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Abstract. Implementation of modern algorithms in computer algebra requires the use of
generic and high-performance instruments. RINGS is an open-source library, written in Java
and Scala programming languages, which implements basic concepts and algorithms from
computational commutative algebra while demonstrating quite a high performance among
existing software. It rigorously uses generic programming approach, providing a well-designed
generic API with a fully typed hierarchy of algebraic structures and algorithms for commutative
algebra. Polynomial arithmetic, GCDs, factorization, and Grobner bases are implemented with
the use of modern asymptotically fast algorithms. The use of the Scala language brings a quite
novel powerful, strongly typed functional programming model allowing to write short, expressive,
and fast code for applications in high-energy physics and other research areas.

1. Introduction

Computer algebra and in particular computational commutative algebra is perhaps the main
computational instrument in modern theoretical high-energy physics. For example, rational-
function arithmetic is a key component of nearly all symbolic computations in the field. A
more advanced concepts, like Grébner bases, arise frequently in such topics as computation
of (multi)loop Feynman diagrams. Efficient implementation of related algorithms and data
structures in computer is crucial for successful solution of modern demanding problems.

The key mathematical concept lying in the basis of many algorithms is the concept of
ring homomorphism. This concept is broadly manifested in e.g. modular techniques and
rational reconstruction, which are successfully applied for developing efficient algorithms to
solve challenging problems in high-energy physics in the recent few years [, 2, 3, 4]. To explain
these methods, consider the Euclidean algorithm for computing GCD:

function gcd(a, b)
if b=0
return a;
else
return gcd(b, a mod b);

g W N

Applying this algorithm to the following quite simple input:
ged(l—a? + 2% — 2201 — 23 4230 — 2300 =4 1

one will observe extreme growth of intermediate coefficients at each subsequent step. In fact, one
will have to operate with numbers containing thousands of digits to find a very simple answer
(x—1). This problem is called intermediate expression swell and it is inherent to many computer
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algebra algorithms, like solving linear systems over rational numbers or computing resultants.
When the intermediate expression swell takes place, the computation becomes impractically slow
due to exponential growth of coefficients.

The way to avoid expression swell is to perform calculations modulo some prime number
instead of operating with unbounded integers (or rationals). Once obtained the answer modulo
N several prime numbers p;, it is possible to reconstruct the answer modulo their product
p1 X --+ X pn, using the famous Chinese Remainder Theorem known from the ancient times.
Taking the sufficient number of primes (so that their product is a sufficiently large number),
one can obtain the full result in the initial domain of integers (rationals). Thus, the modular
homomorphism

Op : Zlz] = Zpla]

is used to reduce the problem from harder (Z[x]) to simpler (Z,[z]) domain, where the problem
may be solved efficiently.

The same idea is used to reduce problems with multiple variables to univariate. For example,
efficient algorithms for multivariate GCD substitute different values for all variables but one,
then solve a univariate GCD, and then reconstruct multivariate GCD by doing several different
substitutions via polynomial interpolation. Thus, the evaluation homomorphism

o1 : R[X] — R[]

is used to reduce the problem from harder (R[X]) to simpler (R[xo]) domain, where the problem
may be solved efficiently. Finally, ﬁgure];lj shows the homomorphism diagram for Chinese
remainder and interpolation algorithms used to solve GCD / factorization / linear system and
other problems with polynomials over integer (rational) numbers. The same techniques of ring
homomorphism are used for solving problems in more complicated domains: e.g. problems with
polynomials over algebraic number fields may be reduced to problems over Galois fields and
then the answer may be reconstructed using Chinese remainders.

