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Abstract

A primary purpose of the ATF Damping Ring is to demonstrate the small vertical emittance required
for a future linear collider. In this report, we first describe the diagnostics available to measure this
emittance. Then we discuss the dependence of the emittance on various parameters, such as the betatron
tunes, vacuum pressure, and beam current, and, subsequently, study several methods of betatron-coupling
correction. Next, we show that the interferometer used to determine the vertical beam size is sensitive
to transverse beam tails and does not measure the core emittance, which could explain the observed
sensitivity of the measured spot size to vacuum pressure and beam intensity. Finally, we summarize the
results and propose a few further studies.

In the appendix, we present recent measurements of the dynamic aperture, and discuss the variation
of the beta functions, e.g., at the synchrotron light monitor, with the betatron tune. Here, we also present
details of the SUSSIX program, by which, in the future, we hope to infer all linear coupling parameters
as well as higher-order nonlinearities from turn-by-turn orbit data.

1 Introduction

The vertical emittance in the ATF Damping ring is expected to be limited by spurious vertical dispersion and
by linear betatron coupling [1, 2]. Both effects would imply a strong tune dependence. For a vacuum pressure
of 10 nTorr, also multiple beam-gas scattering can significantly increase the measured rms emittance. Since
the vertical design emittance is extremely small, intrabeam scattering is a further prominent contribution,
causing a large emittance increase at higher beam currents.

In the next section we briefly describe the diagnostics and measurement techniques which are available
to measure the vertical emittance. Section 3 discusses the effect of dispersion and betatron coupling, and the
search for an optimum working point in the tune diagram. This is followed, in Section 4, by a discussion of



coupling correction schemes. Section 5 points out some limitations of the interferometer measurements, and,
taking these into account, investigates the importance of gas scattering and intrabeam scattering. Sections
3, 4 and 5 also describe various experimental results. In Section 6, we summarize the open questions, and
suggest a series of future experiments.

Appendix A presents the results of dynamic aperture studies, in which the beam lifetime was measured
for different collimation amplitudes (varied with local bumps at an aperture restriction). The amplitude
where an orbit bump markedly affects the beam lifetime provides a measure of the dynamic aperture [3].
Comparing lifetime measurements on and off the difference coupling resonance allows us to distinguish the
contributions from intrabeam and gas scattering. Appendix B describes the measured and simulated tune
dependence of the beta functions, which is important for interpreting the interferometer spot sizes. In
Appendix C, we discuss how, using the SUSSIX program [4], one can deduce amplitude and phase of all
linear coupling terms as well as higher-order nonlinearities. We applied this program to simulated BPM
data and present the results.

2 Diagnostics

At the ATF Damping Ring, the vertical emittance is measured using five different methods:

e synchrotron-light coherence, analyzed with a stellar interferometer (‘Mitsuhashi monitor’) in conjunc-
tion with simultaneous measurements of beta functions and dispersion at the radiation source point;

e wire scans in the extraction line (waist scan on single wire, or multi-wire measurement);

e Touschek lifetime;

e energy spread, determined with a profile monitor at a high-dispersion point in the extraction line;
e current-dependent bunch length, detected with a streak camera.

The last three methods exploit the fact that the Touschek effect as well as changes in the energy spread
and the bunch length (the latter two assumed to be due to intra-beam scattering) depend on the vertical
emittance. For tuning with the light interference pattern, the first item of our list, a simple formula of the
form [5]

oy~ a\/ln(l/v) (1)

can be used to infer changes in the spot size o,. Here 7 is the visibility of the interference pattern (y =
(Lmaz — Lmin)/ (Imaz + Imin) With I, and I, the maximum and minimum light intensity of the diffraction
pattern), and « a coefficient that depends on the separation D of the double slit (e.g., 40 mm), on the optical
focal length f (7.04 m) and on the wavelength of the light (500 nm):
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Results of the five different techniques should be compared carefully to uncover systematic error sources.
By detecting relative changes, in principle each technique could be used for emittance optimization. The
measurement of the interference pattern is the fastest and, thus, might be best suited for routine emit-
tance tuning. Most results reported in the following were obtained with the interferometer. An important
limitation of this method will be addressed later on in this report.

~ 20 pm (2)



3 Tune Dependence: Dispersion and Coupling

At low current, three different effects determine the vertical emittance [1]: (1) residual vertical dispersion,
(2) the difference coupling resonance, and (3) the sum coupling resonance. These three contributions exhibit
quite a difference dependence on the betatron tunes. Measuring the vertical emittance as a function of the
two tunes thus should easily distinguish between the three effects and reveal how much each one contributes
to the total emittance.

3.1 Dispersion

Suppose the dispersive component of the emittance is €, for a certain vertical tune v,. It is given by an
integral around the ring:

o = s § s 7 (5) GO ()

with C, = 3.84 x 10713 m, G(s) the inverse bending radius, and 7£(s) the dispersion invariant. As a function
of the vertical tune vy, the dispersive emittance changes as [1]
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which follows from the dependence of (off-energy) closed-orbit distortions on the tune and from the fact
that €, 4 ~ H,. The dispersive emittance contribution is independent of the horizontal tune. Figure 1
shows the variation of the dispersive emittance with the vertical tune, according to Eq. (4). The two curves
correspond to measured or calculated emittances €, 49 [6] of 0.02 nm and 0.002 nm at the nominal vertical
tune v,9 = 8.72.

