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Abstract

The Gaudin model has been revisited many times, yet some important issues remained open so far. With
this paper we aim to properly address its certain aspects, while clarifying, or at least giving a solid ground
to some other. Our main contribution is establishing the relation between the off-shell Bethe vectors with
the solutions of the corresponding Knizhnik—Zamolodchikov equations for the non-periodic s£(2) Gaudin
model, as well as deriving the norm of the eigenvectors of the Gaudin Hamiltonians. Additionally, we
provide a closed form expression also for the scalar products of the off-shell Bethe vectors. Finally, we
provide explicit closed form of the off-shell Bethe vectors, together with a proof of implementation of the
algebraic Bethe ansatz in full generality.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Historically, Gaudin model was first proposed almost half a century ago [1-3], and has
promptly gained attention primarily due to its long-range interactions feature [4,5]. It was shortly
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generalized to different underlining simple Lie algebras, as well as to trigonometric and elliptic
types, cf. [6-9] and the references therein. The non-periodic boundary conditions were treated
somewhat later [10-17], while in [18,19] we have derived the generating function of the s¢(2)
Gaudin Hamiltonians with boundary terms and obtained the spectrum of the generating func-
tion with the corresponding Bethe equations. The very latest developments are taking the field in
various new directions, e.g. [20-23] which shows that the topic is still very attractive.

However, in spite of the substantial interest for the topic, certain issues have not yet been, to
our knowledge, fully addressed. First and foremost, we note that the relation of the Knizhnik—
Zamolodchikov (KZ) equations [24] with the Gaudin s£(2) model [25,26] with non-periodic
boundary was not yet established for arbitrary spins. Hikami comes close to this goal in his pa-
per [10], but does not tackle the issue in full generality — namely, he constrains his analysis to
a special case of equal spins at all nodes, moreover fixing these spins to the value % He also
does not provide the expression for the norms of the eigenvectors of the Gaudin Hamiltonians,
which can be obtained from the KZ approach. One of our goals here is to improve on both of
these points: we successfully establish the relation between solutions of the corresponding KZ
equations with the off-shell Bethe vectors in the case of arbitrary spins and derive the norm
formula.

Superior to the formula for norm of the on-shell Bethe vectors is a formula for scalar prod-
uct of arbitrary off-shell Bethe vectors. Following an approach laid in [27], we derive such an
expression pertinent to the non-periodic s£(2) case for arbitrary spins, in a closed form. The ex-
pression involves a sum of certain matrix determinants and its significance stems from the fact
that it represents the first step towards the correlation functions.

En route to our treatment of the KZ equations, we present a closed form expression for the off-
shell Bethe vectors and prove the implementation of the algebraic Bethe ansatz in full generality
(for arbitrary reflection matrices and to arbitrary number of excitations). Such a development
was a result of a suitable change of generalized Gaudin algebra basis (as compared to the one
used in [19]), combined with observation of certain algebraic relations that we came across. The
resulting simplifications have also facilitated calculations related to KZ equations.

The paper is structured as follows. In the next section, we introduce some standard notions
while nevertheless relying heavily on the notation and conclusions of our previous paper [19], to
which we direct the reader as a preliminary. The third section is devoted to the task of deriving
the general off-shell form of the Bethe vectors and to proving its validity. As a key step to this end
we, within the same section, first present a new basis of the generalized Gaudin algebra [28,29],
and point to its advantages. In the fourth section we finally turn to KZ equations, establishing
their relation to the previously derived Bethe vectors and obtaining the norm formula. In the
same section we also present the novel formula for the scalar product of off-shell Bethe vectors.
Finally, we summarize our results in the last section.

2. Preliminaries

The generating function of the s£(2) Gaudin Hamiltonians with boundary terms was derived
in [19]. Besides, the suitable Lax operator, accompanied by the corresponding linear bracket and
an appropriate non-unitary r-matrices, as well as the transfer matrix, were also obtained. In this
section we will briefly review only the most relevant of these results, while for the details of the
notations and derivation we refer to the [19].

