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We discuss recent constructions of global F-theory GUT models and explain how to make use of
toric geometry to do calculations within this framework. After introducing the basic properties
of global F-theory GUTs, we give a self-contained review of toric geometry and introduce all the
tools that are necessary to construct and analyze global F-theory models. We will explain how to
systematically obtain a large class of compact Calabi-Yau fourfolds which can support F-theory
GUTs by using the software package PALP.

1. Introduction

Even though it has been around for quite a while [1], F-theory has recently received a lot of
new attention as a setup where grand unified theories (GUTs) can be conceived from string
theory. Starting with [2—4] the phenomenology of F-theory GUTs has become an active field
of research. The basic idea is that the GUT theory is localized on a (p, q) seven-brane S inside
a three-dimensional base manifold B of an F-theory compactification on an elliptically fibered
Calabi-Yau fourfold. The location of the GUT brane and the gauge group are determined by
the degeneration of the elliptic fibration. Chiral matter localizes on curves inside the GUT
brane S, where gauge enhancement occurs, and Yukawa couplings sit at points. For many
phenomenological applications, it is sufficient to consider the field theory living on the GUT
brane without specifying the details of the global F-theory compactification. However, fluxes,
monodromies, or consistency constraints such as tadpole cancellation cannot be addressed in
a purely local setup. These issues have recently received a lot of attention in the literature
[5-25]. Therefore, it is interesting to see whether it is possible to embed the local F-theory
GUT into a compactification on a Calabi-Yau fourfold. Most known examples of compact
Calabi-Yau manifolds are hypersurfaces or complete intersections in a toric ambient space.
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It is thus natural to look for Calabi-Yau fourfolds within this class of examples. A prescription
for constructing elliptically fibered Calabi-Yau fourfolds as complete intersections in a six-
dimensional toric ambient space has been given in [6, 8]. Before that, complete intersection
Calabi-Yau fourfolds in F-theory had already been used in the context of F-theory uplifts of
type 1IB string theory [26-28]. A similar construction has also been discussed in [10]. It has
been shown in examples that it is indeed possible to construct viable F-theory GUTs within
this framework.

The construction of [6] is very well-suited for a systematic search of a large class of
models. This is interesting for several reasons: one goal is to find particularly nice examples of
F-theory compactifications. Even though the known examples have been able to incorporate
F-theory models, one usually gets much more than just that. In minimal F-theory GUTs, one
typically needs only very few Yukawa points and a small number of moduli on the matter
curves. This is not satisfied in most known global models. A related question deals with the
genericity of F-theory GUTs. The geometric configurations used for constructing such models
are usually quite special, and one may wonder how often they can be realized in elliptically
fibered fourfolds. From the point of view of model building, it is useful to have some easy-
to-check geometric conditions which makes it possible to select suitable models from a large
class of geometries. This will be discussed in more details in the text. From a mathematical
point of view it might be interesting to obtain a partial classification of Calabi-Yau fourfolds.

This paper discusses selected topics in toric geometry and F-theory GUTs. The paper
is organized as follows: in Section 2, we recall the construction of global F-theory models
and discuss the basic requirements we would like to impose. In Section 3, we review several
notions in toric geometry which are required in order to perform the F-theory calculations.
The geometries one has to deal with are usually quite complicated, and very often, one has to
rely on computer support in order to be able to do explicit calculations. Therefore, we discuss
how such calculations can be implemented using existing software such as PALP [29]. We will
mainly focus on the application of toric geometry in the context of F-theory model building.
For a more complete picture on this vast subject of F-theory phenomenology, we refer to
other review articles such as [30-32]. For more extensive discussions of toric geometry, we
recommend [33-35].

2. Global F-Theory Models
2.1. Setup

In this section, we introduce the basic concepts and notions used in global F-theory models.
In the remainder of this paper we will explain the techniques which are necessary to do
calculations within this framework. For more details on how the quantities introduced below
come about, we refer to the original papers or the recent review article [32].

In [6], it has been proposed to construct Calabi-Yau fourfolds, which are suitable for
F-theory model building, as complete intersections of two hypersurfaces in a six-dimensional
toric ambient space. The hypersurface equations have the following structure:

Pg(yi,w) =0, Pw(x,y,2 yi,w) =0. (2.1)

The first equation only depends on the homogeneous coordinates (y;, w) of the three-
dimensional base B of the elliptically fibered Calabi-Yau fourfold X4. Here, we have singled
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out one coordinate w, indicating that the divisor given by w = 0 defines a seven-brane
S which supports a GUT theory of the type introduced in [2-4]. The second equation in
(2.1) defines a Weierstrass model, where (x, y, z) are those coordinates of the six-dimensional
ambient space that describe the torus fiber. For this type of elliptic fibrations, Py is of Tate
form which is defined as follows:

Py = X - yz +xyza + x*22a; + yz3a3 + xz4a4 + z%aq. (2.2)

The a,(yi,w) are sections of K;", where Kp is the canonical bundle of the base manifold.
Furthermore, x and y can be viewed as sections of K;* and K, respectively.

