husimi

function for a single mode state | o) as also shown in [44], defined as
U, . U, .
Q(B,t) = (Blexp —15n(n— 1)t| |a) (o] exp 1§n(n— Dt |B), (3.3)

where |B) is an arbitrary CS characterized by the complex number § = Re(f) +ilm(f3).
Due to the factor n;(n; — 1) in Eq. (3.2) always being an even number, the Husimi function
evolves periodically with period T = 2x/U. For times symmetric around %, like, e.g,
Ut = 0.4 and Ut = 1.67 the results are symmetric along the real part of the 3 (as are the
results for Ut = 0.8 and Ur = 1.271).

Im(3)

Im(3)

Im(g)
Im(3)

3 3 3

Fig. 3.1 Husimi function of the evolved coherent states for different times : (a) Ut = 0, (b)
Ut=04r,(c)Utr=0.8n,(d) Ut =1.2x, (e) Ut = 1.6x, (f) Ut = 2x. The initial condition
is o = v/3. The cutoff for the particle number summation is n = 20. The system parameters
are the same as in [44].

It is worth noting that when Ut = 7 displayed in Fig. 3.2, the evolved state manifests as a
superposition of two macroscopically distinguished states, also known as a Schrodinger cat
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state, which can be seen by splitting the sum in Eq. (3.2) into even and odd contributions

ny+ie” 2 i %M) (3.4

0.45

0.35
0.3
0.25
0.2
0.15
0.1
0.05

Fig. 3.2 Schrodinger cat state for Ut = 7.

3.2 Two-point correlation function

Another quantity we pay attention to is the two-point correlation function. The analytical
results to be derived for the cases of Glauber CS and GCS provide an insight for the
connection between these two states. Moreover, this quantity is also the key to calculate
the population distribution in quasi-momentum space as shown below. We emphasize that
the primary work in this section is to revisit the results from [45], as their findings offer a
comprehensive understanding of the relationship between Glauber CS and GCS. We also
provide a more concise derivation for the case of GCS than the one in [45], by using some of
the properties listed in Table. 2.1.

In the deep-lattice case, the two-point correlation function of Glauber CS can be derived as
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follows:

(@eafaje|6) = (au|(ayle! P af ;e ) ) o)
< |elhtf\'§ lht‘al><aj|elhtf\ 1hjt’06j>

= (oyla] ‘U”’\az> ojle” M aj|at)
1Ul>

iUn;t

{
= o o (o] oye™") oty aje
= o ajexp [|a* (€Y — 1)] exp [ (e V" — 1)]
’O“2 2|a|*[cos(Ut)—1)] (3.5)
where in the third line, we have used the formulas a; f () = f(x + 1)dx and a, f(7ix) =
(A — l)dz, and we obtain the result in the fourth line via the fact

o) = Y 2 e P"|n)i = oue'?). (3.6)
n=0

For the last line, the system is assumed to be homogeneous: o; = &; = o. From the final
result, it is clear that the evolution of the correlation function is also driven by the on-site
interaction effect, exhibiting a periodic behavior with a period of 27 /U.
We can also choose the GCS defined in Eq. (2.1) as the initial state. Physically, this choice
appears more reasonable compared to the Glauber CS, given the fact that the ground state of
the free boson system (only the hopping term is present, see Chapter. 4) with a finite number
of particles is described by a GCS. This particular setup corresponds to a quench dynamics:
the lattice is initially shallow where particles can move freely among different sites, and the
system is prepared in the ground state. At = 0 the lattice is abruptly deepened as shown

schematically in Fig. 3.3, so the initial state which is no longer an eigenstate will start to

s —

Fig. 3.3 Transition from the shallow lattice (almost free boson model) to deep lattice (on-site
interaction only).

evolve.
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The time-evolved two-point correlation function of evolved GCS is derived as follows:

<S §|61HtA:rAje 11:11|S7§> <S §|e h+h T h—i—h] |S §>
<S €| 1Unt 1Unj aﬂS,é)
= SE1E;(S—1,EleUMe Vs — 1, &)

— qExE [ 1E£:121U1 12..—iUt M 2\ 51
S&; é(lézl eV 17V + Y & ) , 3.7)

ki, j
where we have used the intermediate result
el? s, 5 = el (Z &id > |vac)
) [n;_sw%@@"l (G a]) - (G e vac)
=15,&) (3.8)

=, . 202 N .
where é = {617527"' 75/(61(’)7"' 7€M}» <S7§|Saé > (‘€k|2 1(p+217£k|§i’2) . This result
illustrates that the time effect of the number operator 7 is to imprint a phase factor on the

Jj-th site, similar to the case of Glauber CS displayed in Eq. (3.6). We note that the result in
Eq. (3.7) can also be obtained with the help of projection operator techniques [45].

For the special case where i = j, the correlation function simplifies to

(8, & alae|5,E) = (8, E | af are |5, )

= <S7g’&iai|57€>
= S|&[? 3.9)

For simplicity, let’s move to the homogeneous state & =& = -+ =&y = Wthh corre-
sponds to the zero quasi-momentum state of Eq. (2.14). Under this condltlon the correlation
function Eq. (3.7) simplifies to

S—1

S 2 2
— | 1+—= Ut)— — 1
M MCOS( ) M (3-10)
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In the thermodynamic limit, defined just before Eq. (2.44), Eq. (3.7) converges to

g <9 g 15!
IS O
Jim (1)) = fim 37 |1+ 375 ¢05U0 — 375
_ ]% e[~ 2+2cos(Un)] (3.11)

The similarity between Eq. (3.5) and Eq. (3.11) reveals that the relationship between Glauber
CS and GCS can be established by setting @ = A = A%, which is also corroborated by Eq.
(2.21). This demonstrates that the correlation function of GCS is identical to that of the
Glauber CS in the thermodynamic limit. As proved in [45] and also reproduced in Fig. 3.4,

this identity is achieved already for rather small values of S.

1
0.5+
—i»s'i\ 0 -
=
——Glauber
-0.5+ ,,,,, S=2 b
: g e Q=
_____ S=
————— =10
_1 L 1
0 1 2 3 4 5 6 7

Ut

Fig. 3.4 Evolution of the two-point correlation function. The blue line stands for the result
given by Eq (3.5) for o = 1. Other lines are from Eq. (3.11) with different particle numbers
S=M=2,3,5,10.

Furthermore, the quasi-momentum distribution can be obtained through a summation over
two-point correlation functions. Using Eq. (2.13), the distribution for a quasi-momentum k
is given by

1M S S s Mo
nk(t) _ Z<af\iTaAj>elk(l*J)a — Weﬂ[*2+2COS(UI)] Zelk(zfj)a (3.12)
] iJ
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where the & takes the values —Z,—Z + 2% ... T n Fig. 3.5, we present the periodical
time evolution of the distribution of each quasi-momentum. The initial state is condensed
into zero momentum and the short time evolution presents a sharp distribution around zero
momentum. After Ut = 7, the distribution is broadened over the entire momentum range.
Subsequently, the distribution gradually reconverges to zero again after Ut = 37” The reason
can be explained by Eq. (3.12) as follows: when the value of cos(Ut) is below zero, which
corresponds to the time region Ut = |7, 37”], the exponent in Eq. (3.12) is decreased rapidly.

As aresult, the distribution gets smeared out in this time region.

: l 100
4 a 11 180
RZds 11 160
S

2T 40

iy 20

, ﬂ 0

3 2 1 0 1 2 3
ka

Fig. 3.5 Quasi-momentum distribution as a function of time. Ut is from O to 57, and ka
varies in the region —7 to 7. The system size is § = M = 100. The same figure can also be
found in [45].

3.3 Autocorrelation function of the evolved GCS

Although GCS and Glauber CS share some similarities, differences between them still exist
in some aspects of their behavior. To prove that, we will investigate the time-dependent
survival probability of the GCS in the subsequent part of this section and compare the results
with those for the Glauber CS.
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3.3.1 Exact solution for autocorrelation function

The first step in this comparison is to explicitly calculate the time evolution of the GCS
driven by the interaction (as defined in Eq. 3.1), which can be derived as follows:

e_im|S,g):e_i( (Zé, ) |vac)

e (Eal) vac)

nij=si=1"""
M U
=V Z H ,(51 AT)”’C 2 (i) (it mi= 1) |y )
] =si=1""
M U n;
=Vs! Y H; [gieﬂﬂ""*l)[d” |vac)
[n]]=Si=1"""
—/S! i¥ss 7o —ilnsAt\"
=Vst Y e Hﬁ(éie 2 'al-> |vac)
ni]=S i=1 i
M1
_ izn; T
—\/ﬁ[n;_ﬁl—llnl!@e ! > lvac),

where in the second line we expand the GCS in terms of the Fock states as shown in Eq.
(2.6) and apply the factorized operator e~ to the corresponding mode. In the third line we
utilize the formula

alf(a) = f(A+1)a . (3.13)

The result in the fourth line is given by the fact that

e—i%(ﬁi+ni)(ﬁi+n,‘— 1)t |vac> — e—i%n,‘(ni— 1)t |vac>, (3 14)

and the global phase factor e'2 75 in the second last line stems from el S H - e1 AL

The autocorrelation function which is also called Loschmidt amplitude [46] is given by

(8,8l 5. &) =51 Y H'é’ e i (3.15)

[ni]=Si=
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where the orthogonality of the Fock states is used. This result is distinct from the Glauber
CS result

(e |a) = @M | (0] exp(—ilut) o)

M
H —|oy? Z |al| —1%n,‘(n,'71)l_ (3.16)

~o 1!

Notably, the expression for Glauber CS is factorized and does not impose constraints on the
total number of particles.

The summation in Eq. (3.15) has no obvious closed solution for U # 0. However, the
numerical solution is accessible via the concept of generating functions [47] that allows
for a relatively straightforward evaluation of the restricted summation in Eq. (3.15), which
would otherwise be impossible to tackle, already for moderate particle and site numbers.
The general idea of the generating function method is to design a polynomial in the variable
x with the constraint that the coefficient for the term x° is related to Eq. (3.15). This
method turns the problem into calculating the polynomial coefficients which can be done by
efficient convolution algorithm. For instance, if the generating function is the product of two
polynomials, represented as (Y5> a;x’) (Z‘]’f’:l bx/ ), the coefficient in front of the x" can be

expressed as
Y aiby_i (3.17)
i=1

which is the convolution between two series {a;} and {b,-}

Let’s first consider the homogeneous situation §; =& = --- =& = 51mp11fy1ng Eq.
(3.15) to
Sé —1HtS§ S! 1 —1n 3.18
(58le 1.8 = X T1e (.18)
We define a polynomial
M . M e 15k
= (L o®x| . 9k =—F (3.19)
k=0 :

which plays the role of generating function, so the result in Eq. (3.18) is given by 1\% [XS]F (x),

where [x°]F (x) denotes the coefficient for term x° in the polynomial F(x). In the general
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situation, a series of independent polynomials are needed

’2k ﬂUkz

F) = £i(®) ) fu(®), Z [T 2T (3.20)

and Eq. (3.15) is given by S![x%]F (x).

3.3.2 Dynamical free energy density

Given the similarity between the autocorrelation function (y(0)|e#*|y(0)) and the partition

function in equilibrium statistical mechanics
Z = tr(e PH) = e PNS (3.21)

where f is the inverse of temperature, N denotes the number of degrees of freedom and f is
the free-energy density, a set of counterparts in the realm of non-equilibrium statistics are
introduced to understand a possible phase transition in the quantum dynamics [48].

In Fig. 3.6, we study the evolution of the dynamical free-energy density, the dynamical
analog of the free energy density f, which is defined by

= log(| (W(O)ly(:) ) (322

where the initial state in our case

w(0))=15,8) (3.23)
is the GCS with homogeneous parameters, and the survival probability |(w(0)|y(t))|? is
thus solvable via Eq. (3.18). We fix the value of the particle number to § = 100 and vary
the ratio A = A% to investigate the dynamics. From Fig. 3.6, we can observe that for large
values of A, the dynamical free-energy density has several peaks within one period. As 4
is decreased, these peaks gradually disappear, leaving just one peak occurring at Ut = 7
when A = 0.5. Due to the definition of the dynamical free-energy density in Eq. (3.22),
these peaks correspond to the minimal values of the survival probability. When the survival
probability completely vanishes, non-analytical kinks appear in the curves. This phenomenon
is recognized as a quantum dynamical phase transition (QDPT) in the literature [49-51].
The authors in [46] have studied the QDPT of the non-equilibrium dynamics induced by
the quench from the superfluid phase to the Mott-insulator phase present in the full Bose-
Hubbard model, to be introduced in Chapter. 4.

In order to gain some understanding of the peak structure seen in Fig. 3.6, we will now
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1.2

S
%

Free-energy density
) =
=~ (=)

Fig. 3.6 Free-energy density as a function of time Ut which ranges from O to 4. The total
number of particles is fixed to be § = 100, and results are shown for different values of
A=S/M

elucidate the connection of the survival probability with the Glauber CS’s case. First we
rewrite Eq. (3.18) as follows:
M1

—1 Yni(ni—1)t

(5, Ele 1), E) =

[ —rmiM

> > 1 1 _v .
=S Z Z Z 65):, 1"’Hn_,-!Mnie iYni(ni—1)t

=0ny=0 ny =0

o)

M
/ dxe—lzﬂx(s M n;) L 1 e—i%ni(fli—l)f

| A
n1=0n,=0  ny=0 =1 T M

= 9! Z Z / dxe—127th 11 e—lgn,(l 1)t+i27xn;
! 7_n
n1=0n=0 ny=0 lfln M
M
L. 1 1 U v
=S dxe 27xS Z e izn(n—1)t+i2mxn
0 (n! M"
M

1ol . s i
_% /0 die— 12738 Zn'Mneﬂ%n(nfl)tHZm" (3.24)

. . U UyM .
where in the first line, the global phase factor ¢! 25 = ¢l2 Li=17 is incorporated again in order

to compare with the Glauber CS case. In the second line the Kronecker function J; M n
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is introduced to impose the constraint on the total particle number and meanwhile lift the
restriction on the particle number of the single mode. The third line is reached by replacing
the Kronecker function with an integral

1 . M
Gugp, = [ dre POE, (3.29)

Furthermore, by incorporating the factor % into the bracket, we are able to define a function
G(x,1)

M
= 1 SINUMSY Ly
G(x,t) _ [;)E(ﬁ) We izn(n 1)t+12ﬂ:xn] (3.26)

Considering the large number of particle limit, we are able to use Stirling’s approximation
1/M
NESEVIS A (g)s of the factorial to simplify the factor <%> as

S
I\ 1/M ]
(S_) ~ 2ams (" = Wagset, (3.27)
S Se

Combining Eq. (3.24), Eq. (3.26) and Eq. (3.27), we have

— . Y Ed l .
(S, Ele S E) = 21S / dxe 2™5G(x,1) (3.28)
0

where the G(x,7) is expressed as

M
o pneh |
G(x,t) _ [Z Alle elgn(nl)t+127l'xn] ) (3.29)

Inspired by the form of Eq. (3.28), we can interpret the survival probability amplitude of
the evolved GCS as the Fourier coefficient of G(x,¢) at a specific "frequency" denoted by
S. The function G(x,t) has the exact meaning of the overlap between two coherent states
(o |e*iﬂt|55> where |@) is a multimode Glauber CS with o; = /A for Vi, and |o/) is a similar
CS with a phase shift characterized by

) = Ve 2™ (3.30)

for Vj with
0<x<1. (3.31)
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@) and |o/) are expanded by the same GCS as discussed below Eq.

Despite the phase shift,
(2.21). Essentially, this phase shift is rooted in the U(1) symmetry of GCS which Glauber
CS does not follow. Another significant insight gained from Eq. (3.28) is that if the value of
G(x,1) is zero, the survival probability will consequently be zero as well.

The case of the thermodynamic limit

Particularly, let’s consider the case of unit filling factor A = 1 which corresponds to the

thermodynamic limit when S and M are large. In this case, the function

o 1

M
Ze_e_ilzfn(n—l)z+i27rxn] (3.32)
= n!

G(x,t) = [

represents the overlap function of e~iflt |&) with the CS distributed along the unit circle due

to & = A = 1 in phase space.
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In Fig. 3.7, we present the dynamics of the function |(f|e for system size S =



32 Dynamics driven by strong interaction

M = 50. The value of |G(x,)| is determined by the distribution of |{B|e#|a)|™ on the
unit circle. It can be inferred that this function similar with the Husimi function for M = 1
evolves around the unit circle, and the value of |G(x,t)| is significantly influenced by the
spot’s relative position to the circle. Pictorially, when the circle does not intersect the spot,
the survival probability vanishes, leading to the emergence of non-analytical kinks. Moreover,
as M approaches infinity, the shape of the spot shrinks into a point, indicating that once the
center of the point leaves the circle, the survival probability rapidly drops to zero.

Another noteworthy observation is the influence of the shape of the spot. For example, when
A is large the spot tends to split into two parts when Ur = 7, possibly introducing extra
intersections with the circle, as displayed in Fig. 3.7 (c), see also Fig. 3.2. Conversely, if
A is small such as the case A = % the spot will remain connected and the center remains
distanced from the circle at Ut = 7 displayed in Fig. 3.8, resulting in the gradual dominance
of the central peak at Ut = & for decreasing A as shown in Fig. 3.6.
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Fig. 3.8 The distribution function |(f |e*iﬂt|oc>|M for A = % with § = 100 at Ut = 7. The
colors range from white to dark blue, indicating an increase from low to high values of the
function displayed.

The case of large filling factor

Another noteworthy scenario occurs when S > M where the Eq. (3.28) still holds. However,
the underlying distribution in phase space and the corresponding free-energy density are

much more complicated. Contrasted with the results in Fig. 3.6, the free-energy density
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in Fig. 3.9 for S = 100 and M = 3 contains more peaks, especially two pronounced spikes
located around x = 2.074 and x = 4.2 within the first period. These peaks are associated with
the local or global minimal values of the survival probability.

In Fig. 3.10, the corresponding distribution function |(f3 ]e_iﬁ’ o) |M for oo = VA = 10 4s
depicted. This distribution splits into several spots which form multi-component cat states
at different time slices, and all of their centers move along the circle with radius NG , as
the quantum fluctuation of the Glauber CS with large « is suppressed. Consequently, the
vanishing of the survival probability can not be attributed to the deviation of G(x,#) from the

circle.

25

[\°]
<
T

p—
wn
T

[y
=
T

Free-energy density

9]
T

0 2 4 6 8 10 12 14
Ut

Fig. 3.9 Free-energy density as a function of time Ut ranging from O to 47. The system size
is set to be § = 100 and M = 3.

Instead, we should examine the integrand on the right hand side of Eq. (3.28)
F(x,1) =e 2™SG(x,1). (3.33)

In Fig. 3.11, we divide the F(x,) into real and the imaginary parts, and choose two typical
time slices to observe how they vary with x ranging from O to 1. In the left figure, the time is
fixed at Ut = % corresponding to Fig. 3.10 (d) where the four spots manifest as four peaks.
Because three peaks are negative and one is positive, all of them displaying similar heights,
the integral of the real part with respect to the x is not zero resulting in a finite survival
probability. In the right figure, however, the time is selected to be Ut = 2.074 identical with
the position of the first main spike in Fig. 3.9. In this case, the integral of both real and

imaginary components is very small, since the peaks manifest as either positive or negative.
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Ut = &,. The characteristic parameter of the CSis ot = 4/ 1% and the cutoff of the maximal

particle number is set to be 50. The colors range from white to dark blue, indicating an
increase from low to high values of the function displayed.

