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Abstract

A primary purpose of the ATF Damping Ring is to demonstrate the small vertical emittance required

for a future linear collider. In this report, we �rst describe the diagnostics available to measure this

emittance. Then we discuss the dependence of the emittance on various parameters, such as the betatron

tunes, vacuum pressure, and beam current, and, subsequently, study several methods of betatron-coupling

correction. Next, we show that the interferometer used to determine the vertical beam size is sensitive

to transverse beam tails and does not measure the core emittance, which could explain the observed

sensitivity of the measured spot size to vacuum pressure and beam intensity. Finally, we summarize the

results and propose a few further studies.

In the appendix, we present recent measurements of the dynamic aperture, and discuss the variation

of the beta functions, e.g., at the synchrotron light monitor, with the betatron tune. Here, we also present

details of the SUSSIX program, by which, in the future, we hope to infer all linear coupling parameters

as well as higher-order nonlinearities from turn-by-turn orbit data.

1 Introduction

The vertical emittance in the ATF Damping ring is expected to be limited by spurious vertical dispersion and

by linear betatron coupling [1, 2]. Both e�ects would imply a strong tune dependence. For a vacuum pressure

of 10 nTorr, also multiple beam-gas scattering can signi�cantly increase the measured rms emittance. Since

the vertical design emittance is extremely small, intrabeam scattering is a further prominent contribution,

causing a large emittance increase at higher beam currents.

In the next section we brie
y describe the diagnostics and measurement techniques which are available

to measure the vertical emittance. Section 3 discusses the e�ect of dispersion and betatron coupling, and the

search for an optimum working point in the tune diagram. This is followed, in Section 4, by a discussion of
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coupling correction schemes. Section 5 points out some limitations of the interferometer measurements, and,

taking these into account, investigates the importance of gas scattering and intrabeam scattering. Sections

3, 4 and 5 also describe various experimental results. In Section 6, we summarize the open questions, and

suggest a series of future experiments.

Appendix A presents the results of dynamic aperture studies, in which the beam lifetime was measured

for di�erent collimation amplitudes (varied with local bumps at an aperture restriction). The amplitude

where an orbit bump markedly a�ects the beam lifetime provides a measure of the dynamic aperture [3].

Comparing lifetime measurements on and o� the di�erence coupling resonance allows us to distinguish the

contributions from intrabeam and gas scattering. Appendix B describes the measured and simulated tune

dependence of the beta functions, which is important for interpreting the interferometer spot sizes. In

Appendix C, we discuss how, using the SUSSIX program [4], one can deduce amplitude and phase of all

linear coupling terms as well as higher-order nonlinearities. We applied this program to simulated BPM

data and present the results.

2 Diagnostics

At the ATF Damping Ring, the vertical emittance is measured using �ve di�erent methods:

� synchrotron-light coherence, analyzed with a stellar interferometer (`Mitsuhashi monitor') in conjunc-

tion with simultaneous measurements of beta functions and dispersion at the radiation source point;

� wire scans in the extraction line (waist scan on single wire, or multi-wire measurement);

� Touschek lifetime;

� energy spread, determined with a pro�le monitor at a high-dispersion point in the extraction line;

� current-dependent bunch length, detected with a streak camera.

The last three methods exploit the fact that the Touschek e�ect as well as changes in the energy spread

and the bunch length (the latter two assumed to be due to intra-beam scattering) depend on the vertical

emittance. For tuning with the light interference pattern, the �rst item of our list, a simple formula of the

form [5]

�y � �
q
ln(1=
) (1)

can be used to infer changes in the spot size �y. Here 
 is the visibility of the interference pattern (
 =

(Imax�Imin)=(Imax+Imin) with Imax and Imin the maximum and minimum light intensity of the di�raction

pattern), and � a coe�cient that depends on the separation D of the double slit (e.g., 40 mm), on the optical

focal length f (7.04 m) and on the wavelength of the light (500 nm):

� =
�fp
2�D

� 20 �m (2)

Results of the �ve di�erent techniques should be compared carefully to uncover systematic error sources.

By detecting relative changes, in principle each technique could be used for emittance optimization. The

measurement of the interference pattern is the fastest and, thus, might be best suited for routine emit-

tance tuning. Most results reported in the following were obtained with the interferometer. An important

limitation of this method will be addressed later on in this report.
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3 Tune Dependence: Dispersion and Coupling

At low current, three di�erent e�ects determine the vertical emittance [1]: (1) residual vertical dispersion,

(2) the di�erence coupling resonance, and (3) the sum coupling resonance. These three contributions exhibit

quite a di�erence dependence on the betatron tunes. Measuring the vertical emittance as a function of the

two tunes thus should easily distinguish between the three e�ects and reveal how much each one contributes

to the total emittance.