3.2 Betatron Coupling

Next, consider the nearest difference coupling resonance v, — v, —m = 0, where m is an integer. Retaining
only the slowly varying term in the Hamiltonian, the contribution to the emittance from this resonance can
be estimated as [7, 8]

2l (5)
€ = —-—
A similar expression describes the horizontal emittance:
|-+ Av?
= €. 6
6.’177(3 3|I€7|2+Al/z€!b0 ( )

Here ¢, denotes the equilibrium horizontal emittance in the absence of coupling, Av_ = vy —v;; —m is the
measured distance to the difference resonance !, and |x_| is the driving term of the difference resonance:

1 ' [ (8)— 8)—(ve—vy—m)27s
m_zgjﬁ Ky (5)y/Ba ()8 ()€ ()~ bu()~ vy —m)2ms/ L] g (7)

In Eq. (7), K4(s) is the strength of the skew quadrupole field at location s, and v, , denote the horizontal or
vertical tune in the absence of coupling. The measured tunes v; and vy are different, because the coupling

! Often this formula is expressed in terms of the uncoupled tunes v, and v, in which case the coefficients are different.



of horizontal and vertical oscillations generates two new eigenmodes of oscillation. Near the difference
resonance, the following relation holds [9, 10]

7/]’]‘7:%(Vw—I—Vy—m:l:/\/(Vm—Vy—m)Q—Fll‘d|2). (8)
A similar formula with the same fractional values of v ;1 describes the oscillation frequencies in the horizontal
plane.

The minimum value of |Av_| is equal to |k_|. For |Av_| = |k_], the vertical emittance is half the natural
horizontal emittance: €, . = €;0/2. Figure 2 (left) depicts the vertical emittance induced by the difference
resonance, Eq. (5), as a function of |Av_|. The three curves correspond to different values |k _| which were
measured at various times in spring 1998 [11]. The nominal working point |A_| = 0.45 is far from the
difference resonance. Therefore, an emittance contribution €, . of 2%e or less is expected, even for fairly
large values of |k_|. In a previous analysis, it was found that Eq. (6) described the measured horizontal
emittance well [12], giving some confidence in this approach.

The strength of the sum resonance v, + v, — p & 0 is measured by the equivalent driving term

1

T

st(S) /Bz(S)ﬁy(g)ei[d’z(S)-‘rd)y(S)—(Vz-‘rl/y—p)Z’lTS/L] ds (9)

and, using the formulae in [7, 8], an educated guess for the dependence of the vertical emittance on the
distance to the sum resonance Av, = vy +vir —pis

2|k
Cpet B —— 10
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and, for the horizontal emittance,
3|ky? + Av?
€r,c+ N | +| +fac() (11)

5|/{,+|2 + Al/i
Near the sum resonance, the measured and bare tunes in the vertical plane are related by

1
VI = 3 <_V:c +yy+px \/(Vx + vy —p)?— |/‘v'+|2) . (12)
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Again, a similar formula with the same fractional values of v7 ;; describes the oscillation frequencies in the
horizontal plane.

In this case, it is possible that Av, = 0. The vertical emittance then equals €, = 2¢,0/5. If the bare
tunes v, and v, are varied beyond this point the motion becomes unstable. Figure 2 (right) shows the
emittance generated by the sum resonance. With |Av,| = 0.11, the nominal working point (v, = 15.17,
v, = 8.72) is quite close to this resonance. Therefore, we expect that €, . is the dominant emittance
contribution, unless this resonance is carefully compensated or suppressed by the ring optics.

Ignoring the interference between the different effects, we may approximate the total emittance as the
sum of the three contributions

ey = eyd(|vyl) + €y e (JAV-]) + ey e (|Avy]) (13)

The emittances €, .+ given in Eqgs. (5) and (10) are defined as < y? > /B, with 3, the beta function
in the absence of coupling. These emittances are in general different from the eigenmode emittances. In
addition, by only accounting for the slowly oscillating terms in the Hamiltonian, Eqgs. (5) and (10) do not
necessarily describe the local beam size correctly, and < y? > /3, may not be a well defined quantity [13].
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Figure 1: Vertical emittance due to dispersion, €, 4, predicted by Eq. (4), in units of €;9, as a function of
the fractional vertical tune k£ — v, (k = 9 for the ATF). The two curves correspond to €,0 = 0.02 nm and
€,0 = 0.002 nm at v,o = 8.72.
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Figure 2: Vertical emittance due to the difference (left) and sum coupling resonance (right), €, .+ and €, 4,
as predicted by Eqs. (5) and (10). The vertical emittance is plotted in units of €,9, as a function of the
distance to the resonances, Av_ and Awv,. The three curves correspond to three different values of the
driving terms |x_| and || (0.01, 0.03 and 0.05).