The information about the F-theory model is encoded in the Tate equation (2.2).
In order to have a nontrivial gauge group on the GUT brane the elliptic fibration must
degenerate above S. The gauge group is determined by the structure of the singularity.
The elliptic fibration becomes singular at the zero locus of the discriminant A. Defining the
polynomials 3, = a% +4ay, fs = aras +2a4 and fg = ag +4ag, the discriminant is given by the
following expression:

A= —iﬁﬁ (ﬁzﬁs - ﬁi) — 833 — 278 + 9B PuPe. (2.3)

According to Kodaira’s classification [36] and Tate’s algorithm [37], the gauge group can be
inferred from the factorization properties of the a, (y;, w) with respect to w. Considering, for
instance, SU(5)- and SO(10)-models, the factorization looks like this

SUu®B): a = bsw® ar =bsw' az =bsw? ay=byw® ag =byw®,
(2.4)

SO(10): aq = bsw' ay =bsw'! az =bsw? as =bw® ag = byw?.

The b;s are sections of some appropriate line bundle over B that have at least one term
independent of w.

In F-theory GUT models, chiral matter localizes on curves on S, where a rank 1
enhancement of the gauge group appears. In SU(5) models, the matter curves are at the
following loci inside S:

b§b4 — bybsbs + bgb2 =0 5 matter, bs =0 10 matter. (2.5)

The matter curves for the SO(10) models are at

b; =0 10 matter, by =0 16 matter. (2.6)

Yukawa coupling arise at points inside S, where the GUT singularity has an rank 2 enhance-
ment. In SU (5) models, the Yukawa points sit at

by=0Nnbs=0 10105 Yukawas E¢ enhancement,
__ (2.7)
bs=0Nb3;=0 1055 Yukawas SO(12) enhancement.
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In the SO(10)-case, we have the following Yukawa couplings:

b3;=0Nbys=0 1616 10 Yukawas E; enhancement,
(2.8)
b% —4boby =0Nbz =0 16 10 10 Yukawas SO(14) enhancement.

Given a complete intersection Calabi-Yau fourfold of the form (2.1), the expressions for
matter curves and Yukawa points are globally defined and can be calculated explicitly.
Having a global F-theory compactification, we can furthermore calculate the Hodge numbers
and the Euler number y4 of the Calabi-Yau fourfold Xy4. The latter enters the D3-tadpole
cancellation condition,

1

—ZND3+—f Gy A Gy, (29)
2 ),

where G4 denotes the fourform flux on X4 and Np;3 is the number of D3-branes.

2.2, Geometric Data in F-Theory Models

So far, we have summarized the basic structure of a global F-theory GUT. In the present
section, we will discuss which properties of the GUT model are encoded in the geometries
of the base manifold B and the Calabi-Yau fourfold X,. We will not go deeply into the
phenomenology of F-theory GUTs but rather focus on the basic geometric properties which
should be satisfied in order to obtain a viable GUT model.

2.2.1. Base Manifold

Since the GUT brane S is a divisor in a three-dimensional base manifold B, a large amount of
information about the model can be extracted from the geometry of B. The base B is a non-
negatively curved manifold of complex dimension three. In our setup, it will be given by a
hypersurface in a toric ambient space. Note that Fano threefolds are not a good choice for B
due to the lack of a decoupling limit [38]. In Section 3, we discuss a systematic construction
of such base manifolds using toric geometry. In order to have a well-defined model, we have
to make sure that B is nonsingular. In contrast to Calabi-Yau threefolds, the base manifolds
for F-theory GUTs may inherit the singularities of the ambient space. Therefore, checks for
the regularity of B have to be implemented.

Having found a suitable base manifold, the next step is to identify divisors inside B
that can support GUT models. The most promising candidates for F-theory model building
are del Pezzo surfaces. These are Fano twofolds (see, e.g., [39]). Note, however, that del
Pezzos are not the only possibility for the construction of GUT models in F-theory. See [40]
for a recent discussion. There are several motivations to focus on del Pezzo divisors. In local
F-theory GUTs, the del Pezzo property ensures the existence of a decoupling limit [3, 4]. For
SU(5) GUT models, the fact that del Pezzos have h%! = h*? = 0 implies some powerful
vanishing theorems which forbid exotic matter after breaking SU(5) to the standard model
gauge group [4].

We can identify candidates for del Pezzo divisors inside B by their topological data.
Suppose that the base manifold B is embedded in a toric ambient space which has toric
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divisors D;. The D; give a homology basis of the ambient space. In this setup, the hypersurface
is specified by a divisor, which we will by abuse of notation also call B, that is given in terms
of a linear combination of the D;. The total Chern class of a particular divisor S in the ambient
space is, after restriction to B (for more details, see Section 3.3)

c(S) = IT,(1+ D)

T (1+B)(1+S) (210)

In order to apply this formula, we have to know the intersection ring of B. As we will discuss
in Section 3.3, this can be obtained from the intersection ring of the ambient space.

A necessary condition for a divisor S to be dP, is that it must have the following
topological data:

f cl(S)2=9—n,f (S)=n+3=y =f Td(S) =1, (2.11)
S S S

where y; = X.(~1)'h% is the holomorphic Euler characteristic and Td denotes the Todd
class. In the equations above the integration over the four-cycle (representing the divisor)
S is equivalent to computing the intersection with S. Since del Pezzos are Fano twofolds, we
have a further necessary condition: the intersections of ¢;(S) with curves on S have to be
positive. In the toric setup, we can only check this for curves which are induced from the
divisors on the ambient space. In that case, the condition is

D;-S-c1(S)>0 D;#S VD;-S5#0. (2.12)

In order to make these calculations, we need to know the homology basis of toric divisors
and their intersection numbers.

