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Abstract: This paper studies the Bondi-Metzner-Sachs group in homogeneous projective coordinates
because it is then possible to write all transformations of such a group in a manifestly linear way.
The 2-sphere metric, the Bondi-Metzner-Sachs metric, asymptotic Killing vectors, generators of
supertranslations as well as boosts and rotations of Minkowski spacetime are all re-expressed in
homogeneous projective coordinates. Lastly, the integral curves of vector fields which generate
supertranslations are evaluated in detail. This work paves the way for more advanced applications of
the geometry of asymptotically flat spacetime in projective coordinates by virtue of the tools provided
from complex analysis in several variables and projective geometry.

Keywords: asymptotic symmetries; Bondi-Metzner-Sachs group; projective geometry

1. Introduction

The Bondi-Metzner—Sachs [1-3] asymptotic symmetry group of asymptotically flat
spacetime has received much attention over the last decade by virtue of its relevance to
black-hole physics [4-6], the group-theoretical structure of general relativity [7-20] and
the infrared structure of fundamental interactions [21-25]. Moreover, since asymptotic
symmetries can provide key constraints on the celestial dual to quantum gravity in flat
spacetime, much work has been devoted to the celestial holography program and related
issues [26-32].

The appropriate geometric framework can be summarized as follows. In spacetime
models for which null infinity can be defined, the cuts of null infinity are spacelike two-
dimensional surfaces orthogonal to the generators of null infinity [33]. Using the familiar
stereographic coordinate

7 =¢e?cot Q, (1)
2
the first half of Bondi-Metzner-Sachs transformations read as
/ (al +b)
= pr— pr— 7 2

where the matrix A = (LCz b> has unit determinant (ad — bc) = 1 and belongs therefore

d
to the group SL(2, C). The resulting projective version of the special linear group can be
defined as the space of pairs

PSL(2,C) = {(f, A)| f:T € C— fa(Q), A € SL(2,C)}, ®)
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i.e., the group of fractional linear maps f5 according to Equation (2) with the associated

matrix A. Since @+ (—al—b)
ag + —ag —
— = = _ V3 4
fA(g) (Cg—f‘d) (—Cg—d) f A(g) ( )
one can write that PSL(2, C) is the quotient space SL(2, C) /4, where § is the homeomor-
phism defined by

é(a,b,c,d) = (—a,—b,—c,—d). )]

The fractional linear maps (2) can be defined for all values of { upon requiring that

fa(ee) = g, fa <—i> = oo. (6)

Moreover, using fractional linear maps, lengths along the generators of null infinity scale
according to
du’ = Kx(Q)du, )

where the conformal factor is given by [19,33]

1+
a§+b|2+ |c§+d|2'

By integration, Equation (7) yields the second half of Bondi-Metzner-Sachs transforma-
tions:

u' = Kn (@) [u+a(g,2)]. ©)

As was pointed out in Ref. [19], the complex homogeneous coordinates associated with
the Bondi-Metzner—Sachs transformation (2) have modulus < 1, which is the equation of a
unit circle, and are

ip 0 9 0
5 ,z1=e '2sin~. 10
Zpy — €2 Cos 5 Z1 e sin > ( )

In other words, given that
Z0
= —, 11
(=2 a1

Equation (2) is equivalent to the linear transformation law

z! a b\ [z
@)-C ) @

The next step of the program initiated in Ref. [19] consists of realizing that, much in the
same way as the affine transformations in the Euclidean plane

X' =x+a,y =y+b, (13)

can be re-expressed with the help of a 3 x 3 matrix in the form

1 0 a X x—+a
01 b y|=\y+b|, (14)
0 0 1 1 1

one can further re-express Equation (12) with the help of a 3 x 3 matrix in the form

w), 1 0 0\ /w
wy | =(0 a b|lw], (15)
wh 0 ¢ d) \w

with the understanding that Equation (12) is the restriction to the unit circle I' of the
map (15), upon defining
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wolp =1, wilp =20, w2|p = z1. (16)