3.1 Dispersion

Suppose the dispersive component of the emittance is �y0 for a certain vertical tune �y0. It is given by an

integral around the ring:

�y;d0 =

2CqH
G2 ds

I
ds Hy(s) jG(s)j3 (3)

with Cq = 3:84�10�13 m, G(s) the inverse bending radius, and H(s) the dispersion invariant. As a function

of the vertical tune �y, the dispersive emittance changes as [1]

�y;d �
sin2 ��y0

sin2 ��y
�y;d0 (4)

which follows from the dependence of (o�-energy) closed-orbit distortions on the tune and from the fact

that �y;d � Hy. The dispersive emittance contribution is independent of the horizontal tune. Figure 1

shows the variation of the dispersive emittance with the vertical tune, according to Eq. (4). The two curves

correspond to measured or calculated emittances �y;d0 [6] of 0.02 nm and 0.002 nm at the nominal vertical

tune �y0 = 8:72.

3.2 Betatron Coupling

Next, consider the nearest di�erence coupling resonance �x � �y �m � 0, where m is an integer. Retaining

only the slowly varying term in the Hamiltonian, the contribution to the emittance from this resonance can

be estimated as [7, 8]

�y;c� =
2j��j2

3j��j2 +��2
�

�x0 (5)

A similar expression describes the horizontal emittance:

�x;c� =
j��j2 +��2

�

3j��j2 +��2
�

�x0 (6)

Here �x0 denotes the equilibrium horizontal emittance in the absence of coupling, ��� = �I � �II �m is the

measured distance to the di�erence resonance 1, and j��j is the driving term of the di�erence resonance:

�� =
1

2�

I
Ks(s)

q
�x(s)�y(s)e

i[�x(s)��y(s)�(�x��y�m)2�s=L] ds (7)

In Eq. (7), Ks(s) is the strength of the skew quadrupole �eld at location s, and �x;y denote the horizontal or

vertical tune in the absence of coupling. The measured tunes �I and �II are di�erent, because the coupling

1Often this formula is expressed in terms of the uncoupled tunes �x and �y , in which case the coe�cients are di�erent.
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of horizontal and vertical oscillations generates two new eigenmodes of oscillation. Near the di�erence

resonance, the following relation holds [9, 10]

�I;II =
1

2

�
�x + �y �m�

q
(�x � �y �m)2 + j��j2

�
: (8)

A similar formula with the same fractional values of �I;II describes the oscillation frequencies in the horizontal

plane.

The minimum value of j���j is equal to j��j. For j���j = j��j, the vertical emittance is half the natural

horizontal emittance: �y;c� = �x0=2. Figure 2 (left) depicts the vertical emittance induced by the di�erence

resonance, Eq. (5), as a function of j���j. The three curves correspond to di�erent values j��j which were

measured at various times in spring 1998 [11]. The nominal working point j��j = 0:45 is far from the

di�erence resonance. Therefore, an emittance contribution �y;c� of 2%�x0 or less is expected, even for fairly

large values of j��j. In a previous analysis, it was found that Eq. (6) described the measured horizontal

emittance well [12], giving some con�dence in this approach.

The strength of the sum resonance �x + �y � p � 0 is measured by the equivalent driving term

�+ =
1

2�

I
Ks(s)

q
�x(s)�y(s)e

i[�x(s)+�y(s)�(�x+�y�p)2�s=L] ds (9)

and, using the formulae in [7, 8], an educated guess for the dependence of the vertical emittance on the

distance to the sum resonance ��+ = �I + �II � p is

�y;c+ �
2j�+j2

5j�+j2 +��2+
�x0 (10)

and, for the horizontal emittance,

�x;c+ �
3j�+j2 +��2+
5j�+j2 +��2+

�x0 (11)

Near the sum resonance, the measured and bare tunes in the vertical plane are related by

�I;II =
1

2

�
��x + �y + p�

q
(�x + �y � p)2 � j�+j2

�
: (12)

Again, a similar formula with the same fractional values of �I;II describes the oscillation frequencies in the

horizontal plane.

In this case, it is possible that ��+ = 0. The vertical emittance then equals �y � 2�x0=5. If the bare

tunes �x and �y are varied beyond this point the motion becomes unstable. Figure 2 (right) shows the

emittance generated by the sum resonance. With j��+j = 0:11, the nominal working point (�x = 15:17,

�y = 8:72) is quite close to this resonance. Therefore, we expect that �y;c+ is the dominant emittance

contribution, unless this resonance is carefully compensated or suppressed by the ring optics.

Ignoring the interference between the di�erent e�ects, we may approximate the total emittance as the

sum of the three contributions

�y � �y;d(j�y j) + �y;c�(j���j) + �y;c+(j��+j) (13)

The emittances �y;c� given in Eqs. (5) and (10) are de�ned as < y2 > =�y with �y the beta function

in the absence of coupling. These emittances are in general di�erent from the eigenmode emittances. In

addition, by only accounting for the slowly oscillating terms in the Hamiltonian, Eqs. (5) and (10) do not

necessarily describe the local beam size correctly, and < y2 > =�y may not be a well de�ned quantity [13].
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Figure 1: Vertical emittance due to dispersion, �y;d, predicted by Eq. (4), in units of �x0, as a function of

the fractional vertical tune k � �y (k = 9 for the ATF). The two curves correspond to �y0 = 0:02 nm and