In local F-theory GUTs, the del Pezzo property is sufficient to ensure the existence of a
decoupling limit. For global models, further checks are in order. Gravity decouples from the
gauge degrees of freedom if the mass ratio Mgur/Mp becomes parametrically small. The
Planck mass My and the mass scale Mcur of the GUT theory are related to the geometry of
B and S in the following way:

M4
Vol(B)  Mgur ~ Vol(S)™/* zi ~ —VolI(S). (2.13)
Sym 85

8
s

M
2

M2 ~ =

&s

Therefore, one has

Mgut 2 Vol(S)**
My ™ypo1(B)l/2

(2.14)

There are two ways to achieve a small value for Mgur/Mp), now commonly referred to as the
physical and the mathematical decoupling limit. In the physical decoupling limit, the volume
of the GUT brane S is kept finite, while Vol(B) — oo. The mathematical decoupling limit
takes Vol(S) — O for finite volume of B. The two limits may not be equivalent in the sense
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that they may be implemented by tuning different Kdhler parameters. The volumes of B and
S can be determined in terms of the Kihler form J of the ambient toric variety restricted to B

Vol(B) =J>  Vol(S)=S-J% (2.15)

In order for the volumes to be positive, we must find a basis of the Kéhler cone K;, where,
by definition, J can be written as | = >, 7;K; with r; > 0. The existence of mathematical and
physical decoupling limits can be deduced from the moduli dependence of these volumes.

Having found a suitable base manifold, we can also study matter curves and Yukawa
couplings. The curve classes M of the matter curves can be expressed in terms of the toric
divisors of the ambient space. The genus of the matter curves can be computed using the first
Chern class of the matter curve and the triple intersection numbers

[1:(1+D;)

‘M= TTBasoa

(2.16)

Here, we have assumed that M is irreducible. After expanding this expression to get ¢; (M),
the Euler number is obtained by the following intersection product:

Y(M) =2-2g(M) =c;(M)-M-S. (2.17)

The genus of a matter curve gives us information about the number of moduli the curve
has. Since these moduli have to be stabilized, matter curves of low genus are desirable from
a phenomenological point of view. In the generic situation, the equations specifying the
Yukawa points can be expressed as classes Y1, Y in terms of the toric divisors. The number of
Yukawa points is then given by the following intersection product:

Myukawa = S+ Y1+ Ya. (2.18)

In order to account for the standard model Yukawa couplings, only a small number of
Yukawa points is needed.

2.2.2. Fourfold

Given a base manifold B, one can construct a Calabi-Yau fourfold X4 which is an elliptic
fibration over B. As described in the next section, this can be done systematically using toric
geometry. However, not all of the desirable features of global F-theory models are automatic
in this construction. The main requirement on X is that it is a complete intersection of two
hypersurfaces. Furthermore, these hypersurfaces must have a specific structure (2.1). In order
to be able to use powerful mathematical tools, we, furthermore, have to require that there
exists a nef-partition (cf. Section 3.2) which is compatible with the elliptic fibration. When
this elementary requirement is satisfied, we can engineer a GUT model. This is done in two
steps: first, we have to identify the GUT divisor S, given by the equation w = 0 in B within the
Calabi-Yau fourfold. The second step is to impose the GUT group. This amounts to explicitly
imposing the factorization conditions such as (2.4) on the Tate model. This means that we
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have to remove all those monomials in (2.2) which do not satisfy the factorization constraints.
This amounts to fixing a number of complex structure moduli of Xj.

Recently, there has been active discussion in the literature how to globally define fluxes
in F-theory models [6-8, 11, 15, 16, 20, 21, 25]. In F-theory, model building fluxes enter at
several crucial points. Gauge flux along the matter curve is needed in order to generate chiral
matter. Breaking of the GUT group to the standard model gauge group can be achieved by
turning on U (1)-flux. Furthermore, in SU(5) F-theory GUTs, we need global U (1)s in order
to forbid dimension 4 proton decay operators. In SO(10) F-theory GUTs they are needed in
order to obtain chiral matter [13, 41]. A general global description of the fourform flux Gy
is still missing. In [42], an auxiliary construction involving spectral covers that factorize was
used to describe fluxes locally in the vicinity of the GUT brane. It has been shown in [14-
16] that under certain circumstances, the information captured by the spectral cover can be
encoded in the Tate model and is, therefore, global. However, this need not be the case [11]. In
[14], it has been shown that a spectral cover which factorizes is generically globally defined
for “U (1)-restricted Tate models”. This is achieved by imposing a global U (1)x symmetry in
the elliptic fibration. In terms of the Tate model, this is achieved by setting a¢ = 0.