We study the s£(2) Gaudin model with N sites, characterised by the local space V,, = C>»*1
and inhomogeneous parameter «,,, implying non-periodic boundary conditions. The relevant
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classical r-matrix was given e.g. in [6], r(X) = —%, where P is the permutation matrix in
C*®C%

In the case of periodic boundary conditions, this structure is essentially sufficient (after pro-
ceeding in the standard manner) to obtain the complete solution of the system [6], together with
the corresponding correlation functions [30]. However, the non-periodic case which is the sub-
ject of our present consideration is substantially more involved. In this case, of relevance is the
classical reflection equation [31-33]:

ri2(h — WK1 (M) Ka(n) + Ki(Mra1 (A + ) Ko () =
=K(rp+ w)Ki(A) + Ko (W) K1 (W) (A — ).

In [19] we have derived the general form of the K-matrix solution, and have shown that it can be,
without any loss of generality, brought into the upper triangular form:

_(&E—Av A
K(M—( 0 EH‘)), 2.2)

2.1

where neither of the parameters &, ¥, v depends on the spectral parameter A.

In the course of our analy51s in [19] we arrived to the generalized s¢(2) Gaudin algebra [28,
29] with generators e(1), h(A) and f (1). To facilitate later comparison with the new basis, we
give the three nontrivial relations:

2
(709, 20)) = 33~ @) 20, 23)
2yrv 9~ e~
(109, Fw) = 57— (F00 = ) = =g (w00 =270
2
- (kz_l/fiz)gz (Mz"e'(u) — /\ZF(A)) : (2.4)
2
200, Fon] = 3 vy o (12300 - 2270)
— ((é‘2 i L B Azuz)ﬁ(x)), 2.5)

as well as the form of generating function of the Gaudin Hamiltonians in [19]:

~ w2 e
() =222 <h2(k) n ﬁh(k) _ ; )>
(2.6)
= (f(k) P+ Y 0 - ﬂ) 20
£2 — 22?2 & 42 & '

In [19] we tried to implement the algebraic Bethe ansatz based on these generators. Although
the approached looked promising and resulted in the conjecture for the spectra of the generating
function 7 (%) and the corresponding Gaudin Hamiltonians, the expression for the Bethe vector
om (L1, L2, ..., Lp), for an arbitrary positive integer M, was missing. It turned out, as we show
in the following section, that the full implementation of the algebraic Bethe ansatz in this case
requires to define a new set of generators which will enable explicit expressions for the Bethe
vectors as well as the algebraic proof of the off shell action of the generating function (1) and
its spectrum.
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3. New generators and the eigenvectors

In the algebraic Bethe ansatz it is essential to find the commutation relations between the
generating function and a product of the creation operators in a closed form. To this end, with
the aim to simplify the relations (2.4) and (2.5) as well as the expression (2.6), we introduce new
generators e(A), h(X) and f(A) as the following linear combinations of the previous ones:

2

e =2, h()=h0)+ Z ), f=Ffo)+ 1p—?’&h(K) + 1#_ em. @D
It is straightforward to check that in the new basis we still have

eV, e(u)]=[R(R), A(W]1=[fR), fF()]=0, (3.2)
while the key simplification occurs in the three nontrivial relations which are now given by

2

[h(2), e(u)] = 22 (e(n) —e(d)), (3.3)

[h(D), f(W)] = 22 (f () = fA), (3.4)

(G, F (W] = 5 —— ((E — i h(w) = € = 2D ). (3.5)

By using these generators the expression for the generating function of the Gaudin Hamil-
tonians with boundary terms (2.6) also simplifies. We invert the relations (3.1) and obtain the
expression for the generating function in terms of the new generators

SAAELC) B (3.6)
—_— — — e(L). .
52 —\2p2 A ’;&2 — 222
Evidently we have achieved our first objective, as the relations (3.3)—(3.5) and the expression
(3.6) are much simple than before. Below we will demonstrate how these new results facilitate
the study of the Bethe vectors.