The contributions with opposing signs ultimately cancel each other out, giving rise to the
vanishing of the overall integral. As a result, the survival probability will also be zero. In
summary, when A is large, the value of survival probability is a collective effect of all the

spots.
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Fig. 3.11 The real part (solid blue) and the imaginary part (red dot-dash) of F(x,¢) as functions
of x for two fixed time points: (a) Ut = % and (b) Ut = 2.074. The system parameters are
the same as those in Fig. 3.10.
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3.3.3 General Hamiltonian

The connection between the autocorrelations of the different types of CS can be generalized
to a generic but number conserving Hamiltonian A. To do that, we recall the Eq. (2.21), and

the survival probability amplitude can be expanded as

NS

i (8 Ele 1S &), (3.34)

<Oc|e_1H’](x> — Z

The next step is to extract the term (S’, & ]e_iﬁ 18", &) from the sum. An enlightening way is

to utilize the projection operator onto a specific particle number S, as defined in [45]
1 .
p= / drei2m(S—H) (3.35)
0

where N = Z?il ajdi. It is clear that the operator P plays the role of Oy’ -
Applying the operator P to both sides of Eq. (3.34), we get

/ ! dxe2™S (G| o—i2mil it @)

/ dxelZﬂ:xS Z ];]/3; ,g’efi2irx]§’efil:lt‘sl7g>

_NNS

57 (8. Ele s, &) (3.36)

which gives rise to the final result
Ela—ift|¢ £ NS ms ) m imry —ifir) A
(5, Ele 1|5, E) = e ﬁ/ dxel2™S (Gei27 o1 ) (3.37)
0

for the autocorrelation in complete analogy to Eq. (3.28), for the case of Hamiltonian (3.1).

By setting N=Sand oy = o = --- = 4/ A%, it can be verified that Eq. (3.37) will reproduce
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the Eq. (3.28)
M
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with the Hamiltonian Eq. (3.1). It remains to be seen if the general relation can be applied

fruitfully in the future.



Chapter 4

Variational dynamics of multiple
generalized coherent states

In modern quantum mechanics, the time-dependent dynamics of many-body systems is a
long-standing problem due to the exponentially increasing Hilbert space even if the system
size is only mildly increased. A lot of of effort has been put into this field to alleviate this
difficulty, including dynamical mean-field theory, quantum Monte Carlo, time-dependent
density matrix renormalization group, and exact diagonalization, etc. [52-55].

Another, however, less well-studied method is the time-dependent variational principle
(TDVP). Its general idea is to employ tailored basis functions which contain a set of time-
dependent variables, and the expansion in terms of these basis functions is assumed to be a
good approximation of the exact solution. The next step is to derive the equations of motion
of the variables that are governed by the variational principle, and from which we can obtain
the evolution of the basis function. The core idea of TDVP is the selection of basis functions
which heavily relies on the underlying Hamiltonian. In principle, a good selection can make
the evolution stay in the dynamically important area and ease the problem dramatically. A
typical example is the application of the Glauber CS in some physical situations, ranging
from electron dynamics in atoms to nuclear dynamics in molecules as well as to non-adiabatic
(combined electron-nuclear) motion, and the dynamics of the bath degrees of freedom in a
spin boson model, as reviewed in [56-59, 28, 60, 61].

In the previous references, the well-studied molecular potentials, like the Morse potential
and Henon-Heiles potential [60, 62], are close to the harmonic potential, where the Glauber
CS provides an exact solution. Due to the overcompleteness of the Glauber CS, the CS
based methods have attracted lots of attention in the last several decades. Besides, in [63],
a generalization of the multi-configuration time-dependent Hartree method for bosons [64]

based on McLachlan’s variational principle has been given. The time-dependent variables
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used there are based on orthogonal orbitals, however. Most recently, the applications of
TDVP in tensor networks has become a very promising direction as it can combine the

advantages of both powerful tools [65-68].

4.1 Variational basis function based on Glauber CS

In previous applications of the variational method, the time evolution of the state vector for

bosons is written as a linear combination of the multimode Glauber CS as follows
N
(1)) = Y A(r) |0y (2)). (4.1)
k=1

where N is the number of Glauber CS employed. The equations of motion of the coherent
state parameters {0y}, as well as of the coefficients Ay in the expansion of the wavefunction
in terms of those states are usually derived from a variational principle and possibly undergo
additional approximations [60]. It has turned out in numerical investigations that the use
of a surprisingly small number of CS basis functions leads to converged results, e.g., in
spin-boson type problems tackled by the so-called multi Davydov D2 basis function [69-71],
or in the multi-configuration variational Gaussian method [72-76], as well as the coupled
coherent states approach developed by Shalashilin and Child [77-79, 29, 80].

It has been worked out in [81, 82], that Glauber CS are promising basis functions also for full
fledged dynamical calculations for some many-body systems such as Bose-Hubbard (BH)
dynamics beyond the semiclassical or the Gross-Pitaevskii level [83]. This success as well as
that of the CS basis functions alluded to above, leads us to investigate the question if also
GCS are favorable basis functions for Hamiltonian with U (1) symmetry, in the light of the
fact that the GCS itself has a fixed particle number.

In fact, the potential merits of GCS for the BH model have already been realized by other
authors. The mathematical foundation of the phase space formulation of physical systems
with Lie group symmetries has been considerably widened by the works of Brif and Mann
[84, 85]. Based on their progress, the dynamical description of many-body systems in
terms of phase space distributions has received new impetus from the works of Korsch
and collaborators [86, 32]. In these works, the authors adopt the GCS as basis functions,
and equations of motion for the P- as well as the Q-function of quantum optics [33, 87]
have been derived and solved for the BH model with small system size. The use of GCS
has been investigated and favored in the same context by Buonsante and Penna in their
enlightening review [31], whose focus is on variational mean-field methods. A more recent

review with a focus on SU(2) CS, introduced as atomic coherent states in [88], is given in
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[89]. An extension of the formalism towards dissipative Lindblad type equations in terms of
P functions has been given in [90].

Inspired by these existing works, we will combine the GCS with the variational principle
to investigate the time-dependent dynamics of the BH model. It will be shown that this
method can go beyond the mean-field theory and faithfully and efficiently approach the exact
quantum result. More importantly, this method can be applied to study large system sizes

and explore quantum many-body effects that had hitherto been unexplored.

4.2 Bose-Hubbard model

One paradigmatic model for many-body systems is the Bose-Hubbard model, which is used
to describe cold atoms trapped in optical lattices within the lowest Bloch band approximation
[91], and this approximation is good under the assumption that thermal fluctuations do
not have enough energy to excite the particles. We note that a solution of the Schrodinger
equation beyond the lowest band approximation has been considered in [92]. The BH model
has been realized in ultracold atomic experiments [93, 8, 94]. Its 1D form can be expressed
as

U
2

M=
S
[V}
Q>
LS

A=Y |aa+He|+
i=1

4.2)
1

i

where &j and d; are the bosonic creation and annihilation operator, respectively. The first
term in Eq. (4.2) describes the tunnelling of particles between different sites, and J is the
isotropic tunnelling strength. Depending on the boundary conditions, the 1D lattice sites can
be either thought of as a chain where the site index i ranges from 1 to M — 1 (open boundary

condition), or a circle (periodic boundary condition) with

dL&MH = @LCZAI

The second term in Eq. (4.2) is the two-body interaction term which accounts for the energy
shift due to the occurrence of two particles at the same site.

In experimental setups, the optical lattice is created through the interference of multiple
laser beams oriented in opposite directions across three-dimensional space. The two-body
interaction strength, denoted as U, is modifiable directly through Feshbach resonances. This
adjustment involves tuning the s-wave scattering length via adjusting the magnetic field near
the resonance point, ranging from significantly positive to markedly negative values [95].

Notably, a positive scattering length is indicative of repulsive interactions, whereas a negative
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scattering length signals attractive interactions. The relative interaction strength U /J, is
controlled by tuning the laser intensities. Upon loading ultra-cold bosonic atoms into these
optical traps, their dynamical evolution is monitored using sophisticated detection methods,
including absorption imaging, time-of-flight imaging, and other state-of-the-art techniques
with single-site resolution [8, 96-99].

This model is extensively studied both in experiment and theory, since it can capture the
essence of the superfluid-insulator phase transition [100, 34]. Besides, benefiting from the
good controlability of ultracold atomic systems, the Bose-Hubbard model also provides a
promising platform for quantum simulation of many-body systems [101-103].

Despite of the prominent progress in the study of Bose-Hubbard model, the time-dependent
dynamics of this model is still a formidable problem. Firstly, the appearance of the non-
quadratic interaction term makes the Hamiltonian hard to be diagonalized numerically, due
to the fact that the dimension of the Hilbert space expands exponentially with increasing
system size. On the other hand, the entanglement entropy of time-evolved states tends to be
unbounded, so the DMRG-like methods, the standard tools in equilibrium dynamics for 1D
gapped system with local interaction, also fail for long-time evolution [103]. Hopefully, our
variational approach provides an alternative route to solve this problem. In the following, we
will apply our variational basis function from Eq. (4.1) with GCS instead of the Glauber CS
to the time-dependent dynamics of the 1D Bose-Hubbard model.

4.3 Linear combination of GCS

The main working horse of the present thesis is based on the fact that, for a bosonic lattice
model with § particles and M sites, we can utilize the linear combination of GCS as a set of
basis functions for the solution of the time-dependent Schrédinger equation (TDSE) [104].
The analog to basis function expansion (4.1) is given as [104]

®()) = Y A;(1)I8.&(r)), (4.3)

™M=

where |S,&;) in short-hand vectorized notation denotes the j-th GCS in our basis function

with the characteristic parameters

g] = {gjlagjb"' 7€jM}7

and the expansion coefficients A; are responsible for the connection between different GCS,

which becomes clear in their coupled equations of motion to be detailed below. It is also
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worth noting that A is not the probability amplitude like in the case of a normal superposition,
since the GCS form a non-orthogonal basis and the value of |A j|2 can be larger than one.

Our basis function is close in spirit to the multi Davydov-basis function designed for spin-
boson problems [69, 61], which also consists of multiple CSs, and these two Ansitze share
some similar features. Firstly, both GCS and CS are non-orthogonal bases, so the overlap
between different basis functions will take an important role in the equations of motion.
However, the non-orthogonality can also cause a singularity of the equations of motion if
two basis functions are very close during evolution. As has been noticed in the literature
[105], this severe problem is a major obstacle for the application of CS-based methods and
great care has to be taken in the implementation of the equations of motion [70]. Fortunately,
most of the times, the singularity problem of GCS bases can be solved straightforwardly
by a simple regularization as proved in [104], which will also be explained below. And the
numerical stability of GCS bases allows us to explore the dynamics in generic many-body
systems. Secondly, the set of GCS also forms an overcomplete basis, which means if we
employ enough basis functions in Eq. (4.3), in principle our solution will be very close to the
exact one. Moreover, when N = 1, both Glauber CS and GCS bases will give the mean-field
results by means of the TDVP shown below, while increasing N allows us straightforwardly

to go beyond mean-field and recover the quantum effects as much as we can.

Expansion in momentum space

Another way to understand how the basis function expansion in Eq. (4.3) works is given by
going to the quasi-momentum space. In momentum representation, the Hamiltonian of the

one dimensional system, represented by Eq. (4.2), is transformed into

N A v B .
H= ZJZCOS )b bk—|—2 k; bk+p o bkbk, 4.4)

where k is the quasi-momentum in the region [—2 Z) with a being the lattice constant, and
by (f)z) is the corresponding annihilation (creation) operator defined in Eq. (2.13). The first
term of the equation derives from the hopping term in the original Hamiltonian (Eq. (4.2)),
while the second stems from the interaction term.

Simultaneously, an arbitrary GCS of the form ——= < 1 &a ) |vac) can be rewritten as
\/—§ (Zk 5ka> |vac), as we have seen in Chapter. 2. For example, the uniformly distributed

S
state ﬁ < 1 \F ) |vac) corresponds to a zero-momentum condensate xf(b’i o)5|vac).
Based on the spirit of the Fourier transformation, a localized state in quasi-momentum picture

will be delocalized in position space.
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The dynamical effect of the first term of Eq. (4.4), is to imprint a relative phase defined by

2
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Fig. 4.1 Band function of hopping term in the first Brillouin zone.

the dispersion relation in the first Brillouin zone
& = —2Jcos(ka) 4.5)

as depicted in Fig. 4.1, onto each momentum distribution, which can be illustrated as follows:

S
PN 1 A
exp | -1} &blb t) — ( < bT> |vac)
S
1 SRR PPN
=5 (Zékelgktbz> |vac). (4.6)
-\ k

From this result we can infer that the condensate will persist under the hopping term alone.
However, the second term will induce particle scattering in the quasi-momentum space. For

instance, given the initial state is —= (IQLO)S |vac), particles will gradually depart from the

VSt
condensate, scattering into other momentum states. This phenomenon has been observed in
the experimental study of the phase transition from the superfluid phase to the insulator phase
[43]. This process generates different configurations such as |sy);__x -« |s;)g=; - |Sp)p—1,

a product state in quasi-momentum space, denoting that s; particles occupy the state with
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quasi-momentum k = [:

(W(0) =Y cglst)im—z - |srmr - [sm)i—z (4.7)
s
where S denotes any possible distribution of particles in the momentum space {s,52,-- , },

subject to the condition s1 + s + - - - + sy = S. Consequently, the macroscopic occupation is
dismantled, and a single GCS can no longer accurately depict the time-evolved state. Yet, a
linear combination of different GCS whose equations are governed by TDVP can provide a
more flexible form to capture the essence of the evolved states.

Under conditions of relatively weak interaction strength or short evolution time with strong
interaction, we expect that the time-dependent state will not deviate significantly from the
condensate. In this case, a limited set of basis functions is required. For strong interaction
strength which is challenging for the existing methods, a larger numerical effort will be
expected.

4.4 Equations of motion for the GCS basis

To derive the variational equations of motion for all involved parameters, we employ the
TDVP as mentioned above and to be discussed in detail in the following.

4.4.1 Variational principles

There exist two routines to implement the variational principle. We will review both of them
in some detail.

The time-dependent variational principle

For a quantum system which is described by the Hamiltonian H, the action and the La-

grangian are defined as follows:

S:/dtL; L= (¥(0)| (i%—ﬁ) (1), 4.8)

The Euler-Lagrange equations,

oL d oL

a_xz_aa_x‘:;: — 9 (4.9)
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where x; is a notation for the wavefunction parameters, guarantee the stationarity of the
action, thus leading to the Schrodinger equation. In this equation, the symbol * denotes
complex conjugation.

Considering a wavefunction parameterized in a general manner, |¥(x;,x2,---)), where all

parameters are complex numbers, the Lagrangian is represented as:
L=i(P|x;|V;) — € (4.10)

In this equation, the tangent state |V;) is defined by %PP) and € = (Y|H|¥). The chain rule
and the Einstein summation convention have been applied here.

Furthermore, the Euler-Lagrangian equation yields the following equations of motion:

e
Jx

i(Vi|Vi)ki = 5— 4.11)
J
In this context, we assume the wavefunction to be holomorphic across the entire complex
plane, expressed as
J|%¥)
— =0 4.12
Ix; (4.12)
for any given x;. The Eq. (4.12) is also called Cauchy-Riemann equation in complex analysis.
The holomorphic nature of the wavefunction is crucial, as it results in the equivalence of
various variational principles, including the McLachlan’s variational principle [26] (MCVP),
time-dependent variational principle [27] (TDVP), and the Dirac-Frenkel variational principle
[25] (DFVP). Comprehensive details and the condition for the equivalence of these variational
principles are presented in Appendix. B. A side remark is that the alternative form of the
Lagrangian
i .
L=3 (W) + (P|¥)] —& (4.13)
would yield identical results [106].
Finally, we note that Eq. (4.11) is a series of implicit differential equations. To transform
them into explicit form, it is necessary to compute the inverse of the mass matrix €2, whose

elements are given by

Q;j = (Vi|V)) (4.14)
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However, the potential singularity of the mass matrix often hinders this process, thus some

numerical strategies need to be developed to overcome this issue [70].

The geometrical perspective

Another approach to understand the variational principle is based on the geometrical perspec-
tive [106]. Considering the TDSE

i0,|¥) = H|¥) (4.15)
and applying the chain rule, the left side of the equation can be expressed as
i0|¥) = 1;[V;)

in terms of the tangent states defined above, while the state in the right side H|¥) is not the
tangent state in general, as can be seen below. The best approximation for every time-step is
to project both sides onto the tangent space which will give rise to the result in Eq. (4.11)
From this perspective, insights about how the basis function works can be gained from the
geometrical analysis as well. Given the definition of the GCS, the corresponding tangent
state is

Vi) = ¢ |, &) = VSaj|s —1,E), (4.16)

and one can immediately realize that the application of the hopping term on the GCS is to

generate the tangent states
Y.dja)ls,8) = VSY &alls - 1.€). (4.17)
(i) i

This implies that the hopping term alone will not project the state outside of the tangent

space. In contrast, when interaction term acts on GCS, we obtain

o

I
—_

M
ai*a|s,8) = S Y &a%|s - 2,8), (4.18)
i=1

which doesn’t belong to the tangent space. Hence, our objective is to utilize linear combina-
tions to offset the deviation caused by the interaction term.
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4.4.2 TDVP applied to the GCS basis function

Because the Lagrangian form of the TDVP is based on the principle of least action which
provides a clear physical intuition, in this part, we will apply the TDVP to the basis function
expansion as presented in Eq. (4.3), and give a step-by-step derivation of the equations of
motion as shown in [104].