�y0 = 0:002 nm at �y0 = 8:72.
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Figure 2: Vertical emittance due to the di�erence (left) and sum coupling resonance (right), �y;c+ and �y;c+,

as predicted by Eqs. (5) and (10). The vertical emittance is plotted in units of �x0, as a function of the

distance to the resonances, ��� and ��+. The three curves correspond to three di�erent values of the

driving terms j��j and j�+j (0.01, 0.03 and 0.05).
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Using a di�erent approach, based on a perturbation expansion, far from the linear coupling resonances

the vertical emittance contribution due to weak betatron coupling may also be written as [1]


�y;c =
Cq


3

16
H
G2ds

I
HxjG3j

"X
�

jW�(s)j2
sin2 �(���)

+ 2Re
W �

+(s)W�(s)

sin �(��+) sin�(���)

#
ds (14)

where Cq = 3:84�10�13 m, Hx denotes the horizontal dispersion invariant, and G = 1=� the inverse bending

radius; � is the complex conjugate, Re gives the real portion of its argument, ��� = nux � �y � n, the sum

is over all integers n, and the functions W�(s) are

W�(s) =

Z s+L

s
dz K(z)

q
�x�ye

i[(�x(s)��y(s))�(�x(z)��y(z))+�(�x��y)]: (15)

Also in this approach, the total emittance may be approximated as the sum of the components

�y � �y;d(j�y j) + �y;c(���;��+) (16)

By including all Fourier harmonics n, Eq. (14) is more accurate than Eqs. (5) and (10). However, because

it is a perturbation expansion, this equation is not valid close to the coupling resonances. There does not

appear to be a trivial relationship between the resonance driving terms �� and the functions W�(s).

3.3 Emittance Calculations with MAD

We have performed a simulation with MAD [14], which calculates the emittances using 6�6 one-turn trans-

port matrices following a recipe developed by Chao [15]. In the simulation, the main focusing quadrupoles

QF2R were randomly misaligned vertically, with a Gaussian distribution of 200 �m rms. These misalign-

ments resulted in the spurious vertical dispersion of Fig. 3.

The expected tune dependence of the vertical emittance was explored by varying the strength of the

QF2R quadrupoles. The results are illustrated in Fig. 4. A strong blow up is visible near the di�erence

resonance, on which superimposed is a gradual increase as the vertical tune approaches the integer resonance.

There is no evidence for a dependence on the distance to the sum resonance. This is surprising, since it is

in apparent contradiction to Eqs. (10) or Eq. (14). In agreement with our expectation, also no dependence

on the horizontal tune is seen.

How does the MAD calculation of the emittance (the smaller eigenmode emittance) based on the 1-turn

transfer matrix compare with our analytical estimates in Eqs. (13) and (16)? To answer this question,

we calculated the coupling driving terms �� of Eqs. (7) and (9), the functions W�(s) of Eq. (15), and

the dispersive emittance of Eq. (3), for the same twiss parameters and closed orbit distortion as in the

MAD simulation. At a certain working point with fractional tunes2 �x = 0:8238 and �y = 0:3123, we found

j�+j � 0:01, j��j � 0:03, �y0 � 12:5 pm, and then extrapolated from here to other tunes, using Eqs. (4), (10)

and (5). Figure 5 (left) compares this simple estimate with the smallest eigenmode emittance calculated by

MAD [15]. The behavior near the di�erence resonance is described fairly well by the analytical expression,

but the MAD calculation does not show the expected emittance increase near the sum resonance. We

tentatively ascribe this to the fact that the MAD/Chao algorithm ignores the o�-diagonal elements in the

di�usion matrix, which can become important near linear resonances [16, 17]. Calculations with SAD [18],

which uses the formalism of Ref. [17], indeed do show a blow-up on the sum resonance [19]. The right picture

in Fig. 5 compares the MAD simulation with an estimate based on the alternative expressions of Eqs. (4),

(14) and (16), also extrapolated from the same working point. The result is quite similar, although, for

most tune values, the di�erence to the MAD calculation is larger.

2From now on the symbol � designates the fractional tune, ignoring the integer part.

6



Figure 3: Spurious vertical dispersion for 200 �m rms random vertical misalignments of the QF2R

quadrupoles, according to a simulation with MAD.

3.4 Measured Tune Dependence

As discussed above, the emittance should change as a function of the betatron tunes. A �rst experimental

test, near the (calculated) working point �x = 15:55 and �y = 8:62 indicated a strong tune dependence.

This initial result is depicted in Fig. 6. A change in visibility from 0.7 to 0.25, seen in the left picture,

corresponds to a variation in spot size between 27 and 46 �m (almost a factor 4 change in emittance!).

