
Forming an ad-hoc nearby storage, based on

IKAROS and social networking services

Christos Filippidis1, Yiannis Cotronis2 and Christos Markou1

1 Institute of Nuclear & Particle Physics, ”NCSR” Demokritos, Greece
2 Department of Informatics & Telecommunications, University of Athens, Greece

E-mail: filippidis@inp.demokritos.gr

Abstract. We present an ad-hoc ”nearby” storage, based on IKAROS and social networking
services, such as Facebook. By design, IKAROS is capable to increase or decrease the number
of nodes of the I/O system instance on the fly, without bringing everything down or losing
data. IKAROS is capable to decide the file partition distribution schema, by taking on account
requests from the user or an application, as well as a domain or a Virtual Organization policy. In
this way, it is possible to form multiple instances of smaller capacity higher bandwidth storage
utilities capable to respond in an ad-hoc manner. This approach, focusing on flexibility, can
scale both up and down and so can provide more cost effective infrastructures for both large
scale and smaller size systems. A set of experiments is performed comparing IKAROS with
PVFS2 by using multiple clients requests under HPC IOR benchmark and MPICH2.

1. Introduction

World wide scientific experiments are generating datasets which are increasing exponentially
in both complexity and volume, making their analysis, archival, and sharing one of the grand
challenges of the 21st century. A supercomputer can be defined as a device for turning compute-
bound problems into I/O-bound problems. This addresses the fundamental shift in bottlenecks,
as supercomputers gain parallelism at exponential rates, while the performance of the storage
infrastructure increases at a significantly lower rate [1]. This implies that the data management
and data flow between the storage and compute resources is becoming the new bottleneck for
large-scale applications. The support for data intensive computing [2] is critical to advancing
modern science as storage systems have experienced a gap between capacity and bandwidth [1].

It is obvious that storage systems in future exascale systems will be their Achilles heel, unless
storage systems are re-architected to ensure scalability to millions of nodes and potentially
billions of concurrent I/O requests. We can clearly show the problem if, for example, we try
to extend a supercomputing infrastructure such as the Blue Gene/P to scale to a million of
nodes. We have only to consider the booting parameter at the Blue Gene/P machine, On 256
processors, it takes 85 seconds to boot the allocation; on the full 160K processors, it takes 1090
seconds. Unfortunately, it appears that the machine boot time grows linearly with the number
of nodes, translating to potentially over 25K seconds (7+ hours) boot-time at 1M node scales
[6].

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Exascale systems will require I/O bandwidth proportional to their computational capacity.
Traditional globally shared file systems have limitations when used with large-scale systems,
because:

(i) bandwidth does not scale economically to large-scale systems,

(ii) I/O traffic on the high speed network can impact on and be influenced by other unrelated
jobs,

(iii) I/O traffic on the storage server can impact on and be influenced by other unrelated jobs.

To avoid those limitations, one approach is to configure multiple instances of smaller capacity,
higher bandwidth storage closer to the compute nodes (nearby storage) [3]. The multiple
instances can provide aggregated exascale size bandwidth and capacity and can avoid much
of the impact on other jobs. A possible disadvantage to this approach is that it does not
provide the same file system semantics as a globally shared file system. In particular, it does not
provide file cache coherency or distributed locking, but there are many use cases where those
semantics are not required. Other globally shared file system semantics are required, such as a
consistent file name space, and must be provided by a nearby storage infrastructure. In cases
where the usage or lifetime of the application data is constrained, a globally shared file system
provides more functionality than the application requirements while at the same time limits
the bandwidth which the application can use. Nearby storage as described above reverses that,
providing more bandwidth but not providing globally shared file system behavior [3].

Except from the above I/O systems challenges, we have to consider additional issues in order
to build a large scale distributed infrastructure, such as: the meta-data management and the way
that individual users, groups or bigger consortiums produce, transfer, publish and share data. It
seems that Grid computing infrastructures are not so efficient in enabling individual users and
small groups to fully exploit their capabilities. A more dynamic way to manage and share data
is needed, similar to the dynamic allocation of other resources, such as CPU hours and storage
space. Cloud computing and Web 2.0 technologies could probably provide that, due to their user
friendly approach and their distributed computing paradigm driven by economies of scale. The
prospect of needing only a credit card to get on-demand access to 100,000+ computers in tens
of data centers distributed throughout the world, resources which can be applied to problems
with massive, potentially distributed data, is exciting! [1]. We choose to build a hybrid model
that can fully exploit existing Web and Cloud infrastructures, such as Facebook, and at the
same time maintain characteristics such as interoperability, non trivial qualities of service and
multi-institutional/multi-domain cooperation inherited by Grid computing infrastructures, such
as EGI/gLite.