Equations of motion

All the time-dependent parameters in Eq. (4.3) are assumed to be complex and it is also
clear that the basis functions fulfill the holomorphic condition. The Lagrangian of the basis

function expansion of |¥(¢)) consists of two parts:

L=i(¥(t)|0|¥(t)) — (¥(1)| H|¥(1)). (4.19)

By means of the chain rule, the time derivative of |¥(z)) is found to be given by
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—

(4.20)
so the first term in Eq. (4.19) is
N
(W ()]0 |W(z) Z (8,&l ZA 8,&)) +\/_ZA Zﬁﬂa S—1,8))
N
=i ), AfA, 5k|§1 +iS Z AkAjzgkzéjl 5k|§> (4.21)

k,j=1 J.k=1 i=

where we have used the more compact notation (Ek\é ;) and (g,i@]/) to represent the overlap

<S,Ek|S,gj) and (S — l,gk|S— 1,%), respectively.
The second term in Eq. (4.19) relies on the specific system described by A. Below we will
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take the 1D BH model given by Eq. (4.2) as an example which yields

(W|H|Y) = ZAkA (S,&|A1S,E))
k,j=1

N
= Y AiA; JSZ ikz§]z+1+5kl+1§ﬂ)<5k|§>+ S §—1) 25135,, 5£|§”> :

k,j=1
4.22)

where (&/|€/) = (S —2,&]S —2,&;). Combing Eq. (4.21) and Eq. (4.22), we obtain the total

Lagrangian

L=i Z ALAGEIE) +is Z AkA]Z@,aﬂ EIE)

k,j=1 J.k=1 i=
N 21 gl U M 2D el g
— ) A4, _‘]SZ(éljiéj.,iJrl+§]:i+l€ji)<§k|§j>+35(s_1)2&]:(1' Siit&1S;)
k=1 i=1 i=1

(4.23)

Two different sets of parameters {A;} and {&;;} are included in the Lagrangian, and we
derive their equations of motion separately. For the complex conjugate of the expansion

coefficients A}, we calculate the corresponding first derivative of the Lagrangian

oL OH
aA*—lZA (A +1SZA Zék,&z EIE) — AT (4.24)
where

M-1

ZA —JS Z éklé] l+l+§k 1+l€]l)<§k|§ >+ S S—1 Zgl:(zzéﬂ é]:|€”>

(4.25)

8A*

Because Az doesn’t show up in the Lagrangian, the second part on the LHS of Eq. (4.9)
vanishes. Note that although we take the derivative of A} and A;:, the outcome on the right
hand side of Eq. (4.24) is related to the time derivative of A; and j may not be equal to k, this
is because the different basis functions are already coupled in the Lagrangian given in Eq.
(4.19). From the Euler-Lagrange Eq. (4.9), the equations of motion for the coefficients A ;
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read

IZA §k|€] ‘HSZA Zékléﬂ ék‘é aA* :O~ (4.26)

Next, we switch to the equations for the characteristic parameters {&;;}. To this end, we
replace x; with & in Eq. (4.9) and get the corresponding derivative after some tedious
derivation to be given by

8‘2’; 5[ X i i ELE) ZAkA,é,m & IE)

j=1
JH

S—1) ZAkA]Z &) Em §,Z|C‘”>] &

(4.27)

where (&'|E]") = (S 3,&S—3,&;) and
M—1
a&k Y A IS + i EIED IS~ 1) E (Gt + E i )

j=1 i=1

X (18 +US(S— 1)ERE3 <5,§'I§">+ Ists—1)(s—2 Zékzéﬂé,m &1EN).
(4.28)

Again, the second component of the Euler-Lagrange equation Eq. (4.9) is zero. So we obtain

the equation of motion for &, parameters to be given by

[ 3 Aid din G+ ZAkA,éjm &)+ Z Aits L i) em G165
_ ;g—il _0. (4.29)
km

From Eq. (4.26) and Eq. (4.29), we can observe that all the parameters are coupled with each
other in a non-linear way, and the inner products such as (E,Q\ai’), which will not appear for
orthogonal basis-set methods, play an important role in this coupling. If we consider the
large particle number limit § — co with finite number of sites M which corresponds to the

classical limit, the (§k|§,> is going to vanish for arbitrary k # j, namely,

(EIE) = & (4.30)
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This is because in the expression

(&) = (Zék,éﬂ)

as shown in Table. 2.1, the absolute value of the summation in the bracket is equal or smaller
than 1. As a result, Eq. (4.30) leads to the decoupling among the different GCS bases |§ i)
and |§ ;) for k # j. Particularly, if the initial state is a single GCS, only this GCS will join in
the evolution which is governed by the simplified equations (the multiplicity indices k, j are

not needed here and the index i is the site index)

i& = (& +E ) FUS—1)EPE, (4.31)

and additional basis functions will not be occupied.

If we replace & with y; = \/S&; where |y;|? stands for the particle density on the i-th site and
neglect the difference between § — 1 and S, we will get the so-called non-linear Schrodinger
equations or the discrete Gross-Pitaevskii equation [107, 108]

iV = —J (Y1 + i) +U Py (4.32)
Eq. (4.31) and Eq. (4.32) are mean-field equations of the BH model which are widely applied
to describe the dynamics of the condensate [109].
Matrix form of the full variational equations of motion

The time evolution of all parameters can be gained by integrating Eqgs. (4.26) and (4.29). Both
of them are implicit equations, however. In order to facilitate their numerical implementation,

we rewrite these equations in matrix form as follows:

= : (4.33)
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where the mass matrix (matrix of block matrices on the LHS) is Hermitian. The corresponding

block matrices are given by

Xij = (&kl&)), (4.34)
Y =S(E},E5 - Ep) AT o (11 @ X)), (4.35)
where the vector Ek ={&1,&x2, -, &} is now indexed by the basis function discretization

index and the vector ém to be defined below, is indexed by the mode index. Furthermore,

Fij=S$-1)X (& &)( £ ), (4.37)
Fii=SX +5(S—1)X o(&-&]), (4.38)

where 1,,xn is an m x n matrix which only consists of ones, and ij (§k\§ ') and ij
< f |§ i) are overlaps of (S — 1) and (S —2)-boson GCS, respectively, whereas p; = AA;.
Additionally, ® denotes the tensor-product, and - denotes the standard scalar product.

We note that the mass matrix tends to be singular during propagation which is frequently
encountered in the case of Glauber CS [70]. A numerical strategy called regularization is
used to address this issue by introducing a small perturbation on the mass matrix. To this end,
we add a small number £ around 1072 to the diagonal elements of the matrix p such that
p = p + €l where I denotes identity matrix. This perturbation can also be added on other
components of the mass matrix as discussed in details in [110]. Our numerical results show
that the adjustment on p ensures stable propagation while minimally impacting the quality
of our results.

Moreover, the vectors on the LHS and RHS are defined as

i : J0H J0H
Aj &1 Sim AT o0&,
A I Gon 2 o
A= 7‘,;: 7€m: 7R1: 7R2:
Ay Eu Exim S 5

(4.39)
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with H = (¥|H|¥) denoting the expectation value of the Hamiltonian given in Eq. (4.22).
The R, derived from Eq. (4.25) is

oH / % T % T U "
W:—JSX Oi_zl (él .€i+1+§i+l'§i ) A+ES(S—1>X o)

which is an N x 1 vector. The elements of R, derived from Eq. (4.28) are

%ﬁ = —ISpoX (B +8, 1) —IS(S—1)poX o ¥ (& &L, + &1 -8]) &,
m i=1

+US(S— 1)poX”-éfnoé;+%S<S— 1)(S—2)poX"o

z<é7>2-<&?>T] &
(4.41)

where M elements are included and every element is an N x 1 vector. So totally (N + 1)M

differential equations are contained in Eq. (4.33).

Expectation values

With the form of basis function expansion Eq. (4.3), it is straightforward to calculate the

expectation values of operators. Given an operator O, we have

N — N —
(0) = Y AA;(S, & (1)]0]S,&;(t)) = sum(p 0 O, all) (4.42)
k,j

where p, i= A,tA j defined as same as above, and the matrix O has the same dimension but
with the entries

01 = (S,&(1)|0,&(t)). (4.43)

The symbol o denotes the Hadamard-product (element-wise multiplication of matrices) and
"sum(...,all)" denotes the summation over all the entries.

To make progress, operator ordering is a key concept. In our framework, we consistently
apply normal ordering to our operators, ensuring that all creation operators are positioned to
the left of the annihilation operators. This systematic arrangement is achieved through the

application of the commutation relationship in Eq. (2.2). If O is a normal-ordered operator
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such as d}d};d}: -+ Q;dmay, - - -, the matrix entries are computed as

Ok =S(5—1)++(S W&l Gl - Enbimin- (S BlS—n &), @44)

where 7 is the number of creation (annihilation) operators, and we have used the property
ailS, &) = V/S&;i|S — 1,&;) of the GCS from Table. 2.1 in the second chapter. For small
values of N, the numerical evaluation of Eq. (4.42) can be performed without too much

computational effort.

4.5 A first numerical appetizer: the bosonic Josephson

junction

To verify the validity of our variational approach introduced in last section, we will apply it
to a simple system called bosonic Josephson junction (BJJ).

Restricting the amount of lattice sites makes the quantum dynamics of the BH model in Eq.
(4.2) easily tractable numerically for moderate particle numbers. Recent theoretical work has
thus focused on the cases of four (and six) sites [111] with different levels of approximation:
exact, semiclassical and classical (mean-field, or truncated Wigner approximation (TWA)).
Also the trimer (ring) case has been studied, due to the facts that it is leading to the melting
of discrete vortices via quantum fluctuations [112] and that it is the smallest system that
displays chaotic mean-field dynamics without an external driving term [113]. This system
has also been dealt with using a group theoretical [114, 115] and a semiclassical time-domain
approach [116]. With an additional drive (periodic kicks) even the double well case is
showing signatures of chaos [117].

Furthermore, the case of two wells without external driving has been extensively studied. The
system dynamics has, e. g., been investigated both in a mean-field classical approximation
and fully quantum mechanically [118—121], as well as also semiclassically, using a phase
space picture [122] or employing the Herman-Kluk propagator [123, 116, 124]. This same
propagator has also been used in a semiclassical time-domain study of the single well problem
[125]. Furthermore, the driven single well problem has served as a model in a study of
dynamical tunneling [126].

An important lesson from the vast literature is that semiclassical approaches do well in
reproducing the full quantum results, while the mean-field and/or TWA approach have their
limitations. TWA does, e.g., not allow for the investigation of revival phenomena, present in
the quantum dynamics. One interesting phenomenon, that could already be uncovered using
a mean-field approach, is the macroscopic quantum self trapping effect in BJJ, where the
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population imbalance (to be defined below) has a nonzero average [118]. It turns out that
mean-field theory predicts the transition to macroscopic quantum self trapping at too large
values of the on-site interaction strength, however [127].

In the following, we will focus on the case of two wells, for which the direct experimental
observation of tunneling and self trapping has become possible [128]. Theoretically, this
case has been reviewed in [129] and a fresh look on finite size (i.e., finite particle number)
effects in a mean-field description [127]. These authors have used a single so-called atomic
or SU(2) GCS [88], reviewed in Chapter. 2, to uncover mean-field 1/S corrections to the
more familiar mean-field results based on Glauber CS. We will also employ those favorable
number conserving SU(2) GCS here. We will not use them in a mean-field spirit, however,
where just a single state is taken to solve the TDSE. In contrast, we will investigate what
happens if we allow for non-trivial multiplicity, which means we will use a superposition of
SU(2) GCS, given in Eq. (4.3), to solve the TDSE.

4.5.1 Classical description of the bosonic Josephson junction

In this section, we will review the equations underlying the mean-field description of bosonic
Josephson junctions by following [127, 129]. The major focus is on the fixed points of the
equations along with their stability analysis.

The BJJ can be described by a double-well potential with a finite barrier in the middle, so the
particles in each well can tunnel through the barrier and generate a current. The population
imbalance induced by the current will cause the relative phase difference which in turn drives
the current further. Many quantum phenomena inherent to the Josephson junction result
from the dynamic interplay between this particle imbalance and the relative phase - a pair of
conjugated variables [130-132].

An effective description of the BJJ is given by the two-site BH model [133]

. U
A== (dar+ajn) +5 (aPad +al’a3) (4.45)

where the first term describes the tunnelling of particles between the two sites and the second
term is the on-site interaction. We recall that a positive U describes repulsive interaction
between bosons because particles occurring on same site will increase the energy, and a
negative U corresponds to attractive interaction.

To comprehend the physics behind this model well, we firstly focus on the mean-field

theoretical description, where the wavefunction is given by an ideal condensate with fixed
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number of particles, namely, a single SU(2) GCS [88] of the form

S
(o) = jﬁ(\/”j%iﬂ/—l _§<’>e—i¢<f>&z> 0.0

= |s,\/ =5 @7\/ =), (4.46)

where z() denotes the particle number imbalance and ¢ (1) = ¢; — ¢ is the relative phase.
This wavefunction is a macroscopically occupied state with a coherent phase between the
two sites. We note that, using two complex parameters &; and &, to represent SU(2) GCS is
redundant, because the global phase is not relevant, and the sum of the norm of &; and &; is

fixed to be 1. The relationship between {&;, &} and {z, ¢} is explicitly presented as

c= (&2~ &P, ¢ =arg(&)) - arg(&). (4.47)

The equations of motion for z(¢) and ¢ (¢) again follow from the TDVP. To begin with, we
derive the Lagrangian of Eq. (4.46), which is given by:

L= (|0, ¥) — (P|A]¥)

11—z, U
- STZ(}) +ISV1=cosp = 2S(S— 1), (4.48)
where the factor S(S — 1) in the last term is caused by the consecutive action of two anni-
hilation operators on SU(2) coherent state, and this factor would be replaced by S? if we
utilize the normal (Glauber) coherent states as the basis. It is worth noting that adding a total

time derivative of an analytical function to the Lagrangian won’t alter the final equations of
motion [134]. With this in mind, Eq. (4.48) can be further simplified to:

.S U
L=-220 +JSV'1—272cos¢p — 755 1)z%. (4.49)

The Euler-Lagrange equations Eq. (4.9) give rise to the following Josephson equations:

z=2JV1—722sin¢ := f1, (4.50)
b=-—2/— cosp—US—1)z:=f» . 4.51)
1—22

The two coupled equations derived from the mean-field theory unveil some notable Joseph-
son effects. From Eq. (4.50), we observe that even if the initial value of z is zero but ¢

possesses a nonzero value, the time derivative of z persists. This suggests the generation of a
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current between the two sites, initiated by the relative phase, not the bias voltage or particle
imbalance.
Moreover, the second term on the RHS of Eq. (4.51) implies that a nonzero imbalance recip-
rocally influences the phase difference. Another nonlinear effect becomes apparent when
z(0) approaches one and U /J is significantly large. In this scenario, ¢ alters swiftly, and z
experiences rapid yet small amplitude fluctuations. This effect, known as the self-trapping
effect, is characterized by z(¢) remaining nearly constant throughout the evolution.
For our discussion, we will limit our focus to the dynamics near the fixed points of Eq. (4.50)
and Eq. (4.51). A class of stationary solutions of the above coupled nonlinear equations is
given by the fixed points (0,27n) with n = 0,41,+2,.... It is straightforward to verify that
these solutions represent the ground state of the classical Hamiltonian

(A) = %9(5— 1)z —JSV1 —z2cos ¢, (4.52)
when U > 0. The stability of the fixed points can be evaluated via a linearization process
involving the Jacobi matrix.
Specifically, the Jacobi matrix [135] at the point (z*,¢*) = (0,0) is given by

v
=

oh 91 0 27

g=| Fleer Plee | o (4.53)
9h 95 —2J—(S-1)U 0
9z z* ¢,* a¢’ Z*7¢* ( )

and its eigenvalues are

/ U US
Ay =+V2I -2+ o= +27vV/—1—A. (4.54)

Here the so-called strength parameter A is defined as
A=U(S-1)/(2J), (4.55)

which is an appropriate parameter combination to be used frequently in the following.
Moreover, if z(0) and ¢ (0) only exhibit minor deviations from the equilibrium point, we can

derive the linearized equations from the Jacobi matrix.

:=2J9, (4.56)
¢=—[2J+U(S—-1)]z (4.57)
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Considering the initial conditions z(0) = zp, ¢ (0) = 0, their general solutions are given by

1) = %0 [621,/—(1+A)z +e—2J\/—(1+A)ti| ’ (4.58)

(P(I)Z%O\/m[ezf —(LHA) _ o—2J —(1+A)t]‘ (4.59)

The parameter A plays an important role in the stability of the dynamics around the fixed
point. If A > —1, it is evident that both eigenvalues A are imaginary which implies that the
point (0,0) is a stable fixed point.

From Eq. (4.58) and Eq. (4.59) we have the oscillatory solutions

z(t) = zocos(Qt), (4.60)
O(t) = —z0V 1+ Asin(Qt), (4.61)

with the plasma frequency
Q=2JV1+A. (4.62)

On the other hand, if A < —1, the eigenvalues become real and A+ (0,0) is no longer a stable
fixed point, and the specific solutions from Eq. (4.58) and Eq. (4.59) are

2(t) = zcosh [21\/—(1 +A)t} , (4.63)
0(1) = 200/~ (1 + A) sinh [2J\/—(1 —|—A)t} (4.64)

which are hyperbolic functions. We stress that these above equations are only valid when
the linearization condition |z|,|¢| < 1 is fulfilled. Away from that regime the hyperbolic
solution is unphysical.

Interestingly, the condition A < —1 introduces another set of stable fixed points given by

1
(:I:\/l—p,Znn>,

which correspond to the symmetry-breaking ground state in the mean-field level, as the

population in two wells is not same. To confirm the stability of these points, we compute the
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Jacobi matrix at (iw /1— %,2%1@)

J= . (4.65)
—2JA(1+AVA2) 0

Its eigenvalues are given by

20V —A* — AV A?

M=t

(4.66)

When A < —1, the above values are imaginary, indicating that (:I:, /11— ﬁ, Znn) are stable
fixed points.
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Fig. 4.2 Phase space trajectories from the mean-field dynamics for different initial values
of z with fixed ¢ = 0. The total number of particles is § = 20 and the interaction strength is
U=0.1J.

In Fig. 4.2, we set U to 0.1J, and the particle number S is 20, which satisfies the stability
condition A > 1. Several trajectories in the phase space composed of z and ¢ around the
stable fixed point (0,0) are plotted. All these trajectories follow elliptical orbits, signifying
that both the imbalance and relative phase undergo periodic oscillation, and this pattern
persists even if the initial point deviates significantly from (0,0).

However, the situation will be dramatically changed if we turn to the regime with A < —1.
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As shown in Fig. 4.3 for the attractive interaction strength U = —0.15J and S = 20, the
stability of the point (0,0) is destroyed and it bifurcates into two new stable fixed points
(i, /11— ﬁ, 27tn>, as previously discussed. The trajectories for symmetric initial points z
and —z which originally share the same orbit are delimited by a separatrix and orbit around
the new stable points. If the absolute value |z| is large enough, the separated trajectories will

merge again.

0.6

04 -

0.2

-0.2 1

-0.4 -

_0.6 Il Il Il
-1 -0.5 0 0.5 1

/

Fig. 4.3 Phase space trajectories with attractive interaction U = —0.15J which leads to the
emergence of the bifurcation. Initial values of z are varied with fixed ¢ = 0. The total number
of particles is § = 20.

4.5.2 Beyond mean-field theory

The previous subsection dealt with the BJJ in the framework of mean-field theory where
only a single SU(2) GCS is employed. However, this method is only rigorously exact when
the interaction strength U = 0, because if the interaction comes into effect, the solution will
deviate from the SU(2) GCS, as discussed below Eq. (3.9), leading to the depletion of the
condensate. A typical example is that when U /J — oo the ground state of the Josephson
junction from the diagonalization of the Hamiltonian in complete Fock space is given by

*%7 %) instead of the SU(2) GCS predicted by mean-field theory, despite having the same
average population per site.

In order to account for quantum effects beyond mean-field theory, we will employ our basis
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function expansion, Eq. (4.3), specialized to the two-site model

2

Z ()18, &1 (£), Ea (1)) (4.67)

We will use this simple model to illustrate how well our basis function expansion works
[136]. It is worth noting that we have reused the complex parameters in the basis function,

the underlying reason is that complex parameters can simplify the derivation of equations of

motion by getting rid of the nonlinear terms such as 1/ HTZ(Z) in Eq. (4.46). The parameter

space of the basis functions is shown by the diagram in Fig. 4.4, involving two complex

planes.
Im(,) Im(§;)
[ ) [ ) [ ] [ ) [ ) [ ] [ ) [ ] [ ] [ ) [ ) ]
[ ] [ ] [ ] [ ] o [} [ ) ° [ ] [ ] [ ) ]
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Fig. 4.4 The complex grids for £; and &, in the case of two modes. They are centered around
{&1(0),&,(0)} given by the GCS parameters of the initial state. We stress that there are only
8 pairs of points and not 64.

The initial state is an SU(2) coherent state, characterized by parameters &;(0) and &;(0)
located at the origin. Then we produce a regular array of points in the complex plane. We
note that the distance between these points, which can be adjusted, impacts the performance
of our basis set. In general, a smaller distance between the points results in a more accurate
outcome. However, we must avoid reducing the distance excessively, as this could lead to
the singularity issue mentioned previously. This problem also occurs in the case of basis
functions based on Glauber CS [70]. The effects of the grid spacing are discussed in detail in
Appendix. C.

