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Abstract

Gaiotto, Moore and Neitzke introduced spectral networks to understand the framed
G-local systems over punctured surfaces for G a split Lie group via a procedure called
abelianization. We generalize this construction to groups G of the form GL;(A),
where A is a unital associative ring, and to some of its subgroups. This relies on a
precise analysis of the two-fold ramified coverings associated with spectral networks
and triangulations and on a matrix reinterpretation of their path lifting rules; along
the way we provide another proof of the Laurent phenomenon brought to light by
Berenstein and Retakh. The partial abelianization enables us to gives parametrizations
of the moduli spaces of decorated G-local systems and of framed G-local systems
over punctured surfaces. For (A, o) a Hermitian involutive R-algebra the group G =
Sp,(A, o) is a classical Hermitian Lie group of tube type, and we are able to identify
and parametrize the moduli space of maximal framed G-local systems.
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1 Introduction

The theory of spectral networks was developed by Gaiotto, Moore and Neitzke [1-4]
during their research on supersymmetric quantum field theory. However, the mathe-
matical objects arising from this work proved to have an independent mathematical
interest. The abelianization using spectral networks can be applied to the study of the
geometry of the character varieties of surface groups into complex Lie groups and
split real Lie groups [5].

Spectral networks can be seen as graphs on a n-fold ramified covering of a given
surface. For n > 2 a generic spectral network is an infinite graph that is dense on the
surface, however finite spectral networks exist for every n > 2. The case n = 2 is the
simplest one, but the abelianization procedure in this case can be only applied to a
very restricted class of split Lie groups of rank 1 (e.g. SL>(R), SL,(C)).

The main purpose of this paper is to generalize the abelianization procedure
described by Gaiotto, Moore and Neitzke to Lie groups G that can be seen as GL2(A)
or some subgroups of GL,(A) for some unital associative not necessarily commutative
R-algebra A. Although, such groups are not always split of rank 1, the abelianization
procedure can be partially applied for these groups. In this way, we can understand the
structure of the moduli space of decorated and framed G-local systems over punctured
surfaces.

We now describe our results in more detail.

Let S be a surface without boundary of negative Euler characteristic x (S) with
punctures (we refer to Sect.2 for the wider generality that can be allowed for S, for
example disks with marked points on the boundary). A decorated surface is a surface
as above together with a choice of a simple smooth loop (called a decorating loop) in
a neighborhood of every puncture.

Let G be a subgroup of GL;(A) for some unital associative not necessarily com-
mutative R-algebra A. A twisted G-local system on § is a local system on the unit
tangent bundle 7’S of S with the holonomy around the fiber of 7’S — S equal to —1.
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On partial abelianization of framed local systems 799

Further, we consider A (seen as the space of column vectors) as a right A-module.
The group G acts on A? by the left multiplication. A framing of a twisted G-local
system is a choice of a parallel line A-subbundle in a neighborhood of every puncture.
A decoration of a twisted G-local system is a choice of a parallel regular section
along every decorating loop. For a precise definition of those notions see Sect.3. A
twisted G-local system together with a framing (or decoration) is called a framed
(resp. decorated) twisted G-local system.

Notice that a parallel regular section along a decorating loop always induces a
parallel line A-subbundle in a neighborhood of the corresponding puncture. Hence, a
decorated twisted G-local system always admits a natural framing.

Fixing an ideal triangulation 7 of S, we consider a subspace of the space of twisted
(framed or decorated) G-local systems, that are fransverse with respect to 7 (or just
T -transverse). Following [1, 3], we introduce the ramified covering ¥ — S adapted
to the triangulation 7 and the spectral network on X as a graph that satisfies some
axioms (for more detail, we refer to Sect. 2.3).

For 7 -transverse framed twisted G-local system, we describe the twisted abelian-
ization procedure using spectral networks adapted to the triangulation 7. The result
of this procedure is a twisted A*-local system on X. We also show the converse,
i.e. that for every twisted A*-local system on X there exist a unique twisted 7 -
transverse framed G-local system for G = GL;(A) (non-abelianization). We describe
the abelianization and non-abelianization procedures by defining a path-lifting map
from the twisted path algebra (see Sect.2.5) of S to the twisted path algebra of X,
and we show this map is homotopy-invariant. The partial abelianization and the par-
tial non-abelianization defined in this article are identical to those constructed in [6],
albeit described here in a slightly more general framework (working in linear group
over any algebra rather than over a division algebra). The non-abelianization proce-
dure is described here using spectral networks, whereas in [6] it is described using a
reconstruction functor.

Using this construction, we define non-commutative .4-coordinates on the space
of decorated twisted G-local systems, and using the path-lifting map we show that
these coordinates provide a geometric realization of the non-commutative algebra
introduced in [7]. This allows us to give a geometrical proof of the non-commutative
Laurent phenomenon, first shown in [7].

Further, we use this abelianization procedure to understand the topology of 7 -
transverse (framed and decorated) twisted G-local systems:

Theorem 1.1 Let S be a punctured orientable surface of negative Euler characteristic
x (S) without boundary. Then the moduli space of framed (twisted) GLy(A)-local sys-
tems on S that are transverse to a fixed triangulation T is homeomorphic to the moduli
space of (twisted) A* -local systems on . which is homeomorphic to (A*)!=4x(5) 7 A%
where A* acts diagonally by conjugation on (A*)'=4x(5),

The moduli space of decorated twisted unipotent GL,(A)-local systems on S that
are transverse to a fixed triangulation T is homeomorphic to the product of the moduli
space of twisted A* -local systems on > and (A*)*P where p is the number of punctures
of S.
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Finally, we introduce involutive algebras (A, o), i.e. unital, associative R-algebras
with an R-linear map 0: A — A such that o (ab) = o(b)o(a) forall a,b € A
and 02 = Id. Over involutive algebras, the symplectic group can be defined as
01
-10)°
These groups were studied in [8], and they are of particular interest for higher
rank Teichmiiller theory: For a special class of involutive algebras (A, o) called
Hermitian algebras, the groups Sp,(A, o) are Hermitian of tube type. This gives
rise to so-called maximal Sp,(A, o)-local systems on S and maximal representa-
tions of the fundamental group of S into Sp,(A, o). Maximal local systems and
maximal representations were introduced and studied in [9—11]. They provide exam-
ples of so-called Higher Teichmiiller spaces, i.e. subspaces of the character variety
Rep(m1(S), Spy(A, o)) = Hom(m((S), Spy(A, 0))/ Sp,(A, o) that consist entirely
of discrete and faithful representations. The topology of spaces of maximal represen-
tations for closed surfaces was studied in [12—15], partly using the theory of Higgs
bundles. In [16], the spaces of framed and decorated maximal representations into the
real symplectic group Sp(2n, R) are parametrized using a non-commutative analog of
the Fock—Goncharov parametrization [17] and the topology of them is studied.

We introduce (framed and decorated) twisted Sp, (A, o )-local system and describe
the topology of the moduli space of 7 -transverse framed twisted Sp,(A, o)-local
systems:

follows: Sp,(A,0) := {g € GLy(A) | 0(g)'wg = w} where v = (

Theorem 1.2 Using the same notations as in the previous theorem, the moduli space
of framed (twisted) Sp, (A, o)-local systems on S that are transverse to a fixed trian-
gulation T is homeomorphic to:

<((A<7)><)72x(5) - (Ax)]fx(S)) /A%

where A® = Fixa(0), A* acts componentwisely by conjugation on (A*)'=*S) and
by congruence on ((A%)*)~2x(),

For Hermitian A, we also introduce maximal (framed and decorated) twisted
Sp, (A, o)-local systems and describe the topology of the moduli space of maximal

framed twisted symplectic local systems:

Theorem 1.3 If A is Hermitian, then the moduli space of framed (twisted) maximal
Sp, (A, o)-local systems on S is homeomorphic to:

((Ai)*%((s) % (Ax)lfx(S)) /A

where A = {a2 | a € (A9)*}, A* acts componentwisely by conjugation on
(A)'=XS) and by congruence on (A‘j_)’ZX(S).

This provides a new proof of the result of [16, 18, 19].
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Structure of the paper

In Sect. 2 we introduce the topological and combinatorial data needed for the abelian-
ization process, such as ramified coverings and a special class of graphs on them called
spectral networks. We define the path-lifting map related to the spectral network. In
Sect.3 we describe the partial abelianization and non-abelianization processes for
framed twisted GL2(A)-local systems. In Sect.4 we apply this construction to dec-
orated twisted GL,(A)-local systems, and relate it to the non-commutative algebra
introduced in [7]. We also describe the topology of the moduli space of both framed
and decorated twisted GL, (A)-local systems that are transverse with respect to a fixed
ideal triangulation. In Sect. 5 we specify this construction for Sp, (A, o)-local systems,
and describe the topology of the moduli space of maximal framed twisted symplectic
local systems.

2 Topological and combinatorial data
2.1 Punctured surface

Let S be a compact orientable smooth surface of finite type with or without boundary.
Let P be a nonempty finite subset of S such that on every boundary component of
S there is at least one element of P. We define S := S\ P. Elements of P are called
punctures of S. Sometimes we will distinguish between elements of P that lie in the
interior of S — internal punctures and that lie on the boundary — external punctures.
Surfaces that can be obtained in this way are called punctured surfaces, with the
exception of the (closed) disk with one or two punctures on the boundary and the
sphere with one or two punctures. Every punctured surface can be equipped with a
complete hyperbolic structure of finite volume with totally geodesic boundary. For
every such hyperbolic structure, all the internal punctures are cusps and all boundary
curves are (infinite) geodesics. Once equipped with a hyperbolic structure as above,
the universal covering S’ of S can be seen as a closed convex subset of the hyperbolic
plane H? with totally geodesic boundary, which is invariant under the natural action
of 71(S) on H? by the holonomy representation. Punctures of S are lifted to points
of the ideal boundary of H? which we call punctures of " and denote their set by
P’ C 958" C d5oH?. Notice, if S does not have boundary, then §’ is the entire H?.

An ideal triangulation of S is a triangulation with oriented edges of S whose set
of vertices agrees with P, such that if y is an edge of the triangulation, then the
opposite edge y is also an edge of this triangulation. We always consider edges of an
ideal triangulation as homotopy classes of oriented paths (relative to their endpoints)
connecting points in P. Connected components of the compliment on S to all edges
of an ideal triangulation 7 are called faces or triangles of 7. Every edge belongs to
the boundary of one or two triangles. In the first case, an edge is called external, in the
second — internal. Any ideal triangulation of S can be represented by an ideal geodesic
triangulation when a hyperbolic structure as above on § is chosen.
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P q2 S2

s *—

D2 To D2
q1 S1
Fig.1 The ramified two-fold covering of two glued triangles. The preimages of p are p| and p», same for

q,r,s. The branched points are the blue crosses. The two outer edges with an arrow are glued according to
arrow orientation

2.2 Ramified covering

Let 7 be an ideal triangulation of S. We can endow S with a Euclidean structure
with conical points by choosing for each triangle 7' of 7 an orientation preserving
diffeomorphism @7 : T — T where T is the Euclidean triangle in R? = C with vertices
1,j=e % and j2. Then for each adjacent pair of triangles (not necessarily distinct) in
S, glue the corresponding Euclidean triangles with the composition of a rotation and a
translation. The conical points of this structure are exactly the points in P, meaning that
this structure once restricted to S is smooth. Let B = {¢7(0) | T triangle of 7} C S.
There is exactly one point of B in the interior of each triangle of 7. With this data, we
can construct a two-fold branched covering 7 : £ — S such that the branched points
are precisely elements of B and ¥ has a Euclidean structure. Let H be the Euclidean
hexagon with vertices the sixth roots of unity in C. Then the map z > z2 is a ramified
covering from H to T that has exactly one ramification of order 2 at the point 0. Then
take as many copies of H as there are triangles in 7 and for each pair of adjacent
triangles (not necessarily distinct) in S, glue the corresponding Euclidean hexagons
on both edges that are mapped to the glued edge in S with rotation and a translation
(Fig. 1).