As in [19], we define the vacuum €24 which is annihilated by e()), while being an eigenstate
for h(X):

T(A) =212 (hz(k) +

N N

l m m 2 m
h(W)Qy =p(M)Q,,  with p(A):XZ( oy )—Z% (3.7)
m=1

A—oym  Atoy,

The next relevant remark is that the vector 2 is an eigenvector of the generating function
7(1). To show this we use (3.6) and the action (3.7):

202p(0)  p'(W) Q
£2 —22)2 2 +
Our main aim in this section it to prove that the generator f(X) (3.1) defines the Bethe vectors

naturally, that is, to show that the Bethe vector in the general case is given by the following
symmetric function of its arguments:

(3.8)

TWQy = xo(W)Qy =227 (pz(x) +

om (1, m2, oo ip) = () -+ f () 24 (3.9

We stress that this was not possible in the old basis (of tilde operators), and thus the general form
of the Bethe vector lacked in [19].
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The action of the generating function of the Gaudin Hamiltonians t(X) on ¢ (i1, 2, ..
W) is given by

.

TMom (1, w2, - ipr) = [T, () -+ fFla)] Q4 + xoM)om (1, 12, oy y).
(3.10)

The key part of the proof will be to determine the commutator in the first term of the righthand
side. Due to the simplicity of the new commutation relations (3.3)—(3.5) we will show that it is
now possible to evaluate this commutator in an algebraically closed form. As the first step we
will calculate the commutator between the generating function (3.6) and a single generator f(A).
A straightforward calculation yields

2 vz
[£G). S0 == 35— (1) <m) n m)
812 ‘52 - M2U2 2
+)"2_M2 52_)»21)2 f) <h(ﬂ)+m) (3.11)

For the general case, we assert that the following holds:

[z, f(u1) - fum)]

M, 82 v2 LA
=f(M1)"'f(MM)Zﬁ h@) + 22_2 2_ 2
o1 AT S
82 gz_u%vz ) M )
TR flum) |h(p) + 57— — ) .5
L §2 — i’ ;M%—uﬁ

812 Ez — /L%wvz

+
2 2 1242
22—y, 7 — A%

f) - flupm—1) fQ)

p? M- 2
x | h(up) + 3 5 Z > (3.12)
SZ_MM‘)z =1 My — M5

Our proof of this statement is based on the induction method: we assume that, for some integer
M > 1, the above formula (i.e. the induction hypothesis) is satisfied and proceed to show that this
assumption implicates the same relation for the product of M + 1 operators. To this end we write

[T, F D) fun) fums) ] =T, F () - f )] f (ems1)
+ frD) - ) [T, flrms)]-

To evaluate the first term on the right-hand-side of (3.13) we use the induction assumption (3.12),
while in the second term we apply (3.11) and obtain

[T, F ) - fums)]

(3.13)

M 82 V2 Moo
=f(/m---f(;w);ﬂfﬂi2 ho)+ = _;Az—uﬁ femsn)
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R
22 _ M% 22 l;zl > SO f(u2) - f(um)

2 M

v 2
X (h(/u) + m - Z TM%) Fm+1)

TR

812 SZ_MM
22—, E2—

) f - f @)

2 M

x h(MM)+ﬁ_Z% flm+1)
E5—mmve o Bu M

M J

2

—8A
+ fu) - fum) W

M+1

2
f ) (hm + ﬁ)

822 &2 — g, 02

1)2
)\2 _ M%/I_H %.2 _ )“2])2 f()\) <h(MM+1) + m)) . (314)

Then, using (3.4), we rearrange the terms having f(u7+1) on the right

[T, fun) - fums)]

M g2 v2 5o
= S0 f) s [ W+ s =D
i=1 L

i )‘2_“1'
Y82 —2
+ ) f(uM)Z - ( — (f(uM+1)—f(/\)))
A A= Uy
—8x2 hO 2
+f(M1)“‘f(MM+1)m< ( )+m)
812 g2 uh? V2 Mo
+ W) f(u2)--- f( )| A + -
)»2—[1,% %_2 )\2 2f f n2 f MM+1 1231 SZ—M%UZ ;M%—M?
812 52—M1

2_ 282
A —pup§ K= Ky

-2
— 2,2 S W) f Gew) (ﬁ (f (upm+1) — f(,ul)))

8)\2 52 _ /1-2 1)2
e S L) [0 O f )

v2 M-l 2
x h(“M)""gz_szz_Z 2 2

M j=1 Mm — 1
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812 52—;1,%,11)2
22— 12, a2

-2
F) - f - f ) (ﬁ (f (ats1) — f(;w)))