Given problem in Solution in
Zlxy, o, ... 2] Zlxy, 2, ... xp]
mod Chinese remainders
Image problem in Solution in
Lplzi, 2, ..., 20) Lplzi, 2, ..., x0)
eval lifting / interpolation
Image problem in Solution in
Zp[1] Zp[x1]

o~

Solve image problem in
Zpla]

Figure 1. Homomorphism diagram for Chinese remainder and interpolation algorithms.
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One of the key aspects in the implementation of above methods concerns the tight connection
between abstract mathematics and generic programming. For example, the algorithms for
computing GCDs or factoring univariate polynomials over finite fields F[x] are formulated
independently of the specific type of Fy: they are the same for both modular integers Z,, their
finite extensions Z,[t]/(f(t)) etc. On the other hand, obviously, the data structures for integers
and for finite extensions are completely different. Moreover, one may (and in fact should) use
quite special CPU-optimized implementations for Z, or GF(p, k) depending on the values of p
and k. That is why the use of generic programming may significantly facilitate the development:
one can write and optimize the algorithm only once and it will work with elements of different
ring types.

The second key aspect is the performance: among the modern open source software there
are only few tools which are able to perform routines such as multivariate polynomial GCD or
factorization at a speed sufficient for challenging real-world problems. Existing tools with such
functionality are commonly implemented as a computer-algebra systems and each has its own
interactive interface and domain-specific programming language, which are in most cases very
bad suited (compared to modern industrial object oriented languages) for developing of new
generic algorithms.

These two aspects drove the development of RINGS — a generic and high-performance library
for commutative algebra written in Java and Scala languages [5]. Java is perhaps the most widely
used language in industry today and combines several programming paradigms including object-
oriented, generic, and functional programming. Scala, which is fully interoperable with Java,
additionally implements several advanced concepts like pattern matching, an advanced type
system, and type enrichment. Use of these concepts in RINGS made it possible to implement
mathematics in a quite natural and expressive way directly inside the programming environment
offered by Java and Scala.

In a nutshell, RINGS allows to construct different rings and perform arithmetic in them,
including both very basic math operations and advanced methods like polynomial factorization,
linear systems solving, and Groébner bases. The built-in rings provided by the library include:
integers Z, modular integers Z,, finite fields GF(p¥) (with arbitrary large p and k < 231),
algebraic field extensions F(agq,...,as), fractions Frac(R), univariate R[z] and multivariate
R[)? ] polynomial rings, where R is an arbitrary ground ring (which may be either one or any
combination of the listed rings).

In further sections, we will illustrate the key features of RINGS by a few examples given
in Scala language. They can be evaluated directly in RINGS REPL. The source code of the
library is hosted at GitHub[https://github.com/PostavskySV/rings.| Installation instructions

h FRVEVIRY A . SR, D) R, [
11u l;l)b./ / LILIES. 1 €adIIeaocs.10.

2. Rings library overview
The high-level architecture of the RINGS library is designed based on two key concepts: the
concept of mathematical ring and the concept of generic programming. The use of generic
programming allows one to systematically translate abstract mathematical constructions into
machine data structures and algorithms. At the same time, the library remains completely
type-safe due to the deep use of strong type model of the Scala language.

Generic programming, powered by the advanced type system of Scala language, provides a
great level of abstraction when working with different rings. For example, consider the following
generic implementation of Euclidean algorithm:

def gcd[El(a: E, b: E)(implicit ring: Ring[E]): E =
if (b == ring(0)) a else gcd(b, a % b)


https://github.com/PoslavskySV/rings
http://rings.readthedocs.io
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It works with elements of any (Euclidean) ring. E.g. apply it to elements of Z:

implicit val zRing = Z // ring of (arbitrary precision) integers
val il = zRing(16) // convert machine number to element of ring
val i2 = zRing(18)

val iGed = gecd(il, i2)

assert ( iGed == zRing(2) )

E.g. apply it to elements of Q[x]:

implicit val pRing = UnivariateRing(Q, "x") // polynomials Q[x]
val pl = pRing("1 - x78") // parse poly from string

val p2 = pRing("1 + x75")

val pGed = gecd(pl, p2)

assert ( pGed == pRing("1+x") )

Importantly, each object from the above example has complete compile-time type, which is
just omitted for shortness, but inferred automatically by the compiler. So in fact, the above
lines are effectively expanded to:

val pRing : UnivariateRing[Rational[IntZ]] = ...
val pl : UnivariatePolynomial [Rational [IntZ]]
val pGed : UnivariatePolynomial[Rational[IntZ]]