This defines a two-fold ramified covering 7 : & — S with ramification points at B,
and the conical points of ¥ are a subset of 7 1 (P). This means the map 7 restricted
to ¥ = % \7 ' (P) is a smooth two-fold branched covering from X to S, with simple
ramifications at each point of B. The lift 7* := 7 ~!(7) of 7 to ¥ induces a hexagonal
tiling of ¥ such that in every hexagon there is exactly one element of 7~ (B).

Remark 2.1 By construction, triangles of 7 are in 1:1-correspondence with elements
of B, and hexagons of 7 ~!(7) are also in 1:1-correspondence with elements of B.

Definition 2.2 For a smooth manifold X, denote T’X the spherical quotient of TX,
ie. T'X = TP X/R% where T?X is the punctured tangent bundle of X and the group
R? acts fiberwise by multiplication. The space T'X is then a sphere bundle over X,
and we will write an element of 77X as an ordered pair (x, v) withx € X and v a
non-zero vector in 7, X, identified with the half-line it spans. With a slight abuse of
terminology, we will call this sphere bundle the unit tangent bundle of X.

Remark 2.3 Since the map 7 is a local diffeomorphism on ¥\7~'(B), it induces
the tangent (differential) map dx : T(Z\n_l(B)) — T (S\B) that factorizes to unit
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On partial abelianization of framed local systems 803

tangent bundles 7'(X\7~'(B)) — T(S\B)'. In order to simplify the notation, we
will sometime write 7: T — TSand7: T'Y — T'S instead of d7.

Remark 2.4 The unit tangent bundle of H is canonically identified to H x S' as His a
subset of R?. With this identification, the preimages by d of (x, v) € T'S are of the
form (x1, v") and (xp, —v’) where x| and x; are the preimages of x by 7.

The following proposition describe the topology of the ramified covering X:

Proposition 2.5 Let S be a compact orientable surface with k > 0 boundary compo-
nents C1, ..., Cy and let P be a finite set of points of S such that for alli € {1, ..., k},
n; = #(C;iNP) > 0. Let k, (resp. k,) be the number of components of S with an even
(resp. odd) number of punctures, such thatk = k, +k,. Let p = #(P\95), let g be the
genus of S and let S = S\ P. Then the two-fold ramified covering ¥ = ¥\~ (P) of
S is a surface such that:

e X is a compact orientable surface of genus

k
1
g’:§<2p+2ke+3k0+8g—6+2n,~>,
i=1

e for each of the k, boundary components C of S with even number n of punctures,
77 1(C) is the union of two distinct boundary components in %, each with n
punctures
e for each of the k, boundary components C of S with odd number n of punctures,
7~1(C) is one boundary component in X with 2n punctures,
° E has 2 p internal punctures.

Proof First, note that the genus g’ of X is an integer because 3k, + Y _ n; is always
even. It is clear from the construction that . is compact and orientable, and that ¥ has
2p internal punctures. To compute the number of boundary components of %, we will
glue to each boundary of S a disk with the corresponding number of punctures on the
boundary to get a surface S with no boundary, only internal punctures. Since a disk
with one (resp. two) puncture on the boundary does not admit an ideal triangulation,
we glue a disk with one (resp. two) puncture on the boundary and one internal puncture
instead. In the corresponding ramified covering 3 of S, we then remove the lifts of the
interior of the glued disks to obtain X. The result follows from the following lemma:

Lemma 2.6 If S is a closed disk with n > 3 punctures on the boundary, . has either
one boundary component with 2n punctures if n is odd or two boundary components
with n punctures each if n is even. If S is a disk with one internal puncture and one
puncture on the boundary, % has one boundary component with two punctures. If S
is a disk with one internal puncture and two punctures on the boundary, ¥ has two
boundary components with two punctures each.

Proof The two cases with an internal puncture can be computed individually. Let S
be a disk with n > 3 punctures on the boundary. Let 7 be a triangulation of S and =
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804 C. Kineider, E. Rogozinnikov

the corresponding ramified covering. Let y be a loop homotopic to the boundary of
the disk going around all the n — 2 branched points in S. Let x be the base point of y,
and x1, x the lifts of x to X. Let y the lift of y starting at x;. If y is a loop then there
are two lifts of the boundary of S to X, and if y is a path from x; to x; then the lift of
the boundary of S is connected in X. The loop y is homotopic to the concatenations
of loops yi, ..., Va2, y’ based at x such that each y; goes around two branched

points in S and y’ is either trivial if n — 2 is even or goes around one branched point
if n — 2 is odd. Then y is the concatenation of the lifts y, ..., ?L% I 7’. Since the

7; are loops based at p; and p’ is either trivial or a path from p; to p> (depending on
the parity of n), we get the result. O

The Euler characteristic of S is
x(S)=2—-2g—k=2—-2g—ky,—k,
and the Euler characteristic of X is
x(2) =2—-2¢" —k, — 2k,.

The number of branched points is the same as the number of triangles in 7', which is
—2x(S) + 2p + > n;. Riemann-Hurwitz formula gives us:

k
() =2-2¢ —k, — 2k = 2x(5) - (—2x(§> +2p+2ni)

i=1

k
=4x(S) —=2p = n

i=1

k
=8—8g—2p — 4k, — 4k, — Y 1
i=1

We can then solve for g’ to get the result. O
Remark 2.7 In particular, the topology of X does not depend on the triangulation 7 .

We denote by 6: ¥ — X the covering involution. The following result is a direct
consequence of the above proposition.

Corollary 2.8 The fundamental group w((X) is a free group of rank

I=xE) +2p=1-4xS) +4p+ ) _ni.
Letb € X be aramification point of the coveringmw : ¥ — S. Letaq, ..., o5: [0, 1] —
S be free generators of the fundamental group m1(S, 7w (b)) that do not pass through

other ramification points. The fundamental group w1 (X, b) is the free group freely
generated by the following collection of loops on X.:
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Fig.2 Local description of a 31
spectral network around a
branch point

g

1. For every generator «;, there are two closed lifts yil and J/i2 =6o yil on X based
atb (intotal 2 — 2x(S) + 2p curves);

2. For every ramification point b’ # b in T, we fix a simple segment on S connecting
7 (b) and (V') and take the lift of this segment on X. It is a closed loop & based
at b (in total —2x(§) +2p — 14> n; curves).

The fundamental group 71 (TS, b) where b € T'S is alift of bto T'S is generated by
lifts of curves described above and the curve going once around the fiber of Ty - %
atbh.

2.3 Spectral network

Let 7 be an ideal triangulation of S and 7 : ¥ — S be the corresponding two-fold
ramified covering constructed in Sect. 2.2. A (small) spectral network associated with
this ramified covering is a set WV of paths [—1, 1] — X (called rays) satisfying:

o foralle € W, a(—1),a(1) € 7~ (P), «(0) € x~1(B) and if r ¢ {—1,0, 1},
then (1) ¢ 7~ (P U B)

e foralla € Wand forallt € [—1, 1], m(x()) = w(a(—1))

e for all b € 7~ 1(B), there are exactly 3 rays ay, a», a3 € W passing through b,
and locally around b the rays look like Fig. 2.

o forall o # o, a(] — 1,0[) — which we call the past of a — does not intersect
a’(]0, 1[) — which we call the future of o'.

Remark 2.9 We can omit the last condition in rank 2 spectral networks (i.e. associated
to a two-fold covering) as we will construct spectral networks without intersections
in X.

We can construct a spectral network associated with a triangulation 7 in the follow-
ing way: call the points of 7~ (P) that are on third roots of unity (for the Euclidean
structure) sinks and all other points of 7 ~'(P) sources. This way, each point of P
have two preimages, one source and one sink. For each hexagon H of 7 ~!(7), the
three rays going through the branch point in H are the three Euclidean segments going
from the source to the sink for each of the three puncture in T (Fig. 3).

We fix a spectral network ¥V on ¥ adapted to the covering ¥ — § and to the ideal
triangulation 7. The complement of all lines of WW on X is a collection of simply
connected regions called cells. These are either quadrilaterals bounded by four lines
of W or triangles bounded by two lines of /) and one boundary component of S. The
closure of every cell in S contains exactly two punctures.
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806 C. Kineider, E. Rogozinnikov

Fig.3 Picture of the spectral p b1
network on each triangle of the
. . q2 o
triangulation. Here the sources
are p», g2, rp and the sinks are q -
P1.41,71
1 Q
r
D2

Let po: ' — S be the universal covering of S. There exist a branched two-
fold covering 7’: ¥’ — S’ and an (infinite but in general not universal) covering
p1: ¥’ — X such that the following diagram commutes:

¥ =3

> T8

The ideal hexagonal tiling of X lifts to an ideal hexagonal tiling of X’. We call the
set of ends of edges of this tiling the ideal boundary of ¥'. In fact, the ideal boundary
of X’ does not depend on the choice of the tiling.

The map 7/ can be continuously extended to the ideal boundary of X’. Therefore,
we can talk about images and preimages of punctures under 7’.

We lift the triangulation 7 on S, the corresponding hexagonal tiling on X and the
spectral network WV to these coverings.

Now we are working on the universal covering S’. For every puncture p of S’, we
consider the union of all cells that have this puncture in their (ideal) boundaries, take
the closure of this union in S’ and then take the interior of this set. This is an open
contractible set of §’, we denote it by U » and call the standard neighborhood of the
puncture p € §'. Let p; and py be two lifts of the puncture p of S’ under 7’. The
lift of U, to X’ consists of two connected components U, and U, every of which
projects homeomorphically to U, i.e. U, is evenly covered by U, and Up,. We will
call Up, (resp. Up,) the standard neighborhood of py (resp. p2).

Notice that two standard neighborhoods either do not intersect or intersect in a cell
of the (lifted) spectral network V. More precisely, two standard neighborhoods U,
and U, intersect if and only if the punctures p and ¢ of S’ (resp. of ¥’) are connected
by an edge of po_l(T) in S’ (resp. by an edge of pl_l (T*)in X).