Within this extended framework, one can consider two complex projective planes [19].
Let P be a point of the first plane with coordinates (wg, w1, w;), and let P’ be a point of
the second plane, with coordinates (u, 1, t2). One can now consider the nine products
between a complex coordinate of P and a complex coordinate of P/, i.e.,

th = wnuy, h,k =0,1,2. (17)

This equation provides the coordinate description of the Segre manifold [34,35], which is the
projective image of the product of projective spaces. It is a natural tool for accommodating
the transformations that reduce to the BMS transformations upon restriction to the unit
circle I'. It contains a complex double infinity of planes, two arrays of planes and a complex
fourfold infinity of quadrics [19,34], but its differential geometry is still largely unexplored,
as far as we know.

Unlike Ref. [19], we have a more concrete task: since the Bondi-Metzner-Sachs trans-
formation (2) becomes linear when expressed in terms of zy and z;, we are aiming to
develop the Bondi-Metzner-Sachs formalism with the associated Killing vector fields by
using the pair of variables (z,z1) instead of ({,{). For this purpose, the homogeneous
projective coordinates for the 2-sphere are studied in Section 2, while the Bondi-Sachs
metric in homogeneous coordinates is considered in Section 3. Asymptotic Killing fields
for supertranslations are evaluated in Section 4, while their flow is investigated in Section 5.
Concluding remarks and open problems are presented in Section 6, while technical details
are provided in the Appendices A and B.

2. Homogeneous Coordinates on the 2-Sphere

It is useful to developing the BMS formalism as an instrument in homogeneous coordi-
nates to re-write the 2-sphere metric in the desired coordinates. By using the definition (10),
we obtain

zpz1 = sin(6/2) cos(6/2) = sin(0) = 0 =sin 1(2z9z1), (18)
while for ¢, we obtain
i—o = ¢'% cot(0/2) = ¢ = —i log (tan(9/2)zo>. (19)
1 1
By virtue of the identity
tan(6/2) 251n(9/22) cos(6/2) _ sin(6) , 20)
2cos?(6/2) 14 4/1 —sin?(6)

we obtain for ¢ the more convenient expression

2
274

p=—ilog| ———2——
1+ /1 — 42522

In order to re-express the 2-sphere metric, let us evaluate

20 \? 20\ 2 20 06
> = (=) dz? — ) dZ? 42— —dzod
(820) ZO T <azl> Zl T aZO azl Z0421
42% 5 42% 5 8z0z1

dzodzq, (21)

Z z
_ 4.2,2770 _ 42,2771 _ 122
1 —4z5z] 1 —4z5z] 1 —4z5z]

while
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] d o¢ 0
sin?(0) dg® = 42322 de* = 42323 il dz (22 dz 4250 5% dzodz;
0z 0z1 0z( 021
2 2,2 z
-6 (1-2233 + 1 - 42333) e 642624 e
2
(l — 42322 4+ (/1 — 4zozl> (1 — 47322+ /1 — 42021>
32z3z3
— dZole (22)
1— 42322
Eventually, we obtain the metric for the 2-sphere in homogeneous coordinates
1
Q= do*+sin®(0)de? = Y gudz'dz’
uv=0
1—42322 +2,/1 — 42372
= - 42% 071 ot dz% + 8z09z1dzpdzq
1-— 42021
142222 —2,/1 — 42322
~ 422 071 O ) a2, (23)
1-— 42021
At this stage, upon defining the real-valued function
2 2
1z 21) = -— ()
/11— 42021
we can write the matrix of metric components in the form
—4z2(1+ 1) 4zzq
YAB = , (25)
4zyzq —4z2(1— 1)
with non-vanishing determinant —16z3z2? and inverse matrix
1— 1
. 42%72 4702172
7= (26)

1 14+«
472172 4z242

We can see from (18) that the terms

27021 = sin(8) — 42323 = sin?(0) — 1 — 42322 = cos?(0) — 4zpz; = 2sin(6),

are real-valued, whereas
22 = e'? cos?(0/2), 23 = e~ sin(0/2)

are complex.
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3. Bondi-Sachs Metric in Homogeneous Coordinates

