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Jedediah H. Pixley

The topological materials have been theoretically and experimentally studied intensively

in the past decades. The topological properties’ robustness against distortion makes

them a natural playground to explore novel phase transitions. In this thesis, we focus on

topological insulators and semimetals to study the phase transitions driven by disorder

and quasiperiodicity. The main focus of this thesis is on the non-perturbative effects

that demand the application of state-of-the-art numerical methods.

We first consider models of semimetals under quasiperiodic modulation. We show

that the non-perturbative incommensurate effect can drive semimetals through a quan-

tum phase transition into a diffusive phase. Such phase transition will be referred to

as the “magic-angle” effect, which will be interpreted to be central behind the magic-

angle twisted bilayer graphene. The phase transition is shown to present universally in

many models of semimetals. Meanwhile, the transitions have different characters based

on the symmetry, in a way analogous to but fundamentally different from the 10-fold

classification of Anderson transition.

On top of quasiperiodicity, we study the effect of adding disorder to models of

“magic-angle” semimetals. For both the experimentally realized twisted bilayer graphenes
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and the simpler models that emulate the same universal physics, we analyze a special

type of disorder that is native to the physics of quasiperiodicity - the inhomogeneity of

the modulation. Such disorder effects correspond to the varying twist angle in twisted

bilayer graphene which has significant experimental relevance.

We then naturally generalize the considerations of semimetal to a 2D topological

insulator. The topological mass intertwines with the strength of quasiperiodicity to

create a fascinatingly rich phase diagram with interesting eigenstate criticality. In such

criticality, we captured topological flat bands, which are of interest because of the

potential to host strongly correlated topological phases.

Lastly, we study the effect of disorder in the 3D topological insulator. We revisit the

question of the stability of the semimetal line as a phase boundary between topological

insulator phases. Because of the rare-region effect that is strictly non-perturbative,

we find the semimetal line is destabilized which prevents the occurrence of a quantum

critical point.

iii



Acknowledgements

First, I thank my advisor Jed Pixley who has introduced me to such a fascinating field

of research. When I first stepped into condensed matter physics and was wondering

where to go, Jed’s guidance helped me quickly learn and become a productive researcher.

Whenever the projects fall into some struggle, Jed’s insights and optimism lead us to

overcome the difficulties. Jed also gave me plenty of opportunities to present our works

and to collaborate with many scientists. These experiences help me grow both as a

physicist and as a person in general.

Thank all of my collaborators. On the theory side, I was lucky to work with Yang-

zhi Chou, Shiang Fang, David Huse, Elio Konig, Sankar Das Sarma, Justin Wilson,

all of whom are knowledgeable and insightful; and I am also honored to join forces

with Xiaoran Liu, Fandi Wen and Liang Wu from Jak Chakhalian’s group to work on

projects closely tied to experiments, and with Minning Zhu and Chung-Tse Michael Wu

on microwave resonators. From them, I learned tremendously not only about science,

but about everything big or small – as small as the choice of suitable colors when

making figures, or the optimal time to submit a paper to arXiv. Working with them

has been productive and filled with fun. And I must thank them for bearing with my

regular procrastination.

Next, I want to thank all the fellow graduate students I met at Rutgers: Jay Cush-

ing, Victor Drouin-Touchette, Wenbo Ge, Zengle Huang, Hanzhi Jiang, Ahsan Khan,

Ghanashyam Khanal, Wan Lin, Shang Ren, Yicheng Tang, Nicodemus Varnava, Ruo-

quan Wang, Wenbo Wang, Fangdi Wen, Angkun Wu, Xianghan Xu, Mai Ye, Jinjing

Yi, Aidan Zabolo, Bingnan Zhang, Zhenyuan Zhang, and it is surely not an exhaustive

list. The discussion with them always helped me refresh my passion for physics and

brought lots of joy.

iv



I also need to thank Minda Deng, Tian Kang, Wenxiong Li, Zhu-xi Luo, Yinchuan

Lyu, Hao-yu Sun, Di Xu, Ziqi Yan, and many friends I met along my journey to physics

before I joined Rutgers, as well as Xinhao Li, Haozhe Pang, Shumo Wang, Daheng Yang,

Hanyu Zhang, Yuzhou Zhang, and many of my old friends who have always challenged

me to think, to learn and to reason. They let me know I am not alone on the journey of

intellectual pursuit, and provide me with a pleasant amount of peer pressure to move

forward.

I thank my family for making me as I am today. My grandparents and parents

fostered me to be curious about the world, encouraged me to ask questions, and taught

me to find the answers. They are also always supportive of my decisions – without

which I would not have come to the US to study physics, not to mention the prolonged

indulgence of working on my doctoral research.

The research work presented here spanning the past four years has also witnessed my

encounter with Jia Guo. In four years I studied the many phase transitions of topological

phases of matter; and meanwhile, I went through a sequence of phase transitions with

Jia until I can include “my wife” in the dedication of this thesis. I am grateful for her

patience and support during the countless hours I scratch my head with little progress.

Her adamant love is undoubtedly a cornerstone of my work.

v



Dedication

To my parents for their continued support, and my wife for her love.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Topological phases of matter . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Perturbing the topological models . . . . . . . . . . . . . . . . . . . . . 9

2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1. KPM method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Lanczos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3. Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5. Appendix: Additional details on the observables calculated using the

KPM method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6. Appendix: Design of computational workflow . . . . . . . . . . . . . . . 31

3. The universality of magic-angle semimetals . . . . . . . . . . . . . . . . 33

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. ‘Magic-angle semimetals’. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3. Single-particle spectrum and velocity renormalization. . . . . . . . . . . 41

3.4. Critical single-particle wave functions . . . . . . . . . . . . . . . . . . . 43

vii



3.5. Commensurate superlattices and Hubbard models. . . . . . . . . . . . . 45

3.6. Experimental cold atomic realization . . . . . . . . . . . . . . . . . . . . 48

3.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8. Appendix: Details of the Analytical Results . . . . . . . . . . . . . . . . 50

4. Disordered magic-angle semimetals . . . . . . . . . . . . . . . . . . . . . 59

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2. The disorders in graphene and twisted bilayer graphenes . . . . . . . . . 61

4.3. Model and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5. Spin-orbit coupling model . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5. Magic-angle semimetals with chiral symmetry . . . . . . . . . . . . . . 91

5.1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2. Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4. Experimental Realization . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5. Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6. Appendix: Quadrupole topological insulator at commensurate limits of

the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6. Flat Topological Bands and Eigenstate Criticality in a Quasiperiodic

Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4. Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5. Magic-angle transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

viii



6.6. TI-to-CM transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.7. Criticality and flat topological bands . . . . . . . . . . . . . . . . . . . . 142

6.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.9. Appendix: Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 148

7. Rare region effect in 3D TI phase transition . . . . . . . . . . . . . . . 153

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4. Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5. Avoided criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.6. Insulator to Metal phase transition and the mobility edge . . . . . . . . 159

7.7. The stability of Weyl semimetal . . . . . . . . . . . . . . . . . . . . . . . 162

7.8. Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.9. Appendix: Conductance fluctuation at the TI to metal transition . . . . 164

8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ix



List of Tables

3.1. Perturbative corrections to quasiparticle weight Z and velocity v/v0 for

a variety of magic angle models. Note that for the honeycomb model and

δµ = ~d1,2, the symmetry protection of nodes is lost. It implies a reloca-

tion ofK−point node δ~k = W 2(1,−
√

3)T /[12t2(1+2 cos(Q/2)) and a dis-

torted velocity matrix. For cTBG, the momentum dependent self-energy

has the form Σph(px, py)+Σ̃ph(py,−px) and we extract v/v0 = Z(1+Σp). 53

x



List of Figures

1.1. Schematics of arbitrary 1D band structure that must have 0, 1, or 2

points at a Fermi level. When there are 2 crossing points, the two cross-

ings must be one right-moving and one left-moving. Figure adapted from

Ref. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. The surface of ~d(~k) for the (half) BHZ model. The right panel is showing

a view of a quarter (dx, dy > 0) of the left panel. Colors correspond to

the orientation of the normal vector where green is inward and blue

is outward. The surface of ~d(~k) can wrap around the Bloch sphere if

and only if the origin is in one of the two lobes. When 0 < M < 2

(2 < M < 4), the origin is in the lower (upper) lobe and hence Chern

number is C = −1 (C = 1). Otherwise, there is no wrapping and Chern

number is 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

xi



3.1. Magic-angle transition. A quasiperiodic potential or tunneling gener-

ically drives an eigenstate quantum phase transition from a semimetal

(SM) to metal (M). a. For many models, the velocity at the Dirac node

v decreases with the strength of the potential W until it reaches v = 0 at

the transition, Wc; this is an indication of the flattening of the bands. In

some cases an intermediate metallic phase (see inset) separates a reen-

trant semimetal with a reversed helicity (depicted by the Dirac cones).

b, c We construct a phase diagram in terms of potential strength W

(interlayer tunneling for cTBG) and quasiperiodic modulation Q (twist

angle θ for cTBG) by computing the density of states at zero energy ρ(0);

analytical perturbative results [see Eq. (3.9), Section 3.8.1 and [2, 3]]

are represented by the green dashed lines. Cuts along the dashed white

lines are presented in Fig. 3.2c,d. Color bars represent ρ(0) and with

widths b: 5, and c: 1.25 and dark purple represents the value 0 on both.

d. An infinite number of semimetal minibands form as the transition

is approached; each has higher effective interaction than the last as we

approach the transition. For 2D SOC, we construct exponentially lo-

calized Wannier states on the first four minibands (see Fig. 3.4) leading

to a model with an effective, strongly renormalized Hubbard interaction

Ueff/teff in terms of the bare interaction U/t. . . . . . . . . . . . . . . . 36

xii



3.2. Eigenstate transition as manifested in the single particle spec-

trum. Panels a,b: DOS ρ(E) in units of (tL2)−1 averaged over 300

realizations of phases φµ and random twisted boundary conditions. The

gray shading represents the number of states in the first miniband and

matches the area of the mini Brillouin zones around each Dirac point

produced by the leading scattering vectors depicted in the inset of a, b

(we chose a rhombic representation of the Brillouin zone of TBG such

that k = k1G1 + k2G2 for reciprocal lattice vectors G1,2 of graphene).

Panels c, d: Cuts along the dashed white lines of the phase diagram

in Fig. 3.1b,c, displaying ρ(0) and IM (q = 2, L) [Eq. (3.10)]. These il-

lustrate sequences of semimetallic and metallic transitions concomitant

with momentum space delocalization (see Fig. 3.3). Panels e - j: The

twist dispersions illustrate the difference between semimetallic phases

(e,f,i,j) and the metallic phase (g,h) as well as the remarkably reduced

bandwidths (note the reduced scale). The 2D SOC (cTBG) data were

obtained for Q = 2πFn−2/Fn (θ = 2 arcsin(
√

3Fn−5/[2Fn])) at L = 144

(L = 377) and KPM expansion order NC = 212 (NC = 213) in the

calculation of the DOS while L = 233 in panels e - j. . . . . . . . . . . . 38

3.3. Eigenstate transition as manifested in momentum space wave

functions at the Dirac node energy E = 0. Panels a - f: Wave func-

tion characteristics as described by the scaling exponent τM (q) averaged

over 100 random phases and twisted boundary conditions. For W < Wc

and W > W ′c the wave functions are ballistic [with a frozen τM (q)] while

for Wc < W < W ′c they are critical in momentum space [τM (q) is weakly

non-linear in q]. Inset of a - f: corresponding momentum space wave-

functions. The 2D SOC (cTBG) data were obtained for Q = 2πFn−2/Fn

(θ = 2 arcsin(
√

3Fn−5/[2Fn])) at L = 144 (L = 377). . . . . . . . . . . . 43

xiii



3.4. Supercell analysis and Wannier functions. The color coding matched

across a–c (and Fig. 3.1d) indicates the 2nd (orange), 3rd (maroon),

and 4th (purple) minibands. a. The dispersion of Eq. (3.2) in the mini-

Brillouin zone for superlattices (`,W ) = (13, 0.5), (`,W ) = (55, 0.5244), (`,W ) =

(233, 0.5244) (from top to bottom); this illustrates successive emergence

of minibands (from top-to-bottom) as a consequence of consecutive down-

foldings of the Brillouin zone. b. The corresponding mini-Brillouin zones

(logarithmic scale). c. The dramatic reduction in bandwidth near the

critical point for each miniband. d. For (`,W ) = (13, 0.5) and L = 104,

computed Wannier function ψ(x, y) that is sitting upon the local density

of states ρband(r) =
∑

n | 〈r|En〉 |2 (shown as a density plot) for eigen-

states of the (orange) band |En〉, on a 104 × 104 lattice. (Inset). The

exponential localization of the Wannier state. . . . . . . . . . . . . . . 47

3.5. Boltzmann wave packet spreading. Spreading of the mean square

radius 〈r2〉 =
∑

r r2ρ(r) of the particle density ρ(r) as a function of

time in units of the inverse hopping rate 1/t (panel a: α < αc, panel b:

α > αc). Here, we consider the interacting 2D SOC model, Eqs. (3.2)

and (3.11), and we employ Eq. (3.9) to incorporate the magic angle

effect (occuring at αc ≈ 0.53 in this approximation) into a semiana-

lytical hydrodynamic treatment. The initial steady state at finite tem-

perature is defined by a particle [energy] density ρ(r) = e−r
2/[2ξ2]/ξ2

[ρE(r) = v0

(
1 + 3e−r

2/ξ2
)
/ξ3], with v0 ≡ v(α = 0) is the bare ve-

locity and we chose ξ = 4 for the initial spread of the density profile.

The hydrodynamic equations were numerically solved in the presence

of an onsite repulsion U(α = 0) = 0.025t and Umklapp scattering rate

1/τ(α = 0) = 0.0075t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiv
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4.2. (a) A schematic of graphene and the notation we use for our model. The

A (B) sublattice is represented by the blue (orange) lattice sites. The

unit cell for the triangular lattice is shown by the dashed central hexagon.
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√
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3/2, 3/2), and we

further define a3 ≡ a2 − a1, a4 ≡ −a1, a5 ≡ −a2, as well as a6 ≡ −a3.

(b) A course-grained view of the tunneling between the layers calculated

from T0 and T1 in Eq. (4.5) which defines the energy parameters w0 and

w1; the color represents whether AA, AB, or BA hopping is dominant

based on the chance for an electron on a site in layer 1 to hop onto

sublattice A or B on layer 2, given by PX(r) = |[T0(r)]X |2 + 6|[T1(r)]X |2.

Note that C3 is broken and the moiré unit cell is larger than in real

TBG. Both of these effects are relatively small. (c) Complementary to

the real space picture, in momentum space the lattice Brillioun zone

is effectively downfolded by a factor of three from the moiré Brillioun

zone after unrotating the two graphene layers; this introduces small gaps

in the band structure at these points. (d) In our model, the effect of

the twist is entirely contained within interlayer coupling, so we model

disorder by changing the continuous twist parameter θ within different

regions of space. In this common example, we break up the system into

four equal regions and pick a value of θj that are drawn from the box

distribution [(1−WR/2)θ, (1 +WR/2)θ] with θ = 1.05◦. . . . . . . . . 64
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4.3. (a) The calculated density of states ρ(E) for TBG without disorder as a

function of energy E for various interlayer tunneling strengths w = w1

(keeping w0/w1 = 0.75 where w0 (w1) denote the strength of AA and

BB (AB and BA) tunneling) at a low twist angle of θ = 1.05◦ close
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order of NC = 217 in the lattice model. The calculated minibandwidth

in the magic angle regime w = 110 meV is consistent with other studies

of the continuum model and the KPM numerical resolution limits to
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model associated with additional zone folding in this model. This is seen

clearly in the right inset; the left inset shows how the gap of the lattice

model here and in the continuum model also match rather well. In (d) at
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this is clearly seen in the right inset. The continuum model data here

includes 338 bands and has NC = 213 or 214 whereas the lattice model

has L = 569 and NC = 217. Overall, the agreement with the continuum

TBG model is quite excellent. . . . . . . . . . . . . . . . . . . . . . . . 68
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θ = 1.05◦, linear system size L = 569, and a KPM expansion order

of NC = 217 starting in the semimetal regime of the the TBG model

(Top) as well as in the magic-angle regime (Bottom), for different twist-

disorder strengths WR (that characterizes the width of a box distribution

[(1 −WR/2)θ, (1 + WR/2)θ] with θ = 1.05◦ from which we sample the

random twist angle in each patch). In each case the randomness smoothly

fills in the gap while also smearing out the Van Hove peaks. The insets

in the bottom two figures is a zoom in of the band gap that clearly fills

in with increasing disorder. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5. Summary of results on the miniband properties in the TBG model with

a clean twist angle θ = 1.05◦ extracted from system sizes L = 569 and a

KPM expansion order NC = 217. (a,b) The estimated gap size ∆MB as

a function of disorder strength in the twist angle WR and the interlayer

tunnelings w (where w = w1 and the ratio of AA and BB tunneling to

AB and BA tunneling is w0/w1 = 0.75). (c,d) The velocity v/v(w = 0)

as calculated from the density of states as a function of disorder WR

remains approximately unchanged in the presence of disorder WR (for

each value of w). (e,f) The minibandwidth DMB for interlayer tunneling

w and disorder WR. Note that for larger disorder strength (WR = 6% or

above) in (e) the bandwidth appears to plateau; this is just an artifact

arising from disorder completely filling out the gap at this point. While

the gap and bandwidth are strongly affected by disorder, the velocity

remains unchanged. The red dashed line in (f) that sets the maximum

that the minibandwidth can achieve, is determined from the gaps in (b). 72
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4.6. The effects of twist disorder on the properties of the Van Hove peaks for

a clean twist angle θ = 1.05◦, a linear system size L = 569, and a varying

KPM expansion order (NC) in (a) whereas in (b,c,d) we use NC = 217.

(a) As we scale the Chebyshev expansion order, we see that the Van Hove

peak is logarithmically divergent (with a fit shown as a black dashed line),

but once we add disorder, it rounds out and saturates to a finite value.

(b) The energy separation between Van Hove peaks remains stable as

disorder increases even though we find (c) that the full-width half-max

(FWHM) of the Van Hove peaks becomes broader as disorder increases.

(d) The estimated BCS critical temperature or the effective coupling

constant [see Eq. (4.8) in the main text] from the density of states at the

Van Hove peak as disorder is tuned up for various values of w. . . . . . 77

4.7. (a) The calculated density of states ρ(E) as a function of energy E for the

spin-orbit coupled model of Dirac points perturbed by a quasiperiodic

potential, with a quasiperiodic wavevector Q = 2πFn−2/Fn with the

system size L = Fn = 144 and a KPM expansion order NC = 214. (b) A

depiction of how we break up the SOC square lattice model into regions

of different quasiperiodic wavevector Qi (to simulate disorder), which are

taken from a box distribution about a central value. We vary both the

number of regions and the size of disorder in each region. . . . . . . . . 78

4.8. The disorder-free density of states ρ(E) as a function of energy E ob-

tained from a linear system size L = 144 and a KPM expansion order

NC = 214 starting in the semimetal regime of the model, comparing the

case of a fixed random phase across the entire sample (b, d) and a differ-

ent random phase in each patch (a, c) for different strengths of disorder

in the wavevector and nP = 7 randomly placed patches. Note that the

random phase in each patch is disordered even for WQ = 0. . . . . . . . 79
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4.9. Density of states as a function of energy in the semimetallic regime of

the SOC model focusing on the miniband at low energy using a linear

system size L = 144 and a KPM expansion order NC = 214. We focus

on the effects of the different number of random patches used for various

different disorder strengths in the quasiperiodic wavevector WQ from

W = 0.35. Here we are taking one global phase across the sample to

isolate the effects of randomness in Q and choice of patches alone. . . . 81

4.10. Density of states as a function of energy in the magic-angle regime (W =

0.54) of the SOC model focusing on the miniband at low energy with a

linear system size L = 144 and a KPM expansion order NC = 214. We

are displaying the effects of different number of patches of a random wave

vector across the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11. The estimated critical temperature (or effective coupling– see Eq. (4.8)

in main text) from the Van Hove peaks in the DOS as a function of

randomness in the twist vector comparing two choices for the random

phase for different number of randomly placed patches. (a,b) One fixed

phase, corresponding to a single rotation origin. (c,d) Random phases

φµ(i) in each block. The left panels are W = 0.35 in semimetal phase,

while the right panels are W = 0.54 at the magic-angle. Random phases

in each block produce very strong randomness in the model and smears

out the Van Hove peaks more easily. (e) The critical temperature Tc

with random phases φµ(i) in each block but without randomness in Q,

as function of number of patches n2
p, and normalized by Tc with only

one patch. (f) The gap size as function of randomness. Comparing to

the suppression of Tc, the gap is filled in for WQ ≈ 0.5%, which is much

smaller than the critical WQ (∼ 10%) needed for Van Hove peaks to be

smeared out. These results are obtained from data using a linear system

size L = 144 and a KPM expansion order NC = 214. . . . . . . . . . . . 83
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4.12. Effects of disorder on the renormalization of the velocity of the Dirac

cone and the minibandwidth using a linear system size L = 144 and a

KPM expansion order NC = 214. (a) Effective velocity of the Dirac cone

and how it is rounded out due to randomness in the wavevector. The

finite velocity in the magic-angle regime for WQ = 0 is just a finite size

effect [7]. (b) Minibandwidth as a function of disorder in the quasiperi-

odic wavevector, which monotonically broadens for increasing disorder

until the gap is filled in and the miniband is no longer separated from the

rest of the band (marked as dashed lines). We include both W = 0.35

for semimetallic phase and W = 0.54 for the magic-angle regime. Note

that we have set t = 1 here. . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1. (a) Schematic phase diagram at the band center (E = 0) extracted from

our work. In the semimetal phase the linearly dispersing Dirac cone is

stable in the low-energy regime. In the chiral metal phase a band of hy-

bridized zero modes qualitatively explain the sparse (yet still delocalized)

structure of the wave functions at the band center. The point W = 1 is

critical, with a diverging low-energy density of states, a dynamic expo-

nent z > 2, and multifractal eigenstates that obey Chalker scaling. (b)

The zero energy DOS ρ(0) for a linear system size L = 233 and NC = 214

and the momentum space inverse participation ratio IM (q = 2) at E = 0

with Q = 2πFn−2/L and L = 144 versus the hopping strength W on a

linear scale. (c) The low-energy DOS ρ(E) as a function of energy E

for pure QP hopping (W = 1) for the case of real and complex hopping

amplitudes for system sizes L = 987 and L = 233 respectively. For the

real QP hopping amplitudes we find the zero energy density of states

diverges, which is cut off by the finite KPM expansion order NC , here

we take NC = 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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5.2. DOS versus E for L = 233 and NC = 214 with different QP hopping

strengths W . (a) Formation of the first miniband with increasing val-

ues of W (vertical black arrows marking the gap that separates this

miniband from the rest of the states). (b)-(e) Formation of the sec-

ond miniband and semimetal to metal transition (vertical black arrows

mark the location of the gap to the second miniband). The second mini-

band is displayed as a thicker line for clarity. Note that the full band-

width for W = 0 is 4
√

2 ≈ 5.7 and all of these results are obtained

for Q = 2π × 89/233 with a critical value of W for this Q given by

Wc = 0.485± 0.005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3. The dependence of the DOS at zero energy on the choice of the wavevec-

tor QL. (a) A phase diagram in the space of W and Q specifying the

semimetallic regime (SM), the gapped higher order topological insulating

phases (indicated by the sharp drops in DOS on vertical lines indicating

rational Q labeled on top), and the chiral metal phase, where the color

plot denotes the value of log ρ(0). Each data point is calculated for a

system size L = 144 and KPM expansion order of NC = 212. For these

finite sizes, ρ(0) around 10−3 corresponds to the SM phase, while larger

DOS signals the metallic phase. The solid red curve shows the result of

perturbation theory for the critical Wc, given by v = 0 in Eq. (5.13). For

Q > π the estimate of Wc from Eq. (5.13) becomes imaginary, we plot the

magnitude of this as a dashed red curve. (b) The QL/(2π) = Fn−m/Fn

cuts (marked by the black ticks in top panel) with system sizes L = 144,

and NC = 214. We see the transition persists for very small QL. Note

that the finite value of ρ(0) in the semimetal regime is just a finite-size

effect and the transition appears when this rises over several orders of

magnitude, see Fig. 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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5.4. The zero-energy DOS ρ(0) as a function of W for various KPM expan-

sion orders NC and a system size of L = 233. In the semimetal regime

ρ(0) goes to zero for increasing NC like ρ(0) ∼ 1/NC , which allows us to

identify a sharp semimetal to metal transition at Wc = 0.485±0.005. (In-

set) The NC independence of ρ(0)NC allows us to identify the semimetal

phase boundary and demonstrates the robustness of the semimetal phase

to quasiperiodicity. This data for NC = 214 on a linear scale is shown in

Fig. 5.1(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5. The effective Dirac cone velocity extracted from the scaling of the low-

energy DOS ρ(E) ∼ ρ′(0)|E| [formally we compute ρ′(0+)]. (a) The slope

ρ′(0) vs W for various combination of Nc and L. We find that ρ′(0) rises

steeply, strongly suggesting a divergence and a non-analytic DOS at the

transition. We extract ρ′(0) from a fit to the scaling of the low-energy

DDOS ρ(E) ∼ ρ′(0)|E|. (b) Velocity v = 1/
√
ρ′(0). The dashed line

shows the linear fit of highest Nc and L we have. The linear scaling of

ρ′(0)−0.5 indicates ρ′(E = 0) ∼ (Wc −W )−2, and predicts critical point

W0.485± 0.005 that is consistent with our other analysis. . . . . . . . . 103

5.6. The twist dispersion in the semimetal phase (a) and in the chiral metal

(b), i.e. low-energy eigenvalues (E) as a function of a twist (θx) in the

boundary condition along the x-direction obtained by diagonalizing an

L = 89 sample. (a) For W = 0.35 in the semimetal phase with clear Dirac

points at (0, 0) and (π, 0). (b) Focusing on W = 0.50 that is right after

the semimetal to metal transition. We see the low-energy minibandwidth

for W = 0.5 has been substantially renormalized, the band in the center

of the spectrum has a bandwidth that has been renormalized by a factor

∼ 10−8 from its unperturbed value, which is an even stronger effect then

has been seen previously [7]. . . . . . . . . . . . . . . . . . . . . . . . . . 104
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5.7. The q = 2 inverse participation ratio in momentum space IM (q = 2)

as a function of W for various system sizes L. In the semimetal regime

the momentum-space IPR is L-independent and becomes L-dependent in

the chiral metal phase due to the wavefunction delocalizing in momen-

tum space. At W = 0.7, the momentum-space wavefunctions are still

delocalized (see Fig. 5.9) even though the IPR data seems to be only

weakly depending on the sizes. All the statistical errorbars in this plot

are smaller than the symbols. . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8. Probability distributions of zero energy wavefunctions in momentum

space with L = 144 and different values of W . (a)-(b): The wave-

functions contain well-defined ballistic peaks at (kx, ky) = (0, 0), (0, π),

(π, 0), and (π, π). A few of satellite peaks can be seen in (b) while the

major ballistic peaks are still well resolved from the figures. (c): The

wavefunction is close to the critical point; The ballistic peaks can still

be resolved. Meanwhile, the satellite peaks start to form regions instead

of a few well-separated points. (d)-(f): The ballistic peaks are no longer

sharply defined due to the hybridization with the satellite peaks which

arise from scattering off QP potentials. In (f), the momentum-space

wavefunction looks very much like a conventional delocalized state. The

critical value is close to W = 0.49. . . . . . . . . . . . . . . . . . . . . . 106

5.9. Zero-energy momentum-space wavefunction with W = 0.7. (a) The

probability distribution. The wavefunction is made of sparse peaks and

is still delocalized in momentum space. (b) The multifractal spectra

τM (q). Each data is averaged over 100 realizations. For smaller binning

sizes (B = 1, 2 and B = 2, 4), the τM (q) show strongly multifractal (but

still unfreezing) behavior. Note that τM (q = 2) is not zero for all the

binning sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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5.10. Multifractal spectrum of the zero-energy momentum-space wavefunction

with different W for L = 144. Each τM (q) is obtained via numerical

extrapolation of two different values of the binning size B. Each data

is averaged over 100 realizations. (a)-(b) All the τM (q) spectra show

freezing behavior. (c) τM (q) spectra extracted from larger binning sizes

(B = 4, 8 and B = 8, 16) start to show unfreezing behavior. While the

spectra from B = 1, 2 and B = 2, 4 are still frozen. This is very close to

the critical value of W . (d)-(f) All the τM (q) spectra show unfreezing,

weakly multifractal behavior. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.11. Probability distributions of zero-energy wavefunctions in real space with

L = 144 and different values of W comparing the exact numerical calcu-

lations (top row) with the analytic results (bottom row) for the wavefunc-

tions of the chiral metal, in Eq. (5.16). (a) and (d): The wavefunctions

are plane waves. (b) and (e): The model is close to the critical point

of the semimetal to metal transition and the wavefunction looks like a

periodic array of localized peaks. (c) and (f): The wavefunctions are

delocalized but possess intricate structure that agrees qualitatively well

with the analytic prediction. The critical value obtained from numerics

is close to W = 0.49. Despite the analytical treatment overestimating

the position of the semimetal to metal transition by a factor of 2, it leads

to qualitatively similar behavior near the transition. As a result for the

analytic results we show W = 0.83 in (d), W = 0.87 in (e), and W = 0.91

in (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.12. Localization properties obtained through the typical DOS. Typical DOS

are in black solid lines, and average DOS are in blue dashed lines (to

distinguish hard gaps and localized states) for L = 144 and NC = 214

[(a) W = 0.2; (b) W = 0.4; (c)W = 0.6; (d) W = 0.8; (e) W = 0.9 and

(f) W = 1.0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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5.13. Real-space wavefunctions at various energies corresponding to W = 0.8

and L = 144. (a), (c), and (e) are delcoalized wavefunctions; (b), (d),

and (f) are localized wavefunctions. This confirms the multiple mobility

edges observed in the typical DOS in Fig. 5.12. . . . . . . . . . . . . . 114

5.14. Divergence of the low-energy DOS for W = 1 (i.e. pure QP hopping).

(a) NC-dependence near zero energy for a very large system size L = 987

and QL = 2πFn−2/Fn. (Inset) Similar results for the randomized version

of the model (letting the phase be random at each site) with L = 233

for NC = 212, 213, 214, L = 377 for NC = 215 and L = 610 for NC = 216,

note that the divergence is similar between the two. (b) Divergence of

the low-energy DOS for W = 1 in the pure QP limit comparing two

different quasiperiodic wavevectors and the random (R) hopping model

with the KPM expansion order that acts like a low-energy scale that

rounds out the divergence of the DOS. Fits to the power law form are

shown as red dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.15. The onset of a divergence in the DOS at zero energy ρ(0) versus (a) NC

and (b) W close to W = 1 and L = 610. We see a trend towards an

increasing ρ(0) for W > 0.95, but there is no clear sign of divergence in

the data other then at W = 1. . . . . . . . . . . . . . . . . . . . . . . . . 116

5.16. Inverse multifractal exponent α0 as a function of energy for W = 1 and

L = 144. The green dashed line indicate the plane wave value 1/α0 = 0.5.

Localized states in the thermodynamic limit give 1/α0 → 0. The results

demonstrate non-monotonic dependence as a function of energy. Blue

dots indicate the data extracting from ψ(x) (b = 1); red dots correspond

to the data extracting from binned wavefunctions with resolution length

b = 2. The black arrows indicate the states consisted of double identical

peaks. The corresponding typical DOS values are very small but non-

zero in Fig. 5.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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5.17. Real-space wavefunctions that show double peaks structure for W =

1 and certain finite energies [(a) E = 0.4; (b) E = 0.6]. These two

wavefunctions correspond to the data in Fig. 5.16 indicated by the black

arrows. They are not the conventional localized or frozen wavefunctions

that are found in the disordered systems. Such an unconventional feature

is probably due to the quasiperiodicity. . . . . . . . . . . . . . . . . . . 118

5.18. Two-wavefunction correlation [given by Eq. (5.9) with E0 ≈ 0] as a

function of energy (E). We take 300 lowest positive energy states of

L = 144 per realization and compute the probability overlap of two

wavefunctions in the same realization. The data is averaged over 400

realizations. E∗ = 0.01 for W = 0.99; E∗ = 0.0025 for W = 1. We

rescale all the data points with the rightmost point. In the pure QP

hopping limit (W = 1), the two wavefunction correlation shows a clear

power law scaling. For W = 0.99, the low-energy wavefunctions lose

clear power law overlapping features. . . . . . . . . . . . . . . . . . . . 119

5.19. Wave packet dynamics, we initialize the wavefunction to be localized to

a single site and evolve it under H. (a) Spread of the wavepacket as a

function of time t on a log-log scale with L = 987 and NC = 213 we never

see a clear diffusive phase (z = 2). (b) Extracted dynamic exponent z

from 〈δr(t)2〉 ∼ t2/z̃ (inset) zoom in near W = 1 with a dashed line

to mark diffusion 2/z̃ = 1. Note that the wave packet dynamics is not

sensitive to the semimetal to metal transition at E = 0. . . . . . . . . . 121

5.20. The hopping configurations of QP hopping models with L = 13. (Right)

The hopping configuration of the QP hopping model with W = 1. The

QP pattern generates nearly zero lines of bonds which effectively separate

the system into many subsystems. (Left) The hopping configuration of

the QP hopping model with W = 0.9. The system is typically well

connected as a whole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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5.21. (a) Density of state by energy, with QL = π, in twisted periodic boundary

condition (TPBC) and open boundary condition (OBC). Both boundary

conditions show bulk gap, while OBC allows the topological corner states.

The system size is L = 144, and QL = 2π(72/L). NC = 8192 for KPM

calculations. (b) real space wave function at QL = π and W = 0.4.

System size is L = 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1. Phase Diagram of the BHZ model in Eq. (6.1) at the band center

with topological mass M and quasiperiodic potential strength W . There

are five illustrated phases: topological (TI), normal (NI), and Anderson

(AI) insulators, Dirac semimetal (SM), and critical metal (CM). The

green and red data points use the density of states in Eq. (6.3) to locate

the transitions between TI and NI. Among them, the green data points

and the green vertical line at M = 2 are SMs, terminated at magic-angle

transitions (see Sec. 6.5) at the green stars. The black dashed lines are

the perturbative prediction for the SM lines (e.g. Eq. (6.23)). The blue

circles use transport [Eq. (6.2)] to determine the CM to AI boundary. . 131

6.2. (a) Full phase diagram with all measures used to diagonose phases and

transitions. The magenta line shows the boundary between delocalized

or critical phase and localized phase at zero energy, as indicated by the

neural net model. The dark region, roughly extending from M = 4,

W = 3 to M = 4.5, W = 4 is indicated as critical phase by the neural net

model, but not identified by any other observables. The dashed orange

line inside the TI phase shows where the size of the gap centered at E = 0

is maximals and thus starts to significantly deviate from perturbation

theory. (b) A cut of the phase diagram in energy space represented by

the yellow line in (a). Notice the multiple phase transitions, all driven by

quasiperiodicity (W ) and the higher energy metallic nature. The pink

curve represents the boundary to machine-learned, localized eigenstates. 136
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6.3. Finite energy topological phase diagram. The Hall conductivity

σxy at various Fermi energies EF and quasiperiodicity W . The red lines

are the perturbation theory prediction of gap size. . . . . . . . . . . . . 137

6.4. Schematic diagram of the neural network structure used for

localization detection. For convolution layers, we apply a convolution

operation over a small window to get a data point in the next layer.

Max-Pool layer simply takes the maximum of each window to reduce the

model size. We also add batch-normalization and dropout layers before

and after Max-Pool, but they are not shown here as they do not alter

the overall architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5. Comparing the IPR with the machine learning outcome. (a)

Shows an example of the neural network output for M = 2.7, given as

the probability of a state being localized [P (loc)] or extended [P (ext)].

The summarized results are shown for M = 2.7 (b) and M = 4.9 (c),

with comparison against KPM and IPR results. The difference between

the two probabilities measures how confidently the model can distinguish

localized or extended. Also shown in the figure with the magenta strips

is the phase boundary determined by the conductivity, which indicates

a transition near W = 2.25 for M = 2.7, and W = 3.4 for M = 4.9.

Although the three different methods match quite well for M = 4.9, for

M = 2.7 the IPR shows strongly critical behavior up until W = 2.5,

well after the conductivity appears to vanish. Such critical behavior

is detected by the neural net model. For W between 2.3 and 2.5 the

IPR shows a strong L dependence and the neural net model predicts an

extended phase with high confidence. For a range of W larger than 2.5,

the IPR shows a weak L dependence across different system sizes, while

in the neural net model P (loc) and P (ext) are quite close to each other. 139
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6.6. The magic-angle transition for the semimetal line M = 2. (a)

Renormalized velocity v/v(0) and the resulting finite density of states

ρ(0) at the transition, extracted from ρ(E) that is calculated using KPM

method with system size L = 144, Chebyshev cutoff Nc = 215. (b) These

plots indicate the appearance of a critical metallic phase 1.4 .W . 1.5

inferred from both the resistivity ρxx and the scaling of the momentum-

and real-space IPRs. ρxx is calculated using Kubo formula with KPM

method. The L-dependence of the IPRs is fitted from lowest energy

eigenstates obtained using Lanczos method for L = 89, L = 144, and

L = 233 to a power law form Iα ∼ 1/Lγα , and γα is shown as the right

vertical axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7. Demonstration of the TI-to-CM transition. (a) Tracking the den-

sity of states computed with the KPM in Eq. (2.1), we see the (hard)

band gap closes as a power law ∆ = (Wc(M)−W )νz and find νz ≈ 1 at

the TI-to-CM transition across each value of M . (b) Shows the conduc-

tivity computed with the KPM in Eq. (6.2) as a function of quasiperiodic

strength W for M = 4.0. The Hall conductivity σxy saturates to a finite

value in the TI phase, but for Wc(M = 4) ≈ 2 .W . 3 the longitudinal

conductivity becomes finite and the Hall part is suppressed. The system

is localized when W & 3. Note that the feature near W = 0 is due to

M = 4 being a SM. We stress that this metallic phase and therefore this

transition does not exist in the presence of randomness. . . . . . . . . 142
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6.8. Flat Chern bands and eigenstate criticality. (a) Color plot of the

momentum-space IPR system-size scaling. The value of γk is given by

the color. The lowest energy states (and narrowest set of states) has

a Chern number of 1. The white regions are hard gaps. (b; left) the

conductivity calculated from Eq. 6.2 with L = 377 and cutoff Nc = 214.

(b; right) Dispersion relation En(θ) along a representative cut in the

mBZ for a sequence of L = Fn with even n, for W = 1.0154. For each L,

the green band carries Chern number −2, the first 4 bands (from green

to cyan) sum to Chern number 1, and the 25 bands pictured in each plot

sum to Chern number 1 (for L = 55, the pattern appears to hold but

the lowest bands do not have a well-defined gap). (c) the flatness ratio

fg (left) and the normalized standard deviation of Berry curvature Ωg

across the folded Brillouin zone (right) of the first band above E = −0.5,

for various L values. The filled markers (•) indicate topological bands

while empty markers (◦) indicate trivial bands (excluded in the right).

The squares (�) and circles (•) correspond to L = Fn such that n is odd

and even, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.9. L dependence of the IPR Here we demonstrate two examples of how

we determine γα for IPR data in the basis α = x, k, where Iα ∼ L−γα ,

for M = 2.7 (a) and M = 3.3 (b). We take a linear fit for log Ik or log Ix

over logL, then the slope of the fit estimates γ. . . . . . . . . . . . . . 144

6.10. Berry curvatures. The Berry curvature of of the first band above the

hard gap near E = −0.5. The samples shown are at W = 1.01541,

M = 4 and L = 377, i.e. at its peak flatness (see Fig. 6.8). The first row

are system sizes in the sequence of L = Fn with odd n, and the second

row for even n. For L = 55 and L = 89, Berry curvature have clear

peaks; while larger L’s see flatter Berry curvature. . . . . . . . . . . . . 146
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6.11. Twist Dispersions. (a) Using the twist dispersion to obtain the effec-

tive massm∗. The red curve is the quadratic fitting result to estimatem∗.

The figure shows an example for M = 4.0, W = 0.4. (b) The effective
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Chapter 1

Introduction

The abundant topological phases of matter have been of great interest in condensed

matter physics. Since the discovery of integer and fractional quantum Hall effects [8, 9],

a variety of topological invariants have been studied in the context of some condensed

matter systems, leading to the discovery of many materials or platforms featuring the

topological properties. There are gapped systems carrying various topological invari-

ants such as the Chern number [10], the Z2 invariants [11, 12] and the higher-order

topological invariants [13], to name a few. Recent years have also seen a surge of in-

terest in gapless systems such as Dirac and Weyl topological semimetals[14, 15] that

carries topological monopole charges. Those topological properties are robust against

deformation. Such robustness has brought great prediction power to the field of con-

densed matter physics, as the topological properties initially defined for idealized, clean

systems remain unchanged with high precision in a real-world, dirty system.