In section 2, we examine related work. In section 3 we present an ad-hoc nearby storage based
on IKAROS and Facebook, In section 4 we present the comparison results between IKAROS and
PVFS2 by using multiple clients requests under HPC IOR benchmark and MPICH2. Finally,
in section 5 we present the conclusions.

2. Related Work

There have been many shared and parallel file systems proposed since the 1980s, such as
the Network File System (NFS), Andrew File System (AFS), GPFS, PVFS, Lustre, Panases,
Microsoft’s Distributed File System (DFS), GlusterFS, OneFS, POHMELFS, and XtreemFS.
While the majority of these file systems expose a POSIX-like interface providing a global
namespace, and many have been adopted in cluster-, grid-, and even supercomputing, the biggest

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

2



critique of these file systems is their vision that compute resources should be completely agnostic
of the data locality on the underlying storage system. All of these file systems assume that the
storage nodes/servers are significantly fewer than the client/compute nodes which will access
the file system, resulting in an unbalanced architecture for data-intensive workloads [1]. A
variety of distributed file systems have been developed to address this unbalance, such as GFS,
HDFS, Sector, CloudStore, Ceph, GFarm, MooseFS, Chirp, MosaStore, PAST, Circle, and
RAMCloud. However, many of these file systems are tightly coupled with execution frameworks
(e.g. Hadoop), which means that scientific applications not using these frameworks must be
modified to use these underlying non-POSIX-compliant file systems. For those that offer a
POSIX-like interface, they lack distributed meta-data management. And for those few (e.g.
Ceph, PAST, Circle) that also have distributed meta-data management, they fail to decouple
data and meta-data management making the data locality difficult. Taking into account the
above considerations, it is evident that what is really required is an architecture which will
be optimized both for LAN and WAN environments, one that can easily work, at the same
time, within a tight coupled infrastructure such as a computer cluster, as well as a more loose
environment such as a Grid infrastructure. Extending the above, we can say that we need an
architecture which will allow us to define, for the same data, meta-data in several different ways,
depending on the network environments. IKAROS [4,5] supports multiple types of meta-data
for the same data and is capable to scale its subsystems independently, based to the needs. Due
to the fact that we use HTTP as the basic mechanism to build our architecture we can, easily,
adopt protocols, techniques and utilities that have been proven to be very useful in a world wide
web scale, capable to interact with millions of nodes.

3. An ad-hoc nearby storage based on IKAROS and Facebook

Given the current state of I/O and storage systems in petascale systems, incremental advances
in individual aspects are unlikely to provide the required capabilities in exascale systems.
I/O architectures, when designed as separate and independent components from the compute
infrastructure, have already been shown not to be scalable as needed. Indeed, I/O has ,
traditionally, been considered as a separate activity which is performed before or after the main
simulation or analysis computation, or even periodically for activities such as checkpointing,
but still as a separate overhead. File systems, which have mainly been adapted from the
legacy (sequential) file systems with overly constraining semantics, are not scalable. Traditional
interfaces in file systems and storage systems, or even in some cases higher-level data libraries,
are designed to handle the worst-case scenarios for conflicts, synchronization, and coherence
and mostly ignore the purpose of the I/O by an application, which is an important source of
information for scaling I/O performance when millions of cores simultaneously access the I/O
system [7].

By placing higher bandwidth storage close to the computation using it, more aggregate
bandwidth can be provided than with an external globally shared file system. By placing the
storage close to the compute nodes, the I/O traffic can avoid interference with unrelated jobs.
Globally shared file systems are sufficient for most existing HPC systems, but the bandwidth
demands of exascale systems require a more scalable (in both bandwidth and cost) solution.
However, when creating a nearby storage infrastructure, it is not only scalability in both
bandwidth and cost what we seek, but we also need flexibility and dynamic management. That
is why we must be able to form ad hoc nearby storage utilities, by taking on account a user or an
application request, a domain or a Virtual Organization policy. By enabling our infrastructure
to interact with other services, such as social networking services, we are able to create storage
formations, on the fly, concluding to more efficient infrastructures. In this way we can scale the
platform subsystems independently based to the demands.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