Using a different approach, based on a perturbation expansion, far from the linear coupling resonances
the vertical emittance contribution due to weak betatron coupling may also be written as [1]

_ G 3 W (s)[? Wi(s)W_(s)
Teve = 16 $ G2ds %H”LlG | zi: sin? m(Avy) +Re m(Avy)sinT(Av_) ds (14)

where Cy = 3.84 x 10713 m, #, denotes the horizontal dispersion invariant, and G = 1/p the inverse bending
radius; * is the complex conjugate, Re gives the real portion of its argument, Avy = nu, £+ v, —n, the sum
is over all integers n, and the functions W, (s) are

s+L
Wi(s) = / i dz K(2) /ggjgyei[(%(@i%(8))—(¢xv(2)i¢y(Z))+7r(wi1/.u)]‘ (15)
Also in this approach, the total emittance may be approximated as the sum of the components
ey ® eya(|vyl) + ey (Ave, Avy) (16)

By including all Fourier harmonics n, Eq. (14) is more accurate than Eqgs. (5) and (10). However, because
it is a perturbation expansion, this equation is not valid close to the coupling resonances. There does not
appear to be a trivial relationship between the resonance driving terms x4 and the functions W(s).

3.3 Emittance Calculations with MAD

We have performed a simulation with MAD [14], which calculates the emittances using 6 x 6 one-turn trans-
port matrices following a recipe developed by Chao [15]. In the simulation, the main focusing quadrupoles
QF2R were randomly misaligned vertically, with a Gaussian distribution of 200 ym rms. These misalign-
ments resulted in the spurious vertical dispersion of Fig. 3.

The expected tune dependence of the vertical emittance was explored by varying the strength of the
QF2R quadrupoles. The results are illustrated in Fig. 4. A strong blow up is visible near the difference
resonance, on which superimposed is a gradual increase as the vertical tune approaches the integer resonance.
There is no evidence for a dependence on the distance to the sum resonance. This is surprising, since it is
in apparent contradiction to Eqs. (10) or Eq. (14). In agreement with our expectation, also no dependence
on the horizontal tune is seen.

How does the MAD calculation of the emittance (the smaller eigenmode emittance) based on the 1-turn
transfer matrix compare with our analytical estimates in Eqgs. (13) and (16)? To answer this question,
we calculated the coupling driving terms x4 of Egs. (7) and (9), the functions Wy (s) of Eq. (15), and
the dispersive emittance of Eq. (3), for the same twiss parameters and closed orbit distortion as in the
MAD simulation. At a certain working point with fractional tunes® v, = 0.8238 and vy = 0.3123, we found
|ky| =~ 0.01, |k_| = 0.03, €,0 = 12.5 pm, and then extrapolated from here to other tunes, using Eqs. (4), (10)
and (5). Figure 5 (left) compares this simple estimate with the smallest eigenmode emittance calculated by
MAD [15]. The behavior near the difference resonance is described fairly well by the analytical expression,
but the MAD calculation does not show the expected emittance increase near the sum resonance. We
tentatively ascribe this to the fact that the MAD/Chao algorithm ignores the off-diagonal elements in the
diffusion matrix, which can become important near linear resonances [16, 17]. Calculations with SAD [18],
which uses the formalism of Ref. [17], indeed do show a blow-up on the sum resonance [19]. The right picture
in Fig. 5 compares the MAD simulation with an estimate based on the alternative expressions of Eqs. (4),
(14) and (16), also extrapolated from the same working point. The result is quite similar, although, for
most tune values, the difference to the MAD calculation is larger.

2From now on the symbol v designates the fractional tune, ignoring the integer part.



atf with 0.2 mm rms random vert. misalignments

020 _HP/UX version 8.17/0 31/10/98 05.34.06
= . T T T T T

£ Dy
015
010 o

005 o

0.0 -
—.005
—.010 o

—.015

—.020

—.025 T T T T T T T
0.0 20. 40. 60. 80. 100. 120. 140. 180.
s (m)
8c/poc = O.

Table name = TWISS

Figure 3: Spurious vertical dispersion for 200 ym rms random vertical misalignments of the QF2R
quadrupoles, according to a simulation with MAD.

3.4 Measured Tune Dependence

As discussed above, the emittance should change as a function of the betatron tunes. A first experimental
test, near the (calculated) working point v, = 15.55 and v, = 8.62 indicated a strong tune dependence.
This initial result is depicted in Fig. 6. A change in visibility from 0.7 to 0.25, seen in the left picture,
corresponds to a variation in spot size between 27 and 46 pum (almost a factor 4 change in emittance!).
Since, at the time of this measurement the tune monitor was not available, we calculated the tune variation
induced by the changes in quadrupole strength. The emittance inferred from the visibility is shown in the
right picture, plotted as a function of the calculated distance to the sum resonance. Also depicted is the
result of a nonlinear 3-parameter fit to Eq. (10) with an additional constant term, €,9. The fit result is
|k4| = 5 x 1074, €,0 = 50 pm (or 5% of the horizontal emittance), and a value for the offset in the sum of
the two unknown tunes, A(vy + vyr). This measurement must be taken with great care, however, because
the intensity of the stored beam was different for different tune values, and, as we shall see later, the beam
intensity can strongly affect the measured spot size.