We can now write the Bondi-Sachs (hereafter BS) metric in homogeneous coordinates
with the help of the previous formulae. For this purpose, let us first write the general BS
metric in the form

ds? = —Udu® — 2¢*Pdudr + hup (dxA + ;UAdu> <de + ;UBdu). (27)

On passing from (6, ¢) to (zo,z1) coordinates, we find the metric components of (27)
expressed as follows (the material from our Equation (28) to our Equation (43) can be
obtained from Equations (4.33), (4.35) and (4.37) in Ref. [36], which relies in turn upon the
work in Ref. [37]):

Quu = —U + %hzozo(u%)z + %hzlzl(uzl)2 + %hzozl usu=, (28)
Sur = —eP, (29)

Sumy = (g U g, U, (30)

ey = 3 (g U0 ey U, Q)

Sz0z0 = Nzozor Sz0m1 = Nzozys 21z = Nzyzy- (32)

The Bondi gauge 9, det(r~2g4p) = 0 implies that y48C4p = 0, where 75 is given in
Equation (26). With our coordinates, this relation reads as

’YABCAB =0 & g00Cyz + g9 Cayzy + 2871 Cyyzy = 0.

We no longer have the simple result C.z = 0 for the mixed component as in the stereographic
coordinates because in homogeneous coordinates we obtain

1—7

1+
42%7 2020 + f}/ 2 CZ(]Zl = 0/ (33)

4732 5T 22021y
which implies that

1 Z0 1 z
Copey = _5(1 — ay)zczoz0 - 5(1 + y)iczm. (34)

The angular components of the metric are

gZOZO = rZ,YZgZO + rCZoZO _'_ O(r)/ ngzl = rzr)/zlzl + T’Czlzl + O(T’),

8zpz1 = 7’2’)/2021 + T’Czozl + O(T’)
zo (1 — z1 (14

= 7’2')/2021 - 7(0 ( ’Y) Czozo + s ( ,Y) C2121> + O(r)/
Z1 2 20

where, of course, 7y 4p is given in Equation (25). These formulae, jointly with the falloff
conditions
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2m(u,r, xA) n Uy (u, xA)

U(u,r,x) =1- +0(r™3)

r r?
A A
Blu,r,x%) = 51(“;" )4 ﬁz(i;x o)
U (u,xB) U4 (u, xB)
A By _ 2 \# 3\, —4
us(u,r,x") = 2 + 3 +00™)
ga(u,7,x") = Py ap(x*) +rCap(u, x") + Dag(u, x*) + O(r ), (35)
help to rewrite
2m -
Suu :<1r> +O(r 2)- (36)
Upon assuming that 31 /r < 1, we obtain
2 2
oo eofiror) - Bacn e

while for g;;, and g,,, we find
1/, uY uy 1(, zo (1—7)
8uzg = ) (1’ Yzozo t rCZOZO) (1,3 + 1’% + 2{7’ Vzgzy — T Ll 5 Cayzo

z1 (1+7) u | ug
+% 7 Cam 2t

_ 'Yzzgzo ué() + 'Yzzgzl u? + % [')’zzgzo u§° n szozo ué(] + 'Yzzgzl U;l
zo (1 — z1 (1+ _
Z?( 1 7)c2020u§1 - Z(l)( 1 W)Czlzlugl} +0(r?) (38)

and

1 u:'  u? 1 20 (1— 7
Suzy = ) (”272121 + rClel) (7’% + rg) + 2{7’272021 -r Ll ( 2 )Czozo

z1 (1+ uz  yzx
w3}

20 2

~ Yziz1 9721, Y2071 1720 1 Yz121 3424 Cz1z] z1 , Yzoz1 720
—2U2+2U2+r 2U3+2U2+2U3

zo (1—7) z1 (1+7) -
_Z 4 CZOZO U;O o % 4 CZlZl U§0 + 0(” 2)/ (39)

where use has been made of (34). Eventually, we obtain the matrix of Bondi metric components