Such robustness, in turn, makes the process of destroying topological properties a

fascinating ground for a large set of questions to be answered – because of the robust-

ness, the breakdowns of topological properties are not a trivial deviation from ideal

states, but often phase transitions driven by non-perturbative effects. Pertaining to the

transitions, there are questions that are both of theoretical interest and experimental

relevance. For example, adding random disorder to a condensed matter system is well

known to induce Anderson localization[16]. In the case of adding disorder to a topo-

logical phase of matter, questions arise naturally – does localization still exist? Does

topology hold up until localization happens? Are there any new phases of matter in

between? The question becomes even more interesting for gapless topological phases,

where even small disorder or other perturbation could push the system to a new phase;
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and perturbations under certain conditions can allow the phase to remain stable until

a more dramatic breakdown.

The main content of this dissertation will be exploring various situations “off” the

simpler topological phases, either by incorporating random disorder or quasiperiodic

modulation (to be explained soon).

To study condensed matter systems with either disorder or quasiperiodicity (or

both), it is often necessary to apply many numerical methods, especially when non-

perturbative effects become important. In addition, the lack of translational symmetry,

the statistical nature of the disorder, and the complicated phase diagrams demand the

numerical computation to be very large in scale. Hence, picking suitable observables

with appropriate algorithms becomes vital to research in this field. In light of the impor-

tance of numerical computation, Chapter 2 explains in some detail the computational

approaches shared in the chapters to follow.

Equipped with the numerical methods, in Chapter 3, we investigate various mod-

els to reveal the common ‘magic-angle’ effect in semimetals driven by an increasing

quasiperiodic modulation. This chapter is based on [7] and its supplemental materials.

Next, in Chapter 4 (based on [17]) we characterize the effects of disorder on magic-

angle semimetals including the experimentally motivated twisted bilayer graphene case

and our much simplified toy model from Chapter 3. Chapter 5 (based on [18]) moves

on to focus on one model of magic-angle semimetals under chiral symmetry to study

the transition in more detail. The chiral model also involves a curious commensurate

limit that is equivalent to higher order TI[13]. In Chapter 6 (based on [12] and its

supplement material), we shift gear from semimetallic models to 2D topological insula-

tors, where we dive into the rich phase space with intriguing eigenstate criticality and

topological flat bands driven by what is analogous to the magic-angle semimetals from

previous chapters. Finally, in Chapter 7, the non-perturbative rare-region effects take a

central role, as we investigate the fate of a 3D topological insulator and its semimetal-

lic phase boundary under random disorder. Besides the work presented in this thesis,

we have utilized the same numerical methods to study several problems in closer con-

nection to experiments, including studies of anomalous Hall effect in SrRuO3[19] and
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Figure 1.1: Schematics of arbitrary 1D band structure that must have 0, 1, or 2 points
at a Fermi level. When there are 2 crossing points, the two crossings must be one
right-moving and one left-moving. Figure adapted from Ref. [1]

Eu2Ir2O7[20].

In the rest of this chapter, I will provide an overview of topological phases of matter

(Section 1.1) that sets the stage for the study in all following chapters. Then Section 1.2

explains quasiperiodicity and disorder that we add to the topological models to drive

phase transitions of interest.

1.1 Topological phases of matter

Topological phases are quantum phases defined with topological invariants, whose value

does not change with adiabatic deformation. Such topological invariants can often relate

to robust and quantized macroscopic quantities such as Hall conductivity in topological

insulators.

In this section, I will briefly review the topological phases of matters involved in

this dissertation.

1.1.1 Semimetals

Topological semimetals are characterized by isolated band touching points (the nodes)

in the Brillouin zone. The two neighboring bands are exactly degenerate at the nodes.

The topology of semimetals lies behind such degeneracy.
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Because Hamiltonians are always Hermitian, the most general two-band Hamilto-

nian H(~p) can be written as

H(~p) = a(~p) +~b(~p) · ~σ (1.1)

Where σi are the Pauli matrices

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.2)

The points ~p∗ in the Brillouin zone where H(~p∗) is degenerate must have ~b(~p∗) = 0.

Hence, assuming a(~p) varies much slower than b(~p) in the vicinity of ~p∗
1, the two-band

Hamiltonian in the vicinity of ~p∗ can be expanded into

H(~p) = ε0 ± vF (~p− ~p∗) · ~σ (1.3)

where ε0 is a constant. Such Hamiltonian takes the form of the Weyl equation, and

hence the name Weyl semimetals. The sign before vF is the chirality of the node,

which is analogous to the chirality of massless relativistic Weyl fermions. This analogy

makes Weyl semimetals an interesting playground to study phenomena expected for

fundamental particles in a condensed matter setting.

Most importantly, the existence of such degenerate points has a topological origin.

The degeneracy requires~b(~p) = 0, corresponding to the intersection of 3 surfaces bi(~p) =

0 where i = x, y, z. As momentum takes value in the Brillouin zone which is periodic,

each of the three surfaces is closed. Intuitively, the intersection between two surfaces is

a closed curve or empty, where each of the two cases is robust against some deformation.

The curve can then intersect with the other surface which will always be an even number

of points. If we assume those surfaces are all orientable, then the number of intersections

into and out of the surface is the same. These are the Weyl nodes with positive and

negative chiralities. Only when two Weyl nodes with opposite chirality annihilate each

other can we eliminate them. We skip a mathematically rigorous derivation (that is

connected to the Nielson-Ninomiya theorem[22]), but heuristically the nodes do not

1The contribution of a(~p) can be significant near ~p∗, which lead to the so-called type-II semimetals[14,
21] which is out of the scope here.
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rely upon the specific form of function bi(~p) and allow deformation – hence the Weyl

nodes are considered topological.

A simple model that features the above described Weyl semimetal is

ĤSOC =
∑
~r,µ

it

2
c†~rσµc~r+µ̂ (1.4)

where t is the hopping strength, c and c† are creation and annihilation operators.

Subscripts µ runs over directions x, y, z, and µ̂ are the unit vectors along direction µ.

This two-band model corresponds to a cubic lattice with perfect spin-orbit coupling.

The spin-orbit coupling breaks the general degeneracy of the two bands, while leaving

8 Weyl nodes at (π2 ±
π
2 ,

π
2 ±

π
2 ,

π
2 ±

π
2 ). The dispersion relation is

E(~k) = ±t
√∑

µ

sin2
µ(kµ) (1.5)

where the sign correspond to the valence band (below Ef = 0) and conduction band

(above Ef = 0). Although this model is purely theoretical, the low energy physics

captures what is seen in TaAs, NbAs, and so on [23].

There exist a natural extension of the idea of semimetal to 1D. We may consider a

Hamiltonian with power-law dispersion [24] defined in momentum space:

ĤLRH = −t
∑
k

sgn[cos(k)]| cos(k)|σc†kck. (1.6)

for some arbitrary σ. This model’s density of states vanishes as a power-law, as is in the

case of 3D semimetals. The part of the band above Ef = 0 is the conduction band, which

touches with the valence band below Ef = 0 at the semimetallic node. The crossing

has a chirality given by the sign of the slope of the dispersion. The nodes, similar to the

3D case, appear in pairs with opposite chirality and can only be eliminated if the nodes

of opposite chirality annihilate (see Fig. 1.1 for a schematic drawing). The model is

named the long-range hopping (LRH) model because, in real space, the model includes

a hopping term between any two lattice sites. The LRH model can be experimentally

realized as 1D arrays of trapped ions with long-range interactions whose quasiparticles

can resemble the dispersion of Eq. 1.6[25]. This model will be studied in Chapter. 3 as

one of the examples exhibiting the universal magic angle physics.
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In the case of two dimensions, discrete symmetry plays a more important role.

Similar to the 3D case, the degenerate point can only show up at the intersection of

three equations of the form fi(~p) = 0, but now ~p is only two dimensional. Each of the

three equations corresponds to a closed curve, then the generic intersection between

two curves is isolated points. Tuning those isolated points to exist on the third curve

demands a specific form of the functions fi(~p), and would fail with small deformations.

However, in models with suitable reflection or time-reversal symmetry, or when there

is no spin-orbit coupling, the diagonal term (σz term) on the Hamiltonian is forbidden

– then we can find the node that can withstand the deformation at the intersection

between fx(~p) = 0 and fy(~p) = 0.

The first case leads to a 2D square lattice model that is a clear analogy to the 3D

SOC model described above in Eqn.1.4 where the only difference is that µ only runs

over x, y. The latter case, with no spin-orbit coupling, correspond to graphene, one of

the most known semimetal. It is also the one that is easiest to produce, that can be

prepared through exfoliating graphite[26]. Graphene, as a thin sheet of carbon atoms,

can be modeled by a honeycomb lattice with only nearest-neighbor hopping terms,

forming a two-band model that does not correspond to a spin degree of freedom. For

graphene, the band crossing occurs at precisely the half-filling where the Fermi level

naturally sits. Hence, its low-energy physics well resembles the Dirac equation.

Importantly, various types of semimetals across 1D to 3D share universal properties.

Near Ef = 0, the density of states is ρ(E) ∼ |E|d/σ−1 for the 1D LRH model, and

ρ(E) ∼ |E|d−1 for the other models where d is the dimension. Such power-law scaling

of ρ(E) is a universal signature of semimetals. These models set the stage for Chapter 3

and 5 where we add quasiperiodicity to observe universal behavior dubbed “magic-angle

semimetals”. Semimetals can also be found in other models, such as the phase boundary

between topological insulators – this will be seen in Chapter 6 and Chapter 7.

1.1.2 Topological insulators

Topological insulators (TI) are gapped topological phases that the band structure is

topologically distinct from trivial. The classic two-dimensional examples of TI include
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quantum spin Hall insulators[11, 12]. These models were first constructed theoretically

as an analogy of the quantum Hall effect that does not require a broken time-reversal

symmetry.

The model of the 2D topological insulator that we will consider in this thesis is

the Bernevig-Hughes-Zhang (BHZ) model [12], which is a four-band effective Hamilto-

nian for HgTe quantum wells. The four-band Hamiltonian can be separated into two

2 × 2 blocks of Chern insulators (called either a half-BHZ model or a Qi-Wu-Zhang

model[27]). For one of the two blocks, the Hamiltonian is

h(~k) = sin(kx)σx + sin(ky)σy + [(M − 2)− cos(kx)− cos(ky)]σz (1.7)

and the other block is −h(~k)∗. The half-BHZ model effective Hamiltonian has the

form of ~d(~k) · ~σ, whose eigenstates can be represented on a Bloch sphere. Hence for

each band, there is a mapping from ~k (that lives on the 2D torus of Brillouin zone)

to the eigenstate on the Bloch sphere (that is a 2D sphere). On such a mapping, the

Chern number can be defined as a topological invariant that counts the times that the

mapping wraps around the Bloch sphere. The surface of ~d(~k) is plotted in Fig. 1.2. It

is a two-lobes surface where one of them is oriented outward, and the other is oriented

inward. When the origin is inside one of the lobes, we can continuously shrink the other

lobe without the surface passing through the origin. Such deformation turns the surface

into a sphere that is identical with or opposite in orientation to the Bloch sphere, and

hence the Chern number of the cases are ±1.

Such topological distinction can only change when bands are deformed significant

enough that they touch each other. Hence, on the spatial boundary of the topological

insulators which is the interface between the topologically nontrivial phase (inside the

TI) and the topologically trivial phase (outside the TI), there are always edge states

that connect the gapped bulk bands. The existence of such a robust edge state is one of

the prominent signatures of TI. In the case of the half-BHZ model, the Chern number

corresponds to a quantized Hall conductivity σxy = Ce2/h. For the full BHZ model,

the two blocks have opposite Hall conductivity but with the same amplitude. Such

phenomenon is called the quantum spin Hall effect and was observed in HgTe/CdTe
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Figure 1.2: The surface of ~d(~k) for the (half) BHZ model. The right panel is showing
a view of a quarter (dx, dy > 0) of the left panel. Colors correspond to the orientation

of the normal vector where green is inward and blue is outward. The surface of ~d(~k)
can wrap around the Bloch sphere if and only if the origin is in one of the two lobes.
When 0 < M < 2 (2 < M < 4), the origin is in the lower (upper) lobe and hence Chern
number is C = −1 (C = 1). Otherwise, there is no wrapping and Chern number is 0.

quantum wells [28] as predicted. Other models with similar topological phases include

the Kane-Mele model[11] that is based on graphene. It may see a natural realization

in exfoliated jacutingaite crystals[29, 30]. However, the BHZ model is most convenient

for our study because it is described on a square lattice, and at the phase boundaries it

reduces to the SOC model of semimetals that we have discussed. The BHZ model will

be the focus of Chapter 6 where we add quasiperiodicity to the model.

The 3D generalization of 2D topological insulators were first developed to describe

Bi2Se3, Bi2Te3, and Sb2Te3[31]. In 3D, the Chern number is no longer possible to

define and the topology is now represented by a Z2 invariant. The surface state of

the 3D TI is a Dirac cone and has been observed with angle-resolved photoemission

spectroscopy (ARPES)[32, 33]. By doping the TI, it is possible to bring it from the TI

phase to a trivial insulating phase (hereafter NI, as short for normal insulator). Such a

phase boundary is a semimetal line. As TI is stable against disorders[34, 35], the tuning

of 3D TI has been considered a promising path towards realizing Weyl semimetals. In

Chapter 7 we will dive into the stability of such TI-WSM-NI transition in the presence

of disorder.

Apart from the 2D and 3D TI models that are nowadays considered more “classical”

in the field of topological insulators, there are new findings of topology that require

crystalline symmetries. Among them is the so-called higher-order topological insulator
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[13]. In Higher-order topological insulators, the edge states are gapped, and there

are corner excitations that carry half-integer charges. In Chapter 5 we briefly touch

upon the commensurate limit of the 2D chiral semimetal model that manifests as a

higher-order topological insulator.

1.2 Perturbing the topological models

The above discussion is all based on ideal lattices, focusing on the properties that allow

for some distortion of the model. Now we discuss two types of disordering that we

will add to the topological phases of matter as the extra axis we explore on the phase

diagrams.

1.2.1 Random disorder

Real experiments can never be free from random disorder, making it an important

theoretical topic to study. One common way to model random disorder is to add a

static potential that is sampled from the same distribution to each lattice site. Such a

random potential models the generic fluctuation seen in experiments.

For relatively strong disorder (usually comparable to the strength of the hopping

terms), increasing disorder strength induces Anderson localization transition[16, 36,

37]. The localization happens as the random potential creates out-of-phase reflections

of plane waves, resulting in destructive interference such that the eigenstates become

exponentially localized as

|ψ(~r)|2 ∼ exp(−|~r − ~r0|/ξ) (1.8)

where ξ is the called localization length. The localization length ξ characterizes the

spatial size that the eigenstates have a significant probability. As a phase transition, a

scaling theory can be formulated to describe the transition[36]. On the localized side

of the Anderson transition the localization length features

ξ ∝ (Ec − E)−ν (1.9)

where Ec is the critical point of some parameter E, and ν is the scaling exponent.

As E approaches Ec, the localization length ξ approaches infinity. On the delocalized
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side, the localization length is no longer defined; but the DC conductivity σ can be

considered. When scaling with system size L at zero-temperature (or in another word,

at a diverging time-scale τ →∞), we have

σ ∝ (E − Ec)s (1.10)

where s = ν(d− 2) to characterize the transition. When the temperature T is finite or

energy resolution ε is finite, the time-scale is finite and scales as τ ∼ 1/T or τ ∼ 1/ε.

Assuming a dynamical scaling τ ∼ ξz, we have [38, 39]

σ(τ) ∝ τ−s/zνf [τ1/zν(E − Ec)] (1.11)

where f is some universal function. Such an expression is useful for both experiments

and numerical calculation where a finite temperature or a finite energy resolution is

inevitable. The conductivity and the localization length are observables used in calcu-

lations in this thesis to probe the Anderson transition.

The critical behavior of Anderson transition can be classified based on the symme-

tries of the disordered systems. Such a 10-fold classification was introduced by Altland

and Zirnbauer[40] (and hence called AZ classification) to extend the 3 Wigner-Dyson

classes[41, 42]. The classification is based on time-reversal symmetry (T ), particle-hole

symmetry (P ) and chiral symmetry (C). For T (or P ) symmetry, the value of T 2 (P 2)

is either ±1 or the symmetry is absence. Each of the 9 combinations of the scenarios

for T 2 and P 2 dictates the existence of C symmetry, except for the case where both T

and P symmetries are absent and C symmetry can either be present or absent.

The three combinations with P and C both absent are the 3 Wigner-Dyson classes

that arise from the Gaussian unitary ensemble (GUE, generic random matrices without

any symmetry), the Gaussian orthogonal ensemble (GOE, real symmetric matrices) and

the Gaussian sympletic ensemble (GSE, Hermitian quaternionic matrices) in random

matrix theory [41]. Adding chiral symmetry, there are 3 chiral classes in analogy to

the 3 Wigner-Dyson classes[43, 44]. The last 4 classes, to exhaust the 10 possible com-

binations, appear in the context of superconducting systems[40] and are not involved

in the scope of this thesis. By the 10 AZ classification, the critical behavior on any
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dimension can be exhaustively studied. For 3D cases, the Anderson transition exists for

all symmetry classes; but in 2D, it is known that all but one (the GOE) classes feature

Anderson transition, whereas the GOE class is localized for any disorder. See Ref. [37]

for a thorough review. In any of the cases, the topological phases always complicate

the scenarios and invite for more detailed studies.

Apart from the Anderson transition, another important feature of random disorder

occurs even for very small amplitude of disorder: the rare-region effects. The rare-

region are the statistically rare, localized and non-perturbative configurations that can

significantly alter the phase transitions.

Here we illustrate the scenario of a rare region with a simple example. Consider

an identical independent Gaussian distributed potential at each lattice point. One site

with a potential 3 times the standard deviation lower than the average can happen,

albeit as rare as 1% of times. Meanwhile, it is highly likely its neighbors will not be

as extreme as itself. Then we have a very deep and localized potential well. Such

potential well can host a localized bound state. Such bounded states are called rare

events because they are statistically rare, with an exponentially small average density

of states forming the Lifshitz tail[16, 45]. Despite being statistically rare, these states

can be extremely important because they are non-perturbative, and can dramatically

change the behavior where the density of states was zero.

The existence of rare regions may cause insulating gaps to close earlier than pre-

dicted by perturbation theory. Also, in the case of semimetals, the small but non-zero

density of states induced by the rare-regions can immediately destroy the ρ(E) |E|α

scaling of a semimetal. Numerical studies have shown the SM is destroyed by an arbi-

trarily small random disorder [46].

On the other hand, when topology comes into play, we would expect the topological

insulator or topological semimetal phase to be able to resist some deviation from the

clean model. Combining the competing effects of rare-regions and topology gives rise

to puzzling questions of whether the topological phase hold and what is the resulting

phase diagram. This will be the main question of Chapter 7. We will consider a Dirac

semimetal phase boundary predicted by perturbation theory between TI and NI phases,
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and examine whether disorder destabilizes the SM phase. The stability of such an

SM phase has been assumed previously by both theorists[34, 35] and experimentalists,

leading to the expectation to find Weyl semimetal by doping topological insulators to

tune topological mass from TI to NI[47]. The study in Chapter 7 will help resolve

the observation of a large critical regime in the experiment [47] by providing a phase

diagram featuring a destabilized SM for any small W .

1.2.2 Quasiperiodicity

Quasiperiodicity (QP) describes a system that is not periodic in any given period but

follows a set of repetition rules. One simple form of such quasiperiodicity can be

constructed through the incommensurability between the underlying lattice and a sec-

ondary lattice as a modulation. For example, consider 1D chain of particles that are

located at r = an, where we set the lattice constant a = 1 for convenience. Then the

Hamiltonian

H = −J(
∑
r

c†r+1cr + c†rcr+1) +W
∑
r

cos(Qr)c†rcr (1.12)

where Q ∈ 2πQ and W represents the strength of quasiperiodicity. The Hamiltonian is

quasiperiodic, as there is strictly no common multiples between the periodicity of the

underlying lattice (from the hopping part) and the modulation (the potential part).

The model is the well-studied Aubry-Andre-Harper model (AAH model)[48, 49]. In the

quasiperiodic limit, increasing W can drive the system through Anderson localization

at W = 2J , which can be shown through duality arguments [48]. Notice that in finite

size systems quasiperiodicity can be approximated with Q = 2π an+man
where an is a

sequence such that lima→∞
an+m
an
∈ Q. For any system size L it is sufficient to choose

a fraction with an = L. A convenient choice we will use frequently in this work is

an = Fn, where Fn is the Fibonacci sequence. With a rational approximation of the

irrational Q, the Anderson transition turns into a smooth crossover that sharpens at

large system size limit.

The idea of adding modulation to induce quasiperiodicity on an existing lattice can

be generalized to other dimensions and other models. In particular, we can add the
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potential term

V (~r) = W
∑

µ=x,y,...

cos(Qrµ) (1.13)

to any of the tight-binding models we consider. In Chapter 3 and 6 we shall discuss in

detail the quasiperiodicity driven transition, similar to the transition described above

for the AAH model. Besides adding the modulation as a potential term, the modulation

can also be added through the hopping term, by substituting t → t(~r) where t(~r) is

incommensurate with the underlying lattice. We will show in Chapter 5 that such a

chiral modulation features the same universal transition as the potential-term modu-

lation; meanwhile, the chiral modulation demonstrates unique behavior because of its

additional chiral symmetry. Such difference between symmetry classes is analogous to

the classification of Anderson transitions driven by the random disorder. However, the

symmetry classification of the QP modulation is clearly different from the AZ classifi-

cation as we will show in Chapter 5 and 6.

Such modulations are not only of theoretical interest but can be experimentally

realized. In cold atom experiments, applying standing waves of laser with incommen-

surate wavelength to create quasiperiodic modulation on the atom array [50, 51] is

common. Other approaches such as programmable potential in quantum simulator[52],

engineered spatial modulation in metamaterials[53] can all realize quasiperiodicity. The

experimental accessibility makes the theoretical discussion in Chapter 3,5 and 6 feasible

experimental proposals.

Another form of quasiperiodicity that has drawn much attention in recent years is

the incommensurate limit of moirè superlattice systems. This is especially relevant in

the case of graphene. When two copies of graphenes are stacked and twisted by a small

angle, the overall system will have a much larger supercell repeating itself, spanning

many unit cells. When the angle is incommensurate, the supercell has an infinite size

in a way similar to the quasiperiodic modulation. At finite size, the incommensurate

effect can also be approximated through angles that maximize the superlattice.

Described above is the so-called twisted bilayer graphene (TBG) that has been one

of the hottest topics since they were found to host superconductivity [54] or correlated
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insulator [55] at a small twist angle. The theoretical description of magic-angle TBG

has not been fully understood; but noticing the importance of the quasiperiodicity, we

provide a perspective connecting the TBG with the more theoretically tractable models

of quasiperiodic semimetals that can help understand the incommensurate effect behind

magic angle TBG. In Chapter 3 we highlight that the universal physics is tied to the

quasiperiodicity, and hence the TBG has the same universal physics as the simpler SM

models.

It is worth noticing that the quasicrystals are also quasiperiodic systems. Quasicrys-

tals are materials that do not have translational symmetry but often show rotational

symmetry.[56]. Such quasicrystal systems follow tiling patterns such as Penrose tiling

and Fibonacci quasicrystals[57, 58]. As long as the rules of tiling continue infinitely,

the structure never repeats itself (and hence no translational symmetry exists) but is

in close proximity to periodicity. Recently, there has also been interest in exploring

topological phases in the context of quasicrystals[59, 60, 61]. Those quasicrystals from

aperiodic tiling demonstrate certain similarities with the quasiperiodic modulation that

we focus on in this thesis, and it is shown for the specific case of Fibonacci tiling and

AAH model that aperiodic tiling is equivalent to modulation induced quasiperiodicity

[62].

One important advantage of modulation or twist based quasiperiodicity over the

quasicrystals from tiling is the ability to control the strength of the quasiperiodicity.

The tunable QP strength enables us to study the phase transitions driven by quasiperi-

odicity. For the quasiperiodic systems from twisting stacked layers, the inter-layer

coupling naturally tunes the strength of quasiperiodicity. Similarly for the case of

modulation, the amplitude of QP modulation can be explicitly controlled.

1.2.3 Similarities and differences between quasiperiodicity and disor-

der

As we have mentioned above, the QP and random disorder have many analogous be-

haviors. They both represent ergodic traversals of phase space when we consider the

ensemble average of all realizations. Both of them can induce Anderson transition. The
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transitions in both of the cases depend on symmetry. In perturbation theory, they often

yield very similar renormalizations.

However, it is very important to realize many fundamental differences. Firstly, only

the random disorder can host rare-region effect; while even for strong quasiperiodicity

that drives the system across the Anderson transition, there is no role for rare region

effect. The QP modulation is always analytic and can be understood as a highly

correlated disorder that forbids the existence of rare regions. On the other hand, an

arbitrarily small amplitude of random disorder that is spatially not correlated can

create rare regions. An exemplifying consequence of such a difference can be seen on

2D semimetals. 2D SM is destroyed by random disorder immediately because of the

rare regions, but allows for a SM to metal transition with a QP modulation.

Secondly, the 10-fold AZ classification of disordered systems[40] does not hold for

quasiperiodic systems. This is shown clearly in chapter 5 where the chiral symmetry on

the magic-angle semimetal induces unique phase transition; and in chapter 6 where the

transition out of the topological insulator phase has no counterpart in the AZ symmetry

classes.
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Chapter 2

Methods

Thoroughly studying quasiperiodic and random systems is challenging because of the

non-perturbative behaviors. For many cases, the phase transitions and criticality can

only be accurately probed through numerical calculations of lattice models at large

system sizes and a huge amount of realization of randomness. Meanwhile, varying the

amplitude of random disorder or quasiperiodicity also induces changes of spectra that

are usually so obvious compared to the more subtle non-perturbative effects such as the

rare-region effects, making the latter difficult to be clearly resolved. Consequently, the

proper choice and optimization of numerical approaches are vital to all of our studies

in this thesis. Hence, we spend the current chapter discussing the algorithms we use

and the observables that are enabled by those algorithms.

2.1 KPM method

Most of the projects discussed in this work apply the Kernel Polynomial Method

(KPM)[4]. KPM is a class of algorithms that expand the operator expression of any

spectral quantity into Chebyshev polynomials. The Chebyshev polynomial expansion

provides fast convergence and numerical stability on most quantities. In addition, KPM

provides a consistent way to suppress the Gibbs phenomenon, the oscillation that occurs

when approximating non-analytic function with a finite approximation of polynomial

series.

Computationally, the expansion of KPM transforms the computationally expensive

multiplication of operators into the trace of operator products with building blocks

in the form of Tn(H) and a few other operators. Then, the stochastic trace evalua-

tion [4, 63] (to be discussed in detail below) allows the calculation to solely consist of
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matrix-vector multiplication, which can be optimally organized based on the recurrence

definition of Chebyshev polynomials.

Aside from the computational advantages, the energy resolution ε of the calculated

observable is proportional to 1/NC whereNC is the finite cutoff of expansion order. Such

cutoff provides a consistent way to probe energy scaling, allowing us to conveniently

calculate the observables as a function of ε.

2.1.1 The expansion

KPM method always starts with decomposing an observable with one or multiple sets

of Chebyshev polynomials as bases. Then all the coefficients µn,m,... (will be dubbed as

moments) are all linear combinations of words composed from Chebyshev polynomials of

Hamiltonian, delta function, and other operators. For example, one observable heavily

used in this thesis is the density of states (DOS) defined as

ρ(Ef ) =
1

NH

s∑
n

δ(Ef − En)

{
(2.1)

where the index n runs through all eigenstates of a given basis and assumes an ascending

ordering on the eigenvalues. NH = NintL
d is the total degree of freedom of the lattice

model, with Nint being the number of bands at each lattice site, L the linear size of

the lattice, and d the spatial dimension. For example, the 2D BHZ model we consider

in Chapter. 6 has d = 2, Nint = 2; the 3D TI model (Chapter 7) has d = 3, Nint =

4. For more realistic models, we may have Nint as the sum of bands of all atoms.

This convention (slightly deviating from how the density of states is usually defined)

conveniently fixes the integral of ρ(Ef ) over all Fermi energy to 1. The square bracket

J...K represents averaging across all random realizations. Such averaging is assumed for

most of the thesis unless otherwise specified. The density of states observable in Eq. 2.1

can be expanded into

ρ(Ẽf ) =

s
1

π
√

(1− Ẽf )2

∑
n

δn,0µnTn(Ẽf )

{
(2.2)

where we have a tilde on top of Ef because necessary normalization is always needed.

Similar normalization is always needed whenever a Chebyshev polynomial expansion
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is involved. Tn is the Chebyshev polynomial of the first kind. The exact transforma-

tion involves summing n from 0 to ∞, but convergence is guaranteed with Chebyshev

polynomials for a finite cut of to m < NC , and with the help of the kernel (to be ex-

plained soon) the convergence can be accelerated significantly and to preserve desired

properties. The only part depending on specific models is µn, calculated as

µm = TrTm(H̃) (2.3)

where Tn is now understood as Chebyshev polynomial of operators. Because any Hamil-

tonian commutes with itself, there is no ambiguity in the definition and hence we will

not emphasize the difference between the scalar and operator polynomials. Through

such expansion, we have converted the calculation of ρ(Ef ) into the calculation of a

sequence of µm that are all traces of Tm(h̃); and the original function ρ(Ef ) is only a

Chebyshev linear transformation from µm.

Another example used extensively in this thesis is the calculation of conductivity.

In general, any order of linear or nonlinear conductivity can be formulated into the

expectation of some combination of words composed by Hamiltonian, velocity operators

(vν where ν is for direction), and some Green’s function (whose choice depends on the

gauge used for calculation)[64, 65, 66, 67]. Those expectations can then be expressed

as linear transformations (that can include Chebyshev transformations, integrals and

some finite summations) of moments µm,n,... that consists of words of Tn(H̃) and velocity

operators vν .

For the calculation in this work, we consider observables from the linear response

theory (the calculation of DC conductivity and optical conductivity for example). For

DC conductivity, the conductivity tensor defined through the Kubo formula [64] is

σαβ =
2e2~
L2

∫
fEf (ε)dε Im Tr

s
vα
dG−

dε
vβδ(ε−H)

{
(2.4)

where f(E) = [eβ(E−Ef ) + 1]−1 is the Fermi function at inverse temperate β and Fermi

energy Ef , vα is the velocity operator, G− is the retarded Green function, and J· · ·K

denotes an average over samples (realization of disorders) and boundary condition. The

velocity operator is constructed in the so-called length gauge, which is most convenient

when working with a tight-binding model defined in real space.
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The moments needed for the calculation are

µαβmn = Tr
[
Tn(H̃)vαTm(H̃)vβTn(H̃)

]
(2.5)

that does not depend on energy.

For DC conductivity, the observable can be assembled from the moments as

σ̃αβ =
4e2~
πNH

4

∆E2

∫
dε

fEf (ε)

(1− ε2)2

∑
m,n

Γnm(ε) Tr
[
µ̂αβnm

]
(2.6)

where Fermi energy is encoded in function fEf , and ∆E is the total bandwidth of

the spectrum. Γnm(E) are a set of functions explicitly constructed from Chebyshev

polynomials independent of models. See Ref. [64] for details. With the expansion,

we have split the calculation of the conductivity into two parts: the first part is the

calculation of traces of operator products and the second part does not involve operator

operations at all.

Such KPM expansions have two important advantages. Firstly, the usage of the

Chebyshev polynomial ensures numerical stability and convergence. Secondly, the com-

putationally expensive part (the trace of operators products) is agnostic of Fermi energy.

Hence the expansion enables easy access to the entire spectrum of the observables as a

function of Ef and temperature at minimal extra computational cost than a fixed Ef

and temperature.

When computing longitudinal DC conductivity at zero temperature, there exist a

further simplification of the expansion that is found in the appendix of Ref. [64]

σxx =
4e2~
πNH

∑
m,n≤m

µααnmTn(Ef )Tm(Ef ) (2.7)

This expression avoids the need to save all intermediate states in the calculation, and

hence significantly reduces the memory cost. Of course, it forfeits the benefit of calcu-

lating all Ef and temperature altogether.

Additionally, the recurrence definition of Chebyshev polynomial significantly ac-

celerates the calculation. The operator product Tn(H) can be calculated based on

Tn−1(H) and Tn−2(H) with only one extra application of matrix-vector multiplication.
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Hence, when calculating all of the NC moments, the computational cost is asymptot-

ically the same as the cost of calculating TNC (H) itself. Consequently, the amortized

computational cost for each moment is reduced to 1/NC.

2.1.2 The kernels

The expansion above is only a reorganization of calculation. Even with all the gains

in efficiency, computationally we can only reach some finite cutoff Nc for the expan-

sion. When the computed observable is a function of a parameter E, the finite cutoff

will always broaden the ideal δ(E − E0) to some finite profile. In the case of taking

a naive hard-cutoff for NC , the profile is significantly oscillatory, causing the Gibbs

phenomenon. Such oscillation is not physical and degrades the calculated results.

To suppress such oscillation, a trick central to KPM is the usage of kernels. The

kernels counter the Gibbs oscillation by damping the cutoff of expansion order into a

soft fade-away. For a kernel function gn that monotonically decrease with n from g0 = 1

to gNc = 0, we define

µ̃n1,n2,... = µn1,n2,...gn1gn2 . . . (2.8)

and µ̃ will be used in place of µ for all consequent calculations. The hard cutoff can

be considered as a Dirichlet kernel where gn = 1 for all n < NC . Any damping that

is strictly decreasing reduces the Gibbs oscillation. Moreover, the freedom of choosing

gn allow us to pick the smoothing that either optimizes the distance from ideal series

summation or satisfies certain constraint desirable for physical quantities.

One of the most used kernels in KPM calculations is the Jackson kernel

gJn =
(N − n+ 1) cos πn

N+1 + sin πn
N+1 cot π

N+1

N + 1
(2.9)

The Jackson kernel guarantees the result to be positive without non-Hamiltonian op-

erators, which is desired in the calculation of the density of states. The kernel is also

proved to turn delta-functions δ(E − E0) into the narrowest possible near-Gaussian

peak in the sense of minimizing the second moment 〈E2〉 to be π/NC when E0 is near

0. It is worth noting that the near-Gaussian behavior is only valid for E very close to
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E0; and for E away from E0, the tail of the broadened peak turns into

fJ(E,NC) ∼ 1/N3
C (2.10)

while the dependency in E does not yield a simple expression.

Another choice of the kernels is the Lorentz kernel

gLn =
sinh[λ(1− n/NC)]

sinh(λ)
(2.11)

that preserves the analytical properties of Green’s function and precisely broadens a

delta function into a Lorentzian. An extra parameter λ is introduced to control the

width of the peak, but the tail of the broadened profile of δ(E − E0) will always read

fL(E,NC) ∼ 1/NC (2.12)

When multiple Chebyshev expansion is involved (such as for conductivity that has

two expansion over E ), the effects of two kernels on the tails of broadened delta

functions are applied multiplicatively. If the Jackson kernel is applied twice, the tail

is ∼ 1/N6
C ; if one Jackson kernel and one Lorentz kernel is used, the tail would be

∼ 1/N4
C .

The choice of kernel usually comes from two parts of considerations. Firstly, when

analytical properties are important, we may want to choose Lorentzian. Similarly,

when we need to consider some physical broadening (for example, a Drude peak that

is a Lorentzian) with a similar width as the KPM introduced broadening, choosing

Lorentz kernel may avoid the need for considering the convolution of Lorentzian with

Gaussian which produces a more complicated Voigt profile. Otherwise, the Jackson

kernel is preferred for faster convergence.

2.1.3 The stochastic trace

One final component of KPM is a stochastic estimator of the trace of operator products.

For generic matrices of rank n, the best matrix-matrix multiplication takes O(n2.3) and

significant memory cost. Although better algorithms exist for sparse matrices like tight-

binding Hamiltonians, matrix multiplication can quickly spoil the sparsity and diminish
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the advantage of sparse algorithms when calculating Tn(H). For the lattice size we work

on, such computational cost is prohibitive even on modern computers.

To surmount the problem, computational physicists have been using the so-called

stochastic trace[63, 68] that is the complex analogy of Hutchinson’s estimator for real

positive definite matrices [69]. The idea is to use the expectation value of the operator on

a small set of NR random vectors, |ξri〉, to approximate the trace of the operator. Here

r is the index for the random vectors and i runs over a given basis of the Hamiltonian.

When the elements ξri are independent random variables such that the random vectors

satisfy normalization condition (〈ξr|ξr〉 = 1), then the trace of operator B̂ can be

estimated with estimator Θ, defined as

Θ =
1

NR

NR∑
r=1

〈ξr|B̂|ξr〉 (2.13)

The fluctuation of the estimator is

(δΘ)2 =
1

R
(Tr(B2) + (〈|ξri|4〉 − 2)

D−1∑
j=0

B2
jj) (2.14)

Usually the trace of operator B̂ and the square of it, B̂2, are both O(n). Hence the

estimator’s relative fluctuation δΘ/Θ ∼ O(1/
√
n×NR). For a very large lattice size,

the choice of NR can therefore be small and does not add to asymptotic complexity.

Also, the calculation now can be formulated to only include matrix-vector multiplication

which takes only O(n) time for matrices as sparse as tight-binding Hamiltonians and

velocity operators. Thus, the time complexity of KPM for single-Chebyshev expansion

is O(n × NC × NR) ≈ O(n × NC), which is O(n) amortized for each moment. The

memory cost is asymptotically the same as the cost to store the matrix itself.

For conductivity calculation, if we save all intermediate matrix-vector product re-

sults (that takes O(n×NC ×NR, note that for conductivity NR is significantly larger

than that of DOS) the time complexity is O(n×NC×NR as for DOS; or O(n×N2
C×NR)

time and O(n ×NR) memory; or any combination in between, as long as the product

of time complexity and memory cost is constant. For the special case of longitudinal

DC conductivity at zero temperature, utilizing expansion in Eq. 2.7 helps keep memory

cost at O(n×NR) with time complexity O(n×NC×NR), if we only need the observable
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at very few Fermi levels. These are the best computational efficiency we can achieve

for DOS and conductivity calculation.

The choice of random vector is not of great importance, but choosing complex

ξri that is Gaussian distributed achieves |ξri|4 = 2, providing a basis independence

estimator fluctuation

(δΘ)2 =
1

R
(Tr(B2)) (2.15)

Otherwise, we may also choose ξri = eiφri where φri ∈ [0, 2π) to minimize δΘ. How-

ever, recall that the operator B we consider are words of Tn(H) that we will calculate

iteratively and velocity operators. Choosing to minimize δΘ implicitly demands the

existence of a mutual basis for all moments in the calculation. It is usually only possi-

ble for DOS calculation as only a Hamiltonian is involved. In practice, any randomized

independent choice of ξri can be used.

2.2 Lanczos

Lanczos method [70] is an efficient iterative method to compute a few (nev) eigenvalue

and eigenvectors of a matrix. It allows a time complexity of Õ(n/
√
ε) and negligible

extra spatial-complexity. Here ε is the allowed error for the iterative method and Õ

means the asymptotic complexity is only approximate[71]. More prominently, being an

iterative method it is most efficient when the matrix is sparse – which is the case for

most Hamiltonian H we consider.

When we need eigenstates in the interior of the spectrum of H (usually near a given

Ef ), we can transform the Hamiltonian so that the desired eigenstates have the largest

magnitude. One universal approach is the shift-invert Lanczos method[72]. The first

step of shift-invert Lanczos transforms the eigenproblem

Hψn = λnψn (2.16)

into

(H − σI)−1Hψn =
λn

λn − σ
ψn (2.17)

where σ is the designated energy around which we look for eigenvalues. The extra
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cost of the shift-invert Lanczos compared to the bare Lanczos is the need to construct

(H − σI)−1.

Computing the inverse of a sparse matrix requires tremendous spatial and temporal

cost and breaks all the benefits of the sparsity of the matrix; however, here we only

need to express the action of the inverse matrix on vectors. Hence in most available

implementations or wrappers of Lanczos method [72, 73], the inverse of matrix achieved

through a Cholesky decomposition that takes O(n3/2) time, close to O(n2) memory and

results in only O(n log n) entries in the resulting factors[74], retaining the benefits of

sparsity in the iteration part of the calculation. Nevertheless, the Cholesky decompo-

sition step dominates the shift-invert Lanczos computation both in time and memory

and is hard to parallelize for sparse matrices. Such restrictions typically limit our cal-

culation capability to systems with ∼ 106 sites. The benefit of the shift-invert approach

is that the procedure has been well-developed in out-of-the-box packages. In addition,

it guarantees good convergence for almost any Hermitian matrices and always captures

the first nev eigenpairs.

An alternative approach is to convert the problem in Eq. 2.16 into

((H − σI)2 − γ)ψn = ((λn − σ)2 − γ)ψn (2.18)

where γ is a very large number. This method assumes exactly the same asymptotic

complexity as the bare Lanczos and requires no extra memory, allowing the calculation

on Hamiltonians with 107 sites or more and is much faster than shift-invert by orders of

magnitude. However, this method does not warrant capturing the first nev eigenvalues

near σ, especially in the presence of degeneracy (that happens a lot when we consider

systems with quasiperiodicity) or when the spectrum is very dense (when the system

has a finite density of states near σ)[46].

