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The topological materials have been theoretically and experimentally studied intensively
in the past decades. The topological properties’ robustness against distortion makes
them a natural playground to explore novel phase transitions. In this thesis, we focus on
topological insulators and semimetals to study the phase transitions driven by disorder
and quasiperiodicity. The main focus of this thesis is on the non-perturbative effects
that demand the application of state-of-the-art numerical methods.

We first consider models of semimetals under quasiperiodic modulation. We show
that the non-perturbative incommensurate effect can drive semimetals through a quan-
tum phase transition into a diffusive phase. Such phase transition will be referred to
as the “magic-angle” effect, which will be interpreted to be central behind the magic-
angle twisted bilayer graphene. The phase transition is shown to present universally in
many models of semimetals. Meanwhile, the transitions have different characters based
on the symmetry, in a way analogous to but fundamentally different from the 10-fold
classification of Anderson transition.

On top of quasiperiodicity, we study the effect of adding disorder to models of

“magic-angle” semimetals. For both the experimentally realized twisted bilayer graphenes
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and the simpler models that emulate the same universal physics, we analyze a special
type of disorder that is native to the physics of quasiperiodicity - the inhomogeneity of
the modulation. Such disorder effects correspond to the varying twist angle in twisted
bilayer graphene which has significant experimental relevance.

We then naturally generalize the considerations of semimetal to a 2D topological
insulator. The topological mass intertwines with the strength of quasiperiodicity to
create a fascinatingly rich phase diagram with interesting eigenstate criticality. In such
criticality, we captured topological flat bands, which are of interest because of the
potential to host strongly correlated topological phases.

Lastly, we study the effect of disorder in the 3D topological insulator. We revisit the
question of the stability of the semimetal line as a phase boundary between topological
insulator phases. Because of the rare-region effect that is strictly non-perturbative,
we find the semimetal line is destabilized which prevents the occurrence of a quantum

critical point.
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3.1. Perturbative corrections to quasiparticle weight Z and velocity v/vg for
a variety of magic angle models. Note that for the honeycomb model and
0y = qu2, the symmetry protection of nodes is lost. It implies a reloca-
tion of K —point node 6k = W2(1, —v/3)T/[122(142 cos(Q/2)) and a dis-
torted velocity matrix. For cTBG, the momentum dependent self-energy
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List of Figures

Schematics of arbitrary 1D band structure that must have 0, 1, or 2
points at a Fermi level. When there are 2 crossing points, the two cross-

ings must be one right-moving and one left-moving. Figure adapted from

i
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The surface of d(k) for the (half) BHZ model. The right panel is showing
a view of a quarter (dg,dy > 0) of the left panel. Colors correspond to
the orientation of the normal vector where green is inward and blue
is outward. The surface of d(k) can wrap around the Bloch sphere if
and only if the origin is in one of the two lobes. When 0 < M < 2
(2 < M < 4), the origin is in the lower (upper) lobe and hence Chern
number is C'= —1 (C' = 1). Otherwise, there is no wrapping and Chern

number is 0. . . . . . . L.
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3.1. Magic-angle transition. A quasiperiodic potential or tunneling gener-
ically drives an eigenstate quantum phase transition from a semimetal
(SM) to metal (M). a. For many models, the velocity at the Dirac node
v decreases with the strength of the potential W until it reaches v = 0 at
the transition, W,; this is an indication of the flattening of the bands. In
some cases an intermediate metallic phase (see inset) separates a reen-
trant semimetal with a reversed helicity (depicted by the Dirac cones).
b, ¢ We construct a phase diagram in terms of potential strength W
(interlayer tunneling for cTBG) and quasiperiodic modulation @ (twist
angle 6 for cTBG) by computing the density of states at zero energy p(0);
analytical perturbative results [see Eq. (3.9), Section 3.8.1 and [2, 3]
are represented by the green dashed lines. Cuts along the dashed white
lines are presented in Fig. 3.2c,d. Color bars represent p(0) and with
widths b: 5, and c: 1.25 and dark purple represents the value 0 on both.
d. An infinite number of semimetal minibands form as the transition
is approached; each has higher effective interaction than the last as we
approach the transition. For 2D SOC, we construct exponentially lo-
calized Wannier states on the first four minibands (see Fig. 3.4) leading
to a model with an effective, strongly renormalized Hubbard interaction

Ueft /tesr in terms of the bare interaction U/t. . . . . . ... ... .. ..
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3.2.

3.3.

Eigenstate transition as manifested in the single particle spec-
trum. Panels a,b: DOS p(E) in units of (¢L?)~! averaged over 300
realizations of phases ¢, and random twisted boundary conditions. The
gray shading represents the number of states in the first miniband and
matches the area of the mini Brillouin zones around each Dirac point
produced by the leading scattering vectors depicted in the inset of a, b
(we chose a rhombic representation of the Brillouin zone of TBG such
that k = k1 Gy + k2Go for reciprocal lattice vectors Gi o of graphene).
Panels ¢, d: Cuts along the dashed white lines of the phase diagram
in Fig. 3.1b,c, displaying p(0) and Zy;(¢ = 2, L) [Eq. (3.10)]. These il-
lustrate sequences of semimetallic and metallic transitions concomitant
with momentum space delocalization (see Fig. 3.3). Panels e - j: The
twist dispersions illustrate the difference between semimetallic phases
(e,f,i,j) and the metallic phase (g,h) as well as the remarkably reduced
bandwidths (note the reduced scale). The 2D SOC (¢TBG) data were
obtained for Q = 21F,_o/F, (6 = 2arcsin(v/3F,_5/[2F},])) at L = 144
(L = 377) and KPM expansion order N¢ = 2!2 (Ng = 213) in the
calculation of the DOS while L =233 in panelse-j. . . . ... ... ..
Eigenstate transition as manifested in momentum space wave
functions at the Dirac node energy F = 0. Panels a - f: Wave func-
tion characteristics as described by the scaling exponent 73/(q) averaged
over 100 random phases and twisted boundary conditions. For W < W,
and W > W/ the wave functions are ballistic [with a frozen 7)/(q)] while
for W, < W < W/ they are critical in momentum space [Tas(q) is weakly
non-linear in ¢|. Inset of a - f: corresponding momentum space wave-
functions. The 2D SOC (¢TBG) data were obtained for Q = 27 F,,_o/F,
(0 = 2arcsin(v/3F,_5/[2F,))) at L =144 (L =377). . ... .......

xiii



3.4. Supercell analysis and Wannier functions. The color coding matched
across a—c (and Fig. 3.1d) indicates the 2nd (orange), 3rd (maroon),
and 4th (purple) minibands. a. The dispersion of Eq. (3.2) in the mini-
Brillouin zone for superlattices (¢, W) = (13,0.5), (¢, W) = (55,0.5244), ({, W) =
(233,0.5244) (from top to bottom); this illustrates successive emergence
of minibands (from top-to-bottom) as a consequence of consecutive down-
foldings of the Brillouin zone. b. The corresponding mini-Brillouin zones
(logarithmic scale). c¢. The dramatic reduction in bandwidth near the
critical point for each miniband. d. For (¢, W) = (13,0.5) and L = 104,
computed Wannier function 1 (z,y) that is sitting upon the local density
of states ppana(r) = >, | (r|Ey,) |> (shown as a density plot) for eigen-
states of the (orange) band |E,), on a 104 x 104 lattice. (Inset). The
exponential localization of the Wannier state. . . . ... .. ... ... 47

3.5. Boltzmann wave packet spreading. Spreading of the mean square
radius (r?) = > r’p(r) of the particle density p(r) as a function of
time in units of the inverse hopping rate 1/t (panel a: a < «., panel b:
a > a.). Here, we consider the interacting 2D SOC model, Egs. (3.2)
and (3.11), and we employ Eq. (3.9) to incorporate the magic angle
effect (occuring at a. =~ 0.53 in this approximation) into a semiana-
lytical hydrodynamic treatment. The initial steady state at finite tem-
perature is defined by a particle [energy] density p(r) = e~/ 12€7] /€2
[pE(r) = v (1 +36_T2/§2) /€3], with vy = v(a = 0) is the bare ve-
locity and we chose & = 4 for the initial spread of the density profile.
The hydrodynamic equations were numerically solved in the presence
of an onsite repulsion U(a = 0) = 0.025¢ and Umklapp scattering rate
1/7(a=0) =0.0075t . . . . . . 49
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3.6.

3.7.

4.1.

Graphic demonstration that the model of perfect SOC in 2D is a direct
sum of two decoupled 7 flux models. The model of perfect SOC, on the
left of the equality sign, is characterized by direction dependent hopping
matrices. Using blue squares and red circles to depict the bipartition,
hopping only connects |[J,1) with |o, ), and separately |0, ]) with |o, 7).
The hopping in y -direction is imaginary and directed (this results from
the asymmetry of o) and, in conclusion, leads to the inclusion of a flux
m per plaquette. The onsite potential does note violate the described
block-diagonalization. . . . . . . .. ... o L oL
Divergence of contact interaction according to Eq. (3.21) for the model
of 2D SOC. Here, the fourth order perturbative self energy was employed
andweused y=1/5.. . . .. ...
The density of states p(F) as a function of energy E for the lattice
model of twisted bilayer graphene at a twist angle § = 1.05°, a linear
system size L = 569, a kernel polynomial method [4] expansion order
N¢o = 217, and a weak breaking in the interlayer tunneling between AA
and AB sites (wo/w1 = 0.75, w; = w where wy (w;) is the strength of
AA and BB (AB and BA) tunneling), which captures lattice relaxation
effects [5, 6] and it opens a hard gap on both sides of the semimetal
miniband. We note that at small angles, a single parameter controls
the physics: w/[2vpkp sin(6/2)], so lowering the angle is equivalent to
increasing wi. Therefore, one can read the plots of smaller w; as at an
angle larger than 1.05°. This density of states has a number of features
relevant to the physics: Van Hove peaks, gaps, and the velocity (as
determined by the scaling of the density of states). Dark (light) blue
lines give the calculated density of states for finite (zero) values of the

parameter w as shown in the inset of the figure. . . . . . . . . ... ...
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4.2. (a) A schematic of graphene and the notation we use for our model. The

A (B) sublattice is represented by the blue (orange) lattice sites. The
unit cell for the triangular lattice is shown by the dashed central hexagon.
The lattice vectors are a; = (v/3/2,3/2) and ay = (—+/3/2,3/2), and we
further define ag = as — a1, a4 = —ay, a5 = —ao, as well as ag = —ag.
(b) A course-grained view of the tunneling between the layers calculated
from 7o and 7; in Eq. (4.5) which defines the energy parameters wy and
wi; the color represents whether AA, AB, or BA hopping is dominant
based on the chance for an electron on a site in layer 1 to hop onto
sublattice A or B on layer 2, given by Px(r) = |[To(r)]x|? + 6|[T1(r)] x|*.
Note that C3 is broken and the moiré unit cell is larger than in real
TBG. Both of these effects are relatively small. (c) Complementary to
the real space picture, in momentum space the lattice Brillioun zone
is effectively downfolded by a factor of three from the moiré Brillioun
zone after unrotating the two graphene layers; this introduces small gaps
in the band structure at these points. (d) In our model, the effect of
the twist is entirely contained within interlayer coupling, so we model
disorder by changing the continuous twist parameter § within different
regions of space. In this common example, we break up the system into
four equal regions and pick a value of ¢; that are drawn from the box

distribution [(1 — Wg/2)0, (1 + Wg/2)0] with § = 1.05°. . . . . .. ..

xvi



4.3. (a) The calculated density of states p(E) for TBG without disorder as a
function of energy E for various interlayer tunneling strengths w = w;
(keeping wo/w1 = 0.75 where wy (w1) denote the strength of AA and
BB (AB and BA) tunneling) at a low twist angle of § = 1.05° close
to the magic angle, a system size of L = 569 and a KPM expansion
order of No = 217 in the lattice model. The calculated minibandwidth
in the magic angle regime w = 110meV is consistent with other studies
of the continuum model and the KPM numerical resolution limits to
the extent we can access the low-energy regime near charge neutrality.
(b,c,d) Comparisons between our lattice model and the continuum theory
near £ = 0 and # = 1.05° for w = 80, w = 100 and w = 110 meV
respectively, we find remarkable agreement. The insets show the details
of the miniband. At 6 = 1.05° and w = 100meV, inset of (c), we see
a splitting of the Van Hove peaks that is missing from the continuum
model associated with additional zone folding in this model. This is seen
clearly in the right inset; the left inset shows how the gap of the lattice
model here and in the continuum model also match rather well. In (d) at
the magic angle § = 1.05° and w = 110 meV, we see that the Van Hove
peaks never clearly merge as they do in the continuum model. Again,
this is clearly seen in the right inset. The continuum model data here
includes 338 bands and has N = 213 or 2!* whereas the lattice model
has L = 569 and N¢ = 2'7. Overall, the agreement with the continuum

TBG model is quite excellent. . . . . . ... ... ... ...

xvii



4.4.

4.5.

The effects of twist disorder on the low energy density of states. The
density of states p(FE) as a function of energy F for a clean twist angle
0 = 1.05°, linear system size L = 569, and a KPM expansion order
of No = 2!7 starting in the semimetal regime of the the TBG model
(Top) as well as in the magic-angle regime (Bottom), for different twist-
disorder strengths Wg (that characterizes the width of a box distribution
[(1—Wg/2)0,(1 + Wg/2)0] with 6 = 1.05° from which we sample the
random twist angle in each patch). In each case the randomness smoothly
fills in the gap while also smearing out the Van Hove peaks. The insets
in the bottom two figures is a zoom in of the band gap that clearly fills
in with increasing disorder. . . . . . . . . ... ... .. ... ... ...
Summary of results on the miniband properties in the TBG model with
a clean twist angle § = 1.05° extracted from system sizes L = 569 and a
KPM expansion order Nc = 2'7. (a,b) The estimated gap size Ay as
a function of disorder strength in the twist angle Wx and the interlayer
tunnelings w (where w = w; and the ratio of AA and BB tunneling to
AB and BA tunneling is wg/wy = 0.75). (c,d) The velocity v/v(w = 0)
as calculated from the density of states as a function of disorder Wpg
remains approximately unchanged in the presence of disorder Wx (for
each value of w). (e,f) The minibandwidth Dyp for interlayer tunneling
w and disorder Wg. Note that for larger disorder strength (Wr = 6% or
above) in (e) the bandwidth appears to plateau; this is just an artifact
arising from disorder completely filling out the gap at this point. While
the gap and bandwidth are strongly affected by disorder, the velocity

remains unchanged. The red dashed line in (f) that sets the maximum

that the minibandwidth can achieve, is determined from the gaps in (b).

xviil
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4.6.

4.7.

4.8.

The effects of twist disorder on the properties of the Van Hove peaks for
a clean twist angle § = 1.05°, a linear system size L. = 569, and a varying
KPM expansion order (N¢) in (a) whereas in (b,c,d) we use No = 217.
(a) As we scale the Chebyshev expansion order, we see that the Van Hove
peak is logarithmically divergent (with a fit shown as a black dashed line),
but once we add disorder, it rounds out and saturates to a finite value.
(b) The energy separation between Van Hove peaks remains stable as
disorder increases even though we find (c) that the full-width half-max
(FWHM) of the Van Hove peaks becomes broader as disorder increases.
(d) The estimated BCS critical temperature or the effective coupling
constant [see Eq. (4.8) in the main text] from the density of states at the
Van Hove peak as disorder is tuned up for various values of w. . . . ..
(a) The calculated density of states p(E) as a function of energy E for the
spin-orbit coupled model of Dirac points perturbed by a quasiperiodic
potential, with a quasiperiodic wavevector @ = 2w F,_o/F, with the
system size L = F,, = 144 and a KPM expansion order N¢c = 2'4. (b) A
depiction of how we break up the SOC square lattice model into regions
of different quasiperiodic wavevector @Q; (to simulate disorder), which are
taken from a box distribution about a central value. We vary both the
number of regions and the size of disorder in each region. . . .. .. ..
The disorder-free density of states p(E) as a function of energy E ob-
tained from a linear system size L = 144 and a KPM expansion order
N¢ = 2 starting in the semimetal regime of the model, comparing the
case of a fixed random phase across the entire sample (b, d) and a differ-
ent random phase in each patch (a, ¢) for different strengths of disorder
in the wavevector and np = 7 randomly placed patches. Note that the

random phase in each patch is disordered even for W =0. . . . . . ..

xXix



4.9.

4.10.

4.11.

Density of states as a function of energy in the semimetallic regime of
the SOC model focusing on the miniband at low energy using a linear
system size L = 144 and a KPM expansion order No = 2. We focus
on the effects of the different number of random patches used for various
different disorder strengths in the quasiperiodic wavevector Wg from
W = 0.35. Here we are taking one global phase across the sample to
isolate the effects of randomness in () and choice of patches alone.

Density of states as a function of energy in the magic-angle regime (W =
0.54) of the SOC model focusing on the miniband at low energy with a
linear system size L = 144 and a KPM expansion order No = 24, We
are displaying the effects of different number of patches of a random wave
vector across the sample. . . . . . . . .. .. ... ... L.
The estimated critical temperature (or effective coupling— see Eq. (4.8)
in main text) from the Van Hove peaks in the DOS as a function of
randomness in the twist vector comparing two choices for the random
phase for different number of randomly placed patches. (a,b) One fixed
phase, corresponding to a single rotation origin. (c,d) Random phases
¢, (%) in each block. The left panels are W = 0.35 in semimetal phase,
while the right panels are W = (.54 at the magic-angle. Random phases
in each block produce very strong randomness in the model and smears
out the Van Hove peaks more easily. (e) The critical temperature 7T,

with random phases ¢, (i) in each block but without randomness in @,

2

as function of number of patches n,

and normalized by 7. with only
one patch. (f) The gap size as function of randomness. Comparing to
the suppression of T, the gap is filled in for W ~ 0.5%, which is much
smaller than the critical W (~ 10%) needed for Van Hove peaks to be

smeared out. These results are obtained from data using a linear system

size L = 144 and a KPM expansion order No = 2. . . . . .. ... ..

XX

81



4.12. Effects of disorder on the renormalization of the velocity of the Dirac

5.1.

cone and the minibandwidth using a linear system size L. = 144 and a
KPM expansion order N = 2. (a) Effective velocity of the Dirac cone
and how it is rounded out due to randomness in the wavevector. The
finite velocity in the magic-angle regime for Wg = 0 is just a finite size
effect [7]. (b) Minibandwidth as a function of disorder in the quasiperi-
odic wavevector, which monotonically broadens for increasing disorder
until the gap is filled in and the miniband is no longer separated from the
rest of the band (marked as dashed lines). We include both W = 0.35
for semimetallic phase and W = 0.54 for the magic-angle regime. Note
that we have set t =1here. . . . . . . . . ... ... ... ... .....
(a) Schematic phase diagram at the band center (E = 0) extracted from
our work. In the semimetal phase the linearly dispersing Dirac cone is
stable in the low-energy regime. In the chiral metal phase a band of hy-
bridized zero modes qualitatively explain the sparse (yet still delocalized)
structure of the wave functions at the band center. The point W =1 is
critical, with a diverging low-energy density of states, a dynamic expo-
nent z > 2, and multifractal eigenstates that obey Chalker scaling. (b)
The zero energy DOS p(0) for a linear system size L = 233 and N = 24
and the momentum space inverse participation ratio In;(¢ = 2) at E =0
with @ = 27 F,,_2/L and L = 144 versus the hopping strength W on a
linear scale. (c) The low-energy DOS p(E) as a function of energy E
for pure QP hopping (W = 1) for the case of real and complex hopping
amplitudes for system sizes L = 987 and L = 233 respectively. For the
real QP hopping amplitudes we find the zero energy density of states
diverges, which is cut off by the finite KPM expansion order N¢, here

we take Noo =216, . .
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5.2.

5.3.

DOS versus E for L = 233 and N¢g = 2" with different QP hopping
strengths W. (a) Formation of the first miniband with increasing val-
ues of W (vertical black arrows marking the gap that separates this
miniband from the rest of the states). (b)-(e) Formation of the sec-
ond miniband and semimetal to metal transition (vertical black arrows
mark the location of the gap to the second miniband). The second mini-
band is displayed as a thicker line for clarity. Note that the full band-
width for W = 0 is 4v/2 ~ 5.7 and all of these results are obtained
for @ = 27 x 89/233 with a critical value of W for this @ given by
W, =0.4854+0.005. . . . . . . .
The dependence of the DOS at zero energy on the choice of the wavevec-
tor Q. (a) A phase diagram in the space of W and @ specifying the
semimetallic regime (SM), the gapped higher order topological insulating
phases (indicated by the sharp drops in DOS on vertical lines indicating
rational Q labeled on top), and the chiral metal phase, where the color
plot denotes the value of log p(0). Each data point is calculated for a
system size L = 144 and KPM expansion order of No = 2'2. For these
finite sizes, p(0) around 10~3 corresponds to the SM phase, while larger
DOS signals the metallic phase. The solid red curve shows the result of
perturbation theory for the critical W, given by v = 0 in Eq. (5.13). For
Q@ > m the estimate of W, from Eq. (5.13) becomes imaginary, we plot the
magnitude of this as a dashed red curve. (b) The Qr/(27) = Fy—m/Fn
cuts (marked by the black ticks in top panel) with system sizes L = 144,
and Ngo = 2'. We see the transition persists for very small Q7. Note
that the finite value of p(0) in the semimetal regime is just a finite-size
effect and the transition appears when this rises over several orders of

magnitude, see Fig. 5.4. . . . .. .. oo oL

xxii



5.4.

5.5.

5.6.

The zero-energy DOS p(0) as a function of W for various KPM expan-
sion orders N¢ and a system size of L = 233. In the semimetal regime
p(0) goes to zero for increasing N¢ like p(0) ~ 1/N¢, which allows us to
identify a sharp semimetal to metal transition at W, = 0.485+0.005. (In-
set) The N¢ independence of p(0) N¢ allows us to identify the semimetal
phase boundary and demonstrates the robustness of the semimetal phase
to quasiperiodicity. This data for No = 2'4 on a linear scale is shown in
Fig. 5.1(b). . o o o
The effective Dirac cone velocity extracted from the scaling of the low-
energy DOS p(E) ~ p/(0)|E| [formally we compute p/(07)]. (a) The slope
p'(0) vs W for various combination of N. and L. We find that p’(0) rises
steeply, strongly suggesting a divergence and a non-analytic DOS at the
transition. We extract p/(0) from a fit to the scaling of the low-energy
DDOS p(E) ~ p'(0)|E|. (b) Velocity v = 1/4/p/(0). The dashed line
shows the linear fit of highest N, and L we have. The linear scaling of
p'(0)7%% indicates p/(E = 0) ~ (W, — W)~2, and predicts critical point
W0.485 4+ 0.005 that is consistent with our other analysis. . . . . . . ..
The twist dispersion in the semimetal phase (a) and in the chiral metal
(b), i.e. low-energy eigenvalues (F) as a function of a twist () in the
boundary condition along the z-direction obtained by diagonalizing an
L = 89 sample. (a) For W = 0.35 in the semimetal phase with clear Dirac
points at (0,0) and (7,0). (b) Focusing on W = 0.50 that is right after
the semimetal to metal transition. We see the low-energy minibandwidth
for W = 0.5 has been substantially renormalized, the band in the center
of the spectrum has a bandwidth that has been renormalized by a factor
~ 1078 from its unperturbed value, which is an even stronger effect then

has been seen previously [7]. . . . . . .. ..o Lo oL
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5.7.

5.8.

5.9.

The ¢ = 2 inverse participation ratio in momentum space Zy(q = 2)
as a function of W for various system sizes L. In the semimetal regime
the momentum-space IPR is L-independent and becomes L-dependent in
the chiral metal phase due to the wavefunction delocalizing in momen-
tum space. At W = 0.7, the momentum-space wavefunctions are still
delocalized (see Fig. 5.9) even though the IPR data seems to be only
weakly depending on the sizes. All the statistical errorbars in this plot
are smaller than the symbols. . . . . . . ... ... ... ... ...,
Probability distributions of zero energy wavefunctions in momentum
space with L = 144 and different values of W. (a)-(b): The wave-
functions contain well-defined ballistic peaks at (k;, ky) = (0,0), (0,7),
(m,0), and (m, 7). A few of satellite peaks can be seen in (b) while the
major ballistic peaks are still well resolved from the figures. (c): The
wavefunction is close to the critical point; The ballistic peaks can still
be resolved. Meanwhile, the satellite peaks start to form regions instead
of a few well-separated points. (d)-(f): The ballistic peaks are no longer
sharply defined due to the hybridization with the satellite peaks which
arise from scattering off QP potentials. In (f), the momentum-space
wavefunction looks very much like a conventional delocalized state. The
critical value is close to W =0.49. . . . . .. ... ... 0.
Zero-energy momentum-space wavefunction with W = 0.7. (a) The
probability distribution. The wavefunction is made of sparse peaks and
is still delocalized in momentum space. (b) The multifractal spectra
v (q). Each data is averaged over 100 realizations. For smaller binning
sizes (B = 1,2 and B = 2,4), the 7);(q) show strongly multifractal (but
still unfreezing) behavior. Note that 7a7(¢ = 2) is not zero for all the

binning sizes. . . . . . . ...
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5.10.

5.11.

5.12.

Multifractal spectrum of the zero-energy momentum-space wavefunction
with different W for L = 144. Each 7/(q) is obtained via numerical
extrapolation of two different values of the binning size B. Each data
is averaged over 100 realizations. (a)-(b) All the 7a7(q) spectra show
freezing behavior. (c) Tar(q) spectra extracted from larger binning sizes
(B =4,8 and B = 8,16) start to show unfreezing behavior. While the
spectra from B = 1,2 and B = 2,4 are still frozen. This is very close to
the critical value of W. (d)-(f) All the 7as(q) spectra show unfreezing,
weakly multifractal behavior. . . . . . . ... ... oL
Probability distributions of zero-energy wavefunctions in real space with
L = 144 and different values of W comparing the exact numerical calcu-
lations (top row) with the analytic results (bottom row) for the wavefunc-
tions of the chiral metal, in Eq. (5.16). (a) and (d): The wavefunctions
are plane waves. (b) and (e): The model is close to the critical point
of the semimetal to metal transition and the wavefunction looks like a
periodic array of localized peaks. (c) and (f): The wavefunctions are
delocalized but possess intricate structure that agrees qualitatively well
with the analytic prediction. The critical value obtained from numerics
is close to W = 0.49. Despite the analytical treatment overestimating
the position of the semimetal to metal transition by a factor of 2, it leads
to qualitatively similar behavior near the transition. As a result for the
analytic results we show W = 0.83in (d), W = 0.87 in (e), and W = 0.91
in (f). . .
Localization properties obtained through the typical DOS. Typical DOS
are in black solid lines, and average DOS are in blue dashed lines (to
distinguish hard gaps and localized states) for L = 144 and Ngo = 2
[(a) W =0.2; (b) W =0.4; (c)W =0.6; (d) W =0.8; (¢) W = 0.9 and
(£) W=1.0]. ... ..
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5.13.

5.14.

5.16.

Real-space wavefunctions at various energies corresponding to W = 0.8
and L = 144. (a), (c¢), and (e) are delcoalized wavefunctions; (b), (d),
and (f) are localized wavefunctions. This confirms the multiple mobility
edges observed in the typical DOS in Fig. 5.12. . . . ... .. .. ...
Divergence of the low-energy DOS for W = 1 (i.e. pure QP hopping).
(a) No-dependence near zero energy for a very large system size L = 987
and Qr = 27w F,,_o/F,. (Inset) Similar results for the randomized version
of the model (letting the phase be random at each site) with L = 233
for No = 212,213 214 [ = 377 for No = 2% and L = 610 for N = 216,
note that the divergence is similar between the two. (b) Divergence of
the low-energy DOS for W = 1 in the pure QP limit comparing two
different quasiperiodic wavevectors and the random (R) hopping model
with the KPM expansion order that acts like a low-energy scale that
rounds out the divergence of the DOS. Fits to the power law form are

shown as red dashed lines. . . . . . . . . .. ... ...

. The onset of a divergence in the DOS at zero energy p(0) versus (a) N¢

and (b) W close to W =1 and L = 610. We see a trend towards an
increasing p(0) for W > 0.95, but there is no clear sign of divergence in
the data other thenat W =1.. . ... ... ... ... ... .......
Inverse multifractal exponent cg as a function of energy for W =1 and
L = 144. The green dashed line indicate the plane wave value 1/ap = 0.5.
Localized states in the thermodynamic limit give 1/ag — 0. The results
demonstrate non-monotonic dependence as a function of energy. Blue
dots indicate the data extracting from 1 (x) (b = 1); red dots correspond
to the data extracting from binned wavefunctions with resolution length
b = 2. The black arrows indicate the states consisted of double identical
peaks. The corresponding typical DOS values are very small but non-

zeroin Fig. 5.12. . . . . . ..o Lo
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5.17.

5.20.

Real-space wavefunctions that show double peaks structure for W =
1 and certain finite energies [(a) £ = 0.4; (b) £ = 0.6]. These two
wavefunctions correspond to the data in Fig. 5.16 indicated by the black
arrows. They are not the conventional localized or frozen wavefunctions
that are found in the disordered systems. Such an unconventional feature

is probably due to the quasiperiodicity. . . . . ... ... ... ... ..

. Two-wavefunction correlation [given by Eq. (5.9) with Ey ~ 0] as a

function of energy (E). We take 300 lowest positive energy states of
L = 144 per realization and compute the probability overlap of two
wavefunctions in the same realization. The data is averaged over 400
realizations. E* = 0.01 for W = 0.99; E* = 0.0025 for W = 1. We
rescale all the data points with the rightmost point. In the pure QP
hopping limit (W = 1), the two wavefunction correlation shows a clear
power law scaling. For W = 0.99, the low-energy wavefunctions lose

clear power law overlapping features. . . . .. .. .. ... ... ....

. Wave packet dynamics, we initialize the wavefunction to be localized to

a single site and evolve it under H. (a) Spread of the wavepacket as a
function of time ¢ on a log-log scale with L = 987 and N¢ = 2'3 we never
see a clear diffusive phase (z = 2). (b) Extracted dynamic exponent z
from (67(t)?) ~ t2/* (inset) zoom in near W = 1 with a dashed line
to mark diffusion 2/Z = 1. Note that the wave packet dynamics is not
sensitive to the semimetal to metal transition at £E=0. . .. ... ...
The hopping configurations of QP hopping models with L = 13. (Right)
The hopping configuration of the QP hopping model with W = 1. The
QP pattern generates nearly zero lines of bonds which effectively separate
the system into many subsystems. (Left) The hopping configuration of
the QP hopping model with W = 0.9. The system is typically well

connected as a whole. . . . . . . . . s
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5.21. (a) Density of state by energy, with @7, = , in twisted periodic boundary

6.1.

6.2.

condition (TPBC) and open boundary condition (OBC). Both boundary
conditions show bulk gap, while OBC allows the topological corner states.
The system size is L = 144, and Qr = 27(72/L). Nc = 8192 for KPM
calculations. (b) real space wave function at Qp = m and W = 0.4.
System size is L =89. . . . . . . . ..
Phase Diagram of the BHZ model in Eq. (6.1) at the band center
with topological mass M and quasiperiodic potential strength W. There
are five illustrated phases: topological (TI), normal (NI), and Anderson
(AI) insulators, Dirac semimetal (SM), and critical metal (CM). The
green and red data points use the density of states in Eq. (6.3) to locate
the transitions between TI and NI. Among them, the green data points
and the green vertical line at M = 2 are SMs, terminated at magic-angle
transitions (see Sec. 6.5) at the green stars. The black dashed lines are
the perturbative prediction for the SM lines (e.g. Eq. (6.23)). The blue
circles use transport [Eq. (6.2)] to determine the CM to AI boundary.

(a) Full phase diagram with all measures used to diagonose phases and
transitions. The magenta line shows the boundary between delocalized
or critical phase and localized phase at zero energy, as indicated by the
neural net model. The dark region, roughly extending from M = 4,
W =3to M = 4.5, W = 4 is indicated as critical phase by the neural net
model, but not identified by any other observables. The dashed orange
line inside the TT phase shows where the size of the gap centered at £ = 0
is maximals and thus starts to significantly deviate from perturbation
theory. (b) A cut of the phase diagram in energy space represented by
the yellow line in (a). Notice the multiple phase transitions, all driven by
quasiperiodicity (W) and the higher energy metallic nature. The pink

curve represents the boundary to machine-learned, localized eigenstates.
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6.3.

6.4.

6.5.

Finite energy topological phase diagram. The Hall conductivity
0y at various Fermi energies Er and quasiperiodicity W. The red lines
are the perturbation theory prediction of gap size. . . .. ... ... ..
Schematic diagram of the neural network structure used for
localization detection. For convolution layers, we apply a convolution
operation over a small window to get a data point in the next layer.
Max-Pool layer simply takes the maximum of each window to reduce the
model size. We also add batch-normalization and dropout layers before
and after Max-Pool, but they are not shown here as they do not alter
the overall architecture. . . . . . .. ... ... L oL
Comparing the IPR with the machine learning outcome. (a)
Shows an example of the neural network output for M = 2.7, given as
the probability of a state being localized [P(loc)] or extended [P(ext)].
The summarized results are shown for M = 2.7 (b) and M = 4.9 (c),
with comparison against KPM and IPR results. The difference between
the two probabilities measures how confidently the model can distinguish
localized or extended. Also shown in the figure with the magenta strips
is the phase boundary determined by the conductivity, which indicates
a transition near W = 2.25 for M = 2.7, and W = 3.4 for M = 4.9.
Although the three different methods match quite well for M = 4.9, for
M = 2.7 the IPR shows strongly critical behavior up until W = 2.5,
well after the conductivity appears to vanish. Such critical behavior
is detected by the neural net model. For W between 2.3 and 2.5 the
IPR shows a strong L dependence and the neural net model predicts an
extended phase with high confidence. For a range of W larger than 2.5,
the IPR shows a weak L dependence across different system sizes, while

in the neural net model P(loc) and P(ext) are quite close to each other.
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6.6.

6.7.

The magic-angle transition for the semimetal line M = 2. (a)
Renormalized velocity v/v(0) and the resulting finite density of states
p(0) at the transition, extracted from p(F) that is calculated using KPM
method with system size L = 144, Chebyshev cutoff N, = 2!5. (b) These
plots indicate the appearance of a critical metallic phase 1.4 < W < 1.5
inferred from both the resistivity p,, and the scaling of the momentum-
and real-space IPRs. pg, is calculated using Kubo formula with KPM
method. The L-dependence of the IPRs is fitted from lowest energy
eigenstates obtained using Lanczos method for L = 89, L. = 144, and
L = 233 to a power law form Z, ~ 1/L7 and 7, is shown as the right
vertical axis. . . . . ... L
Demonstration of the TI-to-CM transition. (a) Tracking the den-
sity of states computed with the KPM in Eq. (2.1), we see the (hard)
band gap closes as a power law A = (W.(M) — W)"* and find vz =~ 1 at
the TI-to-CM transition across each value of M. (b) Shows the conduc-
tivity computed with the KPM in Eq. (6.2) as a function of quasiperiodic
strength W for M = 4.0. The Hall conductivity o, saturates to a finite
value in the TT phase, but for W.(M =4) ~ 2 < W < 3 the longitudinal
conductivity becomes finite and the Hall part is suppressed. The system
is localized when W 2 3. Note that the feature near W = 0 is due to
M = 4 being a SM. We stress that this metallic phase and therefore this

transition does not exist in the presence of randomness. . . . .. . ..
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6.8.

6.9.

6.10.

Flat Chern bands and eigenstate criticality. (a) Color plot of the
momentum-space IPR system-size scaling. The value of v is given by
the color. The lowest energy states (and narrowest set of states) has
a Chern number of 1. The white regions are hard gaps. (b; left) the
conductivity calculated from Eq. 6.2 with L = 377 and cutoff N, = 24
(b; right) Dispersion relation E,(0) along a representative cut in the
mBZ for a sequence of L = F}, with even n, for W = 1.0154. For each L,
the green band carries Chern number —2, the first 4 bands (from green
to cyan) sum to Chern number 1, and the 25 bands pictured in each plot
sum to Chern number 1 (for L = 55, the pattern appears to hold but
the lowest bands do not have a well-defined gap). (c) the flatness ratio
fg (left) and the normalized standard deviation of Berry curvature Qg
across the folded Brillouin zone (right) of the first band above E = —0.5,
for various L values. The filled markers (o) indicate topological bands
while empty markers (o) indicate trivial bands (excluded in the right).
The squares (H) and circles (o) correspond to L = F, such that n is odd
and even, respectively. . . . .. ... L L
L dependence of the IPR Here we demonstrate two examples of how
we determine v, for IPR data in the basis a = x, k, where I, ~ L™,
for M = 2.7 (a) and M = 3.3 (b). We take a linear fit for log I}, or log I,
over log L, then the slope of the fit estimates v. . . . . ... ... ...
Berry curvatures. The Berry curvature of of the first band above the
hard gap near £ = —0.5. The samples shown are at W = 1.01541,
M =4 and L = 377, i.e. at its peak flatness (see Fig. 6.8). The first row
are system sizes in the sequence of L = F), with odd n, and the second
row for even n. For L = 55 and L = 89, Berry curvature have clear

peaks; while larger L’s see flatter Berry curvature. . . .. ... ... ..
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6.11.

6.12.

6.13.

Twist Dispersions. (a) Using the twist dispersion to obtain the effec-
tive mass m*. The red curve is the quadratic fitting result to estimate m™*.
The figure shows an example for M = 4.0, W = 0.4. (b) The effective
mass obtained from fitting twist dispersion (mg,) and from perturbation
theory (m;ert), compared with gap size. The vertical line marks the W
where we scrutinize flat topological bands. (c¢) Twist dispersion with
open boundary conditions in the y direction and twisted boundary con-
ditions in the x direction. The color corresponds to the location of the
eigenstates along the y axis. The red and dark blue states in the bulk
gap are the edge states. . . . . . . . .. ... ... .
Vanishing of the spectral gap. The gap size as a function of W for
M =24 (a) and M = 3.0 (b) with various system sizes L. (c) is a more
zoomed in view of the M = 3.0 cut near the transition. In the second
row, we show an example of how the combination of critical exponents vz
is extracted from the spectral gap data. For a range of choices of W, we
fit log A against log(W, — W) in the range when W, — W is under 0.015
and A > 0.001 with a straight line. This data is shown in (d). Then we
find the point where the root mean square error (RMSE) as shown in (e)
of the linear fit is smallest as our best estimation of W,., where the slope
is then vz. For these results, our best estimate of vz = 1.0 + 0.1, with
W.=2106=+0.001. . .. . . . . . . e
Properties of the IPR. (a) Phase diagram of the momentum space
IPR of the lowest eigenstates. The red circles mark where the gap size
A(W) changes its trend from increasing to decreasing as determined by
the location of the maximum in A’(W). The cuts M = 3.3 (b) and
M = 3.8 (c) show the non-trivial L dependence of the IPR in both real
and momentum space start to dramatically change when A(W) begins

to turn downward. . . . . . L
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7.1. Schematics of the two candidate scenarios of phase transition between
topologically distinct insulator phases in the presence of disorder. The
question we address chapter is whether the phase transition along the
green dash line is TI-SM-NI or TI-Metal-NI. . . . . . . ... .. .. ... 154

7.2. The clean band structure of the 3D topological insulator model we con-
sider. The plots are a cut of k&, = 0. From left to right correspond to
M =1,0,-1,-2,—3,—4,—5. The panels in the first row are in NI, TT,
weak TI, NI phases and those in the second row are all in the SM phase.
Notice that M = 0 and M = 4 has one band touching point but M = 2
hastwo. . . . . . . 156

7.3. The phase diagram as mapping of log p(W, M, E = 0) (top) and log o (W, M, E =
0) for a smaller range of parameters(bottom), marked with cuts that
will be scrutinized in some detail. The DOS result is calculated with
N¢ = 2048 and L = 151. The light strips correspond to the SM and
metallic phases. . . . . . . .. L 157

7.4. The landscape of p” (W, M, E = 0) for a larger range of parameters. The
calculation is done with Ngo = 2560 and L = 151. A peak exists, marking
the location of the avoided quantum critical points. . . . .. ... ... 158

7.5. The second derivative of the density of states as a function of Fermi
energy, at Iy = 0. As N, increases, the peak stays within the same
order of magnitude. . . . .. ... oL L Lo 159

7.6. The crossing of «ag as lattice size L varies. The critical W can be
estimated from the figure as W = 0.6 £ 0.02 for M = —1.7. Notice the
drifting toward lower W as L increases, making our estimation more
likely to be an overestimate. . . . . . . . .. ... Lo 160

7.7. Plots of 3D |¢(z,y, 2)|? for a case of insulating phase close to transition
(M = —1.5, W = 0.54, left) and in metallic phase (M = —1.5, W = 0.69,
right). The size of dots represent |¢|? that is below 0.001; and color

represent those above 0.001. . . . . . . . .. .. ... oL 160
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7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

The crossing of ag(M) for various L at fixed disorder W = 0.52. The
finite range of M where ag approaches toward ag = d = 3 as L increase
is the metallic region that the semimetallic line develops into. . . . . . .
The mobility edge for M = 1.5, W = 0.59 is at 0.005 £ 0.001 where the
curves for different L crosses. . . . . . . .. ... L.
The DOS at E = 0 along the line that SM would have existed if it were
stable. As L and N¢ increases, the relation between logp and 1/W?
saturates to be linear. . . . . . .. ... o oo
The conductivity at £ = 0 along the putative SM line. As N¢o and L
increase, the linear relation between log o and 1/W? emerges. . . . . . .
Histogram of KPM estimated sample conductance. The horizontal axis is
log-scaled, highlighting the extremely broad distribution near the tran-
sition. In contrast, the metallic phase sees smaller fluctuation. The
fluctuation increases with larger No. . . . . . . . . .. .. ... ...
The normalized but not centralized second moment for a cut of M =
—1.5, varying W. The peak marks the broadest distribution of conduc-
tance which estimates the critical W, for metal-insulator transition. As
L increases, the estimation of transition drifts to lower W, hence we

shall only quote an upper bound of the transition. . . .. ... ... ..
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Chapter 1

Introduction

The abundant topological phases of matter have been of great interest in condensed
matter physics. Since the discovery of integer and fractional quantum Hall effects [8, 9],
a variety of topological invariants have been studied in the context of some condensed
matter systems, leading to the discovery of many materials or platforms featuring the
topological properties. There are gapped systems carrying various topological invari-
ants such as the Chern number [10], the Zg invariants [11, 12] and the higher-order
topological invariants [13], to name a few. Recent years have also seen a surge of in-
terest in gapless systems such as Dirac and Weyl topological semimetals[14, 15] that
carries topological monopole charges. Those topological properties are robust against
deformation. Such robustness has brought great prediction power to the field of con-
densed matter physics, as the topological properties initially defined for idealized, clean
systems remain unchanged with high precision in a real-world, dirty system.

Such robustness, in turn, makes the process of destroying topological properties a
fascinating ground for a large set of questions to be answered — because of the robust-
ness, the breakdowns of topological properties are not a trivial deviation from ideal
states, but often phase transitions driven by non-perturbative effects. Pertaining to the
transitions, there are questions that are both of theoretical interest and experimental
relevance. For example, adding random disorder to a condensed matter system is well
known to induce Anderson localization[16]. In the case of adding disorder to a topo-
logical phase of matter, questions arise naturally — does localization still exist? Does
topology hold up until localization happens? Are there any new phases of matter in
between? The question becomes even more interesting for gapless topological phases,

where even small disorder or other perturbation could push the system to a new phase;



and perturbations under certain conditions can allow the phase to remain stable until
a more dramatic breakdown.

The main content of this dissertation will be exploring various situations “off” the
simpler topological phases, either by incorporating random disorder or quasiperiodic
modulation (to be explained soon).

To study condensed matter systems with either disorder or quasiperiodicity (or
both), it is often necessary to apply many numerical methods, especially when non-
perturbative effects become important. In addition, the lack of translational symmetry,
the statistical nature of the disorder, and the complicated phase diagrams demand the
numerical computation to be very large in scale. Hence, picking suitable observables
with appropriate algorithms becomes vital to research in this field. In light of the impor-
tance of numerical computation, Chapter 2 explains in some detail the computational
approaches shared in the chapters to follow.

Equipped with the numerical methods, in Chapter 3, we investigate various mod-
els to reveal the common ‘magic-angle’ effect in semimetals driven by an increasing
quasiperiodic modulation. This chapter is based on [7] and its supplemental materials.
Next, in Chapter 4 (based on [17]) we characterize the effects of disorder on magic-
angle semimetals including the experimentally motivated twisted bilayer graphene case
and our much simplified toy model from Chapter 3. Chapter 5 (based on [18]) moves
on to focus on one model of magic-angle semimetals under chiral symmetry to study
the transition in more detail. The chiral model also involves a curious commensurate
limit that is equivalent to higher order TI[13]. In Chapter 6 (based on [12] and its
supplement material), we shift gear from semimetallic models to 2D topological insula-
tors, where we dive into the rich phase space with intriguing eigenstate criticality and
topological flat bands driven by what is analogous to the magic-angle semimetals from
previous chapters. Finally, in Chapter 7, the non-perturbative rare-region effects take a
central role, as we investigate the fate of a 3D topological insulator and its semimetal-
lic phase boundary under random disorder. Besides the work presented in this thesis,
we have utilized the same numerical methods to study several problems in closer con-

nection to experiments, including studies of anomalous Hall effect in SrRuO3[19] and
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Figure 1.1: Schematics of arbitrary 1D band structure that must have 0, 1, or 2 points
at a Fermi level. When there are 2 crossing points, the two crossings must be one
right-moving and one left-moving. Figure adapted from Ref. [1]

EusIry07[20].

In the rest of this chapter, I will provide an overview of topological phases of matter
(Section 1.1) that sets the stage for the study in all following chapters. Then Section 1.2
explains quasiperiodicity and disorder that we add to the topological models to drive

phase transitions of interest.

1.1 Topological phases of matter

Topological phases are quantum phases defined with topological invariants, whose value
does not change with adiabatic deformation. Such topological invariants can often relate
to robust and quantized macroscopic quantities such as Hall conductivity in topological
insulators.

In this section, I will briefly review the topological phases of matters involved in

this dissertation.

