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Abstract
Gaiotto, Moore and Neitzke introduced spectral networks to understand the framed
G-local systems over punctured surfaces forG a split Lie group via a procedure called
abelianization. We generalize this construction to groups G of the form GL2(A),
where A is a unital associative ring, and to some of its subgroups. This relies on a
precise analysis of the two-fold ramified coverings associated with spectral networks
and triangulations and on a matrix reinterpretation of their path lifting rules; along
the way we provide another proof of the Laurent phenomenon brought to light by
Berenstein and Retakh. The partial abelianization enables us to gives parametrizations
of the moduli spaces of decorated G-local systems and of framed G-local systems
over punctured surfaces. For (A, σ ) a Hermitian involutive R-algebra the group G =
Sp2(A, σ ) is a classical Hermitian Lie group of tube type, and we are able to identify
and parametrize the moduli space of maximal framed G-local systems.
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1 Introduction

The theory of spectral networks was developed by Gaiotto, Moore and Neitzke [1–4]
during their research on supersymmetric quantum field theory. However, the mathe-
matical objects arising from this work proved to have an independent mathematical
interest. The abelianization using spectral networks can be applied to the study of the
geometry of the character varieties of surface groups into complex Lie groups and
split real Lie groups [5].

Spectral networks can be seen as graphs on a n-fold ramified covering of a given
surface. For n > 2 a generic spectral network is an infinite graph that is dense on the
surface, however finite spectral networks exist for every n ≥ 2. The case n = 2 is the
simplest one, but the abelianization procedure in this case can be only applied to a
very restricted class of split Lie groups of rank 1 (e.g. SL2(R), SL2(C)).

The main purpose of this paper is to generalize the abelianization procedure
described by Gaiotto, Moore and Neitzke to Lie groups G that can be seen as GL2(A)

or some subgroups of GL2(A) for some unital associative not necessarily commutative
R-algebra A. Although, such groups are not always split of rank 1, the abelianization
procedure can be partially applied for these groups. In this way, we can understand the
structure of the moduli space of decorated and framedG-local systems over punctured
surfaces.

We now describe our results in more detail.
Let S be a surface without boundary of negative Euler characteristic χ(S) with

punctures (we refer to Sect. 2 for the wider generality that can be allowed for S, for
example disks with marked points on the boundary). A decorated surface is a surface
as above together with a choice of a simple smooth loop (called a decorating loop) in
a neighborhood of every puncture.

Let G be a subgroup of GL2(A) for some unital associative not necessarily com-
mutative R-algebra A. A twisted G-local system on S is a local system on the unit
tangent bundle T ′S of S with the holonomy around the fiber of T ′S → S equal to −1.
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On partial abelianization of framed local systems 799

Further, we consider A2 (seen as the space of column vectors) as a right A-module.
The group G acts on A2 by the left multiplication. A framing of a twisted G-local
system is a choice of a parallel line A-subbundle in a neighborhood of every puncture.
A decoration of a twisted G-local system is a choice of a parallel regular section
along every decorating loop. For a precise definition of those notions see Sect. 3. A
twisted G-local system together with a framing (or decoration) is called a framed
(resp. decorated) twisted G-local system.

Notice that a parallel regular section along a decorating loop always induces a
parallel line A-subbundle in a neighborhood of the corresponding puncture. Hence, a
decorated twisted G-local system always admits a natural framing.

Fixing an ideal triangulation T of S, we consider a subspace of the space of twisted
(framed or decorated) G-local systems, that are transverse with respect to T (or just
T -transverse). Following [1, 3], we introduce the ramified covering � → S adapted
to the triangulation T and the spectral network on � as a graph that satisfies some
axioms (for more detail, we refer to Sect. 2.3).

For T -transverse framed twisted G-local system, we describe the twisted abelian-
ization procedure using spectral networks adapted to the triangulation T . The result
of this procedure is a twisted A×-local system on �. We also show the converse,
i.e. that for every twisted A×-local system on � there exist a unique twisted T -
transverse framedG-local system forG = GL2(A) (non-abelianization). We describe
the abelianization and non-abelianization procedures by defining a path-lifting map
from the twisted path algebra (see Sect. 2.5) of S to the twisted path algebra of �,
and we show this map is homotopy-invariant. The partial abelianization and the par-
tial non-abelianization defined in this article are identical to those constructed in [6],
albeit described here in a slightly more general framework (working in linear group
over any algebra rather than over a division algebra). The non-abelianization proce-
dure is described here using spectral networks, whereas in [6] it is described using a
reconstruction functor.

Using this construction, we define non-commutative A-coordinates on the space
of decorated twisted G-local systems, and using the path-lifting map we show that
these coordinates provide a geometric realization of the non-commutative algebra
introduced in [7]. This allows us to give a geometrical proof of the non-commutative
Laurent phenomenon, first shown in [7].

Further, we use this abelianization procedure to understand the topology of T -
transverse (framed and decorated) twisted G-local systems:

Theorem 1.1 Let S be a punctured orientable surface of negative Euler characteristic
χ(S) without boundary. Then the moduli space of framed (twisted)GL2(A)-local sys-
tems on S that are transverse to a fixed triangulation T is homeomorphic to the moduli
space of (twisted) A×-local systems on� which is homeomorphic to (A×)1−4χ(S)/A×
where A× acts diagonally by conjugation on (A×)1−4χ(S).

The moduli space of decorated twisted unipotent GL2(A)-local systems on S that
are transverse to a fixed triangulation T is homeomorphic to the product of the moduli
space of twisted A×-local systemson� and (A×)2p where p is the number of punctures
of S.
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Finally, we introduce involutive algebras (A, σ ), i.e. unital, associative R-algebras
with an R-linear map σ : A → A such that σ(ab) = σ(b)σ (a) for all a, b ∈ A
and σ 2 = Id. Over involutive algebras, the symplectic group can be defined as

follows: Sp2(A, σ ) := {g ∈ GL2(A) | σ(g)tωg = ω} where ω =
(

0 1
−1 0

)
.

These groups were studied in [8], and they are of particular interest for higher
rank Teichmüller theory: For a special class of involutive algebras (A, σ ) called
Hermitian algebras, the groups Sp2(A, σ ) are Hermitian of tube type. This gives
rise to so-called maximal Sp2(A, σ )-local systems on S and maximal representa-
tions of the fundamental group of S into Sp2(A, σ ). Maximal local systems and
maximal representations were introduced and studied in [9–11]. They provide exam-
ples of so-called Higher Teichmüller spaces, i.e. subspaces of the character variety
Rep(π1(S),Sp2(A, σ )) = Hom(π1(S),Sp2(A, σ ))/Sp2(A, σ ) that consist entirely
of discrete and faithful representations. The topology of spaces of maximal represen-
tations for closed surfaces was studied in [12–15], partly using the theory of Higgs
bundles. In [16], the spaces of framed and decorated maximal representations into the
real symplectic group Sp(2n,R) are parametrized using a non-commutative analog of
the Fock–Goncharov parametrization [17] and the topology of them is studied.

We introduce (framed and decorated) twisted Sp2(A, σ )-local system and describe
the topology of the moduli space of T -transverse framed twisted Sp2(A, σ )-local
systems:

Theorem 1.2 Using the same notations as in the previous theorem, the moduli space
of framed (twisted) Sp2(A, σ )-local systems on S that are transverse to a fixed trian-
gulation T is homeomorphic to:

(
((Aσ )×)−2χ(S) × (A×)1−χ(S)

)
/A×

where Aσ = FixA(σ ), A× acts componentwisely by conjugation on (A×)1−χ(S) and
by congruence on ((Aσ )×)−2χ(S).

For Hermitian A, we also introduce maximal (framed and decorated) twisted
Sp2(A, σ )-local systems and describe the topology of the moduli space of maximal
framed twisted symplectic local systems:

Theorem 1.3 If A is Hermitian, then the moduli space of framed (twisted) maximal
Sp2(A, σ )-local systems on S is homeomorphic to:

(
(Aσ+)−2χ(S) × (A×)1−χ(S)

)
/A×

where Aσ+ = {a2 | a ∈ (Aσ )×}, A× acts componentwisely by conjugation on
(A×)1−χ(S) and by congruence on (Aσ+)−2χ(S).

This provides a new proof of the result of [16, 18, 19].
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Structure of the paper

In Sect. 2 we introduce the topological and combinatorial data needed for the abelian-
ization process, such as ramified coverings and a special class of graphs on them called
spectral networks. We define the path-lifting map related to the spectral network. In
Sect. 3 we describe the partial abelianization and non-abelianization processes for
framed twisted GL2(A)-local systems. In Sect. 4 we apply this construction to dec-
orated twisted GL2(A)-local systems, and relate it to the non-commutative algebra
introduced in [7]. We also describe the topology of the moduli space of both framed
and decorated twisted GL2(A)-local systems that are transverse with respect to a fixed
ideal triangulation. In Sect. 5 we specify this construction for Sp2(A, σ )-local systems,
and describe the topology of the moduli space of maximal framed twisted symplectic
local systems.

2 Topological and combinatorial data

2.1 Punctured surface

Let S be a compact orientable smooth surface of finite type with or without boundary.
Let P be a nonempty finite subset of S such that on every boundary component of
S there is at least one element of P . We define S := S\P . Elements of P are called
punctures of S. Sometimes we will distinguish between elements of P that lie in the
interior of S – internal punctures and that lie on the boundary – external punctures.
Surfaces that can be obtained in this way are called punctured surfaces, with the
exception of the (closed) disk with one or two punctures on the boundary and the
sphere with one or two punctures. Every punctured surface can be equipped with a
complete hyperbolic structure of finite volume with totally geodesic boundary. For
every such hyperbolic structure, all the internal punctures are cusps and all boundary
curves are (infinite) geodesics. Once equipped with a hyperbolic structure as above,
the universal covering S′ of S can be seen as a closed convex subset of the hyperbolic
plane H2 with totally geodesic boundary, which is invariant under the natural action
of π1(S) on H

2 by the holonomy representation. Punctures of S are lifted to points
of the ideal boundary of H2 which we call punctures of S′ and denote their set by
P ′ ⊆ ∂∞S′ ⊆ ∂∞H

2. Notice, if S does not have boundary, then S′ is the entire H2.
An ideal triangulation of S is a triangulation with oriented edges of S whose set

of vertices agrees with P , such that if γ is an edge of the triangulation, then the
opposite edge γ is also an edge of this triangulation. We always consider edges of an
ideal triangulation as homotopy classes of oriented paths (relative to their endpoints)
connecting points in P . Connected components of the compliment on S to all edges
of an ideal triangulation T are called faces or triangles of T . Every edge belongs to
the boundary of one or two triangles. In the first case, an edge is called external, in the
second – internal. Any ideal triangulation of S can be represented by an ideal geodesic
triangulation when a hyperbolic structure as above on S is chosen.
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Fig. 1 The ramified two-fold covering of two glued triangles. The preimages of p are p1 and p2, same for
q, r , s. The branched points are the blue crosses. The two outer edges with an arrow are glued according to
arrow orientation

2.2 Ramified covering

Let T be an ideal triangulation of S. We can endow S with a Euclidean structure
with conical points by choosing for each triangle T of T an orientation preserving
diffeomorphismϕT : T → T where T is the Euclidean triangle inR2 = Cwith vertices

1, j = e
2iπ
3 and j2. Then for each adjacent pair of triangles (not necessarily distinct) in

S, glue the corresponding Euclidean triangles with the composition of a rotation and a
translation. The conical points of this structure are exactly the points in P , meaning that
this structure once restricted to S is smooth. Let B = {ϕT (0) | T triangle of T } ⊂ S.
There is exactly one point of B in the interior of each triangle of T . With this data, we
can construct a two-fold branched covering π : � → S such that the branched points
are precisely elements of B and � has a Euclidean structure. Let H be the Euclidean
hexagon with vertices the sixth roots of unity inC. Then the map z 	→ z2 is a ramified
covering from H to T that has exactly one ramification of order 2 at the point 0. Then
take as many copies of H as there are triangles in T and for each pair of adjacent
triangles (not necessarily distinct) in S, glue the corresponding Euclidean hexagons
on both edges that are mapped to the glued edge in S with rotation and a translation
(Fig. 1).