Since, at the time of this measurement the tune monitor was not available, we calculated the tune variation

induced by the changes in quadrupole strength. The emittance inferred from the visibility is shown in the

right picture, plotted as a function of the calculated distance to the sum resonance. Also depicted is the

result of a nonlinear 3-parameter �t to Eq. (10) with an additional constant term, �y0. The �t result is

j�+j � 5� 10�4, �y0 � 50 pm (or 5% of the horizontal emittance), and a value for the o�set in the sum of

the two unknown tunes, �(�I + �II ). This measurement must be taken with great care, however, because

the intensity of the stored beam was di�erent for di�erent tune values, and, as we shall see later, the beam

intensity can strongly a�ect the measured spot size.

Figures 7 (a){(c) show the result of a more detailed study, which was performed two days later, around

the nominal working point with measured fractional tunes of 0.16 and 0.72. During this measurement the

beam current was more stable. Depicted in Fig. 7 is the observed dependence of the beam size on the

vertical tune, and on the distance to the two coupling resonances. In this case, somewhat unexpectedly, the

measured emittance assumed a minimum value close to the sum resonance. No data were taken on the sum

resonance itself, since beam could not be stored here, either because of this very resonance or because the

vertical tune crossed the third integer resonance near this point.

From the observed weak tune dependence we conclude that, at the nominal working point, the spot

size measured with the interferometer is limited neither by dispersion nor by betatron coupling. A possible
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explanation is discussed in Section 5.

4 Coupling Correction

4.1 Sextupole Orbit Bumps

For orthogonal correction of dispersion and coupling we can use double orbit bumps separated by appropriate

phase advances, as illustrated in Fig. 8. Similar orthogonal bumps are used for sextupole alignment at the

SLC �nal focus [20]. The scheme makes use of the fact that the nominal phase advance per cell is 132:8�

horizontally and 45:6� vertically. Therefore, the R matrix over 4 cells is a nearly perfect �I transform in

both planes. The two dispersion bumps are shifted with respect to each other by 90� in the vertical plane,

or by 2 arc cells, so that they control the two phases of the dispersion function.

The sine and cosine like terms of the di�erence coupling resonance can be corrected by two symmetric

bumps, shifted by only one cell, for which �(�x��y) = ��=2. Unfortunately, because over one cell the sum
of the two betatron phases changes by �, �(�x+ �y) = ��, it is di�cult to control the second phase of the

sum resonance. In addition, a bump can control only one of the two resonances 3. The nearest resonance

will be dominant, and it is primarily this resonance which must be compensated.

We can estimate the magnitude of the orbit bumps as follows. The coupling term introduced by a

symmetric vertical double bump of amplitude �y is approximately

�j�+j �
1

2�
4 (�y) Ksext

q
�x�y (17)

where Ksext is the integrated strength of the main sextupole, and �x;y is the beta function at the sextupole.

A factor of 2 accounts for the double bump. Solving for �y we �nd

�y � �j�+jp
�x�yKsext

(18)

For example, if the vertical emittance is 10% of the horizontal, and entirely due to the sum resonance,

j�+j � 0:04, according to Fig. 2. With Ksext � 50 m�2 and �x;y � 3 m, the required o�set is �y � 0:3 mm.

In reality there is a partial cancellation, by about a factor 2{3, between the e�ects of orbit o�sets in the

focusing and defocusing sextupoles, so that the real bump amplitude would be about 1 mm.

Simulations with the MAD program [14] indicate, however, that a vertical 4-corrector bump with 1-mm

amplitude at a focusing sextupole increases the emittance of the second (quasi-vertical) eigenmode by only

about 0.2%. This is illustrated in Fig. 9, which also demonstrates that at some working points the emittance

is a�ected by the di�erence resonance and at others by the sum resonance. According to the �gure, local

1-mm orbit bumps at the sextupoles will not have a large e�ect on the eigenmode emittance. The weak

dependence is in apparent contradiction to Eqs. (10) and (17), but it is, of course, consistent with the MAD

calculation results reported earlier.

In Fig. 10 we depict measurements of the e�ect of local orbit bumps on the beam size. The measured

dependence is rather small, as predicted by MAD, and, furthermore, the optimum bump amplitude is usually

close to the nominal value (zero).

3It is possible that a bump corrects both resonances at the same time, given that most or all of the coupling is generated by
the sextupoles, which for the present betatron tunes are all located at roughly the same phase.
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4.2 Skew Quadrupoles

In addition to vertical orbit bumps in sextupole magnets, the coupling can also be controlled via 4 skew

quadrupole coils. These are sextupole trim coils wired as skew quadrupoles [21]. The main sextupole coil,

consisting of 12 turns, carries a maximum current of 325 A, which corresponds to a sextupole gradient

@2Bz=@x
2 of 6000 Tm�2. The trim coil has 20 turns per pole with a maximum current of 10 A. The

sextupole length lsext is 6 cm, and the pole-tip radius is a = 16 mm. The integrated maximum strength of

a skew quadrupole can be estimated as

Kskew;max �
1

2

@2Bz

@x2
lsexta

B�
� 0:03 m�1 (19)

which is marginally su�cient to correct a coupling coe�cient of j��j � 0:03, and roughly equivalent to the

e�ect of a 1-mm vertical orbit bump across one pair of SF/SD sextupoles. Table 1 lists the 4 available

skew quadrupoles and the betatron phases at their locations [22]; the betatron phases for the �rst skew

quadrupole were set to zero 4. Table 1 shows that there is no �I pair of skew quadrupoles (a �I pair would
correspond to a phase advance of 180� or 540�). This possibly complicates the orthogonal tuning with these

magnets.

skew quadr. name �x �y
SD15 0� 0�

SD16 45� 135�

SD21 270� 810�

SD22 315� 945�

Table 1: Approximate betatron phases at the skew quadrupole magnets.