To create additional basis functions beyond the initial state in Eq.(4.67), we randomly sample
some pairs of points in close proximity to the origin. This is illustrated by the 8 pairs of
red points in Fig. 4.4, with each pair representing a SU(2) CS, so in total we have 9 basis
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functions in our basis set. When ¢ = 0, the coefficient in Eq. (4.67) in front of the initial
state is 1 while others are set to be equal to zero. When ¢ > 0 the onset of the evolution will
allow all basis functions to participate in the propagation, and all coefficients eventually will
become nonzero.

Here, we note that the strategy of random sampling is important when we deal with many-
body systems. The reason is that utilizing regular grids as depicted in Fig. 2.2 leads to
an exponential increase in computational effort with increasing system size. For example,
consider a regular grid composed of 20 points per mode; the total number of basis functions
for M modes is N = 20M. So the practical solution is to take a set of random samples from
M regular grids to form a single basis function, and the total number of basis functions, N, is
tailored to meet specific accuracy requirements.

Next, we will examine different initial states and various system parameters to evaluate the

effectiveness of our approach.

Quantum phase operator

To begin with, we introduce the concept of the quantum phase operators [112] as the relative
phase in Eq. (4.67) is ill-defined in quantum theory. A proper definition is given by

RN
cos§ = 2T DG (4.68)
\/2(2A17A2 + Ay + Az)
oata afa
sing = G182 = dd) (4.69)
\/2(2n1n2 + iy +1ip)

where the factor in the denominator is introduced to ensure the normalization condition
(sin2¢3 + cos? ¢3> = 1. The definition of sin¢ is similar with the current operator which
counts the net particle current from the right side to the left side. In addition, the variance of
the sine is defined by

A(sin@) := (sin® @) — (sin @) (4.70)

which can be applied to measure the phase fluctuation between two sites.
The relation between the sine of the relative phase and the expectation of the sine of the

quantum phase is

Svi-2 si
VS(S—1)(1—-22)+28

(sing) = no, (4.71)

as can be derived by applying the operator in Eq. (4.69) to an SU(2) GCS. For § — oo, the

prefactor on the RHS of the above equation becomes unity and the quantum and classical
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expressions become identical. By introducing the expectation values of the quantum phase
operators, we can study the trajectories of a quantum state in the phase space composed
of the imbalance z and (sin@). But we should emphasize that in the quantum domain, the
uncertainty principle precludes the existence of definite trajectories, and what we study here
is based on the expectation values, thus the variance or fluctuation of the quantum quantities

are lacking in the phase space description.

Plasma oscillations

The first scenario we will consider is the case of A > —1, with a initial state close to the

stable equilibrium point (0,0).

0.15

-0.15 ‘ ‘
-0.1 -0.05 0 0.05 0.1

Fig. 4.5 Phase space trajectories for different initial conditions are indicated by different line
styles: z=0.01 (solid blue), z = 0.05 (dashed red), z = 0.1 (dash-dotted yellow). System
parameters are U /J = 0.1 and S = 20. The total evolution time is Jr = 50. The total number
of basis functions is N = 5.

In Fig. 4.5, the interaction strength is U/J = 0.1 and the number of particles is S = 20.
We vary the initial imbalance and present the results from our improved basis function
expansion calculation. In mean-field approximation all three initial conditions give rise to
an ellipsoidal pattern as shown in the previous section. Notably, if we go beyond the mean-
field approximation by employing 5 SU(2) GCS, we observe a distinctly different behavior.
This corresponds to a "beating" pattern of the population imbalance and the quantum phase
expectation value, characterized by a spiraling motion that first contracts inward then expands

outward over a long evolution time for all three initial conditions. These results align with
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those obtained from an exact numerical calculation, which are not displayed here (for more
information, we refer to [136]). The success of our basis function expansion with a small N
arises from the fact that in this setting, the evolution doesn’t go far beyond the validity of
mean-field dynamics. When we initiate the dynamics with a larger imbalance z = 0.5, the
beating effect will become more dramatic. As is shown in Fig. 4.6, the trajectories spiral
inward closely to (0,0) especially when S is large, while the classical trajectories still follow
the simple elliptical pattern shown in Fig. 4.2. To ensure good alignment with the exact
numerical results, here we employ 8 and 20 basis functions for S = 20 and 50, respectively.
This larger number of basis functions implies that we need to take more efforts to recover

the quantum dynamics when the starting point substantially deviates from the classical fixed

point.
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Fig. 4.6 Phase space trajectories for times up to Jt = 50 in the case U /J = 0.1 for (a) S = 20
and (b) § = 50. The initial condition is z = 0.5 in both cases.

In Fig. 4.7, we focus on the dynamics of the expectation values of the phase operator as well
as the phase variance. The evolution time is extended to be Jr = 100. We can see that both
cases display the beating where the amplitude of the oscillation is significantly suppressed,
with the revival time for § = 50 being significantly longer than that for § = 20. It is also
worthwhile to note that a suppressed amplitude coincides with a large variance of the phase
operator, which shows that the fluctuation of the phase peaks when the expectation value is
minimal. Given that the SU(2) GCS possesses a well-defined relative phase — indicating
zero phase fluctuation — it is logical to expect that more basis functions will be needed to be
employed to accurately represent the full quantum results.

Another way to explain the higher numerical effort makes use of the Husimi function, similar
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Fig. 4.7 The dynamics of the expectation of the phase operator and the corresponding
variances for (a) S = 20 and (b) S = 50. The initial condition is z = 0.5 in both cases. The
system parameter is U/J = 0.1. The expectation value of the sine of the phase (exact results:
solid blue line, multi ACS results: dotted yellow line) and its variance (exact results: dash-
dotted red line, multi ACS results: dashed purple line) are displayed.

to Eq. (3.3) but defined for an SU(2) GCS as

0(z,9) = [(Q(z,0) ¥ (1)) |* (4.72)
where
_ l+z [1—z 4
Q(Zv(p) - |Sa T: Te > (473)

with z ranging from —1 to 1 and ¢ ranging from —7 to 7. This function enables us to get
the explicit distribution in phase space of the time-evolved states. In Fig. 4.8, the initial
state is located near the stable fixed point and snapshots of the distribution are taken at
different time. When Jt =
by a radially decaying spot whose center is the initial point. As the evolution starts, the

0, the distribution of an initial SU(2) coherent state is presented

distribution deviates from the initial spot but still maintains a simple structure, indicating
that a large fraction of the state is still a SU(2) GCS. This explains why only a few basis
functions are sufficient to simulate this dynamics.

However, in Fig. 4.9, when the initial state is distant from the stable point, the time-evolved
state exhibits a more complicated distribution and the distribution changes rapidly with time,
although it is still centered around (0,0). Consequently, a larger number of basis functions is

required to adequately capture and represent this distribution.
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Fig. 4.8 The Husimi function projecting the time-evolved state onto arbitrary SU(2) coherent
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function is depicted for different evolution time (a) Jt = 0, (b) Jt = 20 and Jt = 50 with
N = 10 basis functions. The initial imbalance is z = 0.2 and the relative phase is 0. The
interaction strength is set to U = 0.1J and the particle number is S = 50.
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Fig. 4.9 Husimi function for a time-evolved state with initial conditions z = 0.5 and ¢ = 0.
The evolution times are (a) Jt =0, (b) Jt = 10 and (c¢) Jt = 50. N = 20 basis functions are
employed in order to achieve a good agreement with the exact numerical result. The system
parameters are U = 0.1/ and S = 50.

sin ¢
sin ¢

(sin )

Spontaneous symmetry breaking

In the following discussion we want to explore the case of A < —1,with a specific focus on
the dynamical characteristics around the unstable fixed point at (0,0), along with two new
stable points at (i, /11— ﬁ,Zn’n). The corresponding SU(2) GCS characterized by the new
stable points are degenerate ground states with spontaneous symmetry-breaking (SSB) on
the mean-field theory level.

As displayed in Fig. 4.10, we examine an attractive interaction U = —0.12J, while varying
the initial imbalance throughout the entire interval (—1,1). We firstly present the results
for § = 20. In contrast to the classical results in Fig. 4.3, trajectories move in a seemingly
random fashion, regardless of whether the initial imbalance is near the unstable fixed point or
the stable fixed points. When z is initiated with values close to the point (0,0), the dynamics
is still chaotic. However, the trajectories around the fixed point (£0.94,0) have a similar
behavior as their classical counterparts in Fig. 4.3 but with the spiraling motion, which has
been shown in Fig. 4.5.
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Fig. 4.10 The trajectories described by discrete points when A < —1. Initially ¢ = 0 and
the initial imbalance z varies in the region (—1, 1), and the evolution time is Jz = 50. The
situations for different particle numbers (a) § = 20 and (b) S = 50 are studied by employing

N = 8 and N = 18 basis functions, respectively. The interaction strength is fixed to be
U=-0.12J.

The influence of different S on these trajectories around the stable fixed point can be clarified
further in Fig. 4.11, where the initial imbalance is in proximity to the stable points determined
by /1 — ﬁ (noticing different S leads to different A). It is evident that the pattern of the
quantum trajectories gradually collapse to the classical ones with increasing particle number.
This is due to the fact that the limit of § — oo for small number of sites corresponding to the
classical limit gives the mean-field dynamics as shown in Eq. (4.31).
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z

Fig. 4.11 The trajectories with the initial imbalance near /1 — # for different numbers of

particles (a) S = 20, (b) S = 30, and (c) S = 50. The evolution time is J¢t = 50 employing
N = 10 basis functions. The interaction strength is set to be U = —0.12J.

These results also inspire us to predict the onset of the SSB from a dynamical point of view.

In the context of quantum theory, the ground state can be expanded in terms of Fock state
basis functions

S
IGS) = ) cn,n1,S—ny), (4.74)

n1:1
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2, namely, the

characterizing SSB through the formation of the bimodal structure of |c,,

ground state approaches the superposition
5,0) +10,5)

[137], and the coupling between |S,0) and |0, S) will be very weak when S is large [99]. As
proved in [127], the absolute values of interaction strength U leading to the bimodal structure
are generally larger than the values obtained by the mean-field theory |U| = %, especially
when the particle number is small. This discrepancy is reflected by the dynamics in the way
that the quantum trajectories around the points (i 1- ﬁ, 27rn> are not stable or localized
as depicted in panel (a) of Fig. 4.11 for small S. The question is if we can use our basis

function expansion to give a more precise critical value of U for the onset of SSB.
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Fig. 4.12 Snapshots of beyond mean-field (N = 2) Husimi distributions for S = 20 and
different on-site coupling strengths and times: (a)-(c): U/J = —0.15and t = 0 (a) r = 200
(b) and ¢t = 300 (c); (d)-(f): U/J = —0.19 and t = 0 (d) t = 200 (e) and ¢ = 300 (f). The
initial condition for z is zggp — 0.05 with zgsp = 0.71 for panels (a)-(c) and zgsp = 0.83 for
panels (d)-(f).

To explore this possibility, we use two SU(2) GCS - the initial state and a randomly sampled
state - and plot snapshots of the Husimi function for varying values of U. In Fig. 4.12 for
the case of § = 20, the U = —0.15J, satisfying the criterion of mean-field theory A < —1
is initially chosen in panel (a)-(c) and the initial condition is (zgsg —0.05,0) where zgsp =
v/ 1= % The results shows that the main distribution is transferred from the right site to the
left side over time, suggesting that the quantum dynamics is not stable around the classically
stable fixed points. However, if the strength is set to be U = —0.19J, and simultaneously
the initial condition zggp is also updated by the different value of U, we can see that the
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distribution remains localized around the initial point. Physically speaking, when |U| is large
enough, the SU(2) GCS <. /11— ﬁ,Znn) and (—‘ /11— %,2%11) are approximated to be
the Fock states |S,0) and |0,S), respectively, and the coupling between these two states is

substantially small since this macroscopic transition would have to overcome a high energy
barrier [99].

0.6
® exact
° ¢ N=2
0.5 'Y _MF b
0.4 1

Fig. 4.13 Comparison of the onset of SSB as a function of |UI/J predicted by: (i) Mean field
(solid line), (ii) multi-configuration with N = 2 (red diamonds) and (iii) exact result (blue
dots), inferred from bimodality of ground state.

Furthermore, if we treat the dynamical stability and asymmetry of the Husimi function as
the criterion for the onset of SSB, we can enhance the accuracy of the critical values for
U. In Fig. 4.13, we have propagated the dynamics for large enough times (Jt = 1000) to
confirm whether the distribution is confined to the right-hand side of phase space (i.e., z > 0)
or not. An interval nesting strategy is employed to pinpoint the onset of SSB. These two
results are then compared to the exact quantum ones (blue dots), calculated by monitoring
the expansion of the ground state in terms of Fock states. Once the coefficients’ magnitude
displays a bimodal structure, the SSB range is assumed to be reached. Notably, the improved
basis function expansion calculations with N = 2 exhibit a surprisingly close match with the

exact quantum results, even for the case of a small number of particles.
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4.6 Numerical appetizer I1:Three-mode BH model

In the last section, we have explored some dynamical characteristics of the simple two-mode
case, and the absolute values of interaction strength U we have considered are relatively
small. To further substantiate the validity of our method, in the following we will delve into
the dynamics of the three-mode BH model. Our goal is to study the impact of the interaction
strength on the dynamics, especially when the system undergoes the transition from the
weak interaction region to the strong interaction region with accompanying dynamical
phenomena such as the depletion of the condensate. The Hamiltonian of this model with

nearest-neighboring coupling is expressed as

3 3
A=-7Y (dlaj+hc) Z al*al + Z &d;] d; (4.75)

I\J|Q

where the first term couples the three sites together to form a chain or ring, the second term
denotes the on-site interaction and the third term arises from the external trapping with the
energy offset &;.

Let’s firstly review the mean-field results for three-site BH model by following [32]. To
describe the three-site case, SU(3) GCS of the form

(Z 5,“) 10,0,0)

will be used. The corresponding Lagrangian for such single GCS is given by

ISZéé* (s.E|AS.E) (4.76)

where
(S.E|A|S,E) =T Y (EE+EE)+U(S—1 Z!é!“+2a!é!2 (4.77)
(i,J) i=

The solutions of the corresponding discrete nonlinear Schrédinger equations Eq. (4.31)

45— Y & U DIEPE ek i=1,23. (4.78)

dt iZi
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give the classical limit of the quantum system. Taking into account the normalization
condition and the irrelevant global phase, the three complex variables &; can be reduced to
four real variables. Specifically, the {&1, &, &3} can be rewritten as &) = zje /%1, &3 = z3e /%3
and & = 75 = /1 —z1 — 23, where z; are the population densities of i-th site, while ¢; and @3
denote the phase differences of the second site relative to the first and third site, respectively.

Using this set of variables {z1, ¢;,z3, ¢3 }, the Lagrangian (divided by S) is converted to
L=z +¢s23—H (4.79)

where the classical Hamiltonian H = (H) /S of Eq. (4.75) per particle is written as

H=-2J [\/1 — 21— 231/21 €08 91 + /1 — 21 — 231/23 €08 @3 + /2123 cos (P — @3)
U(s—1)

2 [z%+z§+(1—z1 —Z3)2} +ezi+ (1 —z1 —z3) + &23. (4.80)

We note that the term ,/z1z3 cos(@; — ¢3) in the first line only comes into play when consid-
ering periodic boundary condition. From Eq. (4.79), one can realize that ¢; and z; play roles
of canonical position and momentum variables, respectively. Consequently, the classical

Hamiltonian gives rise to the equations of motion in the form of

. o

2= —a—d)i, (4.81)

¢; = a—H. (4.82)
2z

Alternatively, we can also solve three equations of Eq. (4.78) which have a more simple form
and extract the values of {z1, ¢1,23, 93} from the complex &;.

In contrast to the classical trajectories of the two-mode BH model that do not display any
chaotic behavior, the dynamical trajectories of the three-mode case can manifest both regular
and chaotic properties [138]. To visualize the trajectories in a plane, we fix the total energy H
and set the Poincaré section condition ¢; = 0 such that only two degrees of freedom {z3,¢3}
are left. Fig. 4.14 is rendered using data from [32] to show the mixed phase space where
different colors are used to distinguish among various types of trajectories. It is found that the
trajectories denoted by blue around the elliptic fixed point are periodic, but they are further
split into some regular islands (shown in red) which can be understood in the light of the
Kolmogorow-Arnol’d-Moser theorem [139]. The chaotic sea colored in purple occupies the
space outside these islands, while some quasiperiodic orbits depicted in green are apparent

in the lower region. This result presents a typical picture of the transition from regular to
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Fig. 4.14 The dynamical trajectories in the phase space comprised of z3 and ¢3. The Poincaré
section is chosen by setting ¢; = 0, while ensuring ¢; < 0. The particle number is § = 20
and interaction strength U = —0.25J. The energy offset of every site is as follows: & = 2J,
& =0 and & = 4J. The total energy H is fixed to be 1.

chaotic dynamics.
Although the above classical dynamics is rich in physics, our main goal in this section is
to explore the quantum dynamics which is far beyond mean-field results. In Fig. 4.15, we

investigate the population dynamics starting from an imbalanced initial state, specified by

1 /1 1 4\°
(1)) = 75 (Eéﬂ + %@) 0,0,0), (4.83)

where the second site is initially empty and the first and third sites have an equal population.

We choose U = 0.2/,0.5J,2J to analyze the population dynamics of the first site

S (t) = (w(t)|aja | (1)) (4.84)

and also study the convergence properties by increasing the number of basis functions. For
U = 0.2J (as shown in panel (a)), the exact dynamics oscillates with a slow damping effect,
however, the result from the single basis function corresponding to the mean-field theory only
presents a simple oscillation without damping. By increasing the number of basis functions
to 10, we can successfully recover the exact dynamics.

When increasing the on-site interaction to U = 0.5/ (depicted in the panel (b)), the exact
dynamics undergo a oscillation at the initial stage, followed by a significant suppression in
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Fig. 4.15 The population dynamics of the first site initiated with the state

S
\/Lﬁ (chﬂ + \%d;) |0,0,0), where S = 20. The interaction strength is set as follows: (a)

U=02J, () U=0.5J, and (c) U = 2J. In each of the three cases, we utilize different
numbers of basis functions to match the results obtained from exact numerical calculations.

the amplitude of the oscillation. After a long time, the wavefunction is close to a steady state
with an equal population across all sites. In contrast to the previous case, the result using
N = 10 basis functions still exhibits a big deviation from the exact one, and only 50 basis
functions can yield a satisfied outcome. Although in the second case the larger interaction
strength required more numerical effort, it is worth noting that the dynamics with a small
number of basis functions still captures some key dynamical features. For instance, with 20
basis functions, we can already observe the tendency toward the steady state

In panel (c) of Fig. 4.15 where the interaction strength is increased to U = 2J, the exact
result shows that the movement of the particles is dramatically suppressed while the small
and rapid oscillation persists. This indicates that the dynamics is dominated by the on-site
interaction, making the transport of particles among different sites difficult as it will cost a
large amount of energy. In this scenario, even with 20 basis functions, we cannot obtain a
reasonable prediction, indicating that more computational effort is required. These results
confirm that our method has a better performance in the weak interaction region if we fix the
value of J in a specific time window.

From the above results, we infer that the quantum result deviates from the mean-field theory
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as the interaction strength is increased. Since the mean-field theory assumes that the time-
evolved state is an ideal condensate, it can also be deduced that increasing the interaction
strength will lead to the depletion of a pure condensate. This effect can be investigated by

utilizing the single particle density matrix (SPDM).

SPDM _ < aAT

For the three-mode case, the SPDM whose element is p; /d;)/S can be written as

1
SPDM __ 1 . . .
4 S (aial) <a;a2> <a£a3) : (4.85)

(@a)) (ala) (alas)

SPDM yhich is also called condensate

The maximal eigenvalue of the Hermitian matrix p
fraction gives the information of macroscopic occupation of particles. Specifically, if the
value is 1, the state is a pure condensate, while any values smaller than 1 indicate a deviation

from the pure condensate [32].
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Fig. 4.16 The dynamics of the condensate fraction characterized by the maximal eigenvalue
of the SPDM. The system parameters are same as the ones used in Fig. 4.15. Different
numbers of basis functions are chosen to match the exact results.