3



We are using existing social networking services, such as Facebook, in order to dynamical
manage, share and publish meta-data. In this way we do not have to build our own utilities for
searching, sharing and publishing and in the same time we are enabling users to dynamically
use the infrastructure, by creating ad hoc storage formations. This concludes in a model than
can scale both up and down and so can provide more cost effective infrastructures for both large
scale and smaller size groups and consortiums. This approach gives us the opportunity to build
more efficient ad-hoc nearby storage: multiple instances of smaller capacity, higher bandwidth
storage closer to the compute nodes. To achieve that we are using IKAROS and social networking
services, currently Facebook. At the same time, we are not constrained by Facebook, because
IKAROS is using a JSON (JavaScript Object Notation) format for populating meta-data, which
is very common within Web 2.0 technologies. Individual users or groups can dynamically change
their meta-data management schema based on their needs. We use Facebook as a use case to
show how easily IKAROS can connect with existing, successful, infrastructures. Facebook is a
social networking service that scales to millions of users.

3.1. IKAROS and Facebook interactions

IKAROS creates meta-data as JSON objects and keeps a local copy to the meta-data nodes.
Based on the IKAROS architecture [5] each node is a peer and can act at the same time as a
client node, as an I/O node and as a meta-data node. Additionally, we can provide our meta-
data to a social networking service, such as Facebook, or to our custom meta-data management
system. Figure 1 shows the interactions between IKAROS and Facebook.

Figure 1. IKAROS and Facebook interactions

IKAROS interacts with the Facebook Graph API and the FQL(Facebook Query Language).
The Graph API presents a simple, consistent view of the Facebook social graph, uniformly
representing objects in the graph and the connections between them. FQL enables users to use
a SQL-style interface to query the data exposed by the Graph API. It provides some advanced
features not available in the Graph API, such as using the results of one query in another one. In
order to grant access to these components, we have to create our own Facebook App and provide
to IKAROS the App ID/API Key and a user token or an App secret respectively (the Facebook
Apps are using the oAuth security model). After that we have to provide, to this App, access
to the following ”Extended Permissions”: ”create note”, ”user notes” and ”friends notes”, from

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

4



Figure 2. IKAROS meta-data, JSON, object as a Facebook ”note”

our profile. Finally, we can publish and share our meta-data as notes to our Facebook profile
through the Graph API and query them through FQL. These two actions follow the IKAROS
workflow [5] and we call them at the stages where an interaction is needed with the meta-data
utility. Figure 2 shows an IKAROS meta-data, JSON, object as an Facebook ”note”. We are
using the Facebook App ”IFS M” with App ID/API Key: ”513587365332568”.

4. Experimental Results

In this section, we present the results of a number of experiments designed to measure the
performance behavior of IKAROS. A set of experiments is performed comparing IKAROS with
PVFS2 by using multiple clients requests under HPC IOR benchmark and MPICH2. With this
set of experiments, we intent to extend our previous comparisons between IKAROS, PVFS2
and HDFS, based to low consumption, low technical specification devices [5]. Here we compare
IKAROS with PVFS2 using storage devices/servers with more advanced technical specifications.
We could not include HDFS to this set of experiments because Hadoop is not using a standard
POSIX like interface and the HPC IOR benchmark tool cannot interact with it.

The system used for testing was the ZEUS computer cluster at the Institute of Nuclear and
Particle Physics of NCSR ”Demokritos”. The ZEUS computer cluster is running applications
mainly for the CMS - LHC CERN experiment and for the KM3Net consortium. It also
participates to the NCSR Demokritos Mobile Grid Infrastructure [4], where the IKAROS module
is a building block of the architecture. The work-flow of our applications forces us to run a huge
number of embarrassingly parallel tasks at geographically distributed computing centers. For
these types of applications it is crucial to focus on operations such as, concurrent writes and
partially reads of the output, both locally and remotely. The ZEUS computer cluster provides an
infrastructure composed by ten AMD Opteron CPU based systems, each with 8 CPU cores and
16 GB of RAM, four 800Mhz CPU based SOHO-NAS devices, each with 256 MB of RAM, 1000

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

5



Mbps Ethernet controller and 3 TB of storage capacity and ten 200Mhz CPU based SOHO-NAS
devices, each with 32 MB of RAM, 100 Mbps Ethernet controller and 2 TB of storage capacity.
The ZEUS computer cluster provides a 1000 Mbps full duplex link between the nodes and an
2.5 Gbps WAN connectivity.