2.4 Peripheral decoration

To consider framed and decorated local systems, we will need the following additional
data on the surface S: for every internal puncture p € P we fix aneighborhood S, C §
of p that is diffeomorphic to a punctured disk. For every external puncture p € P, we
choose a neighborhood S, C § of p that is diffeomorphic to a punctured half-disk.
We also assume that all S, are so small that they are pairwise disjoint, and their union
does not contain points of B. In this case, every S, is evenly covered by X, and X,
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On partial abelianization of framed local systems 807

Fig.4 The bending of an edge
of the triangulation. In red are
the peripheral decoration, in
blue and green are the oriented
edges of the triangulation, the
crosses are the points in /7~ and
the thicker part of the edges in
between the peripheral curves
are the paths 7y, and 73 (Color
figure online)

where {p1, p2} = n_l(p) and ¥, and X, are the two connected components of
77 1(S)).

Furthermore, for every internal puncture p € P we fix a simple smooth loop
Bp: 10, 1] — S, around p such that BP(O) = Bp(l), oriented so that p is on the right
of B, according to the orientation of S. For every external puncture p € P, we chose
a simple smooth path g, : ([0, 1], {0, 1}) — (Sp, Sp N 3S) connecting two boundary
connected components separated by p, once again with orientation given by the one
onS.

In both cases, up to isotopy there is only one such g,. Since all g, are smooth,
we can lift them to the 7’ namely to the curve [8, (1), B,(1)] € T'S,t € [0, 1]. We
denote this lift by 7’8 p: [0, 1] — T'S. Notice that for every internal puncture p, the
lift T’ B, is always a loop.

If for every p € P acurve 8, as above is chosen, then we say that the surface S is
decorated, and the collection D = {8, | p € P} is called a decoration of S.

If a hyperbolic structure as above on S is chosen, then every 8, can be represented by
projections of small enough horocycles around some p’ € p, !(p) under the universal
covering map pg: S’ — S.

Let 7 be an ideal triangulation of S. We can assume the arcs of the triangulation
are smooth, and if the surface is decorated, we will further assume that any arc of the
triangulation intersects only once the peripheral curves associated to its endpoints and
do so with matching derivatives, i.e. an arc y € 7 from p € P to g € P satisfies
y(to) = Bp(ty) and y (1) = B, (t]) where to, 1, 1}, t] are such that y (t9) = B, (1)
and y (t1) = B, (). This is the same as assuming that every arc from p to ¢ of the
lift 77 of 7 to T'S intersects the lifts 7’8, and T'g,. This can be done by bending
the arcs of 7 in a neighborhood of their intersections with the peripheral curves. Let
I7(S) C T'S be the set of intersection points between 7’ and the lifted decoration
curves T’f,. This means that now each edge of the triangulation 7" is endowed with
two special points (one for each extremity) lying on the peripheral curves associated
to its endpoints. For every edge y € 7 of the triangulation, let 7, be the path in 7’S
with extremities in /7 obtained by restricting y to the part in between the two special
points on it. Note that since this is applied to all the oriented arcs of the triangulation,
the chosen representative for 7, and 73 are such that 7' (t, .75) is homotopic to a lace
that loop once around the fiber 7S — S (see Fig.4).

We also apply the same construction in X to equip each edge of the hexagonal tiling
T* with two special points, and denote I'7+(Z) the set of all special points in T'X.
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Note that both I7+(X) and I7(S) are finite sets, and that 7 : T'Y — T’S is 2:1 from
I7+(X2) to I7(S).

Since the points in 7+ (X) lie on peripheral curves associated with punctures, they
inherit the source/sink naming from the puncture.

2.5 The spectral network map

Lifting paths to a ramified covering is not homotopy invariant: a contractible loop
around a branch point b € B is lifted as two paths on X that are not loops, thus
not homotopic to the lift of the trivial loop. The goal of this section is to construct a
path-lifting map SN, which depends on the spectral network W, from paths on 7S
to paths on T’% such that SN is well-defined on homotopy classes.

We will use the symbol = to represent homotopy (relative to extremities) of paths.

Let S be a punctured surface, 7 an ideal triangulation of S and w : ¥ — S the
two-fold branched covering constructed in Sect.2.2. Let WV be the spectral network
adapted to this covering constructed in Sect.2.3. Every path« :] — 1, 1[— X of W is
smooth since it is a straight line for the Euclidean structure. We can thus lift the paths

of Wto I L1[ s

/P B -
o e (@), &)

We will also call this set of paths in 7' a spectral network and denote it 7/W.

Let H be a hexagonal tile of . Note that the Euclidean structure on ¥ allows us
to identify 7'H with H x S!. In the following, a path y on T'H ~ H x S' will
be written as a couple (x, v) where x is the projection of y on H C X and v is the
projection of ¥ on S'. Note that S' has a natural orientation given by the one on X.
For all 8 € S!, define s;’ to be the (homotopy class of the) path in S' going from
6 to —6 following the orientation of S!, and sy going from 6 to —6 in the opposite
direction. For a path v on S!, we will denote —v the image of v under the involution
60— —9. The path —v goes from —v(0) to —v(1). In particular, we have s, = —s;
and (—s, ) Se = (Si where (Si t — 6 £ 2ixt. When the context is clear, we will
omit the subscript descrlbmg the starting point of the paths s* and 8%. The paths st
satisfy §~ = Standifvisa path on S! from 6; to 6, we have 89 VR . 8

The Euclidean structure on X also defines a flat connection V on TE glven by
the restriction of the standard flat connection on R2. Since it is a bilinear map on the
sections of T'% (denoted I'(T X)), this connection induces a flat connection (which
we also call V) on the unit tangent bundle

V:I(T'S) x I(T'S) - T(T'Y).

Definition 2.10 Let X be a topological space. The path algebra of X (denoted
Z[Path(X)]) is the free Z-algebra generated by homotopy classes (relative to extrem-
ities) of paths [0, 1] — X, with the product given by concatenation of paths: if
y1(0) # y2(1) then y1.y2 = 0 and if y1(0) = y2(1) then y;.y» is the path obtained by
following y» then y;.
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Fig.5 The path x” added by the Tt To
intersection with « b

Now let X be a smooth surface. Define the twisted path algebra of X as
TPA(X) = Z[Path(T'X)]/Z

where 7 is the two-sided ideal generated by the elements ey g + 8 ¢ for (x,0) € T'X,
with

[0,11 > T'X
e (x.0)

[0,1] - T'X
anddxo " o2

€x,0

Remark 2.11 Given any non-empty subset E C T’X, the subset
{yi+---+y +Z|foralll <i <r, endpoints of y; are in E} C TPA(X)

is a subring of TPA(X) because composition of paths preserves the set of endpoints.
We will denote TPA g (X) this subring.

Let x be a path on S intersecting only once (and not at its endpoints) the spectral
network W and not going through a branch point. Let « € )V be the path such that
7 () intersects x. The two standard lifts x| and x» of x to X each intersect once «, one
of them intersecting the past of « and the other intersecting the future of «. Suppose
x1 is the one intersecting the past of @. We can then define a new path x” on X as the
concatenation of 5 paths x|, ..., x§ defined as follows (Fig. 5):

e x| is the part of x| from its starting point to the intersection point with &

e x) is the part of & from the intersection with x; to the branch point

e x} is a constant path at the branch point (it will be useful in the next paragraph
when we will consider the lifted spectral network 7'W)

e Xx, is the part of « from the branch point to the intersection with x»

e Xx; is the part of x, from the intersection with « to its endpoint.

Now let y : 1 +> (x(¢), v(z)) be a path on T’S such that the path x on S intersects
only once the spectral network on aray @ € W atatime 7o € |0, 1[. Let y; = (x1, v1)
and y» = (x2, v2) be the standard lifts of y to 7', with the same numbering as above.
Note that y; and y» do not intersect 7"V in general, but x| and x; intersect € W. Let
x’ be the path on X obtained with the construction described in the previous paragraph.
We now want a continuous map v’ : [0, 1] — S! which coincide with the standard lifts
v1 and v, when x’ coincides with either x; or x;. Without loss of generality, suppose x
is smooth at the intersection point with W and that the intersection is transverse. Then
x1 and x, are also smooth at their intersection points with «. We say the intersection
of x| with « is positively oriented if (xX(tg), &(to)) agrees with the orientation on X,
negatively oriented if not.
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Fig.6 The path (x’, v) added

Vg
by the intersection with a.. The o n
intersection of x| with « is 421 T ;
positively oriented if X is = \ \ \\m

oriented clockwise - % x b\ \ \ \ \

Remark 2.12 The positivity of the intersection of a path (x, v) in 7'Z with a ray of
the spectral network is determined using the derivative of the underlying path x, and
does not depend on the vector field v on x.

Let v be the concatenation of 5 paths v/, ..., v; defined as follows (Fig. 6):

e v is the part of v; from its starting point to the intersection point with o
e vj is the part of vy from the intersection with « to its endpoint
e v} is obtained by parallel transport with respect to the flat connection V on X from

the vector v (7p) along the path x}

° vj‘ is obtained by parallel transport with respect to V from the vector vy (#p) =
—vj () along the path X,

e vj is the path s;z ) inT)% ~ St if the intersection of x| with « is positively

oriented, and s , ) if the intersection is negatively oriented.
2

Remark 2.13 The resulting path v’ on S! is homotopic to (—v%).si (to).v{ where v{ =
v1 {0,407 and U12 = V1 |[,1]- Note that for any path w on S! from 6o to 61, we have

+ ~ +
Sp, W A (—w).seo

so the path v’ is homotopic to svil(l).vl.

Let y' = (x/, V') and SN (y) be the element y; + ¥, + Y’ € TPA(Z). Let y be a
path in 7S. We can write y as a concatenation of smaller paths y (I, ..., ), each
intersecting at most once the spectral network and for each of these small paths, apply
the construction above to obtain SN (y ), ..., SN(y®) (if y© does not intersect
the spectral network, define SN (y ) to be the sum of the two standard lifts of y ).
Define the lift of y with respect to the spectral network WV to be the product SN (y) =
SN(yDy...SN(y") e TPA(D).

Theorem 2.1 Let y| and y> be two homotopic paths in T'S. Then SN (y1) = SN (y2).
In particular, the map

_ TPA(S) — TPA(X)

SN
y = SN(y)

is well-defined.
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Fig.7 A loop intersecting twice W T\ v
the same ray of W ‘!
JRESIG) b

Fig.8 Spectral network lift of y

Remark 2.14 The map SN is not defined on the whole twisted path algebra of S as
paths with endpoints on a ray of the spectral network cannot be lifted consistently,
but we will never need to lift such paths. The subset of TPA(S) (resp. TPA(XZ)) of
elements where no term has an endpoint on )V is a subring (see Remark 2.11), and
with a slight abuse of notation we will still denote it TPA(S) (resp. TPA(X)).

The theorem is a consequence of the two following lemmas:

Lemma 2.15 Lety = (x, v) be a path in T'S that intersects exactly twice the same ray
a of the spectral network and no other ray of W, as in Fig.7. Then SN (y) = y1 + y»
where y| and y» are the two standard lifts of y .