In Fig. 4.16, we draw the dynamics of the condensate fraction with the same system parame-
ters as the ones used for Fig. 4.15. As displayed in the left figure for U = 0.2/, the decrease
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in the condensate fraction happens gradually but non monotonously, which aligns with the
slow damping of population dynamics displayed in the left figure of the Fig. 4.15, and this
downward trend also illustrates that the effect of the interaction becomes more important
with the time evolution. When U = 0.5/, the condensate fraction drops more quickly and
stabilizes when Jr > 4, and such a stabilization has already been manifest in the middle
figure of Fig. 4.15. Lastly, for U = 2J, the condensate fraction initially undergoes a rapid
decrease suggesting that the interaction takes effect at the initial stage, and the subsequent
oscillation is the result of the competition between the hopping and interaction effect. This
complex dynamics is the distinctive characteristic of the Bose-Hubbard model in the strong

interaction regime.






Chapter 5

Variational multi-layer GCS and
thermalization

The two-site and three-site cases we discussed in Chapter. 4 are only appetizers in terms
of numerical difficulty. Here, we will start to explore the dynamics of more challenging
systems, with large lattice sizes M and also large particle numbers S.
The initial state studied is chosen to be a multimode Glauber CS, described by the displace-
ment vector

o= (061,062,--- ,OCM),

where ¢; denotes the characteristic parameter on the i-th site.

The choice of this state instead of GCS is motivated by several reasons. First, the multimode
Glauber CS, independent of S also effectively describes the condensate [44] which is de-
scribed by the discrete Gross-Pitaevskii equation (Eq. (4.32)) in the framework of mean-field
theory. Moreover, applying the TWA method to a Glauber CS is straightforward, given its
Gaussian Wigner function, enabling a comparative analysis of classical and quantum results

which we aim for in this chapter.

5.1 Variational multi-layer GCS

In order to tackle the dynamics of multimode Glauber CS by using our variational method,
we need to recall the relationship between Glauber CS and GCS as provided in Eq. (2.21)

—

15,6, (5.1)

[NS1]es]

N

=

@)=Y oo
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where N = Z?il |a;|? denotes the average particle number. Given that the distribution for
GCS with different S follows the Poisson distribution proved in Eq. (2.21), we only consider
truncating Eq. (5.1) with S ranging in the interval [S1, S»], such that the fidelity satisfies the
following condition

—>0.99, (5.2)

to ensure that the numerical error of the initial state is smaller than 0.01. As a result, our
initial state involves a set of GCS with different S values, and the subsequent evolution
happens in this different S-particle subspace.

Specifically, our whole Ansétze for this problem is written as

ZZAS (1)15,E9 (1)), (5.3)

SS]]

which has a multi-layer structure. In each layer labeled by particle number S, we employ N
GCS basis functions, characterized by the variables AL, g (). Initially, in every layer, the
GCS with the characteristic parameters

—

é \/N{al , 0,y 7aM}

is the sole state that is populated. These basis functions evolve following the TDVP estab-
lished in the preceding section. Upon completion of the evolution, we obtain the final state
by applying a Poisson distribution-related factor to each layer, as expressed in the following

equation:

W)=Y e 75 LA 0l E0 ) (5.4)

Benefiting from the U (1) symmetry of the BH model, the dynamics in each layer evolves
independently. This independence facilitates parallel computation across layers. We highlight
again that our reliance on the variational GCS basis functions effectively circumvents the
severe singular issues commonly associated with Glauber CS-like basis functions [70]. This
is a significant advantage, even though using Glauber CS as basis functions might seem more
intuitive for this case.

To evaluate the effectiveness of our variational multi-layer GCS described by Eq. (5.3),

we investigate a four-site system which is still numerically solvable, using a Fock-state
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expansion, if the average particle number N is not too large. We choose an initial state
characterized as a half-filling Glauber CS, represented by

& = (/20,0,1/20,0),

that was previously analyzed in [140]. In Fig. 5.1, we present the dynamics of the absolute
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Fig. 5.1 The dynamics of the autocorrelation function for varying parameters: (a) J =
0.1,U =0.5,(b) J=0.2,U = 0.5 and (c) J/ = 0.3,U = 0.5. The initial state is the Glauber
CS o= [\/E,O, V20, 0] given in the main text. Different numbers of basis functions are
used to generate the results. The particle number S in Eq. (5.3) ranges in the interval [21, 60].
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value of autocorrelation function
F(r) = [(ae™ @), (5.5)

which can manifest a lot of dynamical details. The most significant phenomenon is that the
survival probability at time 27t /U gradually decreases with increasing hopping strength J.
From Eq. (3.2), we have learned that 27 /U is the revival period if J = 0, while nonzero
values of J make the time-evolved state move away from the prediction of unit survival
probability.

To quantify our variational approach for such a system, we compute the accumulated error

throughout the time window

t
E= / dt|Faes () — Fexa (7)) (5.6)
0

where Fgcs denotes the results for F(¢) from our variational approach based on GCS, and
Fexact 18 the exact numerical result. This accumulated error is plotted in Fig. 5.2 as a function
of N for the case with J = 0.3 which is the most nonfavorable for variational approach.
Remarkably, it is found that the error is suppressed exponentially by increasing the number
of basis functions, and the required N to get a satisfactory result is around N = 100, which is

considerably smaller than the corresponding Hilbert space dimension of the Fock basis.
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Fig. 5.2 (a) The accumulated error defined in Eq. (5.6) as a function of number of basis
functions; (b) The y axis is set as the log of the accumulated error with the base e. The
parameters of the system are taken from the panel (c) with J =0.3,U = 0.5 in Fig. 5.1.
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5.2 Truncated Wigner approximation

In this section, we offer a concise overview of the well-established TWA method, a significant
method dealing with dynamics in bosonic systems [141, 142]. This approximation utilizes
the Wigner representation, which is an alternative framework to describe quantum theory
in phase space [143]. The Wigner function of a quantum state in phase space is defined as
follows:

1 ° ,
Wig.p)= gy [ _o"x{a+31v) (vig =3P 57)

where the reduced Plank constant 77 = 1. g and p denote generalized position and momentum
vectors in high dimensional space, respectively.

Noteworthy, the Wigner function of a Glauber CS |56 > has the form of a Gaussian function
1 M o 5
=i H —pj)°—(a;—3;)7] (5.8)
=1

where §; = v2Re[;] and j; = v/2Im[;] are the real and imaginary components of the
displacement, respectively. In the TWA method, the evolution of the Wigner function is
governed by the Liouville equation, which omits all quantum corrections, which are of higher

orders in /2 [144]. The evolution can thus be represented as:

dw

e ={H,W(q,p)} (5.9)

where {-} symbolizes the Poisson bracket [139]. The Hamiltonian H in this context refers to
the classical Hamiltonian for the TWA of the BH model which can be obtained within two
steps. Firstly, we replace the the bosonic operators d; and d; with position and momentum

operators (g, p;) by the following relation

. Lo | P
4= (@ +ib)). &y = ()= ih)). (5.10)

As a result, the quantum Hamiltonian Eq. (4.2) is converted to

. 52+ H2\ 2 M 524 52
A=-J. qﬂ—_p,> _yy 4itrr (5.11)
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where the last term is from the commutation relation
G, ﬁj] :i&j. (5.12)

The second step is to replace the operators (§;, pj) with c-numbers (g;, p;), leading to the
classical Hamiltonian H

M

H = —JZ(%‘%‘H + pipiv1) + ) Z (
: i=1

2., 2.9 M 2., 2
qi+pi> q; + p;

I _UZ

i=1 =1

> . (5.13)

In this scenario, we have assumed periodic boundary conditions

qmM+1 =41, PM+1 — P1-

2 2
One can verify that the sum Z?il <q"+Tp") remains constant throughout the dynamics, as

indicated by:

{,_i (#) H} —0. (5.14)

This equation maintains the conservation of the average particle number under the TWA
method.

We note that the classical Hamiltonian Eq. (5.13) for the TWA method exhibits a subtle
difference from the one in mean-field theory. In the latter, the operators d; and a; are directly
substituted by the c-numbers o} = \/Li (gj+ipj)and aj = \/LE (gj—ipj) such that the last term
in Eq. (5.13) will not show up (if normal ordering is used). This distinction arises because
the TWA method accounts for the quantum fluctuations of the initial state in phase space
which is caused by the commutator Eq. (2.2). Consequently, the corresponding Hamiltonian
should also contain the effect of this non-commutativity.

Alternatively, the TWA method can also be implemented through a distinct process that
involves sampling initial values in phase space. This process starts by selecting a set of initial
conditions, denoted as (g, Py), based on the Wigner function as defined in Eq. (5.8). These
initial conditions are then used to integrate the classical equations of motion for the system,

which are formulated as follows:

2

o0H Q§+Pj

qj= O—,—pj =—J(pj+1 +Pj—1)+UPj(

) ~Up;, (5.15)

, OH 4+ p;
Pj:—a_q:J(QJ+1+le)_UQJ< : 2 J>+U6]j- (5.16)
j
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Here, ¢; and p; represent the time derivatives of the elements of the generalized position
and momentum vector, respectively. The values (g, p,) obtained through this integration
represent the evolved state of the system at time 7, and they can be used to calculate various
observable quantities.

An important aspect of the TWA approach is that it encompasses the complete quantum
information of the initial state within its Wigner function. However, the subsequent evolution
of the system is approximated using classical dynamics. This distinction is crucial as it
highlights the TWA method’s approach to dealing with quantum systems using classical
mechanics trajectories.

For the half-filling initial state, a key quantity of interest is the dynamics of the particle

population on odd-numbered sites. This can be quantitatively assessed using

Nodd = — Z Z (q‘+p‘ 1), (5.17)

J 1i=odd

where N represents the total number of sampled pairs (¢, p;). The term —1 in the numerator
of this equation stems from the commutator Eq. (5.12), when we replace the number operator
for the j-th site by

AT ql +pl _1

aja; =3 (5.18)

Therefore, it is necessary to subtract this additional term to accurately reflect the true
population dynamics.

5.3 Thermalization: classical and quantum

5.3.1 Eigenstate Thermalization Hypothesis

The thermalization of isolated systems is a fundamental topic in the study of non-equilibrium
dynamics. Central to this discussion is the Eigenstate Thermalization Hypothesis (ETH),
which argues that for a given local observable O, its expectation value in an eigenstate of a
generic many-body system is identical to the one in micro-canonical ensemble with the same

energy. This hypothesis can be translated into

<E0€|0’E[3> mC(Etx)saﬁ +Caps (5.19)
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where |Eq) and |Eg) are two eigenstates of the many-body system with eigenenergies E¢ and
Eg, respectively. Moreover, Omc(Eq) denotes the expectation value in the micro-canonical
ensemble with energy Eq, and ¢4 is a cross term which tends to be zero when the system
size is large [145-147].

As a consequence, considering an initial state expressed as a superposition of a set of

eigenstates:
=0)) =Y Aq|Eq), (5.20)
o
a sufficiently long time evolution will lead to [147, 99]

(O)r s = lim~ [ a ()| O] (0))

t—oo t Jo

=) Aa|*(Ea|O|Ea)
[0

=Y |Aa|*Omc(Eq), (5.21)

where (O), .. denotes the infinite-time average of O. If the variance of the initial state’s
energy E is small, Eq. (5.21) can be further approximated to be

Z\Aa\ Omc(Eq) = Onme Z|Aa|2 Dine (E). (5.22)

Eq. (5.22) indicates that after long time evolution, the local observables of quantum many-
body systems will finally reach the thermodynamic equilibrium predicted by classical statis-
tics. This holds true even if the system’s global state remains a pure state. Notably, the realistic
process towards thermalization has been studied in ultracold atomic gases [103, 148, 149].

While the ETH predicts the eventual equilibration of generic many-body systems after ruling
out some exceptional cases like many-body localization [147, 150], it does not give the
dynamical details of the approach towards thermalization. Specifically, we can not infer from
the ETH how the approach to thermalization in quantum systems deviates from classical
dynamics. In next section, we will focus on examining the process of thermalization within
the BH model through the application of our multi-layer GCS basis function expansion, and
conduct a comparative study between the quantum results obtained from our variational

approach and the classical results derived from the TWA method.
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5.3.2 Numerical results

Our investigation focuses on exploring the dynamics of an 11-site BH model under periodic
boundary conditions. The system is initialized in a half-filling multimode Glauber CS,

defined by the following set of parameters:
@ =[0,v2,0,v2,0,v2,0,v/2,0,v2,0].

In this configuration, the average particle number, denoted as N, is calculated based on the
sum of the squares of the coherent state amplitudes on the even-numbered sites:

N="Y |o*=10.

i=even
Quantum Results

To use the multi-layer GCS Eq. (5.3), we take the particle number S of GCS ranging in the
interval [3,20] to ensure the fulfillment of the fidelity condition presented in Eq. (5.2).

To ensure that our results are reliable, in Fig. 5.3, our analysis centers on the long-term
convergence behavior obtained from the variational approach, specifically examining how
this behavior varies with different ratios of tunneling strength to on-site interaction strength
J/U =0.25, 0.5, 1, 5, which is similar with what we have performed for the three-site case.
We use a logarithmic scale for the time axis in order to compress the (uniform) long-term
behavior. For each of the four scenarios, we have increased the number of basis functions N
as defined in Eq. (5.3) to test their convergence.

The results for varied U /J in Fig. 5.3 present a clear trend towards a stable convergence when
increasing the number of basis functions N in a large region. However, in the case of strong
interaction strength specifically for J/U = 0.25 as depicted in panel (a), it should be noted
that despite employing a greater number of basis functions compared to other cases, there still
remains a slight divergence among the different curves. For more extreme scenarios, beyond
what displayed in Fig. 5.3, such as the case with U /J = 0.1 in Fig. 5.4, the deviation becomes
more obvious, such that the number of basis functions needed to get stable convergence is
not clear. This suggests that in regimes of strong interaction, achieving convergence will be
more challenging, which is consistent with our previous discussion of the three-site case.
In the remaining three cases, especially in panels (c) and (d) of the figure with weaker
interaction strengths, we observe the onset of convergence even when the number of basis
functions N is relatively small, and the curves from different N match with each other closely.
Thus, it is safe to say that for moderate value of U /J, the results from the variational approach

lie in the correct dynamical region. We emphasize that the number of basis functions used
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Fig. 5.3 Convergence of population dynamics of odd sites for different values of J/U:
(a) J/U = 0.25 with Ut € [0,300], (b) J/U = 0.5 with Ut € [0,300], (c) J/U = 1.0 with
Ut € [0,50] and (d) J/U = 5.0 with Ut € [0, 100].

in our study, even for the case with the strongest interaction (as depicted in panel (a)), is
confined to several hundreds which is very small compared to the dimension of the Hilbert
space spanned by the Fock basis. In such systems, obtaining exact numerical results is
already very challenging due to the computational demands.

The results in Fig. 5.3 and Fig. 5.4 also reveal how the approach to thermalization in the
BH model is influenced by the interaction strength. In cases of weak interaction, where
tunneling is dominant, the system’s dynamics for Nyqq approaches an equilibrium value,

that is approximated by 6T110 indicating that the particles distribute evenly cross all sites.

This trend is accompanied by rapid oscillations because the weak interaction lifts the barrier
to the movement of particles between sites. On the other hand, strong interaction strength
tends to inhibit the dispersion of particles across different sites, thereby decreasing the rate
of reaching equilibrium. Particularly, as the tunneling strength and on-site interaction are

balanced, which is the case in panel (c) for J/U = 1, the system reaches its equilibrium state
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Fig. 5.4 Convergence of population dynamics on odd odd sites for J/U = 0.1 with Ut €
[0,300]

most rapidly. This balance facilitates a more efficient distribution of particles across the
system and leads to a quicker approach to thermal equilibrium.

Comparison to classical results

Due to the existence of a classical counterpart of the BH model, we can conduct a comparison
between the quantum dynamics from our variational approach, and classical dynamics
described by TWA method. This comparison, depicted in Fig. 5.5, reveals key differences in
how these two methods approach equilibrium under varying interaction strengths.

A striking difference between quantum and classical dynamics is observed in the cases
of J/U = 0.5 and J/U = 0.25. In these cases, the classical dynamics matches with the
quantum dynamics prior to Ut ~ 1, while it deviates noticeably from the quantum results
in the subsequent evolution and tends to reach equilibrium at a slower pace. This contrasts
with the results of weak interaction, where the classical and quantum dynamics approach to
equilibrium at a similar rate.

In addition to exploring the effects of interaction strength, we extend our study to investigate
how the average particle number influences the thermalization process in the BH model. For

this purpose, we consider an initial state characterized by the parameter set:

& =1[0,2,0,2,0,2,0,2,0,2,0]
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Fig. 5.5 Comparison between quantum dynamics and classical dynamics. System parameters
used here are same with the ones in Fig. 5.3: (a) J/U = 0.25 with Ut € [0,300], (b) J/U =0.5
with Ut € [0,300], (c) J/U = 1.0 with Ur € [0,50] and (d) J/U = 5.0 with Ut € [0, 100].
The blue lines for different U /J are from Fig. 5.3 with the largest N. The red dashed lines
are calculated by TWA method with 50000 trajectories employed to get stable results.

resulting in a larger average particle number N = 20. Accordingly, we adjust the range
of particle numbers S for the GCS basis functions to be within the interval [6,30]. This
modification ensures that our variational approach retains a high fidelity with the initial state.
In Figure 5.6, we present a convergence study similar to the analysis in Fig. 5.3, but with
the altered initial state. Interestingly, while the general convergence behavior in most cases
resembles that observed for N = 10, a notable exception arises for the case of J/U = 0.5. In
this scenario, achieving convergence proves more challenging than in the corresponding case
with a lower average particle number. This indicates that the ratio J/(UN) might serve as
a more appropriate parameter for understanding the dynamics of the system, as previously
demonstrated in studies involving Josephson junctions in Chapter. 4. The dynamics observed
in panel (a) of Figure 5.6 for J = 0.25 offers an illustrative example. These dynamics bear a

close resemblance to the result in Fig. 5.4 for J = 0.1, significantly because the ratios J /(UN)
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Fig. 5.6 Convergence of population dynamics of odd sites for varied J/U: (a) J/U = 0.25
with Ut € [0,300], (b) J/U = 0.5 with Ut € [0,300], (¢) J/U = 1.0 with Ut € [0,50] and (d)
J/U = 5.0 with Ut € [0,100].

in both cases are quite close. This similarity underscores the importance of considering the
combined effects of interaction strength and average particle number when examining the
dynamics.

In Figure 5.7, we repeat the comparative analysis between quantum dynamics and classical
dynamics for the case of larger particle numbers. The main conclusion stays the same as the
one derived from Fig. (5.5), but the onset of the discrepancy between quantum and classical
results is earlier in terms of the values of U /J. For example, a clear deviation can be observed
in panel (b) of Fig. 5.7, while classical dynamics stays more close to quantum dynamics with
smaller N in panel (b) of Fig. 5.5. This comparison proves again that taking into account the
average particle number N, can offer a more comprehensive view of how different factors
influence the approach to thermalization in the BH model.