My — M1
8. £ — 'U“%VI+1"'
22— M121/1+1 52 —A2y2

2 2
(1) -+ flua) f) [ AC Y+—5—).
fu) - flum) f ( MM41 é2_%“1‘)2)
(3.15)

The next step is to add similar terms appropriately

[z, f(1) - f(ems1)]

M —S)LZ 1)2 M+1 1
=f(u1)“'f(MM+1)272 5 | H) + 3 22_2 2_ 2
Pk SO I
_g)2 p2 LA
+fpD) o flum) 5——— |V + 5——5 ) . 5
12— Wy §2 i ,2_;)\2—“5
82 EZ—M%V2 2 M+1 2
+ SR fu2) - flums) [ h(p) + 55— — —
2 £2 2,2 2 2 2
W= 22—y £2 — pupv? ;Ml_uj

8)\2 %-2 _ /’L%\/[Vz
A2 — M12VI 52 — 222

F) - flupm—D) Q) f(upms1)

v 2
x h(“MH'gz_Mz 2_2 2 2

812 g2 —,LL%,IHv
22— szl/l-i-l %-2 — 222

2 2
Fun) - Fu) fO) (h(uMH) + "7>

2
& — v

M 2 2 2 2,2
—8A 2 8\ 2 Ef— v
+f(M1)f(MM)f()‘)Z< 7 2 + 22 2 2 éz)
i Ve e (IR R S il IR E il
(3.16)
Using the following identity
-2 1 N 22 1 £2 — u?
2 2 2,2 2 2 _ 32,2
L e s TR S T e TS PR i
2 2 2
_ 22 1 §7 = yqV (3.17)
T a2 2 2_ 2 £2 )22 ’
Harr B — Ky
fori =1,..., N, we can bring together all the terms in the last two lines of (3.16) and obtain the

final expression
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[cG), fwD) - fums1)]

M+1 —8)\‘2 2 M—+1 1
= ) fe) Y s [ B+ s = Y 5
o AT £ -2 A AT M
B2 B ) e | ) 4 = MZH 2
w2) - (a4t "1 -
22—t &2 — 222 §2 — puiv? j#l /’“%_“3

Q2 E2_ 22
M ) S et ) FOD )

AZ_M%V 52_
2 M+1
% 2
x| ACuan) + 2 _Z 2 2
8 —uyv: T —

8)»2 EZ_ 2 \)2
e B )+ FGuan £

v? d 2
x| humsD + 53— > 5= |- (3.18)
82— myV? D M — K

Since we have already explicitly showed that the induction hypothesis is valid for M =1 (the
(3.11) is a special case of (3.12)), this completes our proof of (3.12) by induction.

Now, using the result (3.12), we finally find the off shell action (3.10) of the generating func-
tion T(A) on @pr (g, 12, ..., Upy) to be:

T(A)eMm (1, 2y oy i) = X Ay (o1, (2, ooy ip) O (1, 2, oy i) (3.19)

M

LS il U L (Y L * )
P - M sy M2y ooy UM
A2 — g §2 = a2 E2—upv? i

812 52 — /L%wvz

plum) + 57— oM(L1s s WM =1, A),
A2 — M%VI %—2 — 222 E Mvz Z] 'u%ll M?
(3.20)
and the eigenvalue is
perR §7 A% j;éi)‘z_'uj

(3.21)
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The above off shell action of the generating function also contains the M unwanted terms which

vanish when the following Bethe equations are imposed on the parameters (1, ..., Uy,
2 M
v 2
)+ —— — =0, 3.22
Pt ;u?—ui (3.22)

wherei =1,2,..., M.

Hence we have showed that the symmetric function ¢@p(@1, 12, ..., y) defined in
(3.9) is the Bethe vector of the generating function 7(X) corresponding to the eigenvalue
xm (A, (1, (o, ..., ), stated above (3.21). With this proof we close the topic of the imple-
mentation of the algebraic Bethe ansatz for this model.