Figure 11 presents a typical measurement result, showing only a small e�ect of the skew quadrupole

setting on the measured beam size. This is not incosistent with the MAD calculation depicted in Fig. 12,

where for the maximum excitation of a single skew quadrupole the emittance changes by a meager 6 pm, or

0.6% of the horizontal emittance.

4.3 Coupling Strength from Transverse Oscillations

Turn-by-turn orbit data taken at two BPMs will allow us to determine all four coupling terms and the

appropriate correction procedure from the amplitude and phase of the lowest-order resonance lines in the

frequency spectrum. This analysis can be performed easily using the SUSSIX program [23, 4]. The formalism

and the program usage are explained in Appendix C.

4The beta functions at the skew quadrupoles are about �x � 1:9 m and �y � 3:5 m.
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Figure 9: Simulated emittance of the smaller transverse eigenmode as a function of distance from the sum

resonance (top) and from the di�erence resonance (bottom). For each working point a vertical bump of 1

mm amplitude was generated across 1 pair of focusing and defocusing sextupoles.
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Figure 10: Vertical beam size inferred from the SR interferometer as a function of local-bump amplitude at

various beam-position monitors: BPM 2 (top left), 6 (top right), 10 (bottom left) and 14 (bottom right).
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5 Intensity Dependence: Gas Scattering and Intrabeam Scattering

Figure 13 shows that the vertical beam size measured with the interferometer depends strongly on the bunch

current. To infer the spot size from the spatical coherence the van Cittert Zernike theorem is invoked. There
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Figure 13: Measured variation of the square of the beam size with the stored beam current.

are some uncertainties whether this theorem can be applied to the vertical spot size [24, 25]. These are

related to the wavelength dependence of the photon angular divergence, the non-Gaussian character of the

photon distribution, and to the change in coherence induced by the antechamber aperture [24, 25]. For now

we assume the theorem is applicable, and ask what exactly do we measure then?

The interferometer measures the coherence, or visibility, of the synchrotron radiation, which is propor-

tional to an integral of the form


 /
Z
ei�yI(y) dy � 1� �2

2
< y2 > +O(�4 < y4 >) (20)

where I(y) is the vertical intensity distribution of the light source (the beam), and � = kD=L, with D

the distance between the slits, k the wave number, and L the distance between the light source and the

plane where the coherence is estimated. Equation (20) shows that the interferometer signal is approximately

determined by the rms of the beam distribution. It does not provide a measure of the core emittance, that

is of primary interest for linear-collider applications. By retaining also higher order terms in the above

expansion, we see that transverse tails are weighted even more strongly than in an rms sense.

Two processes generating transverse tails which depend on the beam intensity are scattering on the

residual gas and intrabeam scattering. The former is intensity dependent since the vacuum pressure of the

ring changes with the beam current; the latter since the collision rate increases with the beam density.

From previous analyses of the ATF beam lifetime [6, 26] we expect that for present operating conditions

residual-gas scattering is the dominant e�ect.
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5.1 Gas Scattering

The rms emittance growth due to multiple gas scattering can be estimated from

�y = �y0+ < �y > �y
� < �2 >

�t
(21)

where �y0 is the emittance generated by synchrotron radiation for an ideal zero pressure, �y is the vertical

damping time (about 20 ms), < �y > the average vertical beta function (3.5 m), and [27]

� < �2 >

�t
�
�
14:1 MeV

pc

�2 �c

X0
(22)

with X0 the radiation length and � the mass density of the gas molecules. A typical radiation length is

X0 � 40 g/cm2. At a CO pressure of 30 nTorr, the rms emittance due to multiple gas scattering then would

be 0.28 nm. Equation (22) describes the e�ect of multiple scattering accurately to within a few percent

for times [27] t > 10�3X0=(c�), which for our numerical example amounts to t > 30 ms. The expected

emittance due to residual gas scattering, according to Eqs. (21) and (22), is depicted as a function of the

carbon-monoxide pressure in Fig. 14.
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Figure 14: Predicted vertical rms emittance due to multiple residual-gas scattering as a function of the

average gas pressure, according to Eq. (21).

Figure 15 shows the measured pressure dependence of the vertical emittance, as deduced from the

interferometer spot size. The slope is roughly consistent with the expectation, and extrapolation to zero

pressure indicates an emittance of 11 pm (or 1% coupling). This is equal to the ATF design goal.

5.2 Intrabeam Scattering

Intrabeam scattering in electron and proton storage rings has been analyzed by various authors [28, 29, 30].