This defines a two-fold ramified covering π : � → S with ramification points at B,
and the conical points of � are a subset of π−1(P). This means the map π restricted
to � = �\π−1(P) is a smooth two-fold branched covering from � to S, with simple
ramifications at each point of B. The lift T ∗ := π−1(T ) of T to� induces a hexagonal
tiling of � such that in every hexagon there is exactly one element of π−1(B).

Remark 2.1 By construction, triangles of T are in 1:1-correspondence with elements
of B, and hexagons of π−1(T ) are also in 1:1-correspondence with elements of B.

Definition 2.2 For a smooth manifold X , denote T ′X the spherical quotient of T X ,
i.e. T ′X = T pX/R∗+ where T pX is the punctured tangent bundle of X and the group
R

∗+ acts fiberwise by multiplication. The space T ′X is then a sphere bundle over X ,
and we will write an element of T ′X as an ordered pair (x, v) with x ∈ X and v a
non-zero vector in Tx X , identified with the half-line it spans. With a slight abuse of
terminology, we will call this sphere bundle the unit tangent bundle of X .

Remark 2.3 Since the map π is a local diffeomorphism on �\π−1(B), it induces
the tangent (differential) map dπ : T (�\π−1(B)) → T (S\B) that factorizes to unit
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On partial abelianization of framed local systems 803

tangent bundles T ′(�\π−1(B)) → T (S\B)′. In order to simplify the notation, we
will sometime write π : T� → T S and π : T ′� → T ′S instead of dπ .

Remark 2.4 The unit tangent bundle of H is canonically identified to H× S
1 as H is a

subset of R2. With this identification, the preimages by dπ of (x, v) ∈ T ′S are of the
form (x1, v′) and (x2,−v′) where x1 and x2 are the preimages of x by π .

The following proposition describe the topology of the ramified covering �:

Proposition 2.5 Let S be a compact orientable surface with k ≥ 0 boundary compo-
nents C1, . . . ,Ck and let P be a finite set of points of S such that for all i ∈ {1, . . . , k},
ni = #(Ci ∩ P) > 0. Let ke (resp. ko) be the number of components of ∂S with an even
(resp. odd) number of punctures, such that k = ke +ko. Let p = #(P\∂S), let g be the
genus of S and let S = S\P. Then the two-fold ramified covering � = �\π−1(P) of
S is a surface such that:

• � is a compact orientable surface of genus

g′ = 1

2

(
2p + 2ke + 3ko + 8g − 6 +

k∑
i=1

ni

)
,

• for each of the ke boundary components C of S with even number n of punctures,
π−1(C) is the union of two distinct boundary components in �, each with n
punctures,

• for each of the ko boundary components C of S with odd number n of punctures,
π−1(C) is one boundary component in � with 2n punctures,

• � has 2p internal punctures.

Proof First, note that the genus g′ of � is an integer because 3ko + ∑
ni is always

even. It is clear from the construction that� is compact and orientable, and that� has
2p internal punctures. To compute the number of boundary components of �, we will
glue to each boundary of S a disk with the corresponding number of punctures on the
boundary to get a surface Ŝ with no boundary, only internal punctures. Since a disk
with one (resp. two) puncture on the boundary does not admit an ideal triangulation,
we glue a disk with one (resp. two) puncture on the boundary and one internal puncture
instead. In the corresponding ramified covering �̂ of Ŝ, we then remove the lifts of the
interior of the glued disks to obtain �. The result follows from the following lemma:

Lemma 2.6 If S is a closed disk with n ≥ 3 punctures on the boundary, � has either
one boundary component with 2n punctures if n is odd or two boundary components
with n punctures each if n is even. If S is a disk with one internal puncture and one
puncture on the boundary, � has one boundary component with two punctures. If S
is a disk with one internal puncture and two punctures on the boundary, � has two
boundary components with two punctures each.

Proof The two cases with an internal puncture can be computed individually. Let S
be a disk with n ≥ 3 punctures on the boundary. Let T be a triangulation of S and �
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804 C. Kineider, E. Rogozinnikov

the corresponding ramified covering. Let γ be a loop homotopic to the boundary of
the disk going around all the n − 2 branched points in S. Let x be the base point of γ ,
and x1, x2 the lifts of x to �. Let γ̃ the lift of γ starting at x1. If γ̃ is a loop then there
are two lifts of the boundary of S to �, and if γ̃ is a path from x1 to x2 then the lift of
the boundary of S is connected in �. The loop γ is homotopic to the concatenations
of loops γ1, . . . , γ� n−2

2 
, γ ′ based at x such that each γi goes around two branched

points in S and γ ′ is either trivial if n − 2 is even or goes around one branched point
if n − 2 is odd. Then γ̃ is the concatenation of the lifts γ̃1, . . . , γ̃� n−2

2 
, γ̃ ′. Since the
γ̃i are loops based at p1 and γ̃ ′ is either trivial or a path from p1 to p2 (depending on
the parity of n), we get the result. ��

The Euler characteristic of S is

χ(S) = 2 − 2 g − k = 2 − 2 g − ko − ke

and the Euler characteristic of � is

χ(�) = 2 − 2g′ − ko − 2ke.

The number of branched points is the same as the number of triangles in T , which is
−2χ(S) + 2p + ∑

ni . Riemann-Hurwitz formula gives us:

χ(�) = 2 − 2g′ − ko − 2ke = 2χ(S) −
(

−2χ(S) + 2p +
k∑

i=1

ni

)

= 4χ(S) − 2p −
k∑

i=1

ni

= 8 − 8g − 2p − 4ko − 4ke −
k∑

i=1

ni

We can then solve for g′ to get the result. ��
Remark 2.7 In particular, the topology of � does not depend on the triangulation T .

We denote by θ : � → � the covering involution. The following result is a direct
consequence of the above proposition.

Corollary 2.8 The fundamental group π1(�) is a free group of rank

1 − χ(�) + 2p = 1 − 4χ(S) + 4p +
∑

ni .

Let b ∈ � be a ramification point of the coveringπ : � → S. Letα1, . . . , αs : [0, 1] →
S be free generators of the fundamental group π1(S, π(b)) that do not pass through
other ramification points. The fundamental group π1(�, b) is the free group freely
generated by the following collection of loops on �:
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Fig. 2 Local description of a
spectral network around a
branch point

1. For every generator αi , there are two closed lifts γ 1
i and γ 2

i = θ ◦ γ 1
i on � based

at b (in total 2 − 2χ(S) + 2p curves);
2. For every ramification point b′ �= b in �, we fix a simple segment on S connecting

π(b) and π(b′) and take the lift of this segment on �. It is a closed loop ξ based
at b (in total −2χ(S) + 2p − 1 + ∑

ni curves).

The fundamental group π1(T ′�, b̃)where b̃ ∈ T ′� is a lift of b to T ′� is generated by
lifts of curves described above and the curve going once around the fiber of T ′� → �

at b̃.

2.3 Spectral network

Let T be an ideal triangulation of S and π : � → S be the corresponding two-fold
ramified covering constructed in Sect. 2.2. A (small) spectral network associated with
this ramified covering is a set W of paths [−1, 1] → � (called rays) satisfying:

• for all α ∈ W , α(−1), α(1) ∈ π−1(P), α(0) ∈ π−1(B) and if t /∈ {−1, 0, 1},
then α(t) /∈ π−1(P ∪ B)

• for all α ∈ W and for all t ∈ [−1, 1], π(α(t)) = π(α(−t))
• for all b ∈ π−1(B), there are exactly 3 rays α1, α2, α3 ∈ W passing through b,
and locally around b the rays look like Fig. 2.

• for all α �= α′, α(] − 1, 0[) – which we call the past of α – does not intersect
α′(]0, 1[) – which we call the future of α′.

Remark 2.9 We can omit the last condition in rank 2 spectral networks (i.e. associated
to a two-fold covering) as we will construct spectral networks without intersections
in �.

We can construct a spectral network associated with a triangulation T in the follow-
ing way: call the points of π−1(P) that are on third roots of unity (for the Euclidean
structure) sinks and all other points of π−1(P) sources. This way, each point of P
have two preimages, one source and one sink. For each hexagon H of π−1(T ), the
three rays going through the branch point in H are the three Euclidean segments going
from the source to the sink for each of the three puncture in T (Fig. 3).

We fix a spectral networkW on � adapted to the covering � → S and to the ideal
triangulation T . The complement of all lines of W on � is a collection of simply
connected regions called cells. These are either quadrilaterals bounded by four lines
ofW or triangles bounded by two lines ofW and one boundary component of S. The
closure of every cell in S contains exactly two punctures.
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806 C. Kineider, E. Rogozinnikov

Fig. 3 Picture of the spectral
network on each triangle of the
triangulation. Here the sources
are p2, q2, r2 and the sinks are
p1, q1, r1

Let p0 : S′ → S be the universal covering of S. There exist a branched two-
fold covering π ′ : �′ → S′ and an (infinite but in general not universal) covering
p1 : �′ → � such that the following diagram commutes:

�′ π ′

p1

S′

p0

�
π

S

The ideal hexagonal tiling of � lifts to an ideal hexagonal tiling of �′. We call the
set of ends of edges of this tiling the ideal boundary of �′. In fact, the ideal boundary
of �′ does not depend on the choice of the tiling.

The map π ′ can be continuously extended to the ideal boundary of �′. Therefore,
we can talk about images and preimages of punctures under π ′.

We lift the triangulation T on S, the corresponding hexagonal tiling on � and the
spectral network W to these coverings.

Now we are working on the universal covering S′. For every puncture p of S′, we
consider the union of all cells that have this puncture in their (ideal) boundaries, take
the closure of this union in S′ and then take the interior of this set. This is an open
contractible set of S′, we denote it by Up and call the standard neighborhood of the
puncture p ∈ S′. Let p1 and p2 be two lifts of the puncture p of S′ under π ′. The
lift of Up to �′ consists of two connected components Up1 and Up2 every of which
projects homeomorphically toUp, i.e.Up is evenly covered byUp1 andUp2 . We will
call Up1 (resp. Up2 ) the standard neighborhood of p1 (resp. p2).

Notice that two standard neighborhoods either do not intersect or intersect in a cell
of the (lifted) spectral network W . More precisely, two standard neighborhoods Up

andUq intersect if and only if the punctures p and q of S′ (resp. of �′) are connected
by an edge of p−1

0 (T ) in S′ (resp. by an edge of p−1
1 (T ∗) in �′).

2.4 Peripheral decoration

To consider framed and decorated local systems, we will need the following additional
data on the surface S: for every internal puncture p ∈ P we fix a neighborhood Sp ⊂ S
of p that is diffeomorphic to a punctured disk. For every external puncture p ∈ P , we
choose a neighborhood Sp ⊂ S of p that is diffeomorphic to a punctured half-disk.
We also assume that all Sp are so small that they are pairwise disjoint, and their union
does not contain points of B. In this case, every Sp is evenly covered by �p1 and �p2
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Fig. 4 The bending of an edge
of the triangulation. In red are
the peripheral decoration, in
blue and green are the oriented
edges of the triangulation, the
crosses are the points in IT and
the thicker part of the edges in
between the peripheral curves
are the paths τγ and τγ (Color
figure online)

where {p1, p2} = π−1(p) and �p1 and �p2 are the two connected components of
π−1(Sp).

Furthermore, for every internal puncture p ∈ P we fix a simple smooth loop
βp : [0, 1] → Sp around p such that β̇p(0) = β̇p(1), oriented so that p is on the right
of βp according to the orientation of S. For every external puncture p ∈ P , we chose
a simple smooth path βp : ([0, 1], {0, 1}) → (Sp, Sp ∩ ∂S) connecting two boundary
connected components separated by p, once again with orientation given by the one
on S.

In both cases, up to isotopy there is only one such βp. Since all βp are smooth,
we can lift them to the T ′S namely to the curve [βp(t), β̇p(t)] ∈ T ′S, t ∈ [0, 1]. We
denote this lift by T ′βp : [0, 1] → T ′S. Notice that for every internal puncture p, the
lift T ′βp is always a loop.