Proof Let | < 1, be the two elements of the interval [0, 1] such that x(¢1) and x(#,)
are on . Let (x(I, vy = y(t1) and (x(z), v(2)) = y(t2), and let y; = (x1, v1) and
y2 = (x2, v2) the two standard lifts of y, y; being the lift intersecting the past of «.
Then SN(y) = y1 +y2 + v’ + y” where y’ = (x’, V') is such that x’ follow « from
xfl) to xél) and y” = (x”, v") is such that x” follows « from x%z) to xéz) (Fig. 8).

In order to prove the lemma, we need to show that the two paths 3’ and y” added
by the intersections with the spectral network cancel each other in TPA(X), i.e. that
y’ + y” = 0. For this, we need to show that ”.y’ is homotopic to an odd power
of 8x,(0),v,(0)- The paths x” and x”” are homotopic on T so the concatenation X .x" is
trivial. What is left is to show that 7.0’ is homotopic to an odd power of §T.

Suppose the intersection of x; with « at x{l) is positive, the other case being sym-

. . . . 2) . .
metric. Then the intersection of x; with « at xl( ) s negative. Then by Remark 2.13,
v & sT.v; and v’ ~ s7.v], so we have

vV U .s+.v1

5T,

o

1.
+

V]

S <

o
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Fig.9 A small loop around a p
branch point

q (‘

O

Lemma 2.16 Let m be a point in S in a small neighborhood of a branch point b but
not on a ray of W and 6 € T,,S. Let y be a path homotopic to ey, g in T'S that loops
around a branch point b in S, intersecting exactly once each of the three rays of VW
going out of b, as inFig.9. Then SN(y) = em, .6, +€m, .0, where (m1, 01) and (m3, 62)
are the two lifts of (m,0) in T'X.

Proof Suppose the path y is looping around b in the direction given by the orientation
of X, the other case being symmetric. Then all the intersections of the standard lifts of
y with the spectral network in X are positive. By applying the spectral network lifting
rule to y, we get 8 paths: the two standard lifts y; = (x1, v1) and y» = (x3, v2), and
6 additional paths y|, ..., ¥ shown in Fig. 10.

Let a1, o and a3 be the three rays of W intersected by y, in that order. Let y; be
the standard lift of y intersecting the past of 1, and let (m, 61) be its starting point
and (m3, 6) be its endpoint. We will label the spectral network lifts y; = (x;, v}) of
y as follows:

° yl/ follows y; until the intersection with «3, then a3, then y» until its end

° )/2/ follows y» until the intersection with a, then «y, then y; until its end

° y3/ follows y» until the intersection with a, then a, then y; until the intersection
with a3, then a3, then y» until its end

° yé( follows y; until the intersection with o1, then o1, then y» until its end

° Vs/ follows y1 until the intersection with a1, then ¢, then y» until the intersection
with a3, then a», then yj until the intersection with a3, then «3, then y; until its
end

° yé follows y; until the intersection with a1, then o, then 3, until the intersection
with oy, then a», then y; until its end.

The paths x{, x; and x; are homotopic to the trivial path e,,,, x; is homotopic to x1,
xé is homotopic to e,,, and xé is homotopic to x». Since y is homotopic to e;, g and x
is looping around b in the direction given by the orientation of X, we have v; ~ s,

and vy ~ s, . Using the same reasoning as above, we get the following:

U; ~ s+.v1 ~ ey,

Ué ~ s+.v2 ~ ep,

vy~ sTsT o~ 8t
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D2

Fig. 10 All 6 paths added by intersections with the spectral network, together with the standard lifts. On the
upper left picture are the paths homotopic to trivial paths, and on the other are the remaining lifts, grouped
as pairs of paths cancelling each other out in TPA(X). Only the paths xlf on ¥ are drawn

Uy ~ s+.v1 ~ ey,

Vg A stsTsTo~6

So in TPA(X), we have:
v+ty;=0
M+vy=0
vi+ys=0
)/4{ = €m,,6,
yZ/ = €m,,0,
o)

SN =vi+rn+vi+ra+rvi+va+vs+vs=emo +ems. 2.1)
O
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3 Partial abelianization of framed twisted local systems

In this section, we define framed and decorated twisted GL>(A)-local systems over
a punctured surface S and describe a partial non-abelianization procedure for them.
Using this, we describe the topology of the moduli space of framed and decorated
twisted GL;(A)-local system that are transverse with respect to a fixed ideal triangu-
lation of S.

In this section, A is finite dimensional unital R-algebra, and algebra homomor-
phisms are required to preserve unity elements.

Let A" be the set of columns (r x 1 matrices) endowed with the structure of a right
A-module.

Definition 3.1 We make the following definitions:

1. Ann-tuple (x1, ..., x,) for x(, ..., x, € A" is called basis of A" if the map

A" - A"
n

(ar,...,an) = Y xia;
i=1

is an isomorphism of A-modules.

2. The element x € A" is called regular if there exist xo, ..., x, € A" such that
(x,x2,...,x,)1is a basis of A",

3. £ € A" is called an A-line if £ = x A for a regular x € A". We denote the space
of A-lines of A" by P(A").

4. Regular elements xi, ..., x; € A" for k < n are called linearly independent if
there exist xg41, ..., x, € A" such that (xq, ..., x,) is a basis of A”.

5. Two A-lines £, m are called transverse if ¢ = x A,m = yA forlinearly independent
x,ye A"

Let M,,(A) be the ring of all n x n-matrices with entries in A, and GL,(A) be the
group of all invertible matrices of M, (A). Then GL,,(A) acts on A" by left multipli-
cation.

Definition 3.2 A GL, (A)-local system over a smooth manifold X is a A”-bundle over
X equipped with a flat connection.

Definition 3.3 Let U be an open subset of X. A regular A-subbundle L of a GL,,(A)-

local system L over U is a subbundle of £ such that for every p € U there exists a
neighborhood U, containing p and a local trivialization

®,: Ly,—~ Up x A"

such that ®,(L |y,) = Up x £ where £ is an A-line in A".
A section v: U — L is regular if vA is a regular A-subbundle of £ |y .
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3.1 Twisted local systems

In this section, X denotes either S or 2.

Definition 3.4 A rwisted GL, (A)-local system on X is a flat A”-bundle over T’ X with
monodromy around the fibers of the natural projection 7’X — X equal to — Id.

Letxp € Xand v € T;OX . The natural projection 7’X — X has fiber homeomor-
phic to S, and we have the short exact sequence

1 — m1(T}, X, (x0,v)) = m1(T'X, (x0,v)) = 71 (X, x0) = 1

with 7 (T)g0 X, (x0, v)) being isomorphic to Z, generated by the loop S;tw going around
the fiber over xg once in the direction given by the orientation of X. This extension is
central because X is oriented.

Since X is not closed, the group 71 (X) is free, so the sequence above splits. The
choice of a splitting corresponds to the choice of a non-vanishing vector field on X.
Let 777 (X) denote the quotient of 771 (T'X, (xo, v)) by the normal subgroup 2Z C Z =~
T (T;OX , (x0, v)), so we have the short exact sequence

1 = Z/2Z — 7} (X) = w1 (X, x0) > 1 3.1

that once again splits. Note that this second sequence also splits when X is closed (for
instance for X = ¥ and X has no boundary) since a closed surface of negative Euler
characteristic always admits a vector field with zeroes of even indices only.

Proposition 3.5 The set of twisted GL,,(A)-local systems on X up to isomorphism is
in 1:1-correspondence with the set of representations p : mj(X) — GL,(A) such
that p(8F ) = —1d, up to the action of GL,(A) by conjugation.

X0,V

Remark 3.6 Any splitting of the short exact sequence (3.1) induces a 1: 1-correspondence
between twisted GL, (A)-local systems on X and GL,,(A)-local systems on X.

If £ is a twisted local system on X and y is a path on T’ X, the flat connection defines a
holonomy map m,, from £, ) to £, (1). Moreover, the path 8, o induces the linear map
—Id on L, ¢ by definition of a twisted local system. Thus,if y = y1+---+y,+7 €
TPA(X) where all the y; € Path(7T’X) have the same extremities, the holonomy map
my = my, +---+my, : L,0) — Ly is well-defined (if there is more than one
term in y the holonomy map m, may not be an isomorphism). However, if y; and y»
do not have the same extremities, it is not possible to associate an element of M, (A)
to y1 + y»2, which is a problem we need to solve in order to consider representations
of TPA(X). To make a link between twisted local systems and representations of
TPA(S), we first need to modify the ring M,, (A) to solve this issue of endpoints. Since
multiplication in TPA(X) is zero for paths whose extremities do not match, we need
a ring with the same behavior.

Definition 3.7 Let A be a unital ring and £ C X any non-empty subset. Let Ag be the
ring AE>E) of finite formal sums of elements of the form a(, 4),a € A, p,q € E,
endowed with the multiplication defined as follows:
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e VYa,be A,Vx,y,z€ E, a(x,y).b(),,z) = (d.b)(x,z)
e Va,be A, Vx,y,z,t € E,y # z,a(x,y).b(z,,) =0

The elements of this ring are copies of elements of A indexed by pairs of points in
E, thought as “endpoints” of these elements. The sum of two elements is a formal sum
except when the indices match, it then agrees with the sum in A. The multiplication of
two elements is made so it agrees with the composition of paths: multiplication of two
elements with “non-composable” indices is zero and multiplication with “composable”
indices agrees with the one on A, and the index of the result is the composition of the
indices.

The ring Ag contains many isomorphic copies of A as subrings: for all x € E,

Ay = {a(x,x) | a e A}

is a subring of A g isomorphic to A. Note however that the ring Ag is not unital if E
is infinite, but contains many idempotent elements.

Let TPA7(S) = TPA 1, (5)(S) be the subring of TPA(S) of paths with endpoints
in I7(S) described in Remark 2.11. Similarly, let TPA7+(X) = TPA,, (5)(X). For
any unital ring, let A7 = Af-(s) and A7+ = Ay, (x). In the following, TPA 7 (X)
denotes either TPA7(S) or TPA7«(X) and similarly A4« denotes either A7 or
A7+ Since I7(S) and I7+(X) are finite, TPA 7« (X) and A« are unital, the units
elements being respectively ) . Ly (X) €x and ) . Ly (X0 L(x,x)- There is then a
diagonal embedding

AMro &) oA,
@xelmx) = 2 (@) -
XEIT(*) (X)
For every x € I (X), there is an injective group homomorphism

77 (X, x) = TPAL(X)™ C TPA7 (X).

Two elements a, b € A7 are said conjugated if there exists an invertible element u
in A*'T® such that b = u.a.u~". This is an equivalence relation.

Proposition 3.8 There is a 1:1 correspondence between the set of twisted GL, (A)-
local systems on X up to isomorphism and the set of ring homomorphisms
TPA 7 (X) = M, (A) 7 up to the action of GL, (A7 by conjugation.