4. Solutions to the Knizhnik—Zamolodchikov equations
Finding the off-shell action on Bethe vectors in the previous section was, in this approach,

a necessary prerequisite for solving of the corresponding Knizhnik—Zamolodchikov equations
[25,27]. In this context the local realization of Gaudin algebra basis operators is also relevant:

N

e=-2%" %Sﬂ,{, @.1)

m=1 m

N

1
h(O) =2 T <Sf;’1 - %S,j) : 4.2)
m=1 m

& oy Ve Y

fo=2)" > ;”2 (Sm + 7531 — msg) : (4.3)

where Sﬁl, S,jnt, are the usual spin generators at the local node m (see [19]). In this local realization

the vacuum vector €2 has the form

Q=w1Q - Quy eH, 4.4
where vector w,, belongs to local node Hilbert space V,, = C**! and:

83 wm = smwy  and  SHw, =0. (4.5)

The Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating
function 7 (1) at poles A = %, [19] and in order to make the paper self contained, we state these
result also here:

Resy—q, T(A) = 4H, and Resy——_q,7(1) = (—4) ﬁm, 4.6)

yielding:

N §m . §n N (Km(am)ngW_ll(am)) : S:n + S:n : (Km(am)ngyzl(am)>
H, = e
" Z —Qn +Z 2(am + o)

o
n#m mn n=1

)

A.7)
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and

N — Iy —l(— ._' I . — I —l(_
(Km( o) SmK 1 ( am)) S, + S, (Km( o) SmK am))
+Z 2(aty + ay) '

n=1

(4.8)

It follows from the above relations and (3.21) that the eigenvalues of the Gaudin Hamiltonians
(4.7) and (4.8) can be derived as the residues of xps (A, i1, ..., Ly), obtained in the previous
section, at the poles A = %o, [19]. It turns out that the respective eigenvalues of the Hamiltonians
(4.7) and (4.8) coincide:

1
Emm = —ReSj—a, xm (A, 1, ..., )

4
N
5 Sm(Sm + 1)
:5 =
] e I 49
Moo
— 200, Sm Z
o o

When all the spin s,, are set to one half, these energies, as well as the Bethe equations, coincide
with the expressions obtained in [14] (up to normalisation; for the connection of the correspond-
ing notations, cf. [19]).

The key observation in what follows will be that by taking the residue of both sides of the
equation (3.19) at A = ay,, using (4.6), (4.7) and (4.9), and dividing both sides of the equation by
the factor of four one obtains

2 — v
Hyom (i, o, - om) = En,m 90M(/L1,/L2,---,/LM)+Z 2 5 é ol
J n
2 &+ v
S p(Mj)_'_ Z 2 2 a -
j i i H n

2
X(Sn_—i-%S;j v S+)§0M1(M1,.--,@,--.,MM),
(4.10)

here the notation jz; means that the argument 1 ; is not present.
The solutions to the Knizhnik—Zamolodchikov equations we seek in the form of contour inte-
grals over the variables w1, o, ..., uy [25,27]:

Yo, a, ..., aN) = yg : ~-y§¢(ﬁ|&)<pM(ﬂl&) dpr---duy, (4.11)
where the integrating factor ¢ (i|a) is a scalar function

S(ﬁl&)>
K

¢ (iila) =exp< (4.12)
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obtained by exponentiating a function S(g|a) [34]. As in [10], from now on, the K-matrix pa-

rameters take fixed values ¥ =& =0 and v = 1. For these values it is straightforward to check

that 1) the Gaudin Hamiltonians are Hermitian; and ii) Hamiltonians (4.7) and (4.8) coincide.
We find that the proper form of S(ii|@) in this case is:

N
S(m&)zz%—i—Zanam ln(ot —a )+Zln(ul
n=1 n

n<m j=1

(4.13)
M M N
2 MGG — ) = D) sulnte — ).
j<k j=1n=1

In order to show this, it is important to notice that the function ¢ (fi|@) as defined above also
satisfies the following equations

K 3an¢ = gn,M ?, (4.14)
K Oy =Pm(1j) ¢, (4.15)
where
1
Bu () :=—1, p(uj)——z—z : (4.16)
M Py M] - P«k
Introducing the notation
gum = s- o 4.17
Oy =Sy em—1(1s oo sy (o) (4.17)

the equation (4.10) can be expressed in the following form

(=Du ~
Hyop (1, 12, - im) = Enm <PM(M1,M2,---,MM)+Za /Lj Bum (1 ])fﬂz(vjlni
n— Hj
(4.18)