2m 2
— <1 — 1’) -1 % 8uzy Suz
2B,
-1-— 0 0 0 _
Suv = r +0(r72). (40)
Suzg 0 Y2020 + 7Capzg Y29z + 7Cayzy
guzl 0 7’2"}’2021 + rCZQZ] rZ’)/ZlZl + T’Czlzl

The gauge condition det(gap/7?) = 0, instead of giving a solution for D 45 such as in
stereographic coordinates, gives us a condition for C4p
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rzr)/Z()ZO + rCZ()ZO + DZ(]ZO 1’272021 + cmoZ] + DZ()Zl
det(gap) = det
7’272021 + rCZozl + DZOZI 1’272121 + rCZ17~1 + Dzlzl

=rt ('72020 Yz1z1 — ’)%021) + r ('Yzozo C2121 + Yz Cz()zo - 27’372021 Czozl)

+7? (')’Zozo D22y + CayzgCryzy + Y212 Dzgzg — Cgozl — 22z DZozl) +O(r),

!
det(gr#) = Y2920 D221 + Czyz9Czyzy + V212 Dzgzg — Cgozl — 27292 Dzpzy =0

2
~ Tzozg Dy 2y + CryzgCoyzy + Vzyzy Dzgzg — CZOZ1

f— DZ 7 =
041 272021
2 —
Cz()zl - CZOZOClel'

In order to determine the various coefficients in the falloff conditions, we require that the
Bondi metric should satisfy the Einstein equations

1
Gy = Ry — 5 Rgu = 87G Ty

Upon restricting to the vacuum case T = 0, in the limit as r approaches co in the Einstein
tensor, first looking at G, and neglecting the terms of order 0(7’4), we obtain

G = —4%+0(r*4) Z0=p1=0.

Upon looking at G,,, and G,;,, respectively, we obtain lengthy relations for Uil and U;O,
compared to the stereographic coordinates case, which depend on other coefficients. How-
ever, we still manage to solve directly for U;° and U;'. On studying G,4 = 0, we find

uZO — 22021 (CZ1Z] uél + 72021 u§0 + ’)’Z]Zl u;l) — _ Czlzl uél + 2')/2021 U;O (41)
? Z%(l + IY)CZlZl + Z%(]‘ - ’)/)CZOZO CZOZI ’

and
us — 27021 (Czozo uio + Yzozo uéo + Yzozy Ugl) _ CZOZO U?) + 272021 Uél (42)
2 Z%(l + r)/)Czlzl + Z%(l - r)/)CZOZO CZOZI ’

where we recall that C;;, is given in Equation (34). By virtue of Equations (38) and (39) we
eventually find the metric in the form

2m
ds? = —du® — 2dudr +2 (rZ,yZOz] + rCZOZl>dzodzl + Tduz + (rz’)/zozo + 7C2020>dz(2)
4 (7”2’)’2121 + rCZm)dz%

Yzoz Yzoz 1/ Cyyz Czyz Yzoz Yz0z1 4 12
+|: ZOOUEO_F 201u§1+r< 200u50+ 201u§1+ 200u§0_|_ 201u3] dudzo

Yzoz1 ¢ 42 VY2121 4 42 1(Coz 12 Coizy ypz Yzoz1 ¢ 42 VYz121 4 42
+|: 201u20+ 211u21+r< 2()1u20+ 211u21+ 201u30+ 2111/[31 deZ1
+0(r2), (43)

For the discussion of Bondi’s news tensor, mass and angular momentum aspects we refer

again to the work in Refs. [36,37]. Now, we are ready to evaluate the BMS generators in
homogeneous coordinates in order to determine the supertranslations.
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4. Asymptotic Killing Fields

After finding the most general Bondi metric in homogeneous coordinates satisfying
the asymptotically flat spacetime falloffs, our aim is to find the most general vector fields ¢
satisfying the Bondi gauge condition and the asymptotically flat spacetime falloffs. As is
well known, the Killing vectors solve by definition the equations

(£28) 1, = 6708w + 8upduC’ + updulf = 0.
Moreover, the preservation of the Bondi gauge condition yields