Proof Given a twisted GL, (A)-local system £ on X, for all x € Iz (X) choose a
basis of the fiber of £ over x. The map

0 TPA 70 (X) — M, (A)700
: Yoy = Y (Holp(¥)ik).s(r))

is a ring homomorphism, where s(y) (resp. #(y)) is the source (resp. the sink) of y
(which are in 174 (X)), and Holz(y) is the holonomy of y in £ in the corresponding
bases. The conjugacy class of ¢ does not depend on the choices of the bases.
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Conversely, let ¢ be the conjugacy class of a representation TPAzw (X) —
M, (A)7e, and let x € I3 (X). Then TPA,(X) contains an isomorphic copy of
7 (X, x) and the restriction of ¢ to 7{(X, x) yield a representation 7} (X, x) —
GL, (A) mapping S;E to —Id, which define a unique isomorphism class of twisted
GL,, (A)-local system by Proposition 3.5, having holonomies described by ¢. O

3.2 Framing and decoration

Let £ be atwisted GL, (A)-local system on S. We say that L is peripherally parabolic if
for every puncture p € P there exist a parallel regular A-subbundle of £ over T'f,,. A
choice of such a parallel regular subbundle L, C £, — T’B,, where L, := L |/ By
for every p € P is called a framing of L. Since L, is parallel, on the quotient bundle
L,/L, (which is an A-bundle) over 7'g, the flat connection is also well-defined.
A framed twisted GL;(A)-local system is a pair (L, (L) pep) Where (L)) pep is a
framing of L.

Let 7 an ideal triangulation of S. We say a framed twisted local system
(L, (Lp)pep) is T-transverse if for every edge of the triangulation two subbundles
corresponding to two ends of the edge are transverse.

A twisted GL,(A)-local system L over a decorated surface (S, D) is called periph-
erally unipotent if for every B8, € D, p € P there exist a parallel regular section v, of
L along T'B,, and a parallel regular section w), of the bundle £, /L , along T’ ,, where
L, is the A-subbundle of £, spanned by v,,. If for every 8, such parallel regular sec-
tions v, of £, and w, of L,,/L , along T’ B, are chosen, then (L, (vp) pep, (Wp) pep)
is called a decorated twisted GL,(A)-local system.

3.3 Non-abelianization of twisted local systems

In Sect.2.5, we constructed an algebra homomorphism SN : TPA(S) — TPA(X).
This homomorphism restricts to a ring homomorphism

SN : TPA7(S) — TPAT+(3)

as mentioned in Remark 2.11. Let y € TPA7(S) be a path from p togq, p, g € I7(S),
and let p1, p> be the two lifts of p to ¥, and g1, ¢» the two lifts of g, with p1, ¢ being
the sinks and p», g» being the sources. Then

SN)=yi1+tvi2+wy1+ro

where y; ; is the sum of all terms of SN(y) from p; to g; (y;,; may be 0). Instead
of a formal sum, it will be more convenient to see SN(y) as a 2 by 2 matrix with
coefficients in TPA7+(X). The definition of the multiplication on TPA7+ (%) makes
it so the map:

TPAT(S) — My(TPA7«(X))
SN : V1,1 V1,2
Yy =
V2,1 Y22
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is a ring homomorphism. We also have a ring homomorphism

My(A7+) — My(A)T
ma: (G0 barp N (a b) .
Cqr.p1 Ago.pa cd),

Note that we can always write an element of M>(A7+) as the sum of elements of the

form
agi,pr bgy.p
Cqrpr Agp.po

(possibly with some coefficients equal to 0).

Proposition 3.9 Let & be a twisted A -local system over ¥ and let ¢ : TPAT+(X) —
AT+ the corresponding ring homomorphism given by Proposition 3.8. Then the ring
homomorphism

Y =1y 0 Ma(p) o SN : TPAT(S) = Ma(A)T

corresponds to a peripherally parabolic twisted GLy(A)-local system on S, together
with a T -transverse framing.

Proof Let & be atwisted A -local system on X, and let £ be the GL,(A)-local system
obtained on S. We need to show that £ admits a flat section on any peripheral curve 8,
on S, i.e. that the monodromy along B, is upper triangular in some basis. Let p € P
and p1, p> the lifts of p to X, py being the sink and p; the source. Letg € I7(S)N B,
and q1, g> the lifts of g to X, g; € B),. We will assume f, is a loop based on g. The
fiber £, of £ over g can be identified with the direct sum &;, @ &, of the fibers of
& over g1 and g;. Every ray of the spectral network WV crossed by 8, on S lifts to
a ray from p, to p; on X. This means that the lifts added by the spectral network
all go from g to g2, so the image of 8, via SN : TPAT(S) — My (TPA7+ (X)) is
upper triangular. Then ¥ (8,) € P7(M2(A)), the monodromy of B, is also upper
triangular. The line &,, C L, is preserved by the peripheral monodromy which means
that the parallel transport of &, along B, defines a framing L, C Lg, around p.
This framing is 7 -transverse because for every edge y of 7 from p to ¢, p,q € P,
the map L, — L,/L, is the holonomy of £ along one of the lifts of 7, so it is an
isomorphism. O

The twisted GL,(A)-local system £ on S obtained from a twisted A*-local system

£ on X via this construction is called the non-abelianization of £. In the next part, we
introduce an inverse construction.

3.4 Partial abelianization of transverse framed local systems

Let (£, (Lp)pep) be a T-transverse framed twisted GL>(A)-local system on S. Our
goal is to construct a twisted A*-local system & — T'%
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that provides under the non-abelianization procedure the initial local system L.

Let 7/: X’ — § be the covering as in Sect.2.3. A transverse framed twisted
GLy(A)-local system £ over S gives rise to a transverse framed twisted 7y (S)-
equivariant GL,(A)-local system L' over S’. We obtain a parallel A-subbundle L,
over the preimage 7'U, under T'S’ — §’ of every standard neighborhood U, of
every puncture p of §’. And similarly to the discussion above, on the quotient A-
bundle £),/L’, over T'U, the flat connection is well-defined.

The spectral network W on X (resp. YW on X’) divides the set of punctures of
> (resp. ¥') in two classes: sinks of W (resp. W) and sources of W (resp. W).
For every sink p of ¥’ we define a flat A-bundle over 7'U, as the pull-back of the
A-subbundle L, T'U,)" For every source p of ¥’ we define a flat A-bundle over 7'U ),

as the pull-back of the A-bundle L'/L’, ;. U,

To construct a twisted flat A-bundle over ¥’ we need to “glue” the standard neigh-
borhoods along cells of the (lifted) spectral network. For this, we notice that two
standard neighborhoods that share a cell always correspond to punctures of differ-
ent classes. Along the interior of such a cell ¢ two A-bundles are defined: L, (T'U,)

! corresponding to a source g of ¥’.

7(T'U,)

By transversality, for every point z € T'c C T’'Y’ the A-submodules

L;T,(T,U )(n’(z)) and L;T,(T,U )(rr’(z)) of L are transverse. That means that for all
P q

corresponding to a sink p of X" and £'/L

z € T’c the natural projection map
aqp(n/(z)); L;r’(T’Up)(”/(Z)) — E//L;T’(T’Uq)(ﬂ/(z))

is an isomorphism. So we can identify v € Ln/(T/Up)(n’(z)) with agp, (7' (2))(v) €
L/Ly v, (m'(z)) forall z € T'c. Since ay), (' (2)) is constant in any parallel frames
of L;z’(T’U,,) and E//L;T,(T,Uq) along T'c, this provides a constant change of local
trivialization over T’c. In other words, we obtain a flat A-bundle over X"\ B’ that we
denote by & — X/\B’. The construction of £ is obviously 7 (S) equivariant and,
therefore, defines a flat A-bundle £ — T'(X\B).

Lemma 4.1 below provides that the holonomies around branch points are trivial.
This implies that the bundle £ can be extended also over B, i.e. we obtain a bundle
& — T’'X. The twisted A*-local system obtained on X is called the abelianization
of L.

Those processes are inverse to each other by construction.

We have thus shown:

Theorem 3.1 The abelianization and non-abelianization processes define a bijection
between the set of twisted A*-local systems on % up to isomorphism and the set of
framed T -transverse twisted local systems on S up to isomorphism.

Remark 3.10 The construction of ¥ depends on 7, which is implicit in the theorem.

Remark 3.11 The abelianized local system constructed on X is identical to the one
constructed in [6]. In [20], the first author describe the partial abelianization and non-
abelianization processes for n-fold ramified coverings, using spectral networks.
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4 Partial abelianization of decorated twisted local systems

In this section, we apply the above construction to decorated twisted GL;(A)-local
systems. This construction gives a geometrical representation of the non-commutative
algebra introduced in [7], as well as geometrical proof of the non-commutative Laurent
phenomenon. We also use this construction to describe the topology of the space of
framed or decorated twisted GL;(A)-local systems.

4.1 Kashiwara-Maslov map

Let ¢y, £2, €3 be pairwise transverse A-lines in A%, We denote aji: by — Az/ﬁj the
projection maps for all i, j € {1,2,3},7 # j. By transversality, a;; are A-linear
isomorphisms.

The following lemma is immediate:

—1 —1 -1 . . . .
Lemma 4.1 The map —ay, axna;, ai3a,; a1 : €1 — £y is the identity map.

The map /1,%3 = a13a2_31a21 1l — A2/£1 is called the Kashiwara-Maslov map of
the triple of A-lines (¢1, £», £3). Notice that u? = —u%z.

Let 7: ¥ — S be a ramified covering associated to an ideal triangulation 7°
as before. Let £ — T'S be a framed 7 -transverse twisted local system over S and
& — T'X bethe twisted A*-local system obtained from £ by the partial abelianization
described in Sect.3.4. Let T C S be a triangle of 7 that is incident to punctures
P1, P2, P3, and the orientation of the triangle agrees with the cyclic order of the triple
(p1, p2, p3). Let H = w~1(7) be the hexagon of ¥ that covers 7. The hexagon H
is divided in six (open) triangles by lines of the spectral network, as on Fig.3. As
before, let L; be a parallel A-subbundle of £ — T’z corresponding to the puncture
pi,i € {1,2,3}. By construction of the local system on X, over every triangle of H
two A-bundles L; and £L/L, i, j € {1, 2, 3} are defined. These two bundles are glued
along this triangle by the projection map aj;: L; — A?) L ;. We denote this triangle
by zj;. Letnow p € T'121,then 0(p) € T't1, where §: T'E — T'X is the involution
associated with the covering 7: ¥ — .

We take a path y : [0, 1] — T’H such that y(0) = p, y(1) = 6(p) and such that
(# oy).y isaloop in T’ H homotopic to the loop going once in the positive direction
around the fiber of 7'S — X.

The following proposition follows directly from the construction of the A*-local
system over T'X:

Proposition 4.2 The parallel transport along the path y agrees with the Kashiwara-
Maslov map /L?Z Li(z(p)) = L/Li(x(p)).

4.2 Partial abelianization of transverse decorated local systems

Applying the construction of Sect. 3.4 to a peripherally unipotent local system, we get
an A*-local system & — T'X. Moreover, the existence of sections v, and w, over
T'B, for all p € P induces that the holonomies of £ around punctures of X are all
equal to —1.
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A decoration of £ provides additionally a parallel section of £, — T'%,. We call
the set of all those parallel sections a decoration of the twisted A*-local system &£.