3. Ingredients and Techniques from Toric Geometry

In the previous section, we have introduced quantities which encode important information
about F-theory GUT models in the geometry of the base manifold and the Calabi-Yau
fourfold. In this section, we will provide the tools to calculate them. The input data needed for
these calculations can be obtained by using toric geometry. After giving the basic definitions,
we will discuss how to describe hypersurfaces and complete intersections of hypersurfaces
in toric ambient spaces. Then, we explain how to obtain the intersection ring and the Kéhler
cone, or dually, the Mori cone. Finally, we will discuss how to use the computer program
PALP [29] for calculations in toric geometry. This discussion of toric geometry has been
compiled with a view towards the applications in F-theory model building. It is by no means
an exhaustive description of this vast subject which brings together algebraic geometry and
combinatorics.

3.1. Toric Varieties

We start by defining a toric variety X of dimension 7 as the following quotient:

€ -2

=4 3.1
(((C*)r—n x G) ( )

where G is a finite abelian group, (C*)"™" describes the action of an algebraic (r — n)-torus,
and Z C € is an exceptional set which tells us which combinations of coordinates are not
allowed to vanish simultaneously. The simplest example is CP?, where the C*-action is given
by (z1, 22, z3) ~ (Az1,Az2, Az3), A € C*, the exceptional setis Z = {z; = zp = z3 = 0}, and G
is trivial. Thus, as is well known: CP? = (C? — {z1 = zp = z3 = 0})/((z1, 22, 23) ~ (A2, Az,
Az3)).

The crucial fact about toric geometry is that the geometric data of the toric variety can
be described in terms of combinatorics of cones and polytopes in dual pairs of integer lattices.
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The information about the toric variety is encoded in a fan X, which is a collection of strongly
convex rational polyhedral cones, where all the faces and intersections of pairs of cones also
belong to the fan. “Strongly convex” means that all the cones of the fan have an apex at the
origin, and “rational” means that the rays that span the cone go through points of the lattice.
We denote by = the set of all n-dimensional cones. In order to define the fan, we use the
fact that a toric variety X contains an n-torus T = (C*)" as a dense open subset whose action
extends to X. Parametrizing T by coordinates (fi,...,t,), one defines the character group
M = {y:T — C"} and the one-parameter subgroups N = {A : C* — T}. M and N can be
identified with integer lattices that are isomorphic to Z". Given a point m € M, the character
is given by y™(t) = t]" ---t;" = t"™. This is a holomorphic function on T and descends to a
rational function on the toric variety X. For every u € N, A is defined as A*(7) = (7",..., 7"
for T € C*. The fan X and its cones ¢ are defined on the real extension Ny of N. The lattices
M, N are dual due to the composition (y o 1)(7) = y(AM(7)) = 704 where (Y™ Ay =m-uis
the scalar product.

The M-lattice encodes the data about regular monomials in X, the N-lattice captures
the information about the divisors. The divisors defined by y™ = 0 can be decomposed in
terms of irreducible divisors D;: div(y™) = X7 a;D;. These divisors are principal divisors,
that is, divisors of meromorphic function, where D; correspond to poles or zeros and the a;
are orders of the pole/zero. The coefficients a;(m) € Z are unique, and there exists a map
m — aj(m) = (m,v;) with v; € N. Thus, there is a vector v; for every irreducible divisor D;.
The v; are the primitive generators of the one-dimensional cones p; (i.e., rays) in the fan X.
The convex hull of the v; defines a polytope A* = conv{v;}. Locally, we can write the divisors
as D; = {z; = 0}, where z; is regarded as a local section of a line bundle. D; are called toric
divisors. There are linear relations among the v; € A* which translate into linear relations
among the toric divisors.

In order to make contact with the definition (3.1) of X, we view the {z;} as global
homogeneous coordinates (z; : --- : z,). If all z; are nonzero the coordinates (A7'z; : --- :
Mrzp) ~ (z1 @ -++ 1 z;) with A € C* describe the same point on the torus T if } qjv; = 0
for v; € N as above. Since the v; live in an n-dimensional lattice, they satisfy r — n linear
relations. If the v; do not span the N-lattice, there is a finite abelian group G such that G =
N/ (span{vy,...,v,}). Identifications coming from the action of G have to be added to the
identifications between the homogeneous coordinates coming from the torus action. Having
introduced the fan X, we are also able to specify the exceptional set Z that tells us where the
homogeneous coordinates are not allowed to vanish simultaneously: a subset of coordinates
z; is allowed to vanish simultaneously if and only if there is a cone ¢ € X containing all the
corresponding rays p;. To be more precise, the exceptional set is the union of sets Z; with
minimal index sets I of rays for which there is no cone that contains them: Z = UrZ;. This
is equivalent to the statement that the corresponding divisors D; intersect in X. Putting the
pieces together, we arrive at the definition (3.1).

There are two important properties of the fan X which translate into crucial properties
of the toric variety X. Firstly, X is compact if and only if the fan is complete, that is, if the
support of the fan covers the N-lattice: |X| = (Js 0 = Ng. Secondly, X is non-singular if and
only if all cones are simplicial and basic, which means that all cones o € X are generated
by a subset of a lattice basis of N. Singularities can be removed by blowups, where singular
points are replaced by P"~!s. All the singularities of a toric variety can be resolved by a series
of blowups. These correspond to subdivisions of the fan. In order to completely resolve all
singularities, one must find a maximal triangulation of the fan. In many cases, it is sufficient
to find a maximal triangulation of the polytope A*.
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Finally, let us emphasize the significance of the homogeneous weights g;. In general,
there will be a full (r — n) x r matrix Q;;, called weight matrix, whose (r — n) lines encode the
C*-actions. Since each of the z; corresponds to an irreducible divisor in X, the columns of the
weight matrix define a homology basis of the divisors D;. In physics language the weights g;
are the U (1)-charges in the gauged linear sigma model that defines the toric variety X. Note
that the weights contain all the information to recover the M- and N-lattice. With the weight
matrix as input, this can be done using PALP.