2.2.1 Wavefunction, IPR, and (generalized) multifractal analysis

Whenever a wave function |ψ〉 is calculated, we shall often look at the probability on any

basis |ψi|2 where i is some basis, usually real or momentum space. However, it is often

very difficult and subjective to directly learn from probability or wavefunction itself. In
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such a case, the conventional approach is to look for various summarizing quantities of

the wavefunctions (and of course, there are newer approaches using machine learning

to directly characterize wave functions, as we discuss later). The properties of the

probability distribution of an eigenstate can be characterized by inverse participation

ratio (IPR), or more generally, a multifractal analysis [75, 37].

We first define a “coarse grained” real-space wavefunction (ψb) with its resolution

controlled by a binning size b ≥ 1. The spatial region is divided into (L/b)×(L/b) = 1/λ

boxes. We assign a position vector ~Xj to indicate the position of the jth box. The

binned wavefunction is given by ψb(Xj) ≡
∑′

x ψ(x) where ψ is the original normalized

wavefunction, and
∑′

x runs over the positions inside the jth box. Then, we define the

real-space (generalized) inverse participation ratio (IPR) and multifractal exponent via

IR(E; q, λ) =
∑
Xj

|ψb(E,Xj)|2q ∝ (λ)τR(q) , (2.19)

where IR(E, q, λ) is the qth real-space IPR with a coarse graining ratio λ, E is the

energy of the wavefunction, and we use a subscript R to denote real space or K for

momentum space (and will be referring to real space if not specified). Note that the

sum in Eq. (5.7) is running over the positions of boxes (X′js) rather than the full lattice

points. The quantity τR(q) is the multifractal exponent associated with the qth IPR

in real space, and b = 1 is the finest resolution in the IPR measure. The exponent

τR(q) is extracted via varying values of b for b � L. To obtain τR(q) in the finite-size

system, we vary the binning size b for a given L. The exponent τR(q) is known to

be a self-averaging quantity in the studies of disordered free-fermion models [76]. In

addition, τR(q = 0) = −d = −2 (the trivial limit which corresponds to counting binning

boxes) and τR(q = 1) = 0 (normalization of the wavefunction) must hold for arbitrary

wavefunctions. If we set b = 1 and q = 2, we arrive at the second IPR for studying

spatial ergodicity/non-ergodicity in a wavefunction.

When determining phase transitions, we also define the multifractal exponent αq

which is employed for characterizing the localization properties – and q = 0 is chosen

for easy converging and clear distinction between insulating and metallic phases. The

α0 can be computed via numerical Legendre transformation of τ(q). Alternatively, a
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method by Chhabra and Jensen [77] is available to compute α0 is available through the

multifractal spectrum.

2.3 Machine learning

In several cases, calculating a phase diagram may need repetitive tasks that are difficult

to iron out a clear mathematically expressed observable. The machine learning method

can be helpful in such situations.

Machine learning is the overarching name for a class of methods where a non-

specialized model can be used to perform a specific task when supplied with an abun-

dance of data. The process of supplying data to the model is called “training”, after

which the model has “learned” to perform the tasks and can then be applied to new

data sets. Many machine learning techniques have been applied to various aspects of

physics (see [78, 79, 80] for some examples). One type of machine learning method,

dubbed deep-learning, has seen the most development in the past decade and attracted

attention in various fields.

Deep learning involves training neural network models inspired by the structure of

the neural systems. A neural network model consists of a massive number of nonlinear

functions and linear transformations, usually organized into several “layers,” to replicate

any task that distills information from raw data. Practically, such a combination can

be tuned to fit any mapping. Hence, as long as a concrete definition of the task to be

executed is available, we can use labeled data as an example to tune the neural network

until it replicates the task. Such a process is called “training,” and can be calculated

efficiently using modern computers.

Such a procedure makes exploring phase boundaries efficient and relatively objec-

tive. In this thesis, Chapter 6 includes works using Convolutional Neural Networks

(ConvNets) to classify wave function into localized or extended phases.
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2.4 Discussion

The algorithm mentioned in previous sections, the latest computational hardware (CPU,

GPU, and large memory devices), the infrastructure facilitating vastly parallel and dis-

tributed computation (OSG[81] is a great example), and the software making efficient

computation more accessible to non-computer-experts (Julia[73], Keras[82]) together

has made the exploration of the details of phase diagrams specific to thermodynamic

limit feasible.

The easiness can help us discover or understand phenomena that are not obvious

to intuition. For example, in Chapter 5 a scan in a two-parameter phase space lead

me to draw a connection between the chiral model of SOC with quasiperiodicity and

the higher-order topological insulators. In Chapter 6 the renormalization of topologi-

cal mass and the existence of eigenstates criticality both come to our attention when

plotting a scan of two-parameter phase space. The luxury of being able to code up in

an hour, and use a handful of days to densely scan a large area of the phase diagram

is the endowment of contemporary technology. Taking advantage of those state-of-the-

art computational tools, we will present lots of details beyond the analytical methods

and previous numerical efforts. Those results help us to extend the understanding

of topological phases transitions with random disorder and/or quasiperiodicity in the

thermodynamic limit.

2.5 Appendix: Additional details on the observables calculated using

the KPM method

Density of States

As mentioned earlier, the density of state (Eq. 2.1) can be calculated through KPM. A

few other observables closely related to DOS include the local density of states (LDOS)

and typical density of states (TDOS). Local density of states is defined as

ρi(Ef ) =

s∑
n

|〈n|i〉|2δ(Ef − En)

{
(2.20)
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where i is for some basis, which is usually chosen to be real or momentum space. The

arithmetic average of LDOS gives back the DOS in Eq. 2.1. If we take a geometric

average instead, we arrive at the typical density of states

ρtyp(Ef ) =
1

NH

s Ns∑
i

log ρi(Ef )

{
(2.21)

where i randomly samples Ns states from the total NH states. As is usual for geometric

mean, the weight of outliers is significantly suppressed and hence it reflects the typical

value of the distribution of ρi(Ef ). Being a typical measure, it usually suffices to

randomly sample Ns << N sites from the complete bases.

The DOS is directly measurable in condensed matter experiments through ARPES

[83], and the LDOS (and hence TDOS) can be measured through STM [84]. Once

DOS is known, many single-particle properties of the system can be calculated; and

it provides some information of many-body physics that the system potentially can

host. The TDOS provides information on transport, which helps determine localization-

delocalization when compared with DOS.

For different systems, we often consider some quantities derived from the DOS that

highlights the properties we are most interested in. For gapped phases, the size of energy

gap ∆ (or typical gap ∆typ) – the range of Ef where there is no DOS (or TDOS) is often

of great interest. The discrepancy between the energy gap and the typical gap can show

the range of spectrum with dense but localized states. The gap size can also be useful

for understanding the critical behavior near the gap-closing point, as scale invariance

connects gap size (∆) to length scale (ξ) by ∆ ∼ ξ−z. As length scale diverges at critical

point Wc, we have ∆ ∼ ξ−z ∼ |W −Wc|νz. This is conveniently applied in Chapter 6.

Another quantity derived from the DOS of interest is the derivative of ρ(E) near

E = 0. In 2D semimetals for example, the derivative is related to the Dirac velocity v

as ρ′(0) ∝ 1/v2. The Dirac cone velocity will be an important measure for magic-angle

transition in the dissertation. Also, the derivative itself can help locate quantum critical

points between semimetal and metallic phases or an avoided one. This will be discussed

in Chapter 7.

Likewise, the derivative ρ(0)′ can either be calculated by fitting either the Lanczos
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histogram or KPM curve. However, it can be conveniently calculated by analytically

differentiating the Chebyshev polynomials used in KPM, yielding a better accuracy. In

addition, depending on the chosen kernel in KPM, an expansion of the KPM broadening

can often produce a convenient expression of derivatives of ρ(E) involving Nc.

Transport properties

Transport properties are often important in studying metal-insulator transitions. We

mainly calculate transport based on linear response theory.

When the directions α and β are perpendicular, the formula gives Hall conductivity

σxy. Hall conductivity is quantized and serves as a good proxy for Chern number in

topological systems. On the other hand, for parallel α and β such as σxx, it calcu-

lates longitudinal conductivity which is a direct measure distinguishing insulating and

metallic phases.

Using the KPM method, assuming the availability of sufficient memory, the cal-

culation of DC conductivity has the same asymptotic complexity as DOS; and even

with limited memory, it is still significantly better than other methods to calculate con-

ductivity (like the transfer matrix method). Such an advantage allows us to calculate

conductivity for lattice models at very large system sizes.

The fluctuation in conductivity calculation

The situation is a bit more complicated for KPM when the computed quantity intrinsi-

cally hosts extreme long-tailed fluctuation. Naively, the fluctuation seems always small

relative to the desired value (if we apply central limit theorem naively) and vanishes

quickly by increasing lattice site number or increasing NR for many applications – which

is the source of efficiency of KPM. However, when calculating conductivity with a strong

need for accuracy (most prominently in Chapter 7), the fluctuation of stochastic trace

(and hence the fluctuation of KPM result) becomes important to discuss.

An important limitation of stochastic trace estimation in the context of KPM is often

overlooked. When the trace of the expanded operators becomes very small or even, the

assumption that backs the O(1/
√
n×NR) relative fluctuation breaks. To make things
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worth, when TrB vanishes, Tr(B2) usually do not vanish. Such a situation happens a

lot in the calculation of conductivity because the velocity operator is vx ∝ [x,H] and

any operator that can be written as commutator has zero traces. The terms in the form

of Tn(Ĥ)v̂Tm(Ĥ)v̂ for example are 0 when m− n is odd, and very small when m or n

is large. In the case of small trace, the fluctuation is only constraint by O(
√

1/NR), or

even O(
√
n/NR) if the trace does not scale with n. Consequently, NR >> n is needed

for stochastic trace estimation to act better than exact trace – however, an exact trace

can be calculated with NR = n. In such a case, the KPM expansion is still useful, but

stochastic trace is no longer as powerful.

Interestingly, however, the fluctuation itself can be taken as an observable when

calculating conductivity. Take Eq.(1) from [64],

σαβ(µ, T ) =
ie2~
NH

∫
dεf(ε)Tr

〈
vαδ(ε−H)vβ

dG+

dε
− vα

dG+

dε
vβδ(ε−H)

〉
(2.22)

Through the KPM expansion from Eq. 2.6, we have the KPM estimator for the random

vector |ψr〉

σ̃
(r)
αβ =

4e2~
πNH

4

∆E2

∫
dε

f(ε)

(1− ε2)2

∑
m,n

Γnm(ε)〈ψr|µ̂αβnm|ψr〉 (2.23)

where µ̂αβnm = v̂αTnHv̂βTmH is the operator product for each moment. As mentioned

earlier, KPM calculation takes the advantage of iterative calculation and hence |ψr〉 are

always the same for the entire set of m,n. Also, all the calculations outside of the trace

evaluation are linear. Thus, we can rewrite

σ̃
(r)
αβ =

〈
ψr

∣∣∣∣∣ 4e2~
πNH

4

∆E2

∫
dε

f(ε)

(1− ε2)2

∑
m,n

Γnm(ε)µ̂αβnm

∣∣∣∣∣ψr
〉

(2.24)

The σ̃
(r)
αβ is the estimated conductivity using each random vector; and the resulting

KPM estimation, the average of all single random vector estimators is

σ̃αβ =
1

R

R∑
r=1

〈
ψr

∣∣∣ˆ̃σαβ∣∣∣ψr〉 (2.25)

where

ˆ̃σαβ =
ie2~
NH

∫
dεf(ε)

[
vαδ(ε−H)vβ

dG+

dε
− vα

dG+

dε
vβδ(ε−H)

]
(2.26)

is the KPM estimator operator of σαβ. By Eq. 2.15, we know

1

R
Var[σ̃

(r)
αβ ] = (δσ̃αβ)2 =

1

R
Tr(ˆ̃σ2

αβ) (2.27)
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In another word, the fluctuation of the single random vector estimators equals to

the expectation of the square of conductivity. The square of conductivity, in turn, can

be understood as the (basis independent) conductivity fluctuation inside a lattice.

2.6 Appendix: Design of computational workflow

In general, the numerical computation we carry out can be separated into the following

stages:

1. Define model

2. Creating operators (Hamiltonian and velocity operator) for the different random

realizations

3. Calculate observable for each realization

4. Summarize the result

In order to efficiently utilize computational resources, there are two important con-

siderations.

Firstly, we need to separate the technical details in optimizing the computation from

the model define process where we think physics. In particular, the operator creation

step can be very inefficient if naively coded; but a fully optimized program takes too

much effort to compose and is hard to read. For this purpose, I developed a package

SuperLattice. jl that aims to minimize the intellectual load to code different models.

This part only involves the manipulation of the rules of creating operators (and does

not actually create), hence running in negligible computational resources.

The operator creation (step 2) and observable computation (step 3) are the com-

putationally intensive parts, that need tremendous replicates. For both of these two

steps and especially for operator creation, the initialization time is significantly longer

than the time for processing one set of operators. Moreover, they have very different

resource demands. Step 2 is memory demanding (often requires ∼ 100GB or more) and

not parallelizable inside a single sample; on the other hand, step 3 has a more elastic
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demand for memory but can be extremely time-consuming, while it significantly ben-

efits from GPU or multi-threading. Hence, it is beneficial to have dedicated processes

that perform steps 2 and3.

However, each calculation of step 3 depends on the output of step 2 as input. A

naive directed acyclic graph (DAG) organization of calculation would often leave either

the process for step 2 or step 3 waiting. The situation is even worse as each instance

of step 2 or 3 can vary up to 100 times in running time because of different parameter,

or different configurations of computers. To efficiently utilize available computational

resources, I implemented a bounded buffer utilizing the shared file system on clusters, or

over HTTP for distributed grids to optimize the loose producer-consumer problem[85].
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Chapter 3

The universality of magic-angle semimetals

3.1 Introduction

We start with a study of semimetals under quasiperiodic modulation that drives a quan-

tum phase transition. The motivation of this work comes at the intersection between the

theoretical interest of incommensurability physics and the experimental breakthrough

surrounding twisted bilayer graphenes.

From a purely theoretical side, quasiperiodicity provides a curious manifestation of

Anderson localization without randomness[86]. Such similarity inspired the study of

quasiperiodic modulation on cases where random disorder is expected to induce phase

transitions. In such cases, novel phase transitions arise that do not have a random-

disorder counterpart. For example, Weyl semimetal in 3D is driven by quasiperiodic

potential into a transition toward metallic phase well before the onset of Anderson

localization [87]. The ability of quasiperiodic modulation to generate eigenstate phase

transition that accompanies drastic change in spectrum invites plenty of intriguing

theoretical questions, among which is the universality: how general is such a transition?

Such a question resonated just in time with the experimental breakthroughs. In

the past decades, the engineering of band structures with non-trivial topological wave

functions has achieved success in creating and controlling quantum phases in a vari-

ety of systems such as doped semiconductors [88, 89, 90, 91], ultracold atoms [92, 93],

and metamaterials [94, 95]. In the last few years, the advance in twisted graphene

heterostructores [55, 96, 54, 97], as well as other two-dimensional van der Waals het-

erostructures in general (i.e. “twistronics”) further allowed new, strongly interacting,

solid state systems can now also be engineered with a rather weakly correlated two-

dimensional semimetal exemplified by graphene [98, 99, 100]. In these systems, as a
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consequence of the quenched kinetic energy, correlations dominate the physics and ex-

otic many-body states may form. This interpretation relies on the reduction of the

electronic velocity and large increase of the density of states (DOS) which was shown

in twisted bilayer graphene (TBG) theoretically [101, 2, 102, 103] and experimentally

[104, 105, 106] prior to the more recent groundbreaking discoveries in Refs. [55, 54, 96].

Understanding the essential single-particle ingredients necessary to build emulators of

TBG can help shed light on the strong coupling regime where consensus about the form

of an effective low-energy description remains elusive [107, 108, 109, 110, 111, 112, 113].

Despite of the lack of full understanding of the physics of magic-angle twisted bilayer

graphenes, the development of moirè pattern that spans a huge number of unitcells is

understood to take a central role in the magic of TBG.

The finite moirè pattern, as we explained earlier in Chapter 1, can be thought of as

a finite size approximation of quasiperiodicity. The quench of velocity is also exactly

what marks the semimetal to metal transition in the 3D case in [87]. Hence, we attempt

to draw a connection between the metallic phase theoretically found in quasiperiodic

semimetals and the magic-angle twisted bilayer graphene.

This universality is the main theme of this chapter. We studied a variety of models

of semimetal (i.e. have a node in the band structure) in different dimensions, with

an incommensurate modulation. We will call those “magic-angle semimetals” as they

generalize magic-angle TBG. A theory for twistronic emulators is developed by first

distilling the basic physical phenomena that create correlated flat bands out of two-

dimensional Dirac cones. Generically, quasiperiodicity that respects the symmetry pro-

tecting the Dirac nodes creates flat bands in nodal, semimetallic band structures in a

universal fashion near a previously unnoticed single particle quantum phase transition

(QPT)—what we call the “magic-angle” in analogy to TBG. At small angles in TBG,

a single scattering wavevector accounts for the majority of the band flattening [2, 3]

but misses any QPT. With quasiperiodicity, an infinite sequence of higher wavevectors

(i.e., Brillouin zone downfoldings) further flatten the bands and culminate into a QPT.

This band flattening occurs irrespective of the topology present, and in fact, many of

the models we study have topology distinct from TBG [108]. We demonstrate strong
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correlations by computing Wannier states within this series of bands; these lead to a

Hubbard model with a quenched kinetic energy and relative to this, the interaction

scale is increased dramatically. We therefore argue that the single particle quantum

critical state is unstable towards the inclusion of interactions, which form a correlated

insulator at half filling.

Crucially, our findings are independent of many of the system’s details and, there-

fore, demonstrate the existence of a wide multitude of engineered, strongly-coupled

quantum systems that we call magic-angle semimetals. To demonstrate this, we clas-

sify the family of these models with symmetry protected nodes (including chiral TBG

at moderate twist angles) as well as introduce and solve a series of models; most of

which can be straightforwardly realized with existing ultracold atom, trapped ion, and

metamaterial experimental setups. Thus, the universaility we highlight in this chapter

proposes a simple route to emulate the phenomena of magic-angle TBG in a wide vari-

ety of quantum many body systems [114, 100], including but not limited to cold-atomic,

trapped ion, and metamaterial systems. As a particular example, we discuss how to

observe this effect in an ultracold Fermi gas. We show that the magic-angle effect

can be observed at experimentally relevant time scales and temperatures in interacting

ultracold Fermi gases through measurements of wavepacket dynamics.

3.2 ‘Magic-angle semimetals’.

The whole class of magic-angle semimetal models are governed by Hamiltonians of the

form

Ĥ = T̂ + V̂ + Û (3.1)

containing single particle hopping T̂ , a quasiperiodic modulation V̂ (such as potential

scattering or interlayer tunneling), and inter-particle interactions Û . The kinetic term

T̂ has isolated nodal points in the Brillouin zone where the DOS vanishes in a power-law

fashion (i.e. semimetallic). The quasiperiodicity in V̂ is encoded in an angle originating

either from twisted bilayers or the projective construction of quasicrystals [115], and it

is characterized by an amplitude W and an incommensurate modulation Q (or twist
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Figure 3.1: Magic-angle transition. A quasiperiodic potential or tunneling generi-
cally drives an eigenstate quantum phase transition from a semimetal (SM) to metal
(M). a. For many models, the velocity at the Dirac node v decreases with the strength
of the potential W until it reaches v = 0 at the transition, Wc; this is an indication of
the flattening of the bands. In some cases an intermediate metallic phase (see inset)
separates a reentrant semimetal with a reversed helicity (depicted by the Dirac cones).
b, c We construct a phase diagram in terms of potential strength W (interlayer tunnel-
ing for cTBG) and quasiperiodic modulation Q (twist angle θ for cTBG) by computing
the density of states at zero energy ρ(0); analytical perturbative results [see Eq. (3.9),
Section 3.8.1 and [2, 3]] are represented by the green dashed lines. Cuts along the
dashed white lines are presented in Fig. 3.2c,d. Color bars represent ρ(0) and with
widths b: 5, and c: 1.25 and dark purple represents the value 0 on both. d. An infinite
number of semimetal minibands form as the transition is approached; each has higher
effective interaction than the last as we approach the transition. For 2D SOC, we con-
struct exponentially localized Wannier states on the first four minibands (see Fig. 3.4)
leading to a model with an effective, strongly renormalized Hubbard interaction Ueff/teff

in terms of the bare interaction U/t.
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angle θ).

Generalizing the physics of the first magic angle of TBG to magic-angle semimet-

als results in the phenomena summarized by Fig. 3.1. First, increasing W quenches

the kinetic energy, reducing the Dirac velocity v until it ultimately reaches zero at

the single-particle quantum critical point (where the DOS becomes nonanalytic). The

velocity vanishes in a universal manner characterized by critical exponents that are

distinct in each dimension. Second, the DOS and wave functions display a transition

from a ballistic semimetal to a metallic phase; this is a so-called ‘unfreezing’ transition

in momentum space, which represents a non-standard form of delocalization [37]. For a

subset of magic-angle semimetals [including Eqs. (3.2) and (3.3) below], the semimetal

reenters at a second transition W ′c with a reversed sign of the helicity at each Dirac

node [116]; for general Q (or θ), multiple semimetal-metal-semimetal transitions can

appear as W is tuned, see Figs. 3.1b, c. Third, the quenched kinetic energy implies a

divergence of the dimensionless interaction coupling constant, Fig. 3.1d, leading to ex-

otic many-body states. Importantly, these effects occur generically under the necessary

condition that the quasiperiodic modulation respects the symmetries which protect the

semimetallic touching points (as discussed in Section 3.8.4).

3.2.1 Effective models.

A variety of effective models illustrate our proposal. Among them, we especially focus

on two models: a 2D tight-binding Hamiltonian of “perfect” spin-orbit coupling (SOC)

on a square lattice and a lattice model of TBG at moderate twist angles (θ ≈ 9◦)

in the chiral limit (cTBG) that disallows interlayer tunneling between equivalent sub-

lattices [3] (we fix the bare lattice spacing to unity and ~ = 1). Nonetheless, our

main conclusions also apply to TBG beyond the chiral limit for similar twist angles.

(Here, we consider the chiral limit of TBG as it provides the clearest presentation of

magic-angle criticality but such a transition can also be shown to persist in the full

TBG model. This study will appear elsewhere.) The SOC model is given by a hopping



38

f

e

b d
W/t 

W= 0.14 t
W= 0 t

1

E/t0 1/2-1 -1/2

ρ(E)a

2
D

 S
O

C

c

11/2

1
2

1

10-4

10-3

10-2

10-1

1
ρ(0)

L=144
L=610

Q

4Q-3π

cT
B

G

0-1-2 1 E [eV]

W=0.6eV
W=0eV

ρ(E)

0.1

0.2

0 0.8 W[eV] 

1
2

1

10-2

10-1

ρ(0)

0.9

L=122
L=377

√3kθ
W = 0.8 eV

W = 0.35t

h

g

W = 0.876 eV

W = 0.54t

j

i

W = 0.9 eV

W = 0.8t

Figure 3.2: Eigenstate transition as manifested in the single particle spec-
trum. Panels a,b: DOS ρ(E) in units of (tL2)−1 averaged over 300 realizations of
phases φµ and random twisted boundary conditions. The gray shading represents the
number of states in the first miniband and matches the area of the mini Brillouin zones
around each Dirac point produced by the leading scattering vectors depicted in the
inset of a, b (we chose a rhombic representation of the Brillouin zone of TBG such
that k = k1G1 + k2G2 for reciprocal lattice vectors G1,2 of graphene). Panels c,
d: Cuts along the dashed white lines of the phase diagram in Fig. 3.1b,c, displaying
ρ(0) and IM (q = 2, L) [Eq. (3.10)]. These illustrate sequences of semimetallic and
metallic transitions concomitant with momentum space delocalization (see Fig. 3.3).
Panels e - j: The twist dispersions illustrate the difference between semimetallic phases
(e,f,i,j) and the metallic phase (g,h) as well as the remarkably reduced bandwidths
(note the reduced scale). The 2D SOC (cTBG) data were obtained for Q = 2πFn−2/Fn
(θ = 2 arcsin(

√
3Fn−5/[2Fn])) at L = 144 (L = 377) and KPM expansion order

NC = 212 (NC = 213) in the calculation of the DOS while L = 233 in panels e -
j.

T̂SOC = t/2
∑

~r,µ(ic†~rσµc~r+µ̂ + h.c.) and a quasiperiodic potential

V̂SOC = W
∑

~r,µ=x,y

cos(Qrµ + φµ)c†~rc~r, (3.2)

where the σµ are Pauli matrices, cr are two-component annihilation operators, t is the

hopping strength, and φµ is the offset of the origin. The lattice model that captures

the low-energy theory of cTBG at incommensurate twist angles contains T̂cTBG that

describes nearest neighbor hopping (amplitude t = 2.8 eV) on the honeycomb lattice.

The interlayer tunneling in the chiral limit is given by

V̂cTBG = W
∑
r,µ

[
cos(qµ · r+rµ

2 + φµ)c†1Arµc2Br−

6∑
n=1

(−1)n

3
√

3
sin(qµ · r+rµn

2 + φµ)c†1Arµnc2Br + (A↔ B)

]
+ h.c. (3.3)
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where clA/Br annihilates an electron on layer l, sublattice A/B, and position r. The

index µ = 1, 2, 3 labels nearest neighbors such that r1− r = (0, 1) [q1 = kθ(0,−1)] with

rµ − r [qµ] being 120◦ rotations of the previous vector. The positions rµn = rµ + an

where a1 = (
√

3/2, 3/2) and each subsequent an is a 60◦ rotation of the last (i.e. labeling

nearest neighbors on the triangular Bravais lattice). Last, |qµ| = kθ = 8π
3
√

3
sin(θ/2)

encodes the twist angle, and
∑

µ φµ = 0 to satisfy C6 symmetry. Typically the offsets

φµ in either model are averaged over. The kinetic part T̂SOC (T̂cTBG) has a momentum-

space dispersion with four (two) Dirac nodes and a velocity v0 = t (v0 = 3t/2), see

Fig. 3.2a (3.2b) inset. Returning to Eq. (3.2), we see that Q replaces the role of the

twist angle in Eq. (3.3); unless otherwise stated, we highlight incommensurate effects

by taking Q = 2π/ϕ2 (θ = 2 arcsin(
√

3/2ϕ5) ≈ 8.96◦) where ϕ is the golden ratio,

and in numerical simulations we employ rational approximants Qn ≡ 2πFn−2/Fn (kθ

is approximated using continued fractions) where the system size L = Fn is given

by the nth Fibonacci number [116]. Other values, in particular smaller π − Q and

θ, are discussed below. In the low-energy approximation this model is identical to the

continuum model studied in Ref. [3] where exact flatbands are uncovered and explained;

this makes this model ideal to study incommensurate effects on the lattice.

In addition to Eqs. (3.2) and (3.3) we have studied a multitude of other d-dimensional

models in an incommensurate potential, including the π-flux model, the honeycomb

model in 2D, a 3D variant of Eq. (3.2) (studied previously in Ref. [116]), and a 1D long

range hopping model.

The Hamiltonian for the π-flux model has the same potential term in 2D. The

hopping term is modified as follows

T̂π = −t
∑

~r,µ=x,y

[c†~re
iAµ(~r)c~r+µ̂ + h.c.], (3.4)

where we choose the gauge with Ax(~r) = π/2 for all sites ~r on the square lattice, and

Ay(~r) = −(−1)rxπ/2. For the chosen gauge, periodic boundary conditions require the

lattice size in x direction to be even.
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The spinless honeycomb (HC) lattice model is given by a Hamiltonian of the form

T̂HC = −t
∑
~rA,i

[c†A(~rA)cB(~rA + ~di) + h.c.], (3.5)

V̂HC = W
∑
~r,δµ

cos(Q~r · δµ + φµ)c†~rc~r. (3.6)

The sum over ~rA is over one of the two sub-lattices, while ~r is over all points. The index

i labels the three nearest neighbors of ~rA, and ~di is the vector from ~rA to its nearest

neighbor i. The vectors δµ are a choice of each particular model and for numerics we

choose δ1 = ~d1 = (2/3)x̂ and δ2 = ~d2 = −(1/3)x̂+ (1/
√

3)ŷ.

The kinetic part of the Hamiltonian for the one dimensional model with power law

dispersion [24] E = −t sign(cos k)| cos k|σ is given in momentum space as mentioned in

Chapter 1:

T̂1D = −t
∑
k

sgn[cos(k)]| cos(k)|σc†kck.

We assume σ < 1, this expression can be readily Fourier transformed to a tight binding

model with long range hopping (LRH). This yields a hopping amplitude

tij ∼ −2t[1− (−1)|i−j|] sin[π(|i− j| − σ)/2]Γ(1 + σ)|i− j|−(1+σ) (3.7)

for |i− j| � 1 and Γ(x) is the Gamma function. The potential is

V̂1D = W
∑
r

cos(Qr + φ)c†rcr. (3.8)

Note that in this 1D case, v is not a velocity .

Each of these models generates flat bands and magic-angle physics similar to TBG.

Importantly, these semimetallic 2D Dirac points have been realized in cold atomic setups

using either a honeycomb optical lattice [117, 118] or artificial gauge fields [119, 120,

121], whereas the 1D model we consider can be realized using trapped ions [122]. The

3D variant of Eq. (3.2) is theoretically possible to implement [123, 124, 125], but has not

been experimentally realized yet. In each of these experimental setups, quasiperiodic

potentials can then be realized, e.g. by additional lasers [51], programmable potentials

[52], or a digital mirror device [126]. Alternative emulators of Dirac semimetals can

also be realized in metamaterials, e.g. in topolectrical circuits [94] or in arrays of elec-

tromagnetic microwave resonators [53]. Quasiperiodicity can then be encoded through

the spatial modulation of the electrical circuit elements.
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3.3 Single-particle spectrum and velocity renormalization.

We first discuss the spectral characteristics of magic-angle semimetals probed through

the DOS, defined as ρ(E) = J1/NH
∑

i δ(E − Ei)K where Ei is the ith eigenenergy

and NH is the size of the single particle Hilbert space. The double-bracket J...K repre-

sents average across all samples when relevant. At weak quasiperiodic modulation the

semimetal is stable, i.e. ρ(E) vanishes at zero energy with the same power law as in the

limit of W = 0, while hard spectral gaps and van Hove singularities develop at finite

energy. For Weyl and Dirac Hamiltonians the low-|E| DOS obeys ρ(E) ∼ v−d|E|d−1,

and as W increases, the (d−1)st derivative of the DOS [ρ(d−1)(0) ∝ 1/vd] increases, see

Fig. 3.2a, b for the model in Eqs. (3.2) and (3.3), respectively. These weak coupling

features may be understood at the level of perturbation theory.

We find that gaps appear at finite energy due to the hybridization around Dirac

nodes a distance Q (or
√

3kθ) away in momentum space, see the insets in Fig. 3.2a and

b, inset. For the SOC (cTBG) model, this process “carves out” a square (hexagon)

around each Dirac cone which contains 2[(π − Q)L/2π]2 (4[3
√

3kθL/4π]2) states. For

a given incommensurate Q or θ, there is an infinite sequence of relevant orders in

perturbation theory that produce quasi-resonances and open up gaps near zero energy,

forming minibands; this is in contrast to the commensurate case when this sequence

is finite. For example, for 2D SOC and Q = 2π/ϕ2, the infinite sequence is given

by half the even Fibonacci numbers F3n/2, which is the sequence 1, 4, 7, 72, 305, . . .

(see Section 3.8.3). In the incommensurate limit, near the magic-angle transition this

sequence of gaps produces a corresponding sequence of minibands, shown in Fig. 3.1d

for the second, third, and fourth. We explore the effect of this sequence of minibands

using superlattices in Sec. 3.5.

Similar to TBG, the renormalization of the velocity in the 2D SOC model can be ana-

lytically determined using fourth-order perturbation theory (details in Section 3.8.1) [2].

In terms of the dimensionless coupling constant α = W/[2t sin(Q)] for Eq. (3.2) this

yields

v(W )

v(0)
=

1− 2α2[1− cos(Q)] + α4 4−5 cos(Q)+6 cos(2Q)
cos(Q)

1 + 4α2 + α4{16 + [2 + 1/ cos(Q)]2}
. (3.9)
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The root of the numerator captures the first magic-angle transition line well when

Q > π/2, see Fig. 1b, independently of whether Q is commensurate or incommen-

surate. To describe additional magic-angles, as observed in our numerical data in

Fig. 3.1b,c, higher order perturbation theory is required. For reentrent semimetallic

phases, Eq. (3.9) indicates the reversal of the Berry phase, consistent with the inversion

of miniband states in 3D [116]. In each model we have considered for d > 1, we have

found that the perturbative expression for the velocity (summarized in Table 3.1) has

a magic-angle condition where the velocity vanishes.

As the magic-angle is approached, higher perturbative corrections become relevant.

To go beyond perturbation theory, we compute the DOS using the numerically exact

kernel polynomial method (KPM), on sufficiently large system sizes across a range of

models of various dimensions. At a critical α = αc ∼ 1 the DOS becomes non-analytic

and a metallic spectrum with finite ρ(0) develops for α > αc, see Fig. 3.2c,d (for cTBG

α = W
2t sin(3kθ/4)). In particular, for d > 1 and fixed Q or θ, ρ(E) ∼ |W −Wc|−β|E|d−1

implying the velocity v(W ) ∼ |W −Wc|β/d. Surprisingly, we find β ≈ 2 in each model

investigated above 1D [116], indicating that this exponent is universal. In 1D this

magic-angle effect also exists but is modified by the form of the dispersion such that

ρ(E) ∼ |W −Wc|−β|E|1/σ−1, and for the case σ = 1/3 we find β = 4.0± 0.8.

This velocity renormalization is the manifestation of the aforementioned reconfigu-

ration of the band structure and the appearence of a sequence of minibands. Of course,

broken translational symmetry precludes a standard bandstructure of dispersive Bloch

waves. In Fig. 3.2 e-j we therefore illustrate this reconfigured bandstructure, at a fixed

rational approximant, in the form of the twist dispersion (obtained by exact diago-

nalization in the presence of twisted boundary conditions) along high symmetry lines

for the models defined in Eqs. (3.2), (3.3). We performed the analogous analysis for

a multitude of models and plotted the velocity v(W ) near the semimetallic touching

points in Fig. 3.1a. The velocity v(W ) as determined by computing the twist dispersion

agrees with the calculation of ρ(d−1)(0).
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Figure 3.3: Eigenstate transition as manifested in momentum space wave
functions at the Dirac node energy E = 0. Panels a - f: Wave function charac-
teristics as described by the scaling exponent τM (q) averaged over 100 random phases
and twisted boundary conditions. For W < Wc and W > W ′c the wave functions are
ballistic [with a frozen τM (q)] while for Wc < W < W ′c they are critical in momen-
tum space [τM (q) is weakly non-linear in q]. Inset of a - f: corresponding momentum
space wavefunctions. The 2D SOC (cTBG) data were obtained for Q = 2πFn−2/Fn
(θ = 2 arcsin(

√
3Fn−5/[2Fn])) at L = 144 (L = 377).

3.4 Critical single-particle wave functions

Magic-angle semimetals are intimately linked to the physics of Anderson transitions in

momentum space; this is captured by the eigenfunctions near the Dirac node energy,

E = 0 [116].

We compute the low-energy wavefunctions using Lanczos for large L reaching up to

L = 377 and 610 in the cTBG and SOC models, respectively. Qualitatively, we find that

the structure of the wave functions in the semimetallic phase is stable and adiabatically

connected to the ballistic W = 0 limit, with isolated ballistic spikes in momentum space,

see Fig. 3.3a,b. In contrast, the form of the wave functions is completely different in

the metallic state, see Fig. 3.3c,d, as it appears delocalized both in momentum and real

space with non-trivial structure. Finally, in the reentrant semimetal, the wave functions

are again ballistic, see Fig. 3.3e,f. Crucially, in all models that we studied, the positions

of the transitions in the spectral properties of the DOS coincide with the transitions of

the wave functions characteristics within numerical resolution, see Figs. 3.2c,d.

In order to quantify the eigenstate QPTs of the wave functions, we generalize the
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multifractal wave function analysis [37] to momentum space. We define the inverse

participation ratio of the energy eigenstates in momentum space [116] ψE(~k) at a given

energy E

IM (q, L) =
∑
~k

|ψE(~k)|2q ∼ L−τM (q). (3.10)

We can now apply properties of the scaling exponent τM (q), typically used to ana-

lyze real space localization, to momentum space. It monotonically increases [obeying

τM (0) = −d and τM (1) = 0] and distinguishes delocalized wave functions [τM (q) =

d(q−1)] from exponentially localized peaks [τM (q > 0) = 0] and critical states with non-

linear “multifractal” τM (q). A variant of multifractal states, which are called “frozen,”

display τM (q > qc) = 0 for a given qc ∈ (0, 1]; their peak height is system size in-

dependent, as in standard localized states, but show multifractal correlations in their

tails [37]. We employ the standard binning technique (varying the binning size B) to

numerically extract the scaling exponents τM (q) in systems of a given finite size.

Focusing on q = 2, as shown in Fig. 3.2c, d for the SOC and cTBG models, respec-

tively, the momentum space wavefunction at the Dirac node energy delocalizes upon

crossing the magic-angle in the incommensurate limit. The momentum space delocaliza-

tion can not occur in the commensurate case; Bloch’s theorem ensures the existence of

states with well defined (i.e. well localized) crystalline momenta. For example, consider

Eq. (3.2) in the commensurate limit where Q/2π = a/b (a and b are coprime integers).

In this case, IM (q, L) is bounded from below by 1/bd(q−1) and hence τM (q) = 0 in the

thermodynamic limit L/b → ∞ preventing momentum space delocalization. In con-

trast, we here numerically access the incommensurate limit using finite size scaling of

rational approximants corresponding to L = b→∞.

The scaling analysis of IM (q, L) at the energy of the Dirac node E = 0, presented

in Figs. 3.3a-f for Eqs. (3.2) and (3.3), demonstrates three phases of distinct wave-

function structures in momentum space. A frozen spectrum τM (q) occurs in the two

semimetal regimes. In sharp contrast, the function τM (q) unfreezes in the metallic

phase with finite ρ(0). Surprisingly, throughout the metallic phase the spectra ap-

pear to be weakly multifractal in both momentum and real space, we find for the
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SOC model that τM (q) ≈ 2(q − 1) − 0.25q(q − 1) and for the cTBG model we obtain

τM (q) ≈ 2(q − 1) − 0.15q(q − 1) (in the region |q| < 1 and within the limits of our

numerical precision) in Fig. 3.3c,d, which are both non-linear in q. The observation of

similar behavior in all models that we investigated corroborates the interpretation of

the magic-angle phenomenon in the incommensurate limit as one of eigenstate quan-

tum criticality and generalizes the quasiperiodic 3D Weyl semimetal-to-diffusive metal

QPT [116] to arbitrary dimensions. In two dimensions we do not find any signatures

of diffusion (consistent with the marginality of two dimensions [36, 86]) and in one

dimension the semimetal transitions directly to an Anderson insulator. Lastly, when

d > 1 and W is substantially larger than the magic-angle transition, all investigated

models undergo Anderson localization in real space (e.g. at W > 1.75t in the case of

the 2D SOC model at Q = 2π/ϕ2).

3.5 Commensurate superlattices and Hubbard models.

So far, our analysis regarded non-interacting magic-angle semimetals in the strict incom-

mensurate limit. We now turn to the interparticle interaction term Û in the Hamiltonian

in Eq. (3.1) in commensurate superlattices. In order to illustrate how the appearance

of flatbands enhances correlations, we construct a series of emergent Hubbard models

near the magic-angle transition for Eq. (3.2) at φµ = π/2 supplemented by

ÛSOC = U
∑
r

nr,↑nr,↓, (3.11)

with nrσ = c†rσcrσ. In contrast to the previous discussion, we take commensurate ap-

proximations in order to build translationally invariant Hubbard models. In particular,

we still use the rational approximants Qn = 2πFn−2/Fn, only now we take the size of

the system L = mFn for some integer m, effectively taking the thermodynamic limit

in L before the limit of quasiperiodicity Qn → Q. This is reminiscent of moiré lattices

used to model TBG, and similarly, we can unambiguously define a supercell of size

` = Fn and isolate bands in k-space.

In particular, these bands are intimately related to the hierarchy of minibands de-

rived with perturbation theory: when ` = F3a+b for integers a and b = 1, 2, the gap for
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the central band opens at order F3a/2 in perturbation theory (for ` = F3a, the Dirac

nodes gap at order F3a/2 as discussed in Section 3.8.3). The series of superlattices

indicated by ` correspond to the sequence of gap openings in Section 3.3 — making the

notion precise — with (downfolded) Brillioun zones depicted in Fig. 3.4b. Near Wc,

hard gaps open and the minibands form as illustrated in Fig. 3.4a for ` = 13, 55, 233 (re-

spectively, the 2nd, 3rd, and 4th minibands). We conjecture that all of these minibands

(as ` → ∞) achieve gaps near Wc as evidenced by Fig. 4a,c in the incommensurate

limit, indicating something akin to the singular continuous spectrum of the Aubry-

André model at criticality [127]. Furthermore, the central band becomes flatter, as

indicated by the reduction in bandwidth seen in Fig. 3.4c which we track until the

dispersion loses its semimetallic character.