Another key point is the use of implicit variables in connection with the Scala concept of “type
enrichment”. In RINGS, it is used to add operator overloading for elements of arbitrary rings in
an elegant way: all math operators (like modulo operator % used in the above gcd definition)
work for arbitrary type E, provided that there is an implicit instance of Ring[E] in the scope:

implicit val ring : Ring[E] = ... // implicit ring instance
val t1 : E= ... ; val t2 : E = ... // some ring elements

tl % t2 // compiles to ring.remainder(tl, t2)

tl / t2 // compiles to ring.divide(tl, t2)

tl + t2 // compiles to ring.add(tl, t2)

tl * t2 // compiles to ring.multiply(tl, t2)

The following example shows how the presence of an implicit ring changes the behaviour of
math operators:

// some arbitrary precision integers
val t1 : IntZ = 12 ; val t2 : IntZ = 13
assert (tl * t2 == Z(156)) // multiply integers

{

implicit val ring = Zp(2)

assert (tl * t2 == ring(0)) // multiply modulo 2
}
{

implicit val ring = Zp(17)

assert (tl * t2 == ring(3)) // multiply modulo 17
}
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3. Polynomials, GCDs, and Factorization

Polynomials are the central objects in almost all practical computations. RINGS provides
separate implementations for univariate (dense) and multivariate (sparse) polynomials:
univariate polynomials are represented by dense arrays, while multivariate polynomials are
represented by binary trees. Additionally, there are special implementations for polynomials
over Z, with p < 264 (p fits in machine word). These implementations are highly optimized
to achieve the best possible performance using machine intrinsics and special CPU instructions.
For example, for univariate polynomials:

// univariate ring Z/p[t] with arbitrary large p
val mPrime = Z("27521 - 1") // Mersenne prime

val uRingZp = UnivariateRing(Zp(mPrime), "t")

// optimized univariate ring Z/p[t] with machine p
val uRingZp64 = UnivariateRingZp64(17, "t")

Elements of these two rings have correspondingly different types:

val pl : UnivariatePolynomial[IntZ] = uRingZp("(1 + t)~100")
val p2 : UnivariatePolynomialZp64 = uRingZp64("(1 + t)~100")

To further illustrate the features of RINGS, let’s consider an example of a multivariate
polynomial ring over Galois field GF(173):

//Galois field GF(173) ("t" is the generator)
implicit val gf = GF(17, 3, "t")

val t = gf("t")

val t1 = 3 + t - t.pow(22)/(1 + t + t.pow(9))
//compute e.g. minimal polynomial of t1

val mpoly = gf.minimalPolynomial(t1)

// assert that tl is a root of mpoly

assert( gf (mpoly.composition(tl)).isZero )

Elements of this Galois field are internally represented as univariate polynomials over Zj7. Define
multivariate polynomial ring over the ground ring GF(173):

// multivariate ring GF(17%)[z,y, 2]

implicit val ring = MultivariateRing(gf, Array("x","y","z"), LEX)
// construct some multivariate polynomials

val pl = ring("(1 + t + x +y +2)"3 - (1 - x/t - y/t)"3")

val p2 = ring("(1 - x72 - y°2 - 272)74 + (1 + z/t)"4 - 1")

val p3 = (pl + p2).pow(2) - 1

Again the ring instance is defined implicit, so all math operations with multivariate
polynomials, which have the type

MultivariatePolynomial [UnivariatePolynomialZp64]

will be delegated to that instance.

In line 10, we explicitly specified to use LEX monomial order for multivariate polynomials.
This choice affects some algorithms like multivariate division and Grobner bases. The explicit
order may be omitted (GREVLEX will be used by default).