The current-dependent emittance contribution from intrabeam scattering can be calculated, for example,
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using the formulae of Ref. [28]. Assuming that the energy spread induced by intrabeam scattering contributes

to the emittance in the same way as the energy spread arising from synchrotron radiation, the total emittance

is simply

�y � �y0

 
1 +

�
��;IBS

��0

�2
!

(23)

where �y0 denotes the zero-current emittance, ��0 the rms energy spread due to synchrotron radiation and

��;IBS the additional rms energy spread induced by intrabeam scattering, to be added in quadrature. The

energy spread due to intrabeam scattering is given as the solution of a cubic equation [28]

�2�;IBS

�
1 + �2�;IBS

�2
�
*

Nbr
2
ec�x��

25�
3�2x0�y0�z0
f(�m)

+
(24)

where re is the classical electron radius, the �'s with subindex 0 refer to the rms beam size at zero current,

the angular brackets represent an average around the ring, and f(�m) is a slowly varying function of �m =

re�
2
x=(bmax


2�2x) [28], where bmax = (Nb=((2�)
3=2�x�y�z))

�1=3. We consider f(�m) as roughly constant

(equal to 250), and independent of the beam current.

Figure 16 shows the calculated variation of the vertical emittance with beam current for four di�erent

zero-current emittance coupling ratios. In this calculation, an rms energy spread of ��0 � 7:2 � 10�4, a

longitudinal damping time of �� � 20 ms, and a horizontal emittance of 1.1 nm were assumed. Simulations

with MAD using the Bjorken-Mtingwa formalism [30] give similar results.

In principle, the above formulae overestimate the actual growth of the core emittance [31], because for

large momentum exchanges the intrabeam scattering rate can be comparable to the damping time. This

would result in tails of the form � 1=y3, due to rare single scattering, but would not a�ect the core of

the beam. In order to estimate the real core emittance, the integration over the (normalized) transverse

momentum distribution should be cut o� at a (normalized) momentum change [31]

q� �
 

�er
2
ecNb

3
3�x�y�z�x0

!1=2

: (25)

This can be included in the formulae of Ref. [28] by replacing the integral

f(�m) =

Z
1

�m

1

�m
ln

�
�

�m

�
e�� d� (26)

with

�f(�m) =

Z ��

�m

1

�m
ln

�
�

�m

�
e�� d� (27)

where �� � (q�=
�2x0)
2. Inserting the approximate average values �x � 95 �m, �y � 6:2 �m, and Nb � 1010,

we �nd �m � 4 � 10�6, and �� � 6 � 104. Because �� � 1 � �m and due to the exponential term e��

in the integrand of Eq. (27), the calculated emittance increase is the same with and without the additional

cuto� �� 5

As we have discussed above, the interferometer measures the rms emittance (or larger) including any

tails that may be present. This feature can be taken advantage of. Figure 16 indicates that, if the tails are

primarily due to intrabeam scattering, maximizing the dependence of the beam size on the beam current

would be one promising approach to optimize the vertical emittance.

5This is inconsistent with earlier results [31]; so maybe there is a 
aw in our derivation.
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If intrabeam scattering is a signi�cant source of energy spread and emittance, a reduction of the rf

voltage should decrease the emittance. Unfortunately, interferometric spot-size measurements for di�erent

rf voltages at Nb � 5� 109 gave inconclusive results, and should be repeated.

We did, however, observe a clear dependence of the measured spot size on the rf frequency. From a

minimum value of �y � 9 �m at �frf = �5 kHz, the spot size increased to �y � 13 �m at �frf = +10 kHz

(see ATF logbook no. 13, p. 149). This e�ect is not understood, and it is oppposite to that expected from

a change in the damping partition number.

6 Summary and Outlook

We have analyzed the various e�ects that may contribute to the equilibrium emittance of the ATF damping

ring: linear coupling, spurious dispersion, gas scattering and intrabeam scattering.

In doing so, we have found a few inconsistencies, both between di�erent theories, between theories and

simulations, and between theories, simulations and measurements. For example, there are at least three

di�erent predictions for the tune dependence of the vertical emittance. The interferometric measurement

hardly showed any sensitivity except for a slow increase towards the di�erence resonance, and an apparent

minimum near the sum coupling resonance. Similarily, the vertical spot size was found to be completely

insensitive to vertical orbit bumps in the sextupoles and to changes in the skew quadrupole strengths.

Instead, it showed an unexpectedly strong dependence on the beam current and the gas pressure. We

attribute this to a peculiar feature of the interferometric measurement method, in which beam tails are

weighted strongly. Such transverse tails are populated by intrabeam scattering and by gas scattering. We

estimate that both these scattering processes contribute in comparable magnitude. The two e�ects are not

easily distinguished as the vacuum pressure changes with the beam current.