If for every p ∈ P a curve βp as above is chosen, then we say that the surface S is
decorated, and the collection D = {βp | p ∈ P} is called a decoration of S.

If a hyperbolic structure as above on S is chosen, then everyβp can be represented by
projections of small enough horocycles around some p′ ∈ p−1

0 (p) under the universal
covering map p0 : S′ → S.

Let T be an ideal triangulation of S. We can assume the arcs of the triangulation
are smooth, and if the surface is decorated, we will further assume that any arc of the
triangulation intersects only once the peripheral curves associated to its endpoints and
do so with matching derivatives, i.e. an arc γ ∈ T from p ∈ P to q ∈ P satisfies
γ̇ (t0) = β̇p(t ′0) and γ̇ (t1) = β̇q(t ′1) where t0, t1, t ′0, t ′1 are such that γ (t0) = βp(t ′0)
and γ (t1) = βq(t ′1). This is the same as assuming that every arc from p to q of the
lift T ′ of T to T ′S intersects the lifts T ′βp and T ′βq . This can be done by bending
the arcs of T in a neighborhood of their intersections with the peripheral curves. Let
IT (S) ⊂ T ′S be the set of intersection points between T ′ and the lifted decoration
curves T ′βp. This means that now each edge of the triangulation T is endowed with
two special points (one for each extremity) lying on the peripheral curves associated
to its endpoints. For every edge γ ∈ T of the triangulation, let τγ be the path in T ′S
with extremities in IT obtained by restricting γ to the part in between the two special
points on it. Note that since this is applied to all the oriented arcs of the triangulation,
the chosen representative for τγ and τγ are such that T ′(τγ .τγ ) is homotopic to a lace
that loop once around the fiber T ′S → S (see Fig. 4).

We also apply the same construction in� to equip each edge of the hexagonal tiling
T ∗ with two special points, and denote IT ∗(�) the set of all special points in T ′�.
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808 C. Kineider, E. Rogozinnikov

Note that both IT ∗(�) and IT (S) are finite sets, and that π : T ′� → T ′S is 2:1 from
IT ∗(�) to IT (S).

Since the points in IT ∗(�) lie on peripheral curves associated with punctures, they
inherit the source/sink naming from the puncture.

2.5 The spectral networkmap

Lifting paths to a ramified covering is not homotopy invariant: a contractible loop
around a branch point b ∈ B is lifted as two paths on � that are not loops, thus
not homotopic to the lift of the trivial loop. The goal of this section is to construct a
path-lifting map SN , which depends on the spectral network W , from paths on T ′S
to paths on T ′� such that SN is well-defined on homotopy classes.

We will use the symbol ≈ to represent homotopy (relative to extremities) of paths.
Let S be a punctured surface, T an ideal triangulation of S and π : � → S the

two-fold branched covering constructed in Sect. 2.2. Let W be the spectral network
adapted to this covering constructed in Sect. 2.3. Every path α :] − 1, 1[→ � ofW is
smooth since it is a straight line for the Euclidean structure. We can thus lift the paths
of W to

T ′α : ] − 1, 1[ → T ′�
t 	→ (α(t), α̇(t))

.

We will also call this set of paths in T ′� a spectral network and denote it T ′W .
Let H be a hexagonal tile of �. Note that the Euclidean structure on � allows us

to identify T ′H with H × S
1. In the following, a path γ on T ′H � H × S

1 will
be written as a couple (x, v) where x is the projection of γ on H ⊂ � and v is the
projection of γ on S

1. Note that S1 has a natural orientation given by the one on �.
For all θ ∈ S

1, define s+
θ to be the (homotopy class of the) path in S

1 going from
θ to −θ following the orientation of S1, and s−

θ going from θ to −θ in the opposite
direction. For a path v on S

1, we will denote −v the image of v under the involution

θ 	→ −θ . The path −v goes from −v(0) to −v(1). In particular, we have s−
θ = −s+

θ

and (−s±
θ ).s±

θ = δ±
θ where δ±

θ : t 	→ θ ± 2iπ t . When the context is clear, we will
omit the subscript describing the starting point of the paths s± and δ±. The paths δ±
satisfy δ− = δ+ and if v is a path on S

1 from θ1 to θ2, we have δ±
θ2

.v ≈ v.δ±
θ1
.

The Euclidean structure on � also defines a flat connection ∇ on T� given by
the restriction of the standard flat connection on R

2. Since it is a bilinear map on the
sections of T� (denoted �(T�)), this connection induces a flat connection (which
we also call ∇) on the unit tangent bundle

∇ : �(T ′�) × �(T ′�) → �(T ′�).

Definition 2.10 Let X be a topological space. The path algebra of X (denoted
Z[Path(X)]) is the free Z-algebra generated by homotopy classes (relative to extrem-
ities) of paths [0, 1] → X , with the product given by concatenation of paths: if
γ1(0) �= γ2(1) then γ1.γ2 = 0 and if γ1(0) = γ2(1) then γ1.γ2 is the path obtained by
following γ2 then γ1.

123



On partial abelianization of framed local systems 809

Fig. 5 The path x ′ added by the
intersection with α

Now let X be a smooth surface. Define the twisted path algebra of X as

TPA(X) = Z[Path(T ′X)]/I

where I is the two-sided ideal generated by the elements ex,θ + δx,θ for (x, θ) ∈ T ′X ,
with

ex,θ : [0, 1] → T ′X
t 	→ (x, θ)

and δx,θ : [0, 1] → T ′X
t 	→ (x, θ + 2π t)

.

Remark 2.11 Given any non-empty subset E ⊂ T ′X , the subset

{γ1 + · · · + γr + I | for all 1 ≤ i ≤ r , endpoints of γi are in E} ⊂ TPA(X)

is a subring of TPA(X) because composition of paths preserves the set of endpoints.
We will denote TPAE (X) this subring.

Let x be a path on S intersecting only once (and not at its endpoints) the spectral
network W and not going through a branch point. Let α ∈ W be the path such that
π(α) intersects x . The two standard lifts x1 and x2 of x to� each intersect once α, one
of them intersecting the past of α and the other intersecting the future of α. Suppose
x1 is the one intersecting the past of α. We can then define a new path x ′ on � as the
concatenation of 5 paths x ′

1, . . . , x
′
5 defined as follows (Fig. 5):

• x ′
1 is the part of x1 from its starting point to the intersection point with α

• x ′
2 is the part of α from the intersection with x1 to the branch point

• x ′
3 is a constant path at the branch point (it will be useful in the next paragraph

when we will consider the lifted spectral network T ′W)
• x ′

4 is the part of α from the branch point to the intersection with x2
• x ′

5 is the part of x2 from the intersection with α to its endpoint.

Now let γ : t 	→ (x(t), v(t)) be a path on T ′S such that the path x on S intersects
only once the spectral network on a ray α ∈ W at a time t0 ∈ ]0, 1[. Let γ1 = (x1, v1)
and γ2 = (x2, v2) be the standard lifts of γ to T ′�, with the same numbering as above.
Note that γ1 and γ2 do not intersect T ′W in general, but x1 and x2 intersect α ∈ W . Let
x ′ be the path on� obtainedwith the construction described in the previous paragraph.
We nowwant a continuous map v′ : [0, 1] → S

1 which coincide with the standard lifts
v1 and v2 when x ′ coincides with either x1 or x2. Without loss of generality, suppose x
is smooth at the intersection point withW and that the intersection is transverse. Then
x1 and x2 are also smooth at their intersection points with α. We say the intersection
of x1 with α is positively oriented if (ẋ1(t0), α̇(t0)) agrees with the orientation on �,
negatively oriented if not.
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Fig. 6 The path (x ′, v′) added
by the intersection with α. The
intersection of x1 with α is
positively oriented if � is
oriented clockwise

Remark 2.12 The positivity of the intersection of a path (x, v) in T ′� with a ray of
the spectral network is determined using the derivative of the underlying path x , and
does not depend on the vector field v on x .

Let v′ be the concatenation of 5 paths v′
1, . . . , v

′
5 defined as follows (Fig. 6):

• v′
1 is the part of v1 from its starting point to the intersection point with α

• v′
5 is the part of v2 from the intersection with α to its endpoint

• v′
2 is obtained by parallel transport with respect to the flat connection∇ on� from

the vector v1(t0) along the path x ′
2• v′

4 is obtained by parallel transport with respect to ∇ from the vector v2(t0) =
−v1(t0) along the path x ′

4• v′
3 is the path s+

v′
2(0)

in T ′
b� � S

1 if the intersection of x1 with α is positively

oriented, and s−
v′
2(0)

if the intersection is negatively oriented.

Remark 2.13 The resulting path v′ on S1 is homotopic to (−v21).s
±
v1(t0)

.v11 where v11 =
v1 |[0,t0] and v21 = v1 |[t0,1]. Note that for any path w on S

1 from θ0 to θ1, we have

s±
θ1

.w ≈ (−w).s±
θ0

so the path v′ is homotopic to s±
v1(1)

.v1.

Let γ ′ = (x ′, v′) and SN (γ ) be the element γ1 + γ2 + γ ′ ∈ TPA(�). Let γ be a
path in T ′S. We can write γ as a concatenation of smaller paths γ (1), . . . , γ (r), each
intersecting at most once the spectral network and for each of these small paths, apply
the construction above to obtain SN (γ (1)), . . . , SN (γ (r)) (if γ (i) does not intersect
the spectral network, define SN (γ (i)) to be the sum of the two standard lifts of γ (i)).
Define the lift of γ with respect to the spectral networkW to be the product SN (γ ) =
SN (γ (1)) . . . SN (γ (r)) ∈ TPA(�).

Theorem 2.1 Let γ1 and γ2 be two homotopic paths in T ′S. Then SN (γ1) = SN (γ2).
In particular, the map

SN : TPA(S) → TPA(�)

γ 	→ SN (γ )

is well-defined.
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Fig. 7 A loop intersecting twice
the same ray ofW

Fig. 8 Spectral network lift of γ

Remark 2.14 The map SN is not defined on the whole twisted path algebra of S as
paths with endpoints on a ray of the spectral network cannot be lifted consistently,
but we will never need to lift such paths. The subset of TPA(S) (resp. TPA(�)) of
elements where no term has an endpoint on W is a subring (see Remark 2.11), and
with a slight abuse of notation we will still denote it TPA(S) (resp. TPA(�)).

The theorem is a consequence of the two following lemmas:

Lemma 2.15 Let γ = (x, v) be a path in T ′S that intersects exactly twice the same ray
α of the spectral network and no other ray ofW , as in Fig. 7. Then SN (γ ) = γ1 + γ2
where γ1 and γ2 are the two standard lifts of γ .

Proof Let t1 < t2 be the two elements of the interval [0, 1] such that x(t1) and x(t2)
are on α. Let (x (1), v(1)) = γ (t1) and (x (2), v(2)) = γ (t2), and let γ1 = (x1, v1) and
γ2 = (x2, v2) the two standard lifts of γ , γ1 being the lift intersecting the past of α.
Then SN (γ ) = γ1 + γ2 + γ ′ + γ ′′ where γ ′ = (x ′, v′) is such that x ′ follow α from
x (1)
1 to x (1)

2 and γ ′′ = (x ′′, v′′) is such that x ′′ follows α from x (2)
1 to x (2)

2 (Fig. 8).
In order to prove the lemma, we need to show that the two paths γ ′ and γ ′′ added

by the intersections with the spectral network cancel each other in TPA(�), i.e. that
γ ′ + γ ′′ = 0. For this, we need to show that γ ′′.γ ′ is homotopic to an odd power
of δx1(0),v1(0). The paths x

′ and x ′′ are homotopic on � so the concatenation x ′′.x ′ is
trivial. What is left is to show that v′′.v′ is homotopic to an odd power of δ+.