Polynomial greatest common divisors and polynomial factorization work for polynomials over
all available built-in rings. Now we continue our example:

// GCD of polynomials from GF(173)[z,y, 2]
val gcdl = ring.gcd(pl * p3, p2 * p3)
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assert ( gcdl % p3 == ring(0) )
val gcd2 = ring.gcd(pl * p3, p2 * p3 + 1)
assert ( gcd2.isConstant )

// large polynomial from GF(17,3)[z,y, 2]

// with more than 10* terms and total degree of 123
val bigPoly = pl.pow(3) * p2.pow(2) * p3

// factorize it

val factors = ring.factor(bigPoly)

3.1. Benchmarks
Much attention in the library is paid to the performance of core algorithms. One of the main
goals of RINGS is to provide really fast implementations of modern algorithms.

To compare the speed of GCD with other tools, the following benchmark was used.
Polynomials a, b, and g were generated at random and time needed to compute ged(ag,bg)
was measured. Each polynomial had 40 terms (so the products ag and bg had at most 1600
terms each), and monomial exponents were generated using two strategies. In the first one
(uniform), exponent of each variable in monomial was taken uniformly in 0 < exp < 30. In
the second strategy (sharp) the total degree of each monomial was fixed and equal to 50 (so
input polynomials were homogeneous). Benchmarking was performed for different numbers of
variables. The performance of RINGS (v2.3.2) was compared to MATHEMATICA (v11.1.1.0),
SINGULAR (v4.1.0), FORM (v4.2.0) [6] and FERMAT (v6.19)[7].

Fiﬁjre 2 shows how the performance of different libraries behaves with the increase of the
number of variables. In all considered problems performance of RINGS was unmatched. Notably,
its performance almost doesn’t depend on the number of variables in such sparse problems.

Performance of polynomial factorization was tested using the following benchmark.
Polynomials a, b, and ¢ were generated at random and time needed to compute factor(abc+ 1)
(trivial) and factor(abc) (non trivial) was measured. Each polynomial had 20 terms (so the
products abc had at most 8000 terms each). The exponent of each variable in monomials was
chosen uniformly in 0 < exp < 30.

Figire 3 shows how the performance of multivariate factorization depends on the number
of variables. It follows that the median time required to compute factorization changes quite
slowly, while some outstanding points (typically ten times slower than median values) appear,
when the number of variables becomes large.

The benchmarks shown above involve only sparse problems, which are more frequent in
practice (especially in physics). The full set of benchmarks, including dense problems, can be

f h ISR RIS AV SULYT IS ISR A & YRS, DRSS, RN o b W 4 JSCISUSUU R, J__mvﬁ_.k
ounda av 1Ievps./ / gIolido. COILL/ 1 OSIaVSKY O v / THIZS. UCIICIIITarKs.

4. Ideals and Grobner Bases

The concept of mathematical ideal is implemented by the Ideal class, which computes
corresponding Grobner basis automatically at instantiation. The following code snippet
continues our example from the previous section with polynomial ring GF(17,3)[x,y, z] and
illustrates the main methods provided by the Ideal class:

val (X, v, z) = ring("x", nyn’ nzn)

// define a set of polynomial generators

val (i1,i2,i3) = (x.pow(16) +y + z, x-y-z, y.pow(8) - z.pow(8))
// construct Ideal from a set of generators

// (Groebner basis with GREVLEX order will be computed)

val ideal = Ideal(Seq(il, i2, i3), GREVLEX)


https://github.com/PoslavskySV/rings.benchmarks

ACAT 2019

IOP Publishing

Journal of Physics: Conference Series 1525(2020) 012020  doi:10.1088/1742-6596/1525/1/012020

68
69
70
71
72
73
74
75
76
7

78
79
80
81
82

uniform exponents (characteristic 0)

time per problem, s
HoR e
o O o
2 VU
Ty

o4
o
O
FO1
—d
@———
[]
]
(<]
Ll ol

sharp exponents (characteristic 0)

E_ _ _timeout=8hours_ _ _ _ _ _ _ _ _ _ e e @ - - - - 000 — — — -@0® — — — — 1

10° | ° 4

time per problem, s
=
o
)
T

uniform exponents (characteristic 2)

_ _ timeout=8hours_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ e - — — — — o — - — — — ®— — — — —

time per problem, s
=
o
X
T
.