1.1.1 Semimetals

Topological semimetals are characterized by isolated band touching points (the nodes)
in the Brillouin zone. The two neighboring bands are exactly degenerate at the nodes.

The topology of semimetals lies behind such degeneracy.



Because Hamiltonians are always Hermitian, the most general two-band Hamilto-

nian H(p) can be written as

H(p) = a(p) + b(p) - & (1.1)

Where o; are the Pauli matrices
Oy = Oy = Oy = . (1.2)

The points p, in the Brillouin zone where H(p,) is degenerate must have g(ﬁ*) = 0.
Hence, assuming a(p) varies much slower than b(p) in the vicinity of pi!, the two-band

Hamiltonian in the vicinity of p, can be expanded into
H(p) = €0 £ vp(p'—ps) - & (1.3)

where €y is a constant. Such Hamiltonian takes the form of the Weyl equation, and
hence the name Weyl semimetals. The sign before vp is the chirality of the node,
which is analogous to the chirality of massless relativistic Weyl fermions. This analogy
makes Weyl semimetals an interesting playground to study phenomena expected for
fundamental particles in a condensed matter setting.

Most importantly, the existence of such degenerate points has a topological origin.
The degeneracy requires 5(}5') = 0, corresponding to the intersection of 3 surfaces b;(p) =
0 where ¢ = x,y,z. As momentum takes value in the Brillouin zone which is periodic,
each of the three surfaces is closed. Intuitively, the intersection between two surfaces is
a closed curve or empty, where each of the two cases is robust against some deformation.
The curve can then intersect with the other surface which will always be an even number
of points. If we assume those surfaces are all orientable, then the number of intersections
into and out of the surface is the same. These are the Weyl nodes with positive and
negative chiralities. Only when two Weyl nodes with opposite chirality annihilate each
other can we eliminate them. We skip a mathematically rigorous derivation (that is

connected to the Nielson-Ninomiya theorem[22]), but heuristically the nodes do not

'The contribution of a(p) can be significant near g, which lead to the so-called type-IT semimetals[14,
21] which is out of the scope here.



rely upon the specific form of function b;(p) and allow deformation — hence the Weyl
nodes are considered topological.
A simple model that features the above described Weyl semimetal is
Hsoc = Z ijci-‘gucf+ﬂ (1.4)

— 2
T

where t is the hopping strength, ¢ and ¢ are creation and annihilation operators.
Subscripts p runs over directions z, ¥y, z, and ji are the unit vectors along direction u.
This two-band model corresponds to a cubic lattice with perfect spin-orbit coupling.
The spin-orbit coupling breaks the general degeneracy of the two bands, while leaving

8 Weyl nodes at (5 + 5,5 £ 5,5 £ ). The dispersion relation is

E(k) =+t _[> sin? (k) (1.5)
“w

where the sign correspond to the valence band (below E¢ = 0) and conduction band
(above E;y = 0). Although this model is purely theoretical, the low energy physics
captures what is seen in TaAs, NbAs, and so on [23].

There exist a natural extension of the idea of semimetal to 1D. We may consider a
Hamiltonian with power-law dispersion [24] defined in momentum space:

Hypm=—tY_ sgnfcos(k)]| cos(k)|”cfer. (1.6)
k

for some arbitrary o. This model’s density of states vanishes as a power-law, as is in the
case of 3D semimetals. The part of the band above E; = 0 is the conduction band, which
touches with the valence band below Ey = 0 at the semimetallic node. The crossing
has a chirality given by the sign of the slope of the dispersion. The nodes, similar to the
3D case, appear in pairs with opposite chirality and can only be eliminated if the nodes
of opposite chirality annihilate (see Fig. 1.1 for a schematic drawing). The model is
named the long-range hopping (LRH) model because, in real space, the model includes
a hopping term between any two lattice sites. The LRH model can be experimentally
realized as 1D arrays of trapped ions with long-range interactions whose quasiparticles
can resemble the dispersion of Eq. 1.6[25]. This model will be studied in Chapter. 3 as

one of the examples exhibiting the universal magic angle physics.



In the case of two dimensions, discrete symmetry plays a more important role.
Similar to the 3D case, the degenerate point can only show up at the intersection of
three equations of the form f;(p) = 0, but now p'is only two dimensional. Each of the
three equations corresponds to a closed curve, then the generic intersection between
two curves is isolated points. Tuning those isolated points to exist on the third curve
demands a specific form of the functions f;(p), and would fail with small deformations.
However, in models with suitable reflection or time-reversal symmetry, or when there
is no spin-orbit coupling, the diagonal term (o, term) on the Hamiltonian is forbidden
— then we can find the node that can withstand the deformation at the intersection
between f,(p) =0 and f,(p) = 0.

The first case leads to a 2D square lattice model that is a clear analogy to the 3D
SOC model described above in Eqn.1.4 where the only difference is that u only runs
over x,y. The latter case, with no spin-orbit coupling, correspond to graphene, one of
the most known semimetal. It is also the one that is easiest to produce, that can be
prepared through exfoliating graphite[26]. Graphene, as a thin sheet of carbon atoms,
can be modeled by a honeycomb lattice with only nearest-neighbor hopping terms,
forming a two-band model that does not correspond to a spin degree of freedom. For
graphene, the band crossing occurs at precisely the half-filling where the Fermi level
naturally sits. Hence, its low-energy physics well resembles the Dirac equation.

Importantly, various types of semimetals across 1D to 3D share universal properties.
Near E; = 0, the density of states is p(E) ~ |E|%°~! for the 1D LRH model, and
p(E) ~ |E|*=! for the other models where d is the dimension. Such power-law scaling
of p(E) is a universal signature of semimetals. These models set the stage for Chapter 3
and 5 where we add quasiperiodicity to observe universal behavior dubbed “magic-angle
semimetals”. Semimetals can also be found in other models, such as the phase boundary

between topological insulators — this will be seen in Chapter 6 and Chapter 7.

1.1.2 Topological insulators

Topological insulators (TI) are gapped topological phases that the band structure is

topologically distinct from trivial. The classic two-dimensional examples of TT include



quantum spin Hall insulators[11, 12]. These models were first constructed theoretically
as an analogy of the quantum Hall effect that does not require a broken time-reversal
Symimetry.

The model of the 2D topological insulator that we will consider in this thesis is
the Bernevig-Hughes-Zhang (BHZ) model [12], which is a four-band effective Hamilto-
nian for HgTe quantum wells. The four-band Hamiltonian can be separated into two
2 x 2 blocks of Chern insulators (called either a half-BHZ model or a Qi-Wu-Zhang

model[27]). For one of the two blocks, the Hamiltonian is
h(k) = sin(ky)os + sin(ky)oy, + [(M — 2) — cos(ky) — cos(ky)]o (1.7)

and the other block is —h(k)*. The half-BHZ model effective Hamiltonian has the
form of CRE) - @, whose eigenstates can be represented on a Bloch sphere. Hence for
each band, there is a mapping from k (that lives on the 2D torus of Brillouin zone)
to the eigenstate on the Bloch sphere (that is a 2D sphere). On such a mapping, the
Chern number can be defined as a topological invariant that counts the times that the
mapping wraps around the Bloch sphere. The surface of cf(E) is plotted in Fig. 1.2. It
is a two-lobes surface where one of them is oriented outward, and the other is oriented
inward. When the origin is inside one of the lobes, we can continuously shrink the other
lobe without the surface passing through the origin. Such deformation turns the surface
into a sphere that is identical with or opposite in orientation to the Bloch sphere, and
hence the Chern number of the cases are +1.

Such topological distinction can only change when bands are deformed significant
enough that they touch each other. Hence, on the spatial boundary of the topological
insulators which is the interface between the topologically nontrivial phase (inside the
TI) and the topologically trivial phase (outside the TT), there are always edge states
that connect the gapped bulk bands. The existence of such a robust edge state is one of
the prominent signatures of TI. In the case of the half-BHZ model, the Chern number
corresponds to a quantized Hall conductivity o, = Ce?/h. For the full BHZ model,
the two blocks have opposite Hall conductivity but with the same amplitude. Such

phenomenon is called the quantum spin Hall effect and was observed in HgTe/CdTe
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Figure 1.2: The surface of d(k) for the (half) BHZ model. The right panel is showing
a view of a quarter (d;,d, > 0) of the left panel. Colors correspond to the orientation

- -

of the normal vector where green is inward and blue is outward. The surface of d(k)
can wrap around the Bloch sphere if and only if the origin is in one of the two lobes.
When 0 < M <2 (2 < M < 4), the origin is in the lower (upper) lobe and hence Chern
number is C' = —1 (C = 1). Otherwise, there is no wrapping and Chern number is 0.

quantum wells [28] as predicted. Other models with similar topological phases include
the Kane-Mele model[11] that is based on graphene. It may see a natural realization
in exfoliated jacutingaite crystals[29, 30]. However, the BHZ model is most convenient
for our study because it is described on a square lattice, and at the phase boundaries it
reduces to the SOC model of semimetals that we have discussed. The BHZ model will
be the focus of Chapter 6 where we add quasiperiodicity to the model.

The 3D generalization of 2D topological insulators were first developed to describe
BisSes, BigTes, and SbyTe3[31]. In 3D, the Chern number is no longer possible to
define and the topology is now represented by a Zs invariant. The surface state of
the 3D TI is a Dirac cone and has been observed with angle-resolved photoemission
spectroscopy (ARPES)[32, 33]. By doping the TI, it is possible to bring it from the TI
phase to a trivial insulating phase (hereafter NI, as short for normal insulator). Such a
phase boundary is a semimetal line. As TI is stable against disorders[34, 35], the tuning
of 3D TIT has been considered a promising path towards realizing Weyl semimetals. In
Chapter 7 we will dive into the stability of such TI-WSM-NI transition in the presence
of disorder.

Apart from the 2D and 3D TI models that are nowadays considered more “classical”
in the field of topological insulators, there are new findings of topology that require

crystalline symmetries. Among them is the so-called higher-order topological insulator



[13]. In Higher-order topological insulators, the edge states are gapped, and there
are corner excitations that carry half-integer charges. In Chapter 5 we briefly touch
upon the commensurate limit of the 2D chiral semimetal model that manifests as a

higher-order topological insulator.

1.2 Perturbing the topological models

The above discussion is all based on ideal lattices, focusing on the properties that allow
for some distortion of the model. Now we discuss two types of disordering that we
will add to the topological phases of matter as the extra axis we explore on the phase

diagrams.

1.2.1 Random disorder

Real experiments can never be free from random disorder, making it an important
theoretical topic to study. One common way to model random disorder is to add a
static potential that is sampled from the same distribution to each lattice site. Such a
random potential models the generic fluctuation seen in experiments.

For relatively strong disorder (usually comparable to the strength of the hopping
terms), increasing disorder strength induces Anderson localization transition[16, 36,
37]. The localization happens as the random potential creates out-of-phase reflections
of plane waves, resulting in destructive interference such that the eigenstates become
exponentially localized as

[ (F)[* ~ exp(—|7 — 7] /€) (1.8)
where £ is the called localization length. The localization length & characterizes the
spatial size that the eigenstates have a significant probability. As a phase transition, a
scaling theory can be formulated to describe the transition[36]. On the localized side

of the Anderson transition the localization length features
Ex (E.—E)™" (1.9)

where E. is the critical point of some parameter F, and v is the scaling exponent.

As F approaches E., the localization length & approaches infinity. On the delocalized
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side, the localization length is no longer defined; but the DC conductivity ¢ can be
considered. When scaling with system size L at zero-temperature (or in another word,

at a diverging time-scale 7 — 00), we have
ox (E—E.)* (1.10)

where s = v(d — 2) to characterize the transition. When the temperature T is finite or
energy resolution ¢ is finite, the time-scale is finite and scales as 7 ~ 1/T or 7 ~ 1/e.

Assuming a dynamical scaling 7 ~ £#, we have [38, 39]
o(t) oc T/ f[rV/*(E — E,)] (1.11)

where f is some universal function. Such an expression is useful for both experiments
and numerical calculation where a finite temperature or a finite energy resolution is
inevitable. The conductivity and the localization length are observables used in calcu-
lations in this thesis to probe the Anderson transition.

The critical behavior of Anderson transition can be classified based on the symme-
tries of the disordered systems. Such a 10-fold classification was introduced by Altland
and Zirnbauer[40] (and hence called AZ classification) to extend the 3 Wigner-Dyson
classes[41, 42]. The classification is based on time-reversal symmetry (1), particle-hole
symmetry (P) and chiral symmetry (C). For T (or P) symmetry, the value of T2 (P?)
is either 1 or the symmetry is absence. Each of the 9 combinations of the scenarios
for T? and P? dictates the existence of C' symmetry, except for the case where both T
and P symmetries are absent and C' symmetry can either be present or absent.

The three combinations with P and C both absent are the 3 Wigner-Dyson classes
that arise from the Gaussian unitary ensemble (GUE, generic random matrices without
any symmetry), the Gaussian orthogonal ensemble (GOE, real symmetric matrices) and
the Gaussian sympletic ensemble (GSE, Hermitian quaternionic matrices) in random
matrix theory [41]. Adding chiral symmetry, there are 3 chiral classes in analogy to
the 3 Wigner-Dyson classes[43, 44]. The last 4 classes, to exhaust the 10 possible com-
binations, appear in the context of superconducting systems[40] and are not involved

in the scope of this thesis. By the 10 AZ classification, the critical behavior on any



11

dimension can be exhaustively studied. For 3D cases, the Anderson transition exists for
all symmetry classes; but in 2D, it is known that all but one (the GOE) classes feature
Anderson transition, whereas the GOE class is localized for any disorder. See Ref. [37]
for a thorough review. In any of the cases, the topological phases always complicate
the scenarios and invite for more detailed studies.

Apart from the Anderson transition, another important feature of random disorder
occurs even for very small amplitude of disorder: the rare-region effects. The rare-
region are the statistically rare, localized and non-perturbative configurations that can
significantly alter the phase transitions.

Here we illustrate the scenario of a rare region with a simple example. Consider
an identical independent Gaussian distributed potential at each lattice point. One site
with a potential 3 times the standard deviation lower than the average can happen,
albeit as rare as 1% of times. Meanwhile, it is highly likely its neighbors will not be
as extreme as itself. Then we have a very deep and localized potential well. Such
potential well can host a localized bound state. Such bounded states are called rare
events because they are statistically rare, with an exponentially small average density
of states forming the Lifshitz tail[16, 45]. Despite being statistically rare, these states
can be extremely important because they are non-perturbative, and can dramatically
change the behavior where the density of states was zero.

The existence of rare regions may cause insulating gaps to close earlier than pre-
dicted by perturbation theory. Also, in the case of semimetals, the small but non-zero
density of states induced by the rare-regions can immediately destroy the p(E) |E|¢
scaling of a semimetal. Numerical studies have shown the SM is destroyed by an arbi-
trarily small random disorder [46].

On the other hand, when topology comes into play, we would expect the topological
insulator or topological semimetal phase to be able to resist some deviation from the
clean model. Combining the competing effects of rare-regions and topology gives rise
to puzzling questions of whether the topological phase hold and what is the resulting
phase diagram. This will be the main question of Chapter 7. We will consider a Dirac

semimetal phase boundary predicted by perturbation theory between TT and NI phases,
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and examine whether disorder destabilizes the SM phase. The stability of such an
SM phase has been assumed previously by both theorists[34, 35] and experimentalists,
leading to the expectation to find Weyl semimetal by doping topological insulators to
tune topological mass from TI to NI[47]. The study in Chapter 7 will help resolve
the observation of a large critical regime in the experiment [47] by providing a phase

diagram featuring a destabilized SM for any small W.

1.2.2 Quasiperiodicity

Quasiperiodicity (QP) describes a system that is not periodic in any given period but
follows a set of repetition rules. Omne simple form of such quasiperiodicity can be
constructed through the incommensurability between the underlying lattice and a sec-
ondary lattice as a modulation. For example, consider 1D chain of particles that are
located at r = an, where we set the lattice constant a = 1 for convenience. Then the

Hamiltonian

H= —J(Z ciﬂcr + i) + W Z cos(Qr)cle, (1.12)

T

where ) € 27Q and W represents the strength of quasiperiodicity. The Hamiltonian is
quasiperiodic, as there is strictly no common multiples between the periodicity of the
underlying lattice (from the hopping part) and the modulation (the potential part).
The model is the well-studied Aubry-Andre-Harper model (AAH model)[48, 49]. In the
quasiperiodic limit, increasing W can drive the system through Anderson localization

at W = 2J, which can be shown through duality arguments [48]. Notice that in finite

size systems quasiperiodicity can be approximated with @ = 27ra"a% where a, is a
sequence such that lim, a’;% € Q. For any system size L it is sufficient to choose

a fraction with a, = L. A convenient choice we will use frequently in this work is
an, = F,, where F,, is the Fibonacci sequence. With a rational approximation of the
irrational (), the Anderson transition turns into a smooth crossover that sharpens at
large system size limit.

The idea of adding modulation to induce quasiperiodicity on an existing lattice can

be generalized to other dimensions and other models. In particular, we can add the
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potential term

V() =W Z cos(Qry) (1.13)

H=TY,...

to any of the tight-binding models we consider. In Chapter 3 and 6 we shall discuss in
detail the quasiperiodicity driven transition, similar to the transition described above
for the AAH model. Besides adding the modulation as a potential term, the modulation
can also be added through the hopping term, by substituting ¢ — (') where ¢(¥) is
incommensurate with the underlying lattice. We will show in Chapter 5 that such a
chiral modulation features the same universal transition as the potential-term modu-
lation; meanwhile, the chiral modulation demonstrates unique behavior because of its
additional chiral symmetry. Such difference between symmetry classes is analogous to
the classification of Anderson transitions driven by the random disorder. However, the
symmetry classification of the QP modulation is clearly different from the AZ classifi-
cation as we will show in Chapter 5 and 6.

Such modulations are not only of theoretical interest but can be experimentally
realized. In cold atom experiments, applying standing waves of laser with incommen-
surate wavelength to create quasiperiodic modulation on the atom array [50, 51] is
common. Other approaches such as programmable potential in quantum simulator[52],
engineered spatial modulation in metamaterials[53] can all realize quasiperiodicity. The
experimental accessibility makes the theoretical discussion in Chapter 3,5 and 6 feasible
experimental proposals.

Another form of quasiperiodicity that has drawn much attention in recent years is
the incommensurate limit of moiré superlattice systems. This is especially relevant in
the case of graphene. When two copies of graphenes are stacked and twisted by a small
angle, the overall system will have a much larger supercell repeating itself, spanning
many unit cells. When the angle is incommensurate, the supercell has an infinite size
in a way similar to the quasiperiodic modulation. At finite size, the incommensurate
effect can also be approximated through angles that maximize the superlattice.

Described above is the so-called twisted bilayer graphene (TBG) that has been one

of the hottest topics since they were found to host superconductivity [54] or correlated



14

insulator [55] at a small twist angle. The theoretical description of magic-angle TBG
has not been fully understood; but noticing the importance of the quasiperiodicity, we
provide a perspective connecting the TBG with the more theoretically tractable models
of quasiperiodic semimetals that can help understand the incommensurate effect behind
magic angle TBG. In Chapter 3 we highlight that the universal physics is tied to the
quasiperiodicity, and hence the TBG has the same universal physics as the simpler SM
models.

It is worth noticing that the quasicrystals are also quasiperiodic systems. Quasicrys-
tals are materials that do not have translational symmetry but often show rotational
symmetry.[56]. Such quasicrystal systems follow tiling patterns such as Penrose tiling
and Fibonacci quasicrystals[57, 58]. As long as the rules of tiling continue infinitely,
the structure never repeats itself (and hence no translational symmetry exists) but is
in close proximity to periodicity. Recently, there has also been interest in exploring
topological phases in the context of quasicrystals[59, 60, 61]. Those quasicrystals from
aperiodic tiling demonstrate certain similarities with the quasiperiodic modulation that
we focus on in this thesis, and it is shown for the specific case of Fibonacci tiling and
AAH model that aperiodic tiling is equivalent to modulation induced quasiperiodicity
[62].

One important advantage of modulation or twist based quasiperiodicity over the
quasicrystals from tiling is the ability to control the strength of the quasiperiodicity.
The tunable QP strength enables us to study the phase transitions driven by quasiperi-
odicity. For the quasiperiodic systems from twisting stacked layers, the inter-layer
coupling naturally tunes the strength of quasiperiodicity. Similarly for the case of

modulation, the amplitude of QP modulation can be explicitly controlled.

1.2.3 Similarities and differences between quasiperiodicity and disor-

der

As we have mentioned above, the QP and random disorder have many analogous be-
haviors. They both represent ergodic traversals of phase space when we consider the

ensemble average of all realizations. Both of them can induce Anderson transition. The
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transitions in both of the cases depend on symmetry. In perturbation theory, they often
yield very similar renormalizations.

However, it is very important to realize many fundamental differences. Firstly, only
the random disorder can host rare-region effect; while even for strong quasiperiodicity
that drives the system across the Anderson transition, there is no role for rare region
effect. The QP modulation is always analytic and can be understood as a highly
correlated disorder that forbids the existence of rare regions. On the other hand, an
arbitrarily small amplitude of random disorder that is spatially not correlated can
create rare regions. An exemplifying consequence of such a difference can be seen on
2D semimetals. 2D SM is destroyed by random disorder immediately because of the
rare regions, but allows for a SM to metal transition with a QP modulation.

Secondly, the 10-fold AZ classification of disordered systems[40] does not hold for
quasiperiodic systems. This is shown clearly in chapter 5 where the chiral symmetry on
the magic-angle semimetal induces unique phase transition; and in chapter 6 where the
transition out of the topological insulator phase has no counterpart in the AZ symmetry

classes.



16

Chapter 2

Methods

Thoroughly studying quasiperiodic and random systems is challenging because of the
non-perturbative behaviors. For many cases, the phase transitions and criticality can
only be accurately probed through numerical calculations of lattice models at large
system sizes and a huge amount of realization of randomness. Meanwhile, varying the
amplitude of random disorder or quasiperiodicity also induces changes of spectra that
are usually so obvious compared to the more subtle non-perturbative effects such as the
rare-region effects, making the latter difficult to be clearly resolved. Consequently, the
proper choice and optimization of numerical approaches are vital to all of our studies
in this thesis. Hence, we spend the current chapter discussing the algorithms we use

and the observables that are enabled by those algorithms.

2.1 KPM method

Most of the projects discussed in this work apply the Kernel Polynomial Method
(KPM)[4]. KPM is a class of algorithms that expand the operator expression of any
spectral quantity into Chebyshev polynomials. The Chebyshev polynomial expansion
provides fast convergence and numerical stability on most quantities. In addition, KPM
provides a consistent way to suppress the Gibbs phenomenon, the oscillation that occurs
when approximating non-analytic function with a finite approximation of polynomial
series.

Computationally, the expansion of KPM transforms the computationally expensive
multiplication of operators into the trace of operator products with building blocks
in the form of T,,(H) and a few other operators. Then, the stochastic trace evalua-

tion [4, 63] (to be discussed in detail below) allows the calculation to solely consist of
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matrix-vector multiplication, which can be optimally organized based on the recurrence
definition of Chebyshev polynomials.

Aside from the computational advantages, the energy resolution e of the calculated
observable is proportional to 1/N¢ where N¢ is the finite cutoff of expansion order. Such
cutoff provides a consistent way to probe energy scaling, allowing us to conveniently

calculate the observables as a function of e.

2.1.1 The expansion

KPM method always starts with decomposing an observable with one or multiple sets
of Chebyshev polynomials as bases. Then all the coefficients jiy, ... (will be dubbed as
moments) are all linear combinations of words composed from Chebyshev polynomials of
Hamiltonian, delta function, and other operators. For example, one observable heavily

used in this thesis is the density of states (DOS) defined as

lEp) = 5 | S otes - )] 1)

where the index n runs through all eigenstates of a given basis and assumes an ascending
ordering on the eigenvalues. Ny = N L% is the total degree of freedom of the lattice
model, with N;,; being the number of bands at each lattice site, L the linear size of
the lattice, and d the spatial dimension. For example, the 2D BHZ model we consider
in Chapter. 6 has d = 2, Ny, = 2; the 3D TI model (Chapter 7) has d = 3, Ny, =
4. For more realistic models, we may have N;,; as the sum of bands of all atoms.
This convention (slightly deviating from how the density of states is usually defined)
conveniently fixes the integral of p(Ey) over all Fermi energy to 1. The square bracket
[...] represents averaging across all random realizations. Such averaging is assumed for
most of the thesis unless otherwise specified. The density of states observable in Eq. 2.1

can be expanded into

p(Ey) = (2.2)

ﬂ M?’l”‘” )

where we have a tilde on top of Ey because necessary normalization is always needed.

Similar normalization is always needed whenever a Chebyshev polynomial expansion
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is involved. T, is the Chebyshev polynomial of the first kind. The exact transforma-
tion involves summing n from 0 to co, but convergence is guaranteed with Chebyshev
polynomials for a finite cut of to m < N¢, and with the help of the kernel (to be ex-
plained soon) the convergence can be accelerated significantly and to preserve desired

properties. The only part depending on specific models is u,, calculated as

where T;, is now understood as Chebyshev polynomial of operators. Because any Hamil-
tonian commutes with itself, there is no ambiguity in the definition and hence we will
not emphasize the difference between the scalar and operator polynomials. Through
such expansion, we have converted the calculation of p(Ey) into the calculation of a
sequence of u,, that are all traces of Tm(iL); and the original function p(Ey) is only a
Chebyshev linear transformation from pi,.

Another example used extensively in this thesis is the calculation of conductivity.
In general, any order of linear or nonlinear conductivity can be formulated into the
expectation of some combination of words composed by Hamiltonian, velocity operators
(v, where v is for direction), and some Green’s function (whose choice depends on the
gauge used for calculation)[64, 65, 66, 67]. Those expectations can then be expressed
as linear transformations (that can include Chebyshev transformations, integrals and
some finite summations) of moments fi,, ... that consists of words of Tn(ﬁ ) and velocity
operators v,.

For the calculation in this work, we consider observables from the linear response
theory (the calculation of DC conductivity and optical conductivity for example). For
DC conductivity, the conductivity tensor defined through the Kubo formula [64] is

2eh dG
Oap = B/fEf(e)deImTr [[vadevgé(e - H)H (2.4)

where f(E) = [e?F~Fs) 4171 is the Fermi function at inverse temperate 8 and Fermi
energy Ey, v, is the velocity operator, G~ is the retarded Green function, and [---]
denotes an average over samples (realization of disorders) and boundary condition. The
velocity operator is constructed in the so-called length gauge, which is most convenient

when working with a tight-binding model defined in real space.
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The moments needed for the calculation are
i = T | T () o Ton (H 0T, () (2.5)

that does not depend on energy.

For DC conductivity, the observable can be assembled from the moments as

2

e el S Cun(e) T [i57) (2.6
where Fermi energy is encoded in function fg,, and AE is the total bandwidth of
the spectrum. T'y,,(F) are a set of functions explicitly constructed from Chebyshev
polynomials independent of models. See Ref. [64] for details. With the expansion,
we have split the calculation of the conductivity into two parts: the first part is the
calculation of traces of operator products and the second part does not involve operator
operations at all.

Such KPM expansions have two important advantages. Firstly, the usage of the
Chebyshev polynomial ensures numerical stability and convergence. Secondly, the com-
putationally expensive part (the trace of operators products) is agnostic of Fermi energy.
Hence the expansion enables easy access to the entire spectrum of the observables as a
function of F; and temperature at minimal extra computational cost than a fixed Ey
and temperature.

When computing longitudinal DC conductivity at zero temperature, there exist a

further simplification of the expansion that is found in the appendix of Ref. [64]

4e’h oo

m,n<m

Oxx =

This expression avoids the need to save all intermediate states in the calculation, and
hence significantly reduces the memory cost. Of course, it forfeits the benefit of calcu-
lating all £y and temperature altogether.

Additionally, the recurrence definition of Chebyshev polynomial significantly ac-
celerates the calculation. The operator product T),(H) can be calculated based on

T,—1(H) and T,,_o(H) with only one extra application of matrix-vector multiplication.
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Hence, when calculating all of the No moments, the computational cost is asymptot-
ically the same as the cost of calculating T, (H) itself. Consequently, the amortized

computational cost for each moment is reduced to 1/NC.

2.1.2 The kernels

The expansion above is only a reorganization of calculation. Even with all the gains
in efficiency, computationally we can only reach some finite cutoff N, for the expan-
sion. When the computed observable is a function of a parameter F, the finite cutoff
will always broaden the ideal §(E — Ep) to some finite profile. In the case of taking
a naive hard-cutoff for N, the profile is significantly oscillatory, causing the Gibbs
phenomenon. Such oscillation is not physical and degrades the calculated results.

To suppress such oscillation, a trick central to KPM is the usage of kernels. The
kernels counter the Gibbs oscillation by damping the cutoff of expansion order into a
soft fade-away. For a kernel function g,, that monotonically decrease with n from gy = 1
to gn, = 0, we define

fnyng,... = Hnyng,...9n1Gng - - - (2-8)

and f will be used in place of p for all consequent calculations. The hard cutoff can
be considered as a Dirichlet kernel where g, = 1 for all n < Ngo. Any damping that
is strictly decreasing reduces the Gibbs oscillation. Moreover, the freedom of choosing
gn allow us to pick the smoothing that either optimizes the distance from ideal series
summation or satisfies certain constraint desirable for physical quantities.

One of the most used kernels in KPM calculations is the Jackson kernel

™ 3 ™ s
(N —n+1)cos 577 + sin g7 cot 7

N +1

g = (2.9)

The Jackson kernel guarantees the result to be positive without non-Hamiltonian op-
erators, which is desired in the calculation of the density of states. The kernel is also
proved to turn delta-functions §(E — Ey) into the narrowest possible near-Gaussian
peak in the sense of minimizing the second moment (E?) to be m/N¢ when Ej is near

0. It is worth noting that the near-Gaussian behavior is only valid for E very close to
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FEy; and for E away from Ey, the tail of the broadened peak turns into
(B, Ne) ~ 1/N¢ (2.10)

while the dependency in FE does not yield a simple expression.

Another choice of the kernels is the Lorentz kernel

g = sinh[A(1 — n/N¢)]
" sinh(\)

(2.11)

that preserves the analytical properties of Green’s function and precisely broadens a
delta function into a Lorentzian. An extra parameter A is introduced to control the

width of the peak, but the tail of the broadened profile of §(F — Ey) will always read
fH(E,Nc) ~1/Ne (2.12)

When multiple Chebyshev expansion is involved (such as for conductivity that has
two expansion over E ), the effects of two kernels on the tails of broadened delta
functions are applied multiplicatively. If the Jackson kernel is applied twice, the tail
is ~ 1 /Ng; if one Jackson kernel and one Lorentz kernel is used, the tail would be
~ 1/N§.

The choice of kernel usually comes from two parts of considerations. Firstly, when
analytical properties are important, we may want to choose Lorentzian. Similarly,
when we need to consider some physical broadening (for example, a Drude peak that
is a Lorentzian) with a similar width as the KPM introduced broadening, choosing
Lorentz kernel may avoid the need for considering the convolution of Lorentzian with
Gaussian which produces a more complicated Voigt profile. Otherwise, the Jackson

kernel is preferred for faster convergence.

2.1.3 The stochastic trace

One final component of KPM is a stochastic estimator of the trace of operator products.
For generic matrices of rank n, the best matrix-matrix multiplication takes O(n?3) and
significant memory cost. Although better algorithms exist for sparse matrices like tight-

binding Hamiltonians, matrix multiplication can quickly spoil the sparsity and diminish
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the advantage of sparse algorithms when calculating 7,,(H). For the lattice size we work
on, such computational cost is prohibitive even on modern computers.

To surmount the problem, computational physicists have been using the so-called
stochastic trace[63, 68| that is the complex analogy of Hutchinson’s estimator for real
positive definite matrices [69]. The idea is to use the expectation value of the operator on
a small set of N random vectors, |&,;), to approximate the trace of the operator. Here
r is the index for the random vectors and ¢ runs over a given basis of the Hamiltonian.
When the elements &,; are independent random variables such that the random vectors
satisfy normalization condition ((£,|€,) = 1), then the trace of operator B can be

estimated with estimator ©, defined as

1 =
0=—— BlES 2.13
e ;@ 1Blr) (2.13)
The fluctuation of the estimator is
1 D—1
(00)* = E(Tr(Bz) + (&l — 2) Z B;) (2.14)

j=
Usually the trace of operator B and the square of it, 32, are both O(n). Hence the
estimator’s relative fluctuation §0/0 ~ O(1/v/n x Ng). For a very large lattice size,
the choice of Ni can therefore be small and does not add to asymptotic complexity.
Also, the calculation now can be formulated to only include matrix-vector multiplication
which takes only O(n) time for matrices as sparse as tight-binding Hamiltonians and
velocity operators. Thus, the time complexity of KPM for single-Chebyshev expansion
is O(n x No x Ngr) = O(n x N¢), which is O(n) amortized for each moment. The
memory cost is asymptotically the same as the cost to store the matrix itself.

For conductivity calculation, if we save all intermediate matrix-vector product re-
sults (that takes O(n x N¢ x Ng, note that for conductivity Np is significantly larger
than that of DOS) the time complexity is O(nx No x Ng as for DOS; or O(nx N2 x Ng)
time and O(n x Ng) memory; or any combination in between, as long as the product
of time complexity and memory cost is constant. For the special case of longitudinal
DC conductivity at zero temperature, utilizing expansion in Eq. 2.7 helps keep memory

cost at O(n x Ng) with time complexity O(n x No x Ng), if we only need the observable
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at very few Fermi levels. These are the best computational efficiency we can achieve
for DOS and conductivity calculation.

The choice of random vector is not of great importance, but choosing complex
&, that is Gaussian distributed achieves |&.;|* = 2, providing a basis independence

estimator fluctuation

(50) = (Tr(5")) (2.15)

Otherwise, we may also choose &; = €'®ri where ¢,; € [0,27) to minimize §0. How-
ever, recall that the operator B we consider are words of T,,(H) that we will calculate
iteratively and velocity operators. Choosing to minimize d© implicitly demands the
existence of a mutual basis for all moments in the calculation. It is usually only possi-
ble for DOS calculation as only a Hamiltonian is involved. In practice, any randomized

independent choice of &.; can be used.

2.2 Lanczos

Lanczos method [70] is an efficient iterative method to compute a few (ne,) eigenvalue
and eigenvectors of a matrix. It allows a time complexity of O(n/y/€) and negligible
extra spatial-complexity. Here ¢ is the allowed error for the iterative method and 0
means the asymptotic complexity is only approximate[71]. More prominently, being an
iterative method it is most efficient when the matrix is sparse — which is the case for
most Hamiltonian H we consider.

When we need eigenstates in the interior of the spectrum of H (usually near a given
Ey¢), we can transform the Hamiltonian so that the desired eigenstates have the largest
magnitude. One universal approach is the shift-invert Lanczos method[72]. The first

step of shift-invert Lanczos transforms the eigenproblem

into
An

Ap — O

(H— o) Hy, = Un, (2.17)

where o is the designated energy around which we look for eigenvalues. The extra
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cost of the shift-invert Lanczos compared to the bare Lanczos is the need to construct
(H—ol)~L.

Computing the inverse of a sparse matrix requires tremendous spatial and temporal
cost and breaks all the benefits of the sparsity of the matrix; however, here we only
need to express the action of the inverse matrix on vectors. Hence in most available
implementations or wrappers of Lanczos method [72, 73], the inverse of matrix achieved
through a Cholesky decomposition that takes O(n3/2) time, close to O(n?) memory and
results in only O(nlogn) entries in the resulting factors[74], retaining the benefits of
sparsity in the iteration part of the calculation. Nevertheless, the Cholesky decompo-
sition step dominates the shift-invert Lanczos computation both in time and memory
and is hard to parallelize for sparse matrices. Such restrictions typically limit our cal-
culation capability to systems with ~ 10° sites. The benefit of the shift-invert approach
is that the procedure has been well-developed in out-of-the-box packages. In addition,
it guarantees good convergence for almost any Hermitian matrices and always captures
the first ne, eigenpairs.

An alternative approach is to convert the problem in Eq. 2.16 into

(H = 0I)? =9)n = ((An = 0)* = 7)thn (2.18)

where v is a very large number. This method assumes exactly the same asymptotic
complexity as the bare Lanczos and requires no extra memory, allowing the calculation
on Hamiltonians with 107 sites or more and is much faster than shift-invert by orders of
magnitude. However, this method does not warrant capturing the first n., eigenvalues
near o, especially in the presence of degeneracy (that happens a lot when we consider
systems with quasiperiodicity) or when the spectrum is very dense (when the system

has a finite density of states near ¢)[46].

2.2.1 Wavefunction, IPR, and (generalized) multifractal analysis

Whenever a wave function [)) is calculated, we shall often look at the probability on any
basis |1;|? where i is some basis, usually real or momentum space. However, it is often

very difficult and subjective to directly learn from probability or wavefunction itself. In
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such a case, the conventional approach is to look for various summarizing quantities of
the wavefunctions (and of course, there are newer approaches using machine learning
to directly characterize wave functions, as we discuss later). The properties of the
probability distribution of an eigenstate can be characterized by inverse participation
ratio (IPR), or more generally, a multifractal analysis [75, 37].

We first define a “coarse grained” real-space wavefunction (¢,) with its resolution
controlled by a binning size b > 1. The spatial region is divided into (L/b) x (L/b) = 1/A
boxes. We assign a position vector X'j to indicate the position of the jth box. The
binned wavefunction is given by 1(X;) = Y. 1(x) where 1 is the original normalized
wavefunction, and Z; runs over the positions inside the jth box. Then, we define the
real-space (generalized) inverse participation ratio (IPR) and multifractal exponent via

Tr(Bi,N) = Y [n(B,Xp) " oc ()@, (2.19)

X

where Zg(E, q,\) is the gth real-space IPR with a coarse graining ratio A\, F is the
energy of the wavefunction, and we use a subscript R to denote real space or K for
momentum space (and will be referring to real space if not specified). Note that the
sum in Eq. (5.7) is running over the positions of boxes (X;s) rather than the full lattice
points. The quantity 7r(q) is the multifractal exponent associated with the gth IPR
in real space, and b = 1 is the finest resolution in the IPR measure. The exponent
Tr(q) is extracted via varying values of b for b < L. To obtain 7z(g) in the finite-size
system, we vary the binning size b for a given L. The exponent 7z(¢q) is known to
be a self-averaging quantity in the studies of disordered free-fermion models [76]. In
addition, 7r(¢ = 0) = —d = —2 (the trivial limit which corresponds to counting binning
boxes) and (¢ = 1) = 0 (normalization of the wavefunction) must hold for arbitrary
wavefunctions. If we set b = 1 and ¢ = 2, we arrive at the second IPR for studying
spatial ergodicity /non-ergodicity in a wavefunction.

When determining phase transitions, we also define the multifractal exponent ay
which is employed for characterizing the localization properties — and ¢ = 0 is chosen
for easy converging and clear distinction between insulating and metallic phases. The

ap can be computed via numerical Legendre transformation of 7(g). Alternatively, a
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method by Chhabra and Jensen [77] is available to compute « is available through the

multifractal spectrum.

2.3 Machine learning

In several cases, calculating a phase diagram may need repetitive tasks that are difficult
to iron out a clear mathematically expressed observable. The machine learning method
can be helpful in such situations.

Machine learning is the overarching name for a class of methods where a non-
specialized model can be used to perform a specific task when supplied with an abun-
dance of data. The process of supplying data to the model is called “training”, after
which the model has “learned” to perform the tasks and can then be applied to new
data sets. Many machine learning techniques have been applied to various aspects of
physics (see [78, 79, 80] for some examples). One type of machine learning method,
dubbed deep-learning, has seen the most development in the past decade and attracted
attention in various fields.

Deep learning involves training neural network models inspired by the structure of
the neural systems. A neural network model consists of a massive number of nonlinear
functions and linear transformations, usually organized into several “layers,” to replicate
any task that distills information from raw data. Practically, such a combination can
be tuned to fit any mapping. Hence, as long as a concrete definition of the task to be
executed is available, we can use labeled data as an example to tune the neural network
until it replicates the task. Such a process is called “training,” and can be calculated
efficiently using modern computers.

Such a procedure makes exploring phase boundaries efficient and relatively objec-
tive. In this thesis, Chapter 6 includes works using Convolutional Neural Networks

(ConvNets) to classify wave function into localized or extended phases.
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2.4 Discussion

The algorithm mentioned in previous sections, the latest computational hardware (CPU,
GPU, and large memory devices), the infrastructure facilitating vastly parallel and dis-
tributed computation (OSG[81] is a great example), and the software making efficient
computation more accessible to non-computer-experts (Julia[73], Keras[82]) together
has made the exploration of the details of phase diagrams specific to thermodynamic
limit feasible.

The easiness can help us discover or understand phenomena that are not obvious
to intuition. For example, in Chapter 5 a scan in a two-parameter phase space lead
me to draw a connection between the chiral model of SOC with quasiperiodicity and
the higher-order topological insulators. In Chapter 6 the renormalization of topologi-
cal mass and the existence of eigenstates criticality both come to our attention when
plotting a scan of two-parameter phase space. The luxury of being able to code up in
an hour, and use a handful of days to densely scan a large area of the phase diagram
is the endowment of contemporary technology. Taking advantage of those state-of-the-
art computational tools, we will present lots of details beyond the analytical methods
and previous numerical efforts. Those results help us to extend the understanding
of topological phases transitions with random disorder and/or quasiperiodicity in the

thermodynamic limit.

2.5 Appendix: Additional details on the observables calculated using
the KPM method

Density of States

As mentioned earlier, the density of state (Eq. 2.1) can be calculated through KPM. A
few other observables closely related to DOS include the local density of states (LDOS)

and typical density of states (TDOS). Local density of states is defined as

(Es) = | 6l POCE ~ )] (220)
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where i is for some basis, which is usually chosen to be real or momentum space. The
arithmetic average of LDOS gives back the DOS in Eq. 2.1. If we take a geometric

average instead, we arrive at the typical density of states

N
punlEp) = 5| S tow )| (221)

where ¢ randomly samples N states from the total Ny states. As is usual for geometric
mean, the weight of outliers is significantly suppressed and hence it reflects the typical
value of the distribution of p;(Ef). Being a typical measure, it usually suffices to
randomly sample N; << N sites from the complete bases.

The DOS is directly measurable in condensed matter experiments through ARPES
[83], and the LDOS (and hence TDOS) can be measured through STM [84]. Once
DOS is known, many single-particle properties of the system can be calculated; and
it provides some information of many-body physics that the system potentially can
host. The TDOS provides information on transport, which helps determine localization-
delocalization when compared with DOS.

For different systems, we often consider some quantities derived from the DOS that
highlights the properties we are most interested in. For gapped phases, the size of energy
gap A (or typical gap Ayy) — the range of E¢ where there is no DOS (or TDOS) is often
of great interest. The discrepancy between the energy gap and the typical gap can show
the range of spectrum with dense but localized states. The gap size can also be useful
for understanding the critical behavior near the gap-closing point, as scale invariance
connects gap size (A) to length scale (§) by A ~ €%, As length scale diverges at critical
point W, we have A ~ £~ % ~ |W — W,|"?. This is conveniently applied in Chapter 6.

Another quantity derived from the DOS of interest is the derivative of p(E) near
E = 0. In 2D semimetals for example, the derivative is related to the Dirac velocity v
as p'(0) o< 1/v2. The Dirac cone velocity will be an important measure for magic-angle
transition in the dissertation. Also, the derivative itself can help locate quantum critical
points between semimetal and metallic phases or an avoided one. This will be discussed
in Chapter 7.

Likewise, the derivative p(0)’ can either be calculated by fitting either the Lanczos
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histogram or KPM curve. However, it can be conveniently calculated by analytically
differentiating the Chebyshev polynomials used in KPM, yielding a better accuracy. In
addition, depending on the chosen kernel in KPM, an expansion of the KPM broadening

can often produce a convenient expression of derivatives of p(E) involving N,.

Transport properties

Transport properties are often important in studying metal-insulator transitions. We
mainly calculate transport based on linear response theory.

When the directions « and 8 are perpendicular, the formula gives Hall conductivity
0zy- Hall conductivity is quantized and serves as a good proxy for Chern number in
topological systems. On the other hand, for parallel @ and 8 such as o, it calcu-
lates longitudinal conductivity which is a direct measure distinguishing insulating and
metallic phases.

Using the KPM method, assuming the availability of sufficient memory, the cal-
culation of DC conductivity has the same asymptotic complexity as DOS; and even
with limited memory, it is still significantly better than other methods to calculate con-
ductivity (like the transfer matrix method). Such an advantage allows us to calculate

conductivity for lattice models at very large system sizes.

The fluctuation in conductivity calculation

The situation is a bit more complicated for KPM when the computed quantity intrinsi-
cally hosts extreme long-tailed fluctuation. Naively, the fluctuation seems always small
relative to the desired value (if we apply central limit theorem naively) and vanishes
quickly by increasing lattice site number or increasing N for many applications — which
is the source of efficiency of KPM. However, when calculating conductivity with a strong
need for accuracy (most prominently in Chapter 7), the fluctuation of stochastic trace
(and hence the fluctuation of KPM result) becomes important to discuss.

An important limitation of stochastic trace estimation in the context of KPM is often
overlooked. When the trace of the expanded operators becomes very small or even, the

assumption that backs the O(1/y/n x Npg) relative fluctuation breaks. To make things
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worth, when Tr B vanishes, Tr(3?) usually do not vanish. Such a situation happens a
lot in the calculation of conductivity because the velocity operator is v, o [z, H] and
any operator that can be written as commutator has zero traces. The terms in the form
of Ty, (H)ET,, (H)E for example are 0 when m — n is odd, and very small when m or n
is large. In the case of small trace, the fluctuation is only constraint by O(\/l/TR), or
even O(\/W) if the trace does not scale with n. Consequently, Ng >> n is needed
for stochastic trace estimation to act better than exact trace — however, an exact trace
can be calculated with Ngp = n. In such a case, the KPM expansion is still useful, but
stochastic trace is no longer as powerful.