Figures 7 (a)—(c) show the result of a more detailed study, which was performed two days later, around
the nominal working point with measured fractional tunes of 0.16 and 0.72. During this measurement the
beam current was more stable. Depicted in Fig. 7 is the observed dependence of the beam size on the
vertical tune, and on the distance to the two coupling resonances. In this case, somewhat unexpectedly, the
measured emittance assumed a minimum value close to the sum resonance. No data were taken on the sum
resonance itself, since beam could not be stored here, either because of this very resonance or because the
vertical tune crossed the third integer resonance near this point.

From the observed weak tune dependence we conclude that, at the nominal working point, the spot
size measured with the interferometer is limited neither by dispersion nor by betatron coupling. A possible
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Figure 4: Simulated vertical emittance as a function of (v; +vyr), —(vr — vyr), vir and vy, respectively. The
fractional tunes v; and vy were varied by changing the strength of the main quadrupole family. The peak
is due to the difference resonance, the gradual variation due to dispersion. A contribution from the sum
resonance is not visible.
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Figure 5: Emittance simulated by MAD [14] using the Chao formalism [15] (solid line, squares) and the
simpler estimates based on Egs. (13), (5), (10) and (4) (left figure dashed line and circles) and on Egs. (13),
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vs. the estimated change in the distance to the sum resonance, and the result of a nonlinear fit to Eq. (10)
with an additional constant term €,. The fitted parameters are |k, | & 5 x 10~* and €,9 &~ 50 pm, plus a
value for the horizontal offset. The error bars shown correspond to an assumed uncertainty in the visibility
measurement of about 10%. This is probably a large overestimate of the actual error.
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explanation is discussed in Section 5.

4 Coupling Correction

4.1 Sextupole Orbit Bumps

For orthogonal correction of dispersion and coupling we can use double orbit bumps separated by appropriate
phase advances, as illustrated in Fig. 8. Similar orthogonal bumps are used for sextupole alignment at the
SLC final focus [20]. The scheme makes use of the fact that the nominal phase advance per cell is 132.8°
horizontally and 45.6° vertically. Therefore, the R matrix over 4 cells is a nearly perfect —/ transform in
both planes. The two dispersion bumps are shifted with respect to each other by 90° in the vertical plane,
or by 2 arc cells, so that they control the two phases of the dispersion function.

The sine and cosine like terms of the difference coupling resonance can be corrected by two symmetric
bumps, shifted by only one cell, for which A(¢, —¢,) = —n/2. Unfortunately, because over one cell the sum
of the two betatron phases changes by 7, A(¢, + ¢,) = —, it is difficult to control the second phase of the
sum resonance. In addition, a bump can control only one of the two resonances . The nearest resonance
will be dominant, and it is primarily this resonance which must be compensated.

We can estimate the magnitude of the orbit bumps as follows. The coupling term introduced by a
symmetric vertical double bump of amplitude Ay is approximately

1
A|K’-§-| ~ %4 (Ay) Ksewt \V /Ba:ﬂy (17)

where K., is the integrated strength of the main sextupole, and 3, , is the beta function at the sextupole.
A factor of 2 accounts for the double bump. Solving for Ay we find

y 7|k
vV /chﬁy Ksewt

For example, if the vertical emittance is 10% of the horizontal, and entirely due to the sum resonance,
|k+| ~ 0.04, according to Fig. 2. With K. ~ 50 m~2 and 8,,, = 3 m, the required offset is Ay ~ 0.3 mm.
In reality there is a partial cancellation, by about a factor 2-3, between the effects of orbit offsets in the
focusing and defocusing sextupoles, so that the real bump amplitude would be about 1 mm.

Simulations with the MAD program [14] indicate, however, that a vertical 4-corrector bump with 1-mm
amplitude at a focusing sextupole increases the emittance of the second (quasi-vertical) eigenmode by only
about 0.2%. This is illustrated in Fig. 9, which also demonstrates that at some working points the emittance
is affected by the difference resonance and at others by the sum resonance. According to the figure, local
1-mm orbit bumps at the sextupoles will not have a large effect on the eigenmode emittance. The weak
dependence is in apparent contradiction to Egs. (10) and (17), but it is, of course, consistent with the MAD
calculation results reported earlier.

In Fig. 10 we depict measurements of the effect of local orbit bumps on the beam size. The measured
dependence is rather small, as predicted by MAD, and, furthermore, the optimum bump amplitude is usually
close to the nominal value (zero).