Theorem 4.1 The abelianization and non-abelianization processes define a bijection
between the set of decorated twisted A* -local systems on X with trivial monodromy
around punctures up to isomorphism and the set of decorated T -transverse twisted
GLy(A)-local systems on S up to isomorphism.

4.3 Non-commutative .A-coordinates and partial abelianization

Let D be adecoration of S and let 7 be a triangulation of S. Let (£, (vp) pep, (Wp) pep)
be a decorated twisted GLj(A)-local system on the surface S, and assume L is 7 -
transverse. Then for every arc y of 7 from p € P to ¢ € P, we can trivialize the
GL;(A)-local system £ over T’y and the A-subbundles spanned by the flat sections
vp and v, are transverse. The natural projection

ay : L, = Span(v,) — L/L, = Span(wy)

is an isomorphism, and we can identify it with its (1 by 1) matrix in the bases v,
and w,. We thus obtain a family (a,),c7 of elements of A* which we call non-
commutative A-coordinates of L. The name “coordinates” is a slight abuse, since
they are not independent.

Proposition 4.3 For every oriented triangle (y1, v2, y3) of T, we have
—1 -1
Ay dy;, Ay, = Ay, 4y, Ay, 4.1

The coordinates of a decorated twisted GL;(A)-local system are the holonomies
of its abelianized system £ along the lifts of the arcs 7,,, ¥ € 7 for each puncture
p € P, the two lifts of p to X are a sink p; and a source p;. In the neighborhood of
p1, the bundle £ is the pullback of L, and in the neighborhood of p; the bundle is the
pullback of L/L,. Now foranarc y € 7 from p € Ptog € P, theliftsof 7, to
join a sink and a source. Denote y; the lift from p; to g; and y» the lift from p; to g;.
Then a,, is the holonomy of £ along 7’1, and ay is the holonomy of £ along 7"y

Let I be the graph embedded in T'X with vertices the lifts of peripheral curves and
edges the arcs 7,,, y € 7* oriented from sink to source. To each oriented edge of this
graph a coordinate is associated, and we assign to the edges with reversed orientation
the inverse of this coordinate. The vertices of this graph are curves around which the
monodromy of £ is trivial because L is decorated, so given a path on I', its holonomy
in £ is well-defined. Then the triangle relation (4.1) imply that the monodromy of the
abelianized system & restricted to the graph I is trivial around every hexagonal tile.

Let 77 and 73 be two triangulations differing only by one flip. Let p1, p2, p3, pa
be the four (not necessarily distinct) punctures at the vertices of the quadrilateral
supporting the flip, in the cyclic order such that 71\7; = {y1,3, y3,1} and H\7| =
{y2,4, y4,2} where y; ; is the arc of the quadrilateral going from p; to p;. Using the
path-lifting map, we can compute the relations between the A-coordinates associated
to 77 and the A-coordinates associated to 75.

@ Springer



822 C. Kineider, E. Rogozinnikov

Fig. 11 The path § on S with p1
triangulation 77 on the left and
with triangulation 77 on the s
right
D2 D4

b3

Proposition 4.4 Let L a decorated twisted Glo(A)-local system that is both 7T-
transverse and Tp-transverse. Then its A-coordinates with respect to T) and T, satisfy
the following exchange relations:

_ —1 —1
Ayyy = Ay Ay Ays g T+ Ay 3Ay, Ay y

_ —1 —1
Ayyr = Ay Ay Gy + Ayy 34y, 34y1

Proof Fori € {1,2,3,4}, let p;, p/ be the two lifts of p; to X where p; is the sink
and p! is the source. Let s € I7;(S) N I7;(S) be the intersection of T'f,, and y»
and let ¢ € I7;(S) N I7;(S) be the intersection of T’,Bp4 and y34. Let § be a path in
T’S from s to 7 as in Fig. 11.

The holonomy of £ along § does not depend on the triangulation.

Let X1 and W), be the ramified covering and the spectral network associated to the
triangulation 71 and X, W the ones associated to 7. The corresponding path-lifting
maps will be denoted SNy and SN,, and the corresponding abelianizations of S will
be denoted £ and &,.

First, let’s lift § to X, using SN;. Let 51, s> the lifts of s to ¥, 51 being the sink
and s, the source. Similarly, let 71, 7, the lifts of #, #; being the sink and 7, the source.
We get

SN2(8) =81+ 82+ 8] + 85 + 8

where §; is a standard lift from s; to t, 8, is a standard lift from s; to 71, 8’1 is a spectral
lift from s> to 1o, 8/2 is a spectral lift from s> to #; and 8§ is a spectral lift from s; to #;
(see Fig. 12). The path §; is the only lift going from s7 to #2, and its holonomy in &; in
the corresponding bases is a,,, , since it is homotopic to 7,, , precomposed with a piece
of B, and postcomposed with a piece of ,,, both of which have trivial holonomies.
Since L is the non-abelianization of &, this means that the map L,, — L,,/L,,
obtained by trivializing £ along § is exactly ay, ,.

Now we will lift § to X1 using SNj. We will keep the same notations as in the
previous paragraph. We get

SNi(8) =81+ 8+ 8] + 8+ 8
where 8, is a standard lift from sy to #p, 8, is a standard lift from s to 1, 5/1 is a spectral
lift from s; to #1, (Sé is a spectral lift from s; to #, and 83 is a spectral lift from s, to

1> (see Fig. 13). The paths going from s to t, are §; and 83, and their holonomies in
&1 in the corresponding bases are respectively 613,4’351]71}361],]'2 and ay, | a;&ll @y, - These
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Fig. 12 All the lifts of § to %o

using SN
/!
Py
/
2
S1
Fig. 13 All the lifts of § to X D g, Pyt
using SNy

are obtained by retracting the paths on the graph I', as the oriented edges of I" have
holonomies given by the .A-coordinates. Since L is also the non-abelianization of &,
this means that the map L,, — L, /L, obtained by trivializing £ along § must be
equal to the holonomy of §; + 85, which give the formula:

_ —1 —1
Ayyp = Ay Gy Qys o T Ay, 5ay, 40y,

The formula for a,, , is obtained similarly. a

Remark 4.5 The non-commutative A-coordinates constructed here are identical to the
one constructed in [6] in the case of a two-fold ramified covering. In [20], the first
author describe non-commutative A-coordinates for GL, (A)-local systems, n > 2,
using the abelianization procedure. The coordinates constructed there only coincide
with the coordinates of [6] when n = 2.

This gives a geometric realization of the non-commutative algebra Ag introduced in
[7]. Using the same type of arguments as above, we can give a topological/geometrical
proof of the Laurent phenomenon for the cluster algebra of a polygon:

Theorem 4.2 Let n > 3 and let Sy, the closed disk with n punctures on the boundary.
Leti, j € {1,...,n},i # j. Then forevery triangulation T of S,, and every decorated
twisted GLy(A)-local system L that is both T -transverse and (i, j)-transverse, the
A-coordinate ay, ; is a non-commutative Laurent polynomial in the A-coordinates
(ay)yeT associated to the triangulation T .
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Fig. 14 The path § in the j—1

triangulation Zq. Only the
quadrilateral i — 1,4, j — 1, j) s

is drawn j ,§m ;

Proof All the edges of the form y; ; 41, withi € P ordered cyclically, belong to every
triangulation of S, so the result is immediate. Now let i, j € {1,...,n},i # j £ 1.
Let 7y be a triangulation of S, containing the edges y; j» Vi,j—1 and y;—1 ;. Such
a triangulation always exists when i # j £ 1. Let s € I7,(S,) N I7(S,) be the
intersection of B; and y;_1 ; and let t € I7,(S,) N I7(S,) be the intersection of B;
and y;_1 ;. Let § be the path from s to # drawn in Fig. 14.

As we have seen in the proof of the flip relation (and keeping the same notations), in
the spectral network lift of § with respect to the triangulation 7 the only term from s;
to 1, has the holonomy a,, ; in the abelianization of £ with respect to 7. This means
that the map L; — £;/L; obtained by trivializing £ on § is ay, ;.

Let £ be the abelianization of £ with respect to 7. In spectral network lift of § with
respect to the triangulation 7', let 8’ = 8] 4 - - - + &/ be the sum of all paths from s; to
t2. Each (S,/c has a holonomy in £ that is a monomial in the coordinates (a)fl)yeq— as it
retracts on the graph I'. Since £ is the non-abelianization of £, the map L; — L;/L;
obtained by trivializing £ on § is equal to the sum of the holonomies of the §; in &,
so it is a Laurent polynomial in the .A-coordinates (ay ), 7 O

Remark 4.6 The above proposition implies a similar statement about .A-coordinates
on a surface, as shown in [7]. The proof given above however relies on the fact the
external edges of a polygon belongs to every triangulation, thus can not be extended
to surfaces directly.

Using these .A-coordinates, we can describe precisely the changes of the A -local
system on X induced by a flip in the triangulation. We use the same notations as in
Proposition 4.4. Let £ be a framed twisted GL,(A)-local system on S that is transverse
with respect to both 77 and 75. Let & (resp. &) be the A*-local system on X obtained
by abelianizing £ with respect to 77 (resp. 72). These changes on the abelianized local
system are supported in the lift C ¢ of the quadrilateral Q surrounding the flip, which
is homeomorphic to a cylinder with four punctures on each boundary component in
. Let y be aloop on T'X. If y only crosses one of the two boundary components
of EQ, then the monodromies of y in £ and &, are equal. Suppose y crosses exactly
once each of the two boundary components of EQ. Let y¢ be the loop going around
C with the same orientation as the boundary of Cp containing the sinks lifts of p>
and p4 (we refer to this boundary as the positive one, and the other one as negative).

Remark 4.7 We think of the holonomy of yp in £ as a generalization in the non-
commutative setting of Fock-Goncharov’s X'-coordinate of the quadrilateral Q. If
A = R, the holonomy of yg is the cross-ratio of the four lines in R? given by the
framing of L.
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Up to homotopy, we can assume y is going through atleast one pointxo € I7+(X)N
I7(X) on one of the eight external edges of the hexagon tiling of Q. We also choose
a representative of Yo based at xo. Let b be a basis of the fiber of £; over xg. Since
Xo is not in the interior of the cylinder supporting the flip in X, the fibers of £; and &
over xg are the same. The holonomy X of y is the same in &1 andin &. Let Y1 € A
(resp. Y2) be the holonomy of y in & (resp. &).

Proposition 4.8 If the part of y inside Co goes from the positive boundary to the
negative boundary, then
Yo =Y,(1+ X).

If the part of y inside C g goes from the negative boundary to the positive boundary,
then
Yo=Y 1+ X H!

Remark 4.9 The element 1 + X~ € A is invertible because of the transversality of £
with respect to 75.

4.4 Topology of the moduli space of framed twisted local systems

Inthis section, we describe the topology of the moduli space of framed twisted GL2 (A)-
local systems on S that are transverse to a fixed triangulation 7.