Interestingly, however, the fluctuation itself can be taken as an observable when

calculating conductivity. Take Eq.(1) from [64],

2 Gt G+
oo (i1, T) = Z]evh def(T < 5(6—H)vﬁdd€ —vaCZGZGU55(e—H)> (2.22)

Through the KPM expansion from Eq. 2.6, we have the KPM estimator for the random

vector |1y)

2
~(r) de“h 4 A
%08 T TNy AE2 / (1= anm (rl iy ) (2.23)

where ﬂ%rﬂn = 0o T HogT,, H is the operator product for each moment. As mentioned
earlier, KPM calculation takes the advantage of iterative calculation and hence [),) are

always the same for the entire set of m,n. Also, all the calculations outside of the trace
evaluation are linear. Thus, we can rewrite

2
N('r 46 h 4 /
<wr mNyg AE? 1 — €2)2 Zan M"m (2.24)

The 5&72 is the estimated conductivity using each random vector; and the resulting

KPM estimation, the average of all single random vector estimators is

R
- 1 2
Oaf = p Z <¢r Tap ¢r> (2.25)
r=1
where
S ie’h dGT dG*
TaB = Ny /def( ) [ d(e — H)vg I —va?vlgé(e —H) (2.26)

is the KPM estimator operator of o,3. By Eq. 2.15, we know

Ly =) = o2 L ao
EVar[aaﬂ] = (0G48)" = = Tr(o5s) (2.27)
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In another word, the fluctuation of the single random vector estimators equals to
the expectation of the square of conductivity. The square of conductivity, in turn, can

be understood as the (basis independent) conductivity fluctuation inside a lattice.

2.6 Appendix: Design of computational workflow

In general, the numerical computation we carry out can be separated into the following

stages:
1. Define model

2. Creating operators (Hamiltonian and velocity operator) for the different random

realizations
3. Calculate observable for each realization
4. Summarize the result

In order to efficiently utilize computational resources, there are two important con-
siderations.

Firstly, we need to separate the technical details in optimizing the computation from
the model define process where we think physics. In particular, the operator creation
step can be very inefficient if naively coded; but a fully optimized program takes too
much effort to compose and is hard to read. For this purpose, I developed a package
SuperLaitice. jl that aims to minimize the intellectual load to code different models.
This part only involves the manipulation of the rules of creating operators (and does
not actually create), hence running in negligible computational resources.

The operator creation (step 2) and observable computation (step 3) are the com-
putationally intensive parts, that need tremendous replicates. For both of these two
steps and especially for operator creation, the initialization time is significantly longer
than the time for processing one set of operators. Moreover, they have very different
resource demands. Step 2 is memory demanding (often requires ~ 100G B or more) and

not parallelizable inside a single sample; on the other hand, step 3 has a more elastic
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demand for memory but can be extremely time-consuming, while it significantly ben-
efits from GPU or multi-threading. Hence, it is beneficial to have dedicated processes
that perform steps 2 and3.

However, each calculation of step 3 depends on the output of step 2 as input. A
naive directed acyclic graph (DAG) organization of calculation would often leave either
the process for step 2 or step 3 waiting. The situation is even worse as each instance
of step 2 or 3 can vary up to 100 times in running time because of different parameter,
or different configurations of computers. To efficiently utilize available computational
resources, I implemented a bounded buffer utilizing the shared file system on clusters, or

over HTTP for distributed grids to optimize the loose producer-consumer problem|85].
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Chapter 3

The universality of magic-angle semimetals

3.1 Introduction

We start with a study of semimetals under quasiperiodic modulation that drives a quan-
tum phase transition. The motivation of this work comes at the intersection between the
theoretical interest of incommensurability physics and the experimental breakthrough
surrounding twisted bilayer graphenes.

From a purely theoretical side, quasiperiodicity provides a curious manifestation of
Anderson localization without randomness[86]. Such similarity inspired the study of
quasiperiodic modulation on cases where random disorder is expected to induce phase
transitions. In such cases, novel phase transitions arise that do not have a random-
disorder counterpart. For example, Weyl semimetal in 3D is driven by quasiperiodic
potential into a transition toward metallic phase well before the onset of Anderson
localization [87]. The ability of quasiperiodic modulation to generate eigenstate phase
transition that accompanies drastic change in spectrum invites plenty of intriguing
theoretical questions, among which is the universality: how general is such a transition?

Such a question resonated just in time with the experimental breakthroughs. In
the past decades, the engineering of band structures with non-trivial topological wave
functions has achieved success in creating and controlling quantum phases in a vari-
ety of systems such as doped semiconductors [88, 89, 90, 91], ultracold atoms [92, 93],
and metamaterials [94, 95]. In the last few years, the advance in twisted graphene
heterostructores [55, 96, 54, 97|, as well as other two-dimensional van der Waals het-
erostructures in general (i.e. “twistronics”) further allowed new, strongly interacting,
solid state systems can now also be engineered with a rather weakly correlated two-

dimensional semimetal exemplified by graphene [98, 99, 100]. In these systems, as a
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consequence of the quenched kinetic energy, correlations dominate the physics and ex-
otic many-body states may form. This interpretation relies on the reduction of the
electronic velocity and large increase of the density of states (DOS) which was shown
in twisted bilayer graphene (TBG) theoretically [101, 2, 102, 103] and experimentally
[104, 105, 106] prior to the more recent groundbreaking discoveries in Refs. [55, 54, 96].
Understanding the essential single-particle ingredients necessary to build emulators of
TBG can help shed light on the strong coupling regime where consensus about the form
of an effective low-energy description remains elusive [107, 108, 109, 110, 111, 112, 113].
Despite of the lack of full understanding of the physics of magic-angle twisted bilayer
graphenes, the development of moire pattern that spans a huge number of unitcells is
understood to take a central role in the magic of TBG.

The finite moire pattern, as we explained earlier in Chapter 1, can be thought of as
a finite size approximation of quasiperiodicity. The quench of velocity is also exactly
what marks the semimetal to metal transition in the 3D case in [87]. Hence, we attempt
to draw a connection between the metallic phase theoretically found in quasiperiodic
semimetals and the magic-angle twisted bilayer graphene.

This universality is the main theme of this chapter. We studied a variety of models
of semimetal (i.e. have a node in the band structure) in different dimensions, with
an incommensurate modulation. We will call those “magic-angle semimetals” as they
generalize magic-angle TBG. A theory for twistronic emulators is developed by first
distilling the basic physical phenomena that create correlated flat bands out of two-
dimensional Dirac cones. Generically, quasiperiodicity that respects the symmetry pro-
tecting the Dirac nodes creates flat bands in nodal, semimetallic band structures in a
universal fashion near a previously unnoticed single particle quantum phase transition
(QPT)—what we call the “magic-angle” in analogy to TBG. At small angles in TBG,
a single scattering wavevector accounts for the majority of the band flattening [2, 3]
but misses any QPT. With quasiperiodicity, an infinite sequence of higher wavevectors
(i.e., Brillouin zone downfoldings) further flatten the bands and culminate into a QPT.
This band flattening occurs irrespective of the topology present, and in fact, many of

the models we study have topology distinct from TBG [108]. We demonstrate strong
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correlations by computing Wannier states within this series of bands; these lead to a
Hubbard model with a quenched kinetic energy and relative to this, the interaction
scale is increased dramatically. We therefore argue that the single particle quantum
critical state is unstable towards the inclusion of interactions, which form a correlated
insulator at half filling.

Crucially, our findings are independent of many of the system’s details and, there-
fore, demonstrate the existence of a wide multitude of engineered, strongly-coupled
quantum systems that we call magic-angle semimetals. To demonstrate this, we clas-
sify the family of these models with symmetry protected nodes (including chiral TBG
at moderate twist angles) as well as introduce and solve a series of models; most of
which can be straightforwardly realized with existing ultracold atom, trapped ion, and
metamaterial experimental setups. Thus, the universaility we highlight in this chapter
proposes a simple route to emulate the phenomena of magic-angle TBG in a wide vari-
ety of quantum many body systems [114, 100], including but not limited to cold-atomic,
trapped ion, and metamaterial systems. As a particular example, we discuss how to
observe this effect in an ultracold Fermi gas. We show that the magic-angle effect
can be observed at experimentally relevant time scales and temperatures in interacting

ultracold Fermi gases through measurements of wavepacket dynamics.

3.2 ‘Magic-angle semimetals’.

The whole class of magic-angle semimetal models are governed by Hamiltonians of the

form

~

H=T+V+U (3.1)

containing single particle hopping T, a quasiperiodic modulation 1% (such as potential
scattering or interlayer tunneling), and inter-particle interactions U. The kinetic term
T has isolated nodal points in the Brillouin zone where the DOS vanishes in a power-law
fashion (i.e. semimetallic). The quasiperiodicity in V is encoded in an angle originating
either from twisted bilayers or the projective construction of quasicrystals [115], and it

is characterized by an amplitude W and an incommensurate modulation @ (or twist
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Figure 3.1: Magic-angle transition. A quasiperiodic potential or tunneling generi-
cally drives an eigenstate quantum phase transition from a semimetal (SM) to metal
(M). a. For many models, the velocity at the Dirac node v decreases with the strength
of the potential W until it reaches v = 0 at the transition, W,; this is an indication of
the flattening of the bands. In some cases an intermediate metallic phase (see inset)
separates a reentrant semimetal with a reversed helicity (depicted by the Dirac cones).
b, ¢ We construct a phase diagram in terms of potential strength W (interlayer tunnel-
ing for ¢cTBG) and quasiperiodic modulation @ (twist angle 6 for cTBG) by computing
the density of states at zero energy p(0); analytical perturbative results [see Eq. (3.9),
Section 3.8.1 and [2, 3]] are represented by the green dashed lines. Cuts along the
dashed white lines are presented in Fig. 3.2c,d. Color bars represent p(0) and with
widths b: 5, and c: 1.25 and dark purple represents the value 0 on both. d. An infinite
number of semimetal minibands form as the transition is approached; each has higher
effective interaction than the last as we approach the transition. For 2D SOC, we con-
struct exponentially localized Wannier states on the first four minibands (see Fig. 3.4)
leading to a model with an effective, strongly renormalized Hubbard interaction Ueg /e
in terms of the bare interaction U/t.
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angle 6).

Generalizing the physics of the first magic angle of TBG to magic-angle semimet-
als results in the phenomena summarized by Fig. 3.1. First, increasing W quenches
the kinetic energy, reducing the Dirac velocity v until it ultimately reaches zero at
the single-particle quantum critical point (where the DOS becomes nonanalytic). The
velocity vanishes in a universal manner characterized by critical exponents that are
distinct in each dimension. Second, the DOS and wave functions display a transition
from a ballistic semimetal to a metallic phase; this is a so-called ‘unfreezing’ transition
in momentum space, which represents a non-standard form of delocalization [37]. For a
subset of magic-angle semimetals [including Egs. (3.2) and (3.3) below]|, the semimetal
reenters at a second transition W/ with a reversed sign of the helicity at each Dirac
node [116]; for general @ (or ), multiple semimetal-metal-semimetal transitions can
appear as W is tuned, see Figs. 3.1b, c. Third, the quenched kinetic energy implies a
divergence of the dimensionless interaction coupling constant, Fig. 3.1d, leading to ex-
otic many-body states. Importantly, these effects occur generically under the necessary
condition that the quasiperiodic modulation respects the symmetries which protect the

semimetallic touching points (as discussed in Section 3.8.4).

3.2.1 Effective models.

A variety of effective models illustrate our proposal. Among them, we especially focus
on two models: a 2D tight-binding Hamiltonian of “perfect” spin-orbit coupling (SOC)
on a square lattice and a lattice model of TBG at moderate twist angles (6 ~ 9°)
in the chiral limit (¢cTBG) that disallows interlayer tunneling between equivalent sub-
lattices [3] (we fix the bare lattice spacing to unity and & = 1). Nonetheless, our
main conclusions also apply to TBG beyond the chiral limit for similar twist angles.
(Here, we consider the chiral limit of TBG as it provides the clearest presentation of
magic-angle criticality but such a transition can also be shown to persist in the full

TBG model. This study will appear elsewhere.) The SOC model is given by a hopping
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Figure 3.2: Eigenstate transition as manifested in the single particle spec-
trum. Panels a,b: DOS p(E) in units of (¢tL?)~! averaged over 300 realizations of
phases ¢, and random twisted boundary conditions. The gray shading represents the
number of states in the first miniband and matches the area of the mini Brillouin zones
around each Dirac point produced by the leading scattering vectors depicted in the
inset of a, b (we chose a rhombic representation of the Brillouin zone of TBG such
that k = k1G1 + k2Go for reciprocal lattice vectors Gi 2 of graphene). Panels c,
d: Cuts along the dashed white lines of the phase diagram in Fig. 3.1b,c, displaying
p(0) and Zp(g = 2,L) [Eq. (3.10)]. These illustrate sequences of semimetallic and
metallic transitions concomitant with momentum space delocalization (see Fig. 3.3).
Panels e - j: The twist dispersions illustrate the difference between semimetallic phases
(e,f,i,j) and the metallic phase (g,h) as well as the remarkably reduced bandwidths
(note the reduced scale). The 2D SOC (cTBG) data were obtained for Q = 2w F,,_2/F,,
(0 = 2arcsin(v3F,_5/[2F,])) at L = 144 (L = 377) and KPM expansion order
N¢ = 212 (N¢ = 2'3) in the calculation of the DOS while L = 233 in panels e -
j

Tsoc = t/2 ZFM(Z'Ci-»O'HQq,ﬂ + h.c.) and a quasiperiodic potential

VSOC =W Z cos(Qry, + qﬁ,)clc;, (3.2)

Fu=,y
where the o, are Pauli matrices, ¢, are two-component annihilation operators, ¢ is the
hopping strength, and ¢, is the offset of the origin. The lattice model that captures
the low-energy theory of ¢TBG at incommensurate twist angles contains Tersg that
describes nearest neighbor hopping (amplitude ¢ = 2.8eV) on the honeycomb lattice.

The interlayer tunneling in the chiral limit is given by

Versa = WZ [COS(qu ‘ H;” + ¢u)CIArMC2Br—
r,u

6
-nHm™ . r-run
S G ¢)§ sin(qy, - 752 4 ¢p)cl 4y, come + (A > B)| +he. (3.3)
n=1
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where ¢;4/p, annihilates an electron on layer I, sublattice A/B, and position r. The
index pu = 1,2, 3 labels nearest neighbors such that r1 —r = (0,1) [q1 = k¢(0, —1)] with
r, —r [q,) being 120° rotations of the previous vector. The positions r,, = r, + a,
where a; = (v/3/2,3/2) and each subsequent a,, is a 60° rotation of the last (i.e. labeling
nearest neighbors on the triangular Bravais lattice). Last, |q,| = kg = 38% sin(6/2)
encodes the twist angle, and > u®u=10to satisfy Cg symmetry. Typically the offsets
¢, in either model are averaged over. The kinetic part Tsoc (TCng) has a momentum-
space dispersion with four (two) Dirac nodes and a velocity vg = t (vg = 3t/2), see
Fig. 3.2a (3.2b) inset. Returning to Eq. (3.2), we see that @ replaces the role of the
twist angle in Eq. (3.3); unless otherwise stated, we highlight incommensurate effects
by taking Q = 27/¢? (§ = 2arcsin(v/3/2¢°) ~ 8.96°) where ¢ is the golden ratio,
and in numerical simulations we employ rational approximants Q, = 27 F,_o/F, (kg
is approximated using continued fractions) where the system size L = F,, is given
by the nth Fibonacci number [116]. Other values, in particular smaller 7 — @ and
0, are discussed below. In the low-energy approximation this model is identical to the
continuum model studied in Ref. [3] where exact flatbands are uncovered and explained;
this makes this model ideal to study incommensurate effects on the lattice.

In addition to Egs. (3.2) and (3.3) we have studied a multitude of other d-dimensional
models in an incommensurate potential, including the 7-flux model, the honeycomb
model in 2D, a 3D variant of Eq. (3.2) (studied previously in Ref. [116]), and a 1D long
range hopping model.

The Hamiltonian for the 7-flux model has the same potential term in 2D. The

hopping term is modified as follows

Tr=—t Y [cle™Deps+hel, (3.4)
U=,y

where we choose the gauge with A, (7) = m/2 for all sites 7 on the square lattice, and
Ay (7) = —(—1)"*x /2. For the chosen gauge, periodic boundary conditions require the

lattice size in x direction to be even.
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The spinless honeycomb (HC) lattice model is given by a Hamiltonian of the form

THC = —tz TA cn( T’A+d)+h.c.], (3.5)
TA7

Vic = W Z cos(Q7'- 6, + qﬁ#)cj?c;. (3.6)
70,

The sum over 74 is over one of the two sub-lattices, while 7' is over all points. The index
i labels the three nearest neighbors of ¥4, and J; is the vector from 74 to its nearest
neighbor i. The vectors §,, are a choice of each particular model and for numerics we
choose 8, = di = (2/3)% and 8y = dy = —(1/3)& + (1/v/3)3.

The kinetic part of the Hamiltonian for the one dimensional model with power law
dispersion [24] E = —t sign(cos k)| cos k|7 is given in momentum space as mentioned in

Chapter 1:

Tip = —t)_ sgnfcos(k)]| cos(k)|”chex.
k
We assume o < 1, this expression can be readily Fourier transformed to a tight binding

model with long range hopping (LRH). This yields a hopping amplitude
tij ~ —=2t[1 = (=1)" I sin[w(|i - j| — 0)/2T(1 + 0)|i — j| =+ (3.7)
for |i — j| > 1 and I'(z) is the Gamma function. The potential is
Vip=W Z cos(Qr + ¢)cle. (3.8)
T
Note that in this 1D case, v is not a velocity .

Each of these models generates flat bands and magic-angle physics similar to TBG.
Importantly, these semimetallic 2D Dirac points have been realized in cold atomic setups
using either a honeycomb optical lattice [117, 118] or artificial gauge fields [119, 120,
121], whereas the 1D model we consider can be realized using trapped ions [122]. The
3D variant of Eq. (3.2) is theoretically possible to implement [123, 124, 125], but has not
been experimentally realized yet. In each of these experimental setups, quasiperiodic
potentials can then be realized, e.g. by additional lasers [51], programmable potentials
[52], or a digital mirror device [126]. Alternative emulators of Dirac semimetals can
also be realized in metamaterials, e.g. in topolectrical circuits [94] or in arrays of elec-

tromagnetic microwave resonators [53]. Quasiperiodicity can then be encoded through

the spatial modulation of the electrical circuit elements.
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3.3 Single-particle spectrum and velocity renormalization.

We first discuss the spectral characteristics of magic-angle semimetals probed through
the DOS, defined as p(E) = [1/Nyu > ;d(E — E;)] where E; is the ith eigenenergy
and Ny is the size of the single particle Hilbert space. The double-bracket [...] repre-
sents average across all samples when relevant. At weak quasiperiodic modulation the
semimetal is stable, i.e. p(E) vanishes at zero energy with the same power law as in the
limit of W = 0, while hard spectral gaps and van Hove singularities develop at finite
energy. For Weyl and Dirac Hamiltonians the low-|E| DOS obeys p(E) ~ v=4|E|471,
and as W increases, the (d— 1)st derivative of the DOS [p(@=1(0) o 1/v9] increases, see
Fig. 3.2a, b for the model in Eqgs. (3.2) and (3.3), respectively. These weak coupling
features may be understood at the level of perturbation theory.

We find that gaps appear at finite energy due to the hybridization around Dirac
nodes a distance Q (or v/3ky) away in momentum space, see the insets in Fig. 3.2a and
b, inset. For the SOC (¢TBG) model, this process “carves out” a square (hexagon)
around each Dirac cone which contains 2[(7 — Q)L/27]? (4[3v/3keL/47]?) states. For
a given incommensurate () or 0, there is an infinite sequence of relevant orders in
perturbation theory that produce quasi-resonances and open up gaps near zero energy,
forming minibands; this is in contrast to the commensurate case when this sequence
is finite. For example, for 2D SOC and Q = 27/¢?, the infinite sequence is given
by half the even Fibonacci numbers F3, /2, which is the sequence 1,4,7,72,305,...
(see Section 3.8.3). In the incommensurate limit, near the magic-angle transition this
sequence of gaps produces a corresponding sequence of minibands, shown in Fig. 3.1d
for the second, third, and fourth. We explore the effect of this sequence of minibands
using superlattices in Sec. 3.5.

Similar to TBG, the renormalization of the velocity in the 2D SOC model can be ana-
lytically determined using fourth-order perturbation theory (details in Section 3.8.1) [2].
In terms of the dimensionless coupling constant o = W/[2tsin(Q)] for Eq. (3.2) this

yields

o(W) 1= 20%[1 = cos(Q)] + at A=BenlipeesZ)

v(0) 1 4+4a?+a*{16 + 2+ 1/cos(Q)]?}

(3.9)
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The root of the numerator captures the first magic-angle transition line well when
Q > /2, see Fig. 1b, independently of whether @) is commensurate or incommen-
surate. To describe additional magic-angles, as observed in our numerical data in
Fig. 3.1b,c, higher order perturbation theory is required. For reentrent semimetallic
phases, Eq. (3.9) indicates the reversal of the Berry phase, consistent with the inversion
of miniband states in 3D [116]. In each model we have considered for d > 1, we have
found that the perturbative expression for the velocity (summarized in Table 3.1) has
a magic-angle condition where the velocity vanishes.

As the magic-angle is approached, higher perturbative corrections become relevant.
To go beyond perturbation theory, we compute the DOS using the numerically exact
kernel polynomial method (KPM), on sufficiently large system sizes across a range of
models of various dimensions. At a critical &« = a, ~ 1 the DOS becomes non-analytic
and a metallic spectrum with finite p(0) develops for a > ., see Fig. 3.2c,d (for cTBG

a = . In particular, for d > 1 and fixed Q or 0, p(E) ~ |W — W.|78|E|*!

ST (D)
implying the velocity v(W) ~ |W — W,|?/¢. Surprisingly, we find § ~ 2 in each model
investigated above 1D [116], indicating that this exponent is universal. In 1D this
magic-angle effect also exists but is modified by the form of the dispersion such that
p(E) ~ |W — W,.|7P|E|*/?=1, and for the case ¢ = 1/3 we find § = 4.0 £ 0.8.

This velocity renormalization is the manifestation of the aforementioned reconfigu-
ration of the band structure and the appearence of a sequence of minibands. Of course,
broken translational symmetry precludes a standard bandstructure of dispersive Bloch
waves. In Fig. 3.2 e-j we therefore illustrate this reconfigured bandstructure, at a fixed
rational approximant, in the form of the twist dispersion (obtained by exact diago-
nalization in the presence of twisted boundary conditions) along high symmetry lines
for the models defined in Egs. (3.2), (3.3). We performed the analogous analysis for
a multitude of models and plotted the velocity v(WW) near the semimetallic touching

points in Fig. 3.1a. The velocity v(WW) as determined by computing the twist dispersion

agrees with the calculation of p(@=1)(0).
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Figure 3.3: Eigenstate transition as manifested in momentum space wave
functions at the Dirac node energy E = 0. Panels a - f: Wave function charac-
teristics as described by the scaling exponent 737(q) averaged over 100 random phases
and twisted boundary conditions. For W < W, and W > W/ the wave functions are
ballistic [with a frozen 7p/(¢)] while for W, < W < W/ they are critical in momen-
tum space [1a7(q) is weakly non-linear in ¢|. Inset of a - f: corresponding momentum
space wavefunctions. The 2D SOC (¢TBG) data were obtained for Q = 27 F,,_o/F,
(6 = 2arcsin(vV/3F,_5/[2F,])) at L = 144 (L = 377).

3.4 Ceritical single-particle wave functions

Magic-angle semimetals are intimately linked to the physics of Anderson transitions in
momentum space; this is captured by the eigenfunctions near the Dirac node energy,
E =0 [116].

We compute the low-energy wavefunctions using Lanczos for large L reaching up to
L =377 and 610 in the cTBG and SOC models, respectively. Qualitatively, we find that
the structure of the wave functions in the semimetallic phase is stable and adiabatically
connected to the ballistic W = 0 limit, with isolated ballistic spikes in momentum space,
see Fig. 3.3a,b. In contrast, the form of the wave functions is completely different in
the metallic state, see Fig. 3.3c,d, as it appears delocalized both in momentum and real
space with non-trivial structure. Finally, in the reentrant semimetal, the wave functions
are again ballistic, see Fig. 3.3e,f. Crucially, in all models that we studied, the positions
of the transitions in the spectral properties of the DOS coincide with the transitions of
the wave functions characteristics within numerical resolution, see Figs. 3.2¢,d.

In order to quantify the eigenstate QPTs of the wave functions, we generalize the
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multifractal wave function analysis [37] to momentum space. We define the inverse

participation ratio of the energy eigenstates in momentum space [116] ¥ g (k) at a given

energy B
Tn(g, L) =Y [wp(k)PP ~ L7, (3.10)
k

We can now apply properties of the scaling exponent 7/(g), typically used to ana-
lyze real space localization, to momentum space. It monotonically increases [obeying
T (0) = —d and 7p/(1) = 0] and distinguishes delocalized wave functions [Tas(q) =
d(q—1)] from exponentially localized peaks [Tas(¢ > 0) = 0] and critical states with non-
linear “multifractal” 7p7(¢q). A variant of multifractal states, which are called “frozen,”
display 7as(¢ > ¢.) = 0 for a given ¢. € (0,1]; their peak height is system size in-
dependent, as in standard localized states, but show multifractal correlations in their
tails [37]. We employ the standard binning technique (varying the binning size B) to
numerically extract the scaling exponents 737(¢) in systems of a given finite size.

Focusing on ¢ = 2, as shown in Fig. 3.2¢c, d for the SOC and ¢TBG models, respec-
tively, the momentum space wavefunction at the Dirac node energy delocalizes upon
crossing the magic-angle in the incommensurate limit. The momentum space delocaliza-
tion can not occur in the commensurate case; Bloch’s theorem ensures the existence of
states with well defined (i.e. well localized) crystalline momenta. For example, consider
Eq. (3.2) in the commensurate limit where )/2m = a/b (a and b are coprime integers).
In this case, Zy/(q, L) is bounded from below by 1/b49~1) and hence 73/(¢) = 0 in the
thermodynamic limit L/b — oo preventing momentum space delocalization. In con-
trast, we here numerically access the incommensurate limit using finite size scaling of
rational approximants corresponding to L = b — oc.

The scaling analysis of Zy/(q, L) at the energy of the Dirac node E = 0, presented
in Figs. 3.3a-f for Egs. (3.2) and (3.3), demonstrates three phases of distinct wave-
function structures in momentum space. A frozen spectrum 737(q) occurs in the two
semimetal regimes. In sharp contrast, the function 7/(¢) unfreezes in the metallic
phase with finite p(0). Surprisingly, throughout the metallic phase the spectra ap-

pear to be weakly multifractal in both momentum and real space, we find for the
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SOC model that 7as(q) ~ 2(¢ — 1) — 0.25¢(q — 1) and for the ¢cTBG model we obtain
Tv(q) =~ 2(¢ — 1) — 0.15¢(¢ — 1) (in the region |¢| < 1 and within the limits of our
numerical precision) in Fig. 3.3c,d, which are both non-linear in q. The observation of
similar behavior in all models that we investigated corroborates the interpretation of
the magic-angle phenomenon in the incommensurate limit as one of eigenstate quan-
tum criticality and generalizes the quasiperiodic 3D Weyl semimetal-to-diffusive metal
QPT [116] to arbitrary dimensions. In two dimensions we do not find any signatures
of diffusion (consistent with the marginality of two dimensions [36, 86]) and in one
dimension the semimetal transitions directly to an Anderson insulator. Lastly, when
d > 1 and W is substantially larger than the magic-angle transition, all investigated
models undergo Anderson localization in real space (e.g. at W > 1.75¢ in the case of

the 2D SOC model at Q = 27/p?).

3.5 Commensurate superlattices and Hubbard models.

So far, our analysis regarded non-interacting magic-angle semimetals in the strict incom-
mensurate limit. We now turn to the interparticle interaction term U in the Hamiltonian
in Eq. (3.1) in commensurate superlattices. In order to illustrate how the appearance
of flatbands enhances correlations, we construct a series of emergent Hubbard models

near the magic-angle transition for Eq. (3.2) at ¢, = m/2 supplemented by
USOC = Uan’an”L, (3.11)
r

with ny, = clacm. In contrast to the previous discussion, we take commensurate ap-
proximations in order to build translationally invariant Hubbard models. In particular,
we still use the rational approximants Q,, = 27 F,,_o/F,, only now we take the size of
the system L = mF,, for some integer m, effectively taking the thermodynamic limit
in L before the limit of quasiperiodicity @, — . This is reminiscent of moiré lattices
used to model TBG, and similarly, we can unambiguously define a supercell of size
¢ = F,, and isolate bands in k-space.

In particular, these bands are intimately related to the hierarchy of minibands de-

rived with perturbation theory: when ¢ = F3,4 for integers a and b = 1,2, the gap for
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the central band opens at order Fj3,/2 in perturbation theory (for ¢ = F3,, the Dirac
nodes gap at order F3,/2 as discussed in Section 3.8.3). The series of superlattices
indicated by ¢ correspond to the sequence of gap openings in Section 3.3 — making the
notion precise — with (downfolded) Brillioun zones depicted in Fig. 3.4b. Near W,
hard gaps open and the minibands form as illustrated in Fig. 3.4a for ¢ = 13,55, 233 (re-
spectively, the 2nd, 3rd, and 4th minibands). We conjecture that all of these minibands
(as ¢ — o00) achieve gaps near W, as evidenced by Fig. 4a,c in the incommensurate
limit, indicating something akin to the singular continuous spectrum of the Aubry-
André model at criticality [127]. Furthermore, the central band becomes flatter, as
indicated by the reduction in bandwidth seen in Fig. 3.4c which we track until the
dispersion loses its semimetallic character.

We exploit this miniband formation and the existence of hard gaps to build symmet-
ric Wannier functions in the semimetallic regime, see Fig. 3.4d. To build the Hubbard
models, we perform approximate joint diagonalization on the position operators (Z,)
projected (with projection operator P) onto a given band X}YIB = Pz,P in order to
determine the Wannier states [128]. We have checked that not only are the computed
Wannier states exponentially localized to numerical precision (Fig. 3.4d, inset), but
that they are also symmetric. Therefore, the minibands formed from the SOC model
and pictured in Fig. 3.4 are not topological [129], fragile [130, 131] or otherwise.

As a clear example, when W = 0.5t and (¢, m) = (13, 8), we see a clear band around
E =0 in Fig. 3.4a, and we find Wannier centers in a well defined grid (Fig. 3.4d, main
panel) corresponding to exponentially localized Wannier states (Figs. 3.4d, inset). The
projected Hamiltonian has the approximate form of Egs. (3.2) and (3.11) with a renor-
malized Ueg, tog and Weg = 0. With this approach, we can identify successive gaps
leading up to the metallic transition from either side along with dramatic enhance-
ments of interactions, which reach up to a massive Uy /teg ~ 4100U/t for the fourth
miniband with supercell ¢ = 377, as shown in Fig. 3.1d. This can also been shown ana-
lytically using a one step renormalization group calculation, which yields the divergence
Uegt/teg ~ U(1/0)31 2% /v ~ 1/|W — W,|, (VZ is the wave function renormalization),

as shown in detail in Section 3.8.2. Due to finite size, the apparent location of W, can
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Figure 3.4: Supercell analysis and Wannier functions. The color coding matched
across a—c (and Fig. 3.1d) indicates the 2nd (orange), 3rd (maroon), and 4th (pur-
ple) minibands. a. The dispersion of Eq. (3.2) in the mini-Brillouin zone for super-
lattices (¢, W) = (13,0.5), (¢, W) = (55,0.5244), (¢, W) = (233,0.5244) (from top to
bottom); this illustrates successive emergence of minibands (from top-to-bottom) as
a consequence of consecutive downfoldings of the Brillouin zone. b. The correspond-
ing mini-Brillouin zones (logarithmic scale). c¢. The dramatic reduction in bandwidth
near the critical point for each miniband. d. For (¢,W) = (13,0.5) and L = 104,
computed Wannier function ¢ (x,y) that is sitting upon the local density of states
Phand(r) = 3, | (r|E,) |? (shown as a density plot) for eigenstates of the (orange) band
|Ey), on a 104 x 104 lattice. (Inset). The exponential localization of the Wannier state.



48

artificially shift, therefore in Fig. 3.1d we use W, = W, s?;ngl where W, is the transition
point when n — oo.
Away from E = 0, nearly flat (semimetallic) bands can form well before the magic-

angle transition with similarly large Ueg/tesr, see Fig. 3.4a. In very close proximity to

the transition, multi-orbital Hubbard models appear.

3.6 Experimental cold atomic realization

All sufficient ingredients for emulating magic-angle phenomenon are available in ultra-
cold atomic gas and metamaterial [132, 53] experiments. In particular for ultra-cold
atomic gases, to probe fermionic strong correlations, the atomic species “°K and Li
are prime candidates; we estimate that the underlying lattice can be relatively shallow
(around 8 lattice recoil energies), and need temperatures relative to the Fermi temper-
ature (of the entire gas) T'/TF ~ 0.25 to ensure fermion population fills but does not
exceed the first miniband. To see large correlations, trap sizes should accommodate at
least roughly 30 x 30 optical lattice sites. In addition to any spectroscopic measurements
that probe the density of states (e.g. radiofrequency spectroscopy [133]), we propose
that the analysis of wavepacket dynamics is an indicator of magic-angle physics. In
the absence of interactions, we numerically predict a non-monotonic spreading of the
wave function for increasing W in the regime with multiple magic angles. We have also
studied the interacting model in the hydrodynamic regime by using a generalization of
the Boltzmann kinetic equation [134] . Its solution confirms the drastic decrease of the
expansion velocity and a substantial enhancement of diffusive dynamics near the magic
angle, see Fig. 3.5. The observation of these effects is possible within experimentally
realistic observation time of 50t~! (~10-100 ms). Moreover, our work demonstrates
an experimental protocol for realizing strong correlations by first cooling the gas to
quantum degeneracy and then applying a quasiperiodic potential to create flat bands
without the need to cool the system in a Mott insulator phase or load the atoms into

a flat band.
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Figure 3.5: Boltzmann wave packet spreading. Spreading of the mean square ra-
dius (r?) = 3" _r?p(r) of the particle density p(r) as a function of time in units of the
inverse hopping rate 1/t (panel a: a < «., panel b: « > «.). Here, we consider the in-
teracting 2D SOC model, Egs. (3.2) and (3.11), and we employ Eq. (3.9) to incorporate
the magic angle effect (occuring at . =~ 0.53 in this approximation) into a semianalyt-
ical hydrodynamic treatment. The initial steady state at finite temperature is defined
by a particle [energy] density p(r) = e /2" /€2 [pp(r) = vo (1 + 36_’"2/52) /€3], with
vo = v(a = 0) is the bare velocity and we chose £ = 4 for the initial spread of the den-

sity profile. The hydrodynamic equations were numerically solved in the presence of an
onsite repulsion U(a = 0) = 0.025¢ and Umklapp scattering rate 1/7(a = 0) = 0.0075¢

3.7 Discussion

In summary, we introduced a class of magic-angle semimetals and demonstrated the
general appearance of a single-particle quantum phase transition in the incommensu-
rate limit at which, simultaneously, (i) the kinetic energy vanishes universally, (ii) a
non-zero density of states appears at zero energy, and (iii) the wave functions display
delocalization and multifractality in momentum space. In the presence of interactions
we demonstrated that this eigenstate criticality leads to a strongly correlated Hubbard
model by computing Wannier states on a superlattice. Lastly, we presented a detailed
discussion of an experimental realization in cold atomic quantum emulators.
Regarding experimentally realized twisted graphene heterostructures at much smaller
twist angles than we have considered here (6 ~ 1.1°), it has not been obvious whether
incommensuration is an important ingredient [135]. Quasiperiodic effects rely upon
weakly detuned processes at which the total transferred momentum wraps the Bril-

louin zone. In contrast, the momentum transfer induced by scattering off a small
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angle superstructure is minute. Therefore—it is often concluded—both effects of in-
commensurability and intervalley scattering are negligible as processes in higher order
perturbation theory. As our numerics demonstrate, this results in the suppression of
the width of the metallic sliver in Fig. 3.1b, c that scales like W/ — W, ~ 63, making
observing such a metallic phase exceedingly difficult at small twist angles. Nonetheless,
we expect Anderson delocalization in momentum space even at small twist angles. This
is because this physics is dominated by rare resonances (as manifested in the locator
expansion [136]) and controlled by «, while perturbative processes are parameterized by
W/t and are therefore small. Furthermore, the contiguous phase boundary in Fig. 3.1b,
c may imply that the physics of small angles directly connects to large, incommensurate
twists [137, 138, 139]. However, within present day numerics, we cannot exclude that
this boundary of eigenstate phase transitions terminates at a finite, small angle, which
would imply the existence of a critical Anderson delocalization end point in Fig. 3.1b,c.
The coexistence of finite DOS with other features of this phase at larger angles sug-
gests that the phase extends to # — 0 (Q — w), but an end-point is appealing as it
would establish a theoretical paradigm of quasiperiodic Anderson tricriticality. Any
rational approximant or commensurate angle truncates the infinite sequence of reso-
nances and minibands which leads to a rounding of the QPT (akin to finite size effects
in usual transitions) and the absence of momentum space delocalization. The amplified
interactions due to flat bands and an enhanced DOS occur for both incommensurate
and commensurate cases as Fig. 3.1d demonstrates. This enhancement coupled with
eigenstate quantum criticality in the incommensurate limit characterizes magic-angle

semimetals, including twisted bilayer graphene at moderate twist angles.

3.8 Appendix: Details of the Analytical Results

Here we elaborate on several results on the models we study using analytical meth-
ods. The perturbation calculation qualitatively shows the renormalization of velocity
that tells the existence of magic-angle transition. Renormalization interaction on the

2D SOC model exemplifies the relevance between the numerical single-particle result



51

to the question of interaction. The number theory result drops hints on the non-
perturbative nature of the physics of incommensurability. Finally, we discuss the sta-
bility of semimetal at weak coupling to roughly scope the generality of the magic-angle
transition. Most of the analytical arguments here hold only far away from the crit-
ical quasiperiodicity; but provide a qualitative understanding and pilots our detailed

numerical study at the transition.

3.8.1 Perturbative calculation of velocity renormalization.

We present the perturbative calculation of velocity renormalization using the language

of retarded Green’s functions,

A

Go(E)=[E+in-T"", GE)=[E+in—T-V]"}, (3.12a)

and are interested in diagonal components Gy, 7, with k=Fk, only (e.g. for the DOS we
only need p(E) = —(1/m)Im } 7 TrG} z(E)). We define the self energy at momentum k

by all diagrams which are GO(E, E) irreducible and write

Gri(E) = [Go(k, B)™ — S(k, B)] 7, (3.12Db)

We expand about a given node K; of the dispersion T'(K; +p) ~ T(K;) +h([?i)(ﬁ) to
leading order in p < 1/a. For models which satisfy the symmetry constraints exposed
in the main text (see also Section 3.8.4) X(K,; +p, E) = EXp + h(p)%, to leading order

—

in E,p. Henceforth, we choose the energy offset such that T'(K) = 0. Then,
i(E)=Z[E- (v/v)h(k)]™! with Z7' =1 —%g and v/vg = (1+%,)Z. (3.13)

In this section we evaluate the self energy to leading and, for some models, next to
leading order in powers of W and summarize them in Table 3.1. A discussion of infinite
order perturbation theory can be found at the end of this note.

To illustrate the procedure we analyze the model of 2D perfect SOC for which

the states at small k with Hamiltonian H (k) = t(sin(k,)o, + sin(ky)oy) ~ tk - o are
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Figure 3.6: Graphic demonstration that the model of perfect SOC in 2D is a direct sum
of two decoupled 7 flux models. The model of perfect SOC, on the left of the equality
sign, is characterized by direction dependent hopping matrices. Using blue squares
and red circles to depict the bipartition, hopping only connects |0, 1) with |o,]), and
separately |O,]) with |o,1). The hopping in y -direction is imaginary and directed
(this results from the asymmetry of o,) and, in conclusion, leads to the inclusion of
a flux m per plaquette. The onsite potential does note violate the described block-
diagonalization.

connected to the states at k - Qé: y and therefore to leading order perturbation theory

+2 oy~ —FEla® — tk - o(20%(1 — cos(Q))

- 1
2@ (k) = (W/2)? =
zi: E — H(k+Qé,)
(3.14)
For the next to leading order, all states at Manhatten distance 2Q) from the origin are

integrated out and we obtain

4
2(4)0;) =~ —% (VZ) (4 cos(Q) + 10cos(2Q) + 11) esc(Q) secQ(Q))
4 o
+ (Vf) %(4 — 5c08(Q) + 6c0s(2Q)) cse(Q) sec(Q)  (3.15)

It turns out that the results obtained for the 2D model of perfect SOC directly apply
to the m flux model. This is best graphically shown, see Figure 3.6: the model of 2D
perfect SOC is a direct sum of two 7m-flux models which in the absence of interactions
completely decouple. By consequence, all single particle results obtained for model of

2D perfect SOC also hold for the m-flux model.
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3.8.2 Renormalization of interactions

We present an analytical estimate of the renormalization of the interaction upon projec-
tion onto certain minibands and approaching the transition for the model of 2D SOC.
Let the bare (W = 0) model in the continuum be written as (K; are various Dirac/Weyl
nodes, with linear % - 7 Hamiltonian h(E D (p))

SZ/

1/a

/dm R ([0, + hED () E9 ()

1/a 4
b 3 [ ULy [ arCniog, i, g g S0+ B B )X
K1234 Jj=1

25D (371) ) (5)] [ K5 () K0 (i )]

X — — . 3.16
D1 — Da|” (3.16)

The spectrum of h(E i)(p) has the form vg|p] with bare value vy ~ ta and, for contact
interaction (o = 0), IRy ™~ Ua?, while for Coulomb interaction (o0 = d — 1) IR,y X

J

Ry Ry Perturbation theory indicates a dimensionless parameter

9e i, U
{KZIL ~ — for o =0 (contact interaction), (3.17)
vo/a t
9rig.
a="Ed g s=d-1 (Coulomb interaction). (3.18)
o

We now consider the effect of integrating out high energy states and projecting onto a

miniband with effective Brillouin zone size 1/a’. This leads to
l/a (Ki) (Y 7—1 U0 (RKo) (7] K)o
S= Z dre(P) 210 + b J(@)]e< ()
b 3 [ ) [ aremo g de, g, g, 50+ 5 - - )X

D (3D () () ) ()]

(3.19)

The renormalizations Z and v/vg originate from scalar and matrix components of the
self-energy and were calculated perturbatively above. We now first rescale p’ = Zp
with p € (0,1/a) and then define c(< (ap/a')Z7 % (a)a)? = c(k)(ﬁ). Under this
rescaling, we restore the form of Eq. (3.16), including its UV cut-off 1/a, but obtain

the rescaling vg — va/a’, g — g(a/a’)¥~? Z?. From this we obtain the final formula for
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Figure 3.7: Divergence of contact interaction according to Eq. (3.21) for the model of
2D SOC. Here, the fourth order perturbative self energy was employed and we used

v=1/5.

renormalization of the dimensionless coupling constant

off /e d-1 72
%f = (g) Y (contact interaction), (3.20)
0
ren Z2
Qren. _ (Coulomb). (3.21)

Qbare  U/00
Here, ~v is an unknown constant of order unity which depends on details of the cut-off
of the linearized theory. Importantly, the integration reduces the bare contact interac-
tion by a factor (a/a’)?!, except in the closest vicinity of the magic angle where the

vanishing velocity overtakes the reduction, see Figure 3.7.

3.8.3 Relationship to number theory.

In addition, we show the relationship of the sequence of relevant perturbative processes
with certain well known sequences from number theory. Starting from the scattering
process of order I3 = 1 we want to determine the sequence {l,,}>° ; for which the /,,th
order momentum transfer carves out smaller minibands than the [,,_;th order. In for-
mulae, this implies for the 2D model of perfect SOC of the main text and arbitrary
incommensuration wavevector @ the condition sin?(1,,Q) < sin?(l,—1Q). We now con-
centrate on the specific case Q = 2w/¢? = m(3 — v/5). For this situation, the defining
condition on the sequence of ,, is sin?(7l,,v/5) < sin?(nl,_1v/5). The sequence {122,
for which 1,,v/5 successively approaches integers is the sequence of denominators of the
leading rational approximants, i.e. the sequence of denominators of continued fraction
convergents of /5 (OEIS ID A001076). This sequence is also half the value of the even
fibonaccis I, = F3,,/2.

This sequence also connects to the formation of minibands as found with the finite
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size Qp = 2nF,_o/F,. Intuitively, when F), is even (n is a multiple of 3), then at order
F,, /2, the Dirac nodes gap out, but then for Fj,;1 and F,, ;o this perturbative gap must
have moved to small but finite energy, forming the miniband. This motivates using
Q3n+1 and Q3,42 to study the effective model of successive minibands.

In fact, following theorem can be proven that connects this sequence to the order of
perturbation theory where a gap is opened:

Theorem. Let n = 3m+r forr =0,1,2, then the integer g, = F3y,/2 is the smallest

L";r&" mod F,, with integer |03, < 1. In particular,

integer such that gnFn_o =
83m = 0, d3ms1 = (=)™, and d3;m10 = (—1)™FL.

Therefore, the order of perturbation theory that opens up a gap nearest to £ = 0
for Q = 27 Fspyr—2/F3mir for r =0,1,2 is F3,, /2.

A crucial consequence of this analysis is that when m — oo (which is the limit for
@ being incommensurate), the complete formation of all gaps that approaches E = 0
requires infinite orders of perturbation theory. Hence the full effect of all the gap

opening is only seen at a quantum criticality where all orders of perturbation theory

become important. That is our magic-angle transition.

3.8.4 Generality of the magic-angle phenomenon - symmetry protec-

tion.

In this section we discuss the generality of our findings by highlighting the general
condition for the appearance of the magic angle phenomenon, namely the stability of
the semimetal at weak coupling.