A (18)

31t is possible that a bump corrects both resonances at the same time, given that most or all of the coupling is generated by
the sextupoles, which for the present betatron tunes are all located at roughly the same phase.
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4.2 Skew Quadrupoles

In addition to vertical orbit bumps in sextupole magnets, the coupling can also be controlled via 4 skew
quadrupole coils. These are sextupole trim coils wired as skew quadrupoles [21]. The main sextupole coil,
consisting of 12 turns, carries a maximum current of 325 A, which corresponds to a sextupole gradient
9’B,/0z> of 6000 Tm~2. The trim coil has 20 turns per pole with a maximum current of 10 A. The
sextupole length /e, is 6 cm, and the pole-tip radius is @ = 16 mm. The integrated maximum strength of
a skew quadrupole can be estimated as

~ 302Bz lsewta
T 2012 Bp

K ahew max ~0.03 m ! (19)
which is marginally sufficient to correct a coupling coefficient of |k4| &~ 0.03, and roughly equivalent to the
effect of a 1-mm vertical orbit bump across one pair of SF/SD sextupoles. Table 1 lists the 4 available
skew quadrupoles and the betatron phases at their locations [22]; the betatron phases for the first skew
quadrupole were set to zero *. Table 1 shows that there is no —I pair of skew quadrupoles (a —I pair would
correspond to a phase advance of 180° or 540°). This possibly complicates the orthogonal tuning with these
magnets.

skew quadr. name | ¢, by
SD15 0° 0°
SD16 45° | 135°
SD21 270° | 810°
SD22 315° | 945°

Table 1: Approximate betatron phases at the skew quadrupole magnets.

Figure 11 presents a typical measurement result, showing only a small effect of the skew quadrupole
setting on the measured beam size. This is not incosistent with the MAD calculation depicted in Fig. 12,
where for the maximum excitation of a single skew quadrupole the emittance changes by a meager 6 pm, or
0.6% of the horizontal emittance.

4.3 Coupling Strength from Transverse Oscillations

Turn-by-turn orbit data taken at two BPMs will allow us to determine all four coupling terms and the
appropriate correction procedure from the amplitude and phase of the lowest-order resonance lines in the
frequency spectrum. This analysis can be performed easily using the SUSSIX program [23, 4]. The formalism
and the program usage are explained in Appendix C.

“The beta functions at the skew quadrupoles are about 3. ~ 1.9 m and 38, ~ 3.5 m.
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Figure 10: Vertical beam size inferred from the SR interferometer as a function of local-bump amplitude at
various beam-position monitors: BPM 2 (top left), 6 (top right), 10 (bottom left) and 14 (bottom right).
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5 Intensity Dependence: Gas Scattering and Intrabeam Scattering

Figure 13 shows that the vertical beam size measured with the interferometer depends strongly on the bunch
current. To infer the spot size from the spatical coherence the van Cittert Zernike theorem is invoked. There
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Figure 13: Measured variation of the square of the beam size with the stored beam current.

are some uncertainties whether this theorem can be applied to the vertical spot size [24, 25]. These are
related to the wavelength dependence of the photon angular divergence, the non-Gaussian character of the
photon distribution, and to the change in coherence induced by the antechamber aperture [24, 25]. For now
we assume the theorem is applicable, and ask what exactly do we measure then?

The interferometer measures the coherence, or visibility, of the synchrotron radiation, which is propor-
tional to an integral of the form

9

o o~
v X /e“)‘yI(y) dy~1-— ) <y’ >40(* <yt >) (20)

where I(y) is the vertical intensity distribution of the light source (the beam), and o = kD/L, with D
the distance between the slits, £ the wave number, and L the distance between the light source and the
plane where the coherence is estimated. Equation (20) shows that the interferometer signal is approximately
determined by the rms of the beam distribution. It does not provide a measure of the core emittance, that
is of primary interest for linear-collider applications. By retaining also higher order terms in the above
expansion, we see that transverse tails are weighted even more strongly than in an rms sense.

Two processes generating transverse tails which depend on the beam intensity are scattering on the
residual gas and intrabeam scattering. The former is intensity dependent since the vacuum pressure of the
ring changes with the beam current; the latter since the collision rate increases with the beam density.

From previous analyses of the ATF beam lifetime [6, 26] we expect that for present operating conditions
residual-gas scattering is the dominant effect.
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5.1 Gas Scattering

The rms emittance growth due to multiple gas scattering can be estimated from
A<§?>
At

where €, is the emittance generated by synchrotron radiation for an ideal zero pressure, 7, is the vertical
damping time (about 20 ms), < (8, > the average vertical beta function (3.5 m), and [27]

€y = €0+ < By > Ty (21)

A<H> <14.1 MeV>2 pc
At pC Xo

with X the radiation length and p the mass density of the gas molecules. A typical radiation length is
X & 40 g/cm?. At a CO pressure of 30 nTorr, the rms emittance due to multiple gas scattering then would
be 0.28 nm. Equation (22) describes the effect of multiple scattering accurately to within a few percent
for times [27] ¢t > 1073X(/(cp), which for our numerical example amounts to ¢ > 30 ms. The expected
emittance due to residual gas scattering, according to Eqs. (21) and (22), is depicted as a function of the
carbon-monoxide pressure in Fig. 14.

(22)

1 T T T T T T T T T T T T T T T

o
o)

o
o

€y rus[NM]

©
~

o
(N

0 20 40 60 80 100
p [nTorr]

Figure 14: Predicted vertical rms emittance due to multiple residual-gas scattering as a function of the
average gas pressure, according to Eq. (21).