Suppose the intersection of x1 with α at x (1)
1 is positive, the other case being sym-

metric. Then the intersection of x1 with α at x (2)
1 is negative. Then by Remark 2.13,

v′ ≈ s+.v1 and v′′ ≈ s−.v1, so we have

v′′.v′ ≈ v1.s−.s+.v1

≈ v1.δ
+.v1

≈ δ+.
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Fig. 9 A small loop around a
branch point

��
Lemma 2.16 Let m be a point in S in a small neighborhood of a branch point b but
not on a ray ofW and θ ∈ T ′

mS. Let γ be a path homotopic to em,θ in T ′S that loops
around a branch point b in S, intersecting exactly once each of the three rays of W
going out of b, as in Fig. 9. Then SN (γ ) = em1,θ1 +em2,θ2 where (m1, θ1) and (m2, θ2)

are the two lifts of (m, θ) in T ′�.

Proof Suppose the path γ is looping around b in the direction given by the orientation
of�, the other case being symmetric. Then all the intersections of the standard lifts of
γ with the spectral network in� are positive. By applying the spectral network lifting
rule to γ , we get 8 paths: the two standard lifts γ1 = (x1, v1) and γ2 = (x2, v2), and
6 additional paths γ ′

1, . . . , γ
′
6 shown in Fig. 10.

Let α1, α2 and α3 be the three rays of W intersected by γ , in that order. Let γ1 be
the standard lift of γ intersecting the past of α1, and let (m1, θ1) be its starting point
and (m2, θ2) be its endpoint. We will label the spectral network lifts γ ′

i = (x ′
i , v

′
i ) of

γ as follows:

• γ ′
1 follows γ1 until the intersection with α3, then α3, then γ2 until its end

• γ ′
2 follows γ2 until the intersection with α2, then α2, then γ1 until its end

• γ ′
3 follows γ2 until the intersection with α2, then α2, then γ1 until the intersection

with α3, then α3, then γ2 until its end
• γ ′

4 follows γ1 until the intersection with α1, then α1, then γ2 until its end
• γ ′

5 follows γ1 until the intersection with α1, then α1, then γ2 until the intersection
with α2, then α2, then γ1 until the intersection with α3, then α3, then γ1 until its
end

• γ ′
6 follows γ1 until the intersection with α1, then α1, then γ2 until the intersection

with α2, then α2, then γ1 until its end.

The paths x ′
1, x

′
4 and x ′

5 are homotopic to the trivial path em1 , x
′
6 is homotopic to x1,

x ′
2 is homotopic to em2 and x ′

3 is homotopic to x2. Since γ is homotopic to em,θ and x
is looping around b in the direction given by the orientation of �, we have v1 ≈ s−

θ1

and v2 ≈ s−
θ2
. Using the same reasoning as above, we get the following:

v′
1 ≈ s+.v1 ≈ eθ1

v′
2 ≈ s+.v2 ≈ eθ2

v′
3 ≈ s+.s+.v2 ≈ δ+.v2
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Fig. 10 All 6 paths added by intersections with the spectral network, together with the standard lifts. On the
upper left picture are the paths homotopic to trivial paths, and on the other are the remaining lifts, grouped
as pairs of paths cancelling each other out in TPA(�). Only the paths x ′

i on � are drawn

v′
4 ≈ s+.v1 ≈ eθ1

v′
5 ≈ s+.s+.s+.v1 ≈ δ+

θ1

v′
3 ≈ s+.s+.v1 ≈ δ+.v1

So in TPA(�), we have:

γ2 + γ ′
3 = 0

γ1 + γ ′
6 = 0

γ ′
1 + γ ′

5 = 0

γ ′
4 = em1,θ1

γ ′
2 = em2,θ2

so

SN (γ ) = γ1 + γ2 + γ ′
1 + γ ′

2 + γ ′
3 + γ ′

4 + γ ′
5 + γ ′

6 = em2,θ2 + em2,θ2 . (2.1)

��
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3 Partial abelianization of framed twisted local systems

In this section, we define framed and decorated twisted GL2(A)-local systems over
a punctured surface S and describe a partial non-abelianization procedure for them.
Using this, we describe the topology of the moduli space of framed and decorated
twisted GL2(A)-local system that are transverse with respect to a fixed ideal triangu-
lation of S.

In this section, A is finite dimensional unital R-algebra, and algebra homomor-
phisms are required to preserve unity elements.

Let An be the set of columns (n× 1 matrices) endowed with the structure of a right
A-module.

Definition 3.1 We make the following definitions:

1. An n-tuple (x1, . . . , xn) for x1, . . . , xn ∈ An is called basis of An if the map

An → An

(a1, . . . , an) 	→
n∑

i=1
xiai

is an isomorphism of A-modules.
2. The element x ∈ An is called regular if there exist x2, . . . , xn ∈ An such that

(x, x2, . . . , xn) is a basis of An .
3. � ⊆ An is called an A-line if � = x A for a regular x ∈ An . We denote the space

of A-lines of An by P(An).
4. Regular elements x1, . . . , xk ∈ An for k ≤ n are called linearly independent if

there exist xk+1, . . . , xn ∈ An such that (x1, . . . , xn) is a basis of An .
5. Two A-lines �,m are called transverse if � = x A,m = yA for linearly independent

x, y ∈ An .

Let Mn(A) be the ring of all n × n-matrices with entries in A, and GLn(A) be the
group of all invertible matrices of Mn(A). Then GLn(A) acts on An by left multipli-
cation.

Definition 3.2 AGLn(A)-local system over a smooth manifold X is a An-bundle over
X equipped with a flat connection.

Definition 3.3 LetU be an open subset of X . A regular A-subbundle L of a GLn(A)-
local system L over U is a subbundle of L such that for every p ∈ U there exists a
neighborhood Up containing p and a local trivialization

�p : L |Up→ Up × An

such that �p(L |Up ) = Up × � where � is an A-line in An .
A section v : U → L is regular if vA is a regular A-subbundle of L |U .
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3.1 Twisted local systems

In this section, X denotes either S or �.

Definition 3.4 A twisted GLn(A)-local system on X is a flat An-bundle over T ′X with
monodromy around the fibers of the natural projection T ′X → X equal to − Id.

Let x0 ∈ X and v ∈ T ′
x0X . The natural projection T ′X → X has fiber homeomor-

phic to S1, and we have the short exact sequence

1 → π1(T
′
x0X , (x0, v)) → π1(T

′X , (x0, v)) → π1(X , x0) → 1

withπ1(T ′
x0X , (x0, v))being isomorphic toZ, generated by the loop δ+

x0,v going around
the fiber over x0 once in the direction given by the orientation of X . This extension is
central because X is oriented.

Since X is not closed, the group π1(X) is free, so the sequence above splits. The
choice of a splitting corresponds to the choice of a non-vanishing vector field on X .
Let π s

1(X) denote the quotient of π1(T ′X , (x0, v)) by the normal subgroup 2Z ⊂ Z �
π1(T ′

x0X , (x0, v)), so we have the short exact sequence

1 → Z/2Z → π s
1(X) → π1(X , x0) → 1 (3.1)

that once again splits. Note that this second sequence also splits when X is closed (for
instance for X = � and � has no boundary) since a closed surface of negative Euler
characteristic always admits a vector field with zeroes of even indices only.

Proposition 3.5 The set of twisted GLn(A)-local systems on X up to isomorphism is
in 1:1-correspondence with the set of representations ρ : π s

1(X) → GLn(A) such
that ρ(δ+

x0,v) = − Id, up to the action of GLn(A) by conjugation.

Remark 3.6 Anysplittingof the short exact sequence (3.1) induces a1:1-correspondence
between twisted GLn(A)-local systems on X and GLn(A)-local systems on X .

IfL is a twisted local system on X and γ is a path on T ′X , the flat connection defines a
holonomymapmγ fromLγ (0) toLγ (1). Moreover, the path δx,θ induces the linear map
− Id on Lx,θ by definition of a twisted local system. Thus, if γ = γ1 +· · ·+ γr +I ∈
TPA(X) where all the γi ∈ Path(T ′X) have the same extremities, the holonomy map
mγ = mγ1 + · · · + mγr : Lγ (0) → Lγ (1) is well-defined (if there is more than one
term in γ the holonomy map mγ may not be an isomorphism). However, if γ1 and γ2
do not have the same extremities, it is not possible to associate an element of Mn(A)

to γ1 + γ2, which is a problem we need to solve in order to consider representations
of TPA(X). To make a link between twisted local systems and representations of
TPA(S), we first need to modify the ring Mn(A) to solve this issue of endpoints. Since
multiplication in TPA(X) is zero for paths whose extremities do not match, we need
a ring with the same behavior.

Definition 3.7 Let A be a unital ring and E ⊂ X any non-empty subset. Let AE be the
ring A(E×E) of finite formal sums of elements of the form a(p,q), a ∈ A, p, q ∈ E ,
endowed with the multiplication defined as follows:
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• ∀a, b ∈ A,∀x, y, z ∈ E, a(x,y).b(y,z) = (a.b)(x,z)
• ∀a, b ∈ A,∀x, y, z, t ∈ E, y �= z, a(x,y).b(z,t) = 0

The elements of this ring are copies of elements of A indexed by pairs of points in
E , thought as “endpoints” of these elements. The sum of two elements is a formal sum
except when the indices match, it then agrees with the sum in A. The multiplication of
two elements is made so it agrees with the composition of paths: multiplication of two
elementswith “non-composable” indices is zero andmultiplicationwith “composable”
indices agrees with the one on A, and the index of the result is the composition of the
indices.

The ring AE contains many isomorphic copies of A as subrings: for all x ∈ E ,

Ax := {
a(x,x) | a ∈ A

}

is a subring of AE isomorphic to A. Note however that the ring AE is not unital if E
is infinite, but contains many idempotent elements.

Let TPAT (S) = TPAIT (S)(S) be the subring of TPA(S) of paths with endpoints
in IT (S) described in Remark 2.11. Similarly, let TPAT ∗(�) = TPAIT ∗ (�)(�). For
any unital ring, let AT = AIT (S) and AT ∗ = AIT ∗ (�). In the following, TPAT (∗) (X)

denotes either TPAT (S) or TPAT ∗(�) and similarly AT (∗) denotes either AT or
AT ∗ . Since IT (S) and IT ∗(�) are finite, TPAT (∗) (X) and AT (∗) are unital, the units
elements being respectively

∑
x∈IT (∗) (X) ex and

∑
x∈IT (∗) (X) 1(x,x). There is then a

diagonal embedding

A#IT (∗) (X) → AT (∗)

(ax )x∈IT (∗) (X) 	→ ∑
x∈IT (∗) (X)

(ax )(x,x) .

For every x ∈ IT (∗) (X), there is an injective group homomorphism

π s
1(X , x) → TPAx (X)× ⊂ TPAT (∗) (X).

Two elements a, b ∈ AT (∗) are said conjugated if there exists an invertible element u
in A#IT (∗) such that b = u.a.u−1. This is an equivalence relation.

Proposition 3.8 There is a 1:1 correspondence between the set of twisted GLn(A)-
local systems on X up to isomorphism and the set of ring homomorphisms
TPAT (∗) (X) → Mn(A)T (∗) up to the action of GLn(A)#IT (∗) (X) by conjugation.

Proof Given a twisted GLn(A)-local system L on X , for all x ∈ IT (∗) (X) choose a
basis of the fiber of L over x . The map

ϕ : TPAT (∗) (X) → Mn(A)T (∗)∑
γ 	→ ∑

(HolL(γ ))(t(γ ),s(γ ))

is a ring homomorphism, where s(γ ) (resp. t(γ )) is the source (resp. the sink) of γ

(which are in IT (∗) (X)), and HolL(γ ) is the holonomy of γ in L in the corresponding
bases. The conjugacy class of ϕ does not depend on the choices of the bases.
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Conversely, let ϕ be the conjugacy class of a representation TPAT (∗) (X) →
Mn(A)T (∗) , and let x ∈ IT (∗) (X). Then TPAx (X) contains an isomorphic copy of
π s
1(X , x) and the restriction of ϕ to π s

1(X , x) yield a representation π s
1(X , x) →

GLn(A) mapping δ±
x to − Id, which define a unique isomorphism class of twisted

GLn(A)-local system by Proposition 3.5, having holonomies described by ϕ. ��

3.2 Framing and decoration

LetL be a twistedGL2(A)-local systemon S.We say thatL is peripherally parabolic if
for every puncture p ∈ P there exist a parallel regular A-subbundle ofL over T ′βp. A
choice of such a parallel regular subbundle L p ⊂ Lp → T ′βp, where Lp := L |T ′βp

for every p ∈ P is called a framing of L. Since L p is parallel, on the quotient bundle
Lp/L p (which is an A-bundle) over T ′βp the flat connection is also well-defined.
A framed twisted GL2(A)-local system is a pair (L, (L p)p∈P ) where (L p)p∈P is a
framing of L.