The e�ects of intrabeam scattering calculated according to the le-Du� and the Bjorken-Mtingwa for-

malism are in rough agreement. Both calculations predict an emittance increase of about 100% for a

5 mA bunch current and a 1% transverse emittance ratio. We found that introducing a cuto� for rare

single-scattering events did not change this estimate. Attempts were made to quantify the actual e�ect of

intrabeam scattering, by measuring the current-dependent bunch length, energy spread, beam size, and the

beam lifetime near the di�erence coupling resonance [32]. Bunch lengthening and energy spread increase

due to intrabeam scattering of roughly 20% were observed at a bunch current of 1.2 mA. This indicates a

vertical-to-horizontal emittance ratio of about 1%, consistent with the interferometric spot size extrapolated

to zero pressure. Wire-scanner measurements in the extraction line indicated a slightly larger emittance

ratio (2%-3%)[33], but the emittance here is almost certainly degraded by a nonlinear septum �eld [34]. A

1% emittance ratio is the ATF design goal.

In the future, turn-by-turn orbit data sampled at two BPMs could be used to infer all four linear

coupling terms, the optimum locations for coupling correction, and even the higher-order nonlinear optics.

The dependence of beam lifetime, bunch length, energy spread, and emittance on the rf voltage should

be explored more carefully. Improvements of the transverse dynamic aperture would make the Touschek

lifetime a useful diagnostic for emittance tuning. Finally, the e�ect of the rf frequency on the measured spot

size could be further investigated.
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A Measuring the Dynamic Aperture with Orbit Bumps

At low current, the beam lifetime in the ATF damping ring is limited by gas scattering along with a

small dynamic aperture [6, 26]. We determined the dynamic aperture by measuring the beam lifetime as

a function of collimation amplitude. A similar technique is used at LEP [3]. Since at the ATF dedicated

movable collimators are not available, we instead varied the physical aperture by means of local orbit bumps.

As bump locations, we selected places with tight beam-pipe dimensions. For the vertical plane, this was the

extraction kicker chamber, where the vertical full aperture is only 7 mm. For the horizontal plane we used

a bump in the septum region, with a full beam pipe diameter of 14 mm. The result of these measurements

is depicted in Fig. 17. The dynamic aperture is the di�erence between the physical half aperture and half

the scan range over which the lifetime is approximately constant. In both planes, it is not much larger than

1 mm, and thus similar to earlier dynamic-aperture estimates based on beam lifetime measurements and on

the response to global orbit distortions [26].

The right picture also includes a data point measured on the linear coupling resonance (di�erence res-

onance). The estimated acceptance in this case is about 30% higher. Our acceptance estimation assumes

that the beam lifetime is only due to gas scattering, which dispells particles outside of the dynamic aerture.

The di�erence between measurements taken on and o� the coupling resonance indicates that, at the nominal

operating point about 30% of the beam lifetime is not due to gas scattering, but to the Touschek e�ect.

This is a much larger fraction than in early 1998 [26] (at that time about 5%), re
ecting both a smaller

vertical emittance and an improved vacuum pressure.
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Figure 17: Transverse acceptance, inferred from the beam current decay and the time-dependent pressure, vs.

the orbit bump amplitude at an aperture restriction: (left) vertical bump at BPM19, next to the extraction

kicker chamber with a full vertical aperture of 7 mm; (right) horizontal bump at the extraction septum with

a full aperture of 14 mm. One data point taken on the coupling resonance is also shown, revealing that, at

the nominal working point, about 30% of the beam lifetime is due to the Touschek e�ect.
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B Variation of Beta Functions with the Tune

In order to interpret the results from the interferometer, in particular the reponse to tune changes, it is

useful to know the variation of the beta functions with the betatron tunes. The results of measurements

and simulations are shown in Fig. 18. The �gure illustrates that, at the nominal working point, the vertical

beta function is fairly insensitive to changes in the QF2R magnet strength.
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Figure 18: Variation of beta function with the betatron tune, when the strength of the main quadrupole

string QF2R is varied: (top) measured horizontal and vertical beta functions at the synchrotron light source

vs. the respective tunes; (bottom) simulated variation of the beta functions at some point in the ring as a

function of tune change. In the simulation, the QF2R strength was varied over a two times larger range

than in the measurement.

C Using SUSSIX to Extract the Linear Coupling Coe�cients from Turn-

By-Turn Orbit Data

In the future, two high-resolution turn-by-turn beam-position monitors will become available, the informa-

tion of which can be used to calculate the 4 linear coupling coe�cients with the SUSSIX program [4]. The

optimum amplitude and phase for an e�cient correction is then easily obtained. In the paragraphs below,
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we sketch the algorithm and the steps required by the user. Quite similarily the nonlinear Hamiltonian

coe�cients can be obtained.