Figure 15 shows the measured pressure dependence of the vertical emittance, as deduced from the
interferometer spot size. The slope is roughly consistent with the expectation, and extrapolation to zero
pressure indicates an emittance of 11 pm (or 1% coupling). This is equal to the ATF design goal.

5.2 Intrabeam Scattering
Intrabeam scattering in electron and proton storage rings has been analyzed by various authors [28, 29, 30].

The current-dependent emittance contribution from intrabeam scattering can be calculated, for example,
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using the formulae of Ref. [28]. Assuming that the energy spread induced by intrabeam scattering contributes
to the emittance in the same way as the energy spread arising from synchrotron radiation, the total emittance

is simply
2
g
€y R €40 (1 + ( iﬁs> ) (23)

where €,9 denotes the zero-current emittance, oso the rms energy spread due to synchrotron radiation and
os5.1Bs the additional rms energy spread induced by intrabeam scattering, to be added in quadrature. The
energy spread due to intrabeam scattering is given as the solution of a cubic equation [28]

2 Nyr2eBe.s
o3 1BS <1 + U%,IBS) ~ < F(Xm) (24)

5 2
2513020040020

where 7, is the classical electron radius, the o’s with subindex O refer to the rms beam size at zero current,
the angular brackets represent an average around the ring, and f(x.,) is a slowly varying function of x,, =
B2/ (bimazy?0?) [28], where byue = (No/((27)*20,0,0.))"Y/3. We consider f(x..) as roughly constant
(equal to 250), and independent of the beam current.

Figure 16 shows the calculated variation of the vertical emittance with beam current for four different
zero-current emittance coupling ratios. In this calculation, an rms energy spread of o5y ~ 7.2 x 107%, a
longitudinal damping time of 75 &~ 20 ms, and a horizontal emittance of 1.1 nm were assumed. Simulations
with MAD using the Bjorken-Mtingwa formalism [30] give similar results.

In principle, the above formulae overestimate the actual growth of the core emittance [31], because for
large momentum exchanges the intrabeam scattering rate can be comparable to the damping time. This
would result in tails of the form ~ 1/y3, due to rare single scattering, but would not affect the core of
the beam. In order to estimate the real core emittance, the integration over the (normalized) transverse
momentum distribution should be cut off at a (normalized) momentum change [31]

20N 1/2
CI%<—I’ ) | (25)

3730,0,0,0,

This can be included in the formulae of Ref. [28] by replacing the integral

f(Xm) = /Xo: ﬁln (;) e X dy (26)
with »
Fowd = [ () ey (27)

where x* = (¢*/v02)%. Inserting the approximate average values o, ~ 95 um, o, & 6.2 pm, and N;, ~ 1010,
we find x,, ~ 4 x 1079, and x* ~ 6 x 10%. Because x* > 1 > x,, and due to the exponential term e™X
in the integrand of Eq. (27), the calculated emittance increase is the same with and without the additional
cutoff xy* °

As we have discussed above, the interferometer measures the rms emittance (or larger) including any
tails that may be present. This feature can be taken advantage of. Figure 16 indicates that, if the tails are
primarily due to intrabeam scattering, maximizing the dependence of the beam size on the beam current
would be one promising approach to optimize the vertical emittance.

°This is inconsistent with earlier results [31]; so maybe there is a flaw in our derivation.
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Figure 15: Measured vertical emittance inferred from the interferometer spot size as a function of gas
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Figure 16: Relative increase of the vertical emittance, €,/€,9, due to intrabeam scattering as a function of
the beam current in mA, for four different values of emittance coupling, calculated using the formulae of
Ref. [28].
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If intrabeam scattering is a significant source of energy spread and emittance, a reduction of the rf
voltage should decrease the emittance. Unfortunately, interferometric spot-size measurements for different
rf voltages at N, ~ 5 x 10° gave inconclusive results, and should be repeated.

We did, however, observe a clear dependence of the measured spot size on the rf frequency. From a
minimum value of 0, & 9 pm at Af,; = —5 kHz, the spot size increased to o, = 13 um at Af,; = +10 kHz
(see ATF logbook no. 13, p. 149). This effect is not understood, and it is oppposite to that expected from
a change in the damping partition number.

6 Summary and Outlook

We have analyzed the various effects that may contribute to the equilibrium emittance of the ATF damping
ring: linear coupling, spurious dispersion, gas scattering and intrabeam scattering.

In doing so, we have found a few inconsistencies, both between different theories, between theories and
simulations, and between theories, simulations and measurements. For example, there are at least three
different predictions for the tune dependence of the vertical emittance. The interferometric measurement
hardly showed any sensitivity except for a slow increase towards the difference resonance, and an apparent
minimum near the sum coupling resonance. Similarily, the vertical spot size was found to be completely
insensitive to vertical orbit bumps in the sextupoles and to changes in the skew quadrupole strengths.
Instead, it showed an unexpectedly strong dependence on the beam current and the gas pressure. We
attribute this to a peculiar feature of the interferometric measurement method, in which beam tails are
weighted strongly. Such transverse tails are populated by intrabeam scattering and by gas scattering. We
estimate that both these scattering processes contribute in comparable magnitude. The two effects are not
easily distinguished as the vacuum pressure changes with the beam current.