4.1. Comparing IKAROS with PVFS2

We present the results of an comparison experiment between IKAROS and PVFS2 data
transfer with a variety of file sizes, using an infrastructure composed by 10 AMD opteron CPU
based systems, each with 8 CPU cores and 16 GB of RAM. In each run of the experiment we
measured the time to perform each request and averaged the results over the course of the run.
Each data point represents the average of 10 runs of the same experiment.

Figures 3 and 4 shows the performance of IKAROS compared to PVFS2 with multple clients
on a READ operation. We use two block sizes (100MB and 1GB), the aggregate file size varies
from 1000 MB to 40 GB. IKAROS has a slightly better performance in most cases.

Figure 3. Comparing IKAROS with PVFS2,
READ operation, Block size: 100MB, Max
Aggregate size: 4GB, I/O node number : 10

Figure 4. Comparing IKAROS with PVFS2,
READ operation, Block size: 1GB, Max
Aggregate size: 40GB, I/O node number : 10

Figure 5. Comparing IKAROS with PVFS2,
WRITE operation, Block size: 100MB, Max
Aggregate size: 4GB, I/O node number : 10

Figure 6. Comparing IKAROS with PVFS2,
WRITE operation, Block size: 1GB, Max
Aggregate size: 40GB, I/O node number : 10

Figures 5 and 6 shows the performance of IKAROS compared to PVFS2 with multple clients
due to the WRITE operation. We use two block sizes (100MB and 1GB), the aggregate file size
varies from 1000 MB to 40 GB. IKAROS outperforms in all cases. We must, also, highlight that

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

6



when we are using 1 GB block size, PVFS2 appears to break down. The above measurements
clearly show that the IKAROS decentralized ”HTTP GET” [5] design manages to overcome the
performance problems which PVFS2 exhibts during WRITE operations, while at the same time
performs equally well during READ operations.

5. Conclusions

Parallel file systems such as PVFS2, Lustre and GPFS are High-Performance systems, highly
specialized, and often targeted to a single operating system and hardware platform. IKAROS
on the other hand is open and supports heterogeneous systems. PNFS is closer to our work
trying to be universal and transparent while focusing on interoperability taking advantage of
the NFS wide spread implementations. Nevertheless, pNFS needs a considerable configuration
effort requiring a kernel rebuild against the pNFS utilities. HDFS and Gfarm have a more
WAN approach, which is one of our goals, but it seems that they can be more effective when
the application work flow permits to associate the Computational Grid with the Data Grid, by
running the computations at the file servers. IKAROS can be categorized as a system between a
global shared file system and a ”nearby” storage. By design, IKAROS is capable to increase or
decrease the number of nodes of the I/O system instance on the fly, without bringing everything
down or losing data.IKAROS is capable to decide the file partition distribution schema by taking
into account requests from the user or an application, or a domain or Virtual Organization policy.
In this way it is possible to form multiple instances of smaller capacity higher bandwidth storage
utilities capable to respond in an ad-hoc manner. This approach, focusing on flexibility, will
scale both up and down and so can provide more cost effective bandwidth for both large scale
and for smaller size systems.

6. References
[1] I. Raicu, I. Foster, P. Beckman. Making a Case for Distributed File Systems at Exascale, LSAP11, June 8,

2011.
[2] T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research

2009
[3] The International Exascale Software Roadmap,” Dongarra, J., Beckman, P. et al., Volume 25, Number 1,

2011, International Journal of High Performance Computer Applications, ISSN 1094-3420. Exascale Nearby
Storage, Cray Position paper

[4] Filippidis C., Cotronis Y.,Markou C.,(2012) Design and Implementation of the Mobile Grid Resource
Management System. Computer Science, 13 (1). pp. 17-24. ISSN 1508-2806

[5] Filippidis C., Cotronis Y.,Markou C.,(2013) IKAROS: an HTTP-based distributed File System, for low
consumption and low specification devices,Journal of Grid Computing

[6] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford. Toward Loosely Coupled
Programming on Petascale Systems, IEEE SC 2008

[7] The International Exascale Software Roadmap,” Dongarra, J., Beckman, P. et al., Volume 25, Number 1,
2011, International Journal of High Performance Computer Applications, ISSN 1094-3420.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042018 doi:10.1088/1742-6596/513/4/042018

7