The underlying reason for this discrepancy observed in Fig. (5.5) and Fig. (5.7) is definitely
attributed to the quantum effects which classical dynamics lacks. Intuitively, when time is
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Fig. 5.7 Comparison between quantum dynamics and classical dynamics. System parameters
are same with the ones in Fig. 5.3 except = 20. The red dashed lines are calculated by the
TWA method using 50000 trajectories.

small, strong interactions will *freeze’ the diffusion of particles by hindering their distribution
across the sites no matter in quantum or classical dynamics. Furthermore, by replacing y;
(equivalent to the @; in this section) with VN &; in the classical equation Eq. (4.32)

i& = —J(E +E1) FUNIEPE (5.23)

where &; represents the normalized particle density, it is clear that the constraint induced by
the nonlinear interaction can be increased by the average particle number N. However, as the
system continues to evolve, quantum tunneling which is absent in classical dynamics will
come into effect and will enhance the spreading of particles. We highlight that the quantum
effect is captured by the nontrivial coupling of different basis functions in the variational
approach, while in the TWA method, each trajectory evolves independently and classically.
In contrast, the constraints on the particle movement in cases of weak interaction are less

pronounced leading to a free spreading of particles in both quantum and classical models. As
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a result, the two approaches exhibit similar dynamics and rates of approaching equilibrium.
It is important to note that the above analysis only provides a possible interpretation of the
dependency of the thermalization process on interaction strength. Delving into the finer
details of this process, especially how to distinguish the roles of quantum tunneling and
quantum interference in the quantum enhancement would require a more in-depth study
beyond the scope of numerical simulations. Nonetheless, these observations offer valuable

insights into the distinct behaviors of quantum and classical systems.






Chapter 6

Entanglement in boson sampling

In the previous chapter, we have demonstrated the significance of GCS in the time-dependent
dynamics of the BH model. In fact, the GCS-based approach can also be employed in
other systems that preserve the U(1) symmetry, such as linear systems with up to quadratic
Hamiltonians. Notably, the problems related to the linear optical network have gained
considerable attention both in theoretical studies and experiments, a representative example
is the boson sampling (BS) problem [151, 152]. While the structure of the linear optical
network might appear more straightforward due to the absence of nonlinear interactions,
estimating its output state remains a challenging task. In this chapter, we will illustrate
the application of GCS in such linear systems, with a primary emphasis on analyzing the
entanglement of the output state.

Entanglement, as first formulated by Schrodinger in 1935 [153], is one of the most striking
properties of quantum systems, and it is also at the heart of quantum information, quantum
computation, and quantum cryptography [154]. Entanglement is a fundamental resource for
performing tasks such as teleportation, key distribution, quantum search, and many others;
therefore, the calculation of entanglement and related measures [155] in lattice Hamiltonian
has gained considerable interest [156—160]. Buonsante and Vezzani, e.g., have performed
entanglement studies to investigate quantum phase transitions in the BH model [156]. In
[161], it has been pointed out that even for non-interacting particles, bosonic entanglement
creation outmatches the fermionic case due to the larger Hilbert space in the former case
[162]. Moreover, understanding the build-up of entanglement, e.g., after a quench (a sudden
change of the underlying Hamiltonian) is a central focus of the quantum many-body field
[163], and an efficient simulation of quench dynamics on a classical computer would be a
valuable resource [164]. A commonly used measure for estimating the entanglement is given
by the Rényi entropy in a bipartite many-body setup [165].

However, the rapid growth of entanglement in many-body systems causes a severe problem
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to efficient numerical simulations. In lattice systems relevant for solid-state physics, e.g.,
matrix product state (MPS) based calculations are mainly favorable for area law scaling
of the entanglement growth [11], which usually conflicts with a typical non-equilibrium
dynamics. Similar problems are also encountered in linear systems, although without
involving interaction between particles, and a well known example is the BS problem.
Although the output state of BS does not follow an area law [159], in [157], the usage of
MPS has been advocated for BS (as well as for a fermionic circuit). Therein, results for
moderate particle and small mode numbers have been presented. The efficiency of these
numerical calculations relies on the restriction to a small bond dimension, which, however, is
not favorable for the rapid growth of entanglement.

The motivation of discussing the BS problem in the framework of the GCS is natural. The
linear optical network is a straightforward setup for the GCS. It is expected that if the input
state is a single GCS, the output state obtained through a unitary transformation will remain
in the form of a GCS since the transformation preserves the symmetry as shown in the
following sections. Furthermore, by means of the so-called Kan’s formula [166] which
will be discussed in detail below, the Fock state, which is the input of standard BS can be
represented by a linear combination of GCS, which shares the same structure as our Ansitz
used in Chapter. 4. This favorable representation indicates that the relationship between the
input and the output can be established by applying a straightforward transformation to each
GCS. The combination of theses advantages indicates that GCS will serve as a powerful
basis for the BS problem.

6.1 Introduction to Boson sampling

A quantum computer, which benefits from quantum resources such as entanglement, can
present some unique advantages when addressing certain problems which are intractable for
classical computers. However, quantum systems are generally not isolated and are vulnerable
to external noise. This environmental influence can cause quantum systems to deteriorate
into classical systems which results in computational errors. Although numerous strategies
have been proposed to mitigate these errors [167—-172], the construction of a practical and
universal quantum computer is still a significant challenge in the foreseeable future. On the
other hand, some non-universal quantum computers have been designed to demonstrate the
quantum supremacy in some specific problems. Most importantly, these specialized quantum
machines typically require less complex architecture than their universal counterparts, which
might make them more achievable in near-term experiments.

BS as a non-universal quantum computational model has been proposed to prove the ad-
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Fig. 6.1 The setup of BS, where three single photons are input into a linear optical network
with 7 modes. This figure is originally from [176]. On the left side are single photon sources,
the middle part consists of a linear optical network and the right side is a set of detectors.

vantage over classical computers, as BS is related to the calculation of the permanent of
matrices, which has no efficient classical algorithm [173]. The standard framework of BS
comprises three essential components. Firstly, a group of single-photon sources is used to
produce a product state serving as the input. For instance, the input state could be denoted as
111...100...) where the first several modes are filled with single photons, and the remainder
are unoccupied. However, creating a perfect single-photon source still remains a challenging
task in experiment, hence Gaussian BS which employs a Gaussian state as its input has been
extensively investigated as an alternative [174].

The second component is a liner optical network which is composed of beam splitters and
phase shifters. Theoretically this network is characterized by a Haar random unitary matrix
(HRU). This matrix is based on a uniform distribution and has no special structure apart from
being unitary. The dimension of the matrix M, equal to the number of modes, is required to
be much larger than the number of particles S on the order of M > S2. such that the so-called
collision free subspace (CFS) condition is satisfied, in which the particles will not collide with
each other [151, 175]. Quantum interference will come into play when identical particles
pass through this network, and such interference will give rise to a complicated output state
which is a linear combination of all possible Fock states with fixed particle number S. The
final component of the BS setup is the output port, where M detectors are used to measure the
photon distribution over M modes. Under the CFS condition, every mode is ideally occupied
by a single particle. Therefore, simple bucket detectors can be employed to verify particle
arrival, eliminating the need to count the particle number. The schematic of BS is displayed
in Fig. (6.1) taken from [176].
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6.2 Boson Sampling as a unitary evolution

The quantity of interest in theoretical studies of BS is the probability P for a given con-
figuration C of S photons distributed over M detectors in the CFS case, where M > § and
every mode is maximally singly occupied. This probability is related to the permanent of a
submatrix of a (Haar random) unitary matrix with entries U;; [177]. To see this, we briefly
review the BS formalism by looking at the full state vector expressed in the Fock state basis
{Im)}. It is given by [152],

%) = R(UT)m) = 3 xclm), (6.1)
C
where the evolution of the initial state |n) = |ny,no,...,ny) is expanded in terms of the set
{|m) = |mj,my,...,my)}. Now in the CFS case
Yo = (m|R(UT)|n) = per(Unm), (6.2)

where Upn is prepared by taking ny copies of the k-th column and my copies of the k-th row

of the full matrix U. Thus, the probability, mentioned above, is identified as
P(C) = WC’z = ‘per(Unm)‘z- (6.3)

For the instance of three photons, initially in the Fock state |1,1,1,0,0,...) and finally in

11,0,1,0,...,0,1), the submatrix is constructed as follows:

Unr U U

Unm=| vy Up Uy |- (6.4)

Ui Umz Uums
Furthermore,

per(A) = Y I Ak, (6.5)

oecs
with ¢ the vector of permutations of (1,2.....S), denotes the permanent of the matrix A, which
is defined analogously to the determinant but does not have the alternating sign in its definition

and therefore is much harder to calculate because, generally, per(AB) # per(A)per(B).
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Permanent calculation is one of the prime examples of #P-hard problems in the field of
computational complexity [173].

For an n X n matrix, the scaling of the numerical effort for its calculation via Ryser’s formula
[178] is of €'(n*2"), or €'(n2") using Gray code [179], as compared to &'(n*>7?) for the
determinant. We note that all these scalings are much better than that of Laplace expansion
introduced in standard textbooks, which is &'(nn!), but they are still exponentially expensive.
The world record for numerical permanent calculation has just been pushed to matrices of
sizes as small as 54x54 [180].

To make an analogy with unitary time evolution over one unit of time, we write the rotation

operator appearing in Eq. (6.1) as
R(UT) = exp(—iH) (6.6)

with the help of the beam splitting Hamiltonian

A

A=a"®a, ® =ilnU7, (6.7)

where a (&T) denotes the column vector of annihilation (creation) operators on the M modes
and @, in general, is a full M x M Hermitian matrix with entries ®;; [181]. The action of the
rotation operator on the elements of the vector of creation operators is then given by

ROUMARUTY = Y (i a]]

|
m=o

> 1
_ AT A AT
= % —1Zd>kjaka],al]
m=0 kj m
> 1
=Y - (-iatTer
m!
m=0
—a'T exp(—i®);
— Y uyal, (6:8)

where we have used the Baker-Haussdorff (or Hadamard) lemma [182] and ®}" denotes the
i-th column of the m-th power of ®. To generate the numerical results presented in Sec.6.4,
we used the Matlab code for the creation of Haar random unitary (HRU) matrices provided
by Cubitt [183].



96 Entanglement in boson sampling

6.3 Application of the GCS bases

In the previous chapters, we have discussed the applications of the GCS defined by Eq.
(2.1) for the non-equilibrium dynamics of many-body systems. For linear systems without
interactions, using GCS as the initial state leads to a straightforward solution of the dynamical

problem by the rotation operator, Eq. (6.8), which can be shown as follows [184]

¥)ou = R(UT)S, E)

(6.9
where in the second line we have introduced R (UTT), using the fact that
R(UMT|0,0,...) =exp(if)|0,0,...) =0,0,...), (6.10)

because the annihilation operator acting on the vacuum state produces zero. From the above
derivation, it is clear that the output state after the transformation is still a GCS just with
updated parameters. This outcome suggests that if the input can be represented in terms of
the GCS, the GCS form of the output state will be maintained. This task will be accomplished

in the next section.

6.3.1 Exact representation of the initial state: Kan summation formula

In the following, we take a direct approach to the unitary evolution in the BS problem without
invoking the variational principle [184]. In Chapter. 4, the time-evolved state is written in
terms of the GCS as

w() =Y Au(0)]S, &), 6.11)

M=

where Ek = (&k1,Ek2,- - - Ekyr) denotes a time-dependent vector of complex-valued GCS
parameters and with multiplicity index k ranging from 1 to N. In this general form of the

wavefunction, both the expansion coefficients {A;} as well as the GCS parameters are in
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principle time-dependent and complex valued. We can, however, refrain from the explicit
time-dependence of the coefficients, if the exact expansion of the initial state in terms of
GCS is used, as will be shown below. Applying the HRU of boson sampling from Eq. (6.6)
amounts to evolution over the complete unit time interval (¢ = 1), but below, we will also
consider finite time evolution, which is characterized by an exponent of the unitary operator
exp(—iHt), where ¢ € [0, 1]. This will allow us to study the build-up of entanglement, similar
to the case of dynamics after a quench [185].

For the applicability of the proposed approach, it is decisive that the initial Fock state can be
represented in terms of GCS since the product state is chosen as the input of the BS. This
puzzle can be solved exactly analytically by the use of Kan’s formula for monomials (a single

product of powers) [166]

xsilx;z . ’;n_S' Z Z Y 1v, f/nz (thl) , (6.12)

where S = 51 + 57 + ...s,, With integers s; > 0 and h; = 5;/2 — v;. The simplest case of this
formula is elucidated by the equation

1 1
XXy = Z(xl +x2)% — Z(xl —x)%,

where we only consider two formal variables x| and x,, and both s and s, are set to be 1.

S
We observe that the term (Z?Zl h,-xi> on the right hand side of Eq. (6.12) has a structure
appearing also in the definition of the GCS given in Eq. (2.1). By replacing the formal

T

variables x; by creation operators d;, we are thus able to build the (exact) relationship

between Fock states and GCS according to

1 A A A
1,52+ 01) = —=meey (@)™ (@) -+ (G3)™[00--0)

_mf): vMZo 1)ZE v
<x>(;|hi|2) ﬁ(;éid}smm

1 (S]+1)(S2+1)~-'(SM+1)

- y AclS,E). (6.13)

S1!S2!--~SM. k=1
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The initial coefficients and parameters of the GCS thus are

S/2
):’-‘flvk~ S1 Sm <Z§‘i1 ’hki|2>

A= CDER) () S 614

> 1
&k = M—(hkhhk%"‘ i), (6.15)

Yoty [hl?

where {h;;} = {3 — vk} and the set of {Vii,Vio,--, Vim} represents the k-th possible
combination of vi = {0,1,---,s1},va ={0,1,--- ;s2},---,var = {0, 1, ,sps}. The factor

S/2
?il |hkl~|2> has been introduced in the definition of the coefficients in order to normalize

the GCS parameter vectors.

For the special case s1 = sy =--- =55 =1, we have (S < M,N = 25-1
N Ed
[11---100---0) = Y A(lS, &) (6.16)
k=1
where

(2211 |hki|2>S/2

A= (—l)z’ilvki(v}d) (v,is) NG ’ ©.17)
{hi}y = {% — Vki} : (6.18)
vi = {0}, v, = {0,1},---,vs = {0,1}, (6.19)
Sks1="=&m=0. (6.20)

Here, we note that there is a redundancy in Kan’s original formula (6.12), already noticed by
Kan himself. This results in the fact that we can reduce the multiplicity sum from N = 25
to N = 257! terms by fixing the first index v, to be zero. In passing, we note that the Kan
formula underlying the present procedure thus involves an exponential scaling in the particle
number of the required number of GCS basis functions. The numerical overhead in terms of
mode number scales polynomially for a given number of particles, and thus we can handle a
larger number of modes efficiently. Overall, this is in clear contrast to the typically much
more demanding factorial scaling, according to (M +S — 1)!/[S!(M — 1)!], of the number of

basis functions that would be required in a Fock space calculation.
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6.3.2 Unitary evolution

With the boson sampling setup in mind, we now assume that the input state is the Fock state
[11---100---0), which we just discussed, and that the linear optical circuit is described by
the rotation operator R from Eq. (6.6). Using Egs. (6.8,6.9) and (6.13), the output state (at
t = 1) can then be written as
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In contrast to an expansion in terms of Fock states, the GCS expansion coefficients (ampli-
tudes) stay constant at all times and the GCS parameters {(&;)out} characterizing the output
state can be obtained by the matrix product

&1 &1 Un Ui - U
& & Uy Ux - Uwmw
- . (6.22)
En En Un U2 - Uum
out in

In Appendix D, we show that the above output state allows for a rederivation of Glynn’s

formula for the permanent [186], given by

per(U) = (11---1|W)out
1 M1 M M ~
= 50T L (1) T %O
k=1 i=1 m=1

1=

(6.23)

Y
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where M = S and U,, is the m-th column vector of the matrix U. The vector X is defined in
Appendix D.

6.4 The entanglement entropy

In the following, we investigate the creation of entanglement by application of the unitary
operation of boson sampling [184]. The initial Fock state of the unpartitioned system is not
entangled because it can be written as a single product of single particle states. A single GCS,
in general, however, does not have this property, as can be inferred from its definition (2.1)
as well as the discussion in Sec.2.4. Due to the important property of a single GCS being the
ground state of the free-boson model, its entanglement properties have been studied in great
depth by Dell’ Anna, using the reduced density matrix [160].

6.4.1 Bipartitioning and Rényi entropies

In contrast to the single GCS case, we now consider the multi-configuration case, with the
state |¥) being the superposition of multiple GCS, according to Eq. (6.11). Partitioning the
system into a left and a right part, the (final) density operator of the full system is

k,j=1
1 & X S\ /S ; ;
=5 Z Z Ag j( )( ,)\/n!(S—n)!n!(S—n)!
“n' n=0k.j=1 n n
S —n, &) (S —n &7 @ |n,E ) (n E gl (6.24)

where the sum in the definition of the GCS, Eq. (2.1), was split in two parts (L and R), a

binomial expansion was used, and where the two unnormalized GCS are defined by

. M; S—n
|S—n,§z>:\/ﬁ <;§iaj> 00---0), (6.25)
— M "
|n,§,§>:¢%< Y gidj> 00---0). (6.26)

i=Mp+1
The fact that these GCS are not normalized is indicated by the tilde over the symbols L as
well as R.

The reduced density matrix of the left subsystem can then be derived by tracing over the right
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one. Using the fact that GCS with different particle numbers are orthogonal to each other,
this yields
pr=Trr(p)

S S N . . B B
-L (n) Y ArAG(n, Sl Si)| S —m ) (S =, &, (6.27)
n=0

k,j=1

Going into Fock space, the density matrix corresponding to the above density operator,

analogous to Eq. (5) in [160], can thus be written in block diagonal form
. 0) (1 N
p, =diag(p)”.p", . p), (6.28)

where the uncoupled blocks p(Ln) describe a distribution of n particles on the right side and

S — n particles on the left side of the cut. The elements of the blocks are given by

p = ( ) Y cwrwt (6.29)
) k=1
with the coefficient
i) = M (n, Egln. &z (6.30)

and where the vector Wk(n) is filled by the entries (nny - --npy, |S —n, Ekz> with Zﬁ.‘iﬁ ni=_S—n.

The product of the column vector with the row vector is a matrix but in the reverse order
(row times column) it is the scalar

S—n
— - My,

where, for the overlap between GCS, a formula from the appendix of [104] has been used.

Due to ease of computation, as a measure of the entanglement of the left subsystem after the
application of the unitary matrix of boson sampling, the linear entropy S; = 1 —Tr(p?) [177]
as well as the second order Rényi entropy (see below) are frequently used. For computational

purposes, to be explained more explicitely below, for the purity, it is favorable to use the
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expression
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where we have used that the trace of the product of two operators amounts to a scalar product
(step from line two to line three). This result can be specified to the case of the boson
sampling problem by expressing the GCS parameters after the application of the HRU in

terms of the Hermitian matrices

AL:(%_’I7%_‘27""%ML)'(%7%7"'7%_‘ML)T (633)
Ag = (%_'ML—FI;?ZML—F% Tt 7622M) : (QZML-FD@‘ML-Q-Z’ T 7%_)M)T (6.34)

derived in Appendix E and where ?2 is the truncated vector U; with only the first § entries.

There also the purity is reexpressed as

weh = (5)" Y

25-1 g
T= x ST\S—n/= r —T= =T
Z Hxk,x],xk/,xj,)(xk/AijxkAij,) "(xkAijxk/Aij/)". (6.35)
k.jk,j=1i=1

This formula allows us to write the purity in terms of particle as well as mode number and
the entries of the unitary matrix U only, not making reference to GCS any longer.