We exploit this miniband formation and the existence of hard gaps to build symmet-

ric Wannier functions in the semimetallic regime, see Fig. 3.4d. To build the Hubbard

models, we perform approximate joint diagonalization on the position operators (x̂µ)

projected (with projection operator P ) onto a given band X̂MB
µ ≡ Px̂µP in order to

determine the Wannier states [128]. We have checked that not only are the computed

Wannier states exponentially localized to numerical precision (Fig. 3.4d, inset), but

that they are also symmetric. Therefore, the minibands formed from the SOC model

and pictured in Fig. 3.4 are not topological [129], fragile [130, 131] or otherwise.

As a clear example, when W = 0.5t and (`,m) = (13, 8), we see a clear band around

E = 0 in Fig. 3.4a, and we find Wannier centers in a well defined grid (Fig. 3.4d, main

panel) corresponding to exponentially localized Wannier states (Figs. 3.4d, inset). The

projected Hamiltonian has the approximate form of Eqs. (3.2) and (3.11) with a renor-

malized Ueff , teff and Weff = 0. With this approach, we can identify successive gaps

leading up to the metallic transition from either side along with dramatic enhance-

ments of interactions, which reach up to a massive Ueff/teff ∼ 4100U/t for the fourth

miniband with supercell ` = 377, as shown in Fig. 3.1d. This can also been shown ana-

lytically using a one step renormalization group calculation, which yields the divergence

Ueff/teff ∼ U(1/`)d−1Z2/v ∼ 1/|W −Wc|, (
√
Z is the wave function renormalization),

as shown in detail in Section 3.8.2. Due to finite size, the apparent location of Wc can
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Figure 3.4: Supercell analysis and Wannier functions. The color coding matched
across a–c (and Fig. 3.1d) indicates the 2nd (orange), 3rd (maroon), and 4th (pur-
ple) minibands. a. The dispersion of Eq. (3.2) in the mini-Brillouin zone for super-
lattices (`,W ) = (13, 0.5), (`,W ) = (55, 0.5244), (`,W ) = (233, 0.5244) (from top to
bottom); this illustrates successive emergence of minibands (from top-to-bottom) as
a consequence of consecutive downfoldings of the Brillouin zone. b. The correspond-
ing mini-Brillouin zones (logarithmic scale). c. The dramatic reduction in bandwidth
near the critical point for each miniband. d. For (`,W ) = (13, 0.5) and L = 104,
computed Wannier function ψ(x, y) that is sitting upon the local density of states
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n | 〈r|En〉 |2 (shown as a density plot) for eigenstates of the (orange) band

|En〉, on a 104×104 lattice. (Inset). The exponential localization of the Wannier state.
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artificially shift, therefore in Fig. 3.1d we use Wc = W̃c
sinQ

sinQn
where W̃c is the transition

point when n→∞.

Away from E = 0, nearly flat (semimetallic) bands can form well before the magic-

angle transition with similarly large Ueff/teff , see Fig. 3.4a. In very close proximity to

the transition, multi-orbital Hubbard models appear.

3.6 Experimental cold atomic realization

All sufficient ingredients for emulating magic-angle phenomenon are available in ultra-

cold atomic gas and metamaterial [132, 53] experiments. In particular for ultra-cold

atomic gases, to probe fermionic strong correlations, the atomic species 40K and 6Li

are prime candidates; we estimate that the underlying lattice can be relatively shallow

(around 8 lattice recoil energies), and need temperatures relative to the Fermi temper-

ature (of the entire gas) T/TF ≈ 0.25 to ensure fermion population fills but does not

exceed the first miniband. To see large correlations, trap sizes should accommodate at

least roughly 30×30 optical lattice sites. In addition to any spectroscopic measurements

that probe the density of states (e.g. radiofrequency spectroscopy [133]), we propose

that the analysis of wavepacket dynamics is an indicator of magic-angle physics. In

the absence of interactions, we numerically predict a non-monotonic spreading of the

wave function for increasing W in the regime with multiple magic angles. We have also

studied the interacting model in the hydrodynamic regime by using a generalization of

the Boltzmann kinetic equation [134] . Its solution confirms the drastic decrease of the

expansion velocity and a substantial enhancement of diffusive dynamics near the magic

angle, see Fig. 3.5. The observation of these effects is possible within experimentally

realistic observation time of 50t−1 (∼10–100 ms). Moreover, our work demonstrates

an experimental protocol for realizing strong correlations by first cooling the gas to

quantum degeneracy and then applying a quasiperiodic potential to create flat bands

without the need to cool the system in a Mott insulator phase or load the atoms into

a flat band.
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Figure 3.5: Boltzmann wave packet spreading. Spreading of the mean square ra-
dius 〈r2〉 =

∑
r r2ρ(r) of the particle density ρ(r) as a function of time in units of the

inverse hopping rate 1/t (panel a: α < αc, panel b: α > αc). Here, we consider the in-
teracting 2D SOC model, Eqs. (3.2) and (3.11), and we employ Eq. (3.9) to incorporate
the magic angle effect (occuring at αc ≈ 0.53 in this approximation) into a semianalyt-
ical hydrodynamic treatment. The initial steady state at finite temperature is defined

by a particle [energy] density ρ(r) = e−r
2/[2ξ2]/ξ2 [ρE(r) = v0

(
1 + 3e−r

2/ξ2
)
/ξ3], with

v0 ≡ v(α = 0) is the bare velocity and we chose ξ = 4 for the initial spread of the den-
sity profile. The hydrodynamic equations were numerically solved in the presence of an
onsite repulsion U(α = 0) = 0.025t and Umklapp scattering rate 1/τ(α = 0) = 0.0075t
.

3.7 Discussion

In summary, we introduced a class of magic-angle semimetals and demonstrated the

general appearance of a single-particle quantum phase transition in the incommensu-

rate limit at which, simultaneously, (i) the kinetic energy vanishes universally, (ii) a

non-zero density of states appears at zero energy, and (iii) the wave functions display

delocalization and multifractality in momentum space. In the presence of interactions

we demonstrated that this eigenstate criticality leads to a strongly correlated Hubbard

model by computing Wannier states on a superlattice. Lastly, we presented a detailed

discussion of an experimental realization in cold atomic quantum emulators.

Regarding experimentally realized twisted graphene heterostructures at much smaller

twist angles than we have considered here (θ ≈ 1.1◦), it has not been obvious whether

incommensuration is an important ingredient [135]. Quasiperiodic effects rely upon

weakly detuned processes at which the total transferred momentum wraps the Bril-

louin zone. In contrast, the momentum transfer induced by scattering off a small
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angle superstructure is minute. Therefore—it is often concluded—both effects of in-

commensurability and intervalley scattering are negligible as processes in higher order

perturbation theory. As our numerics demonstrate, this results in the suppression of

the width of the metallic sliver in Fig. 3.1b, c that scales like W ′c −Wc ∼ θ3, making

observing such a metallic phase exceedingly difficult at small twist angles. Nonetheless,

we expect Anderson delocalization in momentum space even at small twist angles. This

is because this physics is dominated by rare resonances (as manifested in the locator

expansion [136]) and controlled by α, while perturbative processes are parameterized by

W/t and are therefore small. Furthermore, the contiguous phase boundary in Fig. 3.1b,

c may imply that the physics of small angles directly connects to large, incommensurate

twists [137, 138, 139]. However, within present day numerics, we cannot exclude that

this boundary of eigenstate phase transitions terminates at a finite, small angle, which

would imply the existence of a critical Anderson delocalization end point in Fig. 3.1b,c.

The coexistence of finite DOS with other features of this phase at larger angles sug-

gests that the phase extends to θ → 0 (Q → π), but an end-point is appealing as it

would establish a theoretical paradigm of quasiperiodic Anderson tricriticality. Any

rational approximant or commensurate angle truncates the infinite sequence of reso-

nances and minibands which leads to a rounding of the QPT (akin to finite size effects

in usual transitions) and the absence of momentum space delocalization. The amplified

interactions due to flat bands and an enhanced DOS occur for both incommensurate

and commensurate cases as Fig. 3.1d demonstrates. This enhancement coupled with

eigenstate quantum criticality in the incommensurate limit characterizes magic-angle

semimetals, including twisted bilayer graphene at moderate twist angles.

3.8 Appendix: Details of the Analytical Results

Here we elaborate on several results on the models we study using analytical meth-

ods. The perturbation calculation qualitatively shows the renormalization of velocity

that tells the existence of magic-angle transition. Renormalization interaction on the

2D SOC model exemplifies the relevance between the numerical single-particle result
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to the question of interaction. The number theory result drops hints on the non-

perturbative nature of the physics of incommensurability. Finally, we discuss the sta-

bility of semimetal at weak coupling to roughly scope the generality of the magic-angle

transition. Most of the analytical arguments here hold only far away from the crit-

ical quasiperiodicity; but provide a qualitative understanding and pilots our detailed

numerical study at the transition.

3.8.1 Perturbative calculation of velocity renormalization.

We present the perturbative calculation of velocity renormalization using the language

of retarded Green’s functions,

Ĝ0(E) = [E + iη − T̂ ]−1, Ĝ(E) = [E + iη − T̂ − V̂ ]−1, (3.12a)

and are interested in diagonal components G~k,~k′ with ~k = ~k′, only (e.g. for the DOS we

only need ρ(E) = −(1/π)Im
∑

~k
TrG~k,~k(E)). We define the self energy at momentum ~k

by all diagrams which are G0(~k,E) irreducible and write

G~k,~k(E) = [G0(~k,E)−1 − Σ(~k,E)]−1. (3.12b)

We expand about a given node ~Ki of the dispersion T ( ~Ki+~p) ' T ( ~Ki)+h( ~Ki)(~p) to

leading order in p� 1/a. For models which satisfy the symmetry constraints exposed

in the main text (see also Section 3.8.4) Σ( ~Ki + ~p,E) = EΣE +h(~p)Σp to leading order

in E, p. Henceforth, we choose the energy offset such that T ( ~K) = 0. Then,

G~k,~k(E) = Z[E − (v/v0)h(~k)]−1 with Z−1 = 1− ΣE and v/v0 = (1 + Σp)Z. (3.13)

In this section we evaluate the self energy to leading and, for some models, next to

leading order in powers of W and summarize them in Table 3.1. A discussion of infinite

order perturbation theory can be found at the end of this note.

To illustrate the procedure we analyze the model of 2D perfect SOC for which

the states at small ~k with Hamiltonian H(~k) = t(sin(kx)σx + sin(ky)σy) ' t~k · σ are
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Figure 3.6: Graphic demonstration that the model of perfect SOC in 2D is a direct sum
of two decoupled π flux models. The model of perfect SOC, on the left of the equality
sign, is characterized by direction dependent hopping matrices. Using blue squares
and red circles to depict the bipartition, hopping only connects |�, ↑〉 with |◦, ↓〉, and
separately |�, ↓〉 with |◦, ↑〉. The hopping in y -direction is imaginary and directed
(this results from the asymmetry of σy) and, in conclusion, leads to the inclusion of
a flux π per plaquette. The onsite potential does note violate the described block-
diagonalization.

connected to the states at ~k±Qêx,y and therefore to leading order perturbation theory

Σ(2)(~k) = (W/2)2
∑
±

1

E −H(~k ±Qêx)
+ x↔ y ' −E4α2 − t~k · σ(2α2(1− cos(Q))

(3.14)

For the next to leading order, all states at Manhatten distance 2Q from the origin are

integrated out and we obtain

Σ(4)(~k) ' −E
16

(
W

t

)4 (
4 cos(Q) + 10 cos(2Q) + 11) csc4(Q) sec2(Q)

)
+

(
W

t

)4 t~k · σ
16

(4− 5 cos(Q) + 6 cos(2Q)) csc(Q)4 sec(Q) (3.15)

It turns out that the results obtained for the 2D model of perfect SOC directly apply

to the π flux model. This is best graphically shown, see Figure 3.6: the model of 2D

perfect SOC is a direct sum of two π-flux models which in the absence of interactions

completely decouple. By consequence, all single particle results obtained for model of

2D perfect SOC also hold for the π-flux model.
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3.8.2 Renormalization of interactions

We present an analytical estimate of the renormalization of the interaction upon projec-

tion onto certain minibands and approaching the transition for the model of 2D SOC.

Let the bare (W = 0) model in the continuum be written as ( ~Ki are various Dirac/Weyl

nodes, with linear ~k · ~p Hamiltonian h( ~Ki)(~p))

S =
∑
~Ki

∫ 1/a

(dp)

∫
dτ c̄( ~Ki)(~p)[∂τ + h( ~Ki)(~p)]c( ~Ki)(~p)

+
∑
~K1,2,3,4

∫ 1/a 4∏
j=1

(dpj)

∫
dτ(2π)dg{ ~Ki}δ ~K1+ ~K3− ~K2− ~K4

δ(~p1 + ~p3 − ~p2 − ~p4)×

× [c̄( ~K1)(~p1)c( ~K2)(~p2)][c̄( ~K3)(~p3)c( ~K4)(~p4)]

|~p1 − ~p2|σ
. (3.16)

The spectrum of h( ~Ki)(~p) has the form v0|~p| with bare value v0 ∼ ta and, for contact

interaction (σ = 0), g{ ~Ki} ∼ Uad, while for Coulomb interaction (σ = d − 1) g{ ~Ki} ∝

δ ~K1, ~K2
. Perturbation theory indicates a dimensionless parameter

g{ ~Ki}

v0/ad−1
∼ U

t
for σ = 0 (contact interaction), (3.17)

α =
g{ ~Ki}

v0
for σ = d− 1 (Coulomb interaction). (3.18)

We now consider the effect of integrating out high energy states and projecting onto a

miniband with effective Brillouin zone size 1/a′. This leads to

S =
∑
~Ki

∫ 1/a′

(dp′)

∫
dτ c̄

( ~Ki)
< (~p′)Z−1[∂τ +

v

v0
h( ~Ki)(~p′)]c

( ~Ki)
< (~p′)

+
∑
~K1,2,3,4

∫ 1/a′ 4∏
j=1

(dp′j)

∫
dτ(2π)dg{ ~Ki}δ ~K1+ ~K3− ~K2− ~K4

δ(~p′1 + ~p′3 − ~p′2 − ~p′4)×

× [c̄
( ~K1)
< (~p′1)c

( ~K2)
< (~p′2)][c̄

( ~K3)
< (~p′3)c

( ~K4)
< (~p′4)]

|~p′1 − ~p′2|σ
. (3.19)

The renormalizations Z and v/v0 originate from scalar and matrix components of the

self-energy and were calculated perturbatively above. We now first rescale p′ = a
a′ p

with p ∈ (0, 1/a) and then define c
( ~K)
< (a~p/a′)Z−1/2(a/a′)d/2 = c( ~K)(~p). Under this

rescaling, we restore the form of Eq. (3.16), including its UV cut-off 1/a, but obtain

the rescaling v0 → va/a′, g → g(a/a′)d−σZ2. From this we obtain the final formula for
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W/t
Figure 3.7: Divergence of contact interaction according to Eq. (3.21) for the model of
2D SOC. Here, the fourth order perturbative self energy was employed and we used
γ = 1/5.

renormalization of the dimensionless coupling constant

Ueff/teff

U/t
= γ

( a
a′

)d−1 Z2

v/v0
(contact interaction), (3.20)

αren.

αbare
=

Z2

v/v0
(Coulomb). (3.21)

Here, γ is an unknown constant of order unity which depends on details of the cut-off

of the linearized theory. Importantly, the integration reduces the bare contact interac-

tion by a factor (a/a′)d−1, except in the closest vicinity of the magic angle where the

vanishing velocity overtakes the reduction, see Figure 3.7.

3.8.3 Relationship to number theory.

In addition, we show the relationship of the sequence of relevant perturbative processes

with certain well known sequences from number theory. Starting from the scattering

process of order l1 = 1 we want to determine the sequence {ln}∞n=1 for which the lnth

order momentum transfer carves out smaller minibands than the ln−1th order. In for-

mulae, this implies for the 2D model of perfect SOC of the main text and arbitrary

incommensuration wavevector Q the condition sin2(lnQ) < sin2(ln−1Q). We now con-

centrate on the specific case Q = 2π/φ2 = π(3 −
√

5). For this situation, the defining

condition on the sequence of ln is sin2(πln
√

5) < sin2(πln−1

√
5). The sequence {ln}∞n=1

for which ln
√

5 successively approaches integers is the sequence of denominators of the

leading rational approximants, i.e. the sequence of denominators of continued fraction

convergents of
√

5 (OEIS ID A001076). This sequence is also half the value of the even

fibonaccis ln = F3n/2.

This sequence also connects to the formation of minibands as found with the finite
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size Qn = 2πFn−2/Fn. Intuitively, when Fn is even (n is a multiple of 3), then at order

Fn/2, the Dirac nodes gap out, but then for Fn+1 and Fn+2 this perturbative gap must

have moved to small but finite energy, forming the miniband. This motivates using

Q3n+1 and Q3n+2 to study the effective model of successive minibands.

In fact, following theorem can be proven that connects this sequence to the order of

perturbation theory where a gap is opened:

Theorem. Let n = 3m+r for r = 0, 1, 2, then the integer gn = F3m/2 is the smallest

integer such that gnFn−2 ≡ Fn+δn
2 mod Fn with integer |δ3m| ≤ 1. In particular,

δ3m = 0, δ3m+1 = (−1)m, and δ3m+2 = (−1)m+1.

Therefore, the order of perturbation theory that opens up a gap nearest to E = 0

for Q = 2πF3m+r−2/F3m+r for r = 0, 1, 2 is F3m/2.

A crucial consequence of this analysis is that when m → ∞ (which is the limit for

Q being incommensurate), the complete formation of all gaps that approaches E = 0

requires infinite orders of perturbation theory. Hence the full effect of all the gap

opening is only seen at a quantum criticality where all orders of perturbation theory

become important. That is our magic-angle transition.

3.8.4 Generality of the magic-angle phenomenon - symmetry protec-

tion.

In this section we discuss the generality of our findings by highlighting the general

condition for the appearance of the magic angle phenomenon, namely the stability of

the semimetal at weak coupling.

We concentrate on nodes in the kinetic term T̂ which are protected by a symmetry

group GT . For example, this analysis applies to each model we have considered in

2D as well as Dirac semimetals in 3D. Note that in general GT is a subgroup of all

symmetry operations of the kinetic term. Let UST be the representation of ST ∈ GT in

the (e.g. spinorial) Hilbert space, then the symmetry of the Hamiltonian implies T (~k) =

U †ST T (ST~k)UST . We concentrate on high symmetry points where ST ~K = ~K, ∀ST ∈

GT . Then, a non-trivial representation implies degeneracy in view of [T ( ~K), UST ] =

0 ∀ST ∈ GT (formally, two non-commuting UST are needed). We further assume a
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group GV of spatial (point group) symmetries of the quasiperiodic background V̂ , such

that

V (~x) =
∑

SV ∈GV

ŨSVWŨ †SV e
iQ~x·SV ê0 + h.c.. (3.22)

Here now, ŨSV is the representation of SV ∈ GV and ê0 is an arbitrary vector in Rd.

In this section, we consider Eq. (3.12) formally to all orders in perturbation the-

ory. The semimetallic behavior persists if a) Σ(~k) is hermitian and b) T (~k) + Σ(~k) has

the same symmetry protected touching point as T (~k), i.e. if Σ(~k) respects the sym-

metries ensuring the semimetal. In view of the incommensuration, perfect resonance

is formally absent to any order in perturbation theory and therefore, the decay rate

1/τ ∼
∑

~k′ |T~k,~k′ |
2δ(E~k − E~k′) (more generally: the anti-hermitian part of the self-

energy) vanishes (T~k,~k′ denotes the T-matrix). Thus a) is fulfilled and 1/τ 6= 0 signals

the breakdown of perturbation theory (spontaneous unitarity breaking). We can then

show to all orders in perturbation theory that the semimetal is stable provided GT is a

subgroup of GV .

We proceed to the proof of Σ(~k) = U †STΣ(ST~k)UST under the outlined assumptions.

To get a feeling, we first consider second order perturbation theory.

Σ(2)(~k) =
∑

SV ∈GV

ŨSVWŨ †SV [E+ − T (~k +QSV ê0)]−1ŨSVW
†Ũ †SV . (3.23)

We compare to

U †STΣ(2)(ST~k)UST =
∑

SV ∈GV

U †ST ŨSVWŨ †SV UST [E+ − U †ST T (ST~k +QSV ê0)UST ]−1

U †ST ŨSVWŨ †SV UST

=
∑

SV ∈GV

U †ST ŨSVWŨ †SV UST [E+ − T (~k +QS−1
T SV ê0)]−1

U †ST ŨSVW
†Ũ †SV UST (3.24)

This expression is invariant provided the action of ST onto GV is a bijection of GV

onto itself ∀ST ∈ GT , i.e. STSV ∈ GV ∀SV ∈ GV and STGV = GV as this allows

to uniquely relable the summation index. Taking SV = 1 implies that ST ∈ GV and

hence GT is a subgroup of GV . By consequence, the representation in the Hilbert space

fulfills ŨS−1
T SV

= U †ST ŨSV and Σ(2)(~k) is invariant under the symmetries protecting the
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semimetal. We now continue with the next order Σ(4), from there the generality of the

statement becomes apparent,

Σ(4)(~k) =
∑

SV ∈GV

∑
S′V ∈GV

S′V ê0 6=−SV ê0

ŨSVWŨ †SV [E+ − T (~k +QSV ê0)]−1

ŨS′VWŨ †
S′V

[E+ − T (~k +QSV ê0 +QS′V ê0)]−1

ŨS′VW
†Ũ †

S′V
[E+ − T (~k +QSV ê0)]−1ŨSVW

†Ũ †SV . (3.25)

The exclusion S′V ê0 + SV ê0 6= 0 ensures the irreducibility with respect to G~k. Again

we can apply an ST transformation and exploit the two conditions exposed above to

relabel both SV and S′V . This implies the invariance of Σ(4). This procedure can be

used to arbitrary order in perturbation theory.
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Chapter 4

Disordered magic-angle semimetals

4.1 Introduction

The previous chapter considered adding quasiperiodicity to lattice models. Hence, in

order for the study to have any realistic significance, it is natural to study the effect of

disorder – which part of the “magic-angle” physics we discuss is most robust against

disorder?

Meanwhile, the same question is imperative in the research of twisted bilayer graphene.

Although the ever evolving experiments has produced increasingly clean samples, in-

homogeneity will never be gone. There can be random potential or magnetic disorder

(that is inevitable from sample preparation and the exposure to the environment), for

example. Any attempt to connect theory and experiment will need to answer the ques-

tion of whether the predicted phenomena can withstand disorder, and how the predicted

phenomena change as the system is less ideal.

In this chapter, we develop a theory for a special type of disorder that is native to

quasiperiodic systems – the fluctuation of the “period” of quasiperiodic modulation. In

the case of simple quasiperiodic potential, this correspond to the wave vector Q as we

discussed in Chapter 3. In the context of twisted bilayer graphenes, it is the disorder

of the local twist-angle fluctuations, which will be the main focus of this chapter.

In experimental samples of pristine twisted bilayer graphene, which are nominally

free of impurities and defects, the main source of disorder is believed to arise from the

unavoidable and uncontrollable non-uniformity of the twist angle across the sample.

Such type of disorder arise in research activity in the physics of twisted bilayer graphene.

To address this new physics of twist-angle disorder, we develop a real-space, microscopic
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model of twisted bilayer graphene where the angle enters as a free parameter. Once

we have a viable real-space model, we are able to study the effects of disorder on

twisted bilayer graphene at the single-particle level. Not only does twisting two sheets

of graphene create flat bands near the magic-angle (∼ 1-1.1◦), it also induces gaps that

separate the miniband, which has Van Hove singularities in the density of states [104,

2, 102], from the rest of the spectra as seen in Fig. 4.1. These miniband insulating gaps

arising from the single-particle band structure of the twisted system are simply the moiré

superlattice band gaps due to the tunneling between the two graphene bands in the

combined bilayer heterostructure. We are interested in how all of these single-particle,

superlattice, miniband features are affected or even destroyed due to randomness in the

twist angle. In particular, we focus on the size of single-particle energy gaps separating

the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized

Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the

energy gaps and minibandwidth are strongly affected by disorder while the renormalized

velocity remains virtually unchanged. In addition, following the universality argument

of Chapter 3, we also studied the much simpler model of 2D SOC (the 2D lattice model

with spin-orbit coupling) with quasiperiodic potential and find similar behavior.

This chapter is organized as follows: In Sec. 4.2 we discuss the experimental origin of

the twist angle disorder we focus on. In Sec. 4.3 we build an approximate lattice model

for twisted bilayer graphene and use it to introduce real-space disorder in the twist angle.

In Sec. 4.4 we discuss the results of the numerical calculations, and in Sec. 4.6, we discuss

our approximations and the implications of these results for ongoing experiments. In

addition to the more realistic models, in Section 4.5 we analyze a simpler model with

similar magic-angle phenomena using a deterministic quasiperiodic potential. Finally,

we conclude in Sec. 4.7 with a summary of our results. Throughout, we take the lattice

spacing between neighboring carbon atoms to be unity, which serves as our unit of

length.
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4.2 The disorders in graphene and twisted bilayer graphenes

The ability to isolate and characterize single sheets of graphene [142] has lead to a sig-

nificant amount of control over van der Waals heterostructures [143]. This spectacular

materials engineering feat has led not only to relatively clean, high mobility graphene

samples, but also to the ability to place two coupled sheets of graphene on top of each

other with a relative “twist” angle between them [104]. The introduction of the ‘twist

angle’ as a new experimental parameter to tune the electronic properties of ‘twisted’

van der Waals heterostructures has led to a new paradigm in condensed matter systems

where one can now study materials properties not only as a function of temperature,

carrier density, magnetic field, gate voltage, applied pressure or strain, etc., but also

as a function of the twist angle between the two layers controlling the electronic band

structure in a radical manner, which is a completely new tool in the laboratory.

While these bilayers are clean and relatively disorder free, the twist angle can vary

across samples, leading to a new source of disorder. Thus, even if the two starting

monolayers are completely clean (i.e. no impurities or defects), the very fact of creating

the twisted bilayer system introduces an inherent (and a new type of) disorder by virtue

of local fluctuations in the twist angle throughout the macroscopic sample. This ‘twist

angle disorder’, which has no analogy in usual condensed matter systems and has never

before been studied in the literature, is thought to be the main disorder controlling the

quality of the currently available twisted graphene systems.

In single-layer graphene, the most dominant effect of disorder near the Dirac point

has been attributed to charge disorder (arising from unintentional quenched random

charged impurities in the system) inducing “puddles” of unequal charge density that

locally dope the Dirac cones [144]. This issue has been circumvented by using an all van

der Waals device geometry, and the absence of any significant charge inhomogeneities in

such ultra-clean samples has enabled the observation of exotic many-body states [145]

akin to what has been seen in clean suspended graphene [146]. As a result, the current

graphene sample quality is rather remarkable and for most practical purposes, both

charge inhomogeneities as well as any extrinsic disorder due to vacancies or defects has
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been greatly suppressed, if not almost eliminated except perhaps for experiments using

very low (< 1010 cm−2) carrier densities.

With these capabilities, very clean samples of twisted bilayer graphene (TBG) near

the magic-angle (where the nominal band structure becomes completely flat suppressing

the Dirac velocity to zero) have recently been observed to develop insulating states at

integer filling fractions of the moiré miniband near the Dirac points [55, 97]. Upon

gating (i.e. doping) away from the insulating phases, nearby superconducting phases

have been observed [54, 97, 147]. To achieve an accurate choice (to within ∼ 0.1◦)

and rather small value of the twist angle (∼ 1◦), the “tear and stack” mechanical

approach places two sheets of graphene on top of each other with a great deal of

precision in the twist angle [148]. Only after such a mechanical procedure of creating

the twisted bilayer sample with a carefully chosen twist angle, the sample is transferred

to the cryostat for electrical measurements. To study the electronic properties as a

function of the twist angle, the whole procedure has to be repeated for a different sample

with a different twist angle. In practice however, this procedure does not produce a

single twist angle across the entire sample: Scanning tunneling microscopy has observed

different twist angles across separate regions of the sample [104, 105, 149, 150, 151,

152, 153]. Moreover, signatures of the nonuniformity of the twist angle have also been

observed in conductance measurements that have a strong dependence on where the

leads are placed on the device [97]. In addition, two different samples with nominally

identical twist angles typically manifest quite different electronic properties in transport

and STM measurements, again reflecting that some inherent variations in the twist

angle invariably exist in the system. Thus, in any given high-quality (i.e. low extrinsic

impurity and defect concentration) sample the main source of disorder comes in the

form of a varying twist angle across the sample. The nature of this variation is not

unique: some samples have hard domain walls separating regimes with different twist

angles, whereas some samples have a much smoother change in the twist across the

sample 1. Twist angle disorder is a radically new type of intrinsic disorder in condensed

matter systems whose study is, quite apart from its singular importance in determining

1Private communication with Eva Andrei
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Figure 4.1: The density of states ρ(E) as a function of energy E for the lattice model
of twisted bilayer graphene at a twist angle θ = 1.05◦, a linear system size L = 569, a
kernel polynomial method [4] expansion order NC = 217, and a weak breaking in the
interlayer tunneling between AA and AB sites (w0/w1 = 0.75, w1 = w where w0 (w1) is
the strength of AA and BB (AB and BA) tunneling), which captures lattice relaxation
effects [5, 6] and it opens a hard gap on both sides of the semimetal miniband. We
note that at small angles, a single parameter controls the physics: w/[2vFkD sin(θ/2)],
so lowering the angle is equivalent to increasing w1. Therefore, one can read the plots
of smaller w1 as at an angle larger than 1.05◦. This density of states has a number of
features relevant to the physics: Van Hove peaks, gaps, and the velocity (as determined
by the scaling of the density of states). Dark (light) blue lines give the calculated
density of states for finite (zero) values of the parameter w as shown in the inset of the
figure.

the twisted graphene bilayer properties, of fundamental conceptual significance.

We focus on various features of the low energy density of states and the miniband

structure to determine how the single-particle spectrum is modified as a result of ran-

domness in the twist angle. We demonstrate that disorder smooths the non-analyticities

in the density of states, fills in the band-gaps, broadens the minibandwidth, and smears

out the Van Hove peaks. We compare this with the size of the gap isolating the low-

energy miniband, the renormalized Dirac velocity, and the size of the minibandwidth.

Surprisingly, we find that the Dirac cone velocity is remarkably robust to twist disor-

der, whereas other miniband characteristics are systematically broadened. The essential

complete protection of the miniband Dirac velocity (at low energy, where the Dirac cone
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Figure 4.2: (a) A schematic of graphene and the notation we use for our model. The
A (B) sublattice is represented by the blue (orange) lattice sites. The unit cell for
the triangular lattice is shown by the dashed central hexagon. The lattice vectors are
a1 = (

√
3/2, 3/2) and a2 = (−

√
3/2, 3/2), and we further define a3 ≡ a2−a1, a4 ≡ −a1,

a5 ≡ −a2, as well as a6 ≡ −a3. (b) A course-grained view of the tunneling between
the layers calculated from T0 and T1 in Eq. (4.5) which defines the energy parameters
w0 and w1; the color represents whether AA, AB, or BA hopping is dominant based
on the chance for an electron on a site in layer 1 to hop onto sublattice A or B on
layer 2, given by PX(r) = |[T0(r)]X |2 + 6|[T1(r)]X |2. Note that C3 is broken and the
moiré unit cell is larger than in real TBG. Both of these effects are relatively small.
(c) Complementary to the real space picture, in momentum space the lattice Brillioun
zone is effectively downfolded by a factor of three from the moiré Brillioun zone after
unrotating the two graphene layers; this introduces small gaps in the band structure
at these points. (d) In our model, the effect of the twist is entirely contained within
interlayer coupling, so we model disorder by changing the continuous twist parameter
θ within different regions of space. In this common example, we break up the system
into four equal regions and pick a value of θj that are drawn from the box distribution
[(1−WR/2)θ, (1 +WR/2)θ] with θ = 1.05◦.

approximation holds) in the twisted bilayer graphene (TBG) against the twist-angle dis-

order is a rather unexpected finding of our nonperturbative calculations, particularly

since all other aspects of the miniband electronic structure are strongly affected by the

twist-angle randomness.

4.3 Model and Approach

The numerical study of twist-angle disorder is difficult with the current models available

in the literature. First, the usual continuum model is built as a hexagonal lattice in

momentum-space [154, 2] where disorder enters the Hamiltonian in a highly non-local

way. Second, current real-space models rely on both a uniform and commensurate

twist angle [135, 155]. To circumvent this problem, we build a new real space model

where the twist is built directly into the interlayer hopping in such a way that it can

be continuously tuned, and can vary spatially while the model remains local in real
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space. The model exactly reproduces the continuum model as written by Bistritzer and

MacDonald [2] near the K and K ′ Dirac points in the Brillouin zone. The version of this

model presented here preserves C2T symmetry (i.e. the combined operation of a 180◦

rotation and a time reversal operation) and hence preserves the Dirac nodes. Further,

it qualitatively preserves the spatial structure of AA and AB tunneling; however, it

explicitly breaks C3 symmetry. While there is no obstruction to building the model

with C3 symmetry (a version of which will appear in Chapter 3), real experiments

introduce strain which also explicitly breaks C3 [156], so we do not require this of our

real space model. So, in some sense, our disorder model incorporates both the twist-

angle disorder (in a controlled manner) and strain effects (in an uncontrolled manner

through the explicit breaking of C3 symmetry). The model (see Fig. 4.2) we primarily

focus on is a lattice model that is an approximation of twisted bilayer graphene which

captures the low energy limit of the continuum model [154, 2]. However, this particular

ultra-violet (UV) completion of the continuum model does not respect the underlying

C3 symmetry of the microscopic lattice. As a result, the velocity does not strictly vanish

at the magic angle but becomes very small due to the Dirac points not being pinned to

high-symmetry points in the Brillouin zone and acquires an angular dependence relative

to each Dirac point in momentum space. However, the band structure that results is

still qualitatively similar, and so we expect that effects arising from this approximation

are not relevant to understand the qualitative effects of disorder. In any case, it is

unclear that a strict magic angle with vanishing velocity can ever be achieved in any

laboratory samples, so our approximation of a finite, but very small, velocity should

not be a practical problem in any sense.

To motivate the model, consider the continuum model written as in Ref. [2] around

the K point

HK =

hk,θ/2 T (r)

T †(r) hk,−θ

 , (4.1)

where hk,θ = 3t
2 k · e−iθσz/2σ∗eiθσz/2 , T (r) =

∑3
j=1 e

−i(qj ·r+φj)Tj and Tj = w0 +

w1(σ+e2πi(j−1)/3 + σ−e−2πi(j−1)/3). We can “unrotate” this Hamiltonian by consid-

ering the k vectors to be the same and applying a unitary in pseudospin space (using
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the properties of Dirac cones, one can replace the full angular momentum operator Lz

with σz/2)

H ′K =

 hk,0 eiθσz/4T (r)eiθσz/4

e−iθσz/4T †(r)e−iθσz/4 hk,0

 . (4.2)

We can do a similar operation to the K ′ point. The interlayer tunnelings at the K and

K ′ points differ, so it is important to have a function interpolate between the two while

preserving symmetries C2 and time-reversal and staying as local as possible. This can

be done, and we can replace the Dirac cone hk,0 with the Hamiltonian for graphene

which in real space and second quantized notation is

H0 =
∑
r,`

t[c†r,`σxcr,` +
2∑
j=1

(c†r+aj ,`
σ+cr,` + h.c.)] (4.3)

where t = 2.8 eV [157], r labels points on the triangular lattice, cr,` = (cr,A,`, cr,B,`)
T is

a vector of annihilation operators at triangular lattice site r and layer ` = 1, 2 whose

first and second components represent the A and B sublattices, respectively. The lattice

vectors a1 and a2 are shown in Fig. 4.2(a) where the lattice site r is the central hexagon.

The tunneling between layers in real space then becomes

HTBG = H0 +
∑
r

[
c†r,2T0(r)cr,1 + h.c.

]
+
∑
r

6∑
n=1

[
(−1)nc†r+an,2

T1(r + 1
2an)cr,1 + h.c.

]
. (4.4)

The second line of of Eq. (4.4) represents interlayer hopping to the nearest neighbors on

the triangular lattice, summed over all an, as depicted in Fig. 4.2 (a), and the interlayer

hopping matrices are given by

T0(r) =

3∑
j=1

 w0 cos(qj · r + φj − θ/2) w1 cos(qj · r− 2π(j−1)
3 + φj)

w1 cos(qj · r + 2π(j−1)
3 + φj) w0 cos(qj · r + φj + θ/2)


T1(r) =

1

3
√

3

3∑
j=1

 w0 sin(qj · r + φj − θ/2) w1 sin(qj · r− 2π(j−1)
3 + φj)

w1 sin(qj · r + 2π(j−1)
3 + φj) w0 sin(qj · r + φj + θ/2)

 ,

(4.5)

where w0 represents AA tunneling, w1 is the AB tunneling (commonly, if we refer to

w, we are referring to w1 and a fixed w0/w1 ratio), θ is the twist angle, φj are random
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phases which sum to zero and represent the center of rotation 2 , q1 = kθ(0,−1),

q2 = kθ(
√

3/2, 1/2), and q3 = kθ(−
√

3/2, 1/2). The value of the twisted wavevector

kθ is given by kθ = 2kD sin(θ/2) where kD = 4π/(3
√

3). The effect of varying w for a

fixed twist angle θ = 1.05◦ is shown in Fig. 4.3(a), which demonstrates the formation

of a semimetal miniband and shrinking minibandwidth. We note that other parameter

sets for the tight binding parameters are available [158] but do not affect any of the

qualitative results presented here.

If we go to the crystal momentum basis and expand about the K point (with similar

results at K ′), we indeed obtain the continuum model [2] up to a unitary transformation

as our construction dictated. Furthermore, if we compare the low-energy continuum

model to the actual lattice model itself, we find remarkable agreement in the calculated

density of states [defined in Eq. (4.6)] as shown in Fig. 4.3(b,c,d) for three representative

sets of parameters.

Some comments are in order. First, while it reproduces the continuum model at the

K (and K ′) point, this particular UV-completion explicitly breaks the C3 symmetry

present in the original model (this symmetry is just weakly broken near the K and

K ′ points). To see this explicitly, we can consider the pattern of AA, AB, and BA

tunnelings our model exhibits. This can be entirely determined by the form of T0 and

T1 in Eq. (4.5): If an electron is on an A site on layer 1 and wants to hop to an

A site on layer 2, then the sum of the squares of the hoppings give that PAA(r) =

|[T0(r)]AA|2 + 6|[T1(r)]AA|2 (and similarly for PAB(r) and PBA(r)). Comparing which

term [PAA(r), PAB(r), or PBA(r)] is largest gives us Fig. 4.2(b) where we can explicitly

see how C3 is broken for this model. As a result of this symmetry breaking, the Dirac

points are not pinned to the high-symmetry points and are free to move around the

Brillouin zone, yet since the model preserves the C2T symmetry they do not gap out.