3.2. Hypersurfaces and Complete Intersections

Having defined a toric variety, we go on to discuss hypersurfaces and complete intersections
of hypersurfaces in toric varieties. The hypersurface equations are sections of non-trivial line
bundles. The information of these bundles can be recovered from their transition functions. In
this context, we introduce the notions of Cartier divisors and Weil divisors. A Cartier divisor
is given, by definition, by rational equations f, = 0 and regular transition functions f,/ fs
on the overlap of two coordinate patches U,, Up. Cartier divisor classes determine the Picard
group Pic(X) of holomorphic line bundles. Weil divisors are finite formal sums of irreducible
varieties of codimension 1. On a toric variety, the Chow group A,_1(X) modulo linear
equivalence is generated by the T-invariant irreducible divisors D; modulo the principal
divisors div(y™), m € M. A Weil divisor of the form D = 3] a;D; is Cartier if there exists
an m, € M for each maximal cone o € =™ such that (mgy,v;) = —a; for all rays p; € o. If
X is smooth, then all Weil divisors are Cartier. If X is compact and D is Cartier, then O(D)
is generated by global sections if and only if (m,,v;) > —a; for 0 € ™ and p; ¢ o. If this
is the case for v € o, yp(v) = (mg,v) is a strongly convex support function. With that, we
can define a polytope Ap = {m € Mg : (my,vj) > —a;}. This is a convex lattice polytope
in Mg whose lattice points provide global sections of the line bundle O(D) corresponding
to the divisor D. D is generated by global sections if and only if Ap is the convex hull
of {m}. Furthermore, D is ample if and only if Ap is n-dimensional with vertices m, for
o € = and with m, #m, for c#7 € ™. Finally, D is called base point free if and only
if my € Ap for all ¢ € =™. Base point freedom is a sufficient condition for a hypersurface
defined by D to be regular: Bertini’s theorem states that the singular points of D are the
base locus and the singular points inherited from the ambient space. The absence of base
points implies that D can be deformed transversally in every point and, therefore, generically
avoids the singularities of the ambient space. Thus, a base point free D is regular. We
emphasize, however, that base point freedom is not a necessary condition for the regularity of
D.

Equations for hypersurfaces or complete intersections are sections of line bundles
O(D) given by the following Laurent polynomial:

f= X "= 3 e]I5" (3:2)
j

meApnNM meApnNM

In an affine patch Uy, the local section f, = f/x™ is a regular function. Given a polytope
Ap € M, we can define the polar polytope A}, by A}, = {y € Nr: (x,y) >-1Vx € Ap}. It
can be shown [43] that the Calabi-Yau condition for hypersurfaces requires that Ap C My is
polar to A* = A}, € Ng, where A* is the convex hull of the v; € N as defined in Section 3.1.
A lattice polytope whose polar polytope is again a lattice polytope is called reflexive. For
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reflexive polytopes (A, A°), there exists a combinatorial formula for the Hodge numbers
[43]

hii(Xa) = haima21(Xae) =1(A°) —1-dimA - > @)+ >, I'6°)0),
codim(6°)=1 codim(6°)=2
(3.3)

where 6 and 6° is a dual pair of faces of A and A°. Furthermore, I(0) is the number of lattice
points of a face 6, and I*(0) is the number of its interior lattice points.

In our discussion of F-theory model building, we also encounter complete intersection
Calabi-Yaus. The concept of polar pairs of reflexive lattice polytopes can be generalized as
follows:

A=A1+---+A, AO:<V1/"'IVT>C0nv,
(Va, Am) = =6um, (3.4)
V°=<A1,...,Ar>conv V=Vi+---+V,.

Here, r is the codimension of the Calabi-Yau and the defining equations f; = 0 are sections
of O(A;). The decomposition of the M-lattice polytope A C My into a Minkowski sum (the
Minkowski sum A + B of two sets A, B is defined as follows: A+ B={a+b|a€ A,b € B})
A =A1+---+ A, is dual to a nef (numerically effective) partition of the vertices of a reflexive
polytope V C Ng such that the convex hulls (V;),., of the respective vertices and 0 € N
only intersect at the origin. The nef-property means that the restriction of the line bundles
associated to the divisors specified by the N-lattice points to any algebraic curve of the variety
are nonnegative. There exists a combinatorial formula for the Hodge numbers [44] which has
been implemented in PALP.