Let T an ideal triangulation of S. We say a framed twisted local system
(L, (L p)p∈P ) is T -transverse if for every edge of the triangulation two subbundles
corresponding to two ends of the edge are transverse.

A twisted GL2(A)-local system L over a decorated surface (S,D) is called periph-
erally unipotent if for every βp ∈ D, p ∈ P there exist a parallel regular section vp of
L along T ′βp and a parallel regular sectionwp of the bundleLp/L p along T ′βp, where
L p is the A-subbundle of Lp spanned by vp. If for every βp such parallel regular sec-
tions vp ofLp andwp ofLp/L p along T ′βp are chosen, then (L, (vp)p∈P , (wp)p∈P )

is called a decorated twisted GL2(A)-local system.

3.3 Non-abelianization of twisted local systems

In Sect. 2.5, we constructed an algebra homomorphism SN : TPA(S) → TPA(�).
This homomorphism restricts to a ring homomorphism

SN : TPAT (S) → TPAT ∗(�)

as mentioned in Remark 2.11. Let γ ∈ TPAT (S) be a path from p to q, p, q ∈ IT (S),
and let p1, p2 be the two lifts of p to�, and q1, q2 the two lifts of q, with p1, q1 being
the sinks and p2, q2 being the sources. Then

SN (γ ) = γ1,1 + γ1,2 + γ2,1 + γ2,2

where γ j,i is the sum of all terms of SN (γ ) from pi to q j (γi, j may be 0). Instead
of a formal sum, it will be more convenient to see SN (γ ) as a 2 by 2 matrix with
coefficients in TPAT ∗(�). The definition of the multiplication on TPAT ∗(�) makes
it so the map:

SN :
TPAT (S) → M2(TPAT ∗(�))

γ 	→
(

γ1,1 γ1,2

γ2,1 γ2,2

)
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is a ring homomorphism. We also have a ring homomorphism

πA :
M2(AT ∗) → M2(A)T(

aq1,p1 bq1,p2
cq2,p1 dq2,p2

)
	→

(
a b
c d

)
q,p

.

Note that we can always write an element of M2(AT ∗) as the sum of elements of the
form (

aq1,p1 bq1,p2
cq2,p1 dq2,p2

)

(possibly with some coefficients equal to 0).

Proposition 3.9 Let E be a twisted A×-local system over � and let ϕ : TPAT ∗(�) →
AT ∗ the corresponding ring homomorphism given by Proposition 3.8. Then the ring
homomorphism

ψ = πA ◦ M2(ϕ) ◦ SN : TPAT (S) → M2(A)T

corresponds to a peripherally parabolic twisted GL2(A)-local system on S, together
with a T -transverse framing.

Proof Let E be a twisted A×-local system on�, and letL be the GL2(A)-local system
obtained on S. We need to show thatL admits a flat section on any peripheral curve βp

on S, i.e. that the monodromy along βp is upper triangular in some basis. Let p ∈ P
and p1, p2 the lifts of p to�, p1 being the sink and p2 the source. Let q ∈ IT (S)∩βp

and q1, q2 the lifts of q to �, qi ∈ βpi . We will assume βp is a loop based on q. The
fiber Lq of L over q can be identified with the direct sum Eq1 ⊕ Eq2 of the fibers of
E over q1 and q2. Every ray of the spectral network W crossed by βp on S lifts to
a ray from p2 to p1 on �. This means that the lifts added by the spectral network
all go from q1 to q2, so the image of βp via SN : TPAT (S) → M2(TPAT ∗(�)) is
upper triangular. Then ψ(βp) ∈ PT (M2(A)), the monodromy of βp, is also upper
triangular. The line Eq1 ⊂ Lq is preserved by the peripheral monodromy which means
that the parallel transport of Eq1 along βp defines a framing L p ⊂ Lβp around p.
This framing is T -transverse because for every edge γ of T from p to q, p, q ∈ P ,
the map L p → Lq/Lq is the holonomy of E along one of the lifts of τγ so it is an
isomorphism. ��

The twisted GL2(A)-local system L on S obtained from a twisted A×-local system
E on � via this construction is called the non-abelianization of E . In the next part, we
introduce an inverse construction.

3.4 Partial abelianization of transverse framed local systems

Let (L, (L p)p∈P ) be a T -transverse framed twisted GL2(A)-local system on S. Our
goal is to construct a twisted A×-local system E → T ′�
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that provides under the non-abelianization procedure the initial local system L.
Let π ′ : �′ → S′ be the covering as in Sect. 2.3. A transverse framed twisted

GL2(A)-local system L over S gives rise to a transverse framed twisted π1(S)-
equivariant GL2(A)-local system L′ over S′. We obtain a parallel A-subbundle L ′

p
over the preimage T ′Up under T ′S′ → S′ of every standard neighborhood Up of
every puncture p of S′. And similarly to the discussion above, on the quotient A-
bundle L′

p/L
′
p over T

′Up the flat connection is well-defined.
The spectral network W on � (resp. W ′ on �′) divides the set of punctures of

� (resp. �′) in two classes: sinks of W (resp. W ′) and sources of W (resp. W ′).
For every sink p of �′ we define a flat A-bundle over T ′Up as the pull-back of the
A-subbundle L ′

π ′(T ′Up)
. For every source p of�′ we define a flat A-bundle over T ′Up

as the pull-back of the A-bundle L′/L ′
π ′(T ′Up)

.

To construct a twisted flat A-bundle over �′ we need to “glue” the standard neigh-
borhoods along cells of the (lifted) spectral network. For this, we notice that two
standard neighborhoods that share a cell always correspond to punctures of differ-
ent classes. Along the interior of such a cell c two A-bundles are defined: L ′

π ′(T ′Up)

corresponding to a sink p of �′ and L′/L ′
π ′(T ′Uq )

corresponding to a source q of �′.
By transversality, for every point z ∈ T ′c ⊂ T ′�′ the A-submodules

L ′
π ′(T ′Up)

(π ′(z)) and L ′
π ′(T ′Uq )

(π ′(z)) of L are transverse. That means that for all

z ∈ T ′c the natural projection map

aqp(π
′(z)) : L ′

π ′(T ′Up)
(π ′(z)) → L′/L ′

π ′(T ′Uq )(π
′(z))

is an isomorphism. So we can identify v ∈ Lπ ′(T ′Up)(π
′(z)) with aqp(π ′(z))(v) ∈

L/Lπ ′(T ′Uq )(π
′(z)) for all z ∈ T ′c. Since aqp(π ′(z)) is constant in any parallel frames

of L ′
π ′(T ′Up)

and L′/L ′
π ′(T ′Uq )

along T ′c, this provides a constant change of local

trivialization over T ′c. In other words, we obtain a flat A-bundle over �′\B ′ that we
denote by E ′ → �′\B ′. The construction of E is obviously π1(S) equivariant and,
therefore, defines a flat A-bundle E → T ′(�\B).

Lemma 4.1 below provides that the holonomies around branch points are trivial.
This implies that the bundle E can be extended also over B, i.e. we obtain a bundle
E → T ′�. The twisted A×-local system obtained on � is called the abelianization
of L.

Those processes are inverse to each other by construction.
We have thus shown:

Theorem 3.1 The abelianization and non-abelianization processes define a bijection
between the set of twisted A×-local systems on � up to isomorphism and the set of
framed T -transverse twisted local systems on S up to isomorphism.

Remark 3.10 The construction of � depends on T , which is implicit in the theorem.

Remark 3.11 The abelianized local system constructed on � is identical to the one
constructed in [6]. In [20], the first author describe the partial abelianization and non-
abelianization processes for n-fold ramified coverings, using spectral networks.
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820 C. Kineider, E. Rogozinnikov

4 Partial abelianization of decorated twisted local systems

In this section, we apply the above construction to decorated twisted GL2(A)-local
systems. This construction gives a geometrical representation of the non-commutative
algebra introduced in [7], as well as geometrical proof of the non-commutative Laurent
phenomenon. We also use this construction to describe the topology of the space of
framed or decorated twisted GL2(A)-local systems.

4.1 Kashiwara-Maslovmap

Let �1, �2, �3 be pairwise transverse A-lines in A2. We denote a ji : �i → A2/� j the
projection maps for all i, j ∈ {1, 2, 3}, i �= j . By transversality, ai j are A-linear
isomorphisms.

The following lemma is immediate:

Lemma 4.1 The map −a−1
31 a32a

−1
12 a13a

−1
23 a21 : �1 → �1 is the identity map.

The map μ23
1 := a13a

−1
23 a21 : �1 → A2/�1 is called the Kashiwara-Maslov map of

the triple of A-lines (�1, �2, �3). Notice that μ23
1 = −μ32

1 .
Let π : � → S be a ramified covering associated to an ideal triangulation T

as before. Let L → T ′S be a framed T -transverse twisted local system over S and
E → T ′� be the twisted A×-local systemobtained fromL by the partial abelianization
described in Sect. 3.4. Let τ ⊂ S be a triangle of T that is incident to punctures
p1, p2, p3, and the orientation of the triangle agrees with the cyclic order of the triple
(p1, p2, p3). Let H = π−1(τ ) be the hexagon of � that covers τ . The hexagon H
is divided in six (open) triangles by lines of the spectral network, as on Fig. 3. As
before, let Li be a parallel A-subbundle of L → T ′τ corresponding to the puncture
pi , i ∈ {1, 2, 3}. By construction of the local system on �, over every triangle of H
two A-bundles Li and L/L j , i, j ∈ {1, 2, 3} are defined. These two bundles are glued
along this triangle by the projection map a ji : Li → A2/L j . We denote this triangle
by t j i . Let now p ∈ T ′t21, then θ(p) ∈ T ′t12, where θ : T ′� → T ′� is the involution
associated with the covering π : � → S.

We take a path γ : [0, 1] → T ′H such that γ (0) = p, γ (1) = θ(p) and such that
(θ ◦ γ ).γ is a loop in T ′H homotopic to the loop going once in the positive direction
around the fiber of T ′� → �.

The following proposition follows directly from the construction of the A×-local
system over T ′�:

Proposition 4.2 The parallel transport along the path γ agrees with the Kashiwara-
Maslov map μ23

1 : L1(π(p)) → L/L1(π(p)).

4.2 Partial abelianization of transverse decorated local systems

Applying the construction of Sect. 3.4 to a peripherally unipotent local system, we get
an A×-local system E → T ′�. Moreover, the existence of sections vp and wp over
T ′βp for all p ∈ P induces that the holonomies of E around punctures of � are all
equal to −1.
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A decoration of L provides additionally a parallel section of Ep → T ′�p. We call
the set of all those parallel sections a decoration of the twisted A×-local system E .
Theorem 4.1 The abelianization and non-abelianization processes define a bijection
between the set of decorated twisted A×-local systems on � with trivial monodromy
around punctures up to isomorphism and the set of decorated T -transverse twisted
GL2(A)-local systems on S up to isomorphism.

4.3 Non-commutativeA-coordinates and partial abelianization

LetD be a decoration of S and letT be a triangulation of S. Let (L, (vp)p∈P , (wp)p∈P )

be a decorated twisted GL2(A)-local system on the surface S, and assume L is T -
transverse. Then for every arc γ of T from p ∈ P to q ∈ P , we can trivialize the
GL2(A)-local system L over T ′γ and the A-subbundles spanned by the flat sections
vp and vq are transverse. The natural projection

aγ : L p = Span(vp) → L/Lq = Span(wq)

is an isomorphism, and we can identify it with its (1 by 1) matrix in the bases vp

and wq . We thus obtain a family (aγ )γ∈T of elements of A× which we call non-
commutative A-coordinates of L. The name “coordinates” is a slight abuse, since
they are not independent.