Using the definition of ¢ (3.9) and the local realisation of the generator f(u) (4.3) it follows
that

[ (p(j n)
M-1
O, oM = (=2) Zau] (ﬁ) . 4.19)
j=1 J 7
Then it is straightforward to show that
- (=),
K Qa, (Dorr) = Hy (par) + kY Oy ( . ¢“‘“ ")) : (4.20)
j=1 ui -
A closed contour integration of ¢¢y; with respect to the variables w1, ua, ..., uy will cancel
the contribution from the terms under the sum in (4.20) and therefore i (o1, a2, ..., o) given

by (4.11) satisfies the Knizhnik—Zamolodchikov equations

K O, Va1, a2, ...,an) = Hy (g, a2, ..., apN). “4.21)
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Moreover, the interplay between the Gaudin model and the Knizhnik—Zamolodchikov equa-
tions, once the Bethe equations are imposed

N

aS 2s
G =B ==y | 3 o Z ; =0, (4.22)
I Rl ki M T Hi

enabled us to determine the on-shell norm of the Bethe vectors

REXY
lom (s s - )| =2M det : (4.23)
O ;o

It turns out to be possible to derive also a stronger formula than the one above for the norms

[27]. Indeed, we calculate the following expression for the off-shell scalar product of arbitrary
two Bethe vectors:

Qhe(M)e(ha) - eOomn) f(ear) -+ f (2) f (1) Qy =4Y Z det M7, (4.24)
oeSy

where Sy is the symmetric group of degree M and the M x M matrix M? is given by
)” p()\ ) — g(])p(ﬂa(J)) )\2+/¢L(27(k)

MC, = - (4.25)
J. 2 2
. X5 = i) oz O] = ROWG )~ How)

2 2
_ Mt o
jk— T2 2 2 2 ’
A =25 w) Moy = Howy)

for jk=1,2,..., M. (4.26)

This formula (that can be proved by commuting e()) operators to the right and using mathemat-
ical induction) has obvious potential applications as the first step towards the general correlation
functions. It should be noted that in [13] a related problem was analysed in the trigonometric
case and under certain restrictions: local spins were all fixed to the value % and it was required
that N = 2M (in the notation of that paper). Our formula is more compact and valid for arbitrary
spins and arbitrary number of excitations.

5. Conclusion

In this paper we addressed a number of open problems related to Gaudin model with non
periodic boundary conditions.

First, we obtained a new basis of the generalized s¢(2) Gaudin algebra, in which the com-
mutation relations and the generating function are manifestly simpler. This step allowed us to
calculate Bethe vectors and off-shell action of the generating function upon them in a closed
form, for arbitrary number of excitations. The obtained expressions we have proved by mathe-
matical induction.

Once having the general expressions for the Bethe vectors and for the corresponding eigen-
values, we could proceed to relate KZ equations with the Bethe vectors. Taking residues of the
off-shell action at poles +c,,, we obtained both Gaudin Hamiltonians and their eigenvalues. By
finding the appropriate form of the function S in (4.13), we managed to establish and prove rela-
tions (4.14) and (4.15) which led to solution to KZ equations. Proceeding in the same framework,
we also obtained the expression for norms of Bethe vectors on shell. Moreover, we went a step
further and provided a closed form formula for the scalar product of arbitrary two Bethe vectors.



370 1. Salom et al. / Nuclear Physics B 939 (2019) 358-371

Acknowledgements

We acknowledge partial financial support by the Foundation for Science and Technology
(FCT), Portugal, project PTDC/MAT-GEO/3319/2014. 1.S. was supported in part by the Min-
istry of Education, Science and Technological Development, Serbia, under grant number ON
171031.

References

[1] M. Gaudin, Diagonalisation d’une classe d’hamiltoniens de spin, J. Phys. 37 (1976) 1087-1098.

[2] M. Gaudin, La fonction d’onde de Bethe, Masson, Paris, 1983.

[3] M. Gaudin, The Bethe Wavefunction, Cambridge University Press, 2014.

[4] K. Hikami, P.P. Kulish, M. Wadati, Integrable spin systems with long-range interaction, Chaos Solitons Fractals
2 (5) (1992) 543-550.