We concentrate on nodes in the kinetic term 7" which are protected by a symmetry
group Gp. For example, this analysis applies to each model we have considered in
2D as well as Dirac semimetals in 3D. Note that in general G is a subgroup of all
symmetry operations of the kinetic term. Let Ug, be the representation of S7 € Gr in
the (e.g. spinorial) Hilbert space, then the symmetry of the Hamiltonian implies T'(k) =
U ;TT (STE)UST. We concentrate on high symmetry points where S7K = K, VSr €
Gr. Then, a non-trivial representation implies degeneracy in view of [T(K),Us,]| =

0 VSr € Gr (formally, two non-commuting Ug, are needed). We further assume a
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group Gy of spatial (point group) symmetries of the quasiperiodic background V, such
that

V(@)= Y Us, WU e 9% 4+ he. (3.22)
Sy EeGy

Here now, USV is the representation of Sy € Gy and ég is an arbitrary vector in R%.
In this section, we consider Eq. (3.12) formally to all orders in perturbation the-
ory. The semimetallic behavior persists if a) $(k) is hermitian and b) T(k) + %(k) has
the same symmetry protected touching point as T(E), ie. if E(lg) respects the sym-
metries ensuring the semimetal. In view of the incommensuration, perfect resonance
is formally absent to any order in perturbation theory and therefore, the decay rate
LT ~ > 5 |TE,E’|25(EE — Er,) (more generally: the anti-hermitian part of the self-

energy) vanishes (T 7, denotes the T-matrix). Thus a) is fulfilled and 1/7 # 0 signals

k&
the breakdown of perturbation theory (spontaneous unitarity breaking). We can then
show to all orders in perturbation theory that the semimetal is stable provided G is a
subgroup of Gy .

We proceed to the proof of $(k) = U gTE(STE)U s, under the outlined assumptions.
To get a feeling, we first consider second order perturbation theory.

SOy = Y Us, WU [EY —T(k+ QSveéo))'Us, WITL . (3.23)
SyeGy

We compare to

Ul S@(Srk)Us, = > UL Us, WUL Us, [ET — UL T(Srk + QSyéo)Us, ]~
Sv€GV

Ul Us, WU Us,
= > UL Us, WU Us, [E* —T(k+ QSy" Syéo)] !

Sy eGy

Ul Us, WIUL Us, (3.24)
This expression is invariant provided the action of St onto Gy is a bijection of Gy
onto itself V57 € Grp, i.e. SpSy € Gy VSy € Gy and SpGy = Gy as this allows
to uniquely relable the summation index. Taking Sy = 1 implies that Sp € Gy and
hence G is a subgroup of Gy. By consequence, the representation in the Hilbert space

fulfills US; sy =U ;T USV and 2(2)(/’;) is invariant under the symmetries protecting the
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semimetal. We now continue with the next order (%), from there the generality of the

statement becomes apparent,

SOF = ¥ 3 Us WUL B - T(F+@Svéo) ™
Sy eGy S{/GGV
S{,é0#—Svéo

Us, WU, [E* = T(k + QSyéo + QSiréo)] !

Ug, W' U;,V [EY = T(k + QSvyéo) ' Us, WHTL . (3.25)

The exclusion Si,éy + Syég # 0 ensures the irreducibility with respect to G. Again
we can apply an Sp transformation and exploit the two conditions exposed above to
relabel both Sy and S{,. This implies the invariance of ¥(4). This procedure can be

used to arbitrary order in perturbation theory.
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Chapter 4

Disordered magic-angle semimetals

4.1 Introduction

The previous chapter considered adding quasiperiodicity to lattice models. Hence, in
order for the study to have any realistic significance, it is natural to study the effect of
disorder — which part of the “magic-angle” physics we discuss is most robust against
disorder?

Meanwhile, the same question is imperative in the research of twisted bilayer graphene.
Although the ever evolving experiments has produced increasingly clean samples, in-
homogeneity will never be gone. There can be random potential or magnetic disorder
(that is inevitable from sample preparation and the exposure to the environment), for
example. Any attempt to connect theory and experiment will need to answer the ques-
tion of whether the predicted phenomena can withstand disorder, and how the predicted
phenomena change as the system is less ideal.

In this chapter, we develop a theory for a special type of disorder that is native to
quasiperiodic systems — the fluctuation of the “period” of quasiperiodic modulation. In
the case of simple quasiperiodic potential, this correspond to the wave vector () as we
discussed in Chapter 3. In the context of twisted bilayer graphenes, it is the disorder
of the local twist-angle fluctuations, which will be the main focus of this chapter.

In experimental samples of pristine twisted bilayer graphene, which are nominally
free of impurities and defects, the main source of disorder is believed to arise from the
unavoidable and uncontrollable non-uniformity of the twist angle across the sample.
Such type of disorder arise in research activity in the physics of twisted bilayer graphene.

To address this new physics of twist-angle disorder, we develop a real-space, microscopic
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model of twisted bilayer graphene where the angle enters as a free parameter. Once
we have a viable real-space model, we are able to study the effects of disorder on
twisted bilayer graphene at the single-particle level. Not only does twisting two sheets
of graphene create flat bands near the magic-angle (~ 1-1.1°), it also induces gaps that
separate the miniband, which has Van Hove singularities in the density of states [104,
2, 102], from the rest of the spectra as seen in Fig. 4.1. These miniband insulating gaps
arising from the single-particle band structure of the twisted system are simply the moiré
superlattice band gaps due to the tunneling between the two graphene bands in the
combined bilayer heterostructure. We are interested in how all of these single-particle,
superlattice, miniband features are affected or even destroyed due to randomness in the
twist angle. In particular, we focus on the size of single-particle energy gaps separating
the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized
Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the
energy gaps and minibandwidth are strongly affected by disorder while the renormalized
velocity remains virtually unchanged. In addition, following the universality argument
of Chapter 3, we also studied the much simpler model of 2D SOC (the 2D lattice model
with spin-orbit coupling) with quasiperiodic potential and find similar behavior.

This chapter is organized as follows: In Sec. 4.2 we discuss the experimental origin of
the twist angle disorder we focus on. In Sec. 4.3 we build an approximate lattice model
for twisted bilayer graphene and use it to introduce real-space disorder in the twist angle.
In Sec. 4.4 we discuss the results of the numerical calculations, and in Sec. 4.6, we discuss
our approximations and the implications of these results for ongoing experiments. In
addition to the more realistic models, in Section 4.5 we analyze a simpler model with
similar magic-angle phenomena using a deterministic quasiperiodic potential. Finally,
we conclude in Sec. 4.7 with a summary of our results. Throughout, we take the lattice
spacing between neighboring carbon atoms to be unity, which serves as our unit of

length.
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4.2 The disorders in graphene and twisted bilayer graphenes

The ability to isolate and characterize single sheets of graphene [142] has lead to a sig-
nificant amount of control over van der Waals heterostructures [143]. This spectacular
materials engineering feat has led not only to relatively clean, high mobility graphene
samples, but also to the ability to place two coupled sheets of graphene on top of each
other with a relative “twist” angle between them [104]. The introduction of the ‘twist
angle’ as a new experimental parameter to tune the electronic properties of ‘twisted’
van der Waals heterostructures has led to a new paradigm in condensed matter systems
where one can now study materials properties not only as a function of temperature,
carrier density, magnetic field, gate voltage, applied pressure or strain, etc., but also
as a function of the twist angle between the two layers controlling the electronic band
structure in a radical manner, which is a completely new tool in the laboratory.

While these bilayers are clean and relatively disorder free, the twist angle can vary
across samples, leading to a new source of disorder. Thus, even if the two starting
monolayers are completely clean (i.e. no impurities or defects), the very fact of creating
the twisted bilayer system introduces an inherent (and a new type of) disorder by virtue
of local fluctuations in the twist angle throughout the macroscopic sample. This ‘twist
angle disorder’, which has no analogy in usual condensed matter systems and has never
before been studied in the literature, is thought to be the main disorder controlling the
quality of the currently available twisted graphene systems.

In single-layer graphene, the most dominant effect of disorder near the Dirac point
has been attributed to charge disorder (arising from unintentional quenched random
charged impurities in the system) inducing “puddles” of unequal charge density that
locally dope the Dirac cones [144]. This issue has been circumvented by using an all van
der Waals device geometry, and the absence of any significant charge inhomogeneities in
such ultra-clean samples has enabled the observation of exotic many-body states [145]
akin to what has been seen in clean suspended graphene [146]. As a result, the current
graphene sample quality is rather remarkable and for most practical purposes, both

charge inhomogeneities as well as any extrinsic disorder due to vacancies or defects has
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been greatly suppressed, if not almost eliminated except perhaps for experiments using
very low (< 10'% cm™2) carrier densities.

With these capabilities, very clean samples of twisted bilayer graphene (TBG) near
the magic-angle (where the nominal band structure becomes completely flat suppressing
the Dirac velocity to zero) have recently been observed to develop insulating states at
integer filling fractions of the moiré miniband near the Dirac points [55, 97]. Upon
gating (i.e. doping) away from the insulating phases, nearby superconducting phases
have been observed [54, 97, 147]. To achieve an accurate choice (to within ~ 0.1°)
and rather small value of the twist angle (~ 1°), the “tear and stack” mechanical
approach places two sheets of graphene on top of each other with a great deal of
precision in the twist angle [148]. Only after such a mechanical procedure of creating
the twisted bilayer sample with a carefully chosen twist angle, the sample is transferred
to the cryostat for electrical measurements. To study the electronic properties as a
function of the twist angle, the whole procedure has to be repeated for a different sample
with a different twist angle. In practice however, this procedure does not produce a
single twist angle across the entire sample: Scanning tunneling microscopy has observed
different twist angles across separate regions of the sample [104, 105, 149, 150, 151,
152, 153]. Moreover, signatures of the nonuniformity of the twist angle have also been
observed in conductance measurements that have a strong dependence on where the
leads are placed on the device [97]. In addition, two different samples with nominally
identical twist angles typically manifest quite different electronic properties in transport
and STM measurements, again reflecting that some inherent variations in the twist
angle invariably exist in the system. Thus, in any given high-quality (i.e. low extrinsic
impurity and defect concentration) sample the main source of disorder comes in the
form of a varying twist angle across the sample. The nature of this variation is not
unique: some samples have hard domain walls separating regimes with different twist
angles, whereas some samples have a much smoother change in the twist across the
sample '. Twist angle disorder is a radically new type of intrinsic disorder in condensed

matter systems whose study is, quite apart from its singular importance in determining

!Private communication with Eva Andrei
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Figure 4.1: The density of states p(E) as a function of energy E for the lattice model
of twisted bilayer graphene at a twist angle § = 1.05°, a linear system size L = 569, a
kernel polynomial method [4] expansion order No = 2'7, and a weak breaking in the
interlayer tunneling between AA and AB sites (wo/w; = 0.75, w1 = w where wg (w) is
the strength of AA and BB (AB and BA) tunneling), which captures lattice relaxation
effects [5, 6] and it opens a hard gap on both sides of the semimetal miniband. We
note that at small angles, a single parameter controls the physics: w/[2vrkp sin(0/2)],
so lowering the angle is equivalent to increasing wj. Therefore, one can read the plots
of smaller w; as at an angle larger than 1.05°. This density of states has a number of
features relevant to the physics: Van Hove peaks, gaps, and the velocity (as determined
by the scaling of the density of states). Dark (light) blue lines give the calculated
density of states for finite (zero) values of the parameter w as shown in the inset of the
figure.

the twisted graphene bilayer properties, of fundamental conceptual significance.

We focus on various features of the low energy density of states and the miniband
structure to determine how the single-particle spectrum is modified as a result of ran-
domness in the twist angle. We demonstrate that disorder smooths the non-analyticities
in the density of states, fills in the band-gaps, broadens the minibandwidth, and smears
out the Van Hove peaks. We compare this with the size of the gap isolating the low-
energy miniband, the renormalized Dirac velocity, and the size of the minibandwidth.
Surprisingly, we find that the Dirac cone velocity is remarkably robust to twist disor-
der, whereas other miniband characteristics are systematically broadened. The essential

complete protection of the miniband Dirac velocity (at low energy, where the Dirac cone
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Figure 4.2: (a) A schematic of graphene and the notation we use for our model. The
A (B) sublattice is represented by the blue (orange) lattice sites. The unit cell for
the triangular lattice is shown by the dashed central hexagon. The lattice vectors are
a; = (v/3/2,3/2) and ay = (—+/3/2,3/2), and we further define a3 = as—aj, a; = —ay,
a5 = —ag, as well as ag = —a3. (b) A course-grained view of the tunneling between
the layers calculated from 7y and 77 in Eq. (4.5) which defines the energy parameters
wo and wi; the color represents whether AA, AB, or BA hopping is dominant based
on the chance for an electron on a site in layer 1 to hop onto sublattice A or B on
layer 2, given by Px(r) = |[To(r)]x|? + 6|[T1(r)]x|?>. Note that C3 is broken and the
moiré unit cell is larger than in real TBG. Both of these effects are relatively small.
(c) Complementary to the real space picture, in momentum space the lattice Brillioun
zone is effectively downfolded by a factor of three from the moiré Brillioun zone after
unrotating the two graphene layers; this introduces small gaps in the band structure
at these points. (d) In our model, the effect of the twist is entirely contained within
interlayer coupling, so we model disorder by changing the continuous twist parameter
f within different regions of space. In this common example, we break up the system
into four equal regions and pick a value of ; that are drawn from the box distribution
[(1—-Wg/2)0,(1+ Wg/2)0] with 6 = 1.05°.

approximation holds) in the twisted bilayer graphene (TBG) against the twist-angle dis-
order is a rather unexpected finding of our nonperturbative calculations, particularly

since all other aspects of the miniband electronic structure are strongly affected by the

twist-angle randomness.

4.3 Model and Approach

The numerical study of twist-angle disorder is difficult with the current models available
in the literature. First, the usual continuum model is built as a hexagonal lattice in
momentum-space [154, 2] where disorder enters the Hamiltonian in a highly non-local
way. Second, current real-space models rely on both a uniform and commensurate
twist angle [135, 155]. To circumvent this problem, we build a new real space model
where the twist is built directly into the interlayer hopping in such a way that it can

be continuously tuned, and can vary spatially while the model remains local in real
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space. The model exactly reproduces the continuum model as written by Bistritzer and
MacDonald [2] near the K and K’ Dirac points in the Brillouin zone. The version of this
model presented here preserves CoT symmetry (i.e. the combined operation of a 180°
rotation and a time reversal operation) and hence preserves the Dirac nodes. Further,
it qualitatively preserves the spatial structure of AA and AB tunneling; however, it
explicitly breaks C3 symmetry. While there is no obstruction to building the model
with C3 symmetry (a version of which will appear in Chapter 3), real experiments
introduce strain which also explicitly breaks C5 [156], so we do not require this of our
real space model. So, in some sense, our disorder model incorporates both the twist-
angle disorder (in a controlled manner) and strain effects (in an uncontrolled manner
through the explicit breaking of C3 symmetry). The model (see Fig. 4.2) we primarily
focus on is a lattice model that is an approximation of twisted bilayer graphene which
captures the low energy limit of the continuum model [154, 2]. However, this particular
ultra-violet (UV) completion of the continuum model does not respect the underlying
Cs3 symmetry of the microscopic lattice. As a result, the velocity does not strictly vanish
at the magic angle but becomes very small due to the Dirac points not being pinned to
high-symmetry points in the Brillouin zone and acquires an angular dependence relative
to each Dirac point in momentum space. However, the band structure that results is
still qualitatively similar, and so we expect that effects arising from this approximation
are not relevant to understand the qualitative effects of disorder. In any case, it is
unclear that a strict magic angle with vanishing velocity can ever be achieved in any
laboratory samples, so our approximation of a finite, but very small, velocity should
not be a practical problem in any sense.

To motivate the model, consider the continuum model written as in Ref. [2] around

the K point

h T(r
e — [0 (r) | (4.1)
Tt(r) hi_o
where hip = 3k - e~ 09:/2g%¢i00:/2  T(r) = Z?Zl e~ THENT and T; = wo +

wy (oFe2mU-1/3 4 5=e=2m(-1)/3) We can “unrotate” this Hamiltonian by consid-

ering the k vectors to be the same and applying a unitary in pseudospin space (using
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the properties of Dirac cones, one can replace the full angular momentum operator L,

with o,/2)
. hico 61002 /A (r) ¢i00=/1 | )
e—ieaz/4TT (r)e—ieaz/4 hk,o
We can do a similar operation to the K’ point. The interlayer tunnelings at the K and
K’ points differ, so it is important to have a function interpolate between the two while
preserving symmetries C and time-reversal and staying as local as possible. This can

be done, and we can replace the Dirac cone hy o with the Hamiltonian for graphene

which in real space and second quantized notation is

2
Hy = Z t[ci’gaxcmg + Z(ci+aj’éa+cr7g + h.c.)] (4.3)
rt j=1

where ¢ = 2.8 eV [157], r labels points on the triangular lattice, ¢y ¢ = (¢r a0, an’g)T is
a vector of annihilation operators at triangular lattice site r and layer £ = 1,2 whose
first and second components represent the A and B sublattices, respectively. The lattice
vectors a; and ay are shown in Fig. 4.2(a) where the lattice site r is the central hexagon.

The tunneling between layers in real space then becomes
Hrpe = Hy + Z {017276(1')@71 + h.c.]
r

+ ZZ [ r+a 27-1( r+ %an)cr,l + h.c.|. (4.4)

r n=l1
The second line of of Eq. (4.4) represents interlayer hopping to the nearest neighbors on
the triangular lattice, summed over all a,,, as depicted in Fig. 4.2 (a), and the interlayer

hopping matrices are given by

wo cos(q; - T+ ¢; —0/2)  wicos(q; T — W + ¢;5)

= \wicos(qy -+ 2 4 6)  wpcos(y T+ 65 +0/2) (45)
4.5

1 3 wosin(qj - r + ¢; — 0/2) wlsin(qj-r—w—k%)
3v3 j=1 \wisin(q; - r+ QW(J DI ¢j)  wosin(q; -r+ ¢ +60/2)
where wg represents AA tunneling, w; is the AB tunneling (commonly, if we refer to

w, we are referring to w; and a fixed wo/w; ratio), 6 is the twist angle, ¢; are random
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phases which sum to zero and represent the center of rotation 2 , ¢ = kg(0,—1),
¢ = kg(+v/3/2,1/2), and q3 = kg(—+/3/2,1/2). The value of the twisted wavevector
kg is given by kg = 2kpsin(0/2) where kp = 47/(3+/3). The effect of varying w for a
fixed twist angle 8 = 1.05° is shown in Fig. 4.3(a), which demonstrates the formation
of a semimetal miniband and shrinking minibandwidth. We note that other parameter
sets for the tight binding parameters are available [158] but do not affect any of the
qualitative results presented here.

If we go to the crystal momentum basis and expand about the K point (with similar
results at K'), we indeed obtain the continuum model [2] up to a unitary transformation
as our construction dictated. Furthermore, if we compare the low-energy continuum
model to the actual lattice model itself, we find remarkable agreement in the calculated
density of states [defined in Eq. (4.6)] as shown in Fig. 4.3(b,c,d) for three representative
sets of parameters.

Some comments are in order. First, while it reproduces the continuum model at the
K (and K') point, this particular UV-completion explicitly breaks the C3 symmetry
present in the original model (this symmetry is just weakly broken near the K and
K’ points). To see this explicitly, we can consider the pattern of AA, AB, and BA
tunnelings our model exhibits. This can be entirely determined by the form of 7y and
71 in Eq. (4.5): If an electron is on an A site on layer 1 and wants to hop to an
A site on layer 2, then the sum of the squares of the hoppings give that Paqs(r) =
[[To(r)]aal? + 6[[Ti(r)]aal|* (and similarly for Pag(r) and Pga(r)). Comparing which
term [Paa(r), Pap(r), or Ppa(r)] is largest gives us Fig. 4.2(b) where we can explicitly
see how (3 is broken for this model. As a result of this symmetry breaking, the Dirac
points are not pinned to the high-symmetry points and are free to move around the
Brillouin zone, yet since the model preserves the CoT symmetry they do not gap out.
Numerically, we find that the Van Hove peaks never fully merge [Fig. 4.3(d)] unlike the

continuum model, and further, perturbation theory can be used at second order in the

2The phases always modify terms like q; - r + ¢;, and in order to see how they represent a center
of rotation, consider an q; - (r —ro), then ¢; = —q; -r and > ¢; = 0. In fact, for any ¢1,2 we can
determine an ro that creates it.
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Figure 4.3: (a) The calculated density of states p(F) for TBG without disorder as
a function of energy FE for various interlayer tunneling strengths w = w; (keeping
wp/wi = 0.75 where wg (wy) denote the strength of AA and BB (AB and BA) tunneling)
at a low twist angle of § = 1.05° close to the magic angle, a system size of L = 569 and a
KPM expansion order of No = 217 in the lattice model. The calculated minibandwidth
in the magic angle regime w = 110 meV is consistent with other studies of the continuum
model and the KPM numerical resolution limits to the extent we can access the low-
energy regime near charge neutrality. (b,c,d) Comparisons between our lattice model
and the continuum theory near £ = 0 and § = 1.05° for w = 80, w = 100 and
w = 110 meV respectively, we find remarkable agreement. The insets show the details
of the miniband. At § = 1.05° and w = 100meV, inset of (c), we see a splitting of the
Van Hove peaks that is missing from the continuum model associated with additional
zone folding in this model. This is seen clearly in the right inset; the left inset shows
how the gap of the lattice model here and in the continuum model also match rather
well. In (d) at the magic angle § = 1.05° and w = 110meV, we see that the Van Hove
peaks never clearly merge as they do in the continuum model. Again, this is clearly
seen in the right inset. The continuum model data here includes 338 bands and has
No = 213 or 2™ whereas the lattice model has L = 569 and N = 2'7. Overall, the
agreement with the continuum TBG model is quite excellent.
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interlayer tunneling strength to see that the velocity never fully vanishes either. For
ideal theoretical calculations this might pose a problem, however for our present study,
disorder already breaks this C5 symmetry. Furthermore, in the experimental samples
strain from the substrate explicitly breaks the Cs symmetry [156], which is a natural
single-particle source for a nonvanishing velocity and further justifies the use of this
model. Thus, the weak breaking of C3 symmetry in our model is not a problem at all
in understanding the physics of real twisted bilayer graphene systems. Second, while
the model still has the spatial structure of AA, AB, and BA tunneling, it is slightly
distorted, as seen in Fig. 4.2(b). Consequently, the usual TBG moiré unit cell is larger
than the unit cell considered in this model. In fact, the mini-Brillioun zone is folded
more than in actual TBG as seen in Fig. 4.2(c) (it is smaller by a factor of 3); the
process of “unrotating” the two-layers puts the K points of each individual layer on top
of each other in momentum space effectively downfolding the moiré Brillouin zone. It
is then necessary to determine if this downfolding opens up any gaps, and while it does,
these are small indirect gaps in the mini-Brillioun zone of TBG as seen near the Van
Hove peaks in Fig. 4.3(c)(inset). Last, for the value of the clean twist angle we focus
on here 8 = 1.05° we can emulate the effects of strain and lattice relaxation, similar to
Ref. [3], by setting the ratio of AA to AB/BA tunneling to wy/w; = 0.75 and w; = w
based on relaxed band structure calculations [5, 6]. This acknowledges the empirical
fact that Bernal-stacked graphene is the energetically favored stacking arrangement in
untwisted bilayer graphene. While varying the twist angle changes the ratio wg/w
(as in Refs.[5, 6]), for simplicity we fix this ratio to take that of the clean twist angle
(wo/wy = 0.75) throughout.

We compare the lattice model with the continuum model in Fig. 4.3(b,c,d). We find
good agreement between the two models over a rather broad energy range even beyond
the low-energy miniband. In particular, we find that the TBG gap and Dirac velocity
are well-produced by the lattice model, see the insets in Fig. 4.3(c,d) . However, a
direct comparison at the magic angle condition (w = 0.11 eV and 6§ = 1.05°) reveals
that the mini-bandwidth is slightly overestimated within the lattice model. We further

notice that beyond the “magic-angle” (i.e. smaller angle 6 at fixed w; or larger interlayer
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tunneling w; at fixed § = 1.05°), the lack of symmetries leads to disagreement with the
continuum model (not shown). As a result, we restrict ourselves to the regime where
the dimensionless parameter w;/(kgvr) is below or at the “magic” value where the
discrepancy between the continuum model and the effective lattice model is minimized.
Here, we achieve this by focusing on fixing the clean twist angle to # = 1.05° and limit
the interlayer tunneling to w < 0.11eV. In this regime, our model captures the TBG
electronic structure very well and should be a quantitatively reliable model. This is
also the regime of current experimental interest.

These effective models are rather natural as most twist angles are not commensurate,
and hence, a quasiperiodic incommensurate background potential should have effects
very similar to the moiré potential induced by the twist angle. In fact, twisted bilayer
graphene at a large twist angle (~ 30°) has recently been used to form quasicrystals [159,
139], and renormalized but stable low-energy Dirac excitations have been observed [139],
supporting the idea of an incommensurate quasiperiodic potential mimicking the twist-
angle moiré superlattice. These simpler quasiperiodic models exhibit a similar magic-
angle condition where the velocity of the Dirac cone vanishes continuously. In addition,
the formation of minibands with large gaps and a strongly renormalized velocity that
can be seen to clearly vanish without having to resort to very large system sizes as in the
case of twisted bilayer graphene. Therefore, we supplement our calculations on twisted
bilayer graphene with similar disorder calculations on a quasiperiodic “toy” model to
determine how our choice to model twist disorder impacts our results (see Section 4.5).
The two models produce similar results on disorder effects.

In the following, we model the effect of a non-uniform twist by breaking the system
up into four equal sections, each having their own twist angle 8 with sharp domains
between them, as depicted in Fig. 4.2(d). We first choose random phases ¢; in the
interlayer coupling (this reflects different centers of origin for the twist). In what follows,
we take a uniform random phase in the TBG calculations as this seems to be the most
physically sensible starting point provided the twist angle is not sufficiently small, which
would induce significant lattice relaxation [5, 160, 6]. The 6 in each patch is sampled

from a box distribution around a central value § € [(1 —Wg/2)6y, (1 + Wg/2)60y] where
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Figure 4.4: The effects of twist disorder on the low energy density of states. The density
of states p(E) as a function of energy F for a clean twist angle # = 1.05°, linear system
size L = 569, and a KPM expansion order of No = 2'7 starting in the semimetal
regime of the the TBG model (Top) as well as in the magic-angle regime (Bottom), for
different twist-disorder strengths Wg (that characterizes the width of a box distribution
[(1—Wg/2)0,(1 + Wg/2)0] with § = 1.05° from which we sample the random twist
angle in each patch). In each case the randomness smoothly fills in the gap while also
smearing out the Van Hove peaks. The insets in the bottom two figures is a zoom in
of the band gap that clearly fills in with increasing disorder.

we express Wg as a percentage and we fix 0y = 1.05°. For twist angles that are small
and near the “magic-angle,” the moiré unit cell includes roughly 10,000 atoms in each
layer. Numerically, we can reach on the order of 36-49 unit cells containing up to
500,000 atoms. This should suffice for our purpose of studying random twist angle
disorder effects since the disorder is essentially local in nature. However, to confirm
these disorder calculations we consider a related model in Section 4.5: a model which
can numerically include an order of magnitude more unit cells. That model has the
same features as TBG (the formation of a semimetal miniband and a vanishing velocity
at a critical potential strength), confirming the picture presented here. It is gratifying
that we get very similar results in the two models (Section 4.5), thus justifying our

investigation of twist-angle TBG disorder.
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Figure 4.5: Summary of results on the miniband properties in the TBG model with a
clean twist angle 8 = 1.05° extracted from system sizes L = 569 and a KPM expansion
order N¢ = 2'7. (a,b) The estimated gap size Ay as a function of disorder strength
in the twist angle Wg and the interlayer tunnelings w (where w = w; and the ratio of
AA and BB tunneling to AB and BA tunneling is wo/w; = 0.75). (c,d) The velocity
v/v(w = 0) as calculated from the density of states as a function of disorder Wx remains
approximately unchanged in the presence of disorder Wg (for each value of w). (e,f)
The minibandwidth Dyp for interlayer tunneling w and disorder Wg. Note that for
larger disorder strength (Wgr = 6% or above) in (e) the bandwidth appears to plateau;
this is just an artifact arising from disorder completely filling out the gap at this point.
While the gap and bandwidth are strongly affected by disorder, the velocity remains
unchanged. The red dashed line in (f) that sets the maximum that the minibandwidth
can achieve, is determined from the gaps in (b).

We focus on the density of states (DOS), that is defined as

(4.6)

o) = 1 | D208 - B

where [...] denotes an average over disorder, phases, and twists in the boundary con-
dition. In what follows we average over 100 disorder samples. In order to reach large
system sizes we use the kernel polynomial method (KPM) to compute the density of
states through an expansion in terms of Chebyshev polynomials and we use the Jackson
Kernel to filter out oscillations due to truncating this expansion to an order N¢ [4]. In
the following, we focus on a linear system of L = 569 and a KPM expansion order rang-
ing from N = 23 up to 2'7. This should give us an essentially exact nonperturbative
evaluation of the TBG DOS in the presence of twist disorder.

From the density of states we extract an estimate of the renormalized velocity of
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the Dirac cones, using the scaling for two-dimensional Dirac cones with velocity v,
1
p(E) ~ —|E — Ep| (4.7)

near the Dirac nodal energy Ep and we extract an estimate of v through a fit of the low-
energy density of states. We mention that the Dirac cone approximation is only valid
at low TBG energies well below the Van Hove singularities, and hence our extracted
Dirac cone velocity applies only at low energies. Despite the expectation that disorder
will induce a small but nonzero density of states at Ep, we can still use the scaling in
Eq. (4.7) to provide an estimate of the renormalized velocity. To quantify the effect
of disorder on the Van Hove peaks in the DOS we make a qualitative estimate of the

“BCS superconducting transition temperature” from the DOS through

1

1o () )
where Eyp is the location of the Van Hove (vH) peak in energy, we take an electron-
phonon coupling g = 1, and 7, is in units of eV for the TBG model. We stress that we
by no means are claiming electron-phonon interaction is the origin of superconductivity
in twisted bilayer graphene (although we do not rule out this possibility either). We
are only using Eq. (4.8) as a qualitative measure of how disorder smears out the Van
Hove peaks, which reduces the largest possible mean-field critical temperature in the
miniband within BCS theory. One should think of the effective 7, in Eq. (4.8) as a
measure of the effective nonperturbative coupling induced by the vH singularity, and
Eq. (4.8) is a simple quantitative approximation to estimate the effect of twist angle
disorder on the vH singularity expressed in units of energy (i.e. coupling strength). The
fact that this formula coincides with the BCS formula for the superconducting transition
temperature is a matter of convenience in this respect. Any other such formula should

provide the same qualitative results although the quantitative details will depend on

the specific form of the chosen formula.
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4.4 Results

To begin, we first discuss the effects of a random twist angle in the effective TBG
lattice model. Since the twist shows up explicitly in the interlayer tunneling term, ran-
domness appears solely in this part of the Hamiltonian. However, interlayer tunneling
either occurs between equivalent sites or nearest neighbors (on the triangular Bravais
lattice) between the two layers. This is due to Ty and 7; terms in Eq. (4.4), and thus,
randomness in the twist angle will induce contributions from both of these terms.

The miniband that is formed due to the twist can be characterized by the following
independent and complementary quantities: (1) the size of the energy gaps (mostly at
‘higher’ energies at the miniband edges) separating it from the rest of the states, (2) the
effective low-energy velocity of the Dirac cones in the minizone, (3) the minibandwidth,
and (4) the size and shape of the Van Hove peaks (which are strongly enhanced due
to the formation of the miniband itself before disorder is taken into account). These
features are all summarized in Fig. 4.1.

First, as shown in Fig. 4.4, disorder destabilizes the integrity of the miniband that
is created due to the twist. When the gaps first develop, they appear at energies
~ vpkp sin(6/2) and their size is perturbatively controlled by wy = w. As the figure
shows, the gaps become soft due to averaging together different patches of random
twist angles. We extract the miniband (MB) gap Ayp for various values of interlayer
tunneling (w; ) and disorder strength, as shown in Fig. 4.5(a,b). Increasing the interlayer
tunneling and approaching the magic-angle condition makes the semimetal miniband
more pronounced and stable by increasing the size of the gap, which is maximal near
w = 0.1eV. Introducing finite disorder makes these gaps soft and the average band
gap fills in monotonically with increasing disorder. Eventually, the gap is filled in
completely, which we find occurs roughly for Wi = 6% of the clean twist angle, and
there is no longer a clear separation between the miniband and the rest of the states.
This effect is clearly visible in experiments, as the band insulating gap is destroyed (e.g.
as seen in Ref. [97]). The sensitivity of the gap to disorder in the twist angle is rather

intuitive, as the location of the gap is dictated by the scattering between the Dirac
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nodes of equal chirality but different layers, and the energies that mix to open a gap
are determined by 6, whereas the size of this gap is dictated by w. But the fact that
the primary insulating gap at the full filling of the moiré miniband may be completely
suppressed by a twist-angle disorder as small as just < 10% is non-obvious— naively
on perturbative grounds one may expect a relative disorder of the order of unity (i.e.
100%) in order to completely suppress the gap. Clearly, the miniband insulator is very
sensitive to twist-angle disorder, and this may be the reason why the measured gaps
vary quite a bit from sample to sample even for nominally fixed twist angles.

Second, we discuss to the features of the miniband which presumably drive strong
correlation effects, namely the renormalized Dirac cone velocity v [Fig. 4.5(c,d)] and the
size of the minibandwidth Dy [Fig. 4.5(e,f)]. Surprisingly, we find that the Dirac ve-
locity is remarkably robust to disorder and while it is strongly suppressed for increasing
w (as expected since this is an effective decrease of the twist angle), increasing disorder
enough even to fill in the band gaps and suppress T, completely is not sufficient to
modify the effective velocity which maintains its clean value in a robust manner even
in the highly disordered situation. As shown in Figs. 4.5(c,d), the effective velocity
extracted from Eq. (4.7) does not renormalize until the disorder is very large; in par-
ticular, Fig. 4.4 demonstrates that the low-energy scaling of the DOS p(E) ~ |E — Ep|
remains robust for a range of disorder with an unmodified slope. Close to the magic-
angle regime (w = 0.11eV), the vanishing of the velocity is becoming rounded out;
however to see this develop for a large disorder range is challenging as we are limited by
the energy resolution needed and therefore we only present results for disorder strengths
where the scaling in Eq. (4.7) is clearly visible. In any case, close to Oniagic, the whole
concept of a velocity becomes dubious as the TBG basically is a completely flatband
system with essentially no energy regime available for the Dirac cone approximation to
apply.

The minibandwidth Dyp is similarly substantially reduced as we approach the
magic-angle regime, as shown in Figs. 4.5(e,f). However, disorder both fills in the
band gaps [Figs. 4.5(a,b)] and also broadens the minibandwidth which we we are able

to track provided the band gaps have not completely filled in [that we mark with a
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red dashed line in Fig. 4.5(f)]. The effect of disorder on the minibandwidth is much
stronger than the effect on the velocity, and we expect disorder may reduce the strength
of correlations by broadening the size of the miniband. It will not, however, have a very
large effect on the Dirac velocity for weak disorder. We believe that such effects of dis-
order strongly suppressing correlation effects in the system (by effectively broadening
the minibandwidth) are already apparent in the experimental samples since the insu-
lating gaps (i.e. the correlated insulator phase) at commensurate fractional filling of
the miniband often do not show up in many samples, and when they do, the typical
correlated insulating gap energies are often rather small and vary strongly from sample
to sample.

While the gap and hence minibandwidth are strongly affected, disorder also has
an effect on the finer features of the minibands. The effects of twist disorder on the
Van Hove peaks are captured quantitatively in Fig. 4.6. Van Hove singularities in
2D have a logarithmic singularity and thus should diverge with system size p(Eym) ~
log L. However, in our KPM calculations, we expect that the finite expansion order
(N¢) produces a larger finite size effect than the system size. Therefore, we study the
scaling of the Van Hove peaks with the KPM expansion order in Fig. 4.6(a). This
clearly demonstrates that the 2D logarithmic vH singularity, manifesting the scaling
p(Eyn) ~ log N¢ in the clean limit, becomes rounded out due to disorder and no longer
diverges with increasing N¢. Interestingly, however, the location and separation of the
Van Hove peaks is very insensitive to disorder as shown in Fig. 4.6(b). Despite the
average location of the Van Hove peaks remaining fixed, disorder broadens them out
as we show in Fig. 4.6(c) by computing the full width at half maximum (FWHM). Not
only does this figure demonstrate that the FWHM of the vH peaks strongly decreases
with increasing w it also shows that the effects of disorder on the vH peaks are much
stronger for smaller w away from the magic-angle regime. This subtle effect of twist
angle disorder on the vH peaks is rather non-obvious.

To study disorder effects on the Van Hove peaks in more detail we extract an
estimate of the mean-field BCS superconducting transition temperature from Eq. (4.8)

due to the DOS at the Van Hove peak energy. We show the effects of interlayer tunneling
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Figure 4.6: The effects of twist disorder on the properties of the Van Hove peaks for a
clean twist angle 6§ = 1.05°, a linear system size L = 569, and a varying KPM expansion
order (N¢) in (a) whereas in (b,c,d) we use No = 2!7. (a) As we scale the Chebyshev
expansion order, we see that the Van Hove peak is logarithmically divergent (with a fit
shown as a black dashed line), but once we add disorder, it rounds out and saturates
to a finite value. (b) The energy separation between Van Hove peaks remains stable as
disorder increases even though we find (c) that the full-width half-max (FWHM) of the
Van Hove peaks becomes broader as disorder increases. (d) The estimated BCS critical
temperature or the effective coupling constant [see Eq. (4.8) in the main text] from the
density of states at the Van Hove peak as disorder is tuned up for various values of w.

and disorder on T, in Fig. 4.6(d). Since the Van Hove peaks are strongly affected by
w, we normalize T, by its value in the clean limit to compare our disordered results for
each value of w. In the absence of randomness, shown in Fig. 4.3(a), as we increase w
the minibandwidth shrinks, pushing the same number of states down to a lower energy
scale, which in turn enhances the Van Hove peaks considerably. Upon introducing the
twist disorder, T, is suppressed, and this effect, rather unexpectedly, is most pronounced
for weak interlayer tunneling strengths, whereas for w close to the magic-angle condition
(w=0.11eV for  ~ 1.05°) we find T, is not as strongly affected by weak disorder in

comparison.
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Figure 4.7: (a) The calculated density of states p(E) as a function of energy E for
the spin-orbit coupled model of Dirac points perturbed by a quasiperiodic potential,
with a quasiperiodic wavevector ) = 2w F,,_o/F,, with the system size L = F,, = 144
and a KPM expansion order No = 2'4. (b) A depiction of how we break up the SOC
square lattice model into regions of different quasiperiodic wavevector @; (to simulate
disorder), which are taken from a box distribution about a central value. We vary both
the number of regions and the size of disorder in each region.

4.5 Spin-orbit coupling model

In addition to the lattice model of twisted bilayer graphene in previous sections, the
second disordered TBG-like model we study is a two-dimensional tight-binding model
with spin-orbit coupling (SOC) in the presence of a quasiperiodic potential, which is
defined the same way as Chapter 3 as
Hsoo =3 3 (itxfouxess +he) + 3 V. (4.9)

ru=z,y r
where t is the hopping strength, the lattice spacing is set to unity, xr denotes a two
component spinor of annihilation operators, and o, are the Pauli operators. We mimic
the effect of a twist through a quasiperiodic potential

V(ie)=W Z cos(Qry + ¢p), (4.10)

H=zy

of strength W, an incommensurate (or quasiperiodic) wave-vector @, and ¢, is a ran-
dom phase sampled between 0 and 27w. We average over twisted boundary conditions
to reduce the finite size effects. The goal of using this second model is to test the uni-
versality of the conclusions we reached in the main text using the TBG lattice model.
Note that for the DOS computed in the SOC model we normalize the DOS in Eq. (4.6)

by a factor of 2L? as opposed to 4L? to account for the smaller local Hilbert space.
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Figure 4.8: The disorder-free density of states p(E) as a function of energy E obtained
from a linear system size L = 144 and a KPM expansion order No = 2'4 starting in
the semimetal regime of the model, comparing the case of a fixed random phase across
the entire sample (b, d) and a different random phase in each patch (a, c) for different
strengths of disorder in the wavevector and np = 7 randomly placed patches. Note
that the random phase in each patch is disordered even for Wg = 0.
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The effect of the quasiperiodic potential on Dirac points is similar to twisting two
layers of graphene [7]. As shown in Fig. 4.7(a) for a large enough value of W, a
semimetal miniband forms with a renormalized velocity, sharp Van Hove peaks, and
hard gaps separating it from the rest of the spectrum. Importantly, the SOC model has
the great advantage that the formation of minibands, a hard gap, and flat bands are
clearly visible on much smaller system sizes compared with the effective lattice model
of TBG. Here, it is sufficient to consider system sizes of L = 144 or larger to see these
effects, whereas in the TBG model the minimum number of sites required to form a
clear miniband is at least a linear system size of L = 300.

In the calculations of the TBG model we broke the system into four squares of equal
size, which was for simplicity of modeling while being able to correctly capture the
formation of the miniband by keeping each patch sufficiently large. We now investigate
the effects of making the size and shape of these regions random as well as increasing the
number of random patches np, something that the computational demands of the lattice
TBG model did not allow us to do. We divide the L x L lattice into (np)? domains,
by cutting it through np — 1 vertical and np — 1 horizontal lines which are randomly
located. Each domain i is given a quasiperiodic wavevector and phase [Q(i), ¢,.(7)], as
illustrated in Fig. 4.7 (b). We introduce randomness in @ in a similar way as in the
main text, such that Q(i) = Qo+0Q; where Qo = 2nF,_o/F,, F, is the nth Fibbonnaci
number, and we take the system size L = F}, so that (g is a rational approximant to
the irrational number 2m(2/[v/5 + 1])2. In each domain (or patch) 6Q; is taken from
a uniform distribution around Qo, i.e. Q(i) € [(1 — Wg)Qo, (1 + Wo)Qo] and Wy is
expressed as a percent (similar to the random disorder W in the main text). For the
results on the SOC model we average over 300 disorder samples.

In order to understand the role of taking a uniform phase [¢; in Eq. (4.5)] in the
TBG calculations we consider choosing the phase in each patch ¢, (i) in two distinct
ways, which are: (A) One global phase ¢,(i) = ¢, which is equivalent to our set up in
the TBG model. (B) In each patch, the phases ¢, (i) are independently picked from
a uniform distribution [—7, 7], which amounts to a disorder potential even for a fixed

wavevector across the sample. Option (A) has no discontinuity in the phase across the
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Figure 4.9: Density of states as a function of energy in the semimetallic regime of the
SOC model focusing on the miniband at low energy using a linear system size L = 144
and a KPM expansion order No = 214, We focus on the effects of the different number
of random patches used for various different disorder strengths in the quasiperiodic

wavevector Wg from W = 0.35. Here we are taking one global phase across the sample
to isolate the effects of randomness in ) and choice of patches alone.
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Figure 4.10: Density of states as a function of energy in the magic-angle regime (W =
0.54) of the SOC model focusing on the miniband at low energy with a linear system
size L = 144 and a KPM expansion order No = 2. We are displaying the effects of
different number of patches of a random wave vector across the sample.
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Figure 4.11: The estimated critical temperature (or effective coupling— see Eq. (4.8)
in main text) from the Van Hove peaks in the DOS as a function of randomness in
the twist vector comparing two choices for the random phase for different number of
randomly placed patches. (a,b) One fixed phase, corresponding to a single rotation
origin. (c,d) Random phases ¢, (i) in each block. The left panels are W = 0.35 in
semimetal phase, while the right panels are W = 0.54 at the magic-angle. Random
phases in each block produce very strong randomness in the model and smears out the
Van Hove peaks more easily. (e) The critical temperature T, with random phases ¢, (%)
in each block but without randomness in @, as function of number of patches ng, and
normalized by T, with only one patch. (f) The gap size as function of randomness.
Comparing to the suppression of T, the gap is filled in for W ~ 0.5%, which is much
smaller than the critical W (~ 10%) needed for Van Hove peaks to be smeared out.
These results are obtained from data using a linear system size L = 144 and a KPM
expansion order Ng = 2.
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boundaries of each patch. Note that because of the variation in @Q, even fixing ¢, (i) = ¢
to be one global phase does not enforce a continuous boundary condition across patches.
The most random choice we can make is through option (B), which means any phase
can be chosen on each patch, with no restriction. In this case there is a sharp jump
of the potential across all of the patches. In particular, when the number of domains
approaches the number of sites, the quasiperiodic potential turns into random disorder
potential. The “randomness” of option (B) is clearly the strongest and is not controlled
by the parameter Wg. This is demonstrated in Fig. 4.8, which shows that randomness
in the phase smears out the fine features of the density of states and fills the gaps in
more easily and is qualitatively similar to the case with a fixed phase. Thus, randomness
in the phase is not essential to include to study disorder, and in the following we will
mainly focus on keeping the phase fixed throughout the sample.

To understand the effects of a finite number of patches we present results in the
semimetal (W = 0.35t) and magic-angle (W ~ 0.54t) regime of the SOC model (see
Ref. [7]) in Figs. 4.9 and 4.10. A clear trend in all of the results is that increasing
the patch number enhances the randomness, which effectively increases the strength
of disorder. This is demonstrated in Fig. 4.11 by the gaps becoming soft for weaker
disorder strength, as well as an increased rounding of the Van Hove peaks as we increase
the number of random patches. Eventually, at large enough disorder in the wavevector,
any remnant of the semimetal scaling regime is destroyed, as shown in Fig. 4.9. In
the magic-angle regime as shown in Fig. 4.10, which has a small miniband and a large
density of states at the Dirac node energy, we find that disorder systematically broadens
the size of the minibandwidth while also smearing out the structure of the DOS at
finite energy. Similarly, increasing the number of random patches effectively increases
the strength of disorder.

We capture the effects of disorder on the Van Hove peaks through T, [see Eq. (4.8)
in the main text for the definition of T, which is simply an effective coupling constant
inspired by the BCS theory|, which is shown in Fig. 4.11 for wavevector disorder.
We find that disorder reduces T, monotonically, however when compared to the main

insulating gap isolating the miniband we find that the Van Hove peaks are relatively
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Figure 4.12: Effects of disorder on the renormalization of the velocity of the Dirac
cone and the minibandwidth using a linear system size L = 144 and a KPM expansion
order No = 2. (a) Effective velocity of the Dirac cone and how it is rounded out
due to randomness in the wavevector. The finite velocity in the magic-angle regime
for Wg = 0 is just a finite size effect [7]. (b) Minibandwidth as a function of disorder
in the quasiperiodic wavevector, which monotonically broadens for increasing disorder
until the gap is filled in and the miniband is no longer separated from the rest of the
band (marked as dashed lines). We include both W = 0.35 for semimetallic phase and
W = 0.54 for the magic-angle regime. Note that we have set t = 1 here.

much more robust than the main miniband gap. This features is distinct from what
we saw in the case of TBG in the lattice model (main text), where T was suppressed
more strongly than the gap. Given this dichotomy, we believe that the lattice model
should be trusted more in capturing the Van Hove physics of real TBG, and thus, T,
is likely to be suppressed more than the main insulating gap in the presence of TBG
twist disorder.