Proposition 4.3 For every oriented triangle (γ1, γ2, γ3) of T , we have

aγ3a
−1
γ 2

aγ1 = aγ 1
a−1
γ2

aγ 3
(4.1)

The coordinates of a decorated twisted GL2(A)-local system are the holonomies
of its abelianized system E along the lifts of the arcs τγ , γ ∈ T : for each puncture
p ∈ P , the two lifts of p to � are a sink p1 and a source p2. In the neighborhood of
p1, the bundle E is the pullback of L p and in the neighborhood of p2 the bundle is the
pullback of L/L p. Now for an arc γ ∈ T from p ∈ P to q ∈ P , the lifts of τγ to �

join a sink and a source. Denote γ1 the lift from p1 to q2 and γ2 the lift from p2 to q1.
Then aγ is the holonomy of E along T ′τγ1 and aγ is the holonomy of E along T ′τγ2 .

Let � be the graph embedded in T ′� with vertices the lifts of peripheral curves and
edges the arcs τγ , γ ∈ T ∗ oriented from sink to source. To each oriented edge of this
graph a coordinate is associated, and we assign to the edges with reversed orientation
the inverse of this coordinate. The vertices of this graph are curves around which the
monodromy of E is trivial because L is decorated, so given a path on �, its holonomy
in E is well-defined. Then the triangle relation (4.1) imply that the monodromy of the
abelianized system E restricted to the graph � is trivial around every hexagonal tile.

Let T1 and T2 be two triangulations differing only by one flip. Let p1, p2, p3, p4
be the four (not necessarily distinct) punctures at the vertices of the quadrilateral
supporting the flip, in the cyclic order such that T1\T2 = {

γ1,3, γ3,1
}
and T2\T1 ={

γ2,4, γ4,2
}
where γi, j is the arc of the quadrilateral going from p j to pi . Using the

path-lifting map, we can compute the relations between theA-coordinates associated
to T1 and the A-coordinates associated to T2.
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Fig. 11 The path δ on S with
triangulation T1 on the left and
with triangulation T2 on the
right

Proposition 4.4 Let L a decorated twisted GL2(A)-local system that is both T1-
transverse and T2-transverse. Then itsA-coordinates with respect to T1 and T2 satisfy
the following exchange relations:

aγ2,4 = aγ2,1a
−1
γ3,1

aγ3,4 + aγ2,3a
−1
γ1,3

aγ1,4

aγ4,2 = aγ4,1a
−1
γ3,1

aγ3,2 + aγ4,3a
−1
γ1,3

aγ1,2

Proof For i ∈ {1, 2, 3, 4}, let p′
i , p

′′
i be the two lifts of pi to � where p′

i is the sink
and p′′

i is the source. Let s ∈ IT1(S) ∩ IT2(S) be the intersection of T ′βp2 and γ2,1
and let t ∈ IT1(S) ∩ IT2(S) be the intersection of T ′βp4 and γ3,4. Let δ be a path in
T ′S from s to t as in Fig. 11.

The holonomy of L along δ does not depend on the triangulation.
Let �1 andW1 be the ramified covering and the spectral network associated to the

triangulation T1 and�2,W2 the ones associated to T2. The corresponding path-lifting
maps will be denoted SN1 and SN2, and the corresponding abelianizations of S will
be denoted E1 and E2.

First, let’s lift δ to �2 using SN2. Let s1, s2 the lifts of s to �2, s1 being the sink
and s2 the source. Similarly, let t1, t2 the lifts of t , t1 being the sink and t2 the source.
We get

SN2(δ) = δ1 + δ2 + δ′
1 + δ′

2 + δ′
3

where δ1 is a standard lift from s1 to t2, δ2 is a standard lift from s2 to t1, δ′
1 is a spectral

lift from s2 to t2, δ′
2 is a spectral lift from s2 to t1 and δ′

3 is a spectral lift from s1 to t1
(see Fig. 12). The path δ1 is the only lift going from s1 to t2, and its holonomy in E2 in
the corresponding bases is aγ4,2 since it is homotopic to τγ4,2 precomposed with a piece
of βp2 and postcomposed with a piece of βp4 , both of which have trivial holonomies.
Since L is the non-abelianization of E2, this means that the map L p2 → Lp4/L p4
obtained by trivializing L along δ is exactly aγ4,2 .

Now we will lift δ to �1 using SN1. We will keep the same notations as in the
previous paragraph. We get

SN1(δ) = δ1 + δ2 + δ′
1 + δ′

2 + δ′
3

where δ1 is a standard lift from s1 to t2, δ2 is a standard lift from s2 to t1, δ′
1 is a spectral

lift from s1 to t1, δ′
2 is a spectral lift from s1 to t2 and δ′

3 is a spectral lift from s2 to
t2 (see Fig. 13). The paths going from s1 to t2 are δ1 and δ′

2, and their holonomies in
E1 in the corresponding bases are respectively aγ4,3a

−1
γ1,3

aγ1,2 and aγ4,1a
−1
γ3,1

aγ3,2 . These
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Fig. 12 All the lifts of δ to �2
using SN2

Fig. 13 All the lifts of δ to �1
using SN1

are obtained by retracting the paths on the graph �, as the oriented edges of � have
holonomies given by the A-coordinates. Since L is also the non-abelianization of E1,
this means that the map L p2 → Lp4/L p4 obtained by trivializing L along δ must be
equal to the holonomy of δ1 + δ′

2, which give the formula:

aγ4,2 = aγ4,1a
−1
γ3,1

aγ3,2 + aγ4,3a
−1
γ1,3

aγ1,2

The formula for aγ2,4 is obtained similarly. ��

Remark 4.5 The non-commutativeA-coordinates constructed here are identical to the
one constructed in [6] in the case of a two-fold ramified covering. In [20], the first
author describe non-commutative A-coordinates for GLn(A)-local systems, n ≥ 2,
using the abelianization procedure. The coordinates constructed there only coincide
with the coordinates of [6] when n = 2.

This gives a geometric realization of the non-commutative algebraAS introduced in
[7]. Using the same type of arguments as above, we can give a topological/geometrical
proof of the Laurent phenomenon for the cluster algebra of a polygon:

Theorem 4.2 Let n ≥ 3 and let Sn the closed disk with n punctures on the boundary.
Let i, j ∈ {1, . . . , n}, i �= j . Then for every triangulation T of Sn and every decorated
twisted GL2(A)-local system L that is both T -transverse and (i, j)-transverse, the
A-coordinate aγi, j is a non-commutative Laurent polynomial in the A-coordinates
(aγ )γ∈T associated to the triangulation T .
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Fig. 14 The path δ in the
triangulation T0. Only the
quadrilateral (i − 1, i, j − 1, j)
is drawn

Proof All the edges of the form γi,i+1, with i ∈ P ordered cyclically, belong to every
triangulation of Sn so the result is immediate. Now let i, j ∈ {1, . . . , n}, i �= j ± 1.
Let T0 be a triangulation of Sn containing the edges γi, j , γi, j−1 and γi−1, j . Such
a triangulation always exists when i �= j ± 1. Let s ∈ IT0(Sn) ∩ IT (Sn) be the
intersection of β j and γ j−1, j and let t ∈ IT0(Sn) ∩ IT (Sn) be the intersection of βi
and γi−1,i . Let δ be the path from s to t drawn in Fig. 14.

As we have seen in the proof of the flip relation (and keeping the same notations), in
the spectral network lift of δ with respect to the triangulation T0 the only term from s1
to t2 has the holonomy aγi, j in the abelianization of L with respect to T0. This means
that the map L j → Li/Li obtained by trivializing L on δ is aγi, j .

Let E be the abelianization of Lwith respect to T . In spectral network lift of δ with
respect to the triangulation T , let δ′ = δ′

1 + · · · + δ′
r be the sum of all paths from s1 to

t2. Each δ′
k has a holonomy in E that is a monomial in the coordinates (a±1

γ )γ∈T as it
retracts on the graph �. Since L is the non-abelianization of E , the map L j → Li/Li

obtained by trivializing L on δ is equal to the sum of the holonomies of the δ′
k in E ,

so it is a Laurent polynomial in the A-coordinates (aγ )γ∈T . ��
Remark 4.6 The above proposition implies a similar statement about A-coordinates
on a surface, as shown in [7]. The proof given above however relies on the fact the
external edges of a polygon belongs to every triangulation, thus can not be extended
to surfaces directly.

Using these A-coordinates, we can describe precisely the changes of the A×-local
system on � induced by a flip in the triangulation. We use the same notations as in
Proposition 4.4. LetL be a framed twisted GL2(A)-local system on S that is transverse
with respect to both T1 and T2. Let E1 (resp. E2) be the A×-local system on� obtained
by abelianizingLwith respect to T1 (resp. T2). These changes on the abelianized local
system are supported in the lift CQ of the quadrilateral Q surrounding the flip, which
is homeomorphic to a cylinder with four punctures on each boundary component in
�. Let γ be a loop on T ′�. If γ only crosses one of the two boundary components
of CQ , then the monodromies of γ in E1 and E2 are equal. Suppose γ crosses exactly
once each of the two boundary components of CQ . Let γQ be the loop going around
CQ with the same orientation as the boundary of CQ containing the sinks lifts of p2
and p4 (we refer to this boundary as the positive one, and the other one as negative).

Remark 4.7 We think of the holonomy of γQ in E as a generalization in the non-
commutative setting of Fock-Goncharov’s X -coordinate of the quadrilateral Q. If
A = R, the holonomy of γQ is the cross-ratio of the four lines in R

2 given by the
framing of L.
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Up to homotopy, we can assume γ is going through at least one point x0 ∈ IT ∗
1
(�)∩

IT ∗
2
(�) on one of the eight external edges of the hexagon tiling of Q. We also choose

a representative of γQ based at x0. Let b be a basis of the fiber of L1 over x0. Since
x0 is not in the interior of the cylinder supporting the flip in �, the fibers of E1 and E2
over x0 are the same. The holonomy X of γQ is the same in E1 and in E2. Let Y1 ∈ A×
(resp. Y2) be the holonomy of γ in E1 (resp. E2).

Proposition 4.8 If the part of γ inside CQ goes from the positive boundary to the
negative boundary, then

Y2 = Y2(1 + X).

If the part of γ inside CQ goes from the negative boundary to the positive boundary,
then

Y2 = Y1(1 + X−1)−1

Remark 4.9 The element 1+ X−1 ∈ A is invertible because of the transversality of L
with respect to T2.

4.4 Topology of themoduli space of framed twisted local systems

In this section,wedescribe the topologyof themoduli spaceof framed twistedGL2(A)-
local systems on S that are transverse to a fixed triangulation T .

As we have seen, framed twisted GL2(A)-local systems on S that are transverse
with respect to a fixed triangulationT are in 1:1-correspondencewith twisted A×-local
systems on �. Since � has punctures, the space of twisted and non-twisted A×-local
systems are homeomorphic (see Remark 3.6). So we obtain the following theorem,
using the same notations as in Proposition 2.5:

Theorem 4.3 The moduli space of framed (twisted) GL2(A)-local systems on S
that are transverse with respect to a fixed triangulation T is homeomorphic
to the moduli space of (twisted) A×-local systems on � which is homeomor-
phic to (A×)1−4χ(S)+2p+∑

ni /A× where A× acts diagonally by conjugation on
(A×)1−4χ(S)+2p+∑

ni .

Remark 4.10 In [18] the authors prove the same result using different techniques. They
define local systems on some appropriate graphs over S and parametrize them using
coordinates that are similar to Fock-Goncharov’s GLn-cluster X -coordinates [17].

Since any twisted peripherally unipotent GL2(A)-local system on S has exactly
one framing, we obtain:

Corollary 4.11 The moduli space of twisted peripherally unipotent GL2(A)-local sys-
tems on S whose unique framing is transverse with respect to a fixed triangulation T
is homeomorphic to the moduli space of twisted A×-local systems on �.