In many string theory applications, and in particular also in F-theory, the fibration
structure of a Calabi-Yau manifold is of great interest. For Calabi-Yaus which can be described
in terms of toric geometry, the fibration structure can be deduced from the geometry of the
lattice polytopes. If we are looking for toric fibrations where the fibers are Calabi-Yaus of
lower dimensions, we have to search for reflexive subpolytopes of A° which have appropriate
dimension. Given a base b and a fiber f, the fibrations descend from toric morphisms of
the ambient spaces corresponding to a map ¢ : £ — %, of fans in N and Ny, where ¢ :
N — Ny is a lattice homomorphism such that for each cone ¢ € 3, there is a cone o, € 3
that contains the image of o. The lattice Ny for the fiber is the kernel of ¢ in N. The fiber
polytope is then defined as follows: A7 = A®N Ny. In order to guarantee the existence of a
projection, one must find a triangulation of A; and extend it to a triangulation of A°. For each
choice of triangulation, the homogeneous coordinates corresponding to the rays in A% can be

interpreted as coordinates of the fiber.

3.3. Intersection Ring and Mori Cone

Two further pieces of data that are necessary in many string theory calculations are the
intersection numbers of the toric divisors and the Mori cone, which is the dual of the Kihler
cone. Inside the Kihler cone, the volumes such as (2.15) are positive. Thus, in the context
of F-theory model, building the Kihler cone is needed in order to make statements about a
decoupling limit.
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Let us start with discussing the intersection ring. For a compact toric variety Xs the
intersection ring is of the form Z[Dy, ..., D,]/{Lin + Inonin). The two ideals to be divided
out take into account linear and nonlinear relations between the divisors. The linear relations
have the form 3};(m, v;)D;, where m € M form a set of basis vectors in the M-lattice. The
non-linear relations are denoted by R = UR;, where the R; are of the form Ry = Dj,-...-D;, = 0.
They come from the exceptional set Z = UZ; defined in Section 3.1, which determines which
homogeneous coordinates are not allowed to vanish at the same time. As mentioned before,
this is the case when a collection of rays p;,, ..., pj, € N is not contained in a single cone. The
non-linear relations R generate the ideal I onin Which is called Stanley-Reisner ideal. Thus,
the intersection ring A.(X) of a non-singular toric variety has the following form:

ZIDy,...,D]
(R 3,(m,v;)D; )

AXx) = (3.5)

The definition of the intersection ring holds for non-singular toric varieties but may be
generalized to the case where X5 is simplicial projective. This means that the toric variety
may be singular, but still, all the cones of the fan X are simplicial. Such a situation may
occu,r for example, if we choose a nonmaximal triangulation of the polytope A*. In this case,
the intersection numbers take values in Q. To compute the Stanley-Reisner ideal in the non-
singular case, one must find a maximal triangulation of the fan X or the polytope A*. In order
to get intersection numbers, we still have to fix a normalization: for a maximal simplicial cone
ocexm spanned by v;, ..., v;,, we fix the intersection numbers of the corresponding divisors
tobe Dj, -...- Dj, = 1/Vol(c), where Vol(0) is the lattice volume of o (i.e., the geometric
volume divided by the volume 1/n! of a basic simplex). If X is non-singular, the volume is 1.
Using the intersection ring, one can compute the total Chern class of the tangent bundle Tx
of X which is given by the following formula: ¢(Tx) = [Ti_; (1 + D).

So far, we have only discussed the intersection ring of the toric variety X. However in
many applications, we rather need the intersection numbers for divisors on a hypersurface
given by a divisor D in X. Here, we can make use of the restriction formula that relates the
intersection form on the hypersurface divisor to the intersection form on X

Dj-....Dj Ip=Dj -...-Dj,, - Dlx. (3.6)

This allows us to compute the intersection ring of D from the intersection ring of X. In (3.5)
restriction to D amounts to computing the ideal quotients of Ijiy and Inhonlin With the ideal
generated by D. By adjunction, the Chern class for the hypersurface specified by D is ¢(D) =
]'[;zl(l +D;)/(1+D,).

In order to be able to calculate all the quantities defined in Section 2.2, we miss one
more ingredient: the Mori cone. By definition, the Mori cone is the dual of the Kéhler cone.
We need the information about the Kahler cone in order to be able to compute the volumes
of divisors. By definition, the volumes will be positive inside the Kéhler cone. The Mori cone
is generated by [ M .., 10 where k = ¥ — n if the fan X is simplicial. Otherwise, the number
of Mori generators can be larger. The Mori cone L is then defined as follows: L = Ryl +
-+ + Ryl®). For the calculation of the Mori cone, we also require a maximal triangulation
of A*. Given such a triangulation, the Mori generators can be determined as follows [45]:
take every pair of n-dimensional simplices (Sk, S;) which have a common # — 1-dimensional
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simplex sx; = Sk N S;. Then, find the unique linear relation >; lf’lvi = 0withov; € St US;,
where the lf’l are minimal integers and the coefficients of the points in (Sx U S;) \ (Sk N Sp)
are non-negative. The Mori generators are then the minimal integers I by which every I¥/
can be expressed as positive integer linear combinations. There is an equivalent algorithm to
determine the Mori generators due to Oda and Park [46] which has been implemented in an
unreleased version of PALP [47]. Note that the relations }}_; lf“)D,- = 0 define the ideal Ij,
in (3.5). Assembling the Mori vectors into a k x r-matrix, the columns of the matrix encode
inequalities for the values of the Kdhler parameters. Solving these inequalities yields a basis
K; of the Kdhler cone such that the Kdhler form of X can be written as | = Y, r;K; with
r; > 0. Note that this prescription computes the Kédhler cone of the toric variety X. It is often
assumed that this is a good approximation for the Kihler cone of a hypersurface in X.