We now turn to the effects of wavevector disorder on properties of the Dirac ve-
locity and the minibandwidth, as shown in Fig. 4.12. The velocity that vanishes in

the magic angle regime is rounded out and remains finite due to the finite disorder
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strength. Away from the magic angle regime, the effects of disorder on the velocity
remain weak. Moreover, the minibandwidth broadens with both increasing disorder
strength and the number of patches until the gaps are completely filled. This is consis-
tent with the behavior of the TBG model in the main text, namely that twist disorder
weakly effects the velocity and increases the size of the minibandwidth, and the lat-
ter effects weakens the strength of correlations in the miniband. Thus, both models
predict a universally robust disorder-resistant Dirac cone velocity at low energies and
a considerable disorder-induced broadening of the minibandwidth, thus weakening the

correlated insulator phase.

4.6 Discussion

First, we discuss our approximations in incorporating twist-angle disorder effects in the
otherwise defect and impurity free clean twisted bilayer graphene. Using an effective
model for twisted bilayer graphene we have theoretically investigated effects of twist
angle disorder nonperturbatively by breaking the system into four separate equally sized
squares each with a random twist angle around a mean value of 8y = 1.05° close to the
magic angle. To understand the effects of our choice of modeling twist disorder with four
equal sized squares, in Section 4.5 we analyze a simpler model to determine the effects of
this patching scheme. By breaking the system into randomly sized rectangles with each
having a different twist value we show that our qualitative results are robust. Increasing
the patch number as well as changing the size and shape introduces more randomness
into the system and increases the effective disorder strength overall. Therefore, the
amount of randomness in each sample is a function of both the random distribution
and the number of patches. Here, we want to ensure that each patch has enough sites
in it to host a well defined low-energy semimetallic miniband at the magic-angle regime
(w=0.11 eV and € ~ 1.05°) and therefore have focused on 4 squares and total linear
system size L = 569 (in terms of Bravais lattice sites). Increasing the number of squares
or modifying the shape will only introduce more randomness into the system.

We have introduced an effective lattice model of twisted bilayer graphene that is
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local, only requiring nearest neighbor (on the triangular Bravais lattice) interlayer hop-
ping terms which already captures many of the features of the continuum model [154, 2],
such as the miniband gaps, Van Hove peaks, as well as the velocity and minibandwidth
renormalization. The model we have used maintains the CyT" symmetry but breaks the
C3 symmetry. As a result, the velocity and minibandwidth renormalization are affected
in the magic-angle regime, which leads to a non-vanishing velocity and an overestimate
of the minibandwidth. Moreover, the model also introduces fine structure into the Van
Hove peaks that we attribute to additional zone folding that appears in the lattice
model. Despite these shortcomings, this lattice model does capture the qualitative be-
havior of the low energy miniband very well while remaining local and easy to work
with numerically. It is possible to construct an effective lattice model that preserves
the Cs symmetry and more accurately reproduces the continuum model in the magic-
angle regime with a true vanishing velocity. However, this requires a more non-local
interlayer hopping model keeping up to third nearest neighbor tunneling terms on the
triangular lattice, which will appear in Ref. [7] (our conclusions change little using this
more sophisticated model). In experiments on twisted bilayer graphene, the encapsu-
lating substrate as well as other forms of disorder break the Cs symmetry explicitly.
Therefore, we do not expect that the weak breaking of this symmetry in our effective
lattice model affects our conclusions on the qualitative experimental implications of
disorder in the twist angle.

Now we briefly summarize our main findings. Our results clearly demonstrate that
the low-energy scaling of the semimetal miniband p(E) ~ v~2|E — Ep| and the effective
Dirac cone velocity (v) are remarkably robust to disorder in the twist angle. While
this robustness slightly weakens in the magic-angle regime due to disorder eventually
rounding out the velocity minimum, we find that v is essentially disorder independent
for less then 15% of randomness in the twist angle. This result suggests that the
semimetallic scaling near the magic-angle regime should be clearly visible in transport
experiments that average over the whole sample. Indeed, our findings are consistent
with the experimental observations on twisted bilayer graphene that have observed a

robust “V-shaped” conductance minimum at charge neutrality [138, 97] that signifies
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that the semimetallic low-energy scaling persists in spite of the inevitable presence
of twist angle fluctuations in the sample. The existence of a low-energy Dirac cone
is protected against twist angle disorder. It is interesting to note that twisted bilayer
graphene samples that are “massaged” to remove bubbles that have formed in the “tear
and stack” approach exhibit an insulating phase at charge neutrality [147]. Presumably,
this procedure eliminates some of the twist disorder in the sample and, as a result,
domains of twist angle that still possess the semimetallic density of states no longer
contribute to the density of states near £ = 0. Thus, the suppression of twist disorder
comes with the price of a strong modification of the observed density of states at low
energies.

On the other hand, the minibandwidth is much more strongly affected by disor-
der, and Dy monotonically increases for increasing disorder strength until the gap is
completely filled in and the integrity of the miniband is lost. Similarly, we have found
that the insulating gap that separates the miniband from the rest of the states is com-
pletely filled in at weak disorder strengths (~ 6% of the clean twist angle). This strong
sensitivity of the single-particle gaps to twist disorder has been observed in Ref. [97]
by placing leads at different places in the sample and finding very strong variations in
the gap energies. We suspect that twist disorder will have an even stronger effect on
the gaps at the correlated insulator filling fractions. In particular, the increase of the
effective minibandwidth by twist disorder entails an effective lowering of the dimen-
sionless correlation strength (i.e. the effective U/t value in the Hubbard-type models)
since the Coulomb interaction energy (i.e. the effective U) should not be affected by
the disorder whereas the minibandwidth (i.e. the typical t) increases. These combined
results imply that disorder will reduce the strength of many-body correlations by in-
creasing the bandwidth of the miniband but will not affect the flatness of the Dirac
cones. This interesting subtle prediction of our nonperturbative theory may already
have support in the existing experiments since many otherwise high-quality TBG sam-
ples (i.e. made from extreme high-mobility graphene sheets) often manifest correlated
insulating phases that are very weak, and it is unclear why the correlated insulator

phase at commensurate fractional fillings is not universally seen in all TBG samples
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of nominally same quality at the same twist angle. We propose that the twist angle
randomness is responsible for causing sample to sample variations in the TBG physics
for the same average twist angles.

Last, the Van Hove peaks are a clear signature of the miniband in twisted bilayer
graphene experiments [104, 161, 105, 149, 150, 151, 152, 153]. Our results demonstrate
that the location of the Van Hove peaks of the miniband as well as their separation
in energy, which is minimized in the magic-angle regime, are essentially unaffected by
twist-angle disorder. Twist-angle randomness smears out the logarithmic Van Hove
singularity without affecting their locations in energy. As a result, the density of states
becomes an analytic function of energy and system size at the Van Hove peaks in the
presence of twist-angle disorder. We have qualitatively assessed the impact of disorder
on the mean-field BCS superconducting transition temperature in the miniband by
considering a Fermi energy at a Van Hove peak. We have found that twist disorder
strongly suppresses T, [as it is defined in Eq. (4.8)]. If the superconductivity in twisted
bilayer graphene is BCS like then our results suggest that samples with large amounts
of disorder in the twist angle will likely not superconduct. This is again consistent with
experimental observations where not all samples with similar twist angles manifest
superconductivity, and we speculate that this nonuniversality is connected with the

presence of variable twist-angle disorder in different samples.

4.7 Conclusion

In this work we construct an effective lattice model of twisted bilayer graphene which
we use to study the effects of disorder in the twist angle within a nonperturbative essen-
tially exact theory. We also investigate how our choice of modeling disorder affects our
results through a detailed investigation of a related but simpler model in Section 4.5.
It will be interesting in future work to incorporate larger and smoother domain walls
between different twist angles than we have considered here. We demonstrate how
randomness in the twist angle affects various properties of the low energy miniband
through numerically exact calculations of the density of states using the kernel poly-

nomial method. Remarkably, we show that the velocity of the Dirac cone is robust to



90

disorder, whereas the other features of the miniband are rather sensitive to randomness
in the twist angle. Last, we also discuss how the implications of our theory might al-
ready been observed out in existing experimental data and have given guidance for how
these disorder effects can be used to help understand the putative strongly correlated

effects seen in experiments.
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Chapter 5

Magic-angle semimetals with chiral symmetry

In chapter 3 we demonstrated the universality of magic-angle semimetals, and spelt
out the conditions under which any Weyl / Dirac node can be driven towards a magic-
angle transition. Despite of all the similarity across different models, there is clearly
the question of how symmetry affect the eigenstate phase transition we described. An
analogy that often helps when thinking about models with quasiperiodicity (QP) is the
Anderson localization with disorder (but keep in mind that the case of QP strongly
differ from the disordered case as no rare-region exist in QP). It is well understood that
symmetries [40, 37] dictate the universality class of conventional Anderson localization
transitions with disorder. In such classification, chiral symmetry play a vital role. In
this chapter, we deep dive into the particular case of incorporating chiral symmetry to
the 2D perfect spin-orbit coupling (SOC) model.

To retain chiral symmetry when adding quasiperiodicity, we apply the quasiperiodic
modulation through the hopping terms of the base model instead of through potential.
Using this model we will characterize the eigenstate phase transition that generates
finite density of states in more detail through both spectral observable and multifractal
analysis of the wavefunctions. Importantly, this study is a first step towards the task to
classify various classes within the universal “magic-angle semimetals”. We contribute
to the understanding of how such an eigenstate phase transition (EPT) depends on
the symmetries of the model, analogous to the story of conventional disorder-driven
Anderson transitions. For the case of disorder, the impact of various symmetry classes
has been well studied; but it has been unclear for the case of quasiperiodicity despite of
the many similarities between disorder and quasiperiodicity. The lack of rare-regions,

for example, definitively distinguishes the transition driven by quasiperiodicity from
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Figure 5.1: (a) Schematic phase diagram at the band center (E = 0) extracted from our
work. In the semimetal phase the linearly dispersing Dirac cone is stable in the low-
energy regime. In the chiral metal phase a band of hybridized zero modes qualitatively
explain the sparse (yet still delocalized) structure of the wave functions at the band
center. The point W = 1 is critical, with a diverging low-energy density of states, a
dynamic exponent z > 2, and multifractal eigenstates that obey Chalker scaling. (b)
The zero energy DOS p(0) for a linear system size L = 233 and No = 2'* and the
momentum space inverse participation ratio Ins(¢ = 2) at £ = 0 with Q = 27 F,,_o/L
and L = 144 versus the hopping strength W on a linear scale. (c¢) The low-energy
DOS p(FE) as a function of energy E for pure QP hopping (W = 1) for the case of real
and complex hopping amplitudes for system sizes L = 987 and L = 233 respectively.
For the real QP hopping amplitudes we find the zero energy density of states diverges,
which is cut off by the finite KPM expansion order N¢, here we take No = 216.

those by random disorder.

In addition, the chiral symmetry introduces drastically more flat band at the magic-
angle transition with curious connection to topological zero modes. The commensurate
limit of the model also manifest intriguing example of higher-order topological insula-
tors.

The rest of the chapter is organized as follows. In Sec. 5.1 we introduce the QP
hopping model. In Sec. 5.2, we summarize the main observables of interest, while in
Sec. 5.3 we present, in detail, our numerical and analytical results. We discuss the
experimental aspects of realizing the theory in Sec. 5.4 and summarize our results and
the remaining open questions in the conclusion, Sec. 5.5. The details of the numerical

method has been discussed in Chapter 2 and will only be briefly mentioned here. In
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Sec. 5.6 we analyze commensurate limits of the model that can be described as a higher-

order topological insulator.

5.1 Model
The general form of the Hamiltonian that we focus on can be written as
IA{:To—i-TQp, (5.1)

where T denotes a bare, translationally invariant hopping model and T, QP is the non-
trival part of the model that has the QP structure. The model we consider is on the
square lattice and the bare hopping model is given by

To= Y it/ oue +He, (5.2)

=T,y

where ¢ is the bare hopping amplitude between site r and r + fi, 0., are the Pauli
matrices, and 1, is a two-component spinor of annihilation operators. The dispersion
relation for Ty is Eo(k) = +2t,/sink2 + sink2, which contains four Dirac points at
(0,0),(0,7), (m,0), and (7, 7), and a low-energy density of states (DOS) p(E) ~ |E|.
Thus, this spinful model on the square lattice describes a two dimensional semimetal
with linearly dispersing excitations. It is the 2D SOC model studied in the previ-
ous chapter. This model naturally captures the universal low-energy physics of two-
dimensional semimetals and is convenient for performing both analytical as well as
numerical calculations. It is important to realize that, on the single-particle level, the
model in Eq. (5.2) describes the direct sum of two 7-flux models (see Chapter 3 which
are readily implemented using shaken optical lattices [119]. And indeed, much of our

analysis and conclusions apply equally well for a single copy of pi-flux.

5.1.1 Quasiperiodic perturbation

The QP part of the Hamiltonian on the square lattice is given by

Top =Y iJu(@)¢] o + He., (5.3)
U=,y
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where J,(r) is the QP hopping amplitude between site r and r + fi. We construct
the hopping matrix elements by considering a two-dimensional surface [e.g. cos(Qz) +
cos(Qy)] with a quasiperiodic wavevector @) (i.e. incommensurate with the underlying
lattice) that we evaluate at the mid-point of each bond on the lattice, this yields
Ju(r) =W Y~ cos[Q(ry + - 0/2) + 0], (5.4)
v=a,y
where () is an incommensurate wavevector, ¢, and ¢, are random phases sampled
uniformly between [0, 27] that are the same at each site, and we have set the lattice
spacing to unity. We take the linear system size to be given by a Fibonacci number
L = F,, and take a rational approximate for the QP wave vector Q = Q = 27 F,,_2/L
(unless otherwise stated) such that as n — oo, Q/2m — 4/(v/5 4+ 1)%.
In order to reach the pure QP hopping model with finite model parameters we find

it convenient to parameterize the bare hopping to be given by

t=11-W2, (5.5)

such that at W =0, H — Ty and for W =1, H — TQP. To test for the possibility of
a divergence in the low-energy DOS it is ideal to start from a semimetal model where
we know a priori there is (strictly speaking) zero DOS in the bare model, thus any
potential finite or divergent DOS we find is strictly due to the QP hopping. In the

following, the hats are dropped for operators when its meaning is unambiguous.

5.1.2 Commensurate limit and higher order topological insulator phases

In a commensurate limit, the model in Eq. (5.1) can realize a higher order topological
phase. Higher order topological insulators have a gapped topological bulk as well as
a gapped topological surface. This induces corner modes in two-dimensions and hinge
modes in three-dimensions [162]. In particular, in the present model for Q = 7n/2 for
n = 1,3 (n = 2) the hopping is commensurate with a sixteen (four) site unit cell and
perfect nesting induces a gap at the Dirac nodes. As a result, the model realizes a
higher-order topological insulator phase for a sufficiently strong W, which we describe

in more detail in Sec. 5.6. We will sketch the results in this subsection.
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As a concrete example, for () = m we analytically show that the model we consider
is a quadrupole topological insulator [162, 13] (QTI). The hopping for @ = 7 induces
a two-sublattice unit cell. The Bloch Hamiltonian is then h(k) = W(cos(ky)Tz00 —
sin(ky)1yo, — cos(ky)myoy — sin(ky)myo,) + Eo(k)T.00, where o, 7 are Pauli matrices
parametrizing an effective 4-dimensional Hilbert space, see Sec. 5.6. Interestingly, this
Bloch Hamiltonian is equivalent to the QTI model in Ref. [162] without intracell cou-
pling for W > 0, and as we demonstrate in Sec. 5.6 this phase has topological corner
modes at zero energy that lie within the surface and bulk band gap.

More generally, in Sec. 5.3.1 and Sec. 5.6 we show similar higher-order topological
insulator (HOTI) behavior also show up when @ = 27mm/n, where n is an even factor
of L, and ged(m,n) = 1. These can be interpreted by considering a unit cell of n? sites.
For larger n, there are fewer unit cells in our finite size calculation, making the HOTI
character more challenging to observe. Interestingly, in a similar vein, recent work on
twisted bilayer graphene predicts the existence of HOTT with large twist angles [163]. It
is interesting to note that the quasiperiodic model we investigate here can be regarded

as tuning away from a higher-order topological phase via an incommensurate flux.

5.2 Observables

We solve the Hamiltonian in Eq. (5.1) using a combination of numerically exact meth-
ods, mostly discussed in Chapter 2. To compute the DOS and wave packet dynamics
we use the Chebyshev expansion techniques including the kernel polynomial method
(KPM) [4, 164], which allows us to reach sufficiently large system sizes (L = 987 is the
largest system size considered here). In addition, we obtain wavefunctions via Lanczos
or exact diagonalization. In this section, we summarize the observables used in this
chapter, with some extended discussion of the ones not heavily used in the rest of the

dissertation.
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5.2.1 The structure of eigenvalues

To study the transition out of the semimetal phase and the effect of strong QP hopping,
we compute the average density of states (DOS) p(E) averaged over random phases
and twists. The KPM expands the DOS in terms of Chebyshev polynomials up to
an order N, which together with system size L serves as the main finite size effects
that we consider in the numerics. We use twisted boundary conditions by augmenting
the hopping terms with a phase. We average over random twists and phases sampled
uniformly between [0, 27] (for over 500 samples on each data point). In certain regimes

of the model we use the power law scaling of the low-energy DOS
p(E) ~ | B|¥* (5.6)

to extract the dynamic exponent z.

The finite KPM expansion order leads to a broadening of the Dirac delta functions
in the definition of the DOS [see Eq. (2.1)] into Gaussians with a width 0E = 7D /N¢
for a bandwidth D (this holds for the Jackson kernel [4] that we are using for all of the
calculations presented here). Thus, we also use the scaling of p(E = 0) with N¢, where
Eq. (5.6) implies that p(E = 0) ~ (Ng)'~%#, to analyze the scaling of the low-energy
density of states.

We also consider typical DOS (Eq. 2.21) to study the real-space localization proper-
ties of the model. In the thermodynamic limit, the typical density of states is non-zero
in the extended phase and will go to zero in an Anderson insulating phase, which thus

serves as a diagnostic for real-space localization.

5.2.2 The structure of eigenstates

We connect the physical properties of the model to its low-energy eigenstates by study-
ing their structure in both real and momentum space. The semimetal phase is charac-
terized by stable plane-wave states that are localized in momentum space. As shown in
Refs. [87, 7], a unique feature of the “magic-angle” semimetal to metal transition is that
it coincides with a delocalization of the momentum-space wavefunctions. This implies

that the critical momentum-space wavefunctions are developing non-trivial structure
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that we should be able to describe using methods to treat localization transitions in
real space.

The properties of the probability distribution of an eigenstate can be characterized
by a multifractal analysis [75, 37]. We “coarse grain” real-space wavefunction (1)) with
its resolution controlled by a binning size b > 1, and define inverse participatiion ratio
(IPR, as elaborated in Chapter 2) on the coarse-grained wavefunction so that we have

generalized IPR as a function of binning size b

b Tr(q)
Ir(E;q,b,L) = Z]wbEX <L> , (5.7)

The dependency on b then allows extracting multifractal exponent 75(q). We take
the conventional b = 1 and ¢ = 2 for studying the second IPR as a proxy of spatial
ergodicity /non-ergodicity in a wavefunction.

Moreover, the multifractal analysis is generalized to momentum-space wavefunctions
and focus on the Dirac node energy F = 0 and therefore drop the energy label. Similar
to our work in Ref. [7], we Fourier transform the zero energy wavefunction from real
to momentum space ¢(k) = (1/L) Y., e ™*¥(E = 0,x). Then, we set up momentum-
space boxes of size B and the binned wavefunction (¢p) in momentum space. We note
that the box size B in the momentum space determines the effective infrared scale while
b in real space is related to the effective ultraviolet scale. The momentum-space IPR

and multifractal exponent are given by
2 B T (q)
Tr(q, B,N) Z|¢B ]2 o <N> : (5.8)

where Zps(q, B, N) is the ¢th momentum-space IPR with a momentum binning size
B, a linear size of the momentum grid N = L, and we use a subscript M to denote
momentum space. Using this definition we can study localization transitions in mo-
mentum space by either fixing ¢ = 2 (Ref. [87]) or in more detail by analyzing the
behavior of the multifractal exponent 7as(q) (Ref. [7]). Taz(q) also obeys the conditions
™m(@=0)=—-d=—-2and 7y(¢g=1) =0.

The multifractal exponents 7r(q) and 737(q) provide systematic ways of character-

izing the properties of the wavefunction probability distributions in the in the real-
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and momentum-space bases respectively. For a plane wave in real space, the spectrum
is simply 7r(q) = 2(¢ — 1), i.e. a straight line. The corresponding momentum-space
wavefunction generically contains a few of sharp peaks (due to a linear combination
of the degenerate eigenstates) and is characterized by 7as(q) = 0 for ¢ > g. where the
termination value g. > 1, indicates a “frozen” spectrum [37]. In the limit of a single
peak, the spectrum is reduced to a localization spectrum with g. — 0. We will focus on
an “unfreezing” transition in 7ps7(g) which is related to the semimetal-metal transition.

Lastly, we test for Chalker scaling by defining a two-wavefunction correlation func-

tion as follows [165, 166, 167, 168]:

C(E) =) e, (x)Plve(x)?, (5.9)

where FEy is a reference energy and g is the eigenstate with energy E. Note that
the sum runs over all the positions and the internal degrees of freedom have been
integrated over. We are interested in energies near the Dirac node so we set £y = 0. The
two-wavefunction correlation C'(E) characterizes the degree of overlapping probability
among two eigenstates separated by an energy FE in a fixed realization. In particular,
C(FE) ~ 0 for localized states with 0 < E < ¢; (¢; is the mean level spacing in a
localization volume). For states near a mobility edge, C(E) shows nontrivial scaling in

the energy separation [165, 166, 169, 167]. States that obey a power law scaling
C(E)~|E|™" (5.10)

with p = [d — 7r(2)]/z > 0 exhibit Chalker scaling. (Note that the exponent p here
has been generalized to the system with a low-energy power law DOS [168].) The
existence of the power-law scaling potentially implies an enhancement of interactions
[170, 171, 172, 173]. We adopt such a diagnostic to study the correlations among the

low-energy states in the pure QP hopping limit.

5.2.3 Dynamics

We study transport properties of the model via wavepacket dynamics. We initialize

a wave packet to be localized at a single site (ro = (0,0)) in real space ¥y(r) =
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(r|Wo) = 0y, r with zero initial velocity (in this case, a spin up/down state suffices),
then time evolve that state |¥(t)) = e #7*|Wy), which we evaluate using a Chebyshev

expansion [164]. We compute the spread of the wavepacket
(1)) = (W (B)|[F - ro]*[ (1)) (5.11)

where & = (£,9) = Y. (z,y)|r)(r| and r = (z,y). The initialized wave packet has weight
across the spectrum of eigenstates and is not energy resolved. Therefore it will not be
particularly sensitive to the semimetal to metal phase transition at £ = 0. As a result
any estimate we make will be averaged over all energy eigenstates. With this in mind,

we use the scaling of wavepacket spreading at long times
(6r(t)?) ~ t?/* (5.12)

to extract an “average” estimate of of the dynamic exponent Z (and hence use a tilde)
to distinguish this from our energy resolved DOS estimate of z in Eq. (5.6). We note
here that the Chebyshev expansion order N¢ does not lead to a broadening of levels;
it instead dictates the final time that can be reached accurately. Here we track this
by requiring the norm of the wavefunction be preserved for all times. In all the results
presented here we choose N¢ such that the wavepacket has enough time to spread out
as far as possible (= L/2 in each direction due to periodic boundary conditions) so that

the only finite-size effect in our data is due to system size and not N¢.

5.3 Results

While we study all energies and quasiperiodicity strengths, our principle consideration
is the Dirac node energy (E = 0). At weak quasiperiodicity, we study the development
of a non-zero DOS at the Dirac node, which coincides with a delocalization of the
wavefunction in momentum space [87, 7]. At strong quasiperiodicity, we study the
evolution of the low-energy eigenstates and wavepacket dynamics that contribute to a

clear divergence in the low-energy DOS in the limit of pure QP hopping (W = 1).
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Figure 5.2: DOS versus E for L = 233 and No = 2' with different QP hopping
strengths W. (a) Formation of the first miniband with increasing values of W (vertical
black arrows marking the gap that separates this miniband from the rest of the states).
(b)-(e) Formation of the second miniband and semimetal to metal transition (vertical
black arrows mark the location of the gap to the second miniband). The second mini-
band is displayed as a thicker line for clarity. Note that the full bandwidth for W =0
is 4v/2 ~ 5.7 and all of these results are obtained for @Q = 27 x 89/233 with a critical
value of W for this @ given by W, = 0.485 + 0.005.

5.3.1 Transition out of the semimetal phase
Formation of the Miniband(s)

Introducing a weak QP hopping with ) close to 7, creates dominant internode scat-
tering that transfers momentum ;7 and mixes degenerate states of equivalent spin.
This leads to the formation of hard gaps at finite energy that separates a semimetal
miniband near E = 0 described by a DOS p(E) = p/(0)|E| with the rest of the spec-
trum. We note that this defines the slope p/(0) and formally we only focus on p'(07).
As W increases, higher-order processes gain importance, hybridize with lower-energy
eigenstates, and, therefore, open additional smaller mini bands, see Fig. 5.2. Similar to
what was reported in Refs. [87, 7] for semimetals in a QP potential, these minibands
can be described perturbatively in the QP strength, and the states in the miniband can
be counted by considering the number of states near the Dirac cones that cannot be
mixed via a momentum transfer that is restricted to a size @ (or smaller for higher
order perturbative processes). For Qp = 27 F,,_2/F, we find that there N; = 2(F,,_3)?
states in the first miniband and Ny = 2(F,,_g)? states in the second miniband, which

are generated by a momentum transfer of @), (from first order in perturbation theory)
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and 4Q 1, — 37 (from fourth order in perturbation), respectively. This matches our nu-
merical results, which we compute using either exact diagonalization on small sizes or
integrating the DOS over the energy window of the miniband. The formation of the
first and second miniband is shown in Fig. 5.2 for a potential strength W ~ 0.1 and
W = 0.48 respectively. The van Hove peaks in each miniband are conventional and
we have checked that they diverge logarithmically in the thermodynamic limit (not
shown). Interestingly, this is a similar result to what was found in Refs. [87, 7], thus
the development of minibands at weak QP hopping is not distinct from those generated
by a QP potential or from “twisting” two layers of graphene.

If we instead focus on a small @ (relative to 7) then internode scattering is no
longer the dominant effect and intranode scattering also plays a prominent role in the
low-energy description. In this case, the hard gaps can be softened into pseudogaps
or smeared out altogether. Nonetheless, we still find a semimetal to metal phase tran-
sition persists at small Q. For Qp < 27F,_3/F, the location of semimetal-to-metal

transition is roughly the same, as shown in Fig. 5.3.

Density of states and velocity renormalization

We first focus on the low-energy DOS at weak QP hopping strength. The semimetal is
defined as having zero DOS at E' = 0, and we find this is stable over a finite range of W
(as shown in Figs. 5.1, 5.3, and 5.4). This can be seen clearly from the scaling of the zero-
energy DOS with the KPM expansion order; in the semimetal regime p(E) ~ |E| implies
that p(E = 0) ~ 1/N¢ (see inset of Fig. 5.4) and we use this to locate the boundary
of the semimetal phase. Note that this is completely different then the random model,
where DOS is always non-zero due to the perturbative (marginal) relevance of disorder
in two-dimensions [36, 174, 175].

As the QP hopping is increased the gaps approach F = 0, which “flattens” the
semimetal miniband until a non-zero value of the DOS is generated after a critical QP
hopping strength. For Qp = 2nF,_o/F, with L = F,, we find that this occurs at
W, = 0.485 £+ 0.005 by studying the N¢ dependence as shown in Fig. 5.4. After the

transition we find a low-energy peak centered about E = 0 survives (which eventually
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Figure 5.3: The dependence of the DOS at zero energy on the choice of the wavevector
Q1. (a) A phase diagram in the space of W and @ specifying the semimetallic regime
(SM), the gapped higher order topological insulating phases (indicated by the sharp
drops in DOS on vertical lines indicating rational Q labeled on top), and the chiral
metal phase, where the color plot denotes the value of log p(0). Each data point is
calculated for a system size L = 144 and KPM expansion order of No = 2'2. For these
finite sizes, p(0) around 10~3 corresponds to the SM phase, while larger DOS signals
the metallic phase. The solid red curve shows the result of perturbation theory for
the critical W, given by v = 0 in Eq. (5.13). For @ > m the estimate of W, from
Eq. (5.13) becomes imaginary, we plot the magnitude of this as a dashed red curve. (b)
The Qr/(27) = Fy—p/F,, cuts (marked by the black ticks in top panel) with system
sizes L = 144, and Ng = 2. We see the transition persists for very small Q. Note
that the finite value of p(0) in the semimetal regime is just a finite-size effect and the
transition appears when this rises over several orders of magnitude, see Fig. 5.4.
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Figure 5.4: The zero-energy DOS p(0) as a function of W for various KPM expansion
orders N¢ and a system size of L = 233. In the semimetal regime p(0) goes to zero
for increasing N¢ like p(0) ~ 1/N¢, which allows us to identify a sharp semimetal to
metal transition at W, = 0.48540.005. (Inset) The N¢ independence of p(0) N¢ allows
us to identify the semimetal phase boundary and demonstrates the robustness of the
semimetal phase to quasiperiodicity. This data for No = 2'4 on a linear scale is shown
in Fig. 5.1(b).
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Figure 5.5: The effective Dirac cone velocity extracted from the scaling of the low-
energy DOS p(E) ~ p'(0)|E| [formally we compute p/(07)]. (a) The slope p'(0) vs W
for various combination of N, and L. We find that p’(0) rises steeply, strongly suggesting
a divergence and a non-analytic DOS at the transition. We extract p/(0) from a fit to
the scaling of the low-energy DDOS p(E) ~ p/(0)|E|. (b) Velocity v = 1/4/p/(0). The
dashed line shows the linear fit of highest N, and L we have. The linear scaling of
£/ (0)7%% indicates p/'(E = 0) ~ (W, — W)~2, and predicts critical point W0.485 4 0.005
that is consistent with our other analysis.

develops structure at larger QP hopping strength), see Fig. 5.2. We find that all of the
states that make up the second (smaller) miniband = 2(F,_¢)? for Q1 /27 = F,,_o/L
and L = F,, in the semimetal phase become mixed in the metallic phase and are all
contained in the peak about zero energy in Fig. 5.2 for W = 0.50 and 0.52. This
behavior only holds for the chiral model and does not necessarily occur for the case of
a QP potential [7]. The location of the transition W, is not universal and depends on
the model details.

We find that the semimetal miniband is well described by p(E) ~ p'(0)|E|, with
no change to the power law in energy as the quantum phase transition is approached.
The Fermi velocity of the Dirac cone v is related to the DOS via p’(0) oc 1/v%. As
the transition is approached from the semimetal side we find p’(0) diverges like p'(0) ~
(We—W)™8, with 8 =2+0.2, see Fig. 5.5. This signals that the DOS develops non-
analytic behavior at the semimetal-to-metal transition. As a result the velocity of the
Dirac cone goes to zero like v ~ (W, — W). It is very interesting to compare this result
with what we found in Ref. [7] for the case of a QP potential, which yielded g = 1.8+0.4,
which suggests (rather remarkably) that this exponent seems to be independent of the
symmetry class.

The suppression of the velocity for 0 < ) < 7 can also be captured analytically

using perturbation theory in the QP hopping strength, borrowing techniques originally
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Figure 5.6: The twist dispersion in the semimetal phase (a) and in the chiral metal (b),
i.e. low-energy eigenvalues (F) as a function of a twist () in the boundary condition
along the z-direction obtained by diagonalizing an L = 89 sample. (a) For W = 0.35
in the semimetal phase with clear Dirac points at (0,0) and (m,0). (b) Focusing on
W = 0.50 that is right after the semimetal to metal transition. We see the low-energy
minibandwidth for W = 0.5 has been substantially renormalized, the band in the center
of the spectrum has a bandwidth that has been renormalized by a factor ~ 10~% from
its unperturbed value, which is an even stronger effect then has been seen previously [7].

applied to twisted bilayer graphene [2, 7]. Using this framework and going to second
order in the QP hopping strength we find

v 1- ZVT;[l + 2sec(Q/2)]
2t + ZVT?Z sec(Q/2)? ' (5.13)

This yields a vanishing velocity, i.e. a magic-angle condition v = 0, for W = WC(V) =

2/1/5 + 2sec(Q/2) which we compare to the numerical calculation of the DOS at zero
energy in Fig. 5.3(a). In the regime near @ = 7, where the W, is small and perturbation
theory is controlled, both methods agree well.

These results strongly suggest that the semimetal-to-metal transition generates flat
bands due to the vanishing velocity. To clearly demonstrate the presence of flat bands,
we study how the low-energy eigenvalues evolve as a function of the twist in the bound-
ary condition. To twist the boundaries we apply a gauge transformation that is equiv-
alent to replacing the hopping terms ¢ + J,,(r) — e#/E[t + J,(r)] for a twist 6,, in the
w direction. We use this as a measure of the low-energy dispersion in the mini (twist)
Brillouin zone of size (27r/L). This is mathematically equivalent of tiling an infinite sys-
tem with supercells of size L x L and finding the corresponding band structure (much
akin to tiling graphene with moiré unit cells). As shown in Fig. 5.6(a), we clearly see
the presence of the Dirac cones at (0,0) and (m,0) for weak QP hopping. These bands

become incredibly flat in the metallic phase, as shown in Fig. 5.6(b), which confirms
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Figure 5.7: The ¢ = 2 inverse participation ratio in momentum space Zys(¢ = 2) as
a function of W for various system sizes L. In the semimetal regime the momentum-
space IPR is L-independent and becomes L-dependent in the chiral metal phase due to
the wavefunction delocalizing in momentum space. At W = 0.7, the momentum-space
wavefunctions are still delocalized (see Fig. 5.9) even though the IPR data seems to be
only weakly depending on the sizes. All the statistical errorbars in this plot are smaller
than the symbols.

both the qualitative expectation from the perturbative analysis and our approach of
extracting the velocity from the scaling of the density of states. The flattening effect is
substantial in the chiral model and suppresses the minibandwidth orders of magnitude
more from the magic-angle transition driven by a quasiperiodic potential [7]. Interest-
ingly, incredibly flat bands have also been seen in the so-called chiral model of twisted
bilayer graphene [3], and we find a similar effect here in this much simpler model that
also possess a chiral symmetry. Thus, we conclude that the particle-hole symmetry

leads to a significant enhancement of miniband renormalization effects.

Wavefunction delocalization in momentum space

We now connect the structure of the eigenvalues that we have probed through the
DOS with the structure of the wavefunction. A complementary way to understand
the transition is to study how the zero-energy plane-wave eigenstates are perturbed by
the QP hopping. For the case of two-dimensional /three-dimensional Dirac/Weyl cones
subject to a QP scalar potential it has been shown that the generation of a non-zero
DOS coincides with a momentum-space delocalization transition [87, 7], which can be

seen in the momentum-space IPR (Zj) for ¢ = 2. Similar results for the current model
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Figure 5.8: Probability distributions of zero energy wavefunctions in momentum space
with L = 144 and different values of W. (a)-(b): The wavefunctions contain well-
defined ballistic peaks at (ks,ky) = (0,0), (0,7), (7,0), and (7, 7). A few of satellite
peaks can be seen in (b) while the major ballistic peaks are still well resolved from the
figures. (c): The wavefunction is close to the critical point; The ballistic peaks can still
be resolved. Meanwhile, the satellite peaks start to form regions instead of a few well-
separated points. (d)-(f): The ballistic peaks are no longer sharply defined due to the
hybridization with the satellite peaks which arise from scattering off QP potentials. In
(f), the momentum-space wavefunction looks very much like a conventional delocalized
state. The critical value is close to W = 0.49.
are shown in Figs. 5.1(b) and 5.7. In the absence of the QP hopping, the wavefunction
at zero energy is composed of the Fourier modes at the Dirac points (ks, k,) = (0,0),
(0,7), (m,0), and (7, 7). Generically, the zero-energy states are linear combinations of
these four plane waves. Therefore, the probability distributions (integrating over the
internal degrees of freedom) of the momentum-space wavefunction contains four peaks,
which we call “ballistic peaks.” If we now translate the multifractal nomenclature to
the present problem, we see that these ballistic peaks give rise to a frozen wavefunction.
We note that the momentum-space wavefunction here has peaks at the Dirac points
regardless of the QP potential (as long as it is weak). On the other hand, the real-
space frozen wavefunctions, as realized in the the random vector potential Dirac model
[176, 177], have peaks randomly distributed depending on the disorder realization.

To support the argument of perturbing stable ballistic peaks, we plot the momentum-
space wavefunctions in Fig. 5.8. In Fig. 5.8 (a), the momentum-space wavefunction is

essentially composed of the four ballistic peaks. Generically, the QP hopping decreases

the ballistic peaks via “hopping” in momentum space and generates other satellite
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Figure 5.9: Zero-energy momentum-space wavefunction with W = 0.7. (a) The proba-
bility distribution. The wavefunction is made of sparse peaks and is still delocalized in
momentum space. (b) The multifractal spectra Tp/(¢q). Each data is averaged over 100
realizations. For smaller binning sizes (B = 1,2 and B = 2,4), the 7a/(q) show strongly
multifractal (but still unfreezing) behavior. Note that 7as7(¢ = 2) is not zero for all the
binning sizes.

peaks which arise due to the coupling of the QP wavevectors (£Qr,0) and (0,+Q;).
Those satellite peaks have weights related to the order of scattering off of the QP hop-
ping. While there are infinitely many such peaks in the thermodynamic limit, the wave
function is weighted subextensively among them (akin to how a localized state dies off
exponentially from a central localized site). In finite system sizes and sufficiently weak
W, only a finite number (smaller than L?) of satellite peaks dominate, as shown in
Fig. 5.8 (b). For W < 0.49, where W = 0.49 is close to the critical point, the ballistic
peaks remain sharply defined even in the presence of the satellite peaks, and this struc-
ture can be captured perturbatively. The weight of the wavefunction on the satellite
peaks increases when driving W to a larger value, similar to a localized wavefunction
as we approach a delocalization transition. For W > 0.49, the ballistic peaks hybridize
with extensively many satellite peaks, the wavefunction is “delocalized” in momentum
space, as displayed in Figs. 5.8 (d), (e), and (f). Throughout this transition, the wave
function is delocalized in real space; however, it acquires a definitive structure that
we explain qualitatively in terms of topological zero modes in Sec. 5.3.1. This state
is delocalized in both real- and momentum- space, in contrast to the wavefunctions
with W < 0.49 which are ballistic and composed of a measure-zero set of momenta.
The hybridization of an extensive number of momenta most likely creates extensive de-
generate zero energy states, causing a finite DOS. And indeed, we witness numerically

[see Fig. 5.1(b)] that the unfreezing transition in the momentum-space wavefunction
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Figure 5.10: Multifractal spectrum of the zero-energy momentum-space wavefunction
with different W for L = 144. Each 7)/(q) is obtained via numerical extrapolation of
two different values of the binning size B. Each data is averaged over 100 realizations.
(a)-(b) All the 7p7(q) spectra show freezing behavior. (c) 7as(q) spectra extracted from
larger binning sizes (B = 4,8 and B = 8,16) start to show unfreezing behavior. While
the spectra from B = 1,2 and B = 2,4 are still frozen. This is very close to the
critical value of W. (d)-(f) All the 7p/(q) spectra show unfreezing, weakly multifractal
behavior.

coincides with the semimetal to metal transition in the DOS.

To study the momentum-space wavefunction quantitatively, we first compute the
second momentum-space IPR Zy;(¢ = 2, B =1, N = L) [given by Eq. (5.8)] for different
system sizes (L = 55,89,233). In Fig. 5.7, the IPR with ¢ = 2 in different system sizes
are essentially L-independent for W < 0.49. For W > 0.49, the IPR becomes size-
dependent, an indication that the wave function is composed of an extensive number
of momentum states. Similar results can be obtained for L = 34, 144, 610. Note that,
while it looks like W = 0.7 is close to being localized in momentum space, this is not
the case as we demonstrate in Fig. 5.9. For even numbers, the Dirac nodes gap out at
order L/2 in perturbation theory, so while the trend of the IPR is the same as for odd
numbers, it quantitatively differs. Correspondingly, we compute the 757(q) spectrum
[37] for L = 144 by varying the binning size B in every realization as shown in Figs. 5.9
(b) and 5.10. This analysis directly answers if the wavefunctions are governed by well-

localized peaks. For W < 0.49, the wavefunctions show freezing which is characterized

by Tar(q) = 0 for all ¢ > 1. We note that a single localized peak results in a spectrum
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with 737(¢) = 0 for all ¢ > 0. The frozen spectrum indicates that the dominating regions
in the probability distribution of a wavefunction are characterized by a measure-zero
set of peaks. For W > 0.49, the well-defined ballistic peaks are broadened with finite
widths due to hybridization with the satellite peaks. We find that the 75/(q) spectrum is
weakly “multifractal.” For instance, with W = 0.495, the 73;(q) ~ 2(¢—1)—0.34¢(¢—1)
for |¢] < 1. These results are summarized in Fig. 5.10. The ballistic peaks are no
longer sharply defined as their weights strongly depend on the binning size B. The
location of the semimetal to metal transition obtained from the wavefunction diagnostic
is in excellent agreement with the semimetal to metal transition in the DOS. As a
comparison, we also plot the real-space wavefunctions with the associated parameters
in Fig. 5.11. We also emphasize that the present transition is not related to the freezing
transition [177, 178, 179, 180, 181, 168] in the context of highly random delocalized
systems. Here, we simply use the multifractal analysis to explore the intricate structures

in the momentum-space wavefunctions due to the QP hopping.

A theory for the chiral metal phase in terms of topological zero modes

For W > W,.(Q), we have seen how the low-energy eigenstates delocalize in momentum
space, which induces well-defined patterns in the real-space structure of the wavefunc-
tion (see Fig. 5.11). There are a few key features that are unique to this chiral model
and were not observed for a QP potential in Ref. [7]. Firstly, the low-energy excitations
minibandwidth has been substantially renormalized reducing it by a factor of ~ 1078,
which is a much larger effect then we observed for a QP potential [7], see Fig. 5.6.
Second, we do not find any reentrant semimetal phase, for the chiral model, once the
system has undergone a transition to the metallic phase, it remains there. This suggests
that the metallic phase in the chiral limit should have a unique description that relies
on the chiral symmetry. In the following, we will show that the our model possesses
a band of quasizero modes which are intimately linked to the chiral symmetry. These
solutions to an effective Dirac equation are bound states due to a sign changing Dirac
mass induced by the QP hopping. For W < W,.(Q) these bound state solutions strongly

overlap: They are not well-defined local eigenstates, therefore they hybridize with the
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continuum of plane waves and hence do not play a role in the low-energy behavior.
On the other hand for larger W > W,.(Q), these zero mode bound states become suffi-
ciently sharp to be stable. This produces a finite DOS at zero energy and a non-trivial
structure in the wavefunction that agrees well with our numerical results in the metallic
phase. Since it exists only due to the chiral symmetry (e.g. they do not occur in the
QP potential model in Ref. [7]) we dub this phase the chiral metal.

To mathematically derive the above statements, we invoke a perturbative inclusion
of the incommensurate modulation on top of a continuum model. In view of the stabil-
ity of the semimetallic phase below the “magic-angle” semimetal-to-metal transition.
Therefore, the physics near the center of the band may be treated in the continuum
approximation leading to Dirac Hamiltonians subjected to certain background “Higgs”
fields (i.e. a spatially dependent mass fields [182, 183]). We can derive such effective

H;Ty with (v = 2t)

Hamiltonians, which take the form H =), h4
he = vop, + V() Ay £V (y)As (5.14)

Here p = p,0.+pyoy, and the original basis in Eq. (2) has been rotated for convenience;
to account for all four Dirac nodes, we require more sets of Pauli matrices, 7, works
within blocks of the same helicities (0,0) and (7,7) [or (0,7) and (m,0)], while A,
connect these blocks. In this basis, the chiral symmetry is represented by {o,\,, H} =0
and time reversal symmetry implies H = o, A, H Tcry)\z. Both constrain the structure of
the effective Hamiltonian. The dominant contributions for the model at Q = 27[2/(v/5+

1)]? are
V(z) = Wisin((r — Q)z) + Vysin((4Q — 37)x), (5.15)

with V; = 2W, Vi = W4/ [t3 [[7_,(2sin(IQ))]. Since, in the chiral model v = o4\, 72 =
TyAz, 73 = Ay, Ya = Ap form a Clifford algebra, zero modes (as in other magic-angle
systems, such as twisted bilayer graphene [184]) may be readily found analytically at

the vortex like nodes of (V(x),V(y)). The zero modes of hy have the form

2V; Y
2

W (7) = Ne~ Zimt voa B A er T (50Nl g, (5.16)
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Figure 5.11: Probability distributions of zero-energy wavefunctions in real space with
L = 144 and different values of W comparing the exact numerical calculations (top
row) with the analytic results (bottom row) for the wavefunctions of the chiral metal,
in Eq. (5.16). (a) and (d): The wavefunctions are plane waves. (b) and (e): The model
is close to the critical point of the semimetal to metal transition and the wavefunction
looks like a periodic array of localized peaks. (c) and (f): The wavefunctions are delo-
calized but possess intricate structure that agrees qualitatively well with the analytic
prediction. The critical value obtained from numerics is close to W = 0.49. Despite the
analytical treatment overestimating the position of the semimetal to metal transition
by a factor of 2, it leads to qualitatively similar behavior near the transition. As a
result for the analytic results we show W = 0.83 in (d), W = 0.87 in (e), and W = 0.91
in (f).

with ¢ = 7 — Q, q4 = 4Q — 37, &+ = (1,0,0,1), and ®_ = (0,1,1,0) such that
the eigenvalues of o,\, and Fo,\, are both 1. The solution of Eq. (5.16) is plotted

in Fig. 5.11 along with the numerical solutions. These bound states are irregularly

localized at distances set by 27 /g1 4 and their decay length is given by /vo/(q1,4V1,4).