Corollary 4.12 Themoduli space of decorated twisted peripherally unipotentGL2(A)-
local systems on S that are transverse with respect to a fixed triangulation T is
homeomorphic to the product of the moduli space of twisted A×-local systems on �

and (A×)2p.
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5 Symplectic groups over involutive algebras and symplectic local
systems

Involutive algebras are an important class of non-commutative algebras. Over invo-
lutive algebras, generalizations of many classical groups can be constructed (e.g.
orthogonal groups, symplectic groups). In this chapter, we define algebras with anti-
involutions and symplectic groups over such algebras that were introduced and studied
in [8]. Further, we introduce framed twisted symplectic local system and characterize
them in terms of partial abelianization introduced before.

5.1 Involutive algebras

Let A be a unital associative, possibly non-commutative R-algebra.

Definition 5.1 An anti-involution on A is a R-linear map σ : A → A such that

• σ(ab) = σ(b)σ (a);
• σ 2 = Id.

An involutive R-algebra is a pair (A, σ ), where A is a R-algebra and σ is an anti-
involution on A.

Definition 5.2 Two elements a, a′ ∈ A are called congruent, if there exists b ∈ A×
such that a′ = σ(b)ab.

Definition 5.3 An element a ∈ A is called σ -symmetric if σ(a) = a. An element
a ∈ A is called σ -anti-symmetric if σ(a) = −a. We denote

Aσ := FixA(σ ) = {a ∈ A | σ(a) = a},

A−σ := FixA(−σ) = {a ∈ A | σ(a) = −a}.
Definition 5.4 The closed subgroup

U(A,σ ) = {a ∈ A× | σ(a)a = 1}

of A× is called the unitary group of A. The Lie algebra of U(A,σ ) agrees with A−σ .

Definition 5.5 Let (A, σ ) be an R-algebra with an anti-involution. We define two set
of squares:

Aσ+ :=
{
a2 | a ∈ (Aσ )×

}
, Aσ≥0 :=

{
a2 | a ∈ Aσ

}
.

Remark 5.6 Since the algebra A is unital, we always have the canonical copy of R
in A, namely R · 1 where 1 is the unit of A. We will always identify R · 1 with R.
Moreover, since σ is linear, for all k ∈ R, σ(k · 1) = kσ(1) = k · 1, i.e. R · 1 ⊆ Aσ

and R>0 · 1 ⊆ Aσ+.
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Definition 5.7 A unital associative finite dimensional R-algebra with an anti-
involution (A, σ ) is called Hermitian if for all x, y ∈ Aσ , x2 + y2 = 0 implies
x = y = 0.

Remark 5.8 In [8], the property to beHermitian is defined in the sameway for algebras
with an anti-involution over any real closed field. In this paper, we are discussing only
Hermitian algebras over R.

Remark 5.9 In [8] is shown that (A, σ ) is a Hermitian algebra if and only if Aσ+ is
an open proper convex cone in Aσ , where proper means that the set does not contain
(affine) lines.

If (A, σ ) is Hermitian, for an element a ∈ Aσ the signature can be defined, which
is a bounded function sgn : Aσ → Z that is invariant under congruence by elements
of A×. The elements of maximal signature are precisely the elements of Aσ+. For more
details about the signature see [8].

5.2 Symplectic groups over non-commutative algebras

Let A be a unital associative finite dimensional R-algebra with an anti-involution σ .
We consider A2 as a right A-module over A.

Definition 5.10 Let ω(x, y) := σ(x)t�y with � =
(

0 1
−1 0

)
. The group

Sp2(A, σ ) := Aut(ω) = {g ∈ M2(A) | σ(g)tωg = ω}

is the symplectic group Sp2 over (A, σ ). The form ω is called the standard symplectic
form on A2.

We have

Sp2(A, σ ) =
{(

a b
c d

)
| σ(a)c, σ (b)d ∈ Aσ , σ (a)d − σ(c)b = 1

}
⊆ GL2(A)

We can also determine the Lie algebra sp2(A, σ ) of Sp2(A, σ ):

sp2(A, σ ) =
{(

x z
y −σ(x)

)
| x ∈ A, y, z ∈ Aσ

}
⊆ M2(A).

Remark 5.11 In [8] is shown that, if A is a Hermitian algebra, then Sp2(A, σ ) is a
Hermitian Lie group of tube type.

Let (x, y) be a basis of A2.We say that this basis is isotropic ifω(x, x) = ω(y, y) =
0. We say that this basis is symplectic if furthermore ω(x, y) = 1.

Let x ∈ A2 be a regular isotropic element, i.e. ω(x, x) = 0. We call the set
x A := {xa | a ∈ A} an isotropic A-line. The space of all isotropic A-lines is denoted
by Is(ω).
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5.3 Symplectic local systems

We consider a twisted GL2(A)-local system L → T ′S over S. We say that L is a
twisted Sp2(A, σ )-local system (or just twisted symplectic local system) if there exists
a parallel field of the standard symplectic 2-form ω : L × L → A on T ′S. We say
that L is peripherally parabolic (or unipotent) if it is parabolic (resp. unipotent) as a
twisted GL2(A)-local system.

A framing of a parabolic twisted symplectic local system is called isotropic if
the parallel subbundle defining the framing in a neighborhood of every puncture is
isotropic with respect to the field of the form ω. A decoration ((vp)p∈P , (wp)p∈P ) of
a unipotent twisted symplectic local system is called symplectic if ω(vp, vp) = 0 and
ω(vp, wp) = 1.

Remark 5.12 Notice, that if ω(vp, vp) = 0, then the expression ω(vp, wp) is well-
defined. Indeed, let w̃p and w̃′

p be two lifts of wp to A2. Then w̃′
p = w̃p + vpa for

some a ∈ A. Further,

ω(vp, w̃
′
p) = ω(vp, w̃p + vpa) = ω(vp, w̃p) =: ω(vp, wp).

It is always enough to choose vp for every p ∈ P . Thenwp becomes uniquely defined.

A framed twisted symplectic local system is a peripherally parabolic twisted sym-
plectic local system with an isotropic framing. A decorated twisted symplectic local
system is a peripherally unipotent twisted symplectic local system with a symplectic
decoration.

Remark 5.13 Notice, that since ω is a parallel form of even degree, the parallel trans-
port of ω around the fiber of T ′S is trivial.

Let π : � → S be the ramified two-fold covering as before. Let E → T ′� be
an A×-local system over the spectral covering � of S that is obtained by the partial
abelianization procedure.

Let θ : � → � be the covering involution. Slightly abusing the notation, we also
denote θ = θ∗ : T ′� → T ′�.

Remark 5.14 Notice that θ does not have fixed points in T ′�.

We consider the pull-back of E with respect to θ and denote it by E ′ := θ∗E . To
simplify the notation, we will identify E ′

p and Eθ(p) for all p ∈ �.
We denote by Pγ : Eγ (0) → Eγ (1), P ′

γ = Pθ◦γ : Eθ(γ (0)) → Eθ(γ (1)) the parallel

transport along γ : [0, 1] → � in E and E ′. We denote by PS
α : Vα(0) → Vα(1) the

parallel transport along α : [0, 1] → S in L.

Definition 5.15 Let V and V ′ be two right A-modules. A map b : V × V ′ → A is
called an A-sesquilinear pairing between V and V ′ if it is additive in every argument
and if for all v ∈ V , v′ ∈ V ′, and for all a, a′ ∈ A, b(va, v′a′) = σ(a)b(v, v′)a.
An A-sesquilinear paring b is non-degenerate if for every regular v ∈ V there exists
v′ ∈ V ′ such that b(v, v′) ∈ A× and for every regular v′ ∈ V ′ there exists v ∈ V such
that b(v, v′) ∈ A×.
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We denote by B(E, E ′) → T ′� the vector bundle of all A-sesquilinear parings
between E and E ′. A section β ∈ �(T ′�, B(E, E ′)) is called parallel if

βγ (0)(x, y) = βγ (1)(Pγ (x), P ′
γ (y)) = βγ (1)(Pγ (x), Pθ◦γ (y))

for every γ : [0, 1] → T ′� and for every x ∈ Eγ (0), y ∈ E ′
γ (0) = Eθ(γ (0)).

Remark 5.16 Notice that if β ∈ �(T ′�, B(E, E ′)) is parallel and βp is non-degenerate
for one p ∈ T ′�, then βp is non-degenerate for all p ∈ T ′�.

Theorem 5.1 The framed local system L is an Sp2(A, σ )-local system if and only
if there exists a non-degenerate parallel section β ∈ �(T ′�, B(E, E ′)) such that
βp(x, y) = −σ(βθ(p)(y, x)) for every p ∈ T ′�, for every x ∈ Ep and for every
y ∈ Eθ(p).

Proof (⇒) Assume, L is an Sp2(A, σ )-local system. That means, there exists a field
of standard symplectic forms ω on L → T ′S such that for every α : [0, 1] → T ′S and
for every v,w ∈ Vα(0),

ωα(0)(v, w) = ωα(1)(P
S
α (v), PS

α (w)).

Let γ : [0, 1] → T ′� be a smooth path such that γ (0), γ (1) do not project to points
on lines of the spectral network on �, and let x ∈ Eγ (0) and y ∈ Eθ(γ (0)) be regular
elements. We consider γ ′ = θ ◦γ and α = π ◦γ = π ◦γ ′. Moreover, (π∗(x), π∗(y))
is an isotropic basis of Lα(0). We can define

βγ (0)(x, y) := ωα(0)(π∗(x), π∗(y)).

Since ω is non-degenerate and skew-Hermitian, β is non-degenerate and sesquilinear
pairing. Moreover, βγ (0)(x, y) = −σ(βθ(γ (0))(y, x)) because ωα(0)(π∗(x), π∗(y)) =
−σ(ωα(0)(π∗(y), π∗(x))).

If γ does not intersect lines of the spectral network, then β along γ is parallel
because in this case PS

α = Pγ ⊕ Pσ◦γ

If γ is a small segment intersecting a line of spectral network, then

ωα(1)(P
S
α (π∗(x)), PS

α (π∗(y))) = ωα(1)(π∗(Pγ (x)) + π∗(Pγ̃ (x)), π∗(Pθ◦γ (y)))

where γ̃ is a lift of α going along a line of spectral network from γ (0) to θ(γ (1)). But
elements Pγ̃ (x), Pθ◦γ (y) ∈ Eθ(γ (1)), therefore, ω(π∗(Pγ̃ (x)), π∗(Pθ◦γ (y))) = 0. So

βγ (0)(x, y) = ωα(0)(π∗(x), π∗(y))
= ωα(1)(P

S
α (π∗(x)), PS

α (π∗(y)))
= ωα(1)(π∗(Pγ (x)), π∗(Pθ◦γ (y)))

= βα(1)(Pγ (x), Pθ◦γ (y)),

i.e. β is parallel and extends also along lines of the spectral network on �.
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Finally, let p ∈ T ′�. Let x ∈ Ep and y ∈ Eθ(p) regular elements. Then
(π∗(x), π∗(y)) is an isotropic basis of Lπ(p), i.e. β(x, y) = ω(π∗(x), π∗(y)) ∈ A×.
So the pairing β is non-degenerate.

(⇐) Assume, there exists a non-degenerate parallel sesquilinear pairing β. Let
p ∈ T ′� that does not project to a point on a line of the spectral network on �. We
define for every x ∈ Ep, y ∈ Eθ(p):

ωπ(p)(π∗(x), π∗(y)) := βp(x, y).

If x, y are regular, (π∗(x), π∗(y)) is a basis of Vπ(p). Further, ω extends by sesquilin-
earity on Vπ(p) if we assume

ωπ(p)(π∗(x), π∗(x ′)) = ωπ(p)(π∗(y), π∗(y′)) = 0

for all x, x ′ ∈ Ep and y, y′ ∈ Eθ(p). Since β is non-degenerate, ω is non-degenerate
as well.

Since βp(x, y) = −σ(βθ(p)(y, x)), we get

ωπ(p)(π∗(y), π∗(x)) = βθ(p)(y, x) = −σ(βp(x, y)) = −σ(ωπ(p)(π∗(x), π∗(y))).