) A S (R R (R

#vars = 3 #vars = 4 #vars =5 #vars = 6 #vars =7 #vars = 8

Rings Mathematica FORM Fermat Singular

Figure 2. Dependence of multivariate GCD performance on the number of variables. Each
problem set contains 110 problems, points correspond to the median times and the error bands
correspond to the smallest and largest execution time required to compute the GCD within the
problem set. If computation of a single GCD took more than 8 hours (timeout) it was aborted
and the timeout value was adjoined to the statistics.

// print
println(
// print
println(
// print
println(
// print
println(

Groebner basis
ideal.groebnerBasis )
dimension of ideal
ideal.dimension )
degree of ideal
ideal.degree )

Hilbert series of ideal
ideal.hilbertSeries )

// reduce poly modulo ideal

val p4 =

p2 %% ideal

RINGS also provides built-in algorithms for manipulating ideals:

val othIdeal = Ideal(Seq(pl, p2), GREVLEX)
// union of ideals

val union = ideal + othIdeal

// product of ideals

val prod = ideal * othIdeal
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Figure 3. Dependence of multivariate factorization performance on the number of variables.
Each problem set contained 110 problems, points correspond to the median times and the
error bands correspond to the smallest and largest execution time required to compute the
factorization within the problem set.

// intersection of ideals

val in = ideal intersection othIdeal
// quotient of ideals

val quot = othIdeal :/ ideal

4.1. Benchmarks

RiNGs implements Faugere’s F4 and Buchberger’s algorithms for computing Grébner bases.
These implementations show sufficient performance on small and medium problems. Table ]ID
shows time needed to compute a Grobner bases of classical Katsura and cyclic systems fo
RinGgs, MATHEMATICA and SINGULAR. Timings are in general comparable between RINGS and
SINGULAR for polynomial ideals over Z, while for Q@ RINGS behaves worse. It should be noted
that for very hard problems, much more efficient dedicated tools like FGB [§] (proprietary) or

OPEN]Dél [9] (open source) exist.

5. Conclusion and Future Work
There are two key facets of the programming of modern computer algebra algorithms: the desire
to achieve high performance and the use of generic programming. RINGS library combines a
very generic programming approach with a really high-performance implementations, providing a
well-designed generic API with a fully typed hierarchy of algebraic structures and algorithms for
commutative algebra. RINGS performance is similar or even unmatched in some cases to many
advanced open-source and commercial software packages. The API provided by the library
allows to write short and expressive code on top of the library, using both object-oriented and
functional programming paradigms in a completely type-safe manner.

Some of the planned future work for RINGS includes improvement of Grobner bases algorithms



ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012020  doi:10.1088/1742-6596/1525/1/012020

Table 1. Time required to compute Grobner basis in graded reverse lexicographic order. In
case of Z, coeflicient ring, value of p = 1000003 was used.

Problem Ring RINGS MATHEMATICA SINGULAR

c-7 Ly 3s 26s N/A
c-8 Zy, 51s 897s 39s
c-9 L 14603s 00 8523s
k-7 Ly, 0.5s 2.4s 0.1s
k-8 Ly, 2s 24s 1s
k-9 Ly, 2s 22s 1s
k-10 Ly, 9s 216s 9s
k-11 Ly 54s 2295s 65s
k-12 Ly 363s 28234s 677s
k-7 Q 5s 4s 1.2s
k-8 Q 39s 27s 10s
k-9 Q 40s 29s 10s
k-10 Q 1045s 251s 124s

(better implementation of “change of ordering algorithm” and some special improvements for
polynomials over Q), optimization of univariate polynomials with more advanced methods for
fast multiplication, specific optimized implementation of GF(2, k) fields which are frequently
arise in cryptography, and better built-in support for polynomials over arbitrary-precision real
numbers (R[X]) and over 64-bit machine floating-point numbers (R64[X]).

RINGS is an open-source library licensed under Apache 2.0. The source code and
comprehensive online manual can be found at https://github.com/PoslavskySV /rings.
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