Suppose the two BPM are close by, with a 4 � 4 R matrix describing the linear beam transport from

BPM no. 1 to BPM no. 2. The orbit data at these BPMs can be transformed into linearly normalized

phase-space coordinates at BPM 1 by two successive transformations:

x01 = (x2 �R11x1)=R12

y01 = (y2 �R33y1)=R34 (28)

and

x̂ = x1=
p
�x

p̂x =
�xp
�x

x1 +
p
�xx

0

1

ŷ = y1=
q
�y

p̂y =
�yp
�y
y1 +

q
�yy

0

1 (29)

These coordinates sampled over many turns are the input to the SUSSIX code. SUSSIX expresses the

coordinates in the resonance basis:

h+x = x̂+ p̂x =
p
2Jxe

�i(�x+�x0) (30)

h�x = x̂� p̂x =
p
2Jxe

i(�x+�x0) (31)

h+y = ŷ + p̂y =
q
2Jye

�i(�y+�y0) (32)

h�y = ŷ � p̂y =
q
2Jye

i(�y+�y0) (33)

where Jx;y are the action variables, and �x;y the betatron phases. The normal form coordinates ��x;y are

related to the coordinates h�x;y by a generating function Fr: � = e�:Fr:h. In the normal form coordinate

frame, the linear coupling is most generally characterized by 4 complex coe�cients fjklm ::

Fr = f1010�
+
x �

+
y + f1001�

+
x �

�

y + f0110�
�

x �
+
y + f0101�

�

x �
�

y (34)

To �rst order in the linear coupling strength, the linearly normalized coordinates h then evolve according

to the generating function Fr. For example, the coordinate h�y at turn number N is given by:

h�y (N) =
q
2Iye

i(2��yN+ y0)+

�2i
X
jklm

lfjklm(2Iy)
j+k

2 (2Iy)
l+m�1

2 ei[(k�j)(2�nuxN+ x0)+(1+m�l)(2��yN+ y0)] (35)

The di�erent terms in this sum correspond to di�erent lines in the Fourier spectrum of h�y [35]. Recently,

very precise techniques have been developed to calculate the amplitude and phase of such spectral lines

[36, 37]. These are incorporated in the SUSSIX code. Once the generating coe�cients fjklm are obtained,

the coe�cient in the equivalent Hamiltonian follow from the relation

fjklm =
hjklm

1� e�i[2�f(j�k)�x+(l�m)�yg]
(36)
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For example, consider the spectrum of h�y . A line at �y corresponds to the vertical base tune. Other lines

arise due to the linear coupling. A line at ��x corresponds to f1010, and a line at �x to f0110. The other

terms are obtained from the spectrum of h+y , where a line at �x is related to f0101, and at �x to f1001.

De�ning �̂ = �((j � k)�x + (l �m)�y), for the �rst two terms we can express the amplitude and phase of

the Hamiltonian coe�cient hjklm as

jhjklmj =

������
Ah�y ;�1;0 sin �̂

Ah�y ;0;1

������ (37)

�jklm = �hy;�1;0 + (j � k)�h�x ;1;0 + (l �m� 1) � �h�y ;0;1 + �=2 + sign(�̂)�=2 + �̂ (38)

where, e.g., Ah�y ;�1;0 is the amplitude of the ��x line in the spectrum of h�y , and �h�y ;�1;0 is its phase. A

similar expression holds for the other two cases, where simply all indices j and k, as well as l and m must

be interchanged.

We tested this procedure for an example map, consisting of two linear rotations with phase advances

(�x1 = 0:3, �y1 = 0:21) and (�x2 = 0:58m �y2 = 0:22) respectively, 2 observation points, and a skew

quadrupole at BPM 1 of integrated strength ks = 0:03 m�1. Figure 19 shows an example of simulated raw

data for one BPM, and Fig. 20 the linear phase space coordinates x̂; p̂x; ŷ; p̂y, reconstructed according to

Eqs. (28) and (29).

From these data, the SUSSIX program calculates the amplitude and phases of di�erent lines in the FFT

spectra of ��x;y. In our example, the horizontal tune line in the ��x frequency spectrum has an amplitude

of 1.02 mm�1=2 and a phase �108�. The amplitude of the vertical tune line in the ��y spectrum is similar,

1.03 mm1=2, and its phase is �73�. For the +�x line in the vertical ��y spectrum the amplitude is 0.0093

mm1=2 and the phase 135�; �nally, the amplitude of the ��x line is 0.0077 mm1=2 with a phase of 70�. From

these 8 numbers, using Eqs. (37) and (38), we can deduce the Hamiltonian coe�cients: jh1010j = 0:0075,

�1010 � 0 (�5 � 10�6�), jh1001j = 0:00746 and �1001 � 0 (�4 � 10�6�). The amplitudes are equal to the

expected value Ks=4 and the phase is zero, since we have placed the skew quadrupole at the same location

as our reference BPM. The coe�cients h0101 and h0110 need not be calculated, as they are related to the

other two via h1010 = h0101 and h1001 = h0110.

We conclude that from simulated BPM data we can correctly reconstruct the amplitude and phase of all

4 complex coupling coe�cients with an accuracy much better than 1% in amplitude, and as good as 10�5

rad in phase. This should be more than adequate for practical applications of this method.
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Figure 19: Simulated horizontal and vertical BPM raw data.
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Figure 20: Simulated horizontal and vertical turn-by-turn phase space coordinates, reconstructed from the

raw data according to Eqs. (28) and (29).
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