[5] K. Hikami, P.P. Kulish, M. Wadati, Construction of integrable spin systems with long-range interaction, J. Phys.
Soc. Jpn. 61 (9) (1992) 3071-3076.

[6] E.K. Sklyanin, Separation of variables in the Gaudin model, Zap. Nau¢. Semin. POMI 164 (1987) 151-169; trans-
lation in J. Sov. Math. 47 (2) (1989) 2473-2488.

[7] B. Jurco, Classical Yang—Baxter equations and quantum integrable systems, J. Math. Phys. 30 (1989) 1289-1293.

[8] B. Jurco, Classical Yang—Baxter equations and quantum integrable systems (Gaudin models), in: Quantum Groups,
Clausthal, 1989, in: Lecture Notes in Phys., vol. 370, 1990, pp. 219-227.

[9] M.A. Semenov-Tian-Shansky, Quantum and classical integrable systems, in: Integrability of Nonlinear Systems, in:
Lecture Notes in Physics, vol. 495, 1997, pp. 314-377.

[10] K. Hikami, Gaudin magnet with boundary and generalized Knizhnik—Zamolodchikov equation, J. Phys. A, Math.
Gen. 28 (1995) 4997-5007.

[11] W.L. Yang, R. Sasaki, Y.Z. Zhang, Zj, elliptic Gaudin model with open boundaries, J. High Energy Phys. 09 (2004)
046.

[12] W.L. Yang, R. Sasaki, Y.Z. Zhang, A,,_| Gaudin model with open boundaries, Nucl. Phys. B 729 (2005) 594-610.

[13] K. Hao, W.-L. Yang, H. Fan, S.Y. Liu, K. Wu, Z.Y. Yang, Y.Z. Zhang, Determinant representations for scalar
products of the XXZ Gaudin model with general boundary terms, Nucl. Phys. B 862 (2012) 835-849.

[14] K. Hao, J. Cao, T. Yang, W.-L. Yang, Exact solution of the XXX Gaudin model with the generic open boundaries,
arXiv:1408.3012.

[15] N. Manojlovi¢, I. Salom, Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and
the corresponding Gaudin model, Nucl. Phys. B 923 (2017) 73-106, arXiv:1705.02235.

[16] N. Manojlovic, I. Salom, Algebraic Bethe ansatz for the trigonometric s€(2) Gaudin model with triangular boundary,
arXiv:1709.06419.

[17] N. Crampé, Algebraic Bethe ansatz for the XXZ Gaudin models with generic boundary, SIGMA 13 (2017) 094.

[18] N. Cirilo Ant6nio, N. Manojlovic¢, I. Salom, Algebraic Bethe ansatz for the XXX chain with triangular boundaries
and Gaudin model, Nucl. Phys. B 889 (2014) 87-108, arXiv:1405.7398.

[19] N. Cirilo Anténio, N. Manojlovi¢, E. Ragoucy, I. Salom, Algebraic Bethe ansatz for the s¢(2) Gaudin model with
boundary, Nucl. Phys. B 893 (2015) 305-331, arXiv:1412.1396.

[20] B. Vicedo, C. Young, Cyclotomic Gaudin models: construction and Bethe ansatz, Commun. Math. Phys. 343 (3)
(2016) 971-1024.

[21] V. Caudrelier, N. Crampé, Classical N-reflection equation and Gaudin models, arXiv:1803.09931.

[22] E.A. Yuzbashyan, Integrable time-dependent Hamiltonians, solvable Landau—Zener models and Gaudin magnets,
Ann. Phys. 392 (2018) 323-339.

[23] N. Manojlovi¢, N. Cirilo Anténio, I. Salom, Quasi-classical limit of the open Jordanian XXX spin chain, in: Pro-
ceedings of the 9th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical
Physics, 18-23 September 2017, Belgrade, Serbia.

[24] V.G. Knizhnik, A.B. Zamolodchikov, Current algebras and Wess—Zumino model in two dimensions, Nucl. Phys. B
247 (1984) 83-103.

[25] H.M. Babujian, R. Flume, Off-shell Bethe ansatz equations for Gaudin magnets and solutions of Knizhnik—
Zamolodchikov equations, Mod. Phys. Lett. A 9 (22) (1994) 2029-2039.