Numerically, we find that the Van Hove peaks never fully merge [Fig. 4.3(d)] unlike the

continuum model, and further, perturbation theory can be used at second order in the

2The phases always modify terms like qj · r + φj , and in order to see how they represent a center
of rotation, consider an qj · (r − r0), then φj = −qj · r and

∑
j φj = 0. In fact, for any φ1,2 we can

determine an r0 that creates it.
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Figure 4.3: (a) The calculated density of states ρ(E) for TBG without disorder as
a function of energy E for various interlayer tunneling strengths w = w1 (keeping
w0/w1 = 0.75 where w0 (w1) denote the strength of AA and BB (AB and BA) tunneling)
at a low twist angle of θ = 1.05◦ close to the magic angle, a system size of L = 569 and a
KPM expansion order of NC = 217 in the lattice model. The calculated minibandwidth
in the magic angle regime w = 110 meV is consistent with other studies of the continuum
model and the KPM numerical resolution limits to the extent we can access the low-
energy regime near charge neutrality. (b,c,d) Comparisons between our lattice model
and the continuum theory near E = 0 and θ = 1.05◦ for w = 80, w = 100 and
w = 110 meV respectively, we find remarkable agreement. The insets show the details
of the miniband. At θ = 1.05◦ and w = 100 meV, inset of (c), we see a splitting of the
Van Hove peaks that is missing from the continuum model associated with additional
zone folding in this model. This is seen clearly in the right inset; the left inset shows
how the gap of the lattice model here and in the continuum model also match rather
well. In (d) at the magic angle θ = 1.05◦ and w = 110 meV, we see that the Van Hove
peaks never clearly merge as they do in the continuum model. Again, this is clearly
seen in the right inset. The continuum model data here includes 338 bands and has
NC = 213 or 214 whereas the lattice model has L = 569 and NC = 217. Overall, the
agreement with the continuum TBG model is quite excellent.
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interlayer tunneling strength to see that the velocity never fully vanishes either. For

ideal theoretical calculations this might pose a problem, however for our present study,

disorder already breaks this C3 symmetry. Furthermore, in the experimental samples

strain from the substrate explicitly breaks the C3 symmetry [156], which is a natural

single-particle source for a nonvanishing velocity and further justifies the use of this

model. Thus, the weak breaking of C3 symmetry in our model is not a problem at all

in understanding the physics of real twisted bilayer graphene systems. Second, while

the model still has the spatial structure of AA, AB, and BA tunneling, it is slightly

distorted, as seen in Fig. 4.2(b). Consequently, the usual TBG moiré unit cell is larger

than the unit cell considered in this model. In fact, the mini-Brillioun zone is folded

more than in actual TBG as seen in Fig. 4.2(c) (it is smaller by a factor of 3); the

process of “unrotating” the two-layers puts the K points of each individual layer on top

of each other in momentum space effectively downfolding the moiré Brillouin zone. It

is then necessary to determine if this downfolding opens up any gaps, and while it does,

these are small indirect gaps in the mini-Brillioun zone of TBG as seen near the Van

Hove peaks in Fig. 4.3(c)(inset). Last, for the value of the clean twist angle we focus

on here θ = 1.05◦ we can emulate the effects of strain and lattice relaxation, similar to

Ref. [3], by setting the ratio of AA to AB/BA tunneling to w0/w1 = 0.75 and w1 = w

based on relaxed band structure calculations [5, 6]. This acknowledges the empirical

fact that Bernal-stacked graphene is the energetically favored stacking arrangement in

untwisted bilayer graphene. While varying the twist angle changes the ratio w0/w1

(as in Refs.[5, 6]), for simplicity we fix this ratio to take that of the clean twist angle

(w0/w1 = 0.75) throughout.

We compare the lattice model with the continuum model in Fig. 4.3(b,c,d). We find

good agreement between the two models over a rather broad energy range even beyond

the low-energy miniband. In particular, we find that the TBG gap and Dirac velocity

are well-produced by the lattice model, see the insets in Fig. 4.3(c,d) . However, a

direct comparison at the magic angle condition (w = 0.11 eV and θ = 1.05◦) reveals

that the mini-bandwidth is slightly overestimated within the lattice model. We further

notice that beyond the “magic-angle” (i.e. smaller angle θ at fixed w1 or larger interlayer
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tunneling w1 at fixed θ = 1.05◦), the lack of symmetries leads to disagreement with the

continuum model (not shown). As a result, we restrict ourselves to the regime where

the dimensionless parameter w1/(kθvF ) is below or at the “magic” value where the

discrepancy between the continuum model and the effective lattice model is minimized.

Here, we achieve this by focusing on fixing the clean twist angle to θ = 1.05◦ and limit

the interlayer tunneling to w ≤ 0.11eV . In this regime, our model captures the TBG

electronic structure very well and should be a quantitatively reliable model. This is

also the regime of current experimental interest.

These effective models are rather natural as most twist angles are not commensurate,

and hence, a quasiperiodic incommensurate background potential should have effects

very similar to the moiré potential induced by the twist angle. In fact, twisted bilayer

graphene at a large twist angle (∼ 30◦) has recently been used to form quasicrystals [159,

139], and renormalized but stable low-energy Dirac excitations have been observed [139],

supporting the idea of an incommensurate quasiperiodic potential mimicking the twist-

angle moiré superlattice. These simpler quasiperiodic models exhibit a similar magic-

angle condition where the velocity of the Dirac cone vanishes continuously. In addition,

the formation of minibands with large gaps and a strongly renormalized velocity that

can be seen to clearly vanish without having to resort to very large system sizes as in the

case of twisted bilayer graphene. Therefore, we supplement our calculations on twisted

bilayer graphene with similar disorder calculations on a quasiperiodic “toy” model to

determine how our choice to model twist disorder impacts our results (see Section 4.5).

The two models produce similar results on disorder effects.

In the following, we model the effect of a non-uniform twist by breaking the system

up into four equal sections, each having their own twist angle θ with sharp domains

between them, as depicted in Fig. 4.2(d). We first choose random phases φj in the

interlayer coupling (this reflects different centers of origin for the twist). In what follows,

we take a uniform random phase in the TBG calculations as this seems to be the most

physically sensible starting point provided the twist angle is not sufficiently small, which

would induce significant lattice relaxation [5, 160, 6]. The θ in each patch is sampled

from a box distribution around a central value θ ∈ [(1−WR/2)θ0, (1 +WR/2)θ0] where
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Figure 4.4: The effects of twist disorder on the low energy density of states. The density
of states ρ(E) as a function of energy E for a clean twist angle θ = 1.05◦, linear system
size L = 569, and a KPM expansion order of NC = 217 starting in the semimetal
regime of the the TBG model (Top) as well as in the magic-angle regime (Bottom), for
different twist-disorder strengths WR (that characterizes the width of a box distribution
[(1 −WR/2)θ, (1 + WR/2)θ] with θ = 1.05◦ from which we sample the random twist
angle in each patch). In each case the randomness smoothly fills in the gap while also
smearing out the Van Hove peaks. The insets in the bottom two figures is a zoom in
of the band gap that clearly fills in with increasing disorder.

we express WR as a percentage and we fix θ0 = 1.05◦. For twist angles that are small

and near the “magic-angle,” the moiré unit cell includes roughly 10,000 atoms in each

layer. Numerically, we can reach on the order of 36-49 unit cells containing up to

500,000 atoms. This should suffice for our purpose of studying random twist angle

disorder effects since the disorder is essentially local in nature. However, to confirm

these disorder calculations we consider a related model in Section 4.5: a model which

can numerically include an order of magnitude more unit cells. That model has the

same features as TBG (the formation of a semimetal miniband and a vanishing velocity

at a critical potential strength), confirming the picture presented here. It is gratifying

that we get very similar results in the two models (Section 4.5), thus justifying our

investigation of twist-angle TBG disorder.
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Figure 4.5: Summary of results on the miniband properties in the TBG model with a
clean twist angle θ = 1.05◦ extracted from system sizes L = 569 and a KPM expansion
order NC = 217. (a,b) The estimated gap size ∆MB as a function of disorder strength
in the twist angle WR and the interlayer tunnelings w (where w = w1 and the ratio of
AA and BB tunneling to AB and BA tunneling is w0/w1 = 0.75). (c,d) The velocity
v/v(w = 0) as calculated from the density of states as a function of disorder WR remains
approximately unchanged in the presence of disorder WR (for each value of w). (e,f)
The minibandwidth DMB for interlayer tunneling w and disorder WR. Note that for
larger disorder strength (WR = 6% or above) in (e) the bandwidth appears to plateau;
this is just an artifact arising from disorder completely filling out the gap at this point.
While the gap and bandwidth are strongly affected by disorder, the velocity remains
unchanged. The red dashed line in (f) that sets the maximum that the minibandwidth
can achieve, is determined from the gaps in (b).

We focus on the density of states (DOS), that is defined as

ρ(E) =
1

4L2

[∑
i

δ(E − Ei)

]
(4.6)

where [. . . ] denotes an average over disorder, phases, and twists in the boundary con-

dition. In what follows we average over 100 disorder samples. In order to reach large

system sizes we use the kernel polynomial method (KPM) to compute the density of

states through an expansion in terms of Chebyshev polynomials and we use the Jackson

Kernel to filter out oscillations due to truncating this expansion to an order NC [4]. In

the following, we focus on a linear system of L = 569 and a KPM expansion order rang-

ing from NC = 213 up to 217. This should give us an essentially exact nonperturbative

evaluation of the TBG DOS in the presence of twist disorder.

From the density of states we extract an estimate of the renormalized velocity of
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the Dirac cones, using the scaling for two-dimensional Dirac cones with velocity v,

ρ(E) ∼ 1

v2
|E − ED| (4.7)

near the Dirac nodal energy ED and we extract an estimate of v through a fit of the low-

energy density of states. We mention that the Dirac cone approximation is only valid

at low TBG energies well below the Van Hove singularities, and hence our extracted

Dirac cone velocity applies only at low energies. Despite the expectation that disorder

will induce a small but nonzero density of states at ED, we can still use the scaling in

Eq. (4.7) to provide an estimate of the renormalized velocity. To quantify the effect

of disorder on the Van Hove peaks in the DOS we make a qualitative estimate of the

“BCS superconducting transition temperature” from the DOS through

Tc ∝ exp

(
− 1

gρ(EvH)

)
(4.8)

where EvH is the location of the Van Hove (vH) peak in energy, we take an electron-

phonon coupling g = 1, and Tc is in units of eV for the TBG model. We stress that we

by no means are claiming electron-phonon interaction is the origin of superconductivity

in twisted bilayer graphene (although we do not rule out this possibility either). We

are only using Eq. (4.8) as a qualitative measure of how disorder smears out the Van

Hove peaks, which reduces the largest possible mean-field critical temperature in the

miniband within BCS theory. One should think of the effective Tc in Eq. (4.8) as a

measure of the effective nonperturbative coupling induced by the vH singularity, and

Eq. (4.8) is a simple quantitative approximation to estimate the effect of twist angle

disorder on the vH singularity expressed in units of energy (i.e. coupling strength). The

fact that this formula coincides with the BCS formula for the superconducting transition

temperature is a matter of convenience in this respect. Any other such formula should

provide the same qualitative results although the quantitative details will depend on

the specific form of the chosen formula.
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4.4 Results

To begin, we first discuss the effects of a random twist angle in the effective TBG

lattice model. Since the twist shows up explicitly in the interlayer tunneling term, ran-

domness appears solely in this part of the Hamiltonian. However, interlayer tunneling

either occurs between equivalent sites or nearest neighbors (on the triangular Bravais

lattice) between the two layers. This is due to T0 and T1 terms in Eq. (4.4), and thus,

randomness in the twist angle will induce contributions from both of these terms.

The miniband that is formed due to the twist can be characterized by the following

independent and complementary quantities: (1) the size of the energy gaps (mostly at

‘higher’ energies at the miniband edges) separating it from the rest of the states, (2) the

effective low-energy velocity of the Dirac cones in the minizone, (3) the minibandwidth,

and (4) the size and shape of the Van Hove peaks (which are strongly enhanced due

to the formation of the miniband itself before disorder is taken into account). These

features are all summarized in Fig. 4.1.

First, as shown in Fig. 4.4, disorder destabilizes the integrity of the miniband that

is created due to the twist. When the gaps first develop, they appear at energies

∼ vFkD sin(θ/2) and their size is perturbatively controlled by w1 = w. As the figure

shows, the gaps become soft due to averaging together different patches of random

twist angles. We extract the miniband (MB) gap ∆MB for various values of interlayer

tunneling (w1) and disorder strength, as shown in Fig. 4.5(a,b). Increasing the interlayer

tunneling and approaching the magic-angle condition makes the semimetal miniband

more pronounced and stable by increasing the size of the gap, which is maximal near

w = 0.1 eV. Introducing finite disorder makes these gaps soft and the average band

gap fills in monotonically with increasing disorder. Eventually, the gap is filled in

completely, which we find occurs roughly for WR = 6% of the clean twist angle, and

there is no longer a clear separation between the miniband and the rest of the states.

This effect is clearly visible in experiments, as the band insulating gap is destroyed (e.g.

as seen in Ref. [97]). The sensitivity of the gap to disorder in the twist angle is rather

intuitive, as the location of the gap is dictated by the scattering between the Dirac
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nodes of equal chirality but different layers, and the energies that mix to open a gap

are determined by θ, whereas the size of this gap is dictated by w. But the fact that

the primary insulating gap at the full filling of the moiré miniband may be completely

suppressed by a twist-angle disorder as small as just < 10% is non-obvious– naively

on perturbative grounds one may expect a relative disorder of the order of unity (i.e.

100%) in order to completely suppress the gap. Clearly, the miniband insulator is very

sensitive to twist-angle disorder, and this may be the reason why the measured gaps

vary quite a bit from sample to sample even for nominally fixed twist angles.

Second, we discuss to the features of the miniband which presumably drive strong

correlation effects, namely the renormalized Dirac cone velocity v [Fig. 4.5(c,d)] and the

size of the minibandwidth DMB [Fig. 4.5(e,f)]. Surprisingly, we find that the Dirac ve-

locity is remarkably robust to disorder and while it is strongly suppressed for increasing

w (as expected since this is an effective decrease of the twist angle), increasing disorder

enough even to fill in the band gaps and suppress Tc completely is not sufficient to

modify the effective velocity which maintains its clean value in a robust manner even

in the highly disordered situation. As shown in Figs. 4.5(c,d), the effective velocity

extracted from Eq. (4.7) does not renormalize until the disorder is very large; in par-

ticular, Fig. 4.4 demonstrates that the low-energy scaling of the DOS ρ(E) ∼ |E−ED|

remains robust for a range of disorder with an unmodified slope. Close to the magic-

angle regime (w ≈ 0.11 eV), the vanishing of the velocity is becoming rounded out;

however to see this develop for a large disorder range is challenging as we are limited by

the energy resolution needed and therefore we only present results for disorder strengths

where the scaling in Eq. (4.7) is clearly visible. In any case, close to θMagic, the whole

concept of a velocity becomes dubious as the TBG basically is a completely flatband

system with essentially no energy regime available for the Dirac cone approximation to

apply.

The minibandwidth DMB is similarly substantially reduced as we approach the

magic-angle regime, as shown in Figs. 4.5(e,f). However, disorder both fills in the

band gaps [Figs. 4.5(a,b)] and also broadens the minibandwidth which we we are able

to track provided the band gaps have not completely filled in [that we mark with a
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red dashed line in Fig. 4.5(f)]. The effect of disorder on the minibandwidth is much

stronger than the effect on the velocity, and we expect disorder may reduce the strength

of correlations by broadening the size of the miniband. It will not, however, have a very

large effect on the Dirac velocity for weak disorder. We believe that such effects of dis-

order strongly suppressing correlation effects in the system (by effectively broadening

the minibandwidth) are already apparent in the experimental samples since the insu-

lating gaps (i.e. the correlated insulator phase) at commensurate fractional filling of

the miniband often do not show up in many samples, and when they do, the typical

correlated insulating gap energies are often rather small and vary strongly from sample

to sample.

While the gap and hence minibandwidth are strongly affected, disorder also has

an effect on the finer features of the minibands. The effects of twist disorder on the

Van Hove peaks are captured quantitatively in Fig. 4.6. Van Hove singularities in

2D have a logarithmic singularity and thus should diverge with system size ρ(EvH) ∼

logL. However, in our KPM calculations, we expect that the finite expansion order

(NC) produces a larger finite size effect than the system size. Therefore, we study the

scaling of the Van Hove peaks with the KPM expansion order in Fig. 4.6(a). This

clearly demonstrates that the 2D logarithmic vH singularity, manifesting the scaling

ρ(EvH) ∼ logNC in the clean limit, becomes rounded out due to disorder and no longer

diverges with increasing NC . Interestingly, however, the location and separation of the

Van Hove peaks is very insensitive to disorder as shown in Fig. 4.6(b). Despite the

average location of the Van Hove peaks remaining fixed, disorder broadens them out

as we show in Fig. 4.6(c) by computing the full width at half maximum (FWHM). Not

only does this figure demonstrate that the FWHM of the vH peaks strongly decreases

with increasing w it also shows that the effects of disorder on the vH peaks are much

stronger for smaller w away from the magic-angle regime. This subtle effect of twist

angle disorder on the vH peaks is rather non-obvious.

To study disorder effects on the Van Hove peaks in more detail we extract an

estimate of the mean-field BCS superconducting transition temperature from Eq. (4.8)

due to the DOS at the Van Hove peak energy. We show the effects of interlayer tunneling
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Figure 4.6: The effects of twist disorder on the properties of the Van Hove peaks for a
clean twist angle θ = 1.05◦, a linear system size L = 569, and a varying KPM expansion
order (NC) in (a) whereas in (b,c,d) we use NC = 217. (a) As we scale the Chebyshev
expansion order, we see that the Van Hove peak is logarithmically divergent (with a fit
shown as a black dashed line), but once we add disorder, it rounds out and saturates
to a finite value. (b) The energy separation between Van Hove peaks remains stable as
disorder increases even though we find (c) that the full-width half-max (FWHM) of the
Van Hove peaks becomes broader as disorder increases. (d) The estimated BCS critical
temperature or the effective coupling constant [see Eq. (4.8) in the main text] from the
density of states at the Van Hove peak as disorder is tuned up for various values of w.

and disorder on Tc in Fig. 4.6(d). Since the Van Hove peaks are strongly affected by

w, we normalize Tc by its value in the clean limit to compare our disordered results for

each value of w. In the absence of randomness, shown in Fig. 4.3(a), as we increase w

the minibandwidth shrinks, pushing the same number of states down to a lower energy

scale, which in turn enhances the Van Hove peaks considerably. Upon introducing the

twist disorder, Tc is suppressed, and this effect, rather unexpectedly, is most pronounced

for weak interlayer tunneling strengths, whereas for w close to the magic-angle condition

(w = 0.11 eV for θ ≈ 1.05◦) we find Tc is not as strongly affected by weak disorder in

comparison.
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(a) (b)

Figure 4.7: (a) The calculated density of states ρ(E) as a function of energy E for
the spin-orbit coupled model of Dirac points perturbed by a quasiperiodic potential,
with a quasiperiodic wavevector Q = 2πFn−2/Fn with the system size L = Fn = 144
and a KPM expansion order NC = 214. (b) A depiction of how we break up the SOC
square lattice model into regions of different quasiperiodic wavevector Qi (to simulate
disorder), which are taken from a box distribution about a central value. We vary both
the number of regions and the size of disorder in each region.

4.5 Spin-orbit coupling model

In addition to the lattice model of twisted bilayer graphene in previous sections, the

second disordered TBG-like model we study is a two-dimensional tight-binding model

with spin-orbit coupling (SOC) in the presence of a quasiperiodic potential, which is

defined the same way as Chapter 3 as

HSOC =
1

2

∑
r,µ=x,y

(itχ†rσµχr+µ̂ + h.c.) +
∑
r

V (r)χ†rχr. (4.9)

where t is the hopping strength, the lattice spacing is set to unity, χr denotes a two

component spinor of annihilation operators, and σµ are the Pauli operators. We mimic

the effect of a twist through a quasiperiodic potential

V (r) = W
∑
µ=x,y

cos(Qrµ + φµ), (4.10)

of strength W , an incommensurate (or quasiperiodic) wave-vector Q, and φµ is a ran-

dom phase sampled between 0 and 2π. We average over twisted boundary conditions

to reduce the finite size effects. The goal of using this second model is to test the uni-

versality of the conclusions we reached in the main text using the TBG lattice model.

Note that for the DOS computed in the SOC model we normalize the DOS in Eq. (4.6)

by a factor of 2L2 as opposed to 4L2 to account for the smaller local Hilbert space.
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Figure 4.8: The disorder-free density of states ρ(E) as a function of energy E obtained
from a linear system size L = 144 and a KPM expansion order NC = 214 starting in
the semimetal regime of the model, comparing the case of a fixed random phase across
the entire sample (b, d) and a different random phase in each patch (a, c) for different
strengths of disorder in the wavevector and nP = 7 randomly placed patches. Note
that the random phase in each patch is disordered even for WQ = 0.
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The effect of the quasiperiodic potential on Dirac points is similar to twisting two

layers of graphene [7]. As shown in Fig. 4.7(a) for a large enough value of W , a

semimetal miniband forms with a renormalized velocity, sharp Van Hove peaks, and

hard gaps separating it from the rest of the spectrum. Importantly, the SOC model has

the great advantage that the formation of minibands, a hard gap, and flat bands are

clearly visible on much smaller system sizes compared with the effective lattice model

of TBG. Here, it is sufficient to consider system sizes of L = 144 or larger to see these

effects, whereas in the TBG model the minimum number of sites required to form a

clear miniband is at least a linear system size of L = 300.

In the calculations of the TBG model we broke the system into four squares of equal

size, which was for simplicity of modeling while being able to correctly capture the

formation of the miniband by keeping each patch sufficiently large. We now investigate

the effects of making the size and shape of these regions random as well as increasing the

number of random patches nP , something that the computational demands of the lattice

TBG model did not allow us to do. We divide the L × L lattice into (nP )2 domains,

by cutting it through nP − 1 vertical and nP − 1 horizontal lines which are randomly

located. Each domain i is given a quasiperiodic wavevector and phase [Q(i), φµ(i)], as

illustrated in Fig. 4.7 (b). We introduce randomness in Q in a similar way as in the

main text, such that Q(i) = Q0+δQi where Q0 = 2πFn−2/Fn, Fn is the nth Fibbonnaci

number, and we take the system size L = Fn so that Q0 is a rational approximant to

the irrational number 2π(2/[
√

5 + 1])2. In each domain (or patch) δQi is taken from

a uniform distribution around Q0, i.e. Q(i) ∈ [(1 −WQ)Q0, (1 + WQ)Q0] and WQ is

expressed as a percent (similar to the random disorder WR in the main text). For the

results on the SOC model we average over 300 disorder samples.

In order to understand the role of taking a uniform phase [φj in Eq. (4.5)] in the

TBG calculations we consider choosing the phase in each patch φµ(i) in two distinct

ways, which are: (A) One global phase φµ(i) = φ, which is equivalent to our set up in

the TBG model. (B) In each patch, the phases φµ(i) are independently picked from

a uniform distribution [−π, π], which amounts to a disorder potential even for a fixed

wavevector across the sample. Option (A) has no discontinuity in the phase across the
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Figure 4.9: Density of states as a function of energy in the semimetallic regime of the
SOC model focusing on the miniband at low energy using a linear system size L = 144
and a KPM expansion order NC = 214. We focus on the effects of the different number
of random patches used for various different disorder strengths in the quasiperiodic
wavevector WQ from W = 0.35. Here we are taking one global phase across the sample
to isolate the effects of randomness in Q and choice of patches alone.
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Figure 4.10: Density of states as a function of energy in the magic-angle regime (W =
0.54) of the SOC model focusing on the miniband at low energy with a linear system
size L = 144 and a KPM expansion order NC = 214. We are displaying the effects of
different number of patches of a random wave vector across the sample.
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Figure 4.11: The estimated critical temperature (or effective coupling– see Eq. (4.8)
in main text) from the Van Hove peaks in the DOS as a function of randomness in
the twist vector comparing two choices for the random phase for different number of
randomly placed patches. (a,b) One fixed phase, corresponding to a single rotation
origin. (c,d) Random phases φµ(i) in each block. The left panels are W = 0.35 in
semimetal phase, while the right panels are W = 0.54 at the magic-angle. Random
phases in each block produce very strong randomness in the model and smears out the
Van Hove peaks more easily. (e) The critical temperature Tc with random phases φµ(i)
in each block but without randomness in Q, as function of number of patches n2

p, and
normalized by Tc with only one patch. (f) The gap size as function of randomness.
Comparing to the suppression of Tc, the gap is filled in for WQ ≈ 0.5%, which is much
smaller than the critical WQ (∼ 10%) needed for Van Hove peaks to be smeared out.
These results are obtained from data using a linear system size L = 144 and a KPM
expansion order NC = 214.
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boundaries of each patch. Note that because of the variation in Q, even fixing φµ(i) = φ

to be one global phase does not enforce a continuous boundary condition across patches.

The most random choice we can make is through option (B), which means any phase

can be chosen on each patch, with no restriction. In this case there is a sharp jump

of the potential across all of the patches. In particular, when the number of domains

approaches the number of sites, the quasiperiodic potential turns into random disorder

potential. The “randomness” of option (B) is clearly the strongest and is not controlled

by the parameter WQ. This is demonstrated in Fig. 4.8, which shows that randomness

in the phase smears out the fine features of the density of states and fills the gaps in

more easily and is qualitatively similar to the case with a fixed phase. Thus, randomness

in the phase is not essential to include to study disorder, and in the following we will

mainly focus on keeping the phase fixed throughout the sample.

To understand the effects of a finite number of patches we present results in the

semimetal (W ≈ 0.35t) and magic-angle (W ≈ 0.54t) regime of the SOC model (see

Ref. [7]) in Figs. 4.9 and 4.10. A clear trend in all of the results is that increasing

the patch number enhances the randomness, which effectively increases the strength

of disorder. This is demonstrated in Fig. 4.11 by the gaps becoming soft for weaker

disorder strength, as well as an increased rounding of the Van Hove peaks as we increase

the number of random patches. Eventually, at large enough disorder in the wavevector,

any remnant of the semimetal scaling regime is destroyed, as shown in Fig. 4.9. In

the magic-angle regime as shown in Fig. 4.10, which has a small miniband and a large

density of states at the Dirac node energy, we find that disorder systematically broadens

the size of the minibandwidth while also smearing out the structure of the DOS at

finite energy. Similarly, increasing the number of random patches effectively increases

the strength of disorder.

We capture the effects of disorder on the Van Hove peaks through Tc [see Eq. (4.8)

in the main text for the definition of Tc, which is simply an effective coupling constant

inspired by the BCS theory], which is shown in Fig. 4.11 for wavevector disorder.

We find that disorder reduces Tc monotonically, however when compared to the main

insulating gap isolating the miniband we find that the Van Hove peaks are relatively
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Figure 4.12: Effects of disorder on the renormalization of the velocity of the Dirac
cone and the minibandwidth using a linear system size L = 144 and a KPM expansion
order NC = 214. (a) Effective velocity of the Dirac cone and how it is rounded out
due to randomness in the wavevector. The finite velocity in the magic-angle regime
for WQ = 0 is just a finite size effect [7]. (b) Minibandwidth as a function of disorder
in the quasiperiodic wavevector, which monotonically broadens for increasing disorder
until the gap is filled in and the miniband is no longer separated from the rest of the
band (marked as dashed lines). We include both W = 0.35 for semimetallic phase and
W = 0.54 for the magic-angle regime. Note that we have set t = 1 here.

much more robust than the main miniband gap. This features is distinct from what

we saw in the case of TBG in the lattice model (main text), where Tc was suppressed

more strongly than the gap. Given this dichotomy, we believe that the lattice model

should be trusted more in capturing the Van Hove physics of real TBG, and thus, Tc

is likely to be suppressed more than the main insulating gap in the presence of TBG

twist disorder.

We now turn to the effects of wavevector disorder on properties of the Dirac ve-

locity and the minibandwidth, as shown in Fig. 4.12. The velocity that vanishes in

the magic angle regime is rounded out and remains finite due to the finite disorder
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strength. Away from the magic angle regime, the effects of disorder on the velocity

remain weak. Moreover, the minibandwidth broadens with both increasing disorder

strength and the number of patches until the gaps are completely filled. This is consis-

tent with the behavior of the TBG model in the main text, namely that twist disorder

weakly effects the velocity and increases the size of the minibandwidth, and the lat-

ter effects weakens the strength of correlations in the miniband. Thus, both models

predict a universally robust disorder-resistant Dirac cone velocity at low energies and

a considerable disorder-induced broadening of the minibandwidth, thus weakening the

correlated insulator phase.

4.6 Discussion

First, we discuss our approximations in incorporating twist-angle disorder effects in the

otherwise defect and impurity free clean twisted bilayer graphene. Using an effective

model for twisted bilayer graphene we have theoretically investigated effects of twist

angle disorder nonperturbatively by breaking the system into four separate equally sized

squares each with a random twist angle around a mean value of θ0 = 1.05◦ close to the

magic angle. To understand the effects of our choice of modeling twist disorder with four

equal sized squares, in Section 4.5 we analyze a simpler model to determine the effects of

this patching scheme. By breaking the system into randomly sized rectangles with each

having a different twist value we show that our qualitative results are robust. Increasing

the patch number as well as changing the size and shape introduces more randomness

into the system and increases the effective disorder strength overall. Therefore, the

amount of randomness in each sample is a function of both the random distribution

and the number of patches. Here, we want to ensure that each patch has enough sites

in it to host a well defined low-energy semimetallic miniband at the magic-angle regime

(w = 0.11 eV and θ ≈ 1.05◦) and therefore have focused on 4 squares and total linear

system size L = 569 (in terms of Bravais lattice sites). Increasing the number of squares

or modifying the shape will only introduce more randomness into the system.

We have introduced an effective lattice model of twisted bilayer graphene that is
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local, only requiring nearest neighbor (on the triangular Bravais lattice) interlayer hop-

ping terms which already captures many of the features of the continuum model [154, 2],

such as the miniband gaps, Van Hove peaks, as well as the velocity and minibandwidth

renormalization. The model we have used maintains the C2T symmetry but breaks the

C3 symmetry. As a result, the velocity and minibandwidth renormalization are affected

in the magic-angle regime, which leads to a non-vanishing velocity and an overestimate

of the minibandwidth. Moreover, the model also introduces fine structure into the Van

Hove peaks that we attribute to additional zone folding that appears in the lattice

model. Despite these shortcomings, this lattice model does capture the qualitative be-

havior of the low energy miniband very well while remaining local and easy to work

with numerically. It is possible to construct an effective lattice model that preserves

the C3 symmetry and more accurately reproduces the continuum model in the magic-

angle regime with a true vanishing velocity. However, this requires a more non-local

interlayer hopping model keeping up to third nearest neighbor tunneling terms on the

triangular lattice, which will appear in Ref. [7] (our conclusions change little using this

more sophisticated model). In experiments on twisted bilayer graphene, the encapsu-

lating substrate as well as other forms of disorder break the C3 symmetry explicitly.

Therefore, we do not expect that the weak breaking of this symmetry in our effective

lattice model affects our conclusions on the qualitative experimental implications of

disorder in the twist angle.

Now we briefly summarize our main findings. Our results clearly demonstrate that

the low-energy scaling of the semimetal miniband ρ(E) ∼ v−2|E−ED| and the effective

Dirac cone velocity (v) are remarkably robust to disorder in the twist angle. While

this robustness slightly weakens in the magic-angle regime due to disorder eventually

rounding out the velocity minimum, we find that v is essentially disorder independent

for less then 15% of randomness in the twist angle. This result suggests that the

semimetallic scaling near the magic-angle regime should be clearly visible in transport

experiments that average over the whole sample. Indeed, our findings are consistent

with the experimental observations on twisted bilayer graphene that have observed a

robust “V-shaped” conductance minimum at charge neutrality [138, 97] that signifies
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that the semimetallic low-energy scaling persists in spite of the inevitable presence

of twist angle fluctuations in the sample. The existence of a low-energy Dirac cone

is protected against twist angle disorder. It is interesting to note that twisted bilayer

graphene samples that are “massaged” to remove bubbles that have formed in the “tear

and stack” approach exhibit an insulating phase at charge neutrality [147]. Presumably,

this procedure eliminates some of the twist disorder in the sample and, as a result,

domains of twist angle that still possess the semimetallic density of states no longer

contribute to the density of states near E = 0. Thus, the suppression of twist disorder

comes with the price of a strong modification of the observed density of states at low

energies.

On the other hand, the minibandwidth is much more strongly affected by disor-

der, and DMB monotonically increases for increasing disorder strength until the gap is

completely filled in and the integrity of the miniband is lost. Similarly, we have found

that the insulating gap that separates the miniband from the rest of the states is com-

pletely filled in at weak disorder strengths (∼ 6% of the clean twist angle). This strong

sensitivity of the single-particle gaps to twist disorder has been observed in Ref. [97]

by placing leads at different places in the sample and finding very strong variations in

the gap energies. We suspect that twist disorder will have an even stronger effect on

the gaps at the correlated insulator filling fractions. In particular, the increase of the

effective minibandwidth by twist disorder entails an effective lowering of the dimen-

sionless correlation strength (i.e. the effective U/t value in the Hubbard-type models)

since the Coulomb interaction energy (i.e. the effective U) should not be affected by

the disorder whereas the minibandwidth (i.e. the typical t) increases. These combined

results imply that disorder will reduce the strength of many-body correlations by in-

creasing the bandwidth of the miniband but will not affect the flatness of the Dirac

cones. This interesting subtle prediction of our nonperturbative theory may already

have support in the existing experiments since many otherwise high-quality TBG sam-

ples (i.e. made from extreme high-mobility graphene sheets) often manifest correlated

insulating phases that are very weak, and it is unclear why the correlated insulator

phase at commensurate fractional fillings is not universally seen in all TBG samples



89

of nominally same quality at the same twist angle. We propose that the twist angle

randomness is responsible for causing sample to sample variations in the TBG physics

for the same average twist angles.

Last, the Van Hove peaks are a clear signature of the miniband in twisted bilayer

graphene experiments [104, 161, 105, 149, 150, 151, 152, 153]. Our results demonstrate

that the location of the Van Hove peaks of the miniband as well as their separation

in energy, which is minimized in the magic-angle regime, are essentially unaffected by

twist-angle disorder. Twist-angle randomness smears out the logarithmic Van Hove

singularity without affecting their locations in energy. As a result, the density of states

becomes an analytic function of energy and system size at the Van Hove peaks in the

presence of twist-angle disorder. We have qualitatively assessed the impact of disorder

on the mean-field BCS superconducting transition temperature in the miniband by

considering a Fermi energy at a Van Hove peak. We have found that twist disorder

strongly suppresses Tc [as it is defined in Eq. (4.8)]. If the superconductivity in twisted

bilayer graphene is BCS like then our results suggest that samples with large amounts

of disorder in the twist angle will likely not superconduct. This is again consistent with

experimental observations where not all samples with similar twist angles manifest

superconductivity, and we speculate that this nonuniversality is connected with the

presence of variable twist-angle disorder in different samples.

4.7 Conclusion

In this work we construct an effective lattice model of twisted bilayer graphene which

we use to study the effects of disorder in the twist angle within a nonperturbative essen-

tially exact theory. We also investigate how our choice of modeling disorder affects our

results through a detailed investigation of a related but simpler model in Section 4.5.

It will be interesting in future work to incorporate larger and smoother domain walls

between different twist angles than we have considered here. We demonstrate how

randomness in the twist angle affects various properties of the low energy miniband

through numerically exact calculations of the density of states using the kernel poly-

nomial method. Remarkably, we show that the velocity of the Dirac cone is robust to
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disorder, whereas the other features of the miniband are rather sensitive to randomness

in the twist angle. Last, we also discuss how the implications of our theory might al-

ready been observed out in existing experimental data and have given guidance for how

these disorder effects can be used to help understand the putative strongly correlated

effects seen in experiments.
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Chapter 5

Magic-angle semimetals with chiral symmetry

In chapter 3 we demonstrated the universality of magic-angle semimetals, and spelt

out the conditions under which any Weyl / Dirac node can be driven towards a magic-

angle transition. Despite of all the similarity across different models, there is clearly

the question of how symmetry affect the eigenstate phase transition we described. An

analogy that often helps when thinking about models with quasiperiodicity (QP) is the

Anderson localization with disorder (but keep in mind that the case of QP strongly

differ from the disordered case as no rare-region exist in QP). It is well understood that

symmetries [40, 37] dictate the universality class of conventional Anderson localization

transitions with disorder. In such classification, chiral symmetry play a vital role. In

this chapter, we deep dive into the particular case of incorporating chiral symmetry to

the 2D perfect spin-orbit coupling (SOC) model.

To retain chiral symmetry when adding quasiperiodicity, we apply the quasiperiodic

modulation through the hopping terms of the base model instead of through potential.

Using this model we will characterize the eigenstate phase transition that generates

finite density of states in more detail through both spectral observable and multifractal

analysis of the wavefunctions. Importantly, this study is a first step towards the task to

classify various classes within the universal “magic-angle semimetals”. We contribute

to the understanding of how such an eigenstate phase transition (EPT) depends on

the symmetries of the model, analogous to the story of conventional disorder-driven

Anderson transitions. For the case of disorder, the impact of various symmetry classes

has been well studied; but it has been unclear for the case of quasiperiodicity despite of

the many similarities between disorder and quasiperiodicity. The lack of rare-regions,

for example, definitively distinguishes the transition driven by quasiperiodicity from
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Figure 5.1: (a) Schematic phase diagram at the band center (E = 0) extracted from our
work. In the semimetal phase the linearly dispersing Dirac cone is stable in the low-
energy regime. In the chiral metal phase a band of hybridized zero modes qualitatively
explain the sparse (yet still delocalized) structure of the wave functions at the band
center. The point W = 1 is critical, with a diverging low-energy density of states, a
dynamic exponent z > 2, and multifractal eigenstates that obey Chalker scaling. (b)
The zero energy DOS ρ(0) for a linear system size L = 233 and NC = 214 and the
momentum space inverse participation ratio IM (q = 2) at E = 0 with Q = 2πFn−2/L
and L = 144 versus the hopping strength W on a linear scale. (c) The low-energy
DOS ρ(E) as a function of energy E for pure QP hopping (W = 1) for the case of real
and complex hopping amplitudes for system sizes L = 987 and L = 233 respectively.
For the real QP hopping amplitudes we find the zero energy density of states diverges,
which is cut off by the finite KPM expansion order NC , here we take NC = 216.

those by random disorder.

In addition, the chiral symmetry introduces drastically more flat band at the magic-

angle transition with curious connection to topological zero modes. The commensurate

limit of the model also manifest intriguing example of higher-order topological insula-

tors.

The rest of the chapter is organized as follows. In Sec. 5.1 we introduce the QP

hopping model. In Sec. 5.2, we summarize the main observables of interest, while in

Sec. 5.3 we present, in detail, our numerical and analytical results. We discuss the

experimental aspects of realizing the theory in Sec. 5.4 and summarize our results and

the remaining open questions in the conclusion, Sec. 5.5. The details of the numerical

method has been discussed in Chapter 2 and will only be briefly mentioned here. In
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Sec. 5.6 we analyze commensurate limits of the model that can be described as a higher-

order topological insulator.

5.1 Model

The general form of the Hamiltonian that we focus on can be written as

Ĥ = T̂0 + T̂QP, (5.1)

where T̂0 denotes a bare, translationally invariant hopping model and T̂QP is the non-

trival part of the model that has the QP structure. The model we consider is on the

square lattice and the bare hopping model is given by

T̂0 =
∑

r,µ=x,y

it/2ψ†r+µ̂σµψr + H.c., (5.2)

where t is the bare hopping amplitude between site r and r + µ̂, σx,y are the Pauli

matrices, and ψr is a two-component spinor of annihilation operators. The dispersion

relation for T̂0 is E0(k) = ±2t
√

sin k2
x + sin k2

y, which contains four Dirac points at

(0, 0), (0, π), (π, 0), and (π, π), and a low-energy density of states (DOS) ρ(E) ∼ |E|.

Thus, this spinful model on the square lattice describes a two dimensional semimetal

with linearly dispersing excitations. It is the 2D SOC model studied in the previ-

ous chapter. This model naturally captures the universal low-energy physics of two-

dimensional semimetals and is convenient for performing both analytical as well as

numerical calculations. It is important to realize that, on the single-particle level, the

model in Eq. (5.2) describes the direct sum of two π-flux models (see Chapter 3 which

are readily implemented using shaken optical lattices [119]. And indeed, much of our

analysis and conclusions apply equally well for a single copy of pi-flux.

5.1.1 Quasiperiodic perturbation

The QP part of the Hamiltonian on the square lattice is given by

T̂QP =
∑

r,µ=x,y

iJµ(r)ψ†r+µ̂σµψr + H.c., (5.3)
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where Jµ(r) is the QP hopping amplitude between site r and r + µ̂. We construct

the hopping matrix elements by considering a two-dimensional surface [e.g. cos(Qx) +

cos(Qy)] with a quasiperiodic wavevector Q (i.e. incommensurate with the underlying

lattice) that we evaluate at the mid-point of each bond on the lattice, this yields

Jµ(r) = W
∑
ν=x,y

cos [Q (rν + µ̂ · ν̂/2) + φν ] , (5.4)

where Q is an incommensurate wavevector, φx and φy are random phases sampled

uniformly between [0, 2π] that are the same at each site, and we have set the lattice

spacing to unity. We take the linear system size to be given by a Fibonacci number

L = Fn and take a rational approximate for the QP wave vector Q = QL ≡ 2πFn−2/L

(unless otherwise stated) such that as n→∞, Q/2π → 4/(
√

5 + 1)2.

In order to reach the pure QP hopping model with finite model parameters we find

it convenient to parameterize the bare hopping to be given by

t =
√

1−W 2, (5.5)

such that at W = 0, Ĥ → T̂0 and for W = 1, Ĥ → T̂QP . To test for the possibility of

a divergence in the low-energy DOS it is ideal to start from a semimetal model where

we know a priori there is (strictly speaking) zero DOS in the bare model, thus any

potential finite or divergent DOS we find is strictly due to the QP hopping. In the

following, the hats are dropped for operators when its meaning is unambiguous.