3.4. Toric Calculations Using PALP and Other Software

In string theory and F-theory, we deal with compactifications on Calabi-Yau threefolds
and fourfolds. In F-theory model building, the base manifold B is a hypersurface in a
four-dimensional toric ambient space. The fourfolds are complete intersections in a six-
dimensional toric space. The associated lattice polytopes live in four- and six-dimensional
integer lattices and typically have a large number of points. It is in general not possible
to do calculations without computer support. There exist several software packages which
are useful for particular aspects in toric geometry. In this section, we will mostly focus on
the program PALP [29]. Before that, let us mention some other useful programs: Schubert
by Katz and Stremme is a Maple package for calculations in intersection theory. TOPCOM
[48] computes triangulations of point configurations. Singular [49] is a powerful computer
algebra program which is optimized for calculations with polynomial rings such as the
intersection ring. A recent addition is cohomCalg [50], which can compute line bundle-
valued cohomology classes over toric varieties.

Let us now discuss some features and applications of PALP [29], which stands for
“package for analyzing lattice polytopes”. It consists of several programs.

(i) poly.x computes the data of a lattice polytope and its dual if the polytope is
reflexive. The input can be either a weight matrix or the points of a polytope
in the M-lattice or the N-lattice. Apart from the polytope data, poly.x computes
Hodge numbers of the associated Calabi-Yau hypersurfaces, information about
fibrations, and other data. poly.x has been extended with several features that
include information about the facets of the polytope, data of Fano varieties and
conifold Calabi-Yaus. In [51, 52], this extension of PALP has been used to find new
Calabi-Yau manifolds with small h!"! which are obtained from known Calabi-Yau
threefolds via conifold transitions. The full set of options in PALP can be obtained
with poly.x -hand poly.x -x for extended options.

(ii) The program nef.x can be used for complete intersection Calabi-Yaus. It takes
the same input as poly.x and computes the polytope data, nef partitions, and
Hodge numbers as well as information about fibrations. There are several extended
options which include most notably the data of the Gorenstein cones (cf. [53] for
the definition and construction in toric geometry) in the M/N-lattice.

(iii) cws.x creates weight systems and combined weight systems of polytopes of
dimension to be specified in the input.
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(iv) class.x classifies reflexive polytopes by searching for subpolytopes of a Newton
polytope associated to a combined weight system.

Apart from recent applications in F-theory model building, which we will discuss in the next
section, PALP has been used in many other contexts. A data base of Calabi-Yau threefolds has
been generated by listing all 473 800 776 reflexive polyhedra in four dimensions [54]. In view
of the landscape problem in string theory, the statistics of the polytope data is also of interest
[55]. Some of the most recent extensions of PALP which we will mention below have already
been used in [13, 24, 56].

3.5. Application to F-Theory GUTs

In this section, we make the connection to F-theory model building and discuss how the
calculations discussed in Section 2.2 can be carried out explicitly. The approach discussed
here is used in [13, 24]. Our aim is a systematic construction of a large class of examples
of global F-theory models. The first step is the construction of the base manifold B. In
[13], we have obtained a set of geometries by systematically constructing weight matrices
associated to point and curve blowups on Fano hypersurfaces in P4. In [24], we have
considerably extended this class of models by defining hypersurfaces in a subset of the toric
ambient spaces described by the 473 800 776 reflexive polyhedra in four dimensions [54].
Concretely, we have restricted ourselves to configurations, where the N-lattice polytopes
have at most nine points. As one can check, for example, at [57], there are 1088 such
polytopes. We used PALP to recover the toric data of the ambient space and considered
all nonnegatively curved hypersurfaces in these ambient spaces. In order to be able to
perform the calculations outlined in Section 2.2 we must compute the intersection ring
and the Mori cone. We have achieved this by using an extended version of poly.x [47].
The following additional features have been implemented: processing of non-Calabi-Yau
hypersurfaces by specifying the hypersurface degrees as input parameters, a calculation of
the maximal triangulations of the N-lattice polytope, calculation of the Mori cone and the
Stanley-Reisner ideal, and calculation of the intersection ring with the help of Singular. Using
this data, we can identify del Pezzo divisors, check the existence of a decoupling limit, and
compute the topological properties of matter curves and Yukawa points. In [24], we have
analyzed a total number of 569 674 base manifolds. The resulting geometries are available at
[58].

The next step in the calculation is to construct the Calabi-Yau fourfold X4 which is an
elliptic fibration over the base B. The toric data of X, is obtained by extending the weight
matrix of B. Schematically, this looks as follows:

321 0 -~ 0

* x 0 wy -0 Wi (3.7)
x *x 0

* % 0 Wy 0 Whn-

Here, the w;; denote the entries of the weight matrix associated to B. The *-entries in the
extended weight matrix have to be chosen in such a way that the fiber coordinates x, y are
sections of K;* and K}, respectively. These entries of the fourfold weight matrix contain
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the information about the hypersurface degrees of the base. Not every extended weight
system will lead to a Calabi-Yau fourfold of the form (2.1). The calculations can be done
using nef . x. Several problems can appear: first, there may be no nef partition, and, therefore,
our methods do not work. A second conceptual problem is that the polytope corresponding
to the extended weight system is not always reflexive. Many of the combinatorial tools
used in PALP are only valid for reflexive polytopes. Even though one might have a
perfectly fine Calabi-Yau fourfold, we cannot apply our technology to them. The third
issue is of a technical nature: due to the complexity of the fourfold polytopes one may
reach the software bounds of PALP which results in numerical overflows. For the 569 674
extended weight systems discussed in [24], we find only 27 345 reflexive fourfold polytopes
which have at least one nef partition. Furthermore, there are 18 632 reflexive polytopes
without a nef partition, 381 232 nonreflexive polytopes, and 142 470 cases with numerical
overflow.