The effects of intrabeam scattering calculated according to the le-Duff and the Bjorken-Mtingwa for-
malism are in rough agreement. Both calculations predict an emittance increase of about 100% for a
5 mA bunch current and a 1% transverse emittance ratio. We found that introducing a cutoff for rare
single-scattering events did not change this estimate. Attempts were made to quantify the actual effect of
intrabeam scattering, by measuring the current-dependent bunch length, energy spread, beam size, and the
beam lifetime near the difference coupling resonance [32]. Bunch lengthening and energy spread increase
due to intrabeam scattering of roughly 20% were observed at a bunch current of 1.2 mA. This indicates a
vertical-to-horizontal emittance ratio of about 1%, consistent with the interferometric spot size extrapolated
to zero pressure. Wire-scanner measurements in the extraction line indicated a slightly larger emittance
ratio (2%-3%)[33], but the emittance here is almost certainly degraded by a nonlinear septum field [34]. A
1% emittance ratio is the ATF design goal.

In the future, turn-by-turn orbit data sampled at two BPMs could be used to infer all four linear
coupling terms, the optimum locations for coupling correction, and even the higher-order nonlinear optics.
The dependence of beam lifetime, bunch length, energy spread, and emittance on the rf voltage should
be explored more carefully. Improvements of the transverse dynamic aperture would make the Touschek
lifetime a useful diagnostic for emittance tuning. Finally, the effect of the rf frequency on the measured spot
size could be further investigated.
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A Measuring the Dynamic Aperture with Orbit Bumps

At low current, the beam lifetime in the ATF damping ring is limited by gas scattering along with a
small dynamic aperture [6, 26]. We determined the dynamic aperture by measuring the beam lifetime as
a function of collimation amplitude. A similar technique is used at LEP [3]. Since at the ATF dedicated
movable collimators are not available, we instead varied the physical aperture by means of local orbit bumps.
As bump locations, we selected places with tight beam-pipe dimensions. For the vertical plane, this was the
extraction kicker chamber, where the vertical full aperture is only 7 mm. For the horizontal plane we used
a bump in the septum region, with a full beam pipe diameter of 14 mm. The result of these measurements
is depicted in Fig. 17. The dynamic aperture is the difference between the physical half aperture and half
the scan range over which the lifetime is approximately constant. In both planes, it is not much larger than
1 mm, and thus similar to earlier dynamic-aperture estimates based on beam lifetime measurements and on
the response to global orbit distortions [26].

The right picture also includes a data point measured on the linear coupling resonance (difference res-
onance). The estimated acceptance in this case is about 30% higher. Our acceptance estimation assumes
that the beam lifetime is only due to gas scattering, which dispells particles outside of the dynamic aerture.
The difference between measurements taken on and off the coupling resonance indicates that, at the nominal
operating point about 30% of the beam lifetime is not due to gas scattering, but to the Touschek effect.
This is a much larger fraction than in early 1998 [26] (at that time about 5%), reflecting both a smaller
vertical emittance and an improved vacuum pressure.
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Figure 17: Transverse acceptance, inferred from the beam current decay and the time-dependent pressure, vs.
the orbit bump amplitude at an aperture restriction: (left) vertical bump at BPM19, next to the extraction
kicker chamber with a full vertical aperture of 7 mm; (right) horizontal bump at the extraction septum with
a full aperture of 14 mm. One data point taken on the coupling resonance is also shown, revealing that, at
the nominal working point, about 30% of the beam lifetime is due to the Touschek effect.
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B Variation of Beta Functions with the Tune

In order to interpret the results from the interferometer, in particular the reponse to tune changes, it is
useful to know the variation of the beta functions with the betatron tunes. The results of measurements
and simulations are shown in Fig. 18. The figure illustrates that, at the nominal working point, the vertical
beta function is fairly insensitive to changes in the QF2R magnet strength.
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Figure 18: Variation of beta function with the betatron tune, when the strength of the main quadrupole
string QF2R is varied: (top) measured horizontal and vertical beta functions at the synchrotron light source
vs. the respective tunes; (bottom) simulated variation of the beta functions at some point in the ring as a
function of tune change. In the simulation, the QF2R strength was varied over a two times larger range
than in the measurement.

C Using SUSSIX to Extract the Linear Coupling Coefficients from Turn-
By-Turn Orbit Data

In the future, two high-resolution turn-by-turn beam-position monitors will become available, the informa-
tion of which can be used to calculate the 4 linear coupling coefficients with the SUSSIX program [4]. The
optimum amplitude and phase for an efficient correction is then easily obtained. In the paragraphs below,
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we sketch the algorithm and the steps required by the user. Quite similarily the nonlinear Hamiltonian
coeflicients can be obtained.