5.1.2 Commensurate limit and higher order topological insulator phases

In a commensurate limit, the model in Eq. (5.1) can realize a higher order topological

phase. Higher order topological insulators have a gapped topological bulk as well as

a gapped topological surface. This induces corner modes in two-dimensions and hinge

modes in three-dimensions [162]. In particular, in the present model for Q = πn/2 for

n = 1, 3 (n = 2) the hopping is commensurate with a sixteen (four) site unit cell and

perfect nesting induces a gap at the Dirac nodes. As a result, the model realizes a

higher-order topological insulator phase for a sufficiently strong W , which we describe

in more detail in Sec. 5.6. We will sketch the results in this subsection.
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As a concrete example, for Q = π we analytically show that the model we consider

is a quadrupole topological insulator [162, 13] (QTI). The hopping for Q = π induces

a two-sublattice unit cell. The Bloch Hamiltonian is then h(k) = W (cos(kx)τxσ0 −

sin(kx)τyσx − cos(ky)τyσy − sin(ky)τyσx) + E0(k)τzσ0, where σ, τ are Pauli matrices

parametrizing an effective 4-dimensional Hilbert space, see Sec. 5.6. Interestingly, this

Bloch Hamiltonian is equivalent to the QTI model in Ref. [162] without intracell cou-

pling for W > 0, and as we demonstrate in Sec. 5.6 this phase has topological corner

modes at zero energy that lie within the surface and bulk band gap.

More generally, in Sec. 5.3.1 and Sec. 5.6 we show similar higher-order topological

insulator (HOTI) behavior also show up when Q = 2πm/n, where n is an even factor

of L, and gcd(m,n) = 1. These can be interpreted by considering a unit cell of n2 sites.

For larger n, there are fewer unit cells in our finite size calculation, making the HOTI

character more challenging to observe. Interestingly, in a similar vein, recent work on

twisted bilayer graphene predicts the existence of HOTI with large twist angles [163]. It

is interesting to note that the quasiperiodic model we investigate here can be regarded

as tuning away from a higher-order topological phase via an incommensurate flux.

5.2 Observables

We solve the Hamiltonian in Eq. (5.1) using a combination of numerically exact meth-

ods, mostly discussed in Chapter 2. To compute the DOS and wave packet dynamics

we use the Chebyshev expansion techniques including the kernel polynomial method

(KPM) [4, 164], which allows us to reach sufficiently large system sizes (L = 987 is the

largest system size considered here). In addition, we obtain wavefunctions via Lanczos

or exact diagonalization. In this section, we summarize the observables used in this

chapter, with some extended discussion of the ones not heavily used in the rest of the

dissertation.
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5.2.1 The structure of eigenvalues

To study the transition out of the semimetal phase and the effect of strong QP hopping,

we compute the average density of states (DOS) ρ(E) averaged over random phases

and twists. The KPM expands the DOS in terms of Chebyshev polynomials up to

an order NC , which together with system size L serves as the main finite size effects

that we consider in the numerics. We use twisted boundary conditions by augmenting

the hopping terms with a phase. We average over random twists and phases sampled

uniformly between [0, 2π] (for over 500 samples on each data point). In certain regimes

of the model we use the power law scaling of the low-energy DOS

ρ(E) ∼ |E|d/z−1 (5.6)

to extract the dynamic exponent z.

The finite KPM expansion order leads to a broadening of the Dirac delta functions

in the definition of the DOS [see Eq. (2.1)] into Gaussians with a width δE = πD/NC

for a bandwidth D (this holds for the Jackson kernel [4] that we are using for all of the

calculations presented here). Thus, we also use the scaling of ρ(E = 0) with NC , where

Eq. (5.6) implies that ρ(E = 0) ∼ (NC)1−d/z, to analyze the scaling of the low-energy

density of states.

We also consider typical DOS (Eq. 2.21) to study the real-space localization proper-

ties of the model. In the thermodynamic limit, the typical density of states is non-zero

in the extended phase and will go to zero in an Anderson insulating phase, which thus

serves as a diagnostic for real-space localization.

5.2.2 The structure of eigenstates

We connect the physical properties of the model to its low-energy eigenstates by study-

ing their structure in both real and momentum space. The semimetal phase is charac-

terized by stable plane-wave states that are localized in momentum space. As shown in

Refs. [87, 7], a unique feature of the “magic-angle” semimetal to metal transition is that

it coincides with a delocalization of the momentum-space wavefunctions. This implies

that the critical momentum-space wavefunctions are developing non-trivial structure
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that we should be able to describe using methods to treat localization transitions in

real space.

The properties of the probability distribution of an eigenstate can be characterized

by a multifractal analysis [75, 37]. We “coarse grain” real-space wavefunction (ψb) with

its resolution controlled by a binning size b ≥ 1, and define inverse participatiion ratio

(IPR, as elaborated in Chapter 2) on the coarse-grained wavefunction so that we have

generalized IPR as a function of binning size b

IR(E; q, b, L) =
∑
Xj

|ψb(E,Xj)|2q ∝
(
b

L

)τR(q)

, (5.7)

The dependency on b then allows extracting multifractal exponent τR(q). We take

the conventional b = 1 and q = 2 for studying the second IPR as a proxy of spatial

ergodicity/non-ergodicity in a wavefunction.

Moreover, the multifractal analysis is generalized to momentum-space wavefunctions

and focus on the Dirac node energy E = 0 and therefore drop the energy label. Similar

to our work in Ref. [7], we Fourier transform the zero energy wavefunction from real

to momentum space φ(k) = (1/L)
∑

x e
−ix·kψ(E = 0,x). Then, we set up momentum-

space boxes of size B and the binned wavefunction (φB) in momentum space. We note

that the box size B in the momentum space determines the effective infrared scale while

b in real space is related to the effective ultraviolet scale. The momentum-space IPR

and multifractal exponent are given by

IM (q,B,N) =
∑
Kj

|φB(Kj)|2q ∝
(
B

N

)τM (q)

, (5.8)

where IM (q,B,N) is the qth momentum-space IPR with a momentum binning size

B, a linear size of the momentum grid N = L, and we use a subscript M to denote

momentum space. Using this definition we can study localization transitions in mo-

mentum space by either fixing q = 2 (Ref. [87]) or in more detail by analyzing the

behavior of the multifractal exponent τM (q) (Ref. [7]). τM (q) also obeys the conditions

τM (q = 0) = −d = −2 and τM (q = 1) = 0.

The multifractal exponents τR(q) and τM (q) provide systematic ways of character-

izing the properties of the wavefunction probability distributions in the in the real-
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and momentum-space bases respectively. For a plane wave in real space, the spectrum

is simply τR(q) = 2(q − 1), i.e. a straight line. The corresponding momentum-space

wavefunction generically contains a few of sharp peaks (due to a linear combination

of the degenerate eigenstates) and is characterized by τM (q) = 0 for q ≥ qc where the

termination value qc ≥ 1, indicates a “frozen” spectrum [37]. In the limit of a single

peak, the spectrum is reduced to a localization spectrum with qc → 0. We will focus on

an “unfreezing” transition in τM (q) which is related to the semimetal-metal transition.

Lastly, we test for Chalker scaling by defining a two-wavefunction correlation func-

tion as follows [165, 166, 167, 168]:

C(E) ≡
∑
x

|ψE0(x)|2|ψE(x)|2, (5.9)

where E0 is a reference energy and ψE is the eigenstate with energy E. Note that

the sum runs over all the positions and the internal degrees of freedom have been

integrated over. We are interested in energies near the Dirac node so we set E0 = 0. The

two-wavefunction correlation C(E) characterizes the degree of overlapping probability

among two eigenstates separated by an energy E in a fixed realization. In particular,

C(E) ∼ 0 for localized states with 0 ≤ E � δl (δl is the mean level spacing in a

localization volume). For states near a mobility edge, C(E) shows nontrivial scaling in

the energy separation [165, 166, 169, 167]. States that obey a power law scaling

C(E) ∼ |E|−µ (5.10)

with µ = [d − τR(2)]/z > 0 exhibit Chalker scaling. (Note that the exponent µ here

has been generalized to the system with a low-energy power law DOS [168].) The

existence of the power-law scaling potentially implies an enhancement of interactions

[170, 171, 172, 173]. We adopt such a diagnostic to study the correlations among the

low-energy states in the pure QP hopping limit.

5.2.3 Dynamics

We study transport properties of the model via wavepacket dynamics. We initialize

a wave packet to be localized at a single site (r0 = (0, 0)) in real space Ψ0(r) =
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〈r|Ψ0〉 = δr0,r with zero initial velocity (in this case, a spin up/down state suffices),

then time evolve that state |Ψ(t)〉 = e−iHt|Ψ0〉, which we evaluate using a Chebyshev

expansion [164]. We compute the spread of the wavepacket

〈δr(t)2〉 ≡ 〈Ψ(t)|[r̂− r0]2|Ψ(t)〉 (5.11)

where r̂ = (x̂, ŷ) =
∑

r(x, y)|r〉〈r| and r = (x, y). The initialized wave packet has weight

across the spectrum of eigenstates and is not energy resolved. Therefore it will not be

particularly sensitive to the semimetal to metal phase transition at E = 0. As a result

any estimate we make will be averaged over all energy eigenstates. With this in mind,

we use the scaling of wavepacket spreading at long times

〈δr(t)2〉 ∼ t2/z̃ (5.12)

to extract an “average” estimate of of the dynamic exponent z̃ (and hence use a tilde)

to distinguish this from our energy resolved DOS estimate of z in Eq. (5.6). We note

here that the Chebyshev expansion order NC does not lead to a broadening of levels;

it instead dictates the final time that can be reached accurately. Here we track this

by requiring the norm of the wavefunction be preserved for all times. In all the results

presented here we choose NC such that the wavepacket has enough time to spread out

as far as possible (= L/2 in each direction due to periodic boundary conditions) so that

the only finite-size effect in our data is due to system size and not NC .

5.3 Results

While we study all energies and quasiperiodicity strengths, our principle consideration

is the Dirac node energy (E = 0). At weak quasiperiodicity, we study the development

of a non-zero DOS at the Dirac node, which coincides with a delocalization of the

wavefunction in momentum space [87, 7]. At strong quasiperiodicity, we study the

evolution of the low-energy eigenstates and wavepacket dynamics that contribute to a

clear divergence in the low-energy DOS in the limit of pure QP hopping (W = 1).
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Figure 5.2: DOS versus E for L = 233 and NC = 214 with different QP hopping
strengths W . (a) Formation of the first miniband with increasing values of W (vertical
black arrows marking the gap that separates this miniband from the rest of the states).
(b)-(e) Formation of the second miniband and semimetal to metal transition (vertical
black arrows mark the location of the gap to the second miniband). The second mini-
band is displayed as a thicker line for clarity. Note that the full bandwidth for W = 0
is 4
√

2 ≈ 5.7 and all of these results are obtained for Q = 2π × 89/233 with a critical
value of W for this Q given by Wc = 0.485± 0.005.

5.3.1 Transition out of the semimetal phase

Formation of the Miniband(s)

Introducing a weak QP hopping with Q close to π, creates dominant internode scat-

tering that transfers momentum QL and mixes degenerate states of equivalent spin.

This leads to the formation of hard gaps at finite energy that separates a semimetal

miniband near E = 0 described by a DOS ρ(E) ≈ ρ′(0)|E| with the rest of the spec-

trum. We note that this defines the slope ρ′(0) and formally we only focus on ρ′(0+).

As W increases, higher-order processes gain importance, hybridize with lower-energy

eigenstates, and, therefore, open additional smaller mini bands, see Fig. 5.2. Similar to

what was reported in Refs. [87, 7] for semimetals in a QP potential, these minibands

can be described perturbatively in the QP strength, and the states in the miniband can

be counted by considering the number of states near the Dirac cones that cannot be

mixed via a momentum transfer that is restricted to a size QL (or smaller for higher

order perturbative processes). For QL = 2πFn−2/Fn we find that there N1 = 2(Fn−3)2

states in the first miniband and N4 = 2(Fn−6)2 states in the second miniband, which

are generated by a momentum transfer of QL (from first order in perturbation theory)
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and 4QL − 3π (from fourth order in perturbation), respectively. This matches our nu-

merical results, which we compute using either exact diagonalization on small sizes or

integrating the DOS over the energy window of the miniband. The formation of the

first and second miniband is shown in Fig. 5.2 for a potential strength W ≈ 0.1 and

W ≈ 0.48 respectively. The van Hove peaks in each miniband are conventional and

we have checked that they diverge logarithmically in the thermodynamic limit (not

shown). Interestingly, this is a similar result to what was found in Refs. [87, 7], thus

the development of minibands at weak QP hopping is not distinct from those generated

by a QP potential or from “twisting” two layers of graphene.

If we instead focus on a small QL (relative to π) then internode scattering is no

longer the dominant effect and intranode scattering also plays a prominent role in the

low-energy description. In this case, the hard gaps can be softened into pseudogaps

or smeared out altogether. Nonetheless, we still find a semimetal to metal phase tran-

sition persists at small QL. For QL . 2πFn−3/Fn the location of semimetal-to-metal

transition is roughly the same, as shown in Fig. 5.3.

Density of states and velocity renormalization

We first focus on the low-energy DOS at weak QP hopping strength. The semimetal is

defined as having zero DOS at E = 0, and we find this is stable over a finite range of W

(as shown in Figs. 5.1, 5.3, and 5.4). This can be seen clearly from the scaling of the zero-

energy DOS with the KPM expansion order; in the semimetal regime ρ(E) ∼ |E| implies

that ρ(E = 0) ∼ 1/NC (see inset of Fig. 5.4) and we use this to locate the boundary

of the semimetal phase. Note that this is completely different then the random model,

where DOS is always non-zero due to the perturbative (marginal) relevance of disorder

in two-dimensions [36, 174, 175].

As the QP hopping is increased the gaps approach E = 0, which “flattens” the

semimetal miniband until a non-zero value of the DOS is generated after a critical QP

hopping strength. For QL = 2πFn−2/Fn with L = Fn we find that this occurs at

Wc = 0.485 ± 0.005 by studying the NC dependence as shown in Fig. 5.4. After the

transition we find a low-energy peak centered about E = 0 survives (which eventually
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Figure 5.3: The dependence of the DOS at zero energy on the choice of the wavevector
QL. (a) A phase diagram in the space of W and Q specifying the semimetallic regime
(SM), the gapped higher order topological insulating phases (indicated by the sharp
drops in DOS on vertical lines indicating rational Q labeled on top), and the chiral
metal phase, where the color plot denotes the value of log ρ(0). Each data point is
calculated for a system size L = 144 and KPM expansion order of NC = 212. For these
finite sizes, ρ(0) around 10−3 corresponds to the SM phase, while larger DOS signals
the metallic phase. The solid red curve shows the result of perturbation theory for
the critical Wc, given by v = 0 in Eq. (5.13). For Q > π the estimate of Wc from
Eq. (5.13) becomes imaginary, we plot the magnitude of this as a dashed red curve. (b)
The QL/(2π) = Fn−m/Fn cuts (marked by the black ticks in top panel) with system
sizes L = 144, and NC = 214. We see the transition persists for very small QL. Note
that the finite value of ρ(0) in the semimetal regime is just a finite-size effect and the
transition appears when this rises over several orders of magnitude, see Fig. 5.4.
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Figure 5.4: The zero-energy DOS ρ(0) as a function of W for various KPM expansion
orders NC and a system size of L = 233. In the semimetal regime ρ(0) goes to zero
for increasing NC like ρ(0) ∼ 1/NC , which allows us to identify a sharp semimetal to
metal transition at Wc = 0.485±0.005. (Inset) The NC independence of ρ(0)NC allows
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Figure 5.5: The effective Dirac cone velocity extracted from the scaling of the low-
energy DOS ρ(E) ∼ ρ′(0)|E| [formally we compute ρ′(0+)]. (a) The slope ρ′(0) vs W
for various combination ofNc and L. We find that ρ′(0) rises steeply, strongly suggesting
a divergence and a non-analytic DOS at the transition. We extract ρ′(0) from a fit to
the scaling of the low-energy DDOS ρ(E) ∼ ρ′(0)|E|. (b) Velocity v = 1/

√
ρ′(0). The

dashed line shows the linear fit of highest Nc and L we have. The linear scaling of
ρ′(0)−0.5 indicates ρ′(E = 0) ∼ (Wc−W )−2, and predicts critical point W0.485±0.005
that is consistent with our other analysis.

develops structure at larger QP hopping strength), see Fig. 5.2. We find that all of the

states that make up the second (smaller) miniband = 2(Fn−6)2 for QL/2π = Fn−2/L

and L = Fn in the semimetal phase become mixed in the metallic phase and are all

contained in the peak about zero energy in Fig. 5.2 for W = 0.50 and 0.52. This

behavior only holds for the chiral model and does not necessarily occur for the case of

a QP potential [7]. The location of the transition Wc is not universal and depends on

the model details.

We find that the semimetal miniband is well described by ρ(E) ≈ ρ′(0)|E|, with

no change to the power law in energy as the quantum phase transition is approached.

The Fermi velocity of the Dirac cone v is related to the DOS via ρ′(0) ∝ 1/v2. As

the transition is approached from the semimetal side we find ρ′(0) diverges like ρ′(0) ∼

(Wc −W )−β, with β = 2± 0.2 , see Fig. 5.5. This signals that the DOS develops non-

analytic behavior at the semimetal-to-metal transition. As a result the velocity of the

Dirac cone goes to zero like v ∼ (Wc−W ). It is very interesting to compare this result

with what we found in Ref. [7] for the case of a QP potential, which yielded β = 1.8±0.4,

which suggests (rather remarkably) that this exponent seems to be independent of the

symmetry class.

The suppression of the velocity for 0 < Q < π can also be captured analytically

using perturbation theory in the QP hopping strength, borrowing techniques originally



104

-1 -0.5 0 0.5 1
-8

-4

0

4

8 10-2

-1 -0.5 0 0.5 1
-8

-4

0

4

8 10-4(b)(a)

Figure 5.6: The twist dispersion in the semimetal phase (a) and in the chiral metal (b),
i.e. low-energy eigenvalues (E) as a function of a twist (θx) in the boundary condition
along the x-direction obtained by diagonalizing an L = 89 sample. (a) For W = 0.35
in the semimetal phase with clear Dirac points at (0, 0) and (π, 0). (b) Focusing on
W = 0.50 that is right after the semimetal to metal transition. We see the low-energy
minibandwidth for W = 0.5 has been substantially renormalized, the band in the center
of the spectrum has a bandwidth that has been renormalized by a factor ∼ 10−8 from
its unperturbed value, which is an even stronger effect then has been seen previously [7].

applied to twisted bilayer graphene [2, 7]. Using this framework and going to second

order in the QP hopping strength we find

v

2t
=

1− W 2

4t2
[1 + 2 sec(Q/2)]

1 + W 2

4t2
sec(Q/2)2

. (5.13)

This yields a vanishing velocity, i.e. a magic-angle condition v = 0, for W = W
(v)
c ≡

2/
√

5 + 2 sec(Q/2) which we compare to the numerical calculation of the DOS at zero

energy in Fig. 5.3(a). In the regime near Q = π, where the Wc is small and perturbation

theory is controlled, both methods agree well.

These results strongly suggest that the semimetal-to-metal transition generates flat

bands due to the vanishing velocity. To clearly demonstrate the presence of flat bands,

we study how the low-energy eigenvalues evolve as a function of the twist in the bound-

ary condition. To twist the boundaries we apply a gauge transformation that is equiv-

alent to replacing the hopping terms t+ Jµ(r)→ eiθµ/L[t+ Jµ(r)] for a twist θµ in the

µ direction. We use this as a measure of the low-energy dispersion in the mini (twist)

Brillouin zone of size (2π/L). This is mathematically equivalent of tiling an infinite sys-

tem with supercells of size L× L and finding the corresponding band structure (much

akin to tiling graphene with moiré unit cells). As shown in Fig. 5.6(a), we clearly see

the presence of the Dirac cones at (0, 0) and (π, 0) for weak QP hopping. These bands

become incredibly flat in the metallic phase, as shown in Fig. 5.6(b), which confirms
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Figure 5.7: The q = 2 inverse participation ratio in momentum space IM (q = 2) as
a function of W for various system sizes L. In the semimetal regime the momentum-
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the wavefunction delocalizing in momentum space. At W = 0.7, the momentum-space
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than the symbols.

both the qualitative expectation from the perturbative analysis and our approach of

extracting the velocity from the scaling of the density of states. The flattening effect is

substantial in the chiral model and suppresses the minibandwidth orders of magnitude

more from the magic-angle transition driven by a quasiperiodic potential [7]. Interest-

ingly, incredibly flat bands have also been seen in the so-called chiral model of twisted

bilayer graphene [3], and we find a similar effect here in this much simpler model that

also possess a chiral symmetry. Thus, we conclude that the particle-hole symmetry

leads to a significant enhancement of miniband renormalization effects.

Wavefunction delocalization in momentum space

We now connect the structure of the eigenvalues that we have probed through the

DOS with the structure of the wavefunction. A complementary way to understand

the transition is to study how the zero-energy plane-wave eigenstates are perturbed by

the QP hopping. For the case of two-dimensional/three-dimensional Dirac/Weyl cones

subject to a QP scalar potential it has been shown that the generation of a non-zero

DOS coincides with a momentum-space delocalization transition [87, 7], which can be

seen in the momentum-space IPR (IM ) for q = 2. Similar results for the current model
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Figure 5.8: Probability distributions of zero energy wavefunctions in momentum space
with L = 144 and different values of W . (a)-(b): The wavefunctions contain well-
defined ballistic peaks at (kx, ky) = (0, 0), (0, π), (π, 0), and (π, π). A few of satellite
peaks can be seen in (b) while the major ballistic peaks are still well resolved from the
figures. (c): The wavefunction is close to the critical point; The ballistic peaks can still
be resolved. Meanwhile, the satellite peaks start to form regions instead of a few well-
separated points. (d)-(f): The ballistic peaks are no longer sharply defined due to the
hybridization with the satellite peaks which arise from scattering off QP potentials. In
(f), the momentum-space wavefunction looks very much like a conventional delocalized
state. The critical value is close to W = 0.49.

are shown in Figs. 5.1(b) and 5.7. In the absence of the QP hopping, the wavefunction

at zero energy is composed of the Fourier modes at the Dirac points (kx, ky) = (0, 0),

(0, π), (π, 0), and (π, π). Generically, the zero-energy states are linear combinations of

these four plane waves. Therefore, the probability distributions (integrating over the

internal degrees of freedom) of the momentum-space wavefunction contains four peaks,

which we call “ballistic peaks.” If we now translate the multifractal nomenclature to

the present problem, we see that these ballistic peaks give rise to a frozen wavefunction.

We note that the momentum-space wavefunction here has peaks at the Dirac points

regardless of the QP potential (as long as it is weak). On the other hand, the real-

space frozen wavefunctions, as realized in the the random vector potential Dirac model

[176, 177], have peaks randomly distributed depending on the disorder realization.

To support the argument of perturbing stable ballistic peaks, we plot the momentum-

space wavefunctions in Fig. 5.8. In Fig. 5.8 (a), the momentum-space wavefunction is

essentially composed of the four ballistic peaks. Generically, the QP hopping decreases

the ballistic peaks via “hopping” in momentum space and generates other satellite
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Figure 5.9: Zero-energy momentum-space wavefunction with W = 0.7. (a) The proba-
bility distribution. The wavefunction is made of sparse peaks and is still delocalized in
momentum space. (b) The multifractal spectra τM (q). Each data is averaged over 100
realizations. For smaller binning sizes (B = 1, 2 and B = 2, 4), the τM (q) show strongly
multifractal (but still unfreezing) behavior. Note that τM (q = 2) is not zero for all the
binning sizes.

peaks which arise due to the coupling of the QP wavevectors (±QL, 0) and (0,±QL).

Those satellite peaks have weights related to the order of scattering off of the QP hop-

ping. While there are infinitely many such peaks in the thermodynamic limit, the wave

function is weighted subextensively among them (akin to how a localized state dies off

exponentially from a central localized site). In finite system sizes and sufficiently weak

W , only a finite number (smaller than L2) of satellite peaks dominate, as shown in

Fig. 5.8 (b). For W < 0.49, where W = 0.49 is close to the critical point, the ballistic

peaks remain sharply defined even in the presence of the satellite peaks, and this struc-

ture can be captured perturbatively. The weight of the wavefunction on the satellite

peaks increases when driving W to a larger value, similar to a localized wavefunction

as we approach a delocalization transition. For W > 0.49, the ballistic peaks hybridize

with extensively many satellite peaks, the wavefunction is “delocalized” in momentum

space, as displayed in Figs. 5.8 (d), (e), and (f). Throughout this transition, the wave

function is delocalized in real space; however, it acquires a definitive structure that

we explain qualitatively in terms of topological zero modes in Sec. 5.3.1. This state

is delocalized in both real- and momentum- space, in contrast to the wavefunctions

with W < 0.49 which are ballistic and composed of a measure-zero set of momenta.

The hybridization of an extensive number of momenta most likely creates extensive de-

generate zero energy states, causing a finite DOS. And indeed, we witness numerically

[see Fig. 5.1(b)] that the unfreezing transition in the momentum-space wavefunction
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(a) (b) (c)
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Figure 5.10: Multifractal spectrum of the zero-energy momentum-space wavefunction
with different W for L = 144. Each τM (q) is obtained via numerical extrapolation of
two different values of the binning size B. Each data is averaged over 100 realizations.
(a)-(b) All the τM (q) spectra show freezing behavior. (c) τM (q) spectra extracted from
larger binning sizes (B = 4, 8 and B = 8, 16) start to show unfreezing behavior. While
the spectra from B = 1, 2 and B = 2, 4 are still frozen. This is very close to the
critical value of W . (d)-(f) All the τM (q) spectra show unfreezing, weakly multifractal
behavior.

coincides with the semimetal to metal transition in the DOS.

To study the momentum-space wavefunction quantitatively, we first compute the

second momentum-space IPR IM (q = 2, B = 1, N = L) [given by Eq. (5.8)] for different

system sizes (L = 55, 89, 233). In Fig. 5.7, the IPR with q = 2 in different system sizes

are essentially L-independent for W < 0.49. For W > 0.49, the IPR becomes size-

dependent, an indication that the wave function is composed of an extensive number

of momentum states. Similar results can be obtained for L = 34, 144, 610. Note that,

while it looks like W = 0.7 is close to being localized in momentum space, this is not

the case as we demonstrate in Fig. 5.9. For even numbers, the Dirac nodes gap out at

order L/2 in perturbation theory, so while the trend of the IPR is the same as for odd

numbers, it quantitatively differs. Correspondingly, we compute the τM (q) spectrum

[37] for L = 144 by varying the binning size B in every realization as shown in Figs. 5.9

(b) and 5.10. This analysis directly answers if the wavefunctions are governed by well-

localized peaks. For W < 0.49, the wavefunctions show freezing which is characterized

by τM (q) = 0 for all q ≥ 1. We note that a single localized peak results in a spectrum
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with τM (q) = 0 for all q > 0. The frozen spectrum indicates that the dominating regions

in the probability distribution of a wavefunction are characterized by a measure-zero

set of peaks. For W > 0.49, the well-defined ballistic peaks are broadened with finite

widths due to hybridization with the satellite peaks. We find that the τM (q) spectrum is

weakly “multifractal.” For instance, with W = 0.495, the τM (q) ≈ 2(q−1)−0.34q(q−1)

for |q| < 1. These results are summarized in Fig. 5.10. The ballistic peaks are no

longer sharply defined as their weights strongly depend on the binning size B. The

location of the semimetal to metal transition obtained from the wavefunction diagnostic

is in excellent agreement with the semimetal to metal transition in the DOS. As a

comparison, we also plot the real-space wavefunctions with the associated parameters

in Fig. 5.11. We also emphasize that the present transition is not related to the freezing

transition [177, 178, 179, 180, 181, 168] in the context of highly random delocalized

systems. Here, we simply use the multifractal analysis to explore the intricate structures

in the momentum-space wavefunctions due to the QP hopping.

A theory for the chiral metal phase in terms of topological zero modes

For W > Wc(Q), we have seen how the low-energy eigenstates delocalize in momentum

space, which induces well-defined patterns in the real-space structure of the wavefunc-

tion (see Fig. 5.11). There are a few key features that are unique to this chiral model

and were not observed for a QP potential in Ref. [7]. Firstly, the low-energy excitations

minibandwidth has been substantially renormalized reducing it by a factor of ∼ 10−8,

which is a much larger effect then we observed for a QP potential [7], see Fig. 5.6.

Second, we do not find any reentrant semimetal phase, for the chiral model, once the

system has undergone a transition to the metallic phase, it remains there. This suggests

that the metallic phase in the chiral limit should have a unique description that relies

on the chiral symmetry. In the following, we will show that the our model possesses

a band of quasizero modes which are intimately linked to the chiral symmetry. These

solutions to an effective Dirac equation are bound states due to a sign changing Dirac

mass induced by the QP hopping. For W < Wc(Q) these bound state solutions strongly

overlap: They are not well-defined local eigenstates, therefore they hybridize with the
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continuum of plane waves and hence do not play a role in the low-energy behavior.

On the other hand for larger W > Wc(Q), these zero mode bound states become suffi-

ciently sharp to be stable. This produces a finite DOS at zero energy and a non-trivial

structure in the wavefunction that agrees well with our numerical results in the metallic

phase. Since it exists only due to the chiral symmetry (e.g. they do not occur in the

QP potential model in Ref. [7]) we dub this phase the chiral metal.

To mathematically derive the above statements, we invoke a perturbative inclusion

of the incommensurate modulation on top of a continuum model. In view of the stabil-

ity of the semimetallic phase below the “magic-angle” semimetal-to-metal transition.

Therefore, the physics near the center of the band may be treated in the continuum

approximation leading to Dirac Hamiltonians subjected to certain background “Higgs”

fields (i.e. a spatially dependent mass fields [182, 183]). We can derive such effective

Hamiltonians, which take the form H =
∑
± h±

1±τy
2 with (v0 = 2t)

h± = v0/pλz + V (x)λy ± V (y)λx. (5.14)

Here /p = pxσx+pyσy and the original basis in Eq. (2) has been rotated for convenience;

to account for all four Dirac nodes, we require more sets of Pauli matrices, τµ works

within blocks of the same helicities (0, 0) and (π, π) [or (0, π) and (π, 0)], while λµ

connect these blocks. In this basis, the chiral symmetry is represented by {σzλz, H} = 0

and time reversal symmetry implies H = σyλzH
Tσyλz. Both constrain the structure of

the effective Hamiltonian. The dominant contributions for the model atQ = 2π[2/(
√

5+

1)]2 are

V (x) = V1 sin((π −Q)x) + V4 sin((4Q− 3π)x), (5.15)

with V1 = 2W , V4 = W 4/[t3
∏3
l=1(2 sin(lQ))]. Since, in the chiral model γ1 = σxλz, γ2 =

σyλz, γ3 = λy, γ4 = λx form a Clifford algebra, zero modes (as in other magic-angle

systems, such as twisted bilayer graphene [184]) may be readily found analytically at

the vortex like nodes of (V (x), V (y)). The zero modes of h± have the form

Ψ±(x̌) = N e−
∑
i=1,4

2Vi
v0qi

[sin2(
qix

2
)λxσx∓sin2(

qiy

2
)λyσy ]

Φ±, (5.16)



111

Figure 5.11: Probability distributions of zero-energy wavefunctions in real space with
L = 144 and different values of W comparing the exact numerical calculations (top
row) with the analytic results (bottom row) for the wavefunctions of the chiral metal,
in Eq. (5.16). (a) and (d): The wavefunctions are plane waves. (b) and (e): The model
is close to the critical point of the semimetal to metal transition and the wavefunction
looks like a periodic array of localized peaks. (c) and (f): The wavefunctions are delo-
calized but possess intricate structure that agrees qualitatively well with the analytic
prediction. The critical value obtained from numerics is close to W = 0.49. Despite the
analytical treatment overestimating the position of the semimetal to metal transition
by a factor of 2, it leads to qualitatively similar behavior near the transition. As a
result for the analytic results we show W = 0.83 in (d), W = 0.87 in (e), and W = 0.91
in (f).

with q1 = π − Q, q4 = 4Q − 3π, Φ+ = (1, 0, 0, 1), and Φ− = (0, 1, 1, 0) such that

the eigenvalues of σxλx and ∓σyλy are both 1. The solution of Eq. (5.16) is plotted

in Fig. 5.11 along with the numerical solutions. These bound states are irregularly

localized at distances set by 2π/q1,4 and their decay length is given by
√
v0/(q1,4V1,4).

Therefore, a simplest estimate (keeping only q1 and V1) suggests that bound states

become stable for W & W
(0 modes)
c ≡ 1/

√
1 + const.× (π −Q)−2, in good agreement

for Q close to π (apart from the numerical constants) with the Wc obtained of Eq. (5.13).

We conclude with three remarks: First, we repeat that this non-perturbative anal-

ysis is based on the continuum Dirac Hamiltonian which is clearly only justified for

sufficiently low W and inapplicable deep in the metallic phase. Second, we highlight

that the bound state picture explains the observation of the sparse real-space structure

of the eigenstates for W &Wc, see Fig. 5.11. Finally, in order to analyze the importance
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of symmetries, we also applied the same method to a non-chiral model with a QP poten-

tial (from Ref. [7]) and to the model with complex hopping (not included in this thesis).

In both cases additional mass terms appear in Eq. (5.14), which breaks the topologi-

cally protected depletion of the gap inside a vortex configuration of [V (x), V (y)]. As a

consequence, topological bound state solutions are absent in these cases.

Real-space Anderson localization and structure of the mobility edges

Real-space Anderson localization in disordered systems of orthogonal and unitary chiral

classes are special, because the zero energy state is robust against localization [43, 179,

185], and tend to form a line of critical fixed points between Anderson localized states at

finite energy [36]. This model 1 is fundamentally distinct from its random counterpart

because the QP hopping is, in some sense, infinitely correlated and generic localization

at E 6= 0 no longer occurs. It is therefore non-trivial to determine the localization phase

diagram in the present model at finite energies. To do so we compare the typical and

average DOS [see Eq. (2.21)]. Anderson localized eigenstates necessarily have a typical

DOS that goes to zero for increasing KPM expansion order (or system size), and we

compare with the average DOS to differentiate between a hard gap (with no states)

and localized states. We also use Lanczos diagonalization to examine the localization

properties directly via wavefunctions.

As shown in Fig. 5.12, we find that the finite energy eigenstates are not localized for

weak QP hopping strength. For QP hopping strengths beyond the semimetal to metal

phase transition we find semimetal minibands develop at finite energy with a linearly

vanishing DOS that is shifted away from E = 0 and the edges of the these minibands

have Van Hove-like peaks in the average DOS. Interestingly, the typical DOS shows

that these finite energy semimetal minibands are Anderson localized As a result, for

a single value of W there can be various mobility edges in the system and the region

separating localized and delocalized states does not monotonically vary as we tune W .

Looking directly at wavefunctions, we confirm the non-monotonic localization behavior

1L = 610 is a large enough L to suppress this rounding at the expansion orders we consider here.
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Figure 5.12: Localization properties obtained through the typical DOS. Typical DOS
are in black solid lines, and average DOS are in blue dashed lines (to distinguish hard
gaps and localized states) for L = 144 and NC = 214 [(a) W = 0.2; (b) W = 0.4;
(c)W = 0.6; (d) W = 0.8; (e) W = 0.9 and (f) W = 1.0].

and multiple mobility edges in Fig. 5.12. For example, wavefunctions for W = 0.8 and

L = 144 at different energies are plotted in Fig. 5.13. The results clearly show the same

non-monotonic localization properties as a function of energy and are consistent with

the typical DOS diagnostics.

Upon increasing the QP hopping strength further, the number of localized states

increases but even for pure QP hopping (W = 1.0) we still find a finite number of

delocalized states. In particular, the low-energy states that contribute to the diverging

DOS do not appear to localize.
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Figure 5.13: Real-space wavefunctions at various energies corresponding to W = 0.8
and L = 144. (a), (c), and (e) are delcoalized wavefunctions; (b), (d), and (f) are
localized wavefunctions. This confirms the multiple mobility edges observed in the
typical DOS in Fig. 5.12.

5.3.2 Strong quasiperiodic hopping

We now turn to the properties of the QP hopping model in the limit of large W , where

our parametrization of the model gives a purely QP hopping model for W = 1, see

Eq. (5.5). A striking feature of random chiral class models is the presence of a divergence

in the low-energy DOS [43, 44, 179, 181, 37], but this behavior is strongly dependent on

the type of model chosen. In random hopping models the precise form of this divergence

is modified due to Griffith effects [179]. This is naturally a very interesting problem to

compare with the QP hopping model since we know a priori it has no rare region effects.

However, observing anything beyond just a power-law divergence is notoriously difficult

numerically and therefore that is not our goal here. Instead, we aim to demonstrate the

existence of a divergence and not necessarily pinpoint its precise analytic form beyond

the leading power-law dependence.

Diverging low-energy density of states

Focusing on the pure QP limit W = 1, we compute the DOS using KPM on very large

system sizes (L = 987) such that any low-energy divergence of the DOS is not affected

by the mean level spacing on finite size systems. Any low-energy divergence in the

DOS will be rounded out to due the extrinsic effects of finite system size and KPM
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Figure 5.14: Divergence of the low-energy DOS for W = 1 (i.e. pure QP hopping).
(a) NC-dependence near zero energy for a very large system size L = 987 and QL =
2πFn−2/Fn. (Inset) Similar results for the randomized version of the model (letting
the phase be random at each site) with L = 233 for NC = 212, 213, 214, L = 377 for
NC = 215 and L = 610 for NC = 216, note that the divergence is similar between the
two. (b) Divergence of the low-energy DOS for W = 1 in the pure QP limit comparing
two different quasiperiodic wavevectors and the random (R) hopping model with the
KPM expansion order that acts like a low-energy scale that rounds out the divergence
of the DOS. Fits to the power law form are shown as red dashed lines.

expansion order. By going to L = 987 we are able to reach large enough system sizes

so that all of the (artificial) rounding is due to the KPM expansion order i.e. a finite

NC
2. We now reach one of our main results, as shown in Fig. 5.14, we find a clear

divergence of the low-energy DOS in the pure QP hopping model (rounded by the finite

KPM expansion order NC). Since we are working at such large system sizes we can

use the rounding of the divergence in the DOS by NC to our advantage: in order to

accurately compute the power-law divergence in the DOS ρ(E) ∼ 1/|E|xQP , we use the

fact that the KPM expansion order is related to an infrared energy scale NC ∼ 1/δE

that implies the ansatz

ρ(E = 0) ∼ (NC)xQP . (5.17)

As shown in Fig. 5.14, we find that xQP ≈ 0.32 for Q = 2πFn−2/Fn and Q =

2πFn−4/Fn, which is consistent with the divergence and value of xQP beingQ-independent

for irrational Q. Thus, we conclude that randomness is not necessary to create a low-

energy divergence in the DOS. Using ρ(E) ∼ |E|d/z−1 this leads to the estimate z ≈ 3

for W = 1.

2The real hopping model in this work can be decomposed into two decoupled π-flux hopping models.
It belongs to the chiral orthogonal class.
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Figure 5.15: The onset of a divergence in the DOS at zero energy ρ(0) versus (a) NC

and (b) W close to W = 1 and L = 610. We see a trend towards an increasing ρ(0) for
W > 0.95, but there is no clear sign of divergence in the data other then at W = 1.

It is interesting to compare this result with the corresponding randomized version of

the model, which has phases that are random across each bond [i.e. the φν in Eq. ((5.4))

are replaced by φν(r) and sampled between (0, 2π) at each site]. We find the nature of

the divergence of the DOS goes like ρ(E = 0) ∼ (NC)xR with xR ≈ 0.35. Thus, we find

that the low-energy divergence in the QP hopping model agrees well with that of the

random model to within our numerical accuracy. Since these two problems share the

same distribution of hopping strengths at each bond, with the distinction being that

the phases (φν) are correlated across the entire sample for the QP model. Note that

this distribution is Q-independent and is given by the distribution of cos(x) + cos(y)

for x, y ∈ [0, 2π], which is consistent with xQP being Q-independent as we have already

found. In this way, our results on xQP and xR implies that the nature of the low-energy

divergence, is dictated by the distribution and not whether the models possess rare

regions. We note that other numerical studies have also seen just a simple power-law

divergence in related (but not equivalent) disordered models [179].

The low-energy divergence of the DOS for the pure QP limit of the model poses a

natural question: is there a phase with a divergent low-energy DOS or is it only an

isolated point as a function of W? As shown in Fig. 5.15, for KPM expansion orders up

to NC = 218 and L = 610 we do not find a clear sign of a divergence at W < 1 in the

data for ρ(0) versus NC , but we do find that the DOS is showing trends to a divergence

at the largest expansion orders for W & 0.95. Thus, our data suggests that the point

W = 1 is fundamentally distinct from the phases of the model with W < 1, i.e. any
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Figure 5.16: Inverse multifractal exponent α0 as a function of energy for W = 1 and L =
144. The green dashed line indicate the plane wave value 1/α0 = 0.5. Localized states
in the thermodynamic limit give 1/α0 → 0. The results demonstrate non-monotonic
dependence as a function of energy. Blue dots indicate the data extracting from ψ(x)
(b = 1); red dots correspond to the data extracting from binned wavefunctions with
resolution length b = 2. The black arrows indicate the states consisted of double
identical peaks. The corresponding typical DOS values are very small but non-zero in
Fig. 5.12.

finite bare hopping (t > 0) appears to be sufficient to suppress this divergence. If we

instead consider complex QP hopping matrix elements then the low-energy divergence

goes away. As we discuss in Sec. 5.5, we attribute the divergence in the low-energy DOS

to the hopping vanishing along lines in real space which induces an extensive number

of zero modes.