The previous form of the purity, given in Eq. (6.32), with the output GCS parameters {Ek}
from Eq. (6.22), however, is better suited for numerical purposes, as it can be calculated
easily in matrix language. Also, there is no need to calculate the eigenvalues of the reduced

density matrix for typically huge Fock space dimensions, which would be necessary to



6.4 The entanglement entropy 103

calculate the von Neumann entropy

S
Sw=—Te(p,Inp;) =~ Y Tr(p}" Inp["”). (6:36)
n=0

In the focus of the results section below thus are the so-called Rényi entropies

Sa = I _1a InTr(pf). (6.37)
For a = 2 the purity just discussed is needed for its calculation. In the general case, higher
powers of the density matrix have to be considered, however. This can be done along lines,
similar to those of Eq. (6.32). The quadruple sum over the multiplicity indices would, e.g.,
turn into a sextupel sum for o¢ = 3. We stress that the number of terms in every sum can
be reduced to 25~! by using the non-redundant Kan formula mentioned above. A relation
between the Rényi entropy and the von Neuman entropy that we will refer to below is
SyN = limg_s1 S¢, and it is well-known that §; > S> > S3... [187]; see also [188] for a recent
discussion of Rényi entropy inequalities in the context of Gaussian boson sampling. For the
one-dimensional XY spin chain some useful exact results for Rényi entropies as a function
of o are available [189]. Rényi entropies for noninteger values 0 < o < 1 are discussed in
[190]. An experimental approach to measuring Rényi entropies employs the preparation of
two copies of the same system and measuring the expectation value of the so-called swap
operator. It has originally been devised to investigate quench dynamics in Bose-Hubbard
type lattice Hamiltonians by Daley et al. [191].

6.4.2 Numerical results for the caser = 1

We first focus on the case ¢ = 1 of time evolution with the full unitary matrix. All the entropies
are calculated by averaging over different realizations of the HRU matrix, analogous to the
analytic work by Page [192]. Individual realizations (not shown) do not differ much from the
plots to be shown below, however. Firstly, in Fig. 6.2, the Rényi entropy for index o =2 as
a function of subsystem size, corresponding to the locus of the bipartition, is depicted for
different photon numbers, ranging between 8 and 12 (single realization calculations for 14
photons (not shown) are also possible within a few hours on a standard workstation). The
total number of modes in all cases is 200, and the displayed Page curves are all symmetric
around bipartition mode number 100, in contrast to the asymmetric curves in [157]. For a

subsystem size smaller than S, the entropy follows a volume law (see also the discussion in
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Fig. 6.2 Rényi entropy (averaged over 100 realizations of the HRU) with index o =2 as a
function of the size of the left system for different photon numbers, ranging from S = 8 to
S = 12, in the case of a fixed number of modes (M = 200).

the following subsection), and the maximum entropy ! is displayed for splitting the system
into two equal halves. The scaling of this maximum entropy with particle number is linear,
as shown in Fig. 6.3. We stress that the Rényi entropy is a lower bound for the von Neumann
entropy, and our exact results can be taken as a benchmark for other, purely numerical
calculations. Furthermore, we note that we can observe asymmetric curves for the entropy if
we consider exponents ¢ < 1, as will be discussed in the following subsection.

Secondly, the Rényi entropy for different index « as a function of subsystem size in a system
with § = 10 and M = 500 is depicted in Fig. 6.4. Again, for subsystem size smaller than S, a
volume law is found with the slope depending on the Rényi index. Changing the number of
photons does not qualitatively alter the results. They show that by increasing ¢, the entropy
is monotonically decreasing (in complete agreement with classical results from symbolic
dynamics [187]), and the functional form turns from concave to (almost) convex (the second
order derivative (assuming the abscissa to be a continuous variable) of the blue curve in
Fig. 6.4 is negative, whereas the second derivative of the green curve is almost everywhere
positive).

Interestingly, the maximum of the entropy (at M = 250) for § = 10 is only slightly dependent
on the Rényi index but we stress that the deviations of the maximum are not finite size effects,

as shown in Fig. 6.3, for different index the maximum entropy will increase linearly with the

Defined as the maximal value of the entanglement entropy as a function of subsystem size (after averaging)
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Fig. 6.3 The maximal Rényi entropy (averaged over 100 realizations of the HRU) as a
function of particle numbers for different o with fixed M = 200.

particle number (with an decreasing slope for increasing ) , when the mode number is very
large. Particularly, the slope of the line for o = 2 is In2. The fundamental physics behind
this is that, when the system is cut in the middle and particles are input through the first S

modes, the output state can be presented as

S
|‘P>out = H(UiL&z+UiR&;L€) ’00"'0>
i=1

25
=Y ()i 9R): (6.38)
=1

where ljl-L is the vector consisting of the first M /2 elements of (7,~, and &z is the vector of
creation operators for the first M /2 modes. Moreover, the index [ in the second line denotes
the possible configuration of the output state in Fock space. A concrete form of |y); is
presented as follows

) = [] OFajlo) (6.39)

i€Gy



106 Entanglement in boson sampling

where G; is a group of some possible integer numbers from 1 to S. The factorial form of

| W), results from the assumption that
[Uta},Uta)] = &;. (6.40)

This commutation relation is valid under the CFS condition as different input particles will
not occupy the same modes in the output ports.
As the Haar random matrix is uniformly distributed, we have

UF|? ~ |UF)? ~ (6.41)

| =

which holds for every i. This means each particle can appear in the left partition or the right
partition equally. The corresponding reduced matrix of Eq. (6.38) after tracing out the right
part | iz); is a diagonal matrix filled with the same element 1/25, which gives the largest 2nd
order Rényi entropy,

Sin2.

The derivation for the maximal entropy of the output state can be found in [193]. The fact
that we can calculate Rényi entropies for many different values of o would allow us also to
study entanglement spectra [194].

Finally, we studied the maximum Rényi entropy (at equal partition) as a function of the total
mode number in Fig. 6.5. All the curves shown are almost saturating as increasing M, so
the maximum entropy tends to stay constant from a certain size. We checked the case of
M > 1000 and still found a slight increase, though. This finding corroborates the assumption
that in order to fully reach the so-called CFS limit, it might be necessary that M > §°log? S
[175]. Thus, in essence, the finding of this last numerical result is that, under CFS conditions,
the maximum entropy that the application of the unitary can yield is achieved. We also stress
that the initial quick increase of the maximum entropy, which we observe for small mode
numbers and which is also seen in a similar setup [195] is broken for higher mode numbers.
The scaling of the maximum entropy with respect to particle number can be extracted from
Fig. 6.2. This scaling is linear, corroborating the finding displayed in the last entry of Table I
in [196], but in contrast to the observation of a logarithmic scaling in [159] for a nonlinear
optical network. It is also worthwhile to note that although there is still an increase in
entanglement for large mode numbers (at fixed particle number), the numerical effort to
produce the results is not growing exponentially with M since the number of basis functions

is not changing.



6.4 The entanglement entropy 107

—_—=2 - a=5 ~
-
===a=3 -*-a=6 e

[N
T

Entropy

50 100 150 200 250
Subsystem size

Fig. 6.4 Rényi entropy (averaged over 100 realizations of the HRU) as a function of bipartition
mode number for different o for fixed S = 10 and M = 500. Only the left side of the
symmetric curve is depicted. The inset shows more clearly that the curves do not converge to
the exact same maximum.
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Fig. 6.5 Maximum Rényi entropy (o = 2) averaged over 500 realizations of the HRU as a
function of mode number for different particle numbers S.
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6.4.3 Build-up of entanglement

In this last section, we mimic the build-up of entanglement by choosing the power of the
unitary matrix (which in the previous section was given by ¢ = 1) to be somewhere inside
the interval t € [0, 1]. The parameter 7 then plays a similar role as does time in a study of the
dynamics of a many-body system after a quench (sudden change of the Hamiltonian) [185].
In panels (a) and (b) of Fig. 6.6, where we took different roots of the HRU, it is revealed
that for small values of ¢, the diagonal elements of the resulting matrix (a single matrix is
displayed, we did not take an average) are still dominant, whereas for ¢ closer to unity, the
structure along the diagonal gets washed out. For the case t = 0.8, displayed in panel (b), it
is barely visible any longer, as the matrix elements tend to be fully random. The result of
applying the evolution matrix to the initial state, according to Eq. (6.22), is represented in
panels (c) and (d) of the same figure. Increasing ¢ leads to a transfer of population to mode
numbers that are further and further away from the initially occupied ones. Thus at t = 0.8 a
more even distribution of the population over all modes is observed.

(a) t=0.4 (b) t=0.8
- 50
= 0.8 0.8
40
0.6 0.6
30
04 0.4
20
0.2 ..
10 0.2
10 20 30 40 50 10 20 30 40 50
(C) t=0.4 (d) t=0.8

wn

30 0.25 30 0.25
25 25

0.2 0.2
20 20
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15 15

0.1 0.1
10 10

0.05 5 0.05

0 0

10 20 30 40 50 10 20 30 40 50

Fig. 6.6 Panels (a) and (b): absolute values of the elements of different powers ¢ of the HRU
matrix with M = 50; panels (c) and (d): absolute value squared of the GCS parameters &; as
a function of mode number (x-axis running from 1 to M) and multiplicity index (y-axis for
S = 6 running to N = 26-1 = 32).

The corresponding results for the entanglement shown in Fig. 6.7 are similar to the ones in
[193] as they show a linear increase with particle number of the maximum entropy in the
asymptotic regime. However, our results do not show an almost linear increase with time

[197, 185] before the asymptotic regime is reached. This may be because a local coupling is
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Fig. 6.7 Maximum Rényi entropy (o = 2) as a function of ¢ (time) averaged over 100
realizations of the unitary for different particle numbers S and fixed mode number M = 200.

employed to generate the results in [185]. In contrast, in our case, for all # < 1, the coupling
is still fully nonlocal (taking the logarithm of the unitary matrices). In our results, a quadratic
increase is followed by a linear one, and the maximum entropy is reached already at r = 0.45
regardless of the particle number. Thus, although the population has not been distributed
evenly across the system (see Fig. 6.6), the entropy has already reached its maximum.
Another important observation is that if we rescale the maximal entropy with 1/S, these
different curves will converge into a single one displayed in Fig. 6.8,and the maximal value
achieved is In2, which we have already extracted from Fig. 6.3. This indicates that there
exists an universality, independent of the particle number in the entanglement dynamics.
Finally, in Fig. 6.9 we show the full entropy curve as a function of subsystem size for different
values of t for § = 10. The graphs display an asymmetric shape with a cusp-like structure
at bipartition mode number equal to the particle number S = 10, due to the choice of the
asymmetric initial state. The cusp gets smoothened out and the curves become more and more
symmetric for larger values of #. At¢ =1 there is no "memory" of the unsymmetric initial
state left. For bipartition mode numbers smaller than ten, we always find a linear increase of
the entropy, corresponding to a volume law, as already mentioned in the discussion of Fig.
6.2. As also mentioned earlier, the maximum entropy is reached already at r = 0.45. It is,
however, not located at symmetric bipartition if the exponent is not equal to unity. For t < 1,
the correlation between the left (initially populated) and the right (initially unpopulated) part

is not fully developed; thus, the entanglement will decrease for bipartition mode numbers
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Fig. 6.8 The rescaled maximal Rényi entropy (& = 2) as a function of ¢ (time). The entropy
is divided by corresponding particle numbers S for each curve in Fig. 6.7.

above 10. For t — 0, as expected, the entropy will shrink to an overall constant value of zero
without a cusp.
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Fig. 6.9 Rényi entropy (¢ = 2) averaged over 100 realizations of the HRU as a function of
mode number for different depths and fixed particle number S = 10.
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6.4.4 Linear optical network with layers

In experimental setups and also theoretical studies [157, 193], the linear optical network
is constructed in layers, and each layer consists of beam splitters, which only act on the
adjacent modes, and the on-site phase shifters. A typical schematic is displayed in Fig. 6.10.
In theory, each beam splitter is characterized by a 2 x 2 Haar random matrix. Compared to
the global Haar random matrix we discussed above, this local matrices will give rise to a
different behavior of the entanglement dynamics, because intuitively, the local operation will

slow down the spreading of the entanglement.
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Fig. 6.10 Linear optical network with the layer structure. The orange bricks mean the on-site
phase shifters and the crossings denote the beam splitters which couples the adjacent modes.
This figure is taken from [193].

In Fig. 6.11, we show the dynamics of the maximal entropy as a function of network depth,
and every depth contains two layers-one coupling the odd sites and the other the even sites.
The input state we use is still [11---100---0). We can observe that the maximal entropy
initially shows a logarithmic growth which is consistent with the result in [193], and for
small particle numbers, using a maximal depth of 100 layers leads to the saturated results.
Although the curves for large particle number still continue to increase for larger depth, the
ultimate saturated values achieved are identical to those found in the cases with the global
network.

In Fig. 6.12, we gradually increase the depth of the network, denoted by L, from 50 to 5000,
and for each depth we compute the entanglement entropy as a function of the subsystem
size. This figure can be compared to Fig. 6.9 where time rather than depth is used and the
Haar random matrix is global. It is shown that when the depth is shallow, the distribution of
the entropy is confined in the first several modes. Beyond this region, the entropy tends to
diminish, while in Fig. 6.9 the entropy remains nonzero even the position of the bipartition
is remote. When the depth is increased, the maximal entropy for each depth also increases
until the saturated value is reached, and the distribution of the entropy becomes more broad

and symmetric, which is similar with the results in Fig. 6.2. This suggests that we can use
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Fig. 6.11 The maximal 2nd Renyi entropy of a bipartition as a function of the depth defined
in the main text. The curves for different particle numbers S = 6,7, 8,9, 10 with fixed number
of modes M = 100 are drawn with different colors. The results are averaged over 100

realizations.

the optical network with local Haar random matrices to simulate standard BS, as long as the

considered depth is large.
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Fig. 6.12 The entropy as a function of the subsystem size for various the depth of the network.
The particle number S = 8 and number of modes M = 100. The results are averaged over

100 realizations.



Chapter 7
Summary and Outlook

In this work, we have studied the application of GCS for the quantum dynamics of many-
body systems. The results, in the main text from Chapter 2 to Chapter 6, are summarized as
follows.

In Chapter 2, we have delved into the properties of GCS. The definition of GCS we have
used in this thesis shows that GCS describe an ideal condensate where all particles occupy a
single-particle state. This state can be created by applying a generator of the SU(M) group
to an extreme state. Moreover, we have revealed that GCS are intimately related to the
standard Glauber CS in several ways: 1) Glauber CS can be expanded in terms of GCS
with different particle numbers; 2) annihilation operators have similar effects on these two
states; 3) both states constitute overcomplete and non-orthogonal basis sets, whereas GCS
are only overcomplete in the subspace with fixed particle number. Despite these similarities,
the two sets of states also have some different properties, such as the conservation of particle
numbers which GCS adhere to. Another noticeable difference being entanglement, where
GCS is an entangled state, while a multi-mode Glauber CS is a product state.

In Chapter 3, we have studied the non-equilibrium dynamics of GCS and Glauber CS driven
by nonlinear interaction. The nonlinear effect has been presented through a look at the
dynamics of the Husimi function of the evolved Glauber CS. Our analytical derivations have
confirmed that the two-point correlation functions of the evolved GCS are equivalent to
those of the evolved Glauber CS in the thermodynamic limit, where the particle number and
the number of the modes are infinite but their ratio is finite. However, their autocorrelation
functions, which measure the amplitude of the survival probability, are not simply equivalent.
We have demonstrated that these functions are related by a Fourier series of the overlap
between the evolved Glauber CS and the initial state up to a phase. We have used this finding
to explain the vanishing of the survival probability of the evolved GCS, which corresponds

to kinks of the dynamical free energy density, calculable exactly by the generating function
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method. Furthermore, we have drawn the Husimi function of the evolved Glauber CS in
phase space, where the survival probability is determined by the relative position between
the Husimi function and a circle in phase space with a radius equal to the amplitude of the
displacement of the CS. Specifically, when the distribution of the Husimi function is far from
the circle, the survival probability will rapidly decrease to zero. However, if the value of the
displacement is large, then the Husimi function tends to distribute over the circle, such that
the full integral of the Fourier series should be calculated. We further demonstrated that the
conclusion about the autocorrelation can be generalized to the case of a generic Hamiltonian.
In Chapter 4, we have investigated the dynamics of the Bose-Hubbard (BH) model, involving
the nonlinear interaction and the tunneling term. To deal with this complex system, we
have developed a basis function expansion consisting of a linear combination of a set of
GCS. Both expansion coefficients and the characteristic parameters of the GCS have been
treated as variables, and their equations of motion have been obtained from the TDVP. We
have applied this basis function set to the nonequilibrium dynamics of the BH model. The
usefulness of the variational approach was verified by gradually recovering quantum effects
with increasing numbers of GCS basis functions.

In the first example in Chapter 4, we have discussed some dynamical properties of the
bosonic Josephson junction, described by the two-mode BH model. In such a toy model, the
classical phase space is characterized by the particle imbalance z, and the relative phase ¢
between two wells. For initial points in proximity to the classically stable fixed points, just a
handful of basis functions suffice to reproduce the quantum beating effect. But for initial
points distant from the stable points, the quantum beating effect is amplified accompanied by
a substantial phase fluctuation, such that more basis functions are required to recover this
fluctuation. For A < —1 defined in main text, quantum trajectories around the unstable fixed
point exhibit chaotic behaviour when the particle number is small. However, large particle
numbers can lead to the emergence of the regular dynamics similar with the classical ones.
At last, by recalling the Husimi distribution again, we have provided a more precise criterion
compared to the mean-field theory for the onset of the SSB with merely two basis functions.
Another example before entering into the real many-body realm is the three-site BH model.
Herein, we have focused on the effect of the value of the interaction strength on the effec-
tiveness of our basis function expansion. We have computed the dynamics of the population
along with the condensate fraction with different values of interaction strength, and compared
the results from the variational method to the exact ones. We found that larger interaction
strength requires us to employ more basis functions to get satisfactory results.

In Chapter 5, we have developed a multi-layer GCS basis function to deal with the dynamics

initialized by multimode Glauber CS. We have increased the system size up to 11 sites and
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studied the phenomenon of thermalization. The thermalization process has been investigated
using both a quantum variational approach and the classical TWA method. Key findings
include the significant influence of interaction strength (J/U) and average particle number
(V) on the system’s approach to thermal equilibrium. Quantum dynamics showed a faster
approach to equilibrium in strong interaction regimes, likely due to quantum tunneling effects,
in contrast to classical dynamics.

In Chapter 6, we have shifted our focus to the so-called Boson sampling problem whose
setup is a linear optical network. Using Kan’s formula to express a Fock initial state in terms
of generalized coherent states, we have derived an exact analytical formula for the output
state of a linear optical network for standard boson sampling. The scaling of the numerical
effort to evaluate the sum is exponential in particle number S via 25~!, but only polynomial
in the number of modes M. In total, the computational complexity thus increases much
less severely than the super-exponential scaling of the size of the Fock state Hilbert space,
which is of dimension (M +S—1)!/[S!(M —1)!]. The tractable dependence on the mode
number of the numerical effort of sum evaluation has allowed us to investigate the so-called
collision-free subspace case, for which it is believed that M ~ $2 is sufficient. At the initial
investigation stage, the output state wavefunction has been derived in terms of multiple GCS.
Along the way, we have also rederived the formula of Glynn for the permanent of a square
matrix.