Having found a reflexive fourfold polytope with at least one nef partition is not
enough to have a good global F-theory model. If we further demand that the base B has
at least one del Pezzo divisor with a mathematical or physical decoupling limit, the number
of fourfolds decreases significantly. In addition, we should also impose some constraints on
the regularity of the base. Demanding that B is Cartier leaves us with 16 011 good models.
Imposing the stronger criterion of base point freedom, we are down to 7386 models. Focusing
on these 7 386 good geometries, we apply the constraint that the nef partition should be
compatible with the elliptic fibration. This information can be extracted from the output of
nef .x. This further reduces the number of geometries to 3978.

Having found a good Calabi-Yau fourfold, we can construct a GUT model on every
(del Pezzo) divisor. A toric description on how to impose a specific GUT group on a Tate
model has been given in [6]. The Tate form (2.2) implies that the a, appear in the monomials
which contain z". We can isolate these monomials by identifying the vertex v. in (V1, V») that
corresponds to the z-coordinate in the Tate model. All the monomials that contain z" are then
in the following set:

Ay ={wr e Ay : (vy,wr)+1=r}, v,€V,, (26)where A, is the dual of V,,,, which
denotes the polytope containing the z-vertex. The polynomials a, are then given by the
following expressions:

2
a, = Z C;"H Hyi(vi,wk>+6mn|x:y:z:1‘ (3.8)

wWrEA, n=1 v;eV,

Now, we can remove all the monomials in a, which do not satisfy the factorization constraints
(2.4) of the Tate algorithm. In order to perform this calculation, we have to identify the fiber
coordinates (x,y,z) and the GUT coordinate w within the weight matrix of the fourfold.
We have applied this procedure to every del Pezzo divisor in the 3978 “good” fourfold
geometries. Note that the procedure described above can destroy the reflexivity of the
polytope, which happens in about 30% of the examples. For SU(5)-models, we found 11
275 distinct models (since the procedure has been applied to all del Pezzo divisors in a given
base geometry not all these models may have a decoupling limit) with reflexive polyhedra,
for SO(10) GUTs, there are 10 832. U (1)-restricted GUT models [14] can be engineered along
the same lines. It turns out that U (1)-restriction does not put any further constraints on the
reflexivity of the polytope.
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4. Outlook

In this paper we have discussed how toric geometry can be used to construct a large number
of geometries that can support global F-theory GUTs. Using this technology, we could
show that elementary consistency constraints greatly reduce the number of possible models.
However, due to computational constraints, we did not quite succeed in systematically listing
all possible F-theory models within a class of geometries. Such an endeavor would require
substantial changes in the computer programs we are using. It is actually quite remarkable
that we could make use of PALP for Calabi-Yau fourfolds and non-Calabi-Yau threefolds,
since this goes beyond what it was originally designed for.

Let us present a list of suggestions to extend PALP in order to improve the applicability
to the current problems in mathematics and physics and to make it more accessible for users.
The original purpose of PALP was to solve a classification problem for polytopes. Over the
years, it has been adjusted and extended in order to be applied to specific problems. Many of
the basic routines that were implemented to tackle some special questions could be used in
much more general contexts but cannot be easily accessed. Therefore, a better modularization
of the software is necessary in order to have flexible access to these basic routines. Another
problem of PALP is that one has to specify several parameters and bounds such as the number
of points in a polytope in a given dimension at the compilation of the program. It would be
practical to have fully dynamical dimensions in order to work with a precision tailored to the
problem at hand without recompiling.

A fundamental change would be to step away from the description of polytopes and
instead use the ray representation which has the full data of the cones. This is necessary if
one wants to deal with non-reflexive polytopes. A further extension which has already been
partially implemented is to include triangulations, intersection rings, and even the calculation
of Picard-Fuchs operators needed for mirror symmetry calculations into PALP. The ultimate
goal is to have an efficient and versatile program which can be used for toric calculations of
all kinds without having to rely on commercial software. Finally, a detailed documentation
of all the features of PALP would be helpful [59].

As for the search for F-theory models, an extended version of PALP would hopefully
help to overcome the problems of nonreflexivity and overflows we have encountered in [24].
Apart from finding new examples for physics applications, one might also attempt a partial
classification of Calabi-Yau fourfolds. Enumerating all toric Calabi-Yau fourfolds may be out
of reach or even impossible, but for finding all models of type (2.1), one can at least give
a prescription for the construction: take each of the 473 800 776 reflexive polyhedra in four
dimensions and put in all nonnegatively curved hypersurfaces that are not Calabi-Yau. Then,
construct fourfolds which are elliptic fibrations over these base manifolds. A rough estimate
shows that this procedure would yield O(10'!) fourfold geometries.
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