As we have seen, framed twisted GL;(A)-local systems on S that are transverse
with respect to a fixed triangulation 7 are in 1:1-correspondence with twisted A*-local
systems on X. Since X has punctures, the space of twisted and non-twisted A*-local
systems are homeomorphic (see Remark 3.6). So we obtain the following theorem,
using the same notations as in Proposition 2.5:

Theorem 4.3 The moduli space of framed (twisted) GLy(A)-local systems on S
that are transverse with respect to a fixed triangulation T is homeomorphic
to the moduli space of (twisted) A*-local systems on X which is homeomor-
phic to (AX)! =4O+ y A% \where A* acts diagonally by conjugation on
(AX)1—4X(S)+2P+Z’11'.

Remark 4.10 In [18] the authors prove the same result using different techniques. They
define local systems on some appropriate graphs over S and parametrize them using
coordinates that are similar to Fock-Goncharov’s GL,,-cluster X' -coordinates [17].

Since any twisted peripherally unipotent GL;(A)-local system on S has exactly
one framing, we obtain:

Corollary 4.11 The moduli space of twisted peripherally unipotent GL, (A)-local sys-
tems on S whose unique framing is transverse with respect to a fixed triangulation T
is homeomorphic to the moduli space of twisted A*-local systems on X.

Corollary 4.12 The moduli space of decorated twisted peripherally unipotent GL, (A)-
local systems on S that are transverse with respect to a fixed triangulation T is

homeomorphic to the product of the moduli space of twisted A*-local systems on %
and (A%)?P.
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5 Symplectic groups over involutive algebras and symplectic local
systems

Involutive algebras are an important class of non-commutative algebras. Over invo-
Iutive algebras, generalizations of many classical groups can be constructed (e.g.
orthogonal groups, symplectic groups). In this chapter, we define algebras with anti-
involutions and symplectic groups over such algebras that were introduced and studied
in [8]. Further, we introduce framed twisted symplectic local system and characterize
them in terms of partial abelianization introduced before.

5.1 Involutive algebras

Let A be a unital associative, possibly non-commutative R-algebra.

Definition 5.1 An anti-involution on A is a R-linear map o : A — A such that

e o(ab) = o(b)o(a);
e o2 =1d.

An involutive R-algebra is a pair (A, o), where A is a R-algebra and o is an anti-
involution on A.

Definition 5.2 Two elements a, a’ € A are called congruent, if there exists b € A*
such that a’ = o (b)ab.

Definition 5.3 An element a € A is called o-symmetric if 0(a) = a. An element
a € Ais called o-anti-symmetric if o (a) = —a. We denote

A% :=Fixs(oc) ={a € A | o(a) = a},
A7 :==Fixg(—o)={a € A | o(a) = —a}.
Definition 5.4 The closed subgroup
Uisoy=1{a e A" |o(a)a =1}

of A% is called the unitary group of A. The Lie algebra of U4 ) agrees with A=

Definition 5.5 Let (A, o) be an R-algebra with an anti-involution. We define two set
of squares:

AT = {a2|ae(A0)X}, %= {a2|aeA"}.

Remark 5.6 Since the algebra A is unital, we always have the canonical copy of R
in A, namely R - 1 where 1 is the unit of A. We will always identify R - 1 with R.
Moreover, since o is linear, forallk e R,o(k-1) =ko(1) =k -1,ie. R-1 C A°
andR.p -1 C AT.
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Definition 5.7 A unital associative finite dimensional R-algebra with an anti-
involution (A, o) is called Hermitian if for all x,y € A%, x> + y?> = 0 implies
x=y=0.

Remark 5.8 In [8], the property to be Hermitian is defined in the same way for algebras
with an anti-involution over any real closed field. In this paper, we are discussing only
Hermitian algebras over R.

Remark 5.9 In [8] is shown that (A, o) is a Hermitian algebra if and only if A9 is
an open proper convex cone in A%, where proper means that the set does not contain
(affine) lines.

If (A, o) is Hermitian, for an element a € A° the signature can be defined, which
is a bounded function sgn: A° — Z that is invariant under congruence by elements
of A*. The elements of maximal signature are precisely the elements of AJ . For more
details about the signature see [8].

5.2 Symplectic groups over non-commutative algebras

Let A be a unital associative finite dimensional R-algebra with an anti-involution o.
We consider AZ as a right A-module over A.

- i p . 01
Definition 5.10 Let w(x, y) := o (x)'Qy with Q = _10) The group

Spy(A, 0) 1= Aut(w) = {g € M2(A) | 0(8)'wg = w}

is the symplectic group Sp, over (A, o). The form w is called the standard symplectic
form on AZ.

We have
Spy(A,0) = {(j 2) | o(a)c, o(b)d € A®, o(a)d — o (c)b = 1} C GL»2(A)

We can also determine the Lie algebra sp, (A, o) of Spy(A, 0):

spy(A,0) = {(j; —az(x)> |x €A, y,z¢€ A”} C M (A).

Remark 5.11 In [8] is shown that, if A is a Hermitian algebra, then Sp,(A, o) is a
Hermitian Lie group of tube type.

Let (x, y) be abasis of A% We say that this basis is isotropicif w (x, x) = w(y, y) =
0. We say that this basis is symplectic if furthermore w(x, y) = 1.

Let x € A2 be a regular isotropic element, i.e. w(x,x) = 0. We call the set
xA = {xa | a € A} an isotropic A-line. The space of all isotropic A-lines is denoted
by Is(w).
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5.3 Symplectic local systems

We consider a twisted GLy(A)-local system £ — T'S over S. We say that £ is a
twisted Sp, (A, o )-local system (or just twisted symplectic local system) if there exists
a parallel field of the standard symplectic 2-form w: £ x £ — A on T’'S. We say
that L is peripherally parabolic (or unipotent) if it is parabolic (resp. unipotent) as a
twisted GL;(A)-local system.

A framing of a parabolic twisted symplectic local system is called isotropic if
the parallel subbundle defining the framing in a neighborhood of every puncture is
isotropic with respect to the field of the form w. A decoration ((vp)pep, (Wp)pep) Of
a unipotent twisted symplectic local system is called symplectic if w(vp, vp) = 0 and
wp, wp) = 1.

Remark 5.12 Notice, that if w(v,, v,) = 0, then the expression w(v,, w,) is well-
defined. Indeed, let w, and ﬁ); be two lifts of w), to AZ. Then LTJ;, = W, + vpa for
some a € A. Further,

(v, 111;)) =0y, Wy + Vpa) = 0V, Wp) =: @(vp, Wp).

Itis always enough to choose v, forevery p € P. Then w, becomes uniquely defined.

A framed twisted symplectic local system is a peripherally parabolic twisted sym-
plectic local system with an isotropic framing. A decorated twisted symplectic local
system is a peripherally unipotent twisted symplectic local system with a symplectic
decoration.

Remark 5.13 Notice, that since w is a parallel form of even degree, the parallel trans-
port of @ around the fiber of 7' is trivial.

Let 7: ¥ — S be the ramified two-fold covering as before. Let £ — T'% be
an A*-local system over the spectral covering X of S that is obtained by the partial
abelianization procedure.

Let 6: ¥ — X be the covering involution. Slightly abusing the notation, we also
denote  =0,.: T'Y — T'X.

Remark 5.14 Notice that  does not have fixed points in 7'X.

We consider the pull-back of £ with respect to 6 and denote it by & := 6*&. To
simplify the notation, we will identify £ [/, and &y(p) forall p € .

We denote by Py: gy(O) — 5y(1), P); = Pgoy: g@(y(O)) — 59()/(1)) the parallel
transport along y : [0, 1] — X in £ and £’. We denote by Py : Vy) — Va1 the
parallel transport along «: [0, 1] — Sin L.

Definition 5.15 Let V and V' be two right A-modules. A map b: V x V' — A is
called an A-sesquilinear pairing between V and V' if it is additive in every argument
and if forallv € V, v € V', and for all a,a’ € A, b(va,v'a’) = o(a)b(v, v)a.
An A-sesquilinear paring b is non-degenerate if for every regular v € V there exists
v’ € V' such that b(v, v') € A* and for every regular v’ € V' there exists v € V such
that b(v, v') € A*.
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We denote by B(E,E") — T’'X the vector bundle of all A-sesquilinear parings
between £ and £’. A section 8 € T'(T'XZ, B(E, £)) is called parallel if

By (x, ¥) = By1)(Py (x), P,(y)) = By1)(Py (x), Pooy (¥))
forevery y: [0, 1] — T'X and for every x € &, (0), y € 5;(0) = Eo(y(0))-

Remark 5.16 Noticethatif 8 € I'(T'X, B(E, £')) is parallel and 8, is non-degenerate
forone p € T'%, then B, is non-degenerate for all p € T'X.

Theorem 5.1 The framed local system L is an Sp,(A, o)-local system if and only
if there exists a non-degenerate parallel section 8 € T(T'Z, B(E,E")) such that
Bp(x,y) = —o(Boap)(y, x)) for every p € T'%, for every x € &, and for every
y € Ep)-

Proof (=) Assume, L is an Sp, (A, o)-local system. That means, there exists a field
of standard symplectic forms w on £ — T’S§ such that forevery «: [0, 1] — T’S and
for every v, w € Vy(0),

W (0)(V, W) = W1y (P (V), PS(w)).

Lety: [0, 1] — T’ be a smooth path such that y (0), v (1) do not project to points
on lines of the spectral network on X, and let x € &, () and y € &(y(0)) be regular
elements. We consider ' = oy anda = w oy = 7 o y’. Moreover, (4 (x), w4 (y))
is an isotropic basis of L4 (0). We can define

By0) (X, y) 1= 0 (0) (T4 (x), T (¥)).

Since w is non-degenerate and skew-Hermitian, 8 is non-degenerate and sesquilinear
pairing. Moreover, B, ) (x, ¥) = —0 (B 0)) (¥, X)) because wy o) (774 (x), 74 (y)) =
0 (@a(0) (T (1), 7 (X))

If y does not intersect lines of the spectral network, then 8 along y is parallel
because in this case PaS =P, @ Psoy

If y is a small segment intersecting a line of spectral network, then

Wa(1) (PS (.(x)), PS(04(3))) = @a(1) (T (Py (X)) + T(Pj (X)), T (Pooy (1))

where y is a lift of o going along a line of spectral network from y (0) to 6(y (1)). But
elements P; (x), Pooy (¥) € Eo(y (1)), therefore, w (774 (P5 (x)), w4 (Pyoy (¥))) = 0. So

By ) (X, ¥) = @ (0) (774 (X), T4(y))
= wo(1) (P (1(x)), PJ (:(1)))
= Wa(1) (T(Py (X)), T (Pooy (1))
= Bu)(Py (x), Pyoy (),

i.e. B is parallel and extends also along lines of the spectral network on X.
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Finally, let p € T'Y. Let x € &, and y € &, regular elements. Then
(74 (x), w4 (y)) is an isotropic basis of Ly (p), i.e. B(x, y) = 0 (m+(x), m(y)) € A™.
So the pairing B is non-degenerate.

(«<) Assume, there exists a non-degenerate parallel sesquilinear pairing . Let
p € T'Z that does not project to a point on a line of the spectral network on X. We
define for every x € £,y € & (p):

Or(p) (T4 (X), T4 (¥)) 1= Bp(x, ¥).