Therefore, a simplest estimate (keeping only ¢; and Vj) suggests that bound states

become stable for W 2 I/Vc(0 modes) _ 1/4/1+ const. x (7 — Q)~2, in good agreement

for @ close to m (apart from the numerical constants) with the W, obtained of Eq. (5.13).

We conclude with three remarks: First, we repeat that this non-perturbative anal-
ysis is based on the continuum Dirac Hamiltonian which is clearly only justified for
sufficiently low W and inapplicable deep in the metallic phase. Second, we highlight
that the bound state picture explains the observation of the sparse real-space structure

of the eigenstates for W 2> W, see Fig. 5.11. Finally, in order to analyze the importance
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of symmetries, we also applied the same method to a non-chiral model with a QP poten-
tial (from Ref. [7]) and to the model with complex hopping (not included in this thesis).
In both cases additional mass terms appear in Eq. (5.14), which breaks the topologi-
cally protected depletion of the gap inside a vortex configuration of [V (x), V(y)]. As a

consequence, topological bound state solutions are absent in these cases.

Real-space Anderson localization and structure of the mobility edges

Real-space Anderson localization in disordered systems of orthogonal and unitary chiral
classes are special, because the zero energy state is robust against localization [43, 179,
185], and tend to form a line of critical fixed points between Anderson localized states at
finite energy [36]. This model ! is fundamentally distinct from its random counterpart
because the QP hopping is, in some sense, infinitely correlated and generic localization
at F # 0 no longer occurs. It is therefore non-trivial to determine the localization phase
diagram in the present model at finite energies. To do so we compare the typical and
average DOS [see Eq. (2.21)]. Anderson localized eigenstates necessarily have a typical
DOS that goes to zero for increasing KPM expansion order (or system size), and we
compare with the average DOS to differentiate between a hard gap (with no states)
and localized states. We also use Lanczos diagonalization to examine the localization
properties directly via wavefunctions.

As shown in Fig. 5.12, we find that the finite energy eigenstates are not localized for
weak QP hopping strength. For QP hopping strengths beyond the semimetal to metal
phase transition we find semimetal minibands develop at finite energy with a linearly
vanishing DOS that is shifted away from £ = 0 and the edges of the these minibands
have Van Hove-like peaks in the average DOS. Interestingly, the typical DOS shows
that these finite energy semimetal minibands are Anderson localized As a result, for
a single value of W there can be various mobility edges in the system and the region
separating localized and delocalized states does not monotonically vary as we tune W.

Looking directly at wavefunctions, we confirm the non-monotonic localization behavior

1L, = 610 is a large enough L to suppress this rounding at the expansion orders we consider here.
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Figure 5.12: Localization properties obtained through the typical DOS. Typical DOS
are in black solid lines, and average DOS are in blue dashed lines (to distinguish hard
gaps and localized states) for L = 144 and No = 2 [(a) W = 0.2; (b) W = 0.4;
()W =0.6; (d) W =0.8; (e) W =0.9 and (f) W = 1.0].
and multiple mobility edges in Fig. 5.12. For example, wavefunctions for W = 0.8 and
L = 144 at different energies are plotted in Fig. 5.13. The results clearly show the same
non-monotonic localization properties as a function of energy and are consistent with
the typical DOS diagnostics.

Upon increasing the QP hopping strength further, the number of localized states
increases but even for pure QP hopping (W = 1.0) we still find a finite number of
delocalized states. In particular, the low-energy states that contribute to the diverging

DOS do not appear to localize.
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Figure 5.13: Real-space wavefunctions at various energies corresponding to W = 0.8
and L = 144. (a), (c), and (e) are delcoalized wavefunctions; (b), (d), and (f) are
localized wavefunctions. This confirms the multiple mobility edges observed in the
typical DOS in Fig. 5.12.

5.3.2 Strong quasiperiodic hopping

We now turn to the properties of the QP hopping model in the limit of large W, where
our parametrization of the model gives a purely QP hopping model for W = 1, see
Eq. (5.5). A striking feature of random chiral class models is the presence of a divergence
in the low-energy DOS [43, 44, 179, 181, 37|, but this behavior is strongly dependent on
the type of model chosen. In random hopping models the precise form of this divergence
is modified due to Griffith effects [179]. This is naturally a very interesting problem to
compare with the QP hopping model since we know a priori it has no rare region effects.
However, observing anything beyond just a power-law divergence is notoriously difficult
numerically and therefore that is not our goal here. Instead, we aim to demonstrate the
existence of a divergence and not necessarily pinpoint its precise analytic form beyond

the leading power-law dependence.

Diverging low-energy density of states

Focusing on the pure QP limit W = 1, we compute the DOS using KPM on very large
system sizes (L = 987) such that any low-energy divergence of the DOS is not affected
by the mean level spacing on finite size systems. Any low-energy divergence in the

DOS will be rounded out to due the extrinsic effects of finite system size and KPM
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Figure 5.14: Divergence of the low-energy DOS for W = 1 (i.e. pure QP hopping).
(a) N¢-dependence near zero energy for a very large system size L = 987 and @ =
2nF,_2/F,. (Inset) Similar results for the randomized version of the model (letting
the phase be random at each site) with L = 233 for No = 212,213 24 [, = 377 for
Nc = 2% and L = 610 for No = 26, note that the divergence is similar between the
two. (b) Divergence of the low-energy DOS for W =1 in the pure QP limit comparing
two different quasiperiodic wavevectors and the random (R) hopping model with the
KPM expansion order that acts like a low-energy scale that rounds out the divergence
of the DOS. Fits to the power law form are shown as red dashed lines.

expansion order. By going to L = 987 we are able to reach large enough system sizes
so that all of the (artificial) rounding is due to the KPM expansion order i.e. a finite
N¢c 2. We now reach one of our main results, as shown in Fig. 5.14, we find a clear
divergence of the low-energy DOS in the pure QP hopping model (rounded by the finite
KPM expansion order N¢). Since we are working at such large system sizes we can
use the rounding of the divergence in the DOS by N¢ to our advantage: in order to
accurately compute the power-law divergence in the DOS p(E) ~ 1/|E|*@F, we use the
fact that the KPM expansion order is related to an infrared energy scale No ~ 1/0FE
that implies the ansatz

p(E = 0) ~ (Ng)*er. (5.17)

As shown in Fig. 5.14, we find that zgp ~ 0.32 for Q = 27F,_»/F, and Q =
21 Fy,—4/ Fy,, which is consistent with the divergence and value of z¢p being Q-independent
for irrational ). Thus, we conclude that randomness is not necessary to create a low-
energy divergence in the DOS. Using p(E) ~ |E|%*~1 this leads to the estimate z ~ 3
for W = 1.

2The real hopping model in this work can be decomposed into two decoupled 7-flux hopping models.
It belongs to the chiral orthogonal class.
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Figure 5.15: The onset of a divergence in the DOS at zero energy p(0) versus (a) N¢
and (b) W close to W =1 and L = 610. We see a trend towards an increasing p(0) for
W > 0.95, but there is no clear sign of divergence in the data other then at W = 1.

It is interesting to compare this result with the corresponding randomized version of
the model, which has phases that are random across each bond [i.e. the ¢, in Eq. ((5.4))
are replaced by ¢, (r) and sampled between (0, 27) at each site]. We find the nature of
the divergence of the DOS goes like p(E = 0) ~ (N¢)*® with xr ~ 0.35. Thus, we find
that the low-energy divergence in the QP hopping model agrees well with that of the
random model to within our numerical accuracy. Since these two problems share the
same distribution of hopping strengths at each bond, with the distinction being that
the phases (¢,) are correlated across the entire sample for the QP model. Note that
this distribution is Q-independent and is given by the distribution of cos(z) + cos(y)
for z,y € [0, 2x], which is consistent with zgp being Q-independent as we have already
found. In this way, our results on zgp and xg implies that the nature of the low-energy
divergence, is dictated by the distribution and not whether the models possess rare
regions. We note that other numerical studies have also seen just a simple power-law
divergence in related (but not equivalent) disordered models [179].

The low-energy divergence of the DOS for the pure QP limit of the model poses a
natural question: is there a phase with a divergent low-energy DOS or is it only an
isolated point as a function of W? As shown in Fig. 5.15, for KPM expansion orders up
to No = 2'® and L = 610 we do not find a clear sign of a divergence at W < 1 in the
data for p(0) versus N¢, but we do find that the DOS is showing trends to a divergence
at the largest expansion orders for W = 0.95. Thus, our data suggests that the point

W =1 is fundamentally distinct from the phases of the model with W < 1, i.e. any
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Figure 5.16: Inverse multifractal exponent aq as a function of energy for W =1 and L =
144. The green dashed line indicate the plane wave value 1/ag = 0.5. Localized states
in the thermodynamic limit give 1/ag — 0. The results demonstrate non-monotonic
dependence as a function of energy. Blue dots indicate the data extracting from ) (x)
(b = 1); red dots correspond to the data extracting from binned wavefunctions with
resolution length b = 2. The black arrows indicate the states consisted of double
identical peaks. The corresponding typical DOS values are very small but non-zero in
Fig. 5.12.

finite bare hopping (¢ > 0) appears to be sufficient to suppress this divergence. If we
instead consider complex QP hopping matrix elements then the low-energy divergence
goes away. As we discuss in Sec. 5.5, we attribute the divergence in the low-energy DOS
to the hopping vanishing along lines in real space which induces an extensive number

of zero modes.

Real-space wavefunctions at W =1

Here, we focus on the pure QP hopping case (W = 1). As plotted in Fig. 5.12(f), both
low (|E| < 1) and finite energy (|E| ~ 2.2 — 2.5) delocalized states still appear in the
pure QP hopping limit. This is very different from the expectation from the disordered
problem where all finite-energy states are localized. Therefore, it is important to confirm
the detailed features of the finite-energy localized states.

We compute the multifractal exponent o (Ref. [77], see Section 2.2.1) as an in-

dicator of localization. For a uniformly distributed plane wave, ag = d = 2. For a
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Figure 5.17: Real-space wavefunctions that show double peaks structure for W = 1 and
certain finite energies [(a) £ = 0.4; (b) E = 0.6]. These two wavefunctions correspond
to the data in Fig. 5.16 indicated by the black arrows. They are not the conventional
localized or frozen wavefunctions that are found in the disordered systems. Such an
unconventional feature is probably due to the quasiperiodicity.

localized state, g — oo. As shown in Fig. 5.16, the values of ay show non-monotonic
dependence as a function of energy. We found strongly multifractal delocalized states
(intermediate g values) in certain finite energies. Importantly, the low-energy states
remain delocalized within every measure we have considered so far. In addition, we
identify a few delocalized states within the region where the typical DOS is small but
finite (near E' =~ 0.5). Those finite energy wavefunctions consist of two similar peaks
with arbitrary separation in L = 144 as shown in Fig. 5.17. We attribute this feature
to the QP hopping rather than the (chiral) symmetry of the present model. Similar
features are also presents for larger system sizes (L = 610), but the associated energy
region becomes narrower. We can not conclude if such states are due to a finite-size
effect in the current study.

We also study the low-energy wavefunctions in a fixed realization. The low-energy
wavefunctions are strongly multifractal for L = 144 and L = 610. We compute the two-
wavefunction correlation C'(E) [given by Eq. (5.9)] to quantify the degrees of probability
amplitude overlap. The numerical results of L = 144 with W = 1 and W = 0.99
(W/t = 7) are plotted in Fig. 5.18. The finite overlap of the wavefunctions with adjacent
energies signals the metallic rather than localized behavior and is consistent with our
intuitive argument about the hybridizing subregion states. Remarkably, the pure QP
hopping (W = 1) limit gives a power-law behavior, C(E) ~ E~H* where u ~ 0.48 for

L = 144. In the disordered problems with a power-law low-energy DOS, the exponent
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Figure 5.18: Two-wavefunction correlation [given by Eq. (5.9) with Ey = 0] as a function
of energy (E). We take 300 lowest positive energy states of L = 144 per realization and
compute the probability overlap of two wavefunctions in the same realization. The data
is averaged over 400 realizations. E* = 0.01 for W = 0.99; E* = 0.0025 for W = 1.
We rescale all the data points with the rightmost point. In the pure QP hopping
limit (W = 1), the two wavefunction correlation shows a clear power law scaling. For
W = 0.99, the low-energy wavefunctions lose clear power law overlapping features.

wis given by p = [d — 7r(2)]/2z. In the QP hopping model, we are not aware of any
scaling argument that supports such a relation. If we assume p = [d — 7r(2)]/z and
compute the 75(2) numerically, the dynamic exponent extracted this way is z* ~ 2,
different from the dynamic exponent from low-energy DOS. The discrepancy might
come from (a) the sampled energies are not low enough in C(E) or (b) the relation
= [d—7gr(2)]/z does not hold in this QP hopping model.

The presence of power law correlations in the wavefunctions implies a multifractal
enhancement of the interactions [170, 171, 172, 173]. Unlike the for plane wave states,
these multifractal wavefunctions have an intricate spatial probability distribution. The
existence of correlations in energy indicates that the probability distributions of wave-
functions at adjacent energies have significant overlaps. Therefore, we expect this po-
tentially produces an enhancement of correlated effects for certain types of four-fermion
interactions. In disordered systems, the multifractal enhancement of interactions is re-
lated to the wavefunction multifractality directly due to quantum-critical scaling. The

relevance of the four-fermion interaction (U) is determined by [173] dU/dl = x1 — xéU),

)

where 1 = d — z is the local DOS exponent and z5 ’ is the scaling dimension of the
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four fermion operator. In the clean case, the relevance is determined by x; alone since
ZEgU) = 2x;. For disorder systems, ng) > x9 where x9 = T(2) — 2(1 — 1) is the scaling
exponent for the second moment of the local DOS operator after the disorder average
has been performed. Nevertheless, it is not currently clear if one can apply the above
results to the present QP hopping model at W = 1; if we do, they imply a strong
multifractal enhancement of some short-range interactions (e.g., the density-density
interaction).

On the other hand, we do not observe power law correlation in our finite size data
for W = 0.99. This indicates that the power law correlation is a special feature in the

pure QP hopping limit. More quantitative tests (e.g., much larger system sizes) are

required to pin down the precise mechanism.

Wavepacket Dynamics

Lastly, we now study the wavepacket dynamics in the QP hopping model using an
expansion of the time evolution operator in terms of Chebyshev polynomials. We are
interested in the spread of the wavepacket (67(¢)?) in the long-time limit, see Eq. (5.11).
We initialize the state in an up-spin state localized to one lattice site. Then, we use
Eq. (5.12) to extract estimates of an averaged dynamic exponent % via (6r(t)2) ~ t%/%
as shown in Fig. 5.19 for the largest system size L = 987 considered. Despite the wave
packet dynamics not being energy resolved, for moderate QP strength when a mobility
edge is present in the spectrum, the localized states will not contribute and therefore the
long-time limit of the wavepacket spreading probes contributions to transport from the
“quickest” parts of the spectrum. Thus, in the limit of a large QP potential wavepackets
are a good way to probe dynamical transport properties, despite not being energy
resolved.

As shown in Fig. 5.19 we do not see any clearly diffusive regime in the model
(consistent with other QP studies in two-dimensions [86, 7]). Instead 2/Z smoothly
decreases from 2 (for ballistic transport) as a function of the QP hopping strength and
the transport looks super-diffusive 1 < Z < 2 and 2/Z passes through 1 at W ~ 0.95.

For W > 0.95 we find Z > 2 and the transport appears sub-diffusive, approaching z ~ 4
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Figure 5.19: Wave packet dynamics, we initialize the wavefunction to be localized to
a single site and evolve it under H. (a) Spread of the wavepacket as a function of
time ¢ on a log-log scale with L = 987 and N¢ = 2' we never see a clear diffusive
phase (z = 2). (b) Extracted dynamic exponent z from (6r(t)2) ~ t?/% (inset) zoom in
near W = 1 with a dashed line to mark diffusion 2/Z = 1. Note that the wave packet
dynamics is not sensitive to the semimetal to metal transition at £ = 0.

in the pure QP hopping limit.

It is an interesting finding that for the low-energy DOS to diverge requires z > 2, and
our current estimate for Z from the wavepackets yields Z > 2 for W > 0.95. However,
the DOS does not appear to have any divergence in this regime (see Fig. 5.15), which
suggests that this feature is due to Z not being energy resolved. From this perspective,
we contrast this estimate of z with that of the divergence in the DOS. From the power
law divergence at W = 1 we estimate from the DOS z ~ 3, which is close but does
not completely match the wave packet estimate (Z ~ 4). However, this is not entirely
surprising since the wave packet estimate gets contributions from states across the
spectrum at finite energies (which possess both finite-energy delocalized and localized
states as shown in Fig. 5.12), whereas the DOS is energy resolved and only probes the
states near F = 0. The presence of finite-energy localized states will slow down the
energy averaged transport and give an enhanced value of Z. These results suggest that
the energy averaged transport properties are sub-diffusive over a range of W, while the

low-energy states only develop sub-diffusion at W = 1.
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5.4 Experimental Realization

In this section we present a way to realize Eq. (5.1) in a cold atomic setup and discuss
how to probe the phase diagram. In addition, we also briefly discuss how the model in
Eq. (5.1) can be implemented using metamaterials.

We closely follow Ref. [121], where two-dimensional spin-orbit coupling in ultracold
atomic bosonic systems was proposed and experimentally tested. The continuum ver-
sion of Eq. (5.1) has the following form (we consider 2 internal degrees of freedom per

atom)

A2
H = =+ Vi (®) + Ma(#)0 + M, (#)0. (5.18)

The limit of interest is a deep optical potential Viu(Z), in which spin preserving
hopping is suppressed. However, an appropriately designed M, (&) assists spin flip
hopping in a certain direction and generates the Hamiltonian of interest.

To realize Eq. (5.18), we follow the recent implementation of two-dimensional SOC
in Ref. [121]. However, in contrast to that work, we tune the angle of incidence of the
Raman beam and detune the system sufficiently strongly such that the Raman laser
(called Eg; . in Ref. [121]) has a wavelength 27/ky which differs from twice the lattice
constant 27 /kg. Then, tuning the optical path such that dp; = 7/2 and ¢, = 0, we
find that M, o [cos(kox) cos(kay) — cos(koy) sin(kax)] (and analogously for = < y).
For ko and ko incommensurate, spin-flip hopping acquires a QP modulation, which in
the tight binding limit leads to a Hamiltonian akin to Eq. (5.1).

In such a setup, experimental verification of the semimetal to metal transition (where
the kinetic energy is quenched, i.e. the “magic-angle” effect) as well as a probe of the
divergent DOS at W = 1 may be achieved using radiofrequency spectroscopy [186].
Within such an experiment, the magic-angle effect of quenched kinetic energy can be
observed by means of momentum resolved radiofrequency spectroscopy. As a comple-
mentary approach, band mapping techniques [187, 188], allow one to reconstruct the
miniband structure experimentally.

Alternatively, metamaterial setups can also realize our model with current experi-

mental techniques. For example, using an array of connected electrical resonators with a
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suitable choice of the intrinsic frequency and connecting capacitance, one can construct
a circuit equivalent to the tight-binding model we have studied here and the overall
absorption spectrum is analogous to the DOS [53, 189] and thus allows one to probe
the semimetal-to-metal transition we have explored here. The spatial distribution of
the eigenmodes of resonance can also verify our results regarding localization. Besides
resonators, photonic [190] and phononic [191] systems are also nicely tunable and we
also expect that they can be used to engineer the Hamiltonian in Eq (5.1) in a majority

of the parameter space.

5.5 Discussion and Conclusion

We have analyzed the properties of a two-dimensional Dirac semimetal with quasiperi-
odicity that respects chiral symmetry. The quasiperiodicity takes the form of a QP
hopping on a tight-binding model. As shown in Fig. 5.1(a), the low-energy states
demonstrates a semimetal phase with Dirac cones in the band structure, a chiral metal
phase with non-trivial real space structure in the wavefunctions, as well as the pure QP
hopping limit W = 1 [see the paramaterization of ¢ in Eq. (5.5)], which is critical ex-
hibiting sub-diffusive dynamics. A clear demonstration of the semimetal to metal EPT,
in the DOS [see Eq. (2.1)] and the inverse participation ratio (IPR) in momentum space
[see Eq. (5.8)], is shown in Fig. 5.1(b). The momentum-space IPR (indicating a delo-
calization in the momentum basis) vanishes in a continuous fashion concomitantly with
the onset of the zero-energy DOS, which demonstrates the nature of this phase transi-
tion in the structure of the eigenstates and eigenvalues, respectively. In Fig. 5.1(c) we
show the diverging DOS in the pure QP hopping limit and we find that the low-energy
eigenstates in this regime exhibit quantum-critical Chalker scaling.

First, we demonstrate the stability of the two-dimensional semimetal phase to QP
hopping. We find that the QP hopping introduces gaps at finite energy that create a
low-energy semimetal miniband that retains the scaling p(E) ~ |E|. The semimetal
phase persists until a critical, -dependent, potential strength W, where a semimetal to

metal transition takes place. At this transition the Dirac velocity vanishes in a universal
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fashion and the low-energy bands become flat, which should strongly enhance correla-
tion effects and has been dubbed magic-angle transitions in analogy to twisted bilayer
graphene at the magic-angle [55, 54]. Concomitantly, the single-particle wavefunctions
delocalize in momentum space. Interestingly, we find that the velocity vanishes with a
critical exponent that is in excellent agreement with models that have a QP potential
and are lacking chiral symmetry. While these results suggest that the chiral symmetry
does not play a role in the critical properties of the semimetal to metal transition, they
do have a strong effect on the structure of the phase diagram and the minibandwidth
renormalization (being about 4 orders of magnitude smaller then for a QP potential [7]).
For example, we find that the metallic phase does not undergo an additional transi-
tion back to a reentrant semimetal phase, which occurs in a wide multitude of other
models [7]. In the metallic phase, we find that the low-energy eigenstates are weakly
multifractal in momentum space and wavepacket dynamics are super-diffusive over a
large region of the phase diagram (W < 0.95). Using the chiral symmetry of the model,
we characterize this transition and the formation of the low-energy DOS as a band of
topological zero modes that form due to bound zero-energy states that arise from a
sign-changing Dirac mass [182, 183]. If we consider values of @) that are commensu-
rate but are close to the irrational values we have investigated here, then the single
particle phase transition will be rounded into a cross over, which will result in a small
but non-vanishing velocity and the momentum-space wavefunctions that do not truly
delocalize.

We also investigate the effects of strong quasiperiodicity and therefore determine
the real-space Anderson localization properties of this model. We demonstrate that the
model exhibits a sequence of real space Anderson localization-delocalization transitions
as a function of energy and thus the system hosts multiple mobility edges. Interestingly,
the low-energy eigenstates evade exponential localization and appear to remain critical
even for maximal QP hopping strength (W = 1). These results are markedly distinct
from disordered systems, where all the finite-energy eigenstates would be localized for

the models with real and complex random hopping terms. We verify this non-trivial
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structure of the phase diagram characterizing real space localization by using a combi-
nation of typical density of states and wavefunction analysis.

In the pure QP hopping limit (W = 1), the system exhibits a diverging DOS at
zero energy, see Fig. 5.1(c). We provide evidence that this power-law divergence is
universal, for irrational ). The low-energy states that make up this divergence are not
exponentially localized, and instead appear strongly multifractal, i.e. critical. Using
wavepacket dynamics we have shown that the majority of the chiral metal phase is
super-diffusive and crosses over to sub-diffusion near W = 0.95. These results are
consistent with that the low-energy states are not localized. The slow sub-diffusive
wavepacket dynamics gives a dynamical exponent z &~ 3. In addition, we find power-
law scaling as a function of energy for almost two decades in the two-wavefunction
correlation [see Eq. (5.9)] (in the W = 1 limit). This provides strong numerical evidence
of Chalker scaling without randomness [165, 166]. Interestingly, we find Chalker scaling
does not clearly hold in the limit of the pure complex quasiperiodic hopping (not shown),
demonstrating that the strong correlations between wavefunctions seem to rely on the
low-energy diverging DOS in the limit of real quasiperiodic hopping.

One remaining important question is to understand the origin of the diverging low-
energy DOS for W = 1. We provide evidence that this is a result of local sub regions
with an imbalance N4 # Np of sublattice sites. This induces a pile up of an extensive
number of zero modes due to the QP hopping elements vanishing along certain lines
in real space. In Fig. 5.20 we plot the configuration of hopping matrix elements in the
pure QP hopping model (W = 1) and strong QP hopping (W = 0.9). The pure QP
hopping case shows nearly zero hopping lines which effectively cut the system into many
subsystems. Those nearly zero lines roughly track the zeros of the QP hopping, which
are obtained by solving cos(2rQrz* + ¢5) + cos(2nQry* + ¢,) = 0 for 2* and y*. It is
apparent that there are several virtually disconnected subregions in which Ny—Np # 0.
Those are an imperative origin of zero modes by means of a poor-man’s index theorem
(rectangular matrices have a non-zero kernel)[192, 193]. To add additional support to
this picture we have also studied a model with complex QP hopping amplitudes. This

model is chosen to have no lines of vanishing hopping strength as in Fig. 5.20, since
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Figure 5.20: The hopping configurations of QP hopping models with L = 13. (Right)
The hopping configuration of the QP hopping model with W = 1. The QP pattern
generates nearly zero lines of bonds which effectively separate the system into many
subsystems. (Left) The hopping configuration of the QP hopping model with W = 0.9.
The system is typically well connected as a whole.

the bonds’ norms can now never vanish. Interestingly, we also find that (not shown)
the complex QP hopping model has no diverging DOS for pure complex hopping. In
addition, we also find that this model does not exhibit Chalker scaling. These results
lend support to the above argument but are not conclusive and therefore we leave the
question of the origin of the pile up of zero energy states at W =1 to future work.
Lastly, our work demonstrates two separate routes to inducing strong correlations in
quasiperiodic semimetals. The first is due to magic-angle transitions, where the Dirac
cone velocity vanishes at an EPT. The second route is due to Chalker scaling in the
limit of pure QP hopping. The presence of power-law correlations in the wavefunctions
potentially implies a multifractal enhancement of the interactions [170, 171, 172, 173].
Our work provides a clear cut example of how this can occur in the absence of random-

ness.

5.6 Appendix: Quadrupole topological insulator at commensurate

limits of the model

As we already discussed in the main text, for @ = =, the model in Eq. (5.1) is a
quadrupole topological insulator [162]. In this case, the model can be separated into

two copies of decoupled 7 flux model by alternating spin. For each copy, four lattice
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Figure 5.21: (a) Density of state by energy, with Q7 = , in twisted periodic boundary
condition (TPBC) and open boundary condition (OBC). Both boundary conditions
show bulk gap, while OBC allows the topological corner states. The system size is
L =144, and Qr = 27(72/L). N¢ = 8192 for KPM calculations. (b) real space wave
function at Q@ = m and W = 0.4. System size is L = 89.

sites on the corners of a plaquette form a unit cell when Q = 7. We label them from the
left-bottom corner as |1 1), |3 1), |4 1) and |2 |) counterclockwise (and opposite spin
labels for the other copy). The Bloch Hamiltonian is given by h(k) = W (cos(kg)1z00 —
sin(k,)yo, — cos(ky)ryoy — sin(ky)1yo.) + Eo(k)T.00, where 0,7 are Pauli matrices
that act on the degrees of freedom within a unit cell, with identical/opposite spin
respectively. The dispersion with W = 0 is Ep(k) = +2¢,/sin k2 + sin k2.

For W > 0, we see a hard gap near £ = 0. When L is odd with twisted periodic
boundary condition, or L is even with open boundary condition, a small peak is seen at
E =0 [Fig. 5.21(a)]. When L is even and taking closed boundary condition, the corner
state do not show up. The corner states survive twisted periodic boundary condition
when L is odd because the unit cell has size 2 x 2, and hence a strip of half unit cells
opens the boundary. The peak includes two states, independent of what L is chosen to
calculate the DOS, indicating a topological nature of such a peak. The wavefunction
data shown in Fig. 5.21 (b) also indicates that the system is in a quadrupole TT phase

since the zero-energy wavefunction concentrates near the corners.
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Chapter 6

Flat Topological Bands and Eigenstate Criticality in a

Quasiperiodic Insulator

6.1 Introduction

So far, the previous chapters solely focused on the behavior of semimetals. Now we shift
gear to look at a model of topological insulators (TI), applying similar ideas. As we
have discussed in Chapter 1, models of TT may often be tightly related to semimetals.
For 2D TI, the chiral boundary state can be thought of as an 1D model of semimetal.
Meanwhile, for models of 2D topological insulators controlled by a parameter (which
will be called topological mass, to be clarified later), the phase boundary between
topologically distinct insulating phases are semimetals. The existence of semimetal is
guaranteed on the phase space of models of topological insulators because the topology
can only change when different bands touch — and that is when semimetal shows up.
The existence of a point on the one-parameter phase diagram that manifests semimetal

provides a natural path to expand the finding of previous chapters into topological insu-
lator. In this chapter, we attempt to apply the same quasiperiodic (QP) potential as in
the perfect spin-orbit coupling (SOC) model in Chapter 3 to a model of 2D topological
insulator, the Bernevig-Hughes-Zhang(BHZ) model. From the semimetal phase bound-
ary hosting a Dirac semimetal, we can first verify that the same universal physics, the
“magic-angle” transition is valid here. Analytical method will allow as to have some
basic understanding of the expected phase diagram with very weak quasiperiodicity.
Then we move away from the semimetallic line and the weak quasiperiodicity regime
in the two-parameter phase diagram and explore extensively the rich phase diagram
created by the interplay between quasiperiodicity and topology, taking advantage of

the numerical methods discussed in Chapter 2.
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The particular interest of such generalization to topological insulator is connected to
the pursuit for topological flat bands to host topological strong correlated phases. The
phenomena from the interplay of topology and strong correlations has been generally
fascinating, with the fractional quantum Hall effect [194] serving as the quintessen-
tial example. Conventionally, the magnetic field induces topology in the electronic
many-body wavefunction; however, Berry curvature of the band structure is sufficient
to induce topological single-particle wavefunctions that can survive the presence of in-
teractions (see Ref. [195] for a review). Despite strong numerical evidence of fractional
Chern and Zs insulators [196, 197, 198, 199, 200, 201], identifying a clear experimental
route to the many-body analog of the fractional quantum Hall effect without a magnetic
field remains challenging. Research in this direction has aimed to identify lattices with
flat topological bands that quench the kinetic energy, promoting strong correlations
[202, 203, 204, 205, 206, 207, 94].

Recent work on twisted graphene heterostructures opened up new platforms to
study strongly correlated physics, including correlated insulators [55], superconductiv-
ity [54, 97], and Chern insulators [208, 209, 210]. Proposals for realizing flat topological
bands in these systems have followed [211, 212, 213, 114, 214, 215, 216, 217, 218|.
Meanwhile, as clearly shown in Chapter 3 and 5, quasiperiodicity can emulate the in-
commensurate effect of the twist, which brings extreme downfolding of the Brillouin
zone, can open gaps and quench the kinetic energy by flattening bands, and leads to
new phases and critical eigenstates. Such idea of emulating the twist can help us in
understanding the theory for fractional Chern and Zy insulators in incommensurate
systems and how eigenstate criticality plays a role, by providing a simple model to
theoretically study and experimentally realize as we demonstrate in this chapter. The
notion of flat band engineering with incommensuration has broad applicability outside
twisted heterostructures, including ultra-cold atomic gases [219, 120, 121] and metama-
terials [220, 221, 53, 222].

In this chapter, we study a minimal model for a two-dimensional topological insula-
tor with a quasiperiodic potential to find a controllable route to create flat topological

bands and induce quantum phase transitions beyond the Landau-Ginzburg paradigm,
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Figure 6.1: Phase Diagram of the BHZ model in Eq. (6.1) at the band center with
topological mass M and quasiperiodic potential strength W. There are five illustrated
phases: topological (TI), normal (NI), and Anderson (AI) insulators, Dirac semimetal
(SM), and critical metal (CM). The green and red data points use the density of states
in Eq. (6.3) to locate the transitions between TI and NI. Among them, the green
data points and the green vertical line at M = 2 are SMs, terminated at magic-angle
transitions (see Sec. 6.5) at the green stars. The black dashed lines are the perturbative
prediction for the SM lines (e.g. Eq. (6.23)). The blue circles use transport [Eq. (6.2)]
to determine the CM to Al boundary.

as there is no spontaneous symmetry breaking involved. These transitions represent a
universality class beyond the Altland-Zirnbauer classification of random matrices for
disordered systems [40, 223].  Using analytic and numeric techniques, we find an
intricate phase diagram, as shown in Fig. 6.1. Particularly, quasiperiodicity creates
practically flat topological bands near where finite-energy states exhibit criticality. At
the transition between topological and trivial insulators, the system realizes a magic-
angle semimetal with features previously studied in Chapter 3. We further characterize
the critical properties of the various eigenstate transitions, understanding them as local-
ization and delocalization transitions in momentum- or real-space bases. Importantly,
these transitions and phases could be directly realized in twisted bilayer graphene that

is close to aligned with a hexagonal boron nitride substrate [224, 225, 226].
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6.2 Model

To describe a two-dimensional topological insulator, we use the Bernevig-Hughes-Zhang
(BHZ) model [12] with a 2D quasiperiodic potential. The square-lattice Hamiltonian

(with sites r) is block diagonal

r'r 0

a=yd ("
r,r’

o+ Y dVor)a, (6.1)
0 hi, r

where ¢, are four-component annihilation operators and Vop(r) = W3 _,  cos(Qr,+
¢u) is the quasiperiodic potential (QP) with amplitude W, wavevector @), and random
phase ¢,; hyy is a two-by-two matrix describing one block of the BHZ model (h*, its
complex conjugate). The nonzero elements of h are hyy = (M — 2t)o, and hyrip =
171”—/1 = %t(—iau+az) for p = x,y with Pauli matrices o,,. Topological mass M and the
hopping ¢ = 1 set the energy scale. Most analyses are done on the two-by-two matrix
since time-reversal symmetry relates each block, and Vgp(r) does not couple blocks.
To reduce finite-size effects, we average over twisted boundary conditions implemented
with ¢ — tei®u/L for a twist 67# in the p-direction randomly sampled from [0, 27). The
model is invariant under M — 4 — M, so we focus on M > 2. For 2 < M < 4, the band
structure (i.e., W = 0) is topological with a quantized spin Hall effect Q = o}, — 0,
where awiy are Hall conductivities for the blocks defined by h and h* respectively. The
superscript £+ will be dropped as we focus on the h block only. At M = 2 [M = 4], the
model is a Dirac semimetal with Dirac points at X = (7,0) and Y = (0,7) [M = (7, )]
with velocity vy = .
Quasiperiodicity is encoded in @, which in the thermodynamic limit we define as
Q/(2m) = (2/(v/5 4+ 1))2. For simulations, we take rational approximates such that
Q ~ Qr = 2nF,_3/F,, where F, is the nth Fibonacci number, and the system size

is L = F,,. We also briefly explore other values of ), which demonstrate qualitatively

similar phase diagram but are worth further study.
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6.3 Methods

We investigate the phase diagram and phase transitions with spectral observables and
eigenstates. Despite the methods are largely similar to the other chapters in this dis-
sertation and are explained in Chapter 2, it is worth some extra discussion, especially
pertaining to the topology under quasiperiodicity. Because the model in Eq. (6.1) with
quasiperiodicity lacks translational symmetry, we need to treat the entire L x L system
as a supercell, where the thermodynamic limit is L — oco. At finite L, we define an
effective band structure that is downfolded into a mini Brillouin zone (mBZ) of size
2n/L x 27/ L.

We utilize twisted boundary condition both to help converging numerical calculation
of spectral quantities and to help studying the dispersion and band structures, probing
into the mini Brillouin zone. The twisted boundary condition we implemented, ¢, —
tueieﬂ/ L effectively shifts momentum k by @/L . Without a quasiperiodic potential,
this corresponds to a trivial folding of the original energy dispersion E(k) such that
E.(0) = E(2rn/L + 6/L) for band n in the Brillouin zone defined by the supercell of
size L x L. In other words, @/L is the momentum in the mini-Brillouin zone of the
superlattice made of L x L supercells.

We apply the kernel polynomial method (KPM, see Chapter 2) to compute spectral
quantities and Lanczos or exact diagonalization to compute eigenstate properties. While
the KPM and Lanczos work for larger L than exact diagonalization, KPM introduces
broadening to the data controlled by polynomial expansion cutoff N, [4] and Lanczos
limited to a small range of the spectrum.

To distinguish trivial, topological, and Anderson insulator phases, we calculate the
conductivity tensor defined through Kubo formula [64] as elaborated in 2.5.

2¢2h aG
Oup = P/f(e)deImTr [[va 7

€

vgd(€e — H)H (6.2)

where f is the zero-temperature Fermi function with Fermi energy Ey, and G~ is the
retarded Green’s function. Importantly, the average for [---] is over phases in the QP
(¢n) and twists (éu) in the boundary condition. To determine phase boundaries and

transition properties, we compute the density of states (DOS) which reflects band gaps
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and the low energy behavior of the semimetallic phase. The DOS at energy E is

oE) = 5 [[Z o5 - 59) (63

where Ny = 2L? is the size of the single particle Hilbert space, and E; denotes the
energy eigenvalues. The gap centered at zero energy A is estimated with the KPM
via the DOS satisfying p(E) < 0.001 and with shift-invert Lanczos about E = 0.
Along the semimetal lines the low-energy DOS goes like p(E) ~ ¢~ 2|E|, where ¥ is the
renormalized velocity of the Dirac cones that we calculate through the scaling with N..
For wavefunctions, we compute the inverse participation ratios (IPRs) in real and
momentum space to discern localized, extended or critical states. The IPR in a basis

indexed by a is (see Section 2.2.1 for details)

I.(BE) =) [[elve)|] (6.4)

using normalized wave functions in the momentum space (a = k) or real space (a =r)
basis. For systems localized in basis «, Z,, is L-independent; for delocalized systems, it
goes like Z,, ~ 1/L?. At a localization transition [227, 37] Z, ~ 1/LY where 0 < v < 2
is the fractal dimension (D3); « is extracted from the finite size effect when calculating
T, at various system sizes.

To study band flatness and topology of the effective band-structure in the mBZ, we
calculate the wavefunction [¢g, (0)), where 0 is the crystal momentum of the L x L
super-cell (via the twist in the boundary condition as @ = 8/L) and E,, is the energy
of the nth band labelled in ascending order. The bandwidth is then defined as w,, =
max | E,,(0)— E,,(0")]g ¢ and the direct band gap is A,, = E,,1(0)— E,,(0). The flatness
ratio, which measures a band’s flatness and its isolation from the neighboring bands is
defined following [207] as

fo=min{A,, Ap_1}/wp. (6.5)

The Berry curvature ©,(0) and Chern number C), can be determined via momentum-

space plaquettes defined by the four momenta 8 — @; — 8 — 03 — @ ' and they can

L All plaquettes must be chosen with the same orientation.
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be calculated following [228]

— Un(0>9 )Un(e 70 ) _ 1
Q,(6) = ImIn A Oz)Un(B;,, 02), Cn =5 > " Q,.(0) (6.6)

where Uy, (04, 0y) = (¥n(04)|1¥n(05))/|{1n(04)|9n(0s))| and the sum to obtain C,, is over
the mBZ [0,27/L)%. Lastly, we use machine learning of the wavefunctions to provide
an efficient survey of a large parameter space (in W, M, and F) as an additional

validation of the main phase diagram.

6.4 Phase Diagram

: Using diagrammatic perturbation theory and numerical calculations with the KPM
and Lanczos we obtain the phase diagrams shown in Fig. 6.1. There are five phases
pictured: topological insulator (TI), normal insulator (NI), critical metal (CM), An-
derson insulator (AI), and lines of Dirac semimetals (SM) between TI and NI phases.
Both band-insulating and SM phases are stable to weak quasiperiodicity. Finite band
gaps and quantized (zero) spin Hall conductivity describe the TT (NI) phase, calculated
using the KPM method with Eq. (6.2). Low-energy scaling of the DOS p(E) ~ 7 2|E|
captures the SM phases (marked with green data points). Other boundaries between
gapped and finite DOS at E = 0 are marked with red data points. These DOS results
trace the phase boundaries between TI and NI (green) and between TI and CM (red).
The AI phase has a finite DOS but zero conductivity and localized wave functions (i.e.,
real space IPR that is L-independent), with the phase boundary marked by blue circles
with error bars. The structure revealed is (Q-dependent and reminiscent of other studies
of insulating phases perturbed by quasiperiodicity [229].

Upon increasing W, for M < 4 and M 2 5 we traverse the phases TI/NI — CM —
Al However, more complicated cuts are possible between M = 4.5 and M = 5.3, where
quasiperiodicity drives trivial phases topological (for 4 < M < 5.0) and into-and-out-of
metallic and topological phases at zero-energy. An example is shown in Fig. 6.2(b) for
M = 4.9, where increasing W leads to the phases NI - SM — TI —- CM — TI — SM
— NI - CM — AL

The physics on the SM lines emanating from M = 2 or M = 4 at W = 0 agrees
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Figure 6.2: (a) Full phase diagram with all measures used to diagonose phases and
transitions. The magenta line shows the boundary between delocalized or critical phase
and localized phase at zero energy, as indicated by the neural net model. The dark
region, roughly extending from M = 4, W = 3 to M = 4.5, W = 4 is indicated as
critical phase by the neural net model, but not identified by any other observables.
The dashed orange line inside the TI phase shows where the size of the gap centered
at ¥ = 0 is maximals and thus starts to significantly deviate from perturbation theory.
(b) A cut of the phase diagram in energy space represented by the yellow line in (a).
Notice the multiple phase transitions, all driven by quasiperiodicity (W) and the higher
energy metallic nature. The pink curve represents the boundary to machine-learned,
localized eigenstates.

with the universal features found in Ref. [7] and reveals magic-angle transitions marked
by green stars in Fig. 6.1(a). Concentrating on M = 2, the semimetal is stable with a
velocity (calculated from the DOS) that vanishes like & ~ (We(M = 2) — W)#/2 where
Wo(M =2) =1.42+0.02 and 8 = 2 £ 0.3, which is close to the universal value § ~ 2
obtained in other models and symmetry classes (see Chapter 3 and 5). A CM phase

is found as well as a localization transition at W4 (M = 2) = 1.50 £ 0.03.

6.4.1 Machine Learning the localization transition

In the present model, we found it challenging to pinpoint the Anderson localization
transition using conductivity and the inverse participation ratio due to a large number
of critical states that can appear localized by some metrics but not others. Therefore,
we have supplemented this analysis with a machine learning classification of the single
particle wavefunctions, utilizing a neural network model.

The problem that we want the neural network to solve is to distinguish localized
wavefunctions from extended ones. This task can be thought of as a mapping from
the space of all wavefunctions to a binary result of localized or extended. Using a set

of wavefunctions labelled in advance, we can train the neural network to capture the
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Figure 6.3: Finite energy topological phase diagram. The Hall conductivity o, at
various Fermi energies Er and quasiperiodicity W. The red lines are the perturbation
theory prediction of gap size.

relation between wavefunction data and the prediction of a localized phase. Once the
training is finished, we can use the neural network model to classify a much larger
dataset of wavefunctions, and map out a detailed phase diagram.

In this problem, we find a simple version of ConvNet [230] easily applicable. The
wavefunction classification task is somewhat analogous to figuring out whether the im-
age includes a dog or cat, which is a classical application of ConvNet models. The
ConvNet architecture makes use of a convolution operation prior to applying the non-
linear functions. The convolution operations effectively scrambles but preserves the
information at various locations of the input data, and hence makes the model “trans-
lational invariant”, i.e. the location of the feature does not affect the output. Such
translational invariance allows the neural net model to treat critical and/or localized
structures at different locations in the same way.

The neural network methods of machine learning usually suffer from over-fitting that
harms the predictive power of the model. Simple and conventional methods against
over-fitting including adding regularization terms, use of drop-off layers [231] and so
on. These methods are practically efficient and sufficient for our purpose.

A summary of the architecture we have used with a convolutional neural network
and drop-off layers is shown in Fig. 6.4. The result is not sensitive to different choices
of model hyper-parameters. The robustness across different setups is likely because the

localization feature is prominent and less ambiguous as opposed to typical computer
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Figure 6.4: Schematic diagram of the neural network structure used for lo-
calization detection. For convolution layers, we apply a convolution operation over
a small window to get a data point in the next layer. Max-Pool layer simply takes the
maximum of each window to reduce the model size. We also add batch-normalization
and dropout layers before and after Max-Pool, but they are not shown here as they do
not alter the overall architecture.

vision tasks.

What remains crucial is the labelling of training set. The training set is constructed

in two different ways:

1. We look at the images to judge whether each wavefunction is clearly localized or
not. The cases in which we are unsure are discarded from the training set. To
minimize the affect of systematic bias caused in labelling the training set, we go
through wavefunctions at several runs where each set is drawn randomly from the
entire collection of wavefunctions and shuffled. Hence, the mislabelling can be
considered as a random variation that is independent from the features that do

not affect decision boundaries.

2. We choose W > 6 for localized wavefunction examples, and sample W = 0 at

various values of M for extended wavefunctions.