(£e8),, =0, (Leg),, =0 and g"%(Leg) 15 =0. (44)

From these relations, one can calculate the four components of ¢¥. At this stage, we can
compute the asymptotic Killing fields in homogeneous coordinates by using the familiar
transformation law of vector fields. In other words, the work in Ref. [22] has defined
the stereographic variable (we write ¢ rather than z used in Ref. [22], in order to avoid
confusion with our ¢ in Equation (1))

P =e'? tang = }, (45)
and has found, in Bondi coordinates u, r, 6, ¢, the asymptotic Killing fields (ﬁ where the
components depend on a function f and on the Bondi coordinates. On denoting as usual
by Y7" the spherical harmonics on the 2-sphere, one finds

£ =, 46
gT f:y(g) au ( )
o 2 0=v9) <a _ a) $o 9 17
i =0 (I+yp)\ou or r oY T 9P’ 47)
o v (2 9y, 92 12
ér oyt (1 +y9) <au ar) o oy 2rop’ (48)
. __ % (2 9y _ 12 90
br |f:yf1 - (1+y9p) (au 8r> 2r oy T oy (49)
Now;, by virtue of the basic identities
0 0dzp 0 dz1 d
o~ oy oz oy oz e
0 0dzp 0 dz1 d
o~ oy 0z 0 oz o
and upon exploiting the formulae (A7)-(A10) in the Appendix A, we find
2/9 9 z02=79) 0 z1(2+7) 9
+ e P e 2 44 2
T =10 " <au ar> o vy 9z 2r g 0z1 52)
N m(v—z><a_a>+1<zO>2<1_ 1
T fov! 2z« ou or rozz \4 q(y+2)
o 1 (r+2)) 9
2r < (r+2) 2y Joz’ ©3)
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- _ oa0+2 (9 0\ =l 1 (r-2) 9
T F=vpt 2z v ou or 2r \ (y—2) 27y 929
1(z1)% /1 1 0
vz \3 a(r-2)aEm >y

Now, we denote by &, C1, &2, {3 the vector fields (46), (52), (53) and (54), respectively.
Nontrivial Lie brackets among them involve 1, ¢, 3 only. With our notation, we can
re-write Equations (52)—(54) in the form

0 d 0 0

§1=An (au - ar> + A12% + ABE' (55)
d d d d

Cr = An (au - 8r> + Azza + AZBE’ (56)
0 ] 0 0

G3 = Az (au - 8;’) + A32% + A33E/ (57)

where the values taken by the A;; functions can be read off from (52)—(54). At this stage, a
patient evaluation proves that such vector fields have vanishing Lie brackets:

[81,82] = [62,G3] = [C3,&1] = 0. (58)

The result is simple, but the actual proof requires several details, for which we refer the
reader to Appendix B.

5. Flow of Supertranslation Vector Fields

The analysis in this section does not have a direct impact on unsolved problems but
(as far as we can see) can help the general reader. More precisely, in order to appreciate
that the familiar geometric constructions are also feasible in projective coordinates, we
now consider the flow of supertranslation vector fields (52)—-(54). For example, by virtue
of (24), and defining p = (u, 7,20, 21), the task of finding the flow of the supertranslation
vector fields (52), (53) and (54) consists of solving a system of nonlinear and coupled
differential equations. For this purpose, we denote by o, X, x, respectively, the appropriate
flow, and define

s p) =1 4(Wor pwi(r )

where W = 0, %, x, respectively, with components W', W2, W3, W*. Hence, we study the
following coupled systems of nonlinear differential equations:

(59)

dol
Fr 3T, p), (60)
do?
oo = —5(o; T, p), (61)
3
27 _ D) (50,7, p) - 1), 62

dr — 202(t,p)
do*  o*(t,p)
== m((5((7, T,p)+1), (63)
=t _ Z(t,p)
dt  2%4(t,p)
=2 (t,p)
dt — 2%%(1,p)

1-90(%7,p)), (64)

