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Abstract. A set of algebraic relations involving the bundle torsion, gauge curvature field,
and four-velocity in the Finsler-spacetime tangent bundle is presented that maintains (1)
compatibility with Cartan’s theory of Finsler space, (2) the almost complex structure, and
(3) the vanishing of the covariant derivative of the almost complex structure. This avoids
the much more restrictive condition of vanishing gauge curvature field. A simple solution
to the torsion relations is also obtained.

1. Introduction

It was demonstrated recently that the spacetime tangent bundle of a Finsler
spacetime [1, 2] is almost complex, and also Kihlerian [1, 3] and complex
[4] with vanishing covariant derivative of the almost complex structure, pro-
vided that the gauge curvature field is vanishing. A vanishing gauge curva-
ture field is equivalent to the condition that the four-velocity tangent-space
coordinate be a parallel vector field. The vanishing of the gauge curvature
field was also shown to be a sufficient condition for the bundle connection to
have a form consistent with Cartan’s theory of Finsler space [1, 2]. However,
through the introduction of bundle torsion satisfying prescribed conditions,
the Finsler-spacetime tangent bundle can be made to remain consistent with
Cartan’s theory of Finsler space, and remain almost complex with a vanish-
ing covariant derivative of the almost complex structure, without the need
to impose the relatively restrictive condition of vanishing gauge curvature
field [5]. However, a nonvanishing gauge curvature field precludes that the
bundle be complex [5]. A number of implied relations involving the torsion,
gauge curvature field, and four-velocity can be demonstrated.

In the present work, we first review the basis for the torsion relations and
then obtain a simple solution, in which the only nonvanishing component of
the torsion is in the fiber-base-base sector of the bundle, and is given by the
negative of the gauge curvature field.
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2. Finsler-Spacetime tangent bundle with torsion.

The components of the bundle connection (&M, 5 of the Finsler-spacetime
tangent bundle, including bundle torsion, and written in an anholonomic
basis adapted to the spacetime connection; are given by [5]

@ 5 = {F‘ o } + @K (1)
@riy, = My + ‘;‘Fbau + B Ky, (2)
1
(S)I‘“ba =¥ + §Fbau + (S)K“baa (3)
B)TH , — oo D s B pu
Ty = pPo? I + K ab) (4)
Dz>
1
O = ~Tlag™ + 5 F"ap + O K "ap, ()
&m - A D ™ B gm 6)
ab = —poV Dzr b @ + abs (
®prmy, = { mba} + @K™, (7
(S)Pmab ="+ (S)Kmab' (8)

Here recall that a generic point in the bundle manifold has coordinates
MM =0,1,...,7} = {x*,x™; 1= 0,1,2,3;m = 4,5,6,7} = {x*, pov*;
p=10,1,2,3}, where x* and v are the spacetime and four-velocity coordi-
nates, respectively. Greek indices refer to spacetime and range from 0 to 3;
lower case Latin indices refer to four-velocity space and range from 4 to 7;
and upper case Latin indices refer to a point in the bundle and range from
0 to 7. Any lower case Latin index n appearing in a canonical spacetime
tensor or connection is defined to be n — 4 implicitly. The length pg is of the
order of the Planck length [6]. Also in the above equations, there appears
the spacetime connection

Dop = {u aﬂ} - {u aﬁ} = Al = ApIht — AMeg,  (9)

in which the gauge potential is given by
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o A
Ay = Pov'\r",\u = PO”A{ K /\V}—ng vﬁnﬂw\{ of }1 (10)
where {# o ,3} is the ordinary Christoffel symbol

PR W BT I )

{ aﬂ }— 29 (axﬂgua + ax'agl/ﬁ axugaﬂ)’ (11)
and g, is the spacetime metric tensor. Also, the Christoffel symbol of four-
velocity space is given by

1 ;0
IWep = 3P0 g ForJes (12)

Also in the above, ® KM p is the bundle contorsion

1 - - -
®rMp = E(GMLGAD(S)TDBL +GMLGpp TP, +®) TMAB)» (13)
where 8)TM, 5 is the bundle torsion, and the bundle metric is given by

Gy = (gsu 0 ) (14)

9mn

in the adapted anholonomic basis. Also in the above, the gauge curvature
field is given by
Fﬂaﬂ = POUAR“Aaﬁ9 (15)

where

R*ap = Thga = Thap + T4 aINg — T4 5T M (16)

is the spacetime Riemann curvature tensor, written in the adapted basis.
Here, the comma followed by a lower case Greek index denotes the operator
v = 0/0zY — pg~1 AP,8/8vP, corresponding to the adapted basis. Also in the
above D/ Dz denotes the ordinary spacetime convariant derivative with the
spacetime connection Eq. (9). The anholonomic basis vectors are defined by

808" Gon

The associated structure coefficients C4g™ are defined by the commutator

(But) =B Bn) = {5 ~ 07 Mpmpi o} ()

[Ea, EB) = Ca¥ En, (18)

and the only nonvanishing components are
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Cof” = —FT4p, (19)
Cabm = "Cbam = ¢mab’ (20)
where
s = po"l-(?-A“ . (21)
af 500 [3

In Cartan’s theory of Finsler geometry, involving the base manifold only,
the connection coefficients are those corresponding to Egs. (1) and (2). Those
of Eq. (1) are identical to one set of connection coefficients appearing in
Cartan’s theory, provided