Real-space wavefunctions at W = 1

Here, we focus on the pure QP hopping case (W = 1). As plotted in Fig. 5.12(f), both

low (|E| � 1) and finite energy (|E| ≈ 2.2 − 2.5) delocalized states still appear in the

pure QP hopping limit. This is very different from the expectation from the disordered

problem where all finite-energy states are localized. Therefore, it is important to confirm

the detailed features of the finite-energy localized states.

We compute the multifractal exponent α0 (Ref. [77], see Section 2.2.1) as an in-

dicator of localization. For a uniformly distributed plane wave, α0 = d = 2. For a
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Figure 5.17: Real-space wavefunctions that show double peaks structure for W = 1 and
certain finite energies [(a) E = 0.4; (b) E = 0.6]. These two wavefunctions correspond
to the data in Fig. 5.16 indicated by the black arrows. They are not the conventional
localized or frozen wavefunctions that are found in the disordered systems. Such an
unconventional feature is probably due to the quasiperiodicity.

localized state, α0 → ∞. As shown in Fig. 5.16, the values of α0 show non-monotonic

dependence as a function of energy. We found strongly multifractal delocalized states

(intermediate α0 values) in certain finite energies. Importantly, the low-energy states

remain delocalized within every measure we have considered so far. In addition, we

identify a few delocalized states within the region where the typical DOS is small but

finite (near E ≈ 0.5). Those finite energy wavefunctions consist of two similar peaks

with arbitrary separation in L = 144 as shown in Fig. 5.17. We attribute this feature

to the QP hopping rather than the (chiral) symmetry of the present model. Similar

features are also presents for larger system sizes (L = 610), but the associated energy

region becomes narrower. We can not conclude if such states are due to a finite-size

effect in the current study.

We also study the low-energy wavefunctions in a fixed realization. The low-energy

wavefunctions are strongly multifractal for L = 144 and L = 610. We compute the two-

wavefunction correlation C(E) [given by Eq. (5.9)] to quantify the degrees of probability

amplitude overlap. The numerical results of L = 144 with W = 1 and W = 0.99

(W/t ≈ 7) are plotted in Fig. 5.18. The finite overlap of the wavefunctions with adjacent

energies signals the metallic rather than localized behavior and is consistent with our

intuitive argument about the hybridizing subregion states. Remarkably, the pure QP

hopping (W = 1) limit gives a power-law behavior, C(E) ∼ E−µ, where µ ≈ 0.48 for

L = 144. In the disordered problems with a power-law low-energy DOS, the exponent
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Figure 5.18: Two-wavefunction correlation [given by Eq. (5.9) with E0 ≈ 0] as a function
of energy (E). We take 300 lowest positive energy states of L = 144 per realization and
compute the probability overlap of two wavefunctions in the same realization. The data
is averaged over 400 realizations. E∗ = 0.01 for W = 0.99; E∗ = 0.0025 for W = 1.
We rescale all the data points with the rightmost point. In the pure QP hopping
limit (W = 1), the two wavefunction correlation shows a clear power law scaling. For
W = 0.99, the low-energy wavefunctions lose clear power law overlapping features.

µ is given by µ = [d − τR(2)]/z. In the QP hopping model, we are not aware of any

scaling argument that supports such a relation. If we assume µ = [d − τR(2)]/z and

compute the τR(2) numerically, the dynamic exponent extracted this way is z∗ ≈ 2,

different from the dynamic exponent from low-energy DOS. The discrepancy might

come from (a) the sampled energies are not low enough in C(E) or (b) the relation

µ = [d− τR(2)]/z does not hold in this QP hopping model.

The presence of power law correlations in the wavefunctions implies a multifractal

enhancement of the interactions [170, 171, 172, 173]. Unlike the for plane wave states,

these multifractal wavefunctions have an intricate spatial probability distribution. The

existence of correlations in energy indicates that the probability distributions of wave-

functions at adjacent energies have significant overlaps. Therefore, we expect this po-

tentially produces an enhancement of correlated effects for certain types of four-fermion

interactions. In disordered systems, the multifractal enhancement of interactions is re-

lated to the wavefunction multifractality directly due to quantum-critical scaling. The

relevance of the four-fermion interaction (U) is determined by [173] dU/dl = x1− x(U)
2 ,

where x1 = d − z is the local DOS exponent and x
(U)
2 is the scaling dimension of the
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four fermion operator. In the clean case, the relevance is determined by x1 alone since

x
(U)
2 = 2x1. For disorder systems, x

(U)
2 ≥ x2 where x2 = τR(2)− 2(1−x1) is the scaling

exponent for the second moment of the local DOS operator after the disorder average

has been performed. Nevertheless, it is not currently clear if one can apply the above

results to the present QP hopping model at W = 1; if we do, they imply a strong

multifractal enhancement of some short-range interactions (e.g., the density-density

interaction).

On the other hand, we do not observe power law correlation in our finite size data

for W = 0.99. This indicates that the power law correlation is a special feature in the

pure QP hopping limit. More quantitative tests (e.g., much larger system sizes) are

required to pin down the precise mechanism.

Wavepacket Dynamics

Lastly, we now study the wavepacket dynamics in the QP hopping model using an

expansion of the time evolution operator in terms of Chebyshev polynomials. We are

interested in the spread of the wavepacket 〈δr(t)2〉 in the long-time limit, see Eq. (5.11).

We initialize the state in an up-spin state localized to one lattice site. Then, we use

Eq. (5.12) to extract estimates of an averaged dynamic exponent z̃ via 〈δr(t)2〉 ∼ t2/z̃

as shown in Fig. 5.19 for the largest system size L = 987 considered. Despite the wave

packet dynamics not being energy resolved, for moderate QP strength when a mobility

edge is present in the spectrum, the localized states will not contribute and therefore the

long-time limit of the wavepacket spreading probes contributions to transport from the

“quickest” parts of the spectrum. Thus, in the limit of a large QP potential wavepackets

are a good way to probe dynamical transport properties, despite not being energy

resolved.

As shown in Fig. 5.19 we do not see any clearly diffusive regime in the model

(consistent with other QP studies in two-dimensions [86, 7]). Instead 2/z̃ smoothly

decreases from 2 (for ballistic transport) as a function of the QP hopping strength and

the transport looks super-diffusive 1 < z̃ < 2 and 2/z̃ passes through 1 at W ≈ 0.95.

For W > 0.95 we find z̃ > 2 and the transport appears sub-diffusive, approaching z̃ ≈ 4
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Figure 5.19: Wave packet dynamics, we initialize the wavefunction to be localized to
a single site and evolve it under H. (a) Spread of the wavepacket as a function of
time t on a log-log scale with L = 987 and NC = 213 we never see a clear diffusive
phase (z = 2). (b) Extracted dynamic exponent z from 〈δr(t)2〉 ∼ t2/z̃ (inset) zoom in
near W = 1 with a dashed line to mark diffusion 2/z̃ = 1. Note that the wave packet
dynamics is not sensitive to the semimetal to metal transition at E = 0.

in the pure QP hopping limit.

It is an interesting finding that for the low-energy DOS to diverge requires z > 2, and

our current estimate for z̃ from the wavepackets yields z̃ > 2 for W & 0.95. However,

the DOS does not appear to have any divergence in this regime (see Fig. 5.15), which

suggests that this feature is due to z̃ not being energy resolved. From this perspective,

we contrast this estimate of z with that of the divergence in the DOS. From the power

law divergence at W = 1 we estimate from the DOS z ≈ 3, which is close but does

not completely match the wave packet estimate (z̃ ≈ 4). However, this is not entirely

surprising since the wave packet estimate gets contributions from states across the

spectrum at finite energies (which possess both finite-energy delocalized and localized

states as shown in Fig. 5.12), whereas the DOS is energy resolved and only probes the

states near E = 0. The presence of finite-energy localized states will slow down the

energy averaged transport and give an enhanced value of z̃. These results suggest that

the energy averaged transport properties are sub-diffusive over a range of W , while the

low-energy states only develop sub-diffusion at W = 1.
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5.4 Experimental Realization

In this section we present a way to realize Eq. (5.1) in a cold atomic setup and discuss

how to probe the phase diagram. In addition, we also briefly discuss how the model in

Eq. (5.1) can be implemented using metamaterials.

We closely follow Ref. [121], where two-dimensional spin-orbit coupling in ultracold

atomic bosonic systems was proposed and experimentally tested. The continuum ver-

sion of Eq. (5.1) has the following form (we consider 2 internal degrees of freedom per

atom)

H =
p̂2

2m
+ Vlatt(x̌) +Mx(x̌)σx +My(x̌)σy. (5.18)

The limit of interest is a deep optical potential Vlatt(x̌), in which spin preserving

hopping is suppressed. However, an appropriately designed Mx,y(x̌) assists spin flip

hopping in a certain direction and generates the Hamiltonian of interest.

To realize Eq. (5.18), we follow the recent implementation of two-dimensional SOC

in Ref. [121]. However, in contrast to that work, we tune the angle of incidence of the

Raman beam and detune the system sufficiently strongly such that the Raman laser

(called E2x,z in Ref. [121]) has a wavelength 2π/k2 which differs from twice the lattice

constant 2π/k0. Then, tuning the optical path such that δϕL = π/2 and ϕL = 0, we

find that Mx ∝ [cos(k0x) cos(k2y) − cos(k0y) sin(k2x)] (and analogously for x ↔ y).

For k0 and k2 incommensurate, spin-flip hopping acquires a QP modulation, which in

the tight binding limit leads to a Hamiltonian akin to Eq. (5.1).

In such a setup, experimental verification of the semimetal to metal transition (where

the kinetic energy is quenched, i.e. the “magic-angle” effect) as well as a probe of the

divergent DOS at W = 1 may be achieved using radiofrequency spectroscopy [186].

Within such an experiment, the magic-angle effect of quenched kinetic energy can be

observed by means of momentum resolved radiofrequency spectroscopy. As a comple-

mentary approach, band mapping techniques [187, 188], allow one to reconstruct the

miniband structure experimentally.

Alternatively, metamaterial setups can also realize our model with current experi-

mental techniques. For example, using an array of connected electrical resonators with a
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suitable choice of the intrinsic frequency and connecting capacitance, one can construct

a circuit equivalent to the tight-binding model we have studied here and the overall

absorption spectrum is analogous to the DOS [53, 189] and thus allows one to probe

the semimetal-to-metal transition we have explored here. The spatial distribution of

the eigenmodes of resonance can also verify our results regarding localization. Besides

resonators, photonic [190] and phononic [191] systems are also nicely tunable and we

also expect that they can be used to engineer the Hamiltonian in Eq (5.1) in a majority

of the parameter space.

5.5 Discussion and Conclusion

We have analyzed the properties of a two-dimensional Dirac semimetal with quasiperi-

odicity that respects chiral symmetry. The quasiperiodicity takes the form of a QP

hopping on a tight-binding model. As shown in Fig. 5.1(a), the low-energy states

demonstrates a semimetal phase with Dirac cones in the band structure, a chiral metal

phase with non-trivial real space structure in the wavefunctions, as well as the pure QP

hopping limit W = 1 [see the paramaterization of t in Eq. (5.5)], which is critical ex-

hibiting sub-diffusive dynamics. A clear demonstration of the semimetal to metal EPT,

in the DOS [see Eq. (2.1)] and the inverse participation ratio (IPR) in momentum space

[see Eq. (5.8)], is shown in Fig. 5.1(b). The momentum-space IPR (indicating a delo-

calization in the momentum basis) vanishes in a continuous fashion concomitantly with

the onset of the zero-energy DOS, which demonstrates the nature of this phase transi-

tion in the structure of the eigenstates and eigenvalues, respectively. In Fig. 5.1(c) we

show the diverging DOS in the pure QP hopping limit and we find that the low-energy

eigenstates in this regime exhibit quantum-critical Chalker scaling.

First, we demonstrate the stability of the two-dimensional semimetal phase to QP

hopping. We find that the QP hopping introduces gaps at finite energy that create a

low-energy semimetal miniband that retains the scaling ρ(E) ∼ |E|. The semimetal

phase persists until a critical, Q-dependent, potential strength Wc where a semimetal to

metal transition takes place. At this transition the Dirac velocity vanishes in a universal
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fashion and the low-energy bands become flat, which should strongly enhance correla-

tion effects and has been dubbed magic-angle transitions in analogy to twisted bilayer

graphene at the magic-angle [55, 54]. Concomitantly, the single-particle wavefunctions

delocalize in momentum space. Interestingly, we find that the velocity vanishes with a

critical exponent that is in excellent agreement with models that have a QP potential

and are lacking chiral symmetry. While these results suggest that the chiral symmetry

does not play a role in the critical properties of the semimetal to metal transition, they

do have a strong effect on the structure of the phase diagram and the minibandwidth

renormalization (being about 4 orders of magnitude smaller then for a QP potential [7]).

For example, we find that the metallic phase does not undergo an additional transi-

tion back to a reentrant semimetal phase, which occurs in a wide multitude of other

models [7]. In the metallic phase, we find that the low-energy eigenstates are weakly

multifractal in momentum space and wavepacket dynamics are super-diffusive over a

large region of the phase diagram (W < 0.95). Using the chiral symmetry of the model,

we characterize this transition and the formation of the low-energy DOS as a band of

topological zero modes that form due to bound zero-energy states that arise from a

sign-changing Dirac mass [182, 183]. If we consider values of Q that are commensu-

rate but are close to the irrational values we have investigated here, then the single

particle phase transition will be rounded into a cross over, which will result in a small

but non-vanishing velocity and the momentum-space wavefunctions that do not truly

delocalize.

We also investigate the effects of strong quasiperiodicity and therefore determine

the real-space Anderson localization properties of this model. We demonstrate that the

model exhibits a sequence of real space Anderson localization-delocalization transitions

as a function of energy and thus the system hosts multiple mobility edges. Interestingly,

the low-energy eigenstates evade exponential localization and appear to remain critical

even for maximal QP hopping strength (W = 1). These results are markedly distinct

from disordered systems, where all the finite-energy eigenstates would be localized for

the models with real and complex random hopping terms. We verify this non-trivial
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structure of the phase diagram characterizing real space localization by using a combi-

nation of typical density of states and wavefunction analysis.

In the pure QP hopping limit (W = 1), the system exhibits a diverging DOS at

zero energy, see Fig. 5.1(c). We provide evidence that this power-law divergence is

universal, for irrational Q. The low-energy states that make up this divergence are not

exponentially localized, and instead appear strongly multifractal, i.e. critical. Using

wavepacket dynamics we have shown that the majority of the chiral metal phase is

super-diffusive and crosses over to sub-diffusion near W ≈ 0.95. These results are

consistent with that the low-energy states are not localized. The slow sub-diffusive

wavepacket dynamics gives a dynamical exponent z ≈ 3. In addition, we find power-

law scaling as a function of energy for almost two decades in the two-wavefunction

correlation [see Eq. (5.9)] (in the W = 1 limit). This provides strong numerical evidence

of Chalker scaling without randomness [165, 166]. Interestingly, we find Chalker scaling

does not clearly hold in the limit of the pure complex quasiperiodic hopping (not shown),

demonstrating that the strong correlations between wavefunctions seem to rely on the

low-energy diverging DOS in the limit of real quasiperiodic hopping.

One remaining important question is to understand the origin of the diverging low-

energy DOS for W = 1. We provide evidence that this is a result of local sub regions

with an imbalance NA 6= NB of sublattice sites. This induces a pile up of an extensive

number of zero modes due to the QP hopping elements vanishing along certain lines

in real space. In Fig. 5.20 we plot the configuration of hopping matrix elements in the

pure QP hopping model (W = 1) and strong QP hopping (W = 0.9). The pure QP

hopping case shows nearly zero hopping lines which effectively cut the system into many

subsystems. Those nearly zero lines roughly track the zeros of the QP hopping, which

are obtained by solving cos(2πQLx
∗ + φx) + cos(2πQLy

∗ + φy) = 0 for x∗ and y∗. It is

apparent that there are several virtually disconnected subregions in which NA−NB 6= 0.

Those are an imperative origin of zero modes by means of a poor-man’s index theorem

(rectangular matrices have a non-zero kernel)[192, 193]. To add additional support to

this picture we have also studied a model with complex QP hopping amplitudes. This

model is chosen to have no lines of vanishing hopping strength as in Fig. 5.20, since
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Figure 5.20: The hopping configurations of QP hopping models with L = 13. (Right)
The hopping configuration of the QP hopping model with W = 1. The QP pattern
generates nearly zero lines of bonds which effectively separate the system into many
subsystems. (Left) The hopping configuration of the QP hopping model with W = 0.9.
The system is typically well connected as a whole.

the bonds’ norms can now never vanish. Interestingly, we also find that (not shown)

the complex QP hopping model has no diverging DOS for pure complex hopping. In

addition, we also find that this model does not exhibit Chalker scaling. These results

lend support to the above argument but are not conclusive and therefore we leave the

question of the origin of the pile up of zero energy states at W = 1 to future work.

Lastly, our work demonstrates two separate routes to inducing strong correlations in

quasiperiodic semimetals. The first is due to magic-angle transitions, where the Dirac

cone velocity vanishes at an EPT. The second route is due to Chalker scaling in the

limit of pure QP hopping. The presence of power-law correlations in the wavefunctions

potentially implies a multifractal enhancement of the interactions [170, 171, 172, 173].

Our work provides a clear cut example of how this can occur in the absence of random-

ness.

5.6 Appendix: Quadrupole topological insulator at commensurate

limits of the model

As we already discussed in the main text, for Q = π, the model in Eq. (5.1) is a

quadrupole topological insulator [162]. In this case, the model can be separated into

two copies of decoupled π flux model by alternating spin. For each copy, four lattice
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Figure 5.21: (a) Density of state by energy, with QL = π, in twisted periodic boundary
condition (TPBC) and open boundary condition (OBC). Both boundary conditions
show bulk gap, while OBC allows the topological corner states. The system size is
L = 144, and QL = 2π(72/L). NC = 8192 for KPM calculations. (b) real space wave
function at QL = π and W = 0.4. System size is L = 89.

sites on the corners of a plaquette form a unit cell when Q = π. We label them from the

left-bottom corner as |1 ↑〉, |3 ↓〉, |4 ↑〉 and |2 ↓〉 counterclockwise (and opposite spin

labels for the other copy). The Bloch Hamiltonian is given by h(k) = W (cos(kx)τxσ0−

sin(kx)τyσx − cos(ky)τyσy − sin(ky)τyσx) + E0(k)τzσ0, where σ, τ are Pauli matrices

that act on the degrees of freedom within a unit cell, with identical/opposite spin

respectively. The dispersion with W = 0 is E0(k) = ±2t
√

sin k2
x + sin k2

y.

For W > 0, we see a hard gap near E = 0. When L is odd with twisted periodic

boundary condition, or L is even with open boundary condition, a small peak is seen at

E = 0 [Fig. 5.21(a)]. When L is even and taking closed boundary condition, the corner

state do not show up. The corner states survive twisted periodic boundary condition

when L is odd because the unit cell has size 2 × 2, and hence a strip of half unit cells

opens the boundary. The peak includes two states, independent of what L is chosen to

calculate the DOS, indicating a topological nature of such a peak. The wavefunction

data shown in Fig. 5.21 (b) also indicates that the system is in a quadrupole TI phase

since the zero-energy wavefunction concentrates near the corners.
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Chapter 6

Flat Topological Bands and Eigenstate Criticality in a

Quasiperiodic Insulator

6.1 Introduction

So far, the previous chapters solely focused on the behavior of semimetals. Now we shift

gear to look at a model of topological insulators (TI), applying similar ideas. As we

have discussed in Chapter 1, models of TI may often be tightly related to semimetals.

For 2D TI, the chiral boundary state can be thought of as an 1D model of semimetal.

Meanwhile, for models of 2D topological insulators controlled by a parameter (which

will be called topological mass, to be clarified later), the phase boundary between

topologically distinct insulating phases are semimetals. The existence of semimetal is

guaranteed on the phase space of models of topological insulators because the topology

can only change when different bands touch – and that is when semimetal shows up.

The existence of a point on the one-parameter phase diagram that manifests semimetal

provides a natural path to expand the finding of previous chapters into topological insu-

lator. In this chapter, we attempt to apply the same quasiperiodic (QP) potential as in

the perfect spin-orbit coupling (SOC) model in Chapter 3 to a model of 2D topological

insulator, the Bernevig-Hughes-Zhang(BHZ) model. From the semimetal phase bound-

ary hosting a Dirac semimetal, we can first verify that the same universal physics, the

“magic-angle” transition is valid here. Analytical method will allow as to have some

basic understanding of the expected phase diagram with very weak quasiperiodicity.

Then we move away from the semimetallic line and the weak quasiperiodicity regime

in the two-parameter phase diagram and explore extensively the rich phase diagram

created by the interplay between quasiperiodicity and topology, taking advantage of

the numerical methods discussed in Chapter 2.
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The particular interest of such generalization to topological insulator is connected to

the pursuit for topological flat bands to host topological strong correlated phases. The

phenomena from the interplay of topology and strong correlations has been generally

fascinating, with the fractional quantum Hall effect [194] serving as the quintessen-

tial example. Conventionally, the magnetic field induces topology in the electronic

many-body wavefunction; however, Berry curvature of the band structure is sufficient

to induce topological single-particle wavefunctions that can survive the presence of in-

teractions (see Ref. [195] for a review). Despite strong numerical evidence of fractional

Chern and Z2 insulators [196, 197, 198, 199, 200, 201], identifying a clear experimental

route to the many-body analog of the fractional quantum Hall effect without a magnetic

field remains challenging. Research in this direction has aimed to identify lattices with

flat topological bands that quench the kinetic energy, promoting strong correlations

[202, 203, 204, 205, 206, 207, 94].

Recent work on twisted graphene heterostructures opened up new platforms to

study strongly correlated physics, including correlated insulators [55], superconductiv-

ity [54, 97], and Chern insulators [208, 209, 210]. Proposals for realizing flat topological

bands in these systems have followed [211, 212, 213, 114, 214, 215, 216, 217, 218].

Meanwhile, as clearly shown in Chapter 3 and 5, quasiperiodicity can emulate the in-

commensurate effect of the twist, which brings extreme downfolding of the Brillouin

zone, can open gaps and quench the kinetic energy by flattening bands, and leads to

new phases and critical eigenstates. Such idea of emulating the twist can help us in

understanding the theory for fractional Chern and Z2 insulators in incommensurate

systems and how eigenstate criticality plays a role, by providing a simple model to

theoretically study and experimentally realize as we demonstrate in this chapter. The

notion of flat band engineering with incommensuration has broad applicability outside

twisted heterostructures, including ultra-cold atomic gases [219, 120, 121] and metama-

terials [220, 221, 53, 222].

In this chapter, we study a minimal model for a two-dimensional topological insula-

tor with a quasiperiodic potential to find a controllable route to create flat topological

bands and induce quantum phase transitions beyond the Landau-Ginzburg paradigm,
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Figure 6.1: Phase Diagram of the BHZ model in Eq. (6.1) at the band center with
topological mass M and quasiperiodic potential strength W . There are five illustrated
phases: topological (TI), normal (NI), and Anderson (AI) insulators, Dirac semimetal
(SM), and critical metal (CM). The green and red data points use the density of states
in Eq. (6.3) to locate the transitions between TI and NI. Among them, the green
data points and the green vertical line at M = 2 are SMs, terminated at magic-angle
transitions (see Sec. 6.5) at the green stars. The black dashed lines are the perturbative
prediction for the SM lines (e.g. Eq. (6.23)). The blue circles use transport [Eq. (6.2)]
to determine the CM to AI boundary.

as there is no spontaneous symmetry breaking involved. These transitions represent a

universality class beyond the Altland-Zirnbauer classification of random matrices for

disordered systems [40, 223]. Using analytic and numeric techniques, we find an

intricate phase diagram, as shown in Fig. 6.1. Particularly, quasiperiodicity creates

practically flat topological bands near where finite-energy states exhibit criticality. At

the transition between topological and trivial insulators, the system realizes a magic-

angle semimetal with features previously studied in Chapter 3. We further characterize

the critical properties of the various eigenstate transitions, understanding them as local-

ization and delocalization transitions in momentum- or real-space bases. Importantly,

these transitions and phases could be directly realized in twisted bilayer graphene that

is close to aligned with a hexagonal boron nitride substrate [224, 225, 226].
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6.2 Model

To describe a two-dimensional topological insulator, we use the Bernevig-Hughes-Zhang

(BHZ) model [12] with a 2D quasiperiodic potential. The square-lattice Hamiltonian

(with sites r) is block diagonal

Ĥ =
∑
r,r′

c†r′

hr′r 0

0 h∗r′r

 cr +
∑
r

c†rVQP (r)cr, (6.1)

where cr are four-component annihilation operators and VQP (r) = W
∑

µ=x,y cos(Qrµ+

φµ) is the quasiperiodic potential (QP) with amplitude W , wavevector Q, and random

phase φµ; hr′r is a two-by-two matrix describing one block of the BHZ model (h∗, its

complex conjugate). The nonzero elements of h are hrr = (M − 2t)σz and hr,r+µ̂ =

h†r,r−µ̂ = 1
2 t(−iσµ+σz) for µ = x, y with Pauli matrices σµ. Topological mass M and the

hopping t = 1 set the energy scale. Most analyses are done on the two-by-two matrix

since time-reversal symmetry relates each block, and VQP (r) does not couple blocks.

To reduce finite-size effects, we average over twisted boundary conditions implemented

with t → teiθ̃µ/L for a twist θ̃µ in the µ-direction randomly sampled from [0, 2π). The

model is invariant under M → 4−M , so we focus on M ≥ 2. For 2 < M < 4, the band

structure (i.e., W = 0) is topological with a quantized spin Hall effect Q = σ+
xy − σ−xy

where σ±xy are Hall conductivities for the blocks defined by h and h∗ respectively. The

superscript ± will be dropped as we focus on the h block only. At M = 2 [M = 4], the

model is a Dirac semimetal with Dirac points at X = (π, 0) and Y = (0, π) [M = (π, π)]

with velocity v0 = t.

Quasiperiodicity is encoded in Q, which in the thermodynamic limit we define as

Q/(2π) = (2/(
√

5 + 1))2. For simulations, we take rational approximates such that

Q ≈ QL = 2πFn−2/Fn, where Fn is the nth Fibonacci number, and the system size

is L = Fn. We also briefly explore other values of Q, which demonstrate qualitatively

similar phase diagram but are worth further study.



133

6.3 Methods

We investigate the phase diagram and phase transitions with spectral observables and

eigenstates. Despite the methods are largely similar to the other chapters in this dis-

sertation and are explained in Chapter 2, it is worth some extra discussion, especially

pertaining to the topology under quasiperiodicity. Because the model in Eq. (6.1) with

quasiperiodicity lacks translational symmetry, we need to treat the entire L×L system

as a supercell, where the thermodynamic limit is L → ∞. At finite L, we define an

effective band structure that is downfolded into a mini Brillouin zone (mBZ) of size

2π/L× 2π/L.

We utilize twisted boundary condition both to help converging numerical calculation

of spectral quantities and to help studying the dispersion and band structures, probing

into the mini Brillouin zone. The twisted boundary condition we implemented, tµ →

tµe
iθµ/L, effectively shifts momentum k by θ/L . Without a quasiperiodic potential,

this corresponds to a trivial folding of the original energy dispersion E(k) such that

En(θ) = E(2πn/L+ θ/L) for band n in the Brillouin zone defined by the supercell of

size L × L. In other words, θ/L is the momentum in the mini-Brillouin zone of the

superlattice made of L× L supercells.

We apply the kernel polynomial method (KPM, see Chapter 2) to compute spectral

quantities and Lanczos or exact diagonalization to compute eigenstate properties. While

the KPM and Lanczos work for larger L than exact diagonalization, KPM introduces

broadening to the data controlled by polynomial expansion cutoff Nc [4] and Lanczos

limited to a small range of the spectrum.

To distinguish trivial, topological, and Anderson insulator phases, we calculate the

conductivity tensor defined through Kubo formula [64] as elaborated in 2.5.

σαβ =
2e2~
L2

∫
f(ε)dε Im Tr

s
vα
dG−

dε
vβδ(ε−H)

{
(6.2)

where f is the zero-temperature Fermi function with Fermi energy Ef , and G− is the

retarded Green’s function. Importantly, the average for J· · ·K is over phases in the QP

(φµ) and twists (θ̃µ) in the boundary condition. To determine phase boundaries and

transition properties, we compute the density of states (DOS) which reflects band gaps
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and the low energy behavior of the semimetallic phase. The DOS at energy E is

ρ(E) =
1

NH

s∑
i

δ(E − Ei)
{

(6.3)

where NH = 2L2 is the size of the single particle Hilbert space, and Ei denotes the

energy eigenvalues. The gap centered at zero energy ∆ is estimated with the KPM

via the DOS satisfying ρ(E) < 0.001 and with shift-invert Lanczos about E = 0.

Along the semimetal lines the low-energy DOS goes like ρ(E) ∼ ṽ−2|E|, where ṽ is the

renormalized velocity of the Dirac cones that we calculate through the scaling with Nc.

For wavefunctions, we compute the inverse participation ratios (IPRs) in real and

momentum space to discern localized, extended or critical states. The IPR in a basis

indexed by α is (see Section 2.2.1 for details)

Iα(E) =
∑
α

q
|〈α|ψE〉|4

y
(6.4)

using normalized wave functions in the momentum space (α = k) or real space (α = r)

basis. For systems localized in basis α, Iα is L-independent; for delocalized systems, it

goes like Iα ∼ 1/L2. At a localization transition [227, 37] Iα ∼ 1/Lγ where 0 < γ < 2

is the fractal dimension (D2); γ is extracted from the finite size effect when calculating

Iα at various system sizes.

To study band flatness and topology of the effective band-structure in the mBZ, we

calculate the wavefunction |ψEn(θ)〉, where θ is the crystal momentum of the L × L

super-cell (via the twist in the boundary condition as θ = θ̃/L) and En is the energy

of the nth band labelled in ascending order. The bandwidth is then defined as wn =

max |En(θ)−En(θ′)|θ,θ′ and the direct band gap is ∆n = En+1(θ)−En(θ). The flatness

ratio, which measures a band’s flatness and its isolation from the neighboring bands is

defined following [207] as

fn = min{∆n,∆n−1}/wn. (6.5)

The Berry curvature Ωn(θ) and Chern number Cn can be determined via momentum-

space plaquettes defined by the four momenta θ → θ1 → θ2 → θ3 → θ 1 and they can

1All plaquettes must be chosen with the same orientation.
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be calculated following [228]

Ωn(θ) = Im ln
Un(θ,θ1)Un(θ1,θ2)

Un(θ,θ3)Un(θ3,θ2)
, Cn =

1

2π

∑
θ

Ωn(θ) (6.6)

where Un(θa,θb) = 〈ψn(θa)|ψn(θb)〉/|〈ψn(θa)|ψn(θb)〉| and the sum to obtain Cn is over

the mBZ [0, 2π/L)2. Lastly, we use machine learning of the wavefunctions to provide

an efficient survey of a large parameter space (in W , M , and E) as an additional

validation of the main phase diagram.

6.4 Phase Diagram

: Using diagrammatic perturbation theory and numerical calculations with the KPM

and Lanczos we obtain the phase diagrams shown in Fig. 6.1. There are five phases

pictured: topological insulator (TI), normal insulator (NI), critical metal (CM), An-

derson insulator (AI), and lines of Dirac semimetals (SM) between TI and NI phases.

Both band-insulating and SM phases are stable to weak quasiperiodicity. Finite band

gaps and quantized (zero) spin Hall conductivity describe the TI (NI) phase, calculated

using the KPM method with Eq. (6.2). Low-energy scaling of the DOS ρ(E) ∼ ṽ−2|E|

captures the SM phases (marked with green data points). Other boundaries between

gapped and finite DOS at E = 0 are marked with red data points. These DOS results

trace the phase boundaries between TI and NI (green) and between TI and CM (red).

The AI phase has a finite DOS but zero conductivity and localized wave functions (i.e.,

real space IPR that is L-independent), with the phase boundary marked by blue circles

with error bars. The structure revealed is Q-dependent and reminiscent of other studies

of insulating phases perturbed by quasiperiodicity [229].

Upon increasing W , for M . 4 and M & 5 we traverse the phases TI/NI → CM →

AI. However, more complicated cuts are possible between M = 4.5 and M = 5.3, where

quasiperiodicity drives trivial phases topological (for 4 < M . 5.0) and into-and-out-of

metallic and topological phases at zero-energy. An example is shown in Fig. 6.2(b) for

M = 4.9, where increasing W leads to the phases NI → SM → TI → CM → TI → SM

→ NI → CM → AI.

The physics on the SM lines emanating from M = 2 or M = 4 at W = 0 agrees
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T

Figure 6.2: (a) Full phase diagram with all measures used to diagonose phases and
transitions. The magenta line shows the boundary between delocalized or critical phase
and localized phase at zero energy, as indicated by the neural net model. The dark
region, roughly extending from M = 4, W = 3 to M = 4.5, W = 4 is indicated as
critical phase by the neural net model, but not identified by any other observables.
The dashed orange line inside the TI phase shows where the size of the gap centered
at E = 0 is maximals and thus starts to significantly deviate from perturbation theory.
(b) A cut of the phase diagram in energy space represented by the yellow line in (a).
Notice the multiple phase transitions, all driven by quasiperiodicity (W ) and the higher
energy metallic nature. The pink curve represents the boundary to machine-learned,
localized eigenstates.

with the universal features found in Ref. [7] and reveals magic-angle transitions marked

by green stars in Fig. 6.1(a). Concentrating on M = 2, the semimetal is stable with a

velocity (calculated from the DOS) that vanishes like ṽ ∼ (Wc(M = 2)−W )β/2 where

Wc(M = 2) = 1.42± 0.02 and β = 2± 0.3, which is close to the universal value β ≈ 2

obtained in other models and symmetry classes (see Chapter 3 and 5). A CM phase

is found as well as a localization transition at WA(M = 2) = 1.50± 0.03.

6.4.1 Machine Learning the localization transition

In the present model, we found it challenging to pinpoint the Anderson localization

transition using conductivity and the inverse participation ratio due to a large number

of critical states that can appear localized by some metrics but not others. Therefore,

we have supplemented this analysis with a machine learning classification of the single

particle wavefunctions, utilizing a neural network model.

The problem that we want the neural network to solve is to distinguish localized

wavefunctions from extended ones. This task can be thought of as a mapping from

the space of all wavefunctions to a binary result of localized or extended. Using a set

of wavefunctions labelled in advance, we can train the neural network to capture the
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Figure 6.3: Finite energy topological phase diagram. The Hall conductivity σxy at
various Fermi energies EF and quasiperiodicity W . The red lines are the perturbation
theory prediction of gap size.

relation between wavefunction data and the prediction of a localized phase. Once the

training is finished, we can use the neural network model to classify a much larger

dataset of wavefunctions, and map out a detailed phase diagram.

In this problem, we find a simple version of ConvNet [230] easily applicable. The

wavefunction classification task is somewhat analogous to figuring out whether the im-

age includes a dog or cat, which is a classical application of ConvNet models. The

ConvNet architecture makes use of a convolution operation prior to applying the non-

linear functions. The convolution operations effectively scrambles but preserves the

information at various locations of the input data, and hence makes the model “trans-

lational invariant”, i.e. the location of the feature does not affect the output. Such

translational invariance allows the neural net model to treat critical and/or localized

structures at different locations in the same way.

The neural network methods of machine learning usually suffer from over-fitting that

harms the predictive power of the model. Simple and conventional methods against

over-fitting including adding regularization terms, use of drop-off layers [231] and so

on. These methods are practically efficient and sufficient for our purpose.

A summary of the architecture we have used with a convolutional neural network

and drop-off layers is shown in Fig. 6.4. The result is not sensitive to different choices

of model hyper-parameters. The robustness across different setups is likely because the

localization feature is prominent and less ambiguous as opposed to typical computer
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3@144x144

13@140x140
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Figure 6.4: Schematic diagram of the neural network structure used for lo-
calization detection. For convolution layers, we apply a convolution operation over
a small window to get a data point in the next layer. Max-Pool layer simply takes the
maximum of each window to reduce the model size. We also add batch-normalization
and dropout layers before and after Max-Pool, but they are not shown here as they do
not alter the overall architecture.

vision tasks.

What remains crucial is the labelling of training set. The training set is constructed

in two different ways:

1. We look at the images to judge whether each wavefunction is clearly localized or

not. The cases in which we are unsure are discarded from the training set. To

minimize the affect of systematic bias caused in labelling the training set, we go

through wavefunctions at several runs where each set is drawn randomly from the

entire collection of wavefunctions and shuffled. Hence, the mislabelling can be

considered as a random variation that is independent from the features that do

not affect decision boundaries.

2. We choose W > 6 for localized wavefunction examples, and sample W = 0 at

various values of M for extended wavefunctions.

The training set of method 2 does not include any of the critical wavefunctions in

the CM phase. As a result, the ConvNet model identifies the critical phase as localized,

producing a phase boundary in line with SM/TI to CM transition. This result can also

be replicated using the training set from method 1 if we only include extended and fully

localized wavefunctions. However, with method 1 we can instead label a dataset such

that the non-localized label includes critical wavefunctions to provide an interesting
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Figure 6.5: Comparing the IPR with the machine learning outcome. (a) Shows
an example of the neural network output for M = 2.7, given as the probability of a
state being localized [P (loc)] or extended [P (ext)]. The summarized results are shown
for M = 2.7 (b) and M = 4.9 (c), with comparison against KPM and IPR results.
The difference between the two probabilities measures how confidently the model can
distinguish localized or extended. Also shown in the figure with the magenta strips is
the phase boundary determined by the conductivity, which indicates a transition near
W = 2.25 for M = 2.7, and W = 3.4 for M = 4.9. Although the three different methods
match quite well for M = 4.9, for M = 2.7 the IPR shows strongly critical behavior up
until W = 2.5, well after the conductivity appears to vanish. Such critical behavior is
detected by the neural net model. For W between 2.3 and 2.5 the IPR shows a strong L
dependence and the neural net model predicts an extended phase with high confidence.
For a range of W larger than 2.5, the IPR shows a weak L dependence across different
system sizes, while in the neural net model P (loc) and P (ext) are quite close to each
other.

complement to the KPM results and is hence included in the main results of Figure 6.1,

which we overlaid in Figure 6.2(a).

The phase boundary obtained from machine learning between localized and non-

localized wavefunctions roughly traces the CM-AI phase boundary provided by the

conductivity computed with the KPM for M between 3.8 and 5.4, but it provides a

slightly different boundary elsewhere. For M < 3.8, the machine learning result labels

regions as critical that have a conductivity that looks localized (i.e. σxx is vanishing

with increasing Nc). We further investigate the nature of this region using the inverse

participation ratio (IPR) in real and momentum space bases, see Fig. 6.5. The IPR in

this region shows critical behavior that transits into a localized phase at a point that

is hard to accurately determine. The machine learning result provides a conservative

estimate of where the criticality ends and localization sets in.

In summary, our use of the machine learning method in the present context is to

provide an additional measure of the non-trivial phase boundaries that have a lot of

structure. We then use conventional methods (conductivity and the IPR) to validate
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the physical nature of the phase boundaries.

6.5 Magic-angle transition

The boundary between topologically distinct insulating phases is semimetal in the case

without quasiperiodicity. In the BHZ model, the semimetal at M = 2 exstend to a

line of semimetal for a range of W until it undergoes a magic-angle transition much

similar to the discussion in Chapter 3. Also, the perturbation theory in previous section

shows that the topological mass is not renormalized from M = 2,W = 0, making the

semimetal phase a straight line in the M−W phase diagram. As quasiperiodic potential

increases, the semimetal stays stable with a renormalized velocity (calculated from the

DOS) that vanishes like ṽ ∼ (Wc(M = 2)−W )β/2 where Wc(M = 2) = 1.42± 0.02 and

β = 2± 0.3. This is demonstrated in Fig. 6.6(a) where ṽ vanishes when ρ(0) rises.

Additionally, the wave functions are localized in momentum space when W <

Wc(M = 2), and delocalized in momentum space when W > Wc(M = 2) (as indi-

cated in Fig. 6.6(b) by Ik being L-independent and Ik ∼ 1/L2, respectively). When

the real space IPR is L-independent and the resistivity increases with L and Nc, there

is a localization transition with WA(M = 2) = 1.50± 0.03, indicating a small but finite

CM phase.

6.6 TI-to-CM transition

To analyze topological transitions that are forbidden in disorder systems we use numer-

ics to capture the full, nonperturbative transition to the CM phase located at Wc(M).

Near the transition, the correlation length diverges as ξ ∼ |W −Wc|−ν while scale in-

variance implies that the gap ∆ ∼ ξ−z; therefore the gap vanishes like ∆ ∼ |W −Wc|νz.

Through the KPM calculation of DOS and Lanczos calculation of lowest energy states,

we find νz ≈ 1 for each M value we have considered, see Fig. 6.7(a).