The training set of method 2 does not include any of the critical wavefunctions in
the CM phase. As a result, the ConvNet model identifies the critical phase as localized,
producing a phase boundary in line with SM/TI to CM transition. This result can also
be replicated using the training set from method 1 if we only include extended and fully
localized wavefunctions. However, with method 1 we can instead label a dataset such

that the non-localized label includes critical wavefunctions to provide an interesting
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Figure 6.5: Comparing the IPR with the machine learning outcome. (a) Shows
an example of the neural network output for M = 2.7, given as the probability of a
state being localized [P(loc)] or extended [P(ext)]. The summarized results are shown
for M = 2.7 (b) and M = 4.9 (c), with comparison against KPM and IPR results.
The difference between the two probabilities measures how confidently the model can
distinguish localized or extended. Also shown in the figure with the magenta strips is
the phase boundary determined by the conductivity, which indicates a transition near
W =225for M = 2.7, and W = 3.4 for M = 4.9. Although the three different methods
match quite well for M = 4.9, for M = 2.7 the IPR shows strongly critical behavior up
until W = 2.5, well after the conductivity appears to vanish. Such critical behavior is
detected by the neural net model. For W between 2.3 and 2.5 the IPR shows a strong L
dependence and the neural net model predicts an extended phase with high confidence.
For a range of W larger than 2.5, the IPR shows a weak L dependence across different
system sizes, while in the neural net model P(loc) and P(ext) are quite close to each
other.

complement to the KPM results and is hence included in the main results of Figure 6.1,
which we overlaid in Figure 6.2(a).

The phase boundary obtained from machine learning between localized and non-
localized wavefunctions roughly traces the CM-AI phase boundary provided by the
conductivity computed with the KPM for M between 3.8 and 5.4, but it provides a
slightly different boundary elsewhere. For M < 3.8, the machine learning result labels
regions as critical that have a conductivity that looks localized (i.e. o0y, is vanishing
with increasing N.). We further investigate the nature of this region using the inverse
participation ratio (IPR) in real and momentum space bases, see Fig. 6.5. The IPR in
this region shows critical behavior that transits into a localized phase at a point that
is hard to accurately determine. The machine learning result provides a conservative
estimate of where the criticality ends and localization sets in.

In summary, our use of the machine learning method in the present context is to

provide an additional measure of the non-trivial phase boundaries that have a lot of

structure. We then use conventional methods (conductivity and the IPR) to validate
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the physical nature of the phase boundaries.

6.5 Magic-angle transition

The boundary between topologically distinct insulating phases is semimetal in the case
without quasiperiodicity. In the BHZ model, the semimetal at M = 2 exstend to a
line of semimetal for a range of W until it undergoes a magic-angle transition much
similar to the discussion in Chapter 3. Also, the perturbation theory in previous section
shows that the topological mass is not renormalized from M = 2, W = 0, making the
semimetal phase a straight line in the M —W phase diagram. As quasiperiodic potential
increases, the semimetal stays stable with a renormalized velocity (calculated from the
DOS) that vanishes like & ~ (Wo(M = 2) — W)?/2 where W.(M = 2) = 1.42+0.02 and
B =2=+0.3. This is demonstrated in Fig. 6.6(a) where ¢ vanishes when p(0) rises.
Additionally, the wave functions are localized in momentum space when W <
W.(M = 2), and delocalized in momentum space when W > W,.(M = 2) (as indi-
cated in Fig. 6.6(b) by Z; being L-independent and Zj, ~ 1/L?, respectively). When
the real space IPR is L-independent and the resistivity increases with L and N,, there
is a localization transition with W4 (M = 2) = 1.50 £ 0.03, indicating a small but finite

CM phase.

6.6 TI-to-CM transition

To analyze topological transitions that are forbidden in disorder systems we use numer-
ics to capture the full, nonperturbative transition to the CM phase located at W.(M).
Near the transition, the correlation length diverges as & ~ |W — W,|™ while scale in-
variance implies that the gap A ~ {~%; therefore the gap vanishes like A ~ |W — W, |*.
Through the KPM calculation of DOS and Lanczos calculation of lowest energy states,
we find vz ~ 1 for each M value we have considered, see Fig. 6.7(a).

These exponents indicate a unique universality class driven by quasiperiodicity dis-
tinct from random systems. Since our system breaks up into two blocks, each in the

same symmetry class as the quantum Hall effect (i.e., class A), random disorder does not
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Figure 6.6: The magic-angle transition for the semimetal line M = 2. (a)
Renormalized velocity v/v(0) and the resulting finite density of states p(0) at the tran-
sition, extracted from p(E) that is calculated using KPM method with system size
L = 144, Chebyshev cutoff N, = 2!, (b) These plots indicate the appearance of a
critical metallic phase 1.4 < W < 1.5 inferred from both the resistivity p,, and the
scaling of the momentum- and real-space IPRs. p,, is calculated using Kubo formula
with KPM method. The L-dependence of the IPRs is fitted from lowest energy eigen-
states obtained using Lanczos method for L = 89, L = 144, and L = 233 to a power
law form Z, ~ 1/L7 and 7, is shown as the right vertical axis.

allow for a metallic phase [37, 223, 232]. Therefore, topological phase transitions driven
by quasiperiodicity host unique universality classes beyond the ten Altland-Zirnbauer
random matrix classes [40].

When gap closes at W.(M), the conductivity at E = 0 becomes finite, and the Hall
conductivity is no longer quantized, indicating the onset of the CM phase. As seen in
Fig. 6.7(b), the Hall conductivity drops, and o,, peaks at the transition, remaining
finite for the duration of the CM. The transition does not involve any symmetry
breaking; it occurs when the topological gap closes and o, is no longer quantized. For
larger values of W, we find a transition into an Anderson insulating phase [37, 36] with

exponentially localized wavefunctions in real space and a vanishing o,

6.6.1 Critical Exponents at the topological insulator to metal phase

transition

The critical exponents at the TI-to-CM phase transition is extracted from the gap size.
Here we demonstrate this process in more detail. The A is calculated using Lanczos
here, as we focus on a very small range of parameters, making Lanczos more efficient

than KPM.
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Figure 6.7: Demonstration of the TI-to-CM transition. (a) Tracking the density
of states computed with the KPM in Eq. (2.1), we see the (hard) band gap closes as
a power law A = (W,(M) — W)*? and find vz ~ 1 at the TI-to-CM transition across
each value of M. (b) Shows the conductivity computed with the KPM in Eq. (6.2) as a
function of quasiperiodic strength W for M = 4.0. The Hall conductivity o, saturates
to a finite value in the TI phase, but for W, (M = 4) = 2 < W < 3 the longitudinal
conductivity becomes finite and the Hall part is suppressed. The system is localized
when W 2 3. Note that the feature near W = 0 is due to M = 4 being a SM. We stress
that this metallic phase and therefore this transition does not exist in the presence of
randomness.

We first estimate the critical quasiperiodic strength W, from the density of states
data. Near the estimated W, we consider a range of W, and fit log(A) over log(W,.—W),
see Fig. 6.12(d). Then we identify the range of W that log A is linear to log(W, — W)
and use least square fit. The best W, is picked according to the goodness of linear fit,
here quantified with root mean square error of the fit, see Fig. 6.12(e). The slope of
the best fit is then vz, where A ~ (W, — W)”?. For some cases this critical exponent is
difficult to determine accurately because of the very fine phase diagram structure. For
a few fixed M cuts including M = 2.4, M = 3.0, M = 3.3 and M = 3.8, we find vz near
1.0. To be precise, for M = 2.4 we have vz = 1.06 £0.1; for M = 3.0, vz = 1.00 £ 0.1;

for M = 3.3, vz=0.95+0.2; for M = 3.8, vz =1.134+0.15

6.7 Criticality and flat topological bands

At small W, the insulating band gap [computed via the DOS in Eq. (6.3)] increases for
some values of M but decreases for larger W, which is beyond the perturbative theory

in Eq. (6.23). This non-monotonicity (whose onset is mapped in Fig. 6.13) coincides
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Figure 6.8: Flat Chern bands and eigenstate criticality. (a) Color plot of the
momentum-space IPR system-size scaling. The value of ~; is given by the color. The
lowest energy states (and narrowest set of states) has a Chern number of 1. The white
regions are hard gaps. (b; left) the conductivity calculated from Eq. 6.2 with L = 377
and cutoff N, = 24, (b; right) Dispersion relation FE,(6) along a representative cut
in the mBZ for a sequence of L = F,, with even n, for W = 1.0154. For each L, the
green band carries Chern number —2, the first 4 bands (from green to cyan) sum to
Chern number 1, and the 25 bands pictured in each plot sum to Chern number 1 (for
L = 55, the pattern appears to hold but the lowest bands do not have a well-defined
gap). (c) the flatness ratio f; (left) and the normalized standard deviation of Berry
curvature €, across the folded Brillouin zone (right) of the first band above E = —0.5,
for various L values. The filled markers (e) indicate topological bands while empty
markers (o) indicate trivial bands (excluded in the right). The squares (M) and circles
(e) correspond to L = F,, such that n is odd and even, respectively.
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Figure 6.9: L dependence of the IPR Here we demonstrate two examples of how
we determine 7y, for IPR data in the basis o = z, k, where I, ~ L™ 7% for M = 2.7 (a)
and M = 3.3 (b). We take a linear fit for log I}, or log I, over log L, then the slope of
the fit estimates ~.

with the onset of criticality in the finite energy states (i.e. a mobility edge) near the
edge of the gap centered about £ = 0 (e.g. in Fig. 6.8 this corresonds to the states near
E ~ —0.5 for W = 1). Due to the interplay of topology, criticality, and quasiperiodicity
several physically interesting effects occur near the gap maximum. This is demonstrated
in Fig. 6.8 for M = 4.0 as a representative cut of the phase diagram in Fig. 6.1 that we
now explore in more detail.

It can be seen from Fig. 6.8(a) that the states 2 near E ~ —0.5 narrow around W ~ 1
and are well isolated from other states by hard gaps. Additionally, by calculating o,
Fig. 6.8(b) (left most panel) shows this collection of bands has total Chern number
equal to 1, independent of L. Meanwhile, these states become critical, as measured by
the IPR in momentum and position space (1/Z, ~ L7). To consistently assess the
behavior of the IPR, we calculate the IPR in both real and momentum space bases for
each combination of parameters at L = 55, 89, 144 and 233. Then we fit the log of the
IPR log(Z) vs log L to extract the slope for an estimation of . We demonstrate some
examples of such fitting in Fig. 6.9. Aggregating the IPR data for various W at an
energy window we have Fig. 6.8(a) where color shows 7, When 0 < v, < 2, the system
is delocalized in both bases (o = z, k).

Interestingly, we observe a self-similarity in these critical bands; the sequence of

decreasing energy windows shown in Fig. 6.8(b) have the same Chern number as we

2By downfolding this collection of states originated from a band at a given L
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increase the super-cell size. When M = 4 and W = 1.01541 the relevant energy window
E € [-0.49, —0.47] has (F,_5)? states for a system size L = F;,. When we can identify
the lowest band [depicted by the green line in Fig. 6.8(b)] in this energy window the
value of its Chern number follows the self similar sequence of C' = —2 for L = F5, and
C =1 for L = Fy,_; (in each case examined).

The flatness of the lowest (green) band is apparent in the dispersion in the mBZ in
Fig. 6.8(b) as well as by its large effective mass(Sec. 6.7.1. By computing the flatness
ratio (of the green band) f, and Berry curvature §, (in Egs. (6.5) and (6.6), respec-
tively) our data also demonstrates that larger L leads to flatter, isolated topological
bands in the mBZ at some optimal W. As shown in Fig. 6.8(b and c left) for increasing
L the peak in f, sharpens concomitantly with the development of critical eigenstates
[Fig. 6.8(a)] as the Chern bands in the mBZ occur at an increasingly fine energy scale.
At the W with maximal f,, we also see a reduction in the fluctuation in Berry cur-
vature €, (of the green band), probed via its standard deviation divided by the mean
across the mBZ, Fig. 6.8(c,right). Precisely, the normalized standard deviation of Berry

curvature 1s

S () _ VS0 (0)2 — (g 2(6))’
O NC)

The reduction of fluctuations of €2, for increasing L suggest that the model could

(6.7)

host a fractional Chern insulating state in the presence of interactions [233, 234]; how-
ever, it is possible that an incommensurate charge density wave state could be stabilized

instead (see Fig. 6.10 for Berry curvature profiles in the mBZ).

6.7.1 Effective mass

One additional measure of band flatness to consider is the effective mass of the lowest
band. We define an effective mass m* by the expansion of the energy dispersion about

its minimum E(q) = E(0) + 52+q% + ---. Numerically, m* can be obtained through

2m*

a quadratic fitting of E,(0) near @ = 0, where the n indexes the first, folded band
above E = 0 (Fig. 6.11(a), for example). The effective mass can also be obtained,

perturbatively, from the pole of the Green function Feg(q) = £(M + q2/2m*) where



146

L=13 L=34 L=89 L=233

Q

2o 2 N ow

0.5 ) 05 05
00 00
0 /2 - 0 J2x - 0 J2x
2 0,12 y 0,12 /2

0.5 05

- - : 0.5
oj2x 00 0127 0 /2r 00 0/2n
i ¥ i

0 /2r oo 0127
y x

Figure 6.10: Berry curvatures. The Berry curvature of of the first band above the
hard gap near £ = —0.5. The samples shown are at W = 1.01541, M = 4 and L = 377,
i.e. at its peak flatness (see Fig. 6.8). The first row are system sizes in the sequence of
L = F,, with odd n, and the second row for even n. For L = 55 and L = 89, Berry
curvature have clear peaks; while larger L’s see flatter Berry curvature.

m* = M/(20%). At fourth-order, m* ~ 10°(1/t) at W = 3t, indicating that the QP is
flattening the topological bands; our numerics (the blue solid line in Fig. 6.11(b)) show

this effect is even more drastic [Fig. 6.11(b)].

6.7.2 Edge states

For finite size calculation, (twisted) periodic boundary conditions eliminate all edge
contribution and keep only the bulk. With open boundary conditions, the edge states
can be observed, but we no longer have access to any 8 # 0. Here, we use twisted
boundary conditions only in the z-direction but open boundary conditions along the
y-direction, so that we can see the dispersion of the edge states as we vary 0,, as clearly

demonstrated in Fig. 6.11(c).

6.8 Conclusion

In a simple model of a two-dimensional topological insulator, we demonstrated that
the inclusion of quasiperiodicity induces flat bands, eigenstate criticality, and a phase
diagram full of structure. The eigenstates go through several Anderson-like transitions
(delocalizing in momentum space before localizing in real space), which leads to critical

eigenstates in a metallic phase. Meanwhile, we see the onset of flat topological bands
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Figure 6.11: Twist Dispersions. (a) Using the twist dispersion to obtain the effective
mass m*. The red curve is the quadratic fitting result to estimate m*. The figure
shows an example for M = 4.0, W = 0.4. (b) The effective mass obtained from fitting
twist dispersion (mg;) and from perturbation theory (mge,), compared with gap size.
The vertical line marks the W where we scrutinize flat topological bands. (c¢) Twist
dispersion with open boundary conditions in the y direction and twisted boundary
conditions in the z direction. The color corresponds to the location of the eigenstates
along the y axis. The red and dark blue states in the bulk gap are the edge states.
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Figure 6.12: Vanishing of the spectral gap. The gap size as a function of W for
M =24 (a) and M = 3.0 (b) with various system sizes L. (c) is a more zoomed in view
of the M = 3.0 cut near the transition. In the second row, we show an example of how
the combination of critical exponents vz is extracted from the spectral gap data. For
a range of choices of W, we fit log A against log(W, — W) in the range when W, — W
is under 0.015 and A > 0.001 with a straight line. This data is shown in (d). Then
we find the point where the root mean square error (RMSE) as shown in (e) of the
linear fit is smallest as our best estimation of W, where the slope is then vz. For these
results, our best estimate of vz = 1.0 & 0.1, with W, = 2.106 &+ 0.001.
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Figure 6.13: Properties of the IPR. (a) Phase diagram of the momentum space IPR
of the lowest eigenstates. The red circles mark where the gap size A(W) changes its
trend from increasing to decreasing as determined by the location of the maximum in
A'(W). The cuts M = 3.3 (b) and M = 3.8 (c) show the non-trivial L dependence of
the IPR in both real and momentum space start to dramatically change when A(W)
begins to turn downward.

within the TI phase concomitant with critical high energy eigenstates. Our results
go beyond twisted heterostructures and allows for cold atom labs and metamaterial

labs (both of which have already realized 2D TIs [53, 222, 220, 221, 219, 120, 121]) to

emulate similar physics.

6.9 Appendix: Perturbation theory

For smaller values of W, we shall use perturbation theory to estimate the location of
the NI-to-TI and SM-to-CM transitions. Perturbation theory can also help determining
the trend of topological mass, whose discrepancy from numerical results can serve as a
proxy for determining the onset of the regime dominated by non-perturbative effect.

We begin by considering the single-particle Green function

Go(w) = [w — ho(w)]™!, G(w) = [w — ho(w) + V]7? (6.8)
and use Dyson’s equation
Gk,w)™t =w—ho(k) — 2(k,w) (6.9)

where ¥ (k,w) is the self-energy at momentum k including all Gy(k,w) irreducible di-
agrams. Close to the SM phase near M = M; = 2 or M = M, = 4, we express
the Hamiltonian in the low-energy limit around the corresponding Dirac node K as
h(K+q) = vq-0o + (M — M;)o, and similarly expand the self-energy to obtain

Y(k=K+q,w) =wXpoog+X,q-0+X.0, (where oy is the 2-by-2 identity matrix and
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the 0, 4 . are the Pauli matrices). We define the quasiparticle residue Z, the renormal-
ized topological mass M. and renormalized velocity @ such that the resulting Green

function in the low-energy limit has the form

Gk=K+q,w) = - z ~—. (6.10)
w—9q-0— Mo,
Then using ¥, ¥, and ¥, from ¥(k,w) we can express Z, M and ¥ as:
z7' = 1-%p, (6.11)
M—-M;, = (M—-M+%.,)Z1, (6.12)
v o= v(14+2,/v)Z7 (6.13)

To calculate ¥(k,w), we treat Vgp(r) perturbatively. In momentum space, V' is a
delta function connecting k to k + Q% and k + QQy. Hence, at second order the self

energy is

1
»(2) (k,w) = (W/Q)2 . Z & E00) (6.14)
Ja={2,9}

Near M =4, k = M + q with M = (7, 7), this yields

W2

R 5 (6.15)
W2 (4 — M)%*(1 +cosQ)
2
2@ = - D2 v, (6.16)
SO (4—M) +D(2cosQ - 1)’ (6.17)

where Dy = (4 — M)%+2(3 — M)(cos Q — 1) is the common denominator that is always
positive for M > 3. Observe that the numerator of 29) is also always negative for
M > 4, and Eg) is always negative. Hence M is renormalized to be smaller as W
increases, predicting a critical W where M (W) = 4 where TT to CM transition occurs.
On the other hand, the direction of velocity renormalization is not obvious from the
second-order perturbation theory, and indeed we can only predict the velocity to be
renormalized to 0 at fourth-order perturbation theory. This is indicative of scattering
off a single Dirac cone, where due to spin selection rules it requires a larger momentum

exchange to induce intranode scattering.
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The fourth-order perturbation theory includes all of the diagrams that connect the
Dirac node to points in the Brillouin zone that are 2 Manhattan distance apart and
then back. The fourth order contributions to ¥ (k,w) are

D] Mf
(2M (M (24M —221)+697) — 1497) cos(Q) + (2M (M (13M —115) 4 356) — 770) cos(2Q)+

(—=15M* + 166 M3 4 (=36 M2 + 206 M — 295) cos(3Q) — 7T32M*+

6(M — 3) cos(4Q) 4 1522M — 1260)/Ds  (6.18)

W4
@ = ?(—10M5 + 138M* — 806 M3 + 2509M 2+

(2M (2M (M (11M — 134) + 622) — 2615) + 4212) cos(Q)+
(M (M (3M(3M — 37) + 538) — 1208) + 1048) cos(2Q)+
2(451 — 6 M (M (3M — 26) + 76)) cos(3Q)+

5(M — 3)(3M — 8) cos(4Q) — 2(M — 3) cos(5Q) — 4155M + 2904) /D, (6.19)

where Dy is the common denominator

Dy = (—2(M —3)cos(Q) + (M — 6)M + 10)*(—4(M — 2) cos(Q)+

(M —4)M + cos(2Q) + 7)(—2(M — 3) cos(2Q) + (M — 6)M + 10) (6.20)

With the fourth-order correction, we find that the perturbation theory agrees very well
with the numerical results, as well as Figs. 6.1 and 6.3. However, fourth order perturba-
tion theory for the velocity renormalization only qualitatively predicts the magic-angle
transition where v = 0, but at a much larger W than indicated by numerical results.
It is natural to expect that this is due to the single node nature of the bandstructure
at M = (m,m) (all of the scattering is intranode). We anticipate a better prediction
of magic angle transition may be achievable only at even higher orders of perturbation
theory.

Using exactly the same procedure we can consider the case of M near 2, which is
the SM line that divides the two TI regions with opposite sign in the quantum spin
Hall effect. From a symmetry point of view it is not surprising that the M = 2 SM

line is W-independent. This is indeed the case from the perturbation theory, as up to
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fourth order we have 222) = 0and M = M = 2, hence there is no topological mass

renormalization. That means starting from such a SM phase, quasiperiodicity is not
driving it out of SM due to curvature in the phase boundary. At second order the
velocity only reduces but does not go to zero and the renormalization of ¥ is only due
to the quasiparticle residue Zg) = —csc(Q/2)?, while 2;2) = (. This can be understood
as follows, at M = 2 the two Dirac cones are at X = (7,0) and Y = (0, 7) and being
separated by 27 Manhattan distance in momentum space, second order perturbation
theory will not be able to induce internode scattering. Whereas, at fourth order the two
Dirac cones can be connected by 2Q) hops in the Brillioun zone. Thus, only fourth order
perturbation will be able to predict a vanishing velocity and a magic-angle transition.

In line with this reasoning, the renormalized velocity ¥ up to fourth order is

o=w+3P +xW)/z (6.21)

Here 21()2) vanishes, and the fourth order term

w_ W i
¥ = 162 (I1+4cos(Q)) esc(Q/2) v (6.22)

is negative only when @ > cos™!(1/4) =~ 1.82. Only in this regime does the pertur-
bation theory predict a magic-angle transition. For example, at Q = 27w F,,_o/F,, it
predicts © to vanish at 4 = 4sin(Q/2)(—1 — 4cos Q)~/* ~ 3.16. This fourth order
perturbative result Wc(4) is an overestimate of the true critical W,, and thus a more
accurate prediction will require higher order perturbation theory. For smaller ) such
as Q = 2nF,_3/F,, the velocity can never reach 0 at fourth order in perturbation
theory. Hence, the magic-angle transition is an even higher order effect than that of
Q = 27F,_2/F,. In other words, the reduction of the value of @ requires higher order
in perturbation (more @ “hops”) to capture internode scattering.

These phase transitions can be assessed in this regime (i.e. near M = 4) by com-

puting the renormalized mass M and velocity ©. We obtain up to second order in

w

4—M)+(cos Q—1)
[(M - 4) + w2 (47]\(4)2+2(3£M)(cos Qfl)]
14+ W2/((4—M)2+2(3— M)(cos@Q — 1))’

By solving for M = 4, we obtain the phase boundary between insulating phases, il-

M—4=

(6.23)

lustrated by the black dotted line in Fig. 6.1(a) (at fourth-order in W), which is in
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excellent agreement with the numerics. The curvature to this line demonstrates that
quasiperiodicity can drive a topological phase transition NI-to-TI, which is the deter-
ministic analog of the disordered topological Anderson insulator [235, 236]. For M = 2,
there is no renormalization of M. Using numerics to access higher M and W, when
M Z 5.4, the NI transitions into the CM. The magic-angle transition (i.e., SM-to-CM)
is obtained by solving v — 0 on the line M = 4.

Besides determining topological phase boundary by solving M = 0, the perturbation
theory also determines gap size A as function of W when W is sufficiently small.
Not surprisingly, the prediction of A(W) fails after some finite W. This is when the
lowest band is mixing with other minibands nearby in energy due to the quasiperiodic
potential. When such deviation between perturbation theory and numerical result of
gap size happens (i.e. when A begin to decrease with W), IPR of the lowest energy

state changes dramatically at the same W as shown in Fig. 6.13.
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Chapter 7

Rare region effect in 3D TI phase transition

7.1 Introduction

The previous chapter focused on the effect of quasiperiodicity on a model of a 2D
topological insulator. We now turn to the case of a 3D topological insulator with
disorder.

Unlike the case of 2D semimetals (SM), the fate of 3D topological SM under disorder
does not have a consensus answer. The perturbative renormalization group predicts that
for dimensions d > 2, the quantum critical point exists between semimetal and diffusive
metal [237] — in another word, semimetal can withstand some finite disorder as far as
perturbation theory can tell. The stability against weak disorder was assumed also
by various numerical calculations[238]. However, more careful treatment of numerics
that incorporates non-perturbative effect has revealed that arbitrarily small disorders
can destabilize Weyl semimetals (WSM) and the quantum critical point between WSM
phase and diffusive metal phase a avoided one[46].

The studies mentioned above have focused on stand-alone WSM models. An inter-
esting question to ask is that whether the WSM living on the phase boundary between
topological insulator phases destabilizes with the disorder. Superficially, the fact that
the WSM has a context as topological phase boundary provides some extra persever-
ance against disorder, as the topological insulator phases on both sides of the WSM
can hold up to disorder. The assumption of a stable semimetal has been assumed by
previous theoretical works [34, 35]. On the other hand, the non-perturbative rare-region
effect may still destabilize the WSM phase boundary as in the case of Ref. [46]. To

answer this question, careful numerical treatment is needed.
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This theoretically intriguing and debated problem is also experimentally important,
especially as experimentalists have tried hunting for Weyl semimetals. The expectation
is that tuning a parameter that controls the topological phase (the topological mass
M, to be defined below) always pass through the semimetal phase. Experimental
attempts include BiT1(S1_sSes)2 for example [47] where the parameter ¢ determines
the topological mass and can be controlled by doping.

However, the expectation implicitly assumed that the topological and trivial insula-
tor phases, in a two-parameter phase diagram of M and disorder W, have the common
boundary of finite length. The precise description of the SM phase under disorder
can provide important insight for the experiments, whether it justifies or disproves the
implicit assumption.

In this chapter, we will use a combination of numerical methods to investigate the
phase boundary between TT and weak T1I phases of a 3D model of topological insulator
that is a generalization of the 2D Bernevig-Hughes-Zhang (BHZ) model. The phase

boundary is perturbatively expected to be an SM until a quantum critical point(QCP).

Critical point
?
Trivial insulator(NI) Semimetal Topological insulator
"] >
m=0 m

Avoided Critical point
*

—
f’

Trivial insulator(NI)
insulator

“Semimetal” Topological

>
>

m=20 m

Figure 7.1: Schematics of the two candidate scenarios of phase transition between
topologically distinct insulator phases in the presence of disorder. The question we
address chapter is whether the phase transition along the green dash line is TI-SM-NI
or TI-Metal-NI.
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7.2 Model

We consider the 3D generalization of the BHZ model that has been studied by many
[34, 35] to understand the topological insulator in presence of disorder. We define
the model as a lattice for convenience in adding random potential that is spatially
uncorrelated.
it me9
H = Z Z |:267L+MO[#CF 7CL+HBC7?+ h.c.] + (mo + 3mg) ZCLBC,:’ (7.1)

— -

T H=T,Y,2 T

where o, and 3 are Dirac matrices defined using Pauli matrices o, as

8= Loy = (7.2)
0 —I o, 0

We fix t = 1 for convenience. The topology of the model is controlled by the ratio
between m0 and m2. We define the ratio M = mg/mq for convenience, and topological
invariant Q is a function of M. Before we introduce disorder, The model is in the
topological insulator phase for M > —2 and M < 0, and a weak topological insulator
phase for —4 < M < —2. Otherwise, the topology is trivial. The band structure
is shown in Figure 7.2. A topological phase transition happens only when the bands
touch.

The disorder is included as a random potential that is independently sampled at
each lattice site of the model. We use Gaussian distribution with standard deviation
W which is a natural choice that is close to the experiment. Previous work has used
uniform distribution within [-W, W] [34, 35]. The specific choice of disorder does not

change the physics, but Gaussian disorder is easier to study rare region effects.

7.3 Methods

The KPM method provides a convenient survey for the density of states and conductiv-
ity /conductance across various levels of Fermi energy. In addition, the result of KPM
can be formulated to conveniently capture the basis-independent fluctuation of the con-
ductivity, which helps determine the phase transition as mean or typical conductivity

is difficult to calculate.
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Figure 7.2: The clean band structure of the 3D topological insulator model we con-
sider. The plots are a cut of k, = 0. From left to right correspond to M =
1,0,—1,—-2,—3,—4,—5. The panels in the first row are in NI, TI, weak TI, NI phases
and those in the second row are all in the SM phase. Notice that M =0 and M = 4
has one band touching point but M = 2 has two.

On the other hand, using the Lanczos method we can calculate wavefunction. Specif-
ically, we use the method of square-and-shift to calculate the lowest energy eigenstates.
The criticality measures similar to Chapter 5 then follow from the eigenstates data.
The multifractal analysis provides a well-validated approach to determine the phase

boundaries from crossings with scaling by systems size L.

7.4 Phase Diagram

We present the phase diagram acquired by considering the density of the state at zero
Fermi energy (Fig.7.3). p(0) as small as ~ 1/NZ, represents the insulator region, where
p(0) is dominated by the far-tail of Jackson Kernel (See Chapter 2). For semimetal or
destabilized semimetal phases, p(0) is at the order of 1/N2 because the WSM phase
has density of state scaling p(E) ~ |E|?. The metallic phase is characterized by larger
p(0) ~ O(1) regardless of Nc. With a No = 2048, the color map of p(0) visually
presents the insulating and metallic phases, as well as their boundaries.

We also provide a zoomed-in phase diagram from conductivity at zero Fermi energy

(Fig.7.3 bottom). The conductivity is more costly to compute and is hence only mapped
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Figure 7.3: The phase diagram as mapping of logp(W,M,E = 0) (top) and
logo (W, M, E = 0) for a smaller range of parameters(bottom), marked with cuts that
will be scrutinized in some detail. The DOS result is calculated with Ng = 2048 and
L = 151. The light strips correspond to the SM and metallic phases.
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for a small region. Although the phase diagrams have limited resolution (with only
N¢ = 512), they hint at the important feature that the insulator-metal transition
follows the second scenario in Fig. 7.1. The WSM line that would have existed if there
were not any rare-region effect is broadened into a critical fan.

However, we must keep in mind that the phase diagram in Fig. 7.3 can only be
taken as a coarse indicator of the phase, unless even larger scale calculation is carried
out to improve the resolution until fully saturated. For the next few sections, we will
resort to a detailed calculation of several cuts guided by the tentative phase diagram

to understand the phase transitions.

Figure 7.4: The landscape of p”(W, M, E = 0) for a larger range of parameters. The
calculation is done with Ngo = 2560 and L = 151. A peak exists, marking the location
of the avoided quantum critical points.

7.5 Avoided criticality

One feature discovered in Ref. [46] is the avoided quantum critical point in semimetal
(that does not have a topological context) with the disorder. The criticality, being
avoided, loses the analytical property but retains its critical behavior away from E = 0.

In another word, if the quantum criticality predicted by perturbative theory were not
avoided, the density of states p(E) would be non-analytic at the transition. Expanding

near £ = 0, we have p(E) = p(0)+1/2p(0)” E?. Non-analytic behavior would be seen as
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Figure 7.5: The second derivative of the density of states as a function of Fermi energy,
at £y = 0. As N, increases, the peak stays within the same order of magnitude.

p(0) being discontinuous in (M, W), or as p”(0) with a singularity at certain (W, W,).

From Fig. 7.4 we can clearly see the critical point — no matter avoided or not — occurs
near Wocop = 0.88£0.05 and Mgcp = —1.8 £0.1. If the quantum critical point were
not avoided, the WSM phase boundary would have been stable up to Wgcp. However,
from the figure, it can be visually identified that a metallic region of a finite range of
M has developed at a much smaller W. The finite metallic region will be shown more
concretely in the next section.

To clearly demonstrate the avoided QCP being analytical and is not a result of finite
size effect, we shall utilize the scaling of p(0)” in N, the energy resolution (Fig. 7.5). As
N, — oo the second derivative p(0)” grows slowly into a finite peak (in sharp contrast
to, for example, the orders of magnitude steep peak in the magic-angle transition in

Chapter 5), indicating the quantum critical point is avoided.

7.6 Insulator to Metal phase transition and the mobility edge

We use both multifractal finite-size-scaling (MFSS)[239] as the primary tool to study
the insulator to Metal phase transition and mobility edge for a few cuts across the
phase boundaries indicated by the phase diagrams. In addition, we will discuss in the
appendix the KPM calculation of conductivity[64] that shows the strong fluctuation

near the phase transition.
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Figure 7.6: The crossing of g as lattice size L varies. The critical W¢ can be estimated
from the figure as W = 0.6 £0.02 for M = —1.7. Notice the drifting toward lower W
as L increases, making our estimation more likely to be an overestimate.
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Figure 7.7: Plots of 3D |¢(z,y,2)|? for a case of insulating phase close to transition
(M = —1.5, W = 0.54, left) and in metallic phase (M = —1.5, W = 0.69, right). The
size of dots represent |¢|? that is below 0.001; and color represent those above 0.001.

7.6.1 Multifractal finite-size-scaling

The phase transition from insulator to metallic phase can be visually seen from the
wavefunctions. In Fig. 7.7 we visualize examples of wavefunctions, one in the insulating
phase and the other in the metallic phase. In the insulating phase the state is highly
localized at one peak; and post-transition the wavefunction is more widespread. An in-
teresting feature to observe from the wavefunctions is that some of the high-probability
regions are confined to a thin but wide volume that almost looks like 2D. These are
likely occurring at some domain wall.

To quantify the change of the wavefunctions, we study observables derived from the

multifractal spectra. The multifractality of the wavefunctions is an important feature
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Figure 7.8: The crossing of ap(M) for various L at fixed disorder W = 0.52. The finite
range of M where ag approaches toward ag = d = 3 as L increase is the metallic region
that the semimetallic line develops into.

of the Anderson transition[37]. Following [239], we consider generalized singularity
strengths
Gq = d7,/dg (7.3)

where 7, is the generalized mass exponent
T4(W,A) =In(Z,)/In A (7.4)

where 7, is the generalized inverse participation ratio (IPR), and 1/ is the size of the
coarse-grained lattice when we box the L3 lattice into [3 cubes. The tilde in the above
two equations emphasizes that the quantities, originally intended for the study at a
critical point only, are extended to finite A and W away from critical W. The tilde is
dropped when the implication is clear.

We consider A = 0.1 and even L’s, so as to minimize the contribution from states in
the band. A finite energy window of 0.001¢ is chosen to aggregate c,. For computational
considerations, we pick ¢ = 0 such that o is expected to diverge for the insulating phase
and approach d = 3 for the metallic phase. When the system is critical, d < oy < 2d is
expected. Hence, as L various a crossing would show up. For L ranging [50, 80], a clear
crossing shows up (Fig. 7.6) from which we can estimate the critical W. For W < W,
ap increases with L signaling an insulating phase; and W > W¢ we see ag — d = 3.

Similarly, we can determine the mobility edge that is the localization-delocalization
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Figure 7.9: The mobility edge for M = 1.5, W = 0.59 is at 0.005 & 0.001 where the
curves for different L crosses.

transition at fixed W and M, but varying Fermi energy E. oa4(E) demonstrates a
crossing at the mobility edge (Fig. 7.9) where the zero energy state is still insulating,
while outside the mobility edge the system is metallic. As W increases, the mobility

edge moves toward E = 0 at W = W (data available upon request).

7.7 The stability of Weyl semimetal

To directly see the destabilized WSM for an arbitrary small disorder, we shall look into
the spectral observables along the putative semimetal line. We consider both the density
of states as similar to previous studies, [35] as well as the transport calculation at a size
not previously considered in similar studies. In particular, to reach numerically stable
results the necessary system size is much larger for transport properties. For the density
of states, we consider lattice of size ranging from 803 to 1202, while for conductivity
we consider lattice of 1503 and 200? sites. We take expansion order N¢ as a handle for
energy resolution. As we increase L and N¢, we have a range of parameters W that the
density of state p(Ey = 0) and o(E; = 0) saturate to varying finite-size effects. The
results are shown in Fig. 7.10 for density of states and Fig. 7.11 for DC conductivity.

For both of the two observables, larger L and N¢ saturate toward

p(Ef =0) ~ e /W (7.5)
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Figure 7.10: The DOS at E = 0 along the line that SM would have existed if it were
stable. As L and N¢ increases, the relation between log p and 1/W? saturates to be
linear.

and

o(Ep=0) ~ e W (7.6)

where a and b are constants. Hence, as W decreases, both DOS and DC conductivity are
suppressed very fast( hence the finite value can be easily overlooked and be identified as
stable semimetals); however, for arbitrarily small W > 0 we have strictly p(Er = 0) > 0

and o(Ef = 0) > 0, indicating the non-existence of a stable semimetal line.

7.8 Conclusion and outlook

In this chapter, we provided evidence that the WSM phase boundary between topolog-
ically distinct insulator phases is destabilized by an arbitrarily small disorder. Instead,
on the W — M phase diagram, the WSM line is broadened into a fan of diffusive metal.
The quantum critical point predicted by perturbation theory does not exist but becomes
an avoided one. The destabilized semimetal and avoided quantum criticality indicates
the putative Weyl semimetal line between topological insulators in fact resembles a
finite region of metallic phase, which naturally explains the existence of a wide critical
regime when tuning the topological insulator towards trivial insulator.

With the convenient numerical method, one feasible task is to map out a detailed
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Figure 7.11: The conductivity at £ = 0 along the putative SM line. As N¢ and L
increase, the linear relation between log o and 1/W? emerges.

phase diagram with conductivity. Such a phase diagram may reveal more detail of
the phase transitions, as opposed to the guide of sight phase boundaries in early works
regarding the topological insulator with the disorder (for example, Ref. [34]). Moreover,
with the wave function methods, we can accurately determine the phase boundary
between the insulating and diffusive metal phases. An accurate phase boundary can
quantitatively show the range of parameter that experiences criticality.

The same method can even be applied with a more realistic model (similar to the
work we do in Ref. [20]) to calculate the phase diagram of tunable topological insula-
tors such as BiTl(S;_sSes)2 to validate with observation results on the putative Weyl

semimetal phase line.

7.9 Appendix: Conductance fluctuation at the TI to metal transition

The calculation of average conductivity is only plausible in the metallic phase, as a
consequence of the universal conductance fluctuation (UCF) that penetrates into the
critical point [240]. When conductance vanishes, the fluctuation of conductance does
not vanish and even demonstrates ((dg)") e /(o) scaling. Hence, near the transition,

the distribution of conductance becomes extremely broad with a log-normal tail. For
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a log-normal distribution, accurate estimation of statistical parameters requires prior
knowledge of the distribution itself. However, the precise mathematical form of the
distribution is not known, while we know the distribution is neither strictly log-normal

nor Gaussian. The broad distribution is shown in Figure. 7.12.
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Figure 7.12: Histogram of KPM estimated sample conductance. The horizontal axis
is log-scaled, highlighting the extremely broad distribution near the transition. In
contrast, the metallic phase sees smaller fluctuation. The fluctuation increases with
larger Nc¢.

As a substitution of mean conductivity as a scaling variable, it has been conven-
tional [240] to use typical value (geometric mean) instead. However, even with typical
conductance giyp, it is not particularly efficient for KPM. The intrinsic broad distribu-
tion and small average falls exactly into the condition discussed in Section 2.5, where
the stochastic trace estimation that backs the efficiency of the KPM method bears no
advantage over exact trace. In addition, the tail of the distribution of the stochastic
estimator of g can significantly extend to negative values for some of the samples, pro-
hibiting the application of geometric mean across sample conductance. Statistically,
it is common to use robust estimators to remediate (such as median, the median of
means, the trimmed sample mean, and many more[241, 242]), but the robust estima-

tors come at the price of neglecting the effect of far tails — which is against our goal of
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understanding the contribution of rare region effects.
To tackle the situation, we take advantage of the random-vector fluctuation of KPM

discussed in Section 2.5 to directly estimate the second moment of conductance,

pylg) =< g* > | < g >* (7.7)

whose numerator can be acquired directly from the standard deviation across random-
vectors of each sample calculated in KPM. There is no need to use robust statistics for
< ¢® > because it is naturally positive definite; and robust estimation is applied to the
denominator < g >? for which we only need a scale. Here for simplicity, we will just
use median.

Figure. 7.13 shows the normalized second moment as a function of W along a cut of
M = —1.5. The second-moment peak to several orders of magnitude is larger than the
mean, which provides a crude estimate of the location of the transition. As lattice size
in the calculation increases, the peak moves towards the left, similar to what we observe
in the wave-function calculation. Hence the estimation of W, is an upper bound — the

metallic phase can only be larger in the phase diagram than we estimated.

0.5 0.6 0.7 0.8 0.9
W

Figure 7.13: The normalized but not centralized second moment for a cut of M =
—1.5, varying W. The peak marks the broadest distribution of conductance which
estimates the critical W, for metal-insulator transition. As L increases, the estimation
of transition drifts to lower W,., hence we shall only quote an upper bound of the
transition.
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Chapter 8

Conclusion

In this dissertation, we extensively studied the effect of quasiperiodicity and disorder
in the context of topological phases of matter with a focus on phase transition and
criticality. We applied an extensive set of tools to study the thermodynamic limit
of lattice models whose translational symmetry is broken. With the KPM method,
(iterative) exact diagonalization, multi-fractal analysis, machine learning, and so on,
we numerically studied the effects of quasiperiodicity and disorder that are intrinsi-
cally non-perturbative. While most methods are not previously unseen, by pushing
the boundary of optimization and utilizing the latest computational resources and
paradigms, we largely extended the boundary of what we can calculate — and more
importantly, what we can easily calculate. The easiness of computation allowed us to
produce detailed phase diagrams for all models we studied (as opposed to guide-of-sight
lines) and helped with many of our discoveries.

Applying the methods, we studied the quasiperiodic semimetals that we take as
the prototype of the universal magic-angle semimetals including the famous twisted
bilayer graphenes. We characterize the magic-angle transition as semimetal to metal
transition as velocity is renormalized down to zero, which happens as a universal novel
quantum phase transition that is deeply related to the incommensurability introduced
by quasiperiodic modulation. Based on the model we studied, we proposed new routes
to host magic-angle physics. We also extensively studied the same base model but with
quasiperiodic modulation that preserves chirality. In the chiral model, we character-
ized the eigenstate phase transition through both the density of state and wave-function

measures. The similarity and difference between the chiral and non-chiral models mark
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the importance of the classification of quasiperiodicity-driven phase transition analo-
gous to the classification of disorder-driven Anderson transition.

To connect our work with the ongoing experiments on twisted bilayer graphenes, we
studied a special type of disorder that can show up in twisted bilayer graphene systems
and find that the velocity of the Dirac cone is robust to disorder, whereas the other
features of the miniband are rather sensitive to randomness in the twist angle.

For topological insulators, we extensively investigated the 2D BHZ model with the
presence of quasiperiodicity, which is a natural generalization of magic-angle semimet-
als, to uncover an eigenstate criticality that coincides with the proliferate of flat topo-
logical bands. The rich phase diagram that we mapped out show a multitude of phase
transition that can consecutively occur by varying strength of quasiperiodicity. We also
demonstrated that the topological phase transition driven by quasiperiodicity does not
follow any known symmetry classes.

Lastly, we studied a 3D topological insulator model with the disorder, focusing
on the effect of the rare-region effect in the context of topologically protected phases.
We find that any disorder destabilizes the Weyl semimetal that resides at the boundary
between topological insulator phases. The WSM line is turned into a metallic phase that
spans a finite area on the phase diagram, and the perturbatively anticipated quantum
critical point between WSM and diffusive metal is turned into an avoided quantum

critical point.



1]

170

Bibliography

Edward Witten. Three lectures on topological phases of matter. La Rivista del
Nuovo Cimento, 39(7):313-370, 2016.

Rafi Bistritzer and Allan H MacDonald. Moiré bands in twisted double-layer

graphene. Proc. Natl. Acad. Sci. U.S.A., 108(30):12233-12237, 2011.

Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath. Origin of
magic angles in twisted bilayer graphene. Phys. Rev. Lett., 122:106405, Mar
2019.

Alexander Weifle, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. The

kernel polynomial method. Reviews of modern physics, 78(1):275, 2006.

Nguyen N. T. Nam and Mikito Koshino. Lattice relaxation and energy band

modulation in twisted bilayer graphene. Phys. Rev. B, 96:075311, Aug 2017.

Stephen Carr, Shiang Fang, Ziyan Zhu, and Efthimios Kaxiras. Exact continuum
model for low-energy electronic states of twisted bilayer graphene. Phys. Rew.

Research, 1:013001, Aug 2019.

Yixing Fu, EJ Koénig, JH Wilson, Yang-Zhi Chou, and JH Pixley. Magic-angle

semimetals. arXiv preprint arXiv:1809.04604, 2018.

K v Klitzing, Gerhard Dorda, and Michael Pepper. New method for high-accuracy
determination of the fine-structure constant based on quantized hall resistance.

Physical Review Letters, 45(6):494, 1980.

Daniel C Tsui, Horst L Stormer, and Arthur C Gossard. Two-dimensional magne-
totransport in the extreme quantum limit. Physical Review Letters, 48(22):1559,
1982.



[10]

[13]

[16]

[17]

[18]

[20]

171

F Duncan M Haldane. Model for a quantum hall effect without landau levels:

Condensed-matter realization of the” parity anomaly”. Physical review letters,

61(18):2015, 1988.

Charles L Kane and Eugene J Mele. Z 2 topological order and the quantum spin
hall effect. Physical review letters, 95(14):146802, 2005.

B Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin
hall effect and topological phase transition in hgte quantum wells. science,

314(5806):1757-1761, 2006.

Frank Schindler, Ashley M Cook, Maia G Vergniory, Zhijun Wang, Stuart SP
Parkin, B Andrei Bernevig, and Titus Neupert. Higher-order topological insula-

tors. Science advances, 4(6):eaat0346, 2018.

NP Armitage, EJ Mele, and Ashvin Vishwanath. Weyl and dirac semimetals in

three-dimensional solids. Reviews of Modern Physics, 90(1):015001, 2018.

Binghai Yan and Claudia Felser. Topological materials: Weyl semimetals. Annual

Review of Condensed Matter Physics, 8:337-354, 2017.

Philip W Anderson. Absence of diffusion in certain random lattices. Physical

review, 109(5):1492, 1958.

Justin H Wilson, Yixing Fu, S Das Sarma, and JH Pixley. Disorder in twisted

bilayer graphene. arXiv preprint arXiv:1908.02753, 2019.