Further,ω is parallel. Indeed, letα : [0, 1] → T ′S be a path such that the projections
of α(0) and α(1) to S are not on the lines of the spectral network. Let x, y ∈ Lα(0).
Let α1, α2 := θ ◦α1 are two standard lifts of α to T ′�. Then x = π∗(x1)+π∗(x2) and
y = π∗(y1) + π∗(y2) where x1, y1 ∈ Eα1(0) and x2, y2 ∈ Eα2(0). If the projection of α

to � does not intersect the spectral network, then the projection T ′� → T ′S and the
parallel transport along α and α1, α2 commute. So ω is parallel because β is parallel.

Assume now that the projection ofα intersects the spectral network once.We denote
by α3 the additional lift of α along the spectral network. Without loss of generality,
assume α3(0) = α1(0) and α3(1) = α2(1). Notice that the path θ ◦ (α3.α1).α3.α1 is
homotopic to the fiber of T ′� → �. Therefore, Pθ◦α1.α3 = −Pθ◦α3.α1 . Therefore,

ωα(1)(P
S
α (x), PS

α (y)) = ωα(1)(P
S
α (x), PS

α (y))

= ωα(1)(P
S
α (π∗(x1)) + PS

α (π∗(x2)), P
S
α (π∗(y1)) + PS

α (π∗(y2)))

= ωα(1)(π∗(Pα1(x1) + Pα3(x1) + Pα2 (x2)),

π∗(Pα1(y1) + Pα3(y1) + Pα2 (y2)))

= ωα(1)(π∗(Pα1(x1), π∗(Pα3(y1) + Pα2 (y2))))

+ ωα(1)(π∗(Pα3(x1) + Pα2 (x2)), π∗(Pα1(y1)))

= βα1(1)(Pα1(x1), Pα3(y1) + Pα2 (y2)) + βα2(1)(Pα3(x1)

+ Pα2 (x2), Pα1(y1))

= βα1(1)(Pα1(x1), Pα3(y1)) + βα1(1)(Pα1(x1), Pα2 (y2))

+ βα2(1)(Pα3(x1), Pα1(y1)) + βα2(1)(Pα2 (x2), Pα1(y1))

= βα1(1)(Pα1(x1), Pα2 (y2)) + βα2(1)(Pα2 (x2), Pα1(y1))

+ βα1(0)(x1, P(θ◦α3).α1(y1) + P(θ◦α1).α3 (y1))

= βα1(1)(Pα1(x1), Pα2 (y2)) + βα2(1)(Pα2 (x2), Pα1(y1))
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+ βα1(0)(x1, Pθ◦α3.α1 (y1) + Pθ◦α1.α3 (y1))

= βα1(1)(Pα1(x1), Pα2 (y2)) + βα2(1)(Pα2 (x2), Pα1(y1))

= βα1(0)(x1, y2) + βα2(0)(x2, y1)

= ωα(0)(x, y).

So ω is parallel and extends also along lines of the spectral network on S.
Finally, let p ∈ � and x ∈ Ep, y ∈ Eθ(p) such that βp(x, y) = 1, then

ω(π∗(x), π∗(y)) = 1. So ω is a field of standard symplectic forms. ��

5.4 Topology of themoduli space of framed twisted symplectic local systems

We keep the same notations as in Proposition 2.5. Our goal in this section is to prove
the following theorem:

Theorem 5.2 The moduli space of framed (twisted) Sp2(A, σ )-local systems on S that
are transverse with respect to a fixed triangulation T is homeomorphic to:

(
((Aσ )×)−2χ(S)+2p−1+∑

ni × (A×)1−χ(S)+p
)

/A×

where the group A× acts componentwisely by conjugation on (A×)1−χ(S)+p and by
congruence on ((Aσ )×)−2χ(S)+2p−1+∑

ni .

Proof We use the 1:1-correspondence between framed twisted Sp2(A, σ )-local sys-
tems on S that are transverse to a fixed triangulation T and twisted A×-local systems
on � equipped with a non-degenerate parallel pairing β as in Theorem 5.1.

Let b̃ ∈ T ′� be such that it projects to a ramification point b ∈ �. Let
α1, . . . , αs : [0, 1] → S are free generators of the fundamental group π1(S, π(b)).
Let γ 1

i , γ 2
i are closed lifts of αi to T ′� such that θ ◦ γ 1

i = γ 2
i and γ 1

i is based at b̃.
Notice, that then γ 2

i is based at θ(b̃).
Let s+

b̃
be as before the path from b̃ to θ(b̃) going along the fiber at b in the positive

direction and s−
θ(b̃)

:= s+
b̃

the path from θ(b̃) to b̃ going along the fiber at b in the

negative direction. If the context is clear, we justwrite s+ or s− to simplify the notation.
Let x ∈ Eb̃. Then on one hand: βb̃(x, Ps+(x)) = −σ(β

θ(b̃)(Ps+(x), x)). On the
other hand, since β is parallel:

βb̃(x, Ps+(x)) = β
θ(b̃)(Ps+(x), Ps+(Ps+(x)))

= β
θ(b̃)(Ps+(x),−x)

= − β
θ(b̃)(Ps+(x), x).

So we obtain:

βb̃(x, Ps+(x)) = −β
θ(b̃)(Ps+(x), x) = −σ(β

θ(b̃)(Ps+(x), x)) =: a0 ∈ Aσ .
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Let now γ be a loop based at b̃ and

a0 = βb̃(x, Ps+(x)) = βb̃(Pγ (x), Pθ◦γ Ps+(x)).

For every x ∈ Eb̃, Pγ (x) = xaγ where aγ ∈ A×. Let Pθ◦γ Ps+(x) = Ps+(x)a′
γ for

a′
γ ∈ A×. Then

a0 = σ(aγ )βb̃(x, Ps+(x))a′
γ = σ(aγ )a0a

′
γ ,

a′
γ = a−1

0 σ(a−1
γ )a0.

Let γ and s−.(θ ◦ γ ).s+ are different generators of π1(T ′�, b̃) (this corresponds
to curves γ 1

i and γ 2
i of Lemma 2.8 case (1) lifted to T ′�). In particular, they are not

homotopic. Then aγ and a0 determine uniquely a′
γ .

Let γ : [0, 1] → T ′� and θ ◦γ : [0, 1] → T ′� be two lifts to T ′� of a segment in S
connecting π(b) and π(b′)where b′ is another ramification point on�. Let b̃ := γ (0)
and b̃′ := γ (1). In this case, ξb̃′ := ξ := s−

θ(b̃)
.θ(γ ).s+

b̃′ .γ and s−.(θ ◦ ξ).s+ are

homotopic in T ′�. Therefore, aξ = a−1
0 σ(aξ )a0, i.e. a0aξ ∈ Aσ . Moreover, an easy

calculation shows that a0aξ = βb̃′(y, Ps+
b̃′
y) where y = Pγ (x).

So the symplectic local system provides us with elements ai ∈ A× corresponding
to Pγ 1

i
, a0 ∈ Aσ and a0aξ ∈ Aσ for every ξ as in (2) of Lemma 2.8 (lifted to T ′�).

These elements are well-defined up to a common conjugation of all ai and common
congruence of all a0 and a0aξ by an element of A×.

Conversely, if elements ai , a0, aξ as above are given, then a twisted A×-local
systems on � equipped with a non-degenerate parallel pairing β can be reconstructed
uniquely. Equivalent local system correspond to a common conjugation of all ai and
common congruence of all a0 and a0aξ by an element of A×. ��

5.5 Symplectic local system over Hermitian algebras

Let A be a Hermitian algebra. Let �1, �2, �3 be pairwise transverse isotropic A-lines.
The Kashiwara-Maslov index of the triple (�1, �2, �3) is the signature of the element
ω(x, μ23

1 (x)) ∈ (Aσ )× for a regular x ∈ �1 where μ23
1 is the Kashiwara-Maslov

map defined in Sect. 4.1. In fact, this signature does not depend on x ∈ �1, and it is
invariant under cyclic permutations of the triple (�1, �2, �3) and it changes the sign by
transposition of the elements of the triple.

Let τ ⊂ S be a triangle of the triangulation T that is incident to punctures p1, p2, p3
and the orientation of the triangle agrees with the orientation of the triple (p1, p2, p3).
As in Sect. 4.1, let Li be a parallel isotropic A-subbundle of L → T ′τ corresponding
to the puncture pi , i ∈ {1, 2, 3}. Let H = π−1(τ ) ⊂ � be the hexagon that covers τ .
Let b be the ramification point in H , let b̃ be a lift of b in T ′H and let s+ be a path in
T ′H going from b̃ to θ(b̃) along the fiber in the positive direction.

The following proposition is immediate:

Proposition 5.17 Let z ∈ T ′τ . The Kashiwara-Maslov index of (L1(z), L2(z), L3(z))
agrees with the signature of the element βb̃(x, Ps+(x)) ∈ Aσ for a regular x ∈ Eb̃.
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Theorem 5.3 If A is Hermitian, then the moduli space of framed (twisted) maximal
Sp2(A, σ )-local systems on S is homeomorphic to:

(
(Aσ+)−2χ(S)+p × (A×)−2χ(S)+2p−1+∑

ni
)

/A×

where A× acts componentwisely by conjugation on (A×)−2χ(S)+2p−1+∑
ni and by

congruence on (Aσ+)−2χ(S)+p.

Proof Following the notation of the proof of Theorem 5.2, notice that the signature
of a0 ∈ Aσ agrees with the Kashiwara-Maslov index of the oriented triangle where
the ramification point π(b) ∈ S lies, and the signature of a0aξb̃′ ∈ Aσ agrees with
the Kashiwara-Maslov index of the oriented triangle where the ramification point
π(b′) ∈ S lies. A twisted symplectic local system is maximal if and only if Kashiwara-
Maslov indices of all oriented triangles are maximal. So we obtain the statement of
the theorem. ��
Remark 5.18 The results of this and previous sections agree with the results from [18]
obtained using different techniques (see also Remark 4.10).

5.6 A-coordinates for symplectic local systems

Since Sp2(A, σ ) is a subgroup of GL2(A), the A-coordinates defined in Sect. 4.3, a
twisted symplectic local system have well-defined A-coordinates, and because of the
additional structure of symplectic local systems, they satisfy additional relations. The
following proposition is immediate:

Proposition 5.19 Let L → S be a twisted decorated T -transverse symplectic local
system. Let γ be an arc of the triangulation T from p ∈ P to q ∈ P. Then aγ =
ω(vq , vp). In particular, aγ = −σ(aγ ).

Proof By definition of non-commutative A-coordinates, vp ∈ Lq projects to wqaγ ∈
L/Lq , i.e. for some lift ŵq ∈ A2 of wq , vp = ŵqaγ +vqr for some r ∈ A. Therefore,
ω(vq , vp) = ω(vq , ŵqaγ + vqr) = ω(vq , ŵq)aγ = aγ . ��

From Proposition 4.1 follows:

Corollary 5.20 Let (A, σ ) be an involutive algebra. A twisted decorated T -transverse
GL2(A)-local system L → S is symplectic if and only if aγ = −σ(aγ ) for all edges
γ of the triangulation T .

For a twisted decorated T -transverse symplectic local system L → S and for each
oriented triangle T := (γ1, γ2, γ3) of T , we have βT := aγ3a

−1
γ 2

aγ1 ∈ Aσ .
If (A, σ ) is Hermitian, the signature of βT agrees with the Kashiwara-Maslov index

of T .
The decorated local system is maximal if and only if βT ∈ Aσ+ for all oriented

triangles T of T .
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Remark 5.21 AGL2(A)-equivalence class of twisted decoratedT -transverseGL2(A)-
local system L → S contains a representative which admits a reduction to Sp2(A, σ )

if and only for each oriented triangle T := (γ1, γ2, γ3) of T , βT := aγ3a
−1
γ 2

aγ1 ∈ Aσ .
However, this condition only guarantees that the framing of L is isotropic but does
not guarantee the decoration is symplectic. To guarantee a symplectic decoration of
L, the stronger condition from Corollary 5.20 is necessary.

Remark 5.22 Since these additional relations on A-coordinates involve the structure
of (A, σ ), it is not possible to define a corresponding non-commutative algebra for
symplectic local systems as in [7] for GL2(A)-local systems.
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