Using the binomial theorem, the reduced density operator is calculated from the wavefunction.
Employing this important intermediate result, the purity and traces of powers higher than two
of the reduced density matrix are calculated exactly and are given in terms of multiple sums
that could probably be simplified further. The results involve overlaps of GCS and do not
need the evaluation of eigenvalues of matrices for huge Hilbert space dimensions. This allows
us to study the creation of subsystem entanglement by applying the unitary matrix of boson
sampling. In case of applying the full unitary matrix, i.e., for # = 1, we have corroborated
numerically that the Rényi entropy is a decreasing function of the Rényi index and that the
maximum Rényi entropy is realized at equipartition, regardless of the asymmetric population
of the initial state. In addition, we have found that the maximum entropy is only slightly
dependent on the index . Furthermore, because of the polynomial dependence on M of our
numerical complexity, we could corroborate that under collision-free subspace conditions,
the maximum Rényi entropy saturates as a function of mode number. A cusp in the (generally
asymmetric) entropy curve at partition mode number equal to particle number has been
found by investigating the build-up of entanglement which follows a universal pattern after
rescaling in terms of the particle number. As an important insight of the last subsection, it
turns out that although the population has not yet fully equilibrated, the entropy already has
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reached its maximum value at r ~ 0.45.

In the final part of Chapter. 6, we have studied the local optical network with multiple
layers, finding that the build-up of entanglement by increasing the depth of the local optical
network is fundamentally different from that driven by a global Haar matrix. Meanwhile,
the entropy as a function of subsystem size is asymmetric when the depth is small. These
results highlight the differences with respect to the entanglement entropy between globally
and locally connected linear systems.

In summary, we have studied various physical features of GCS, and developed a GCS-based
variational basis function approach to explore the nonequilibrium dynamics of the BH model
and the properties of the entanglement entropy in the Boson sampling problem.

In the future, we could apply our basis function to the dynamics of higher dimensional sys-
tem which are formidable to solve due to the violation of area law of entanglement entropy
[11]. By employing our basis function expansion, we could possibly capture the essence
of non-equilibrium dynamics by recovering quantum effects gradually. This could lead to
significant advancements in understanding the process of thermalization in more complex
lattice structures.

Another promising direction is exploring quantum information scrambling in many-body
systems by combining our methods for dynamics and entanglement entropy. Quantum infor-
mation scrambling refers to the process by which information encoded in a local quantum
state becomes distributed over global degrees of freedom, a phenomenon that is closely
related to the growth of entanglement in these systems. Through our studies focusing on
entanglement dynamics, we could gain insights into the mechanisms of scrambling, which
are essential in fields like quantum computing and black hole thermodynamics in quantum
gravity [198].



Appendix A

Some properties of generalized coherent
states

In this appendix, we review some computationally helpful formulae along the lines of [31,
104], which are needed in the main text. Firstly, the commutation between the annihilation
operator and the collective creation operator which is applied to generate an GCS is given by

4, iéﬂi}?)s] = s&( iéﬁj)s_l- (A1)

Secondly, by defining two collective operators
) M . M
AT=Y &al, B'=Y maj, (A2)

two different GCSs can be generated via

Zy_ L s O B
&) = =@°N0), 1) = —=(BT)10). (A.3)
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The vectorized parameter contains the parameters of all modes (here we do not consider

doubly indexed parameters). The inner product of the above two states is then given by
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where we have used the general binomial theorem
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The above result (A.4) is quite different from the corresponding property for Glauber coherent
states, which involves exponential functions.

Using Eq. (A.1), we can now calculate the action of the annihilation operator on the GCS via

= VS&IE) (A.6)
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where we have used the action of the annihilation operator on the Fock state, namely,
aj|n;) = /nj|n; — 1) as well as the definition

EE—— (A7)
= o .
VE=IN =
of the (S — 1)-boson GCS.
Furthermore, for |1) and |€), from Eq. (A.6) we get
(il &) = Snj&(n'|E) (A8)

where the inner product (ﬁ' |5 ") is

(n'1€") =

(Zn, ) : (A.9)

In the main text as well as below, we will also refer to the following two inner products

("I€") = (Zm ) (A10)
:(Z ) (A.11)

of the (S —2) and the (S —3) GCS.
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Using the chain rule, the matrix element of the right time-derivative now is

M
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In the fifth line of the above equation, we have used the result of Eq. (A.1) for S = 1, and the
relation Y30, £;m7(n"1&") = (n'|€) which follows from Egs. (A.9,A.10) is also used to get

the result of the last line.
Similarly, for the left time-derivative we find
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Both results will be used in the main text.



Appendix B

Variational principles

In this appendix, we will review three variational principles and reveal their relations. Fur-
thermore, we will demonstrate that satisfying the Cauchy-Riemann equations is a sufficient
condition for these principles to be equivalent.

Let us initiate our discussion with the time-dependent Schrodinger equation, expressed as

A

2 0(0) = A1), B.1)

Despite its seemingly straightforward form, finding the exact solution for |®(¢)) proves to
be a formidable challenge in the majority of scenarios. To facilitate this challenge, it is
promising to construct an approximate trial function |¥(x(z))) which is close to the exact
one

W (x(2))) = |®(2)) (B.2)

where x = x; represents a set of time-dependent variables, which can be either real or
complex. Particularly, if x; is a complex number, we treat x; and its complex conjugate x;‘- as
independent variables, for example, the variable space can be like x; € {x;} with i ranging
from 1 to N, while x;f € {x;} with i ranging from N + 1 to 2N. A specific configuration of
variables is given in Chapter. 4, where |¥(x(¢))) is represented as a linear combination of
GCS, with x comprising both coefficients and characteristic parameters as shown in Eq. (4.1).

Since |¥(x(7))) is an approximation, the residual state vector

(i5-#) 1w
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is nonzero quantifying the deviation from the exact solution. The remaining task is to find
the differential equations of {x;} which minimize the error. To this end, several variational

principles are introduced to address this issue.

Dirac-Frenkel variational principle

The first one we will discuss is the Dirac-Frenkel variational principle (DFVP) [25]. The
core idea of DFVP is to render the residual state vector orthogonal to the variation of the

basis function |¥). The required variation is defined by
|6W) = |8xj‘P>5xj

where 8x/ denotes the infinitesimal variation of x;(¢) and the Einstein summation convention
is used to sum over all indeces. Here we clarify that the ket |dy;'¥(x)) denotes the derivative
with respect to the variable x;

I|¥)

0y, W) = Ox (B.3)
J

irrespective of whether x; is real or complex. Correspondingly, the bra (8xj‘P| takes the form

_I(¥

J

with x; = xj if x; 1s real. Please always keep in mind that x; and x‘; are indexed differently
within the variable set {x;}.

The condition of orthogonality to the variation of the basis function translates to:

d A
<6‘P’ (1E—H) “P> = 0. (B.5)

Given that different variations Jx; are independent, we derive a set of differential equations
for x;(¢) by substituting Eq. (B.4) into Eq. (B.5), leading to

Qi =¢;, (B.6)

where ¥ denotes the time derivative of the variable Xy, and the chain rule is used

J|¥) J|¥)dx/
o ox, dr ®.7)
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when the time derivative acts on the |¥). The Hermitian matrix Qj in Eq. (B.6) is thus
defined as

Qj = (0,'¥]9, ) (B.8)
and € is given by

gj = (0, V|H|¥). (B.9)
Before leaving this section, we note that, in general, Eq. (B.6) is highly nonlinear.

McLachlan’s variational principle

Following the introduction of DFVP, McLachlan’s Variational Principle (MCVP) was pro-

posed to minimize the norm of the residual state vector
lio|®) — A[P)]|? (B.10)

throughout the entire evolution [26]. In order to attain the minimum, this expression needs to

satisfy the stationary condition
5|[io;|¥) — A|¥)||> = 0. (B.11)

MCVP operates under the assumption that the state |¥) at time 7 is not varied, while
® = J,|¥) is variable and subject to optimization, hence we only need to compute the
variation of ® in Eq. (B.11), leading to

—i(80|(id, — H)|¥) +i((i0,¥| — (P|H)|6O) =0 (B.12)
where the variation of ® is given by
J
00 = |8xj‘P>6%, (B.13)

and is proportional to the variation of the trial function |¥)

8) = |0, W) 5x/
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because the variation & dditj is arbitrary. This leads us to the final form of MCVP
Im [(8¥|(id, — H)|¥)] = 0. (B.14)

Equation (B.14) reveals that MCVP imposes a less stringent condition compared to DFVP,
as it only requires the imaginary part of the expression in DFVP to be zero.
We also note that Eq. (B.14) is identical with

Re [(8¥|(d; +iH)|¥)] =0, (B.15)

which is frequently encountered in the literature.

Time-dependent variational principle

The third variational principle is the time-dependent variational principle (TDVP) we have

employed in the main text [27]. TDVP ensures the stationarity of the action expressed as

15
5s=0, S= [ diL, (B.16)

1
where the Lagrangian in quantum mechanics is given by
L= (¥|(io, — H)|¥). (B.17)
Substituting Eq. (B.17) into Eq. (B.16), we obtain
5s= [ ar [(8%|(i6, — F)¥) + (W|(i0, — 1) 5%)]

3]

= [ d (8|10, — F)P) + ((9%] — (WIH)|SW)] + (| 5W)]2

I

%) ~ . ~
= [ dr [(6%|(id, — H)|¥) + ((i0,¥| — (¥|H)|6'P)] (B.18)
3]
where in the second line we have performed a partial integral to let the time derivative act on
the bra, and we have assumed that the variation |0\W) is zero at the boundaries of the time
interval [t;,#,] as is shown in [199].
It is important to note that the final result in Eq. (B.18) is equivalent to the condition

Re [(8¥|(id; —H)|¥)] =0 (B.19)
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which must hold throughout the entire time interval. This condition can alternatively be
expressed using the Euler-Lagrange equation displayed in Eq. (4.9). Eq. (B.19) shows that
the TDVP is also a part of DFVP.

Equivalence of three variational principles

In [199], the notion of complementary parameters is introduced to establish a sufficient con-
dition for the equivalence of different variational principles. This paper also elucidates how

the concept of complementary parameters can be linked to the Cauchy-Riemann equations

dJ|'¥)
ox*

J

=0, (B.20)

employed in our Chapter. 4, and where x; are the first N variables in the variable space. Here
we will utilize this equation to give a brief proof of the equivalence condition.

Eq. (B.20) indicates that all the variables must be complex numbers with nonzero imaginary
parts, in the meantime the only non-zero derivative of (¥| with respect to the variables is
8,5; (W|. As aresult, the variation of the (| is expressed as

(8| = (0x,W|8x7* = (0;,¥| (Re[8x*] +iIm[6x*]). (B.21)
Inserting Eq. (B.21) into Eq. (B.14), we derive an equation for every x;
Re[6x7]-Im [(9,;W|(id, — H)|¥)] +Im[bx}] - Re [(dy;¥|(id, —H)|¥)] =0.  (B.22)

Given that Re[8x/*] and Im[8x/*] are independent variations, both terms on the LHS in Eq.
(B.22) are enforced to be zero, namely,

Re [(9,,¥|(i0, — H)|¥)] =
Im [(0y,¥|(i0, — H)|¥)]

0, (B.23)
0. (B.24)

The combination of Eq. (B.23) and Eq. (B.24) is identical to Eq. (B.6) derived from the
DFVP. Analogous to the proof in the case of MCVP, it is straightforward to verify that if
the Cauchy-Riemann equation is satisfied, Eq. (B.23) and Eq. (B.24) will also hold for the
TDVP, in other words, TDVP agrees with the DFVP as well.

We argue that our above results only demonstrate that the Cauchy-Riemann equations is
a sufficient condition for the equivalence of the three variational principles. A typical
counterexample is the Glauber CS defined by Eq. (2.17). It is clear that the Glauber CS does
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not follow the Cauchy-Riemann equation as the &* is involved in the normalization factor
exp(—|a|?/2), whereas the previous study [200] shows that all the variational principles
are equivalent also for this state. A more strict condition for the equivalence based on the
concept of Kéhler manifolds can be found in a recent paper [106].



Appendix C

Detailed convergence study with respect
to grid spacing

To prove the advantage of small spacings of complex grids for getting converged results by
following [136], for most of this appendix we choose the diagonal of the combination of the
rectangular grids rather than the random choice of points from the rectangular grids which
have been used in the main text. In diagonal grids, the parameters of the GCS lie in the exact

same positions for every complex subgrid, for example,

{&Emn1,Emnp} = { izt Crn,2 } , (C.1)

\/‘Zmn,l |2 + ‘Zmn,Z 2’ \/’Zmn,l ’2 + ’Zmn,2’2

in the case of 2 modes, where m, n are the same(!) complex grid indices. We remind of the
fact that in the random choice of the two-mode grid, a random combination of the points on
the grid of the first mode with the points of the grid of the second mode is allowed! Although
using diagonal grids is less optimal than the random ones (as will become obvious below),
according to our numerical results, it can help us avoid the influence of randomness and
compare the effects of different spacings directly at the same level. In the following, we
will show some results for normalized population dynamics for different initial states with
different photon and mode numbers.

For the two-mode case, we examine the results from a time-dependent Hamiltonian

A A U,.i2.0 2.
H= —J(t)(aiaz +a;a1) + E(a?a% +a§2a%) (C.2)

where J(t) = Jo+J; cos(wt). The initial state is |50, —+/0.7,4/0.3). The interaction strength
is U = 0.1Jp, and the driving frequency and strength are ® = 27/Jy and J; = 0.5Jy. We
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Fig. C.1 The dynamics of the population of the first mode in the two-mode case with 50
photons. The driving frequency and strength are @ = 27 /Jy and J; = 0.5Jp, and the on-site
interaction energy U = 0.1J. The number of GCSs is 25. Different lines are results for
different spacings of the complex grid. Solid: /7, dotted: /7 /3, dash: /7 /4, dash-dotted:

Vr/8.

constructed two identical complex 5x35 grids, and the number of GCS we used thus is just
N =25 (and not 625, as it would be if we would allow all combinations of the rectangular
grid points). Fig. C.1 reveals that small spacings allow to arrive at the converged result
more quickly. In the present case, \/7/4 is enough to reproduce the exact result. For the
second, more demanding initial state |200, —/0.7 , m> with 200 photons, the number of
grid points is increased to 81. Fig. C.2 shows that the spacing with /7 /4 does not yet work
well and that for this initial condition /7/8 is a better choice.

Next we extend our results to the four-mode case with a constant in time hopping parameter
J = 1. In Fig. C.3 results are shown for the initial state |30, —1/0.7,1/0.3,0,0). Although it
has less photons than the in two-mode case above, the spacing+/7 /4 which performs well
in Fig. C.1 does not give rise to converged results with 169 basis functions, and this kind
of deviation for /7 /4 also occurs for other states with larger numbers of photons or other
initial state parameters (not shown). Thus the number of modes seems to be decisive, when
choosing the optimal grid spacing.

In Fig. C.4, we present a study of the number of basis functions which is needed for getting
converged results by optimizing the underlying grid spacing. This time, however, in order for
faster convergence, we go back to the case of random grids employed in the main text. All

results initially coincide to within line thickness and only for longer times the small spacing
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Fig. C.2 The population dynamics of the first mode in the two-mode case with 200 photons.
The driving frequency and strength are @ = 27 /Jy and J; = 0.5Jy, and the on-site interaction
energy U = 0.1J. The number of GCS is 81. Different lines are results for different spacings
of the complex grid: solid: /7, dotted: /7 /4, dash: /7 /8, dash-dotted: /7 /16.

turns out to be advantageous. Although small spacings make the calculation generally more
efficient, decreasing the spacing indefinitely is not an option for improvement and we found
an optimum value of /7 /32 in the present case. The even smaller spacing /7 /64 will not
lead to a further promotion compared with /7 /32 (the results are even slightly worse). Our
final conclusion is that large numbers of photons and modes will increase the dimension of
Hilbert space dramatically and make the dynamical process more complicated. As we have
shown here, constructing complex grids with optimal spacings (smaller than /7) can help
speeding up the convergence of numerical calculations, and for more complicated systems
smaller spacing is needed for feasibility of the calculation, but there is no gain in decreasing
the spacing indefinitely.
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Fig. C.3 The dynamics of the population of the first mode in the four-mode case with
30 photons. The on-site interaction energy U = 0.1J. The number of GCSs used is 169.
Different lines are results for different spacings of the complex grid: solid: /7, dotted:
V7 /4, dash: \/7/16, dash-dotted: \/7r/32. The crosses display the exact results using the
full Fock state basis.
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Fig. C.4 Convergence of the population dynamics in the four-mode case with 30 photons for
different spacings and basis size N. The on-site interaction energy U = 0.1J. The different
curves (solid: /7, dotted: /7 /4, dash: \/7t/16, dash-dotted: /7 /32, star: /7 /64, circles:
exact Fock results) coincide to within line thickness for most of the time interval shown.



Appendix D

Rederivation of Glynn’s formula for the
permanent

We verity the output wavefunction of Fock state boson sampling given in Eq. (6.21) by
showing that it contains Glynn’s formula for the permanent of a square matrix [184]. To
this end, we stress that, in order to calculate the permanent of the unitary matrix U, we
can assume the input state to be the special Fock state |[11---1). Then, from Eq. (6.15) the
parameters of the GCSs are given by Ek = \/LM)_C)/" where X, is a vector with M entries chosen
from the set {—1,+1}, except for k = 1, where the vector entries are fixed to be +1, and the
corresponding amplitude from Eq. (6.14) is given by

Ay = (D.1)

oM—1 /— H Xki -
So the output state under the unitary transformation is (presently S = M)

Mz

|‘P>out M= 1\/— Z (Hsz)

k= i=1

——%- Uy,

1 —
.X'k U27 ) )?k : UM> ) (Dz)
O

where U ;j denotes the j-th column of the matrix U. The permanent of the unitary matrix can

\/_

then be obtained by projecting the output state onto the Fock state (11 ---

per(U) = (11 1|W)out

, (D.3)
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where we have used the multinomial theorem and the fact that only terms with unit powers of
a:.r do survive the projection. The resulting formula thus is Glynn’s formula for the permanent
of a square matrix [186, 201].

Our analytical manipulations based on Kan’s formula for the expansion of a Fock state in
terms of multiple GCS thus lead to an alternative derivation of Glynn’s formula, which
is considered to be a computational alternative to Ryser’s formula [178]. A generalized
formula for the permanent has been found along similar lines [202, 203]. Furthermore, it is
worthwhile to note that different permanent identities have been proven in a quantum-inspired

way in [204]. There the Glynn formula has, e.g., been proven using cat states.



Appendix E

Derivation of the purity in terms of the
unitary

For the boson sampling problem, if the initial state is the Fock state [11---10---0), where
only the first S modes are occupied by single photons, in close analogy to the rederivation of
Glynn’s formula in the main text, Kan’s formula implies that the values of the amplitudes
in the GCS expansion in Eq. (6.11) are A;, = \@ (i) = Hle x;; where X, is a vector with S
entries from the set {—1,+1}, apart from k = 1 (see main text), and the values of the GCS
parameters are Ek = \/ig(xkl,xkz, oo Xks, 0,00+, 0).

In analogy to the case § = M from Eq. (D.2), the output state after the rotation with the
unitary matrix U is [184]

W 0T (1)

1

xk%la ) \/3

xk%27

fkﬁzZM>, (E.1)

Vs s

where %, is the truncated vector U; with only the first S entries. Thus, we get (A coefficients

are time-independent)

.
AAS = ( ) (ki) (E.2)
=1

1
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as well as
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and
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for the ingredients of Eq. (6.29). Here the Hermitian matrices Ay /g are defined as
AL:(@ZM%_’Z?'”a%ML)'(%)la%7"'7%_’ML)T7 (ES)
AR - <%_»ML+17%)ML+27 te 7022M) : (JZZML-I-l ’ %ML+27 te 7QZ\M)T (E6)
This leads to the final result
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for the purity.
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