(1-6(%1,p)), (65)
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g _ 422((Z: ;T)'Z”f ()i 5 {1 5T, p) + Oji(?(;f)p))} (66)
Bl [y, )
ddi; = 2);43((1’,2)))(1 +5(x:T,p), (68)
”%2 = —muﬂ%(){;np))r (69)
et [ ey 1 o) ™
o R e S
with the initial conditions
W0, p) = u, W2(0,p) =1, W(0,p) = zo, WH0,p) = 21. (72)

The resulting equations can only be solved numerically to the best of our knowledge, and
such solutions are displayed in Figures 1-9. Since the desired solutions are complex-valued,
we display both real and imaginary parts, with three choices of initial conditions.

a

1.0t
0.8
06/

04/

02}

Figure 1. Numerical evaluation of the integral curve for the supertranslation vector field (52). The
initial conditions (72) are taken tobe u = 0,7 = 1,zy = €' cos 521 = ¢~ % sin 5
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1.5

1.0

0.5

-1.0

-1.5

Im(Z1)

-'----

\ —""-'_' Re(zz)

Re(Z3).-" et

t
- . 1 2 3 4 5
-~
a “u
..:~...
. il
....i
..x..~"'d--.
Im(z4)

Figure 2. Numerical evaluation of the integral curve for the supertranslation vector field (53). The

initial conditions (72) are taken tobe u = 0,7 = 1,zg = €' cos 5z = ¢~ % sin .

X
15+ Im(-)gz-)--
Re(x2 - )
1.0* _,-""- Im(-X3")“
\ .-"":: -------
Re(x3) ..--= ‘_-_.-
0-5;._.;";-—’*_" - —
Ly 1 1 ! y Re(Xﬂ) : !
__'_'_\.-.-; """"""" 2 : : :
l .__.\.. Im(x4)
-10f
e Im(x1)
-1.5¢F .

Figure 3. Numerical evaluation of the integral curve for the supertranslation vector field (54). The

initial conditions (72) are taken tobe u = 0,7 = 1,zg = €' cos 521 = ¢~ % sin 5

1.0

0.8

0.6

0.4

0.2

ag
Re(o1) Re(02)
Re(03) Re(o4)
L Im(a3)
Im(c1)
0.0001 0.0002 0.0003 0.0004 |m(g2) 0.0005
L Im(o4)

Figure 4. Numerical evaluation of the integral curve for the supertranslation vector field (52). The

initial conditions (72) are taken to be u = 1,7 = 1,29 = €' cos xn = e i% sin .
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T
2f Im(z1).
L Re(=1) '____..-.....
1 < Re(22)
L L Re(z4)
T S T ().
Re(23)
::‘ " " " 1 " " " " 1 " " " " 1 " " " " 1 " " " "
SEE 1 2 3 4 5
Lo e
[ T L Im(z4)
il
e Im(32)
2L

Figure 5. Numerical evaluation of the integral curve for the supertranslation vector field (53). The
initial conditions (72) are taken tobe u = 1,7 = 1,zg = €' cos 521 = ¢~ % sin T

— e
FImO3) eSS —— Re(x4)
=:-'-' 1 1 N N L | L ¢
.~.... 1 2 3 4 5
B b imiedy
s
LR | Q)
2t

Figure 6. Numerical evaluation of the integral curve for the supertranslation vector field (54). The
initial conditions (72) are taken to be u = 1,7 = 1,29 = ¢'% cos xn = e~i% sin .

ag

1.0 Re(02)

Re(03)

Im(g1) Im(o3)

.................... “eo.lm(o4)

-
hELT TN
Seea.

-05¢

Figure 7. Numerical evaluation of the integral curve for the supertranslation vector field (52). The
initial conditions (72) are taken to be u = 0,7 = 1,z = ¢'% cos 5,21 = e~'% sin 7. In this particular
case, the real parts meet at a single point.
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Re(22)

1.0h Im(£1)

Re(Z3) TTTteeeeiilameet -
sl Im(23)

-0} ImE4) TTTTmemeeal

Figure 8. Numerical evaluation of the integral curve for the supertranslation vector field (53). The
initial conditions (72) are taken tobe u = 0,7 = 1,z9 = ¢'1 cos 15,21 = e~'% sin .
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Figure 9. Numerical evaluation of the integral curve for the supertranslation vector field (54). The
initial conditions (72) are taken tobe u = 0,7 = 1,z9 = 1 cos 15,21 = e~'% sin .