Yang-Zhi Chou, Yixing Fu, Justin H Wilson, EJ Konig, and JH Pixley. Magic-

angle semimetals with chiral symmetry. arXiv preprint arXiv:1908.09837, 2019.

Liang Wu, Fangdi Wen, Yixing Fu, Justin H Wilson, Xiaoran Liu, Yujun Zhang,
Denis M Vasiukov, Mikhail S Kareev, JH Pixley, and Jak Chakhalian. Berry phase
manipulation in ultrathin srruo 3 films. Physical Review B, 102(22):220406, 2020.

Xiaoran Liu, Shiang Fang, Yixing Fu, Wenbo Ge, Mikhail Kareev, Jong-Woo

Kim, Yongseong Choi, Evguenia Karapetrova, Qinghua Zhang, Lin Gu, et al. A



[21]

22]

23]

[27]

28]

172

magnetic weyl semimetallic phase in thin films of eu -2 ir -2 0 _7. arXiv preprint

arXiv:2106.04062, 2021.

Alexey A Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng Wu, Matthias
Troyer, Xi Dai, and B Andrei Bernevig. Type-ii weyl semimetals. Nature,

527(7579):495-498, 2015.

Holger Bech Nielsen and Masao Ninomiya. No-go theorum for regularizing chiral

fermions. Technical report, Science Research Council, 1981.

M Zahid Hasan, Su-Yang Xu, Ilya Belopolski, and Shin-Ming Huang. Discovery
of weyl fermion semimetals and topological fermi arc states. Annual Review of

Condensed Matter Physics, 8:289-309, 2017.

M Gérttner, SV Syzranov, AM Rey, V Gurarie, and L Radzihovsky. Disorder-
driven transition in a chain with power-law hopping. Phys. Rev. B, 92(4):041406,
2015.

Sergey V Syzranov and Leo Radzihovsky. High-dimensional disorder-driven phe-
nomena in weyl semimetals, semiconductors, and related systems. Annual Review

of Condensed Matter Physics, 9:35-58, 2018.

Kostya S Novoselov, Andre K Geim, Sergei V Morozov, De-eng Jiang, Yanshui
Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric
field effect in atomically thin carbon films. science, 306(5696):666-669, 2004.

Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang. Topological quantization
of the spin hall effect in two-dimensional paramagnetic semiconductors. Physical

Review B, 74(8):085308, 2006.

Markus Konig, Steffen Wiedmann, Christoph Briine, Andreas Roth, Hartmut
Buhmann, Laurens W Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang.
Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851):766—
770, 2007.



[29]

[31]

[32]

173

Louk Rademaker and Marco Gibertini. Gate-tunable imbalanced kane-mele model
in encapsulated bilayer jacutingaite. Physical Review Materials, 5(4):044201,
2021.

Antimo Marrazzo, Marco Gibertini, Davide Campi, Nicolas Mounet, and Nicola
Marzari. Prediction of a large-gap and switchable kane-mele quantum spin hall

insulator. Physical review letters, 120(11):117701, 2018.

Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-
Cheng Zhang. Topological insulators in bi 2 se 3, bi 2 te 3 and sb 2 te 3 with a

single dirac cone on the surface. Nature physics, 5(6):438-442, 2009.

YL Chen, James G Analytis, J-H Chu, ZK Liu, S-K Mo, Xiao-Liang Qi, HJ Zhang,
DH Lu, Xi Dai, Zhong Fang, et al. Experimental realization of a three-dimensional

topological insulator, bi2te3. science, 325(5937):178-181, 2009.

David Hsieh, Yuqi Xia, L Wray, Dong Qian, Arijeet Pal, JH Dil, J Osterwalder,
F Meier, G Bihlmayer, CL Kane, et al. Observation of unconventional quantum

spin textures in topological insulators. Science, 323(5916):919-922, 2009.

Koji Kobayashi, Tomi Ohtsuki, and Ken-Ichiro Imura. Disordered weak and

strong topological insulators. Physical review letters, 110(23):236803, 2013.

Koji Kobayashi, Tomi Ohtsuki, Ken-Ichiro Imura, and Igor F Herbut. Density of
states scaling at the semimetal to metal transition in three dimensional topological

insulators. Physical review letters, 112(1):016402, 2014.

Elihu Abrahams, PW Anderson, DC Licciardello, and TV Ramakrishnan. Scaling
theory of localization: Absence of quantum diffusion in two dimensions. Physical

Review Letters, 42(10):673, 1979.

Ferdinand Evers and Alexander D. Mirlin. Anderson transitions. Rev. Mod. Phys.,
80:1355-1417, Oct 2008.

Elihu Abrahams. 50 years of Anderson Localization, volume 24. world scientific,

2010.



[39]

[41]

[42]

[43]

[44]

[47]

174

S Bogdanovich, Myriam P Sarachik, and RN Bhatt. Scaling of the conductivity
with temperature and uniaxial stress in si: B at the metal-insulator transition.

Physical review letters, 82(1):137, 1999.

Alexander Altland and Martin R Zirnbauer. Nonstandard symmetry classes
in mesoscopic normal-superconducting hybrid structures. Physical Review B,

55(2):1142, 1997.

Eugene P Wigner. On the statistical distribution of the widths and spacings of
nuclear resonance levels. In Mathematical Proceedings of the Cambridge Philo-

sophical Society, volume 47, pages 790-798. Cambridge University Press, 1951.

Freeman J Dyson. Statistical theory of the energy levels of complex systems. i.

Journal of Mathematical Physics, 3(1):140-156, 1962.

Renate Gade and Franz Wegner. The n = 0 replica limit of u(n) and u(n)so(n)

models. Nucl. Phys. B, 360(2a3):213 — 218, 1991.

Renate Gade. Anderson localization for sublattice models. Nucl. Phys. B,

398(3):499 — 515, 1993.

IM Lifshitz. The energy spectrum of disordered systems. Advances in Physics,
13(52):483-536, 1964.

JH Pixley, David A Huse, and S Das Sarma. Rare-region-induced avoided quan-
tum criticality in disordered three-dimensional dirac and weyl semimetals. Phys-

ical Review X, 6(2):021042, 2016.

Su-Yang Xu, Y Xia, LA Wray, S Jia, F Meier, JH Dil, J Osterwalder, B Slomski,
A Bansil, H Lin, et al. Topological phase transition and texture inversion in a

tunable topological insulator. Science, 332(6029):560-564, 2011.

Serge Aubry and Gilles André. Analyticity breaking and anderson localization in

incommensurate lattices. Ann. Israel Phys. Soc, 3(133):18, 1980.

Philip George Harper. Single band motion of conduction electrons in a uniform

magnetic field. Proceedings of the Physical Society. Section A, 68(10):874, 1955.



[50]

[55]

175

Giacomo Roati, Chiara D’Errico, Leonardo Fallani, Marco Fattori, Chiara Fort,
Matteo Zaccanti, Giovanni Modugno, Michele Modugno, and Massimo Ingus-
cio. Anderson localization of a non-interacting bose—einstein condensate. Nature,

453(7197):895, 2008.

Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Liischen, Mark H.
Fischer, Ronen Vosk, Ehud Altman, Ulrich Schneider, and Immanuel Bloch. Ob-
servation of many-body localization of interacting fermions in a quasirandom

optical lattice. Science, 349(6250):842-845, August 2015.

J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl,
D. A. Huse, and C. Monroe. Many-body localization in a quantum simulator with

programmable random disorder. Nat. Phys., 12(10):907-911, October 2016.

Christopher W Peterson, Wladimir A Benalcazar, Taylor L Hughes, and Gaurav
Bahl. A quantized microwave quadrupole insulator with topologically protected

corner states. Nature, 555(7696):346, 2018.

Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, and Pablo Jarillo-Herrero. Unconventional superconductiv-

ity in magic-angle graphene superlattices. Nature, 556(7699):43-50, 2018.

Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Ja-
son Y Luo, Javier D Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi,
Efthimios Kaxiras, et al. Correlated insulator behaviour at half-filling in magic-

angle graphene superlattices. Nature, 556(7699):80, 2018.

Dov Levine and Paul Joseph Steinhardt. Quasicrystals: a new class of ordered

structures. Physical review letters, 53(26):2477, 1984.

Dan Shechtman, Ilan Blech, Denis Gratias, and John W Cahn. Metallic phase
with long-range orientational order and no translational symmetry. Physical re-

view letters, 53(20):1951, 1984.



[58]

[59]

[60]

[65]

[66]

176

Roger Penrose. Pentaplexity a class of non-periodic tilings of the plane. The

mathematical intelligencer, 2(1):32-37, 1979.

Huaqing Huang and Feng Liu. Theory of spin bott index for quantum spin hall

states in nonperiodic systems. Physical Review B, 98(12):125130, 2018.

Yaacov E Kraus, Yoav Lahini, Zohar Ringel, Mor Verbin, and Oded Zilberberg.
Topological states and adiabatic pumping in quasicrystals. Physical review letters,

109(10):106402, 2012.

Ton C Fulga, Dmitry I Pikulin, and Terry A Loring. Aperiodic weak topological

superconductors. Physical review letters, 116(25):257002, 2016.

Yaacov E Kraus and Oded Zilberberg.  Topological equivalence between
the fibonacci quasicrystal and the harper model.  Physical review letters,

109(11):116404, 2012.

David A Drabold and Otto F Sankey. Maximum entropy approach for linear
scaling in the electronic structure problem. Physical review letters, 70(23):3631,

1993.

Jose H. Garcia, Lucian Covaci, and Tatiana G. Rappoport. Real-space calculation
of the conductivity tensor for disordered topological matter. Phys. Rev. Lett.,
114:116602, Mar 2015.

S M Joao and J M Viana Parente Lopes. Basis-independent spectral methods for
non-linear optical response in arbitrary tight-binding models. Journal of Physics:

Condensed Matter, 32(12):125901, dec 2019.

G. B. Ventura, D. J. Passos, J. M. B. Lopes dos Santos, J. M. Viana Par-
ente Lopes, and N. M. R. Peres. Gauge covariances and nonlinear optical re-

sponses. Phys. Rev. B, 96:035431, Jul 2017.

Daniel E. Parker, Takahiro Morimoto, Joseph Orenstein, and Joel E. Moore.
Diagrammatic approach to nonlinear optical response with application to weyl

semimetals. Phys. Rev. B, 99:045121, Jan 2019.



[68]

[69]

[70]

[71]

[72]

177

J. Skilling. Mazimum Entropy and Bayesian Methods. Fundamental Theories of

Physics. Springer Netherlands, 1988.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines. Communications in Statistics-Simulation and

Computation, 18(3):1059-1076, 1989.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem

of linear differential and integral operators. 1950.

Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate
semidefinite programming using the multiplicative weights update method. In
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05),
pages 339-348. IEEE, 2005.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide:
solution of large-scale eigenvalue problems with implicitly restarted Arnoldi meth-

ods. STAM, 1998.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh

approach to numerical computing. SIAM review, 59(1):65-98, 2017.

Alan George and Esmond Ng. On the complexity of sparse qr and lu factorization
of finite-element matrices. SIAM journal on scientific and statistical computing,

9(5):849-861, 1988.

Bodo Huckestein. Scaling theory of the integer quantum hall effect. Rev. Mod.
Phys., 67:357-396, Apr 1995.

Claudio de C. Chamon, Christopher Mudry, and Xiao-Gang Wen. Localization
in two dimensions, gaussian field theories, and multifractality. Phys. Rev. Lett.,

77:4194-4197, Nov 1996.

Ashvin Chhabra and Roderick V. Jensen. Direct determination of the f(«) sin-

gularity spectrum. Phys. Rev. Lett., 62:1327-1330, Mar 1989.



78]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[88]

178

Tomoki Ohtsuki and Tomi Ohtsuki. Deep learning the quantum phase transitions
in random two-dimensional electron systems. Journal of the Physical Society of

Japan, 85(12):123706, 2016.

Juan Carrasquilla and Roger G Melko. Machine learning phases of matter. Nature

Physics, 13(5):431-434, 2017.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles

in high-energy physics with deep learning. Nature communications, 5:4308, 2014.

Igor Sfiligoi, Daniel C Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwein. The pilot way to grid resources using glideinwms. In

2009 WRI World Congress on Computer Science and Information Engineering,
volume 2 of 2, pages 428-432, 2009.

Frangois Chollet et al. Keras. https://keras.io, 2015.

Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen. Angle-resolved photoemis-
sion studies of the cuprate superconductors. Reviews of modern physics, 75(2):473,

2003.

Jerry Tersoff and DR Hamann. Theory and application for the scanning tunneling

microscope. Physical review letters, 50(25):1998, 1983.

Edsger W. Dijkstra and DIJKSTRA EW. Information streams sharing a finite
buffer. 1972.

Trithep Devakul and David A Huse. Anderson localization transitions with and

without random potentials. Phys. Rev. B, 96(21):214201, 2017.

JH Pixley, Justin H Wilson, David A Huse, and Sarang Gopalakrishnan. Weyl
semimetal to metal phase transitions driven by quasiperiodic potentials. Physical

review letters, 120(20):207604, 2018.

Su-Yang Xu et al. Topological phase transition and texture inversion in a tunable

topological insulator. Science, 332(6029):560-564, April 2011.



[89]

[90]

[95]

[96]

[97]

179

Netanel H Lindner, Gil Refael, and Victor Galitski. Floquet topological insulator

in semiconductor quantum wells. Nat. Phys., 7(6):490-495, 2011.

AA Burkov and Leon Balents. Weyl semimetal in a topological insulator multi-

layer. Phys. Rev. Lett., 107(12):127205, 2011.

Ilya Belopolski et al. A novel artificial condensed matter lattice and a new plat-

form for one-dimensional topological phases. Sci. Adv., 3(3):¢1501692, 2017.

Jean Dalibard, Fabrice Gerbier, Gediminas Juzelitinas, and Patrik Ohberg. Col-
loquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 83:1523—
1543, Nov 2011.

Monika Aidelsburger, Sylvain Nascimbene, and Nathan Goldman. Artificial gauge
fields in materials and engineered systems. C' R Phys, 19(6):394-432, 2018.

Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm,
Laurens W Molenkamp, Tobias Kiessling, and Ronny Thomale. Topolectrical
circuits. Commaun. Phys., 1(1):39, 2018.

Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Moham-
mad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon,

Oded Zilberberg, and Iacopo Carusotto. Topological photonics. Rev. Mod. Phys.,
91:015006, Mar 2019.

Guorui Chen, Lili Jiang, Shuang Wu, Bosai Lyu, Hongyuan Li, Bheema Lingam
Chittari, Kenji Watanabe, Takashi Taniguchi, Zhiwen Shi, Jeil Jung, et al. Evi-
dence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice.

Nat. Phys., 15(3):237-241, 2019.

Matthew Yankowitz, Shaowen Chen, Hryhoriy Polshyn, Yuxuan Zhang, K Watan-
abe, T Taniguchi, David Graf, Andrea F Young, and Cory R Dean. Tuning su-

perconductivity in twisted bilayer graphene. Science, 363(6431):1059-1064, 2019.



[98]

[100]

[101]

[102]

[103]

[104]

[105]

106

180

Justin C. W. Song, Andrey V. Shytov, and Leonid S. Levitov. Electron interac-
tions and gap opening in graphene superlattices. Phys. Rev. Lett., 111:266801,
Dec 2013.

Kyounghwan Kim, Ashley DaSilva, Shenggiang Huang, Babak Fallahazad, Ste-
fano Larentis, Takashi Taniguchi, Kenji Watanabe, Brian J LeRoy, Allan H Mac-
Donald, and Emanuel Tutuc. Tunable moiré bands and strong correlations in
small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. U.S.A., 114:3364-3369,
2017.

Fengcheng Wu, Timothy Lovorn, Emanuel Tutuc, and A. H. MacDonald. Hub-
bard model physics in transition metal dichalcogenide moiré bands. Phys. Rev.

Lett., 121:026402, Jul 2018.

G Trambly de Laissardiere, Didier Mayou, and Laurence Magaud. Localization

of Dirac electrons in rotated graphene bilayers. Nano Lett., 10(3):804-808, 2010.

JMB Lopes dos Santos, NMR Peres, and AH Castro Neto. Continuum model of
the twisted graphene bilayer. Phys. Rev. B, 86(15):155449, 2012.

P. San-Jose, J. Gonzalez, and F. Guinea. Non-abelian gauge potentials in

graphene bilayers. Phys. Rev. Lett., 108:216802, May 2012.

Guohong Li, A Luican, JMB Lopes Dos Santos, AH Castro Neto, A Reina,
J Kong, and EY Andrei. Observation of Van Hove singularities in twisted

graphene layers. Nat. Phys., 6(2):109-113, 2010.

I. Brihuega, P. Mallet, H. Gonzalez-Herrero, G. Trambly de Laissardiere, M. M.
Ugeda, L. Magaud, J. M. Goémez-Rodriguez, F. Yndurdin, and J.-Y. Veuillen.
Unraveling the intrinsic and robust nature of van Hove singularities in twisted

bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys.

Rev. Lett., 109:196802, Nov 2012.

Youngwook Kim, Patrick Herlinger, Pilkyung Moon, Mikito Koshino, Takashi

Taniguchi, Kenji Watanabe, and Jurgen H Smet. Charge inversion and topological



[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

181

phase transition at a twist angle induced van Hove singularity of bilayer graphene.

Nano Lett., 16(8):5053-5059, 2016.

Bikash Padhi, Chandan Setty, and Philip W Phillips. Doped twisted bilayer
graphene near magic angles: Proximity to Wigner crystallization, not Mott insu-

lation. Nano Lett., 18(10):6175-6180, 2018.

Hoi Chun Po, Liujun Zou, Ashvin Vishwanath, and T. Senthil. Origin of Mott
insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev.

X, 8:031089, Sep 2018.

Noah F. Q. Yuan and Liang Fu. Model for the metal-insulator transition in

graphene superlattices and beyond. Phys. Rev. B, 98:045103, Jul 2018.

Jian Kang and Oskar Vafek. Symmetry, maximally localized wannier states, and
a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X,

8:031088, Sep 2018.

Cenke Xu and Leon Balents. Topological superconductivity in twisted multilayer

graphene. Phys. Rev. Lett., 121:087001, Aug 2018.

Biao Lian, Zhijun Wang, and B. Andrei Bernevig. Twisted bilayer graphene: A

phonon-driven superconductor. Phys. Rev. Lett., 122:257002, Jun 2019.

J. F. Dodaro, S. A. Kivelson, Y. Schattner, X. Q. Sun, and C. Wang. Phases of
a phenomenological model of twisted bilayer graphene. Phys. Rev. B, 98:075154,
Aug 2018.

Tobias MR Wolf, Oded Zilberberg, Ivan Levkivskyi, and Gianni Blatter.
Substrate-induced topological minibands in graphene.  Physical Review B,

98(12):125408, 2018.

C. Janot. Quasicrystals: A Primer. Monographs on the physics and chemistry of
materials. OUP Oxford, 2012.



[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

182

J. H. Pixley, Justin H. Wilson, David A. Huse, and Sarang Gopalakrishnan. Weyl
semimetal to metal phase transitions driven by quasiperiodic potentials. Phys.

Rev. Lett., 120:207604, May 2018.

Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, and Tilman
Esslinger. Creating, moving and merging dirac points with a fermi gas in a

tunable honeycomb lattice. Nature, 483(7389):302, 2012.

Gregor Jotzu, Michael Messer, Rémi Desbuquois, Martin Lebrat, Thomas
Uehlinger, Daniel Greif, and Tilman Esslinger. Experimental realization of the
topological Haldane model with ultracold fermions. Nature, 515(7526):237-240,

2014.

M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbeéne,
N. R. Cooper, I. Bloch, and N. Goldman. Measuring the Chern number of Hofs-
tadter bands with ultracold bosonic atoms. Nat. Phys., 11:162-166, 12 2015.

Lianghui Huang, Zengming Meng, Pengjun Wang, Peng Peng, Shao-Liang Zhang,
Liangchao Chen, Donghao Li, Qi Zhou, and Jing Zhang. Experimental realization
of two-dimensional synthetic spin—orbit coupling in ultracold fermi gases. Nature

Physics, 12(6):540-544, 2016.

Zhan Wu, Long Zhang, Wei Sun, Xiao-Tian Xu, Bao-Zong Wang, Si-Cong
Ji, Youjin Deng, Shuai Chen, Xiong-Jun Liu, and Jian-Wei Pan. Realization
of two-dimensional spin-orbit coupling for bose-einstein condensates. Science,

354(6308):83-88, 2016.

Philip Richerme, Zhe-Xuan Gong, Aaron Lee, Crystal Senko, Jacob Smith,
Michael Foss-Feig, Spyridon Michalakis, Alexey V Gorshkov, and Christopher
Monroe. Non-local propagation of correlations in quantum systems with long-

range interactions. Nature, 511(7508):198, 2014.

Kai Sun, W. Vincent Liu, Andreas Hemmerich, and S. Das Sarma. Topological

semimetal in a fermionic optical lattice. Nat. Phys., 8:67-70, 11 2012.



[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

183

Jian-Hua Jiang. Tunable topological Weyl semimetal from simple-cubic lattices

with staggered fluxes. Phys. Rev. A, 85:033640, Mar 2012.

Tena Dubcek, Colin J. Kennedy, Ling Lu, Wolfgang Ketterle, Marin Soljacic,
and Hrvoje Buljan. Weyl points in three-dimensional optical lattices: Synthetic

magnetic monopoles in momentum space. Phys. Rev. Lett., 114:225301, Jun 2015.

Christof Weitenberg, Manuel Endres, Jacob F. Sherson, Marc Cheneau, Peter
Schauf}, Takeshi Fukuhara, Immanuel Bloch, and Stefan Kuhr. Single-spin ad-
dressing in an atomic Mott insulator. Nature, 471(7338):319-324, March 2011.

Hisashi Hiramoto and Mahito Kohmoto. Electronic spectral and wavefunction
properties of one-dimensional quasiperiodic systems: a scaling approach. Int. J.

Mod. Phys. B, 6(03n04):281-320, 1992.

Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David
Vanderbilt. Maximally localized wannier functions: Theory and applications.

Rev. Mod. Phys., 84:1419-1475, Oct 2012.

Christian Brouder, Gianluca Panati, Matteo Calandra, Christophe Mourougane,
and Nicola Marzari. Exponential localization of Wannier functions in insulators.

Phys. Rev. Lett., 98(4):046402, January 2007.

Jennifer Cano, Barry Bradlyn, Zhijun Wang, L. Elcoro, M. G. Vergniory,
C. Felser, M. I. Aroyo, and B. Andrei Bernevig. Topology of disconnected el-

ementary band representations. Phys. Rev. Lett., 120(26):266401, June 2018.

Hoi Chun Po, Haruki Watanabe, and Ashvin Vishwanath. Fragile Topology and

Wannier Obstructions. Phys. Rev. Lett., 121(12):126402, September 2018.

Mikael C. Rechtsman, Hyeong-Chai Jeong, Paul M. Chaikin, Salvatore Torquato,
and Paul J. Steinhardt. Optimized structures for photonic quasicrystals. Phys.
Rev. Lett., 101:073902, Aug 2008.

JP Gaebler, JT Stewart, TE Drake, DS Jin, A Perali, P Pieri, and GC Strinati.



[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

184

Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat.

Phys., 6(8):569-573, 2010.

Ulrich Schneider, Lucia Hackermiiller, Jens Philipp Ronzheimer, Sebastian Will,
Simon Braun, Thorsten Best, Immanuel Bloch, Eugene Demler, Stephan Mandt,
David Rasch, and Achim Rosch. Fermionic transport and out-of-equilibrium dy-
namics in a homogeneous Hubbard model with ultracold atoms. Nat. Phys.,

8(3):213-218, March 2012.

E. J. Mele. Commensuration and interlayer coherence in twisted bilayer graphene.

Phys. Rev. B, 81:161405, Apr 2010.

Antonello Scardicchio and Thimothée Thiery. Perturbation theory approaches
to Anderson and many-body localization: some lecture notes. Preprint at

https://arxiv.org/abs/1710.01234, 2017.

Hridis K. Pal, Stephen Spitz, and Markus Kindermann. Emergent geometric
frustration and flat band in moiré bilayer graphene. Phys. Rev. Lett., 123:186402,
Oct 2019.

Wei Yao, Eryin Wang, Changhua Bao, Yiou Zhang, Kenan Zhang, Kejie Bao,
Chun Kai Chan, Chaoyu Chen, Jose Avila, Maria C Asensio, et al. Qua-
sicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with

strong interlayer coupling. Proc. Natl. Acad. Sci. U.S.A., 115:6928-6933, 2018.

Sung Joon Ahn et al. Dirac electrons in a dodecagonal graphene quasicrystal.

Science, 361(6404):782-786, 2018.

A Gonzéalez-Tudela and J Ignacio Cirac. Cold atoms in twisted-bilayer optical
potentials. Physical Review A, 100(5):053604, 2019.

Tymoteusz Salamon, Alessio Celi, Ravindra W. Chhajlany, Irénée Frérot, Maciej
Lewenstein, Leticia Tarruell, and Debraj Rakshit. Simulating twistronics without

a twist. Phys. Rev. Lett., 125:030504, Jul 2020.



[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

185

Andre Konstantin Geim. Graphene: status and prospects. Science,

324(5934):1530-1534, 2009.

Andre K Geim and Irina V Grigorieva. Van der waals heterostructures. Nature,

499(7459):419, 2013.

S. Das Sarma, Shaffique Adam, E. H. Hwang, and Enrico Rossi. Electronic

transport in two-dimensional graphene. Rev. Mod. Phys., 83:407-470, May 2011.

AA Zibrov, C Kometter, H Zhou, EM Spanton, T Taniguchi, K Watanabe,
MP Zaletel, and AF Young. Tunable interacting composite fermion phases in

a half-filled bilayer-graphene landau level. Nature, 549(7672):360, 2017.

Xu Du, Ivan Skachko, Fabian Duerr, Adina Luican, and Eva Y Andrei. Fractional
quantum hall effect and insulating phase of dirac electrons in graphene. Nature,

462(7270):192, 2009.

Xiaobo Lu, Petr Stepanov, Wei Yang, Ming Xie, Mohammed Ali Aamir, Ipsita
Das, Carles Urgell, Kenji Watanabe, Takashi Taniguchi, Guangyu Zhang, et al.
Superconductors, orbital magnets, and correlated states in magic angle bilayer

graphene. arXiv preprint arXiv:1903.06513, 2019.

Kyounghwan Kim, Matthew Yankowitz, Babak Fallahazad, Sangwoo Kang,
Hema CP Movva, Shengqgiang Huang, Stefano Larentis, Chris M Corbet, Takashi
Taniguchi, Kenji Watanabe, et al. van der waals heterostructures with high ac-

curacy rotational alignment. Nano letters, 16(3):1989-1995, 2016.

Dillon Wong, Yang Wang, Jeil Jung, Sergio Pezzini, Ashley M. DaSilva, Hsin-Zon
Tsai, Han Sae Jung, Ramin Khajeh, Youngkyou Kim, Juwon Lee, Salman Kahn,
Sajjad Tollabimazraehno, Haider Rasool, Kenji Watanabe, Takashi Taniguchi,
Alex Zettl, Shaffique Adam, Allan H. MacDonald, and Michael F. Crommie.
Local spectroscopy of moir\’e-induced electronic structure in gate-tunable twisted

bilayer graphene. Phys. Rev. B, 92(15):155409, October 2015.



[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

158]

186

Alexander Kerelsky, Leo McGilly, Dante M. Kennes, Lede Xian, Matthew
Yankowitz, Shaowen Chen, K. Watanabe, T. Taniguchi, James Hone, Cory
Dean, Angel Rubio, and Abhay N. Pasupathy. Magic Angle Spectroscopy.
arXiv:1812.08776 [cond-mat], December 2018. arXiv: 1812.08776.

Youngjoon Choi, Jeannette Kemmer, Yang Peng, Alex Thomson, Harpreet Arora,
Robert Polski, Yiran Zhang, Hechen Ren, Jason Alicea, Gil Refael, Felix von
Oppen, Kenji Watanabe, Takashi Taniguchi, and Stevan Nadj-Perge. Imag-
ing Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle.

arXiv:1901.02997 [cond-mat], January 2019. arXiv: 1901.02997.

Yuhang Jiang, Xinyuan Lai, Kenji Watanabe, Takashi Taniguchi, Kristjan Haule,
Jinhai Mao, and Eva Y. Andrei. Charge-order and broken rotational symmetry

in magic angle twisted bilayer graphene. Nature, pages 1-8, July 2019.

Yonglong Xie, Biao Lian, Berthold Jack, Xiaomeng Liu, Cheng-Li Chiu, Kenji
Watanabe, Takashi Taniguchi, B. Andrei Bernevig, and Ali Yazdani. Spec-
troscopic signatures of many-body correlations in magic-angle twisted bilayer

graphene. Nature, 572(7767):101-105, August 2019.

J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto. Graphene

bilayer with a twist: Electronic structure. Phys. Rev. Lett., 99:256802, Dec 2007.

Pilkyung Moon and Mikito Koshino. Energy spectrum and quantum Hall effect
in twisted bilayer graphene. Phys. Rev. B, 85(19):195458, May 2012.

Zhen Bi, Noah F. Q. Yuan, and Liang Fu. Designing Flat Band by Strain.
arXiv:1902.10146 [cond-mat], February 2019. arXiv: 1902.10146.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim.
The electronic properties of graphene. Rev. Mod. Phys., 81(1):109-162, January
2009.

Xianqging Lin and David Toméanek. Minimum model for the electronic structure



159

[160]

[161]

[162]

163

[164]

[165]

[166]

[167]

[168]

187

of twisted bilayer graphene and related structures. Phys. Rev. B, 98:081410, Aug
2018.

Wei Yao, Eryin Wang, Changhua Bao, Yiou Zhang, Kenan Zhang, Kejie Bao,
Chun Kai Chan, Chaoyu Chen, Jose Avila, Maria C Asensio, et al. Quasicrys-
talline 30° twisted bilayer graphene as an incommensurate superlattice with strong

interlayer coupling. Proc. Natl. Acad. Sci., 115(27):6928-6933, 2018.

Xianging Lin, Dan Liu, and David Tomanek. Shear instability in twisted bilayer
graphene. Phys. Rev. B, 98:195432, Nov 2018.

A. Luican, Guohong Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K.
Geim, and E. Y. Andrei. Single-layer behavior and its breakdown in twisted

graphene layers. Phys. Rev. Lett., 106:126802, Mar 2011.

Wladimir A Benalcazar, B Andrei Bernevig, and Taylor L. Hughes. Quantized

electric multipole insulators. Science, 357(6346):61-66, 2017.

Moon Jip Park, Youngkuk Kim, Gil Young Cho, and SungBin Lee. Higher-order
topological insulator in twisted bilayer graphene. Phys. Rev. Lett., 123:216803,
Nov 2019.

Holger Fehske, Ralf Schneider, and Alexander Weifle. Computational many-

particle physics, volume 739. Springer, 2007.

J. T. Chalker and G. J. Daniell. Scaling, diffusion, and the integer quantized hall
effect. Phys. Rev. Lett., 61:593-596, Aug 1988.

J.T. Chalker. Scaling and eigenfunction correlations near a mobility edge. Physica

A: Statistical Mechanics and its Applications, 167(1):253 — 258, 1990.

E. Cuevas and V. E. Kravtsov. Two-eigenfunction correlation in a multifractal

metal and insulator. Phys. Rev. B, 76:235119, Dec 2007.

Yang-Zhi Chou and Matthew S. Foster. Chalker scaling, level repulsion, and



[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

188

conformal invariance in critically delocalized quantum matter: Disordered topo-
logical superconductors and artificial graphene. Phys. Rev. B, 89:165136, Apr
2014.

Yan V. Fyodorov and Alexander D. Mirlin. Strong eigenfunction correlations near

the anderson-localization transition. Phys. Rev. B, 55:R16001-R16004, Jun 1997.

M. V. Feigel’'man, L. B. Ioffe, V. E. Kravtsov, and E. A. Yuzbashyan. Eigenfunc-
tion fractality and pseudogap state near the superconductor-insulator transition.

Phys. Rev. Lett., 98:027001, Jan 2007.

Matthew S. Foster and Emil A. Yuzbashyan. Interaction-mediated surface-state
instability in disordered three-dimensional topological superconductors with spin

su(2) symmetry. Phys. Rev. Lett., 109:246801, Dec 2012.

1. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin. Enhancement of the criti-
cal temperature of superconductors by anderson localization. Phys. Rev. Lett.,

108:017002, Jan 2012.

Matthew S. Foster, Hong-Yi Xie, and Yang-Zhi Chou. Topological protection,
disorder, and interactions: Survival at the surface of three-dimensional topological

superconductors. Phys. Rev. B, 89:155140, Apr 2014.

I. L. Aleiner and K. B. Efetov. Effect of disorder on transport in graphene. Phys.
Rev. Lett., 97:236801, Dec 2006.

Alexander Altland. Low-energy theory of disordered graphene. Phys. Rev. Lett.,
97:236802, Dec 2006.

Andreas W. W. Ludwig, Matthew P. A. Fisher, R. Shankar, and G. Grinstein.
Integer quantum hall transition: An alternative approach and exact results. Phys.

Rev. B, 50:7526-7552, Sep 1994.

Horacio E. Castillo, Claudio de C. Chamon, Eduardo Fradkin, Paul M. Goldbart,



178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

189

and Christopher Mudry. Exact calculation of multifractal exponents of the crit-
ical wave function of dirac fermions in a random magnetic field. Phys. Rev. B,

56:10668-10677, Oct 1997.

David Carpentier and Pierre Le Doussal. Glass transition of a particle in a ran-
dom potential, front selection in nonlinear renormalization group, and entropic
phenomena in liouville and sinh-gordon models. Phys. Rev. E, 63:026110, Jan
2001.

Olexei Motrunich, Kedar Damle, and David A. Huse. Particle-hole symmetric

localization in two dimensions. Phys. Rev. B, 65:064206, Jan 2002.

Baruch Horovitz and Pierre Le Doussal. Freezing transitions and the density of
states of two-dimensional random dirac hamiltonians. Phys. Rev. B, 65:125323,

Mar 2002.

C. Mudry, S. Ryu, and A. Furusaki. Density of states for the m-flux state with
bipartite real random hopping only: A weak disorder approach. Phys. Rev. B,
67:064202, Feb 2003.

R. Jackiw and C. Rebbi. Solitons with fermion number 3. Phys. Rev. D, 13:3398—
3409, Jun 1976.

R Jackiw and Paolo Rossi. Zero modes of the vortex-fermion system. Nuclear

Physics B, 190(4):681-691, 1981.

Long Zhang. Lowest-energy moiré band formed by dirac zero modes in twisted

bilayer graphene. Science Bulletin, 64(8):495-498, 2019.

E. J. Konig, P. M. Ostrovsky, I. V. Protopopov, and A. D. Mirlin. Metal-insulator
transition in two-dimensional random fermion systems of chiral symmetry classes.

Phys. Rev. B, 85:195130, May 2012.

Qijin Chen, Yan He, Chih-Chun Chien, and K Levin. Theory of radio frequency
spectroscopy experiments in ultracold fermi gases and their relation to photoe-

mission in the cuprates. Reports on Progress in Physics, 72(12):122501, 20009.



187

[188]

[189)]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

190

Markus Greiner, Immanuel Bloch, Olaf Mandel, Theodor W Hénsch, and Tilman
Esslinger. Exploring phase coherence in a 2d lattice of bose-einstein condensates.

Physical Review Letters, 87(16):160405, 2001.

Michael Kohl, Henning Moritz, Thilo Stoferle, Kenneth Giinter, and Tilman
Esslinger. Fermionic atoms in a three dimensional optical lattice: Observing fermi

surfaces, dynamics, and interactions. Phys. Rev. Lett., 94:080403, Mar 2005.

Alicia J Kolldr, Mattias Fitzpatrick, and Andrew A Houck. Hyperbolic lattices

in circuit quantum electrodynamics. Nature, 571(7763):45, 2019.

Alexander B Khanikaev and Gennady Shvets. T'wo-dimensional topological pho-
tonics. Nature Photonics, 11(12):763, 2017.

Lisa M Nash, Dustin Kleckner, Alismari Read, Vincenzo Vitelli, Ari M Turner,
and William TM Irvine. Topological mechanics of gyroscopic metamaterials.

Proceedings of the National Academy of Sciences, 112(47):14495-14500, 2015.

M Inui, SA Trugman, and Elihu Abrahams. Unusual properties of midband states
in systems with off-diagonal disorder. Physical Review B, 49(5):3190, 1994.

Norman Weik, Johannes Schindler, Soumya Bera, Gemma C Solomon, and Fer-
dinand Evers. Graphene with vacancies: Supernumerary zero modes. Physical

Review B, 94(6):064204, 2016.

Horst L Stormer, Daniel C Tsui, and Arthur C Gossard. The fractional quantum
hall effect. Reviews of Modern Physics, 71(2):S298, 1999.

Joseph Maciejko and Gregory A Fiete. Fractionalized topological insulators. Na-
ture Physics, 11(5):385-388, 2015.

Nicolas Regnault and B Andrei Bernevig. Fractional chern insulator. Physical

Review X, 1(2):021014, 2011.

Zhao Liu, Emil J Bergholtz, Heng Fan, and Andreas M L&auchli. Fractional chern
insulators in topological flat bands with higher chern number. Physical review

letters, 109(18):186805, 2012.



198

199

[200]

[201]

[202]

203

[204]

205]

206]

[207]

208]

191

Fenner Harper, Steven H Simon, and Rahul Roy. Perturbative approach to flat
chern bands in the hofstadter model. Physical Review B, 90(7):075104, 2014.

Miguel A Bandres, Mikael C Rechtsman, and Mordechai Segev. Topological pho-
tonic quasicrystals: Fractal topological spectrum and protected transport. Phys-

ical Review X, 6(1):011016, 2016.

Joseph Maciejko, Xiao-Liang Qi, Andreas Karch, and Shou-Cheng Zhang.
Fractional topological insulators in three dimensions. Physical review letters,

105(24):246809, 2010.

Brian Swingle, Maissam Barkeshli, John McGreevy, and Todadri Senthil. Cor-
related topological insulators and the fractional magnetoelectric effect. Physical

Review B, 83(19):195139, 2011.

Emil J Bergholtz and Zhao Liu. Topological flat band models and fractional chern
insulators. International Journal of Modern Physics B, 27(24):1330017, 2013.

Siddharth A Parameswaran, Rahul Roy, and Shivaji . Sondhi. Fractional quan-

tum hall physics in topological flat bands. arXiv preprint arXiv:1302.6606, 2013.

Yi-Fei Wang, Hong Yao, Chang-De Gong, and DN Sheng. Fractional quantum
hall effect in topological flat bands with chern number two. Physical Review B,

86(20):201101, 2012.

Shuo Yang, Zheng-Cheng Gu, Kai Sun, and S Das Sarma. Topological flat band

models with arbitrary chern numbers. Physical Review B, 86(24):241112, 2012.

Tero T Heikkilé, Nikolai Borisovich Kopnin, and Grigorii Efimovich Volovik. Flat
bands in topological media. JETP letters, 94(3):233, 2011.

Ching Hua Lee, Daniel P Arovas, and Ronny Thomale. Band flatness optimization

through complex analysis. Physical Review B, 93(15):155155, 2016.

Aaron L Sharpe, Eli J Fox, Arthur W Barnard, Joe Finney, Kenji Watanabe,



209

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

192

Takashi Taniguchi, MA Kastner, and David Goldhaber-Gordon. Emergent fer-
romagnetism near three-quarters filling in twisted bilayer graphene. Science,

365(6453):605-608, 2019.

Jed H Pixley and Eva Y Andrei. Ferromagnetism in magic-angle graphene. Sci-

ence, 365(6453):543-543, 2019.

H Polshyn, J Zhu, MA Kumar, Y Zhang, F Yang, CL Tschirhart, M Serlin,
K Watanabe, T Taniguchi, AH MacDonald, et al. Electrical switching of magnetic
order in an orbital chern insulator. Nature, 588(7836):66-70, 2020.

Ya-Hui Zhang, Dan Mao, Yuan Cao, Pablo Jarillo-Herrero, and T Senthil. Nearly
flat chern bands in moiré superlattices. Physical Review B, 99(7):075127, 2019.

Bheema Lingam Chittari, Guorui Chen, Yuanbo Zhang, Feng Wang, and Jeil
Jung. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré

superlattices. Physical review letters, 122(1):016401, 2019.

Fengcheng Wu. Topological chiral superconductivity with spontaneous vortices
and supercurrent in twisted bilayer graphene. Physical Review B, 99(19):195114,
2019.

Qingjun Tong, Hongyi Yu, Qizhong Zhu, Yong Wang, Xiaodong Xu, and Wang
Yao. Topological mosaics in moiré superlattices of van der waals heterobilayers.

Nature Physics, 13(4):356-362, 2017.

Pablo San-Jose, A Gutiérrez-Rubio, Mauricio Sturla, and Francisco Guinea. Elec-
tronic structure of spontaneously strained graphene on hexagonal boron nitride.

Physical Review B, 90(11):115152, 2014.

Biao Lian, Zhaochen Liu, Yuanbo Zhang, and Jing Wang. Flat chern band from

twisted bilayer mnbi _2 te 4. arXiv preprint arXiv:1908.02581, 2019.

Patrick J Ledwith, Grigory Tarnopolsky, Eslam Khalaf, and Ashvin Vishwanath.
Fractional chern insulator states in twisted bilayer graphene: An analytical ap-

proach. arXiv preprint arXiv:1912.09634, 2019.



[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

193

Zhida Song, Zhijun Wang, Wujun Shi, Gang Li, Chen Fang, and B Andrei
Bernevig. All magic angles in twisted bilayer graphene are topological. Phys-

ical review letters, 123(3):036401, 2019.

Colin J Kennedy, Georgios A Siviloglou, Hirokazu Miyake, William Cody Burton,
and Wolfgang Ketterle. Spin-orbit coupling and quantum spin hall effect for

neutral atoms without spin flips. Physical review letters, 111(22):225301, 2013.

Roman Siisstrunk and Sebastian D Huber. Observation of phononic helical edge

states in a mechanical topological insulator. Science, 349(6243):47-50, 2015.

Eran Lustig, Steffen Weimann, Yonatan Plotnik, Yaakov Lumer, Miguel A Ban-
dres, Alexander Szameit, and Mordechai Segev. Photonic topological insulator in

synthetic dimensions. Nature, 567(7748):356, 2019.

Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm, Laurens W
Molenkamp, Tobias Kiessling, Frank Schindler, Ching Hua Lee, Martin Greiter,
Titus Neupert, and Ronny Thomale. Topolectrical-circuit realization of topolog-

ical corner modes. Nature Physics, 14(9):925-929, 2018.

Ai Yamakage, Kentaro Nomura, Ken-Ichiro Imura, and Yoshio Kuramoto. Crit-
icality of the metal-topological insulator transition driven by disorder. Physical

Review B, 87(20):205141, 2013.

Dan Mao and Senthil Todadri. Quasiperiodicity, band topology, and moir\’e

graphene. arXiw preprint arXiw:2011.06034, 2020.

Tommaso Cea, Pierre A. Pantaleén, and Francisco Guinea. Band structure of
twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B, 102:155136,
Oct 2020.

Jingtian Shi, Jihang Zhu, and A. H. MacDonald. Moiré commensurability and the
quantum anomalous hall effect in twisted bilayer graphene on hexagonal boron

nitride. Phys. Rev. B, 103:075122, Feb 2021.



[227]

[228]

[229]

230]

[231]

[232]

[233]

[234]

[235]

[236]

194

Alexander D Mirlin. Statistics of energy levels and eigenfunctions in disordered

systems. Physics Reports, 326(5-6):259-382, 2000.

Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. Chern numbers in dis-
cretized brillouin zone: efficient method of computing (spin) hall conductances.

Journal of the Physical Society of Japan, 74(6):1674-1677, 2005.

Guillaume Roux, T Barthel, IP McCulloch, Corinna Kollath, U Schollwock, and
Thierry Giamarchi. Quasiperiodic bose-hubbard model and localization in one-

dimensional cold atomic gases. Physical Review A, 78(2):023628, 2008.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097-1105, 2012.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of

feature detectors. arXiv preprint arXiv:1207.0580, 2012.

Chui-Zhen Chen, Haiwen Liu, Hua Jiang, Qing-feng Sun, Zigiang Wang, and
XC Xie. Tunable anderson metal-insulator transition in quantum spin-hall insu-

lators. Physical Review B, 91(21):214202, 2015.

SA Parameswaran, R Roy, and Shivaji L Sondhi. Fractional chern insulators and

the woo algebra. Physical Review B, 85(24):241308, 2012.

Martin Claassen, Ching Hua Lee, Ronny Thomale, Xiao-Liang Qi, and Thomas P.
Devereaux. Position-momentum duality and fractional quantum hall effect in

chern insulators. Phys. Rev. Lett., 114:236802, Jun 2015.

CW Groth, M Wimmer, AR Akhmerov, J Tworzydto, and CWJ Beenakker. The-
ory of the topological anderson insulator. Physical review letters, 103(19):196805,
2009.

Eric J Meier, Fangzhao Alex An, Alexandre Dauphin, Maria Maffei, Pietro



237]

[238]

239]

[240]

[241]

[242]

195

Massignan, Taylor L. Hughes, and Bryce Gadway. Observation of the topolog-
ical anderson insulator in disordered atomic wires. Science, 362(6417):929-933,

2018.

Pallab Goswami and Sudip Chakravarty. Quantum criticality between topological
and band insulators in 3+ 1 dimensions. Physical review letters, 107(19):196803,
2011.

Soumya Bera, Jay D Sau, and Bitan Roy. Dirty weyl semimetals: Stability, phase

transition, and quantum criticality. Physical Review B, 93(20):201302, 2016.

Alberto Rodriguez, Louella J Vasquez, Keith Slevin, and Rudolf A Rémer. Mul-
tifractal finite-size scaling and universality at the anderson transition. Physical

Review B, 84(13):134209, 2011.

Martin Janssen. Statistics and scaling in disordered mesoscopic electron systems.

Physics Reports, 295(1-2):1-91, 1998.

Paulo Orenstein. Robust mean estimation with the bayesian median of means.

arXiv preprint arXiw:1906.01204, 2019.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel.
Robust statistics: the approach based on influence functions, volume 196. John

Wiley & Sons, 2011.