[26] B. Fegin, E. Frenkel, N. Reshetikhin, Gaudin model, Bethe ansatz and critical level, Commun. Math. Phys. 166
(1994) 27-62.


http://refhub.elsevier.com/S0550-3213(18)30373-0/bib47617564696E3736s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib47617564696E3833s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib47617564696E2D456E676C697368s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48696B616D694B756C6973685761646174693932s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48696B616D694B756C6973685761646174693932s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48696B616D694B756C697368576164617469393261s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48696B616D694B756C697368576164617469393261s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3839s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3839s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4A7572636F3839s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4A7572636F3930s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4A7572636F3930s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib53656D656E6F763937s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib53656D656E6F763937s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48696B616D693935s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48696B616D693935s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59616E675A68616E67536173616B69633034s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59616E675A68616E67536173616B69633034s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59616E675A68616E67536173616B69633035s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59616E675A68616E673132s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59616E675A68616E673132s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48616F43616F59616E673134s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib48616F43616F59616E673134s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4D5331s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4D5331s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4D5332s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4D5332s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4372616D7065s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib43414D53s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib43414D53s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib43414D5253s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib43414D5253s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib56696365646Fs1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib56696365646Fs1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4361756472656C6965724372616D7065s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59757A6261736879616Es1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib59757A6261736879616Es1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4B5A3834s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4B5A3834s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib426162756A69616E466C756D65s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib426162756A69616E466C756D65s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib466567696E4672656E6B656C526573686574696B68696Es1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib466567696E4672656E6B656C526573686574696B68696Es1

1. Salom et al. / Nuclear Physics B 939 (2019) 358-371 371

[27] PP. Kulish, N. Manojlovi¢, Creation operators and Bethe vectors of the osp(1|2) Gaudin model, J. Math. Phys.
42 (10) (2001) 4757-4778.

[28] T. Skrypnyk, Non-skew-symmetric classical r-matrix, algebraic Bethe ansatz, and Bardeen—-Cooper—Schrieffer-type
integrable systems, J. Math. Phys. 50 (2009) 033540.

[29] T. Skrypnyk, “Z2-graded” Gaudin models and analytical Bethe ansatz, Nucl. Phys. B 870 (3) (2013) 495-529.

[30] E.K. Sklyanin, Generating function of correlators in the s¢(2) Gaudin model, Lett. Math. Phys. 47 (3) (1999)
275-292.

[31] E.K. Sklyanin, Boundary conditions for integrable equations, Funkc. Anal. Prilozh. 21 (1987) 86-87 (in Russian);
translation in Funct. Anal. Appl. 21 (2) (1987) 164—166.

[32] E.K. Sklyanin, Boundary conditions for integrable systems, in: Proceedings of the VIIIth International Congress on
Mathematical Physics, Marseille, 1986, World Sci. Publishing, Singapore, 1987, pp. 402-408.

[33] E.K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A, Math. Gen. 21 (1988) 2375-2389.

[34] N. Reshetikhin, A. Varchenko, Quasiclassical asymptotics of solutions to the KZ equations, in: Geometry, Topology
& Physics for Raul Bott, Conference Proceedings Lecture Notes Geometry Topology VI, Int. Press, Cambridge,
MA, 1995, pp. 293-322.


http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4B4D32s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib4B4D32s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B7279706E796B3039s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B7279706E796B3039s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B7279706E796B3133s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3939s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3939s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3836s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3836s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3837s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3837s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib536B6C79616E696E3838s1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib526573686574696B68696E5661726368656E6B6Fs1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib526573686574696B68696E5661726368656E6B6Fs1
http://refhub.elsevier.com/S0550-3213(18)30373-0/bib526573686574696B68696E5661726368656E6B6Fs1

	Generalized sl(2) Gaudin algebra and corresponding Knizhnik-Zamolodchikov equation
	1 Introduction
	2 Preliminaries
	3 New generators and the eigenvectors
	4 Solutions to the Knizhnik-Zamolodchikov equations
	5 Conclusion
	Acknowledgements
	References