These exponents indicate a unique universality class driven by quasiperiodicity dis-

tinct from random systems. Since our system breaks up into two blocks, each in the

same symmetry class as the quantum Hall effect (i.e., class A), random disorder does not
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Figure 6.6: The magic-angle transition for the semimetal line M = 2. (a)
Renormalized velocity v/v(0) and the resulting finite density of states ρ(0) at the tran-
sition, extracted from ρ(E) that is calculated using KPM method with system size
L = 144, Chebyshev cutoff Nc = 215. (b) These plots indicate the appearance of a
critical metallic phase 1.4 . W . 1.5 inferred from both the resistivity ρxx and the
scaling of the momentum- and real-space IPRs. ρxx is calculated using Kubo formula
with KPM method. The L-dependence of the IPRs is fitted from lowest energy eigen-
states obtained using Lanczos method for L = 89, L = 144, and L = 233 to a power
law form Iα ∼ 1/Lγα , and γα is shown as the right vertical axis.

allow for a metallic phase [37, 223, 232]. Therefore, topological phase transitions driven

by quasiperiodicity host unique universality classes beyond the ten Altland-Zirnbauer

random matrix classes [40].

When gap closes at Wc(M), the conductivity at E = 0 becomes finite, and the Hall

conductivity is no longer quantized, indicating the onset of the CM phase. As seen in

Fig. 6.7(b), the Hall conductivity drops, and σxx peaks at the transition, remaining

finite for the duration of the CM. The transition does not involve any symmetry

breaking; it occurs when the topological gap closes and σxy is no longer quantized. For

larger values of W , we find a transition into an Anderson insulating phase [37, 36] with

exponentially localized wavefunctions in real space and a vanishing σxx.

6.6.1 Critical Exponents at the topological insulator to metal phase

transition

The critical exponents at the TI-to-CM phase transition is extracted from the gap size.

Here we demonstrate this process in more detail. The ∆ is calculated using Lanczos

here, as we focus on a very small range of parameters, making Lanczos more efficient

than KPM.
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Figure 6.7: Demonstration of the TI-to-CM transition. (a) Tracking the density
of states computed with the KPM in Eq. (2.1), we see the (hard) band gap closes as
a power law ∆ = (Wc(M) −W )νz and find νz ≈ 1 at the TI-to-CM transition across
each value of M . (b) Shows the conductivity computed with the KPM in Eq. (6.2) as a
function of quasiperiodic strength W for M = 4.0. The Hall conductivity σxy saturates
to a finite value in the TI phase, but for Wc(M = 4) ≈ 2 . W . 3 the longitudinal
conductivity becomes finite and the Hall part is suppressed. The system is localized
when W & 3. Note that the feature near W = 0 is due to M = 4 being a SM. We stress
that this metallic phase and therefore this transition does not exist in the presence of
randomness.

We first estimate the critical quasiperiodic strength Wc from the density of states

data. Near the estimatedWc, we consider a range ofWc and fit log(∆) over log(Wc−W ),

see Fig. 6.12(d). Then we identify the range of W that log ∆ is linear to log(Wc −W )

and use least square fit. The best Wc is picked according to the goodness of linear fit,

here quantified with root mean square error of the fit, see Fig. 6.12(e). The slope of

the best fit is then νz, where ∆ ∼ (Wc−W )νz. For some cases this critical exponent is

difficult to determine accurately because of the very fine phase diagram structure. For

a few fixed M cuts including M = 2.4, M = 3.0, M = 3.3 and M = 3.8, we find νz near

1.0. To be precise, for M = 2.4 we have νz = 1.06± 0.1; for M = 3.0, νz = 1.00± 0.1;

for M = 3.3, νz = 0.95± 0.2; for M = 3.8, νz = 1.13± 0.15

6.7 Criticality and flat topological bands

At small W , the insulating band gap [computed via the DOS in Eq. (6.3)] increases for

some values of M but decreases for larger W , which is beyond the perturbative theory

in Eq. (6.23). This non-monotonicity (whose onset is mapped in Fig. 6.13) coincides
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Figure 6.8: Flat Chern bands and eigenstate criticality. (a) Color plot of the
momentum-space IPR system-size scaling. The value of γk is given by the color. The
lowest energy states (and narrowest set of states) has a Chern number of 1. The white
regions are hard gaps. (b; left) the conductivity calculated from Eq. 6.2 with L = 377
and cutoff Nc = 214. (b; right) Dispersion relation En(θ) along a representative cut
in the mBZ for a sequence of L = Fn with even n, for W = 1.0154. For each L, the
green band carries Chern number −2, the first 4 bands (from green to cyan) sum to
Chern number 1, and the 25 bands pictured in each plot sum to Chern number 1 (for
L = 55, the pattern appears to hold but the lowest bands do not have a well-defined
gap). (c) the flatness ratio fg (left) and the normalized standard deviation of Berry
curvature Ωg across the folded Brillouin zone (right) of the first band above E = −0.5,
for various L values. The filled markers (•) indicate topological bands while empty
markers (◦) indicate trivial bands (excluded in the right). The squares (�) and circles
(•) correspond to L = Fn such that n is odd and even, respectively.
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Figure 6.9: L dependence of the IPR Here we demonstrate two examples of how
we determine γα for IPR data in the basis α = x, k, where Iα ∼ L−γα , for M = 2.7 (a)
and M = 3.3 (b). We take a linear fit for log Ik or log Ix over logL, then the slope of
the fit estimates γ.

with the onset of criticality in the finite energy states (i.e. a mobility edge) near the

edge of the gap centered about E = 0 (e.g. in Fig. 6.8 this corresonds to the states near

E ≈ −0.5 for W ≈ 1). Due to the interplay of topology, criticality, and quasiperiodicity

several physically interesting effects occur near the gap maximum. This is demonstrated

in Fig. 6.8 for M = 4.0 as a representative cut of the phase diagram in Fig. 6.1 that we

now explore in more detail.

It can be seen from Fig. 6.8(a) that the states 2 near E ≈ −0.5 narrow around W ≈ 1

and are well isolated from other states by hard gaps. Additionally, by calculating σxy,

Fig. 6.8(b) (left most panel) shows this collection of bands has total Chern number

equal to 1, independent of L. Meanwhile, these states become critical, as measured by

the IPR in momentum and position space (1/Iα ≈ Lγα). To consistently assess the

behavior of the IPR, we calculate the IPR in both real and momentum space bases for

each combination of parameters at L = 55, 89, 144 and 233. Then we fit the log of the

IPR log(I) vs logL to extract the slope for an estimation of γ. We demonstrate some

examples of such fitting in Fig. 6.9. Aggregating the IPR data for various W at an

energy window we have Fig. 6.8(a) where color shows γk When 0 < γα < 2, the system

is delocalized in both bases (α = x, k).

Interestingly, we observe a self-similarity in these critical bands; the sequence of

decreasing energy windows shown in Fig. 6.8(b) have the same Chern number as we

2By downfolding this collection of states originated from a band at a given L
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increase the super-cell size. When M = 4 and W = 1.01541 the relevant energy window

E ∈ [−0.49,−0.47] has (Fn−5)2 states for a system size L = Fn. When we can identify

the lowest band [depicted by the green line in Fig. 6.8(b)] in this energy window the

value of its Chern number follows the self similar sequence of C = −2 for L = F2n and

C = 1 for L = F2n−1 (in each case examined).

The flatness of the lowest (green) band is apparent in the dispersion in the mBZ in

Fig. 6.8(b) as well as by its large effective mass(Sec. 6.7.1. By computing the flatness

ratio (of the green band) fg and Berry curvature Ωg (in Eqs. (6.5) and (6.6), respec-

tively) our data also demonstrates that larger L leads to flatter, isolated topological

bands in the mBZ at some optimal W . As shown in Fig. 6.8(b and c left) for increasing

L the peak in fg sharpens concomitantly with the development of critical eigenstates

[Fig. 6.8(a)] as the Chern bands in the mBZ occur at an increasingly fine energy scale.

At the W with maximal fg, we also see a reduction in the fluctuation in Berry cur-

vature Ωg (of the green band), probed via its standard deviation divided by the mean

across the mBZ, Fig. 6.8(c,right). Precisely, the normalized standard deviation of Berry

curvature is

s.d.(Ωn)

Ω̄n
≡

√∑
θ Ωn(θ)2 − (

∑
θ Ωn(θ))2∑

θ Ωn(θ)
(6.7)

The reduction of fluctuations of Ωg for increasing L suggest that the model could

host a fractional Chern insulating state in the presence of interactions [233, 234]; how-

ever, it is possible that an incommensurate charge density wave state could be stabilized

instead (see Fig. 6.10 for Berry curvature profiles in the mBZ).

6.7.1 Effective mass

One additional measure of band flatness to consider is the effective mass of the lowest

band. We define an effective mass m∗ by the expansion of the energy dispersion about

its minimum E(q) = E(0) + 1
2m∗q

2 + · · · . Numerically, m∗ can be obtained through

a quadratic fitting of En(θ) near θ = 0, where the n indexes the first, folded band

above E = 0 (Fig. 6.11(a), for example). The effective mass can also be obtained,

perturbatively, from the pole of the Green function Eeff(q) = ±(M̃ + q2/2m∗) where
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Figure 6.10: Berry curvatures. The Berry curvature of of the first band above the
hard gap near E = −0.5. The samples shown are at W = 1.01541, M = 4 and L = 377,
i.e. at its peak flatness (see Fig. 6.8). The first row are system sizes in the sequence of
L = Fn with odd n, and the second row for even n. For L = 55 and L = 89, Berry
curvature have clear peaks; while larger L’s see flatter Berry curvature.

m∗ = M̃/(2ṽ2). At fourth-order, m∗ ∼ 105(1/t) at W = 3t, indicating that the QP is

flattening the topological bands; our numerics (the blue solid line in Fig. 6.11(b)) show

this effect is even more drastic [Fig. 6.11(b)].

6.7.2 Edge states

For finite size calculation, (twisted) periodic boundary conditions eliminate all edge

contribution and keep only the bulk. With open boundary conditions, the edge states

can be observed, but we no longer have access to any θ 6= 0. Here, we use twisted

boundary conditions only in the x-direction but open boundary conditions along the

y-direction, so that we can see the dispersion of the edge states as we vary θx, as clearly

demonstrated in Fig. 6.11(c).

6.8 Conclusion

In a simple model of a two-dimensional topological insulator, we demonstrated that

the inclusion of quasiperiodicity induces flat bands, eigenstate criticality, and a phase

diagram full of structure. The eigenstates go through several Anderson-like transitions

(delocalizing in momentum space before localizing in real space), which leads to critical

eigenstates in a metallic phase. Meanwhile, we see the onset of flat topological bands
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Figure 6.11: Twist Dispersions. (a) Using the twist dispersion to obtain the effective
mass m∗. The red curve is the quadratic fitting result to estimate m∗. The figure
shows an example for M = 4.0, W = 0.4. (b) The effective mass obtained from fitting
twist dispersion (m∗fit) and from perturbation theory (m∗pert), compared with gap size.
The vertical line marks the W where we scrutinize flat topological bands. (c) Twist
dispersion with open boundary conditions in the y direction and twisted boundary
conditions in the x direction. The color corresponds to the location of the eigenstates
along the y axis. The red and dark blue states in the bulk gap are the edge states.
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Figure 6.12: Vanishing of the spectral gap. The gap size as a function of W for
M = 2.4 (a) and M = 3.0 (b) with various system sizes L. (c) is a more zoomed in view
of the M = 3.0 cut near the transition. In the second row, we show an example of how
the combination of critical exponents νz is extracted from the spectral gap data. For
a range of choices of Wc, we fit log ∆ against log(Wc −W ) in the range when Wc −W
is under 0.015 and ∆ > 0.001 with a straight line. This data is shown in (d). Then
we find the point where the root mean square error (RMSE) as shown in (e) of the
linear fit is smallest as our best estimation of Wc, where the slope is then νz. For these
results, our best estimate of νz = 1.0± 0.1, with Wc = 2.106± 0.001.
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Figure 6.13: Properties of the IPR. (a) Phase diagram of the momentum space IPR
of the lowest eigenstates. The red circles mark where the gap size ∆(W ) changes its
trend from increasing to decreasing as determined by the location of the maximum in
∆′(W ). The cuts M = 3.3 (b) and M = 3.8 (c) show the non-trivial L dependence of
the IPR in both real and momentum space start to dramatically change when ∆(W )
begins to turn downward.

within the TI phase concomitant with critical high energy eigenstates. Our results

go beyond twisted heterostructures and allows for cold atom labs and metamaterial

labs (both of which have already realized 2D TIs [53, 222, 220, 221, 219, 120, 121]) to

emulate similar physics.

6.9 Appendix: Perturbation theory

For smaller values of W , we shall use perturbation theory to estimate the location of

the NI-to-TI and SM-to-CM transitions. Perturbation theory can also help determining

the trend of topological mass, whose discrepancy from numerical results can serve as a

proxy for determining the onset of the regime dominated by non-perturbative effect.

We begin by considering the single-particle Green function

Ĝ0(ω) = [ω − h0(ω)]−1, Ĝ(ω) = [ω − h0(ω) + V ]−1 (6.8)

and use Dyson’s equation

G(k, ω)−1 = ω − h0(k)− Σ(k, ω) (6.9)

where Σ(k, ω) is the self-energy at momentum k including all G0(k, ω) irreducible di-

agrams. Close to the SM phase near M = M1 ≡ 2 or M = M2 ≡ 4, we express

the Hamiltonian in the low-energy limit around the corresponding Dirac node K as

h0(K + q) = vq · σ + (M − Mi)σz and similarly expand the self-energy to obtain

Σ(k = K+q, ω) = ωΣEσ0 +Σpq ·σ+Σzσz (where σ0 is the 2-by-2 identity matrix and
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the σx,y,z are the Pauli matrices). We define the quasiparticle residue Z, the renormal-

ized topological mass M̃ . and renormalized velocity ṽ such that the resulting Green

function in the low-energy limit has the form

G(k = K + q, ω) =
Z

ω − ṽq · σ − M̃σz
. (6.10)

Then using ΣE , Σz and Σp from Σ(k, ω) we can express Z, M̃ and ṽ as:

Z−1 = 1− ΣE , (6.11)

M̃ −Mi = (M −Mi + Σz)Z
−1, (6.12)

ṽ = v(1 + Σp/v)Z−1, (6.13)

To calculate Σ(k, ω), we treat VQP (r) perturbatively. In momentum space, V is a

delta function connecting k to k ± Qx̂ and k ± Qŷ. Hence, at second order the self

energy is

Σ(2)(k, ω) = (W/2)2
∑

±,µ̂={x̂,ŷ}

1

ω − h0(k±Qµ̂)
. (6.14)

Near M = 4, k = M + q with M = (π, π), this yields

Σ
(2)
E = −W

2

D2
, (6.15)

Σ(2)
p =

W 2

2

(4−M)2(1 + cosQ)

D2
2

v, (6.16)

Σ(2)
z = W 2 (4−M) + (cosQ− 1)

D2
, (6.17)

where D2 = (4−M)2 + 2(3−M)(cosQ− 1) is the common denominator that is always

positive for M > 3. Observe that the numerator of Σ
(2)
z is also always negative for

M > 4, and Σ
(2)
E is always negative. Hence M̃ is renormalized to be smaller as W

increases, predicting a critical W where M̃(W ) = 4 where TI to CM transition occurs.

On the other hand, the direction of velocity renormalization is not obvious from the

second-order perturbation theory, and indeed we can only predict the velocity to be

renormalized to 0 at fourth-order perturbation theory. This is indicative of scattering

off a single Dirac cone, where due to spin selection rules it requires a larger momentum

exchange to induce intranode scattering.
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The fourth-order perturbation theory includes all of the diagrams that connect the

Dirac node to points in the Brillouin zone that are 2Q Manhattan distance apart and

then back. The fourth order contributions to Σ(k, ω) are

Σ
(4)
E =

W 4

4
(−15M4 + 166M3 + (−36M2 + 206M − 295) cos(3Q)− 732M2+

(2M(M(24M−221)+697)−1497) cos(Q)+(2M(M(13M−115)+356)−770) cos(2Q)+

6(M − 3) cos(4Q) + 1522M − 1260)/D4 (6.18)

Σ(4)
z =

W 4

8
(−10M5 + 138M4 − 806M3 + 2509M2+

(2M(2M(M(11M − 134) + 622)− 2615) + 4212) cos(Q)+

2(M(M(3M(3M − 37) + 538)− 1208) + 1048) cos(2Q)+

2(451− 6M(M(3M − 26) + 76)) cos(3Q)+

5(M − 3)(3M − 8) cos(4Q)− 2(M − 3) cos(5Q)− 4155M + 2904)/D4 (6.19)

where D4 is the common denominator

D4 = (−2(M − 3) cos(Q) + (M − 6)M + 10)2(−4(M − 2) cos(Q)+

(M − 4)M + cos(2Q) + 7)(−2(M − 3) cos(2Q) + (M − 6)M + 10) (6.20)

With the fourth-order correction, we find that the perturbation theory agrees very well

with the numerical results, as well as Figs. 6.1 and 6.3. However, fourth order perturba-

tion theory for the velocity renormalization only qualitatively predicts the magic-angle

transition where ṽ = 0, but at a much larger W than indicated by numerical results.

It is natural to expect that this is due to the single node nature of the bandstructure

at M = (π, π) (all of the scattering is intranode). We anticipate a better prediction

of magic angle transition may be achievable only at even higher orders of perturbation

theory.

Using exactly the same procedure we can consider the case of M near 2, which is

the SM line that divides the two TI regions with opposite sign in the quantum spin

Hall effect. From a symmetry point of view it is not surprising that the M = 2 SM

line is W -independent. This is indeed the case from the perturbation theory, as up to
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fourth order we have Σ
(2)
z = 0 and M̃ = M = 2, hence there is no topological mass

renormalization. That means starting from such a SM phase, quasiperiodicity is not

driving it out of SM due to curvature in the phase boundary. At second order the

velocity only reduces but does not go to zero and the renormalization of ṽ is only due

to the quasiparticle residue Σ
(2)
E = − csc(Q/2)2, while Σ

(2)
p = 0. This can be understood

as follows, at M = 2 the two Dirac cones are at X = (π, 0) and Y = (0, π) and being

separated by 2π Manhattan distance in momentum space, second order perturbation

theory will not be able to induce internode scattering. Whereas, at fourth order the two

Dirac cones can be connected by 2Q hops in the Brillioun zone. Thus, only fourth order

perturbation will be able to predict a vanishing velocity and a magic-angle transition.

In line with this reasoning, the renormalized velocity ṽ up to fourth order is

ṽ = (v + Σ(2)
p + Σ(4)

p )/Z (6.21)

Here Σ
(2)
p vanishes, and the fourth order term

Σ(4)
p =

W 4

162
(1 + 4 cos(Q)) csc(Q/2)4v (6.22)

is negative only when Q > cos−1(1/4) ≈ 1.82. Only in this regime does the pertur-

bation theory predict a magic-angle transition. For example, at Q = 2πFn−2/Fn, it

predicts ṽ to vanish at W
(4)
c = 4 sin(Q/2)(−1− 4 cosQ)−1/4 ≈ 3.16. This fourth order

perturbative result W
(4)
c is an overestimate of the true critical Wc, and thus a more

accurate prediction will require higher order perturbation theory. For smaller Q such

as Q = 2πFn−3/Fn, the velocity can never reach 0 at fourth order in perturbation

theory. Hence, the magic-angle transition is an even higher order effect than that of

Q = 2πFn−2/Fn. In other words, the reduction of the value of Q requires higher order

in perturbation (more Q “hops”) to capture internode scattering.

These phase transitions can be assessed in this regime (i.e. near M = 4) by com-

puting the renormalized mass M̃ and velocity ṽ. We obtain up to second order in

W

M̃ − 4 =

[
(M − 4) +W 2 (4−M)+(cosQ−1)

(4−M)2+2(3−M)(cosQ−1)

]
1 +W 2/((4−M)2 + 2(3−M)(cosQ− 1))

. (6.23)

By solving for M̃ = 4, we obtain the phase boundary between insulating phases, il-

lustrated by the black dotted line in Fig. 6.1(a) (at fourth-order in W ), which is in
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excellent agreement with the numerics. The curvature to this line demonstrates that

quasiperiodicity can drive a topological phase transition NI-to-TI, which is the deter-

ministic analog of the disordered topological Anderson insulator [235, 236]. For M = 2,

there is no renormalization of M̃ . Using numerics to access higher M and W , when

M & 5.4, the NI transitions into the CM. The magic-angle transition (i.e., SM-to-CM)

is obtained by solving ṽ → 0 on the line M̃ = 4.

Besides determining topological phase boundary by solving M̃ = 0, the perturbation

theory also determines gap size ∆ as function of W when W is sufficiently small.

Not surprisingly, the prediction of ∆(W ) fails after some finite W . This is when the

lowest band is mixing with other minibands nearby in energy due to the quasiperiodic

potential. When such deviation between perturbation theory and numerical result of

gap size happens (i.e. when ∆ begin to decrease with W ), IPR of the lowest energy

state changes dramatically at the same W as shown in Fig. 6.13.
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Chapter 7

Rare region effect in 3D TI phase transition

7.1 Introduction

The previous chapter focused on the effect of quasiperiodicity on a model of a 2D

topological insulator. We now turn to the case of a 3D topological insulator with

disorder.

Unlike the case of 2D semimetals (SM), the fate of 3D topological SM under disorder

does not have a consensus answer. The perturbative renormalization group predicts that

for dimensions d > 2, the quantum critical point exists between semimetal and diffusive

metal [237] – in another word, semimetal can withstand some finite disorder as far as

perturbation theory can tell. The stability against weak disorder was assumed also

by various numerical calculations[238]. However, more careful treatment of numerics

that incorporates non-perturbative effect has revealed that arbitrarily small disorders

can destabilize Weyl semimetals (WSM) and the quantum critical point between WSM

phase and diffusive metal phase a avoided one[46].

The studies mentioned above have focused on stand-alone WSM models. An inter-

esting question to ask is that whether the WSM living on the phase boundary between

topological insulator phases destabilizes with the disorder. Superficially, the fact that

the WSM has a context as topological phase boundary provides some extra persever-

ance against disorder, as the topological insulator phases on both sides of the WSM

can hold up to disorder. The assumption of a stable semimetal has been assumed by

previous theoretical works [34, 35]. On the other hand, the non-perturbative rare-region

effect may still destabilize the WSM phase boundary as in the case of Ref. [46]. To

answer this question, careful numerical treatment is needed.
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This theoretically intriguing and debated problem is also experimentally important,

especially as experimentalists have tried hunting for Weyl semimetals. The expectation

is that tuning a parameter that controls the topological phase (the topological mass

M , to be defined below) always pass through the semimetal phase. Experimental

attempts include BiT l(S1−δSeδ)2 for example [47] where the parameter δ determines

the topological mass and can be controlled by doping.

However, the expectation implicitly assumed that the topological and trivial insula-

tor phases, in a two-parameter phase diagram of M and disorder W , have the common

boundary of finite length. The precise description of the SM phase under disorder

can provide important insight for the experiments, whether it justifies or disproves the

implicit assumption.

In this chapter, we will use a combination of numerical methods to investigate the

phase boundary between TI and weak TI phases of a 3D model of topological insulator

that is a generalization of the 2D Bernevig-Hughes-Zhang (BHZ) model. The phase

boundary is perturbatively expected to be an SM until a quantum critical point(QCP).

Figure 7.1: Schematics of the two candidate scenarios of phase transition between
topologically distinct insulator phases in the presence of disorder. The question we
address chapter is whether the phase transition along the green dash line is TI-SM-NI
or TI-Metal-NI.
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7.2 Model

We consider the 3D generalization of the BHZ model that has been studied by many

[34, 35] to understand the topological insulator in presence of disorder. We define

the model as a lattice for convenience in adding random potential that is spatially

uncorrelated.

H =
∑
~r

∑
µ=x,y,z

[
it

2
c†~r+µαµc~r −

m2

2
c†~r+µβc~r + h.c.

]
+ (m0 + 3m2)

∑
~r

c†~rβc~r (7.1)

where αµ and β are Dirac matrices defined using Pauli matrices σµ as

β =

I 0

0 −I

 , αµ =

 0 σµ

σµ 0

 (7.2)

We fix t = 1 for convenience. The topology of the model is controlled by the ratio

between m0 and m2. We define the ratio M = m0/m2 for convenience, and topological

invariant Q is a function of M . Before we introduce disorder, The model is in the

topological insulator phase for M > −2 and M < 0, and a weak topological insulator

phase for −4 < M < −2. Otherwise, the topology is trivial. The band structure

is shown in Figure 7.2. A topological phase transition happens only when the bands

touch.

The disorder is included as a random potential that is independently sampled at

each lattice site of the model. We use Gaussian distribution with standard deviation

W which is a natural choice that is close to the experiment. Previous work has used

uniform distribution within [−W,W ] [34, 35]. The specific choice of disorder does not

change the physics, but Gaussian disorder is easier to study rare region effects.

7.3 Methods

The KPM method provides a convenient survey for the density of states and conductiv-

ity/conductance across various levels of Fermi energy. In addition, the result of KPM

can be formulated to conveniently capture the basis-independent fluctuation of the con-

ductivity, which helps determine the phase transition as mean or typical conductivity

is difficult to calculate.
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Figure 7.2: The clean band structure of the 3D topological insulator model we con-
sider. The plots are a cut of kz = 0. From left to right correspond to M =
1, 0,−1,−2,−3,−4,−5. The panels in the first row are in NI, TI, weak TI, NI phases
and those in the second row are all in the SM phase. Notice that M = 0 and M = 4
has one band touching point but M = 2 has two.

On the other hand, using the Lanczos method we can calculate wavefunction. Specif-

ically, we use the method of square-and-shift to calculate the lowest energy eigenstates.

The criticality measures similar to Chapter 5 then follow from the eigenstates data.

The multifractal analysis provides a well-validated approach to determine the phase

boundaries from crossings with scaling by systems size L.

7.4 Phase Diagram

We present the phase diagram acquired by considering the density of the state at zero

Fermi energy (Fig.7.3). ρ(0) as small as ∼ 1/N3
C represents the insulator region, where

ρ(0) is dominated by the far-tail of Jackson Kernel (See Chapter 2). For semimetal or

destabilized semimetal phases, ρ(0) is at the order of 1/N2
C because the WSM phase

has density of state scaling ρ(E) ∼ |E|2. The metallic phase is characterized by larger

ρ(0) ∼ O(1) regardless of NC . With a NC = 2048, the color map of ρ(0) visually

presents the insulating and metallic phases, as well as their boundaries.

We also provide a zoomed-in phase diagram from conductivity at zero Fermi energy

(Fig.7.3 bottom). The conductivity is more costly to compute and is hence only mapped
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Figure 7.3: The phase diagram as mapping of log ρ(W,M,E = 0) (top) and
log σ(W,M,E = 0) for a smaller range of parameters(bottom), marked with cuts that
will be scrutinized in some detail. The DOS result is calculated with NC = 2048 and
L = 151. The light strips correspond to the SM and metallic phases.
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for a small region. Although the phase diagrams have limited resolution (with only

NC = 512), they hint at the important feature that the insulator-metal transition

follows the second scenario in Fig. 7.1. The WSM line that would have existed if there

were not any rare-region effect is broadened into a critical fan.

However, we must keep in mind that the phase diagram in Fig. 7.3 can only be

taken as a coarse indicator of the phase, unless even larger scale calculation is carried

out to improve the resolution until fully saturated. For the next few sections, we will

resort to a detailed calculation of several cuts guided by the tentative phase diagram

to understand the phase transitions.

Figure 7.4: The landscape of ρ′′(W,M,E = 0) for a larger range of parameters. The
calculation is done with NC = 2560 and L = 151. A peak exists, marking the location
of the avoided quantum critical points.

7.5 Avoided criticality

One feature discovered in Ref. [46] is the avoided quantum critical point in semimetal

(that does not have a topological context) with the disorder. The criticality, being

avoided, loses the analytical property but retains its critical behavior away from E = 0.

In another word, if the quantum criticality predicted by perturbative theory were not

avoided, the density of states ρ(E) would be non-analytic at the transition. Expanding

near E = 0, we have ρ(E) = ρ(0)+1/2ρ(0)′′E2. Non-analytic behavior would be seen as
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Figure 7.5: The second derivative of the density of states as a function of Fermi energy,
at Ef = 0. As Nc increases, the peak stays within the same order of magnitude.

ρ(0) being discontinuous in (M,W ), or as ρ′′(0) with a singularity at certain (Wc,Wc).

From Fig. 7.4 we can clearly see the critical point – no matter avoided or not – occurs

near WQCP = 0.88± 0.05 and MQCP = −1.8± 0.1. If the quantum critical point were

not avoided, the WSM phase boundary would have been stable up to WQCP . However,

from the figure, it can be visually identified that a metallic region of a finite range of

M has developed at a much smaller W . The finite metallic region will be shown more

concretely in the next section.

To clearly demonstrate the avoided QCP being analytical and is not a result of finite

size effect, we shall utilize the scaling of ρ(0)′′ in Nc, the energy resolution (Fig. 7.5). As

Nc →∞ the second derivative ρ(0)′′ grows slowly into a finite peak (in sharp contrast

to, for example, the orders of magnitude steep peak in the magic-angle transition in

Chapter 5), indicating the quantum critical point is avoided.

7.6 Insulator to Metal phase transition and the mobility edge

We use both multifractal finite-size-scaling (MFSS)[239] as the primary tool to study

the insulator to Metal phase transition and mobility edge for a few cuts across the

phase boundaries indicated by the phase diagrams. In addition, we will discuss in the

appendix the KPM calculation of conductivity[64] that shows the strong fluctuation

near the phase transition.
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Figure 7.6: The crossing of α0 as lattice size L varies. The critical WC can be estimated
from the figure as WC = 0.6±0.02 for M = −1.7. Notice the drifting toward lower WC

as L increases, making our estimation more likely to be an overestimate.

Figure 7.7: Plots of 3D |ψ(x, y, z)|2 for a case of insulating phase close to transition
(M = −1.5, W = 0.54, left) and in metallic phase (M = −1.5, W = 0.69, right). The
size of dots represent |ψ|2 that is below 0.001; and color represent those above 0.001.

7.6.1 Multifractal finite-size-scaling

The phase transition from insulator to metallic phase can be visually seen from the

wavefunctions. In Fig. 7.7 we visualize examples of wavefunctions, one in the insulating

phase and the other in the metallic phase. In the insulating phase the state is highly

localized at one peak; and post-transition the wavefunction is more widespread. An in-

teresting feature to observe from the wavefunctions is that some of the high-probability

regions are confined to a thin but wide volume that almost looks like 2D. These are

likely occurring at some domain wall.

To quantify the change of the wavefunctions, we study observables derived from the

multifractal spectra. The multifractality of the wavefunctions is an important feature



161

-1.95 -1.9 -1.85
M

4

4.2

4.4

4.6

4.8

L=60
L=70
L=80

Figure 7.8: The crossing of α0(M) for various L at fixed disorder W = 0.52. The finite
range of M where α0 approaches toward α0 = d = 3 as L increase is the metallic region
that the semimetallic line develops into.

of the Anderson transition[37]. Following [239], we consider generalized singularity

strengths

α̃q ≡ dτ̃q/dq (7.3)

where τ̃q is the generalized mass exponent

τ̃q(W,λ) = ln〈Iq〉/ lnλ (7.4)

where Iq is the generalized inverse participation ratio (IPR), and 1/λ is the size of the

coarse-grained lattice when we box the L3 lattice into l3 cubes. The tilde in the above

two equations emphasizes that the quantities, originally intended for the study at a

critical point only, are extended to finite λ and W away from critical WC . The tilde is

dropped when the implication is clear.

We consider λ = 0.1 and even L’s, so as to minimize the contribution from states in

the band. A finite energy window of 0.001t is chosen to aggregate αq. For computational

considerations, we pick q = 0 such that αq is expected to diverge for the insulating phase

and approach d = 3 for the metallic phase. When the system is critical, d < αq < 2d is

expected. Hence, as L various a crossing would show up. For L ranging [50, 80], a clear

crossing shows up (Fig. 7.6) from which we can estimate the critical WC . For W < WC ,

α0 increases with L signaling an insulating phase; and W > WC we see α0 → d = 3.

Similarly, we can determine the mobility edge that is the localization-delocalization
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Figure 7.9: The mobility edge for M = 1.5, W = 0.59 is at 0.005 ± 0.001 where the
curves for different L crosses.

transition at fixed W and M , but varying Fermi energy E. αq(E) demonstrates a

crossing at the mobility edge (Fig. 7.9) where the zero energy state is still insulating,

while outside the mobility edge the system is metallic. As W increases, the mobility

edge moves toward E = 0 at W = WC (data available upon request).

7.7 The stability of Weyl semimetal

To directly see the destabilized WSM for an arbitrary small disorder, we shall look into

the spectral observables along the putative semimetal line. We consider both the density

of states as similar to previous studies, [35] as well as the transport calculation at a size

not previously considered in similar studies. In particular, to reach numerically stable

results the necessary system size is much larger for transport properties. For the density

of states, we consider lattice of size ranging from 803 to 1203, while for conductivity

we consider lattice of 1503 and 2003 sites. We take expansion order NC as a handle for

energy resolution. As we increase L and NC , we have a range of parameters W that the

density of state ρ(Ef = 0) and σ(Ef = 0) saturate to varying finite-size effects. The

results are shown in Fig. 7.10 for density of states and Fig. 7.11 for DC conductivity.

For both of the two observables, larger L and NC saturate toward

ρ(Ef = 0) ∼ e−a/W 2
(7.5)
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Figure 7.10: The DOS at E = 0 along the line that SM would have existed if it were
stable. As L and NC increases, the relation between log ρ and 1/W 2 saturates to be
linear.

and

σ(Ef = 0) ∼ e−b/W 2
(7.6)

where a and b are constants. Hence, as W decreases, both DOS and DC conductivity are

suppressed very fast( hence the finite value can be easily overlooked and be identified as

stable semimetals); however, for arbitrarily small W > 0 we have strictly ρ(EF = 0) > 0

and σ(Ef = 0) > 0, indicating the non-existence of a stable semimetal line.

7.8 Conclusion and outlook

In this chapter, we provided evidence that the WSM phase boundary between topolog-

ically distinct insulator phases is destabilized by an arbitrarily small disorder. Instead,

on the W −M phase diagram, the WSM line is broadened into a fan of diffusive metal.

The quantum critical point predicted by perturbation theory does not exist but becomes

an avoided one. The destabilized semimetal and avoided quantum criticality indicates

the putative Weyl semimetal line between topological insulators in fact resembles a

finite region of metallic phase, which naturally explains the existence of a wide critical

regime when tuning the topological insulator towards trivial insulator.

With the convenient numerical method, one feasible task is to map out a detailed
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Figure 7.11: The conductivity at E = 0 along the putative SM line. As NC and L
increase, the linear relation between log σ and 1/W 2 emerges.

phase diagram with conductivity. Such a phase diagram may reveal more detail of

the phase transitions, as opposed to the guide of sight phase boundaries in early works

regarding the topological insulator with the disorder (for example, Ref. [34]). Moreover,

with the wave function methods, we can accurately determine the phase boundary

between the insulating and diffusive metal phases. An accurate phase boundary can

quantitatively show the range of parameter that experiences criticality.

The same method can even be applied with a more realistic model (similar to the

work we do in Ref. [20]) to calculate the phase diagram of tunable topological insula-

tors such as BiT l(S1−δSeδ)2 to validate with observation results on the putative Weyl

semimetal phase line.

7.9 Appendix: Conductance fluctuation at the TI to metal transition

The calculation of average conductivity is only plausible in the metallic phase, as a

consequence of the universal conductance fluctuation (UCF) that penetrates into the

critical point [240]. When conductance vanishes, the fluctuation of conductance does

not vanish and even demonstrates 〈(δg)n〉 ∝ en2/〈g〉 scaling. Hence, near the transition,

the distribution of conductance becomes extremely broad with a log-normal tail. For
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a log-normal distribution, accurate estimation of statistical parameters requires prior

knowledge of the distribution itself. However, the precise mathematical form of the

distribution is not known, while we know the distribution is neither strictly log-normal

nor Gaussian. The broad distribution is shown in Figure. 7.12.
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Figure 7.12: Histogram of KPM estimated sample conductance. The horizontal axis
is log-scaled, highlighting the extremely broad distribution near the transition. In
contrast, the metallic phase sees smaller fluctuation. The fluctuation increases with
larger NC .

As a substitution of mean conductivity as a scaling variable, it has been conven-

tional [240] to use typical value (geometric mean) instead. However, even with typical

conductance gtyp, it is not particularly efficient for KPM. The intrinsic broad distribu-

tion and small average falls exactly into the condition discussed in Section 2.5, where

the stochastic trace estimation that backs the efficiency of the KPM method bears no

advantage over exact trace. In addition, the tail of the distribution of the stochastic

estimator of g can significantly extend to negative values for some of the samples, pro-

hibiting the application of geometric mean across sample conductance. Statistically,

it is common to use robust estimators to remediate (such as median, the median of

means, the trimmed sample mean, and many more[241, 242]), but the robust estima-

tors come at the price of neglecting the effect of far tails – which is against our goal of
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understanding the contribution of rare region effects.

To tackle the situation, we take advantage of the random-vector fluctuation of KPM

discussed in Section 2.5 to directly estimate the second moment of conductance,

µ′2[g] =< g2 > / < g >2 (7.7)

whose numerator can be acquired directly from the standard deviation across random-

vectors of each sample calculated in KPM. There is no need to use robust statistics for

< g2 > because it is naturally positive definite; and robust estimation is applied to the

denominator < g >2 for which we only need a scale. Here for simplicity, we will just

use median.

Figure. 7.13 shows the normalized second moment as a function of W along a cut of

M = −1.5. The second-moment peak to several orders of magnitude is larger than the

mean, which provides a crude estimate of the location of the transition. As lattice size

in the calculation increases, the peak moves towards the left, similar to what we observe

in the wave-function calculation. Hence the estimation of Wc is an upper bound – the

metallic phase can only be larger in the phase diagram than we estimated.

0.5 0.6 0.7 0.8 0.9
W

10-2

100

102

104

L=65
L=105

Figure 7.13: The normalized but not centralized second moment for a cut of M =
−1.5, varying W . The peak marks the broadest distribution of conductance which
estimates the critical Wc for metal-insulator transition. As L increases, the estimation
of transition drifts to lower Wc, hence we shall only quote an upper bound of the
transition.
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Chapter 8

Conclusion

In this dissertation, we extensively studied the effect of quasiperiodicity and disorder

in the context of topological phases of matter with a focus on phase transition and

criticality. We applied an extensive set of tools to study the thermodynamic limit

of lattice models whose translational symmetry is broken. With the KPM method,

(iterative) exact diagonalization, multi-fractal analysis, machine learning, and so on,

we numerically studied the effects of quasiperiodicity and disorder that are intrinsi-

cally non-perturbative. While most methods are not previously unseen, by pushing

the boundary of optimization and utilizing the latest computational resources and

paradigms, we largely extended the boundary of what we can calculate – and more

importantly, what we can easily calculate. The easiness of computation allowed us to

produce detailed phase diagrams for all models we studied (as opposed to guide-of-sight

lines) and helped with many of our discoveries.

Applying the methods, we studied the quasiperiodic semimetals that we take as

the prototype of the universal magic-angle semimetals including the famous twisted

bilayer graphenes. We characterize the magic-angle transition as semimetal to metal

transition as velocity is renormalized down to zero, which happens as a universal novel

quantum phase transition that is deeply related to the incommensurability introduced

by quasiperiodic modulation. Based on the model we studied, we proposed new routes

to host magic-angle physics. We also extensively studied the same base model but with

quasiperiodic modulation that preserves chirality. In the chiral model, we character-

ized the eigenstate phase transition through both the density of state and wave-function

measures. The similarity and difference between the chiral and non-chiral models mark
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the importance of the classification of quasiperiodicity-driven phase transition analo-

gous to the classification of disorder-driven Anderson transition.

To connect our work with the ongoing experiments on twisted bilayer graphenes, we

studied a special type of disorder that can show up in twisted bilayer graphene systems

and find that the velocity of the Dirac cone is robust to disorder, whereas the other

features of the miniband are rather sensitive to randomness in the twist angle.

For topological insulators, we extensively investigated the 2D BHZ model with the

presence of quasiperiodicity, which is a natural generalization of magic-angle semimet-

als, to uncover an eigenstate criticality that coincides with the proliferate of flat topo-

logical bands. The rich phase diagram that we mapped out show a multitude of phase

transition that can consecutively occur by varying strength of quasiperiodicity. We also

demonstrated that the topological phase transition driven by quasiperiodicity does not

follow any known symmetry classes.

Lastly, we studied a 3D topological insulator model with the disorder, focusing

on the effect of the rare-region effect in the context of topologically protected phases.

We find that any disorder destabilizes the Weyl semimetal that resides at the boundary

between topological insulator phases. The WSM line is turned into a metallic phase that

spans a finite area on the phase diagram, and the perturbatively anticipated quantum

critical point between WSM and diffusive metal is turned into an avoided quantum

critical point.
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