Suppose the two BPM are close by, with a 4 x 4 R matrix describing the linear beam transport from
BPM no. 1 to BPM no. 2. The orbit data at these BPMs can be transformed into linearly normalized
phase-space coordinates at BPM 1 by two successive transformations:

7 = (z2— Ri1z1)/Rae
y1i = (y2 — Rs3y1)/Raa (28)
and
& = z1/VB.
. oy
Pe = Wﬂ/’l + v ﬂxm'l
7 = yl/\/@
by = v+ /B (29)
V By

These coordinates sampled over many turns are the input to the SUSSIX code. SUSSIX expresses the
coordinates in the resonance basis:

hi =G4 Py = 1 /2T e~ (batdzo) (30)
hy =& —p, = / L(%—i—qﬁm (31)
h;‘ + P, = /2] —i(py+dyo) (32)
h, =9§—-py,= Y, 2J €' (Gy+dvo) (33)

where J,, are the action variables, and ¢, , the betatron phases. The normal form coordinates C;'fy are
related to the coordinates hiy by a generating function F,: ¢ = e **h. In the normal form coordinate
frame, the linear coupling is most generally characterized by 4 complex coefficients f;jy, ::

F. = fio10¢s G + fr00167¢, + fornoCs ¢ + foronds ¢ (34)

To first order in the linear coupling strength, the linearly normalized coordinates h then evolve according
to the generating function F,. For example, the coordinate h, at turn number N is given by:

h;(N) — /zlyei(Z’n'l/yN—‘ripyo)_'_
—2i Y 1 fjklm(ﬂy)

jkim

(2_[ )H"” L ei[(k—j)(:ZTrnuTN—i—/L/),;g)—i—(l—i—m—l)(27rz/yN+/L/)yoi)] (35)

The different terms in this sum correspond to different lines in the Fourier spectrum of h, [35]. Recently,
very precise techniques have been developed to calculate the amplitude and phase of such spectral lines
[36, 37]. These are incorporated in the SUSSIX code. Once the generating coefficients fji, are obtained,
the coeflicient in the equivalent Hamiltonian follow from the relation

hjkim
1 — oG Rvat(—mvy ] (36)

fiktm =
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For example, consider the spectrum of k. A line at v, corresponds to the vertical base tune. Other lines
arise due to the linear coupling. A line at —v, corresponds to fig1g, and a line at v, to fp119. The other
terms are obtained from the spectrum of h?‘j, where a line at v, is related to fo101, and at v, to figo1-
Defining ¢ = 7((j — k)ve + (I — m)v, ), for the first two terms we can express the amplitude and phase of
the Hamiltonian coeflicient Ay, as

A, - sinqAS
RI,—1,0
\Pjkim| = | ————— ] (37)
hy 0,1

¢j/~clm = d)hy,—l,() + (.7 - k)¢]L;7170 + (l -—m— 1) * ¢h;,071 + 7T/2 + SIgn(Qg)ﬂ-/2 + é (38)

where, e.g., Ah;,q,o is the amplitude of the —v; line in the spectrum of &,, and Qsh;,q,o is its phase. A
similar expression holds for the other two cases, where simply all indices 7 and k, as well as [ and m must
be interchanged.

We tested this procedure for an example map, consisting of two linear rotations with phase advances
(Vg1 = 0.3, ;1 = 0.21) and (v42 = 0.58m vs = 0.22) respectively, 2 observation points, and a skew
quadrupole at BPM 1 of integrated strength k, = 0.03 m~!. Figure 19 shows an example of simulated raw
data for one BPM, and Fig. 20 the linear phase space coordinates Z,p,,§,d,, reconstructed according to
Egs. (28) and (29).

From these data, the SUSSIX program calculates the amplitude and phases of different lines in the FFT
spectra of (jc'?y. In our example, the horizontal tune line in the ( frequency spectrum has an amplitude
of 1.02 mm /2 and a phase —108°. The amplitude of the vertical tune line in the ¢, spectrum is similar,
1.03 mm!/2, and its phase is —73°. For the +v, line in the vertical ¢, spectrum the amplitude is 0.0093
mm?'/2 and the phase 135°; finally, the amplitude of the —v, line is 0.0077 mm?!/2 with a phase of 70°. From
these 8 numbers, using Eqgs. (37) and (38), we can deduce the Hamiltonian coefficients: |hig19] = 0.0075,
b1010 = 0 (=5 x 1075°), |higo1| = 0.00746 and @190 ~ 0 (—4 x 107%°). The amplitudes are equal to the
expected value K/4 and the phase is zero, since we have placed the skew quadrupole at the same location
as our reference BPM. The coefficients hg1g9; and hgi19 need not be calculated, as they are related to the
other two via h1g19 = hgro1 and higo1 = m

We conclude that from simulated BPM data we can correctly reconstruct the amplitude and phase of all
4 complex coupling coefficients with an accuracy much better than 1% in amplitude, and as good as 10°
rad in phase. This should be more than adequate for practical applications of this method.
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Figure 20: Simulated horizontal and vertical turn-by-turn phase space coordinates, reconstructed from the
raw data according to Eqgs. (28) and (29).
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