If x, y are regular, (. (x), 7. (y)) is a basis of Vy(,). Further, @ extends by sesquilin-
earity on Vy(p) if we assume

W (p) (T (%), T (X)) = W (p) (T (¥), T (Y)) = 0

forall x, x" e Ep and y, vy e & (py- Since B is non-degenerate, w is non-degenerate
as well.
Since ﬁp(x, )’) = _a(ﬂe(p)(yv x))’ we get

W (p) (T (¥), (X)) = Bo(p) (¥, X) = =0 (Bp(x, ¥)) = =0 (0 (p) (74 (x), Tx(¥))).

Further, w is parallel. Indeed, leta : [0, 1] — TS be a path such that the projections
of «(0) and «(1) to S are not on the lines of the spectral network. Let x, y € Ly0)-
Let oy, ap := 6 oy are two standard lifts of o to 7'X. Then x = 7, (x1) + 74 (x2) and
y = s (y1) + 7 (y2) where x1, y1 € &y, 0y and x2, y2 € Eq, (o). If the projection of «
to X does not intersect the spectral network, then the projection 7Y — T'S and the
parallel transport along « and o1, @y commute. So w is parallel because S is parallel.

Assume now that the projection of « intersects the spectral network once. We denote
by a3 the additional lift of o along the spectral network. Without loss of generality,
assume «3(0) = «1(0) and a3(1) = ap(1). Notice that the path 6 o (x3.o1).003.%1 is
homotopic to the fiber of 7'% — X. Therefore, Pyog, a3 = — Pooas.a, - Therefore,

W (1) (PS (%), PE (1) = w(1)(Pg (), Py (1))

= Wa (1) (Pg ((x1)) + Py (T (x2)). Py (12 (y1)) + P (m4(32)))

= @ (1) (T (Pop (x1) + Poy (x1) + Poy (x2)),
T (Pay (V1) + Pas (1) + Pay (32)))

= 0y (1) (T (Pay (X1), T (Paz (1) + Pay (32))))
+ @ (1) (T (Poz (x1) + Poy (x2)), 5 (Poyy (1))

= By (1) (Poy (x1)s Paz (1) + Pory (2)) + By (1) (Pars (x1)
+ Poy (x2), Poy (1))

= Bay (1) (Poy (X1)5 Paz (V1)) + Bary (1) (P (X1)5 Py (02))
+ Bay (1) (P (¥1), Pay (¥1)) + Bay (1) (Pary (x2), Py (V1))

= Boy (1) (Por; (1) Pay (2)) + Bas (1) (Pay (X2), Poy (¥1))
+ Bay (0)X15 Poos).a; V1) + Pomy).az (V1))

= Bo; (1) (Pa; (1), Pay (92)) + Bay (1) (Pay (¥2), Py (¥1))
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+ Bay 0) X15 Poows.ar 1) + Pooay.as (V1))
= Bay (1) (Pay (X1)5 Pay (¥2)) + By (1) (Pary (X2) Py (¥1))
= Bay0)(X15 ¥2) + Bay (0) (X2, ¥1)
= w(x(O)(L »).

So w is parallel and extends also along lines of the spectral network on S.
Finally, let p € X and x € &), y € &p(p) such that B,(x,y) = 1, then
w (i (x), me(y)) = 1. So w is a field of standard symplectic forms. O

5.4 Topology of the moduli space of framed twisted symplectic local systems

We keep the same notations as in Proposition 2.5. Our goal in this section is to prove
the following theorem:

Theorem 5.2 The moduli space of framed (twisted) Sp, (A, o )-local systems on S that
are transverse with respect to a fixed triangulation T is homeomorphic to:

(((AG)X)—ZX(§)+2P—1+ZH,‘ X (AX)I—X(E)-FP) /A><

where the group A acts componentwisely by conjugation on (AX)I_X(EH'” and by
congruence on ((A%)*)~2x()+2p=1+3 ni,

Proof We use the 1:1-correspondence between framed twisted Sp, (A, o)-local sys-
tems on S that are transverse to a fixed triangulation 7 and twisted A*-local systems
on X equipped with a non-degenerate parallel pairing 8 as in Theorem 5.1.

Let b € T'S be such that it projects to a ramification point b € . Let
a1, ...,05: [0, 1] — S are free generators of the fundamental group 71 (S, 7 (b)).
Let y;!, y? are closed lifts of o; to 7% such that 6 o y! = y? and ;! is based at b.

Notice, that then yl.2 is based at 9(5).

Let sg be as before the path from bto 0(b) going along the fiber at b in the positive
direction and se_(];) = g the path from 6(b) to b going along the fiber at b in the
negative direction. If the context is clear, we just write s or s~ to simplify the notation.

Let x € &;. Then on one hand: B;(x, Pg+(x)) = —a(ﬁg(g)(Per(x), x)). On the
other hand, since B is parallel:

ﬂ};(x’ Pyt (x)) = ﬂg(};)(Ps‘*'(x)’ P+ (Py+ (x)))
= ,39(5)(PS+(X), —X)
= —,39(1;)(P3+(x),x).

So we obtain:
By (x. Py () = =By (Pys (1), x) = =0 (By s, (Py (x), 1)) =t g € A
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Let now y be a loop based at b and

ap = B (x, Py+ (x)) = B;(Py (x), Pgoy Py+ (x)).

For every x € &, P,(x) = xa, where a), € A Let Pyoy Ps+(x) = Ps+(x)a;, for
a;, € A*. Then
ay = o (ay)B;(x, Py (0)d), = o (ay)aodl).

—1 —1
a;, = a, o(ay ag.

Let y and s~.(0 o ¥).sT are different generators of 7 (T'X, I;) (this corresponds
to curves yl.l and yiz of Lemma 2.8 case (1) lifted to 7'X). In particular, they are not
homotopic. Then a,, and ay determine uniquely a;.

Lety: [0,1] = TS andfoy: [0, 1] — T'Z betwoliftsto T’X of a segmentin S
connecting 7w (b) and 7 (') where b’ is another ramiﬁcation point onX.Leth = y(0)

and b = y(1). In this case, &5 = § = 9(b) O7). s y and s~ .(0 o E).sJr are

homotopic in 7’X. Therefore, as = a, la(ag)ao, i.e. apaz € A°. Moreover, an easy
calculation shows that apag = B, (v, Pi+y) where y = Py (x).
b/

So the symplectic local system provides us with elements a¢; € A™ corresponding
to P 1,a0 € A% and apaz € A° for every £ as in (2) of Lemma 2.8 (lifted to 7'X).
These elements are well-defined up to a common conjugation of all a¢; and common
congruence of all ap and apag by an element of A*.

Conversely, if elements a;, ag, ag as above are given, then a twisted A*-local
systems on X equipped with a non-degenerate parallel pairing 8 can be reconstructed
uniquely. Equivalent local system correspond to a common conjugation of all a; and
common congruence of all ag and agag by an element of A*. O

5.5 Symplectic local system over Hermitian algebras

Let A be a Hermitian algebra. Let £1, £, £3 be pairwise transverse isotropic A-lines.
The Kashiwara-Maslov index of the triple (£1, £, £3) is the signature of the element
w(x, /L%3 (x)) € (A?)* for a regular x € ¢; where u? is the Kashiwara-Maslov
map defined in Sect.4.1. In fact, this signature does not depend on x € £, and it is
invariant under cyclic permutations of the triple (¢1, €2, £3) and it changes the sign by
transposition of the elements of the triple.

Lett C S be atriangle of the triangulation 7 that is incident to punctures p1, p2, p3
and the orientation of the triangle agrees with the orientation of the triple (p1, p2, p3).
As in Sect.4.1, let L; be a parallel isotropic A-subbundle of £ — T’t corresponding
to the puncture p;,i € {1,2,3}. Let H = 771 (t) C T be the hexagon that covers t.
Let b be the ramification point in H, let bbealiftof bin T'H and let sT be a path in
T'H going from b to 6(b) along the fiber in the positive direction.

The following proposition is immediate:

Proposition 5.17 Let z € T't. The Kashiwara-Maslov index of (L1(z), L2(z), L3(z))
agrees with the signature of the element Bj(x, Py+(x)) € A° for a regular x € ;.
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Theorem 5.3 If A is Hermitian, then the moduli space of framed (twisted) maximal
Sp, (A, o)-local systems on S is homeomorphic to:

where A* acts componentwisely by conjugation on (AX)_ZX(EH'zl’_H'Z " and by
congruence on (Ai)_ZX(S)""’.

Proof Following the notation of the proof of Theorem 5.2, notice that the signature
of ap € A? agrees with the Kashiwara-Maslov index of the oriented triangle where
the ramification point 77 (b) € S lies, and the signature of agag;, € A agrees with
the Kashiwara-Maslov index of the oriented triangle where the ramification point
7w (b') € §lies. A twisted symplectic local system is maximal if and only if Kashiwara-
Maslov indices of all oriented triangles are maximal. So we obtain the statement of
the theorem. O

Remark 5.18 The results of this and previous sections agree with the results from [18]
obtained using different techniques (see also Remark 4.10).

5.6 .A-coordinates for symplectic local systems

Since Sp,(A, o) is a subgroup of GLy(A), the A-coordinates defined in Sect.4.3, a
twisted symplectic local system have well-defined .4-coordinates, and because of the
additional structure of symplectic local systems, they satisfy additional relations. The
following proposition is immediate:

Proposition 5.19 Let L — S be a twisted decorated T -transverse symplectic local
system. Let y be an arc of the triangulation T from p € P to q € P. Then a,, =
w(Vg, Vp). In particular, ay = —o (ay).

Proof By definition of non-commutative .4-coordinates, v, € L, projects to wya, €
L/Lg,i.e. for somelift 0, € A2 of Wy, Vp = Wya, +vyr for some r € A. Therefore,
w vy, vp) = 0y, Wea, +vy1r) = (v, Wy)a, = a,. O

From Proposition 4.1 follows:

Corollary 5.20 Let (A, o) be an involutive algebra. A twisted decorated T -transverse
GL2(A)-local system L — S is symplectic if and only if ay = —o (ay) for all edges
y of the triangulation T .

For a twisted decorated T -transverse symplectic local system L — S and for each
oriented triangle T = (y1, y2, ¥3) of T, we have Br .= a),}a;zlayl € A°.

If (A, o) is Hermitian, the signature of Br agrees with the Kashiwara-Maslov index
of T.

The decorated local system is maximal if and only if By € A9 for all oriented
triangles T of T.
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Remark 5.21 A GL,(A)-equivalence class of twisted decorated 7 -transverse GLy (A)-
local system £ — § contains a representative which admits a reduction to Sp, (4, o)
if and only for each oriented triangle T := (y1, y2, y3) of 7, Br := ay3a;1ayl € A°.
However, this condition only guarantees that the framing of £ is isotropic but does
not guarantee the decoration is symplectic. To guarantee a symplectic decoration of
L, the stronger condition from Corollary 5.20 is necessary.

Remark 5.22 Since these additional relations on .A-coordinates involve the structure
of (A, 0), it is not possible to define a corresponding non-commutative algebra for
symplectic local systems as in [7] for GL,(A)-local systems.
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