6. Concluding Remarks and Open Problems

As far as we can see, the interest of our investigation lies in having shown that homo-
geneous projective coordinates lead to a fully computational scheme for all applications of
the BMS group. This might yield success when more advanced properties are studied. In
particular, we have in mind the concept of super-rotations [22,23] on the one hand and the
physical applications of the Segre manifold advocated in our Introduction and in Ref. [19].
In other words, since our Equation (15) contains Equation (12), which in turn is just a
re-expression of the BMS transformation (2), one might aim at embedding the study of
BMS symmetries into the richer mathematical framework of complex analysis in several
variables [38] and algebraic geometry. The exploitation of the complex analysis approach to
algebraic geometry appears promising because the singular points of functions of several
complex variables form a continuum (see definitions and theorems in Refs. [34,38]). The
potentialities of this framework for studying, e.g., super-rotations were unforeseen and
deserve careful consideration in our opinion. Our paper has tried to pave the way for such
a synthesis through manageable calculations.

Moreover, we would like to mention that the research in Refs. [36,39,40] has exploited
the fact that one can actually work with a completely arbitrary metric on the asymptotic
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2-sphere. By doing so, one can write the on-shell expression of U, U* and f in our Section 3
in terms of this arbitrary 2-sphere metric. This might therefore provide a way to recover
our results when taking the particular case in which the 2-sphere metric is expressed in
homogeneous projective coordinates. We are grateful to M. Geiller for this remark and also
for having brought to our attention the work in Ref. [41], where the authors have written
the solution space and the asymptotic Killing vectors and their action in the case of an even
more general gauge than Bondi-Sachs.
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Appendix A. The Use of Homogeneous Coordinates
By virtue of Equations (10) and (24), we find

ip(1+c0s0) iy 2(z0)° 2(z0)*y

2
= = == ’ A1
(20)" = 2 (I4+cosf) (y+2) (A1)
and hence the variable ¢ in Equation (45) can be re-expressed in the form
2
p= 2(z0)*y (1 —cos) _ 2(z0)*y (1 - ?) _2(r—=2) (A2)
(y+2) sin6 (Y+2) 2zoz z1 (v +2)’
while 1
_ Z1
=_- == A3
b=z (A3)
Moreover, we need the identities
s I o
h — — CO0S — = —, sin = = =/ A4
vy cos? § 2 JA+yp) 2 (1+y9p) (Ad)

which, jointly with the definitions (10), lead to
_ w)41 :(lﬁ)l 9P e
& (43 Jires T \y) VA (A6)

At this stage, we can evaluate the partial derivatives occurring in Equations (50) and (51)
by patient application of Equations (A2), (A3) and (A6), i.e.,

N

0z _z1 (v+2)
o 2 9(y—2)
dz1  1(z1)* (v+2)

W 2z y(y—2) (A8)

(A7)
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d 2 (y—
i? _ _(ZO) (ry 1)’ (A9)
oY 2z4 0%
d

and we eventually find the asymptotic Killing fields in the form (52)—(54). Our homoge-
neous projective coordinates zp and z; have also been considered in Ref. [42], but in that
case, upon writing

= ((a;+zg)), (A11)

one finds that the x, y, z coordinates for the embedding of the 2-sphere in three-dimensional
Euclidean space are given by

2Re(7)  (z0Z1 + Zoz1)

, (A12)

(1+1g) (202 +[z1]?)
_ 2Im(Z)  (z0Z1 — Zoz1)
1R izl + [=?) (A1
_(eP=1) _ (=0l =) (A14)

TUPFD T (2P P

The global spacetime translations of Minkowski spacetime can be first re-expressed in
u,r,&,¢ coordinates, and read eventually, in terms of the asymptotic Killing fields (52)-(54),

Xo = _C:;: , X1 = _C]f - g;: ’
F=Y§ f=Y] f=y!
iXo=&F| & L Xe=-CF| (A15)
=t f=x{ f=x7
Explicitly, we find
_ (20 (=2 =z (r+2)\(_ 9 9
Xio= (221 v + 2z ¥ PV

w5 () (5 )]

%)
EEN
S (4o (2 )l o

X, = i(zo(W—Z) _ Zl(HZ)) (a _ 3)

2z1 v 2zg ou or

i ;[(?1)2<;_7(72+2))+Zl<<72;2)+(712))}az~0
i [(z1)?
- 2?[(210) (;_7(722))+Z°<(724;2)_(712))h;’ (A17)

Xg—z(—a+a> . (z I WH)B). (A18)

27\ %z, T4 oz

+
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The boost (K;) and rotation (J;;) vector fields for Lorentz transformations in Minkowski
spacetime can be written in u, 7, ¢, ¢ coordinates as is shown, for example, in Ref. [22]. At
that stage, by using again Equations (50), (51) and (A7)-(A10) we find

Ky = 1<ZO(7_2) +Zl(7+2)><—ua+(u+r)a>

2\z1 v Zo Y Ju or

k) (5

[(202(1_ 2 >+zo<—("+2)+ ! )]a (A19)

s [OE( A ) e (F R 2L e

2o v(y—2) 2y (v+2)/] 0z
o= (et Gat) )
(e G raie) e (h2)
mo= Sl G )l
IR

Appendix B. Lie Brackets of Asymptotic Killing Fields
Given the vector fields (55) and (56), the evaluation of their Lie bracket shows that

0 d 0 0
[61/ 52] = Q1 (au - 81’) + PZ% + P3E/ (A25)

where, upon defining the functions

~ 2(z0)%z (1 1

w2 (5 ) "0
21 (z0)? (1 1

T <4_7(7+2)>’ (427
~ (20)°z 1 (y+2)

BTy [(7+2) 27 } (A28

1 1 (7 +2)
“4_772[(%%)_ 2y } (29)
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_(2 V1.2 2
T (7 1) [221 (1 7) (=) Zﬂ]' (A30)
(202 2
W= (5 -1) (A31)
_ (20)*218+ (v —2)7%)

A Vel Gy (A%2)

_ (z0)*z1y 1 (r+2)
ng = 02 (’Y T 2) 2 , (A33)

zo (2 1 (v+2) 4(20)2(21)27(7“)]
— 20 (24 — , A34
“ 472(7 )[(“HZ) 2y (7 +2)2 (A39)
_zz (2 1 2 2
wo= T (5 +1) [ @p(1-7) +2e0m, (a9
20 4
0 =g <’Y2 - 1>, (A36)
(z0)%z1 (2 ) [ 1 (1 1 > 2(z0)%y(y + 1)]
S A o (e T T 1Y Y , A37
e R RS | B A Vi e )y R ey (A7)
(o)1 1
X13 = 2 1 77(7 2y ) (A38)
20(8 — (v —6)7")
a4 = 161272 / (A39)
we find that

01 =0&1+az3+as+ag=0, (A40)
02 =&y +ag + a7 +ag+wa1p =0, (A41)
P3 = 04 + a9 + aq1 + w13 +agg = 0. (A42)

In the course of performing the calculation, the definition (24) leads to the useful identity

1 _ A=z)l(=)
Y (P-4 (a43)
An analogous procedure shows that
[2,G3] = [3,61] =0, (A44)

with the help of two additional sets of 14 nonvanishing functions, one set for each Lie
bracket in (A44). For example, in the Lie bracket among ¢, and ¢3, the coefficient of 8370 is
the function

- B e

* 1612(1 )[ ( 2))—2<ZO>3<Z1>27<(7122)2_1>}
+ a(5m) (- 7+2)+<zO>2<zl>zv(wfz)2_1)]
1
>

I R )

= 0. (A45)
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