G Kk =0. (22)

Those appearing in Eq. (2) are identical to the remaining set of connection
coefficients of Cartan’s theory, only if

G Kk, = —%F,,a“. (23)
If the bundle torsion is not present, then the contorsion is vanishing, and
Eq. (23) then requires that the gauge curvature field be vanishing, but a

nonvanishing torsion circumvents the latter more severe restriction. From
Egs. (23) and (13) and the antisymmetry of the torsion, it follows that

OFk = _OFu, %p,,; +®Fs (24)

Next define the antisymmetric part of the bundle connection by

1 1 .
(B)FMAVB = —(B)I‘M%q = -2-(8)FM[AB} = 5(—CABM + (B)TMAB). (25)

Throughout, we employ the notation Tt T T According
to Eqgs. (13) and (22) and the antisymmetry of the torsion, one also has

OTtep = Khogy = 0. (26)
Then using Eqgs. (25), (18), and (26), we obtain
(S)P"af =0. (27)

Next, if we use Egs. (25), (18), and (24), we deduce that
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1(a)5 1 1
Bps,, = =@fs , - _—p s _ (8 gk )
r Vb 9 Tab 4Fba 9 Kbon ( 8)
and
(8) 1@®)p 1 1(s)
e = =OITH, = =Fi ' + 2V KH,. (29)
v 2 4 2

Also, according to Eqgs. (25) and (18), one has

@®)ps,, = lTﬂab. (30)
v 2

Only the components of the antisymmetric part of the connection Eqgs. (27)-
(30) are needed explicitly for the considerations that follow.

3. Almost complex structure

The Finsler-spacetime tangent bundle is almost complex, and in the an-
holonomic basis adapted to the spacetime connection, the almost complex
structure is given by [1, 3]

0 ~Gab
o= (0 ) y
AB 9ap 0 ( )

in the absence of torsion. In the presence of bundle torsion, the bundle
connection has an antisymmetric part, and the almost complex structure

becomes [5]
2008 T4as v, ~Gab + 2po(8)1“‘(3, v, "
— v
Jap = Jag + 2/’0(8)1"‘.;‘,,3 v, 2p0(8)I"‘¢3,v“ (32)

If we use Eqgs. (27)-(30) in Eq. (32), and compare with Eq. (31), we conclude
that the almost complex structure (Eq. (31)) is preserved in the presence of

torsion, if the following conditions are satisfied:

1
(B)K”bavu. = “EU“Fbau (33)
and

@4 v, = 0. (34)
Next, if one expands the convariant derivative of the almost complex

structure VEJ 4P by using Egs. (31), (14), (1)-(8), (22) and (23), together
with the corresponding results of [3] one concludes that

VeJE =0, (35)
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provided that the following relations involving the bundle torsion are satis-
fied (including the other relations obtained above):

(8)K“se =0, (S)T“& =0, (S)K“ge = _% i (36 — 38)
®Fu_ - _1 ®pn, O pd -1

THse = ""Z'Febl‘ - W KF s, K de Poya = ’éﬁab}w (39’40)
(S)K“d,v“ = —%V“Fde;u (S)T“da = %Fde“ +(8) K¥., (41,42)

_ 1
(S)K“depdbpa = 07 (S)Tudevu = 01 (S)Km&:Pﬁsma = 'iF{aﬁ]sv (43 - 45)

®gme, PP, =0, ®Km, =0, Gk =0, (46 — 48)

where

Pﬂ&ua = 5ﬁu650 - gﬁagum (49)

In summary, Eqgs. (36)-(39) and (42) insure compatibility of the bundle con-
nection with Cartan’s theory of Finsler space; Eqs. (41) and (44) insure that
the almost complex structure is maintained; and Eqgs. (40), (43), and (45)-
(48) insure that the covariant derivative of the almost complex structure is
vanishing.

By means of the following identity [5],

v Flogp =0, (50)

together with Eqgs. (39)-(42) and (45), the following additional torsion rela-
tions can also be demonstrated [5]:

(S)T“gevu =0, (S)T“d,vu =0, (51,52)
OV s, Peue =0, ©TH, PR, =0, (53,54)

(S)K“dev‘Pbd,,a = 0, (8)Km5,v¢Pﬁ6ma =90. (55, 56)
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4. Simple solution to torsion relations

A general solution to the torsion relations, Egs. (36)-(48) and (51)-(56),
expressing the components of the bundle torsion explicitly in terms of the
gauge curvature field and four-velocity, will be addressed elsewhere. Here we
instead seek a simple particular solution.

Begin by considering Eq. (45) with the following ansatz

G gme, = KF™, (57)

as part of a possible self-consistent solution, where & is a constant. If we
substitute Eq. (57) in Eq. (45), it follows, that K = -1/2, and therefore

(B)Km& = —--;-F"‘&, (58)
Also, Eq. (41) immediately suggests
o= L -

Furthermore, in accordance with Eqs. (43) and (46), we can make the simple
ansatz

@ Kr, =0, CK™, =0. (60,61)

Thus, the only nonvanishing components of the contorsion are given by Eqgs.
(38), (58), and (59), which are assembled here:

O Kty = Kty =~ Fal (62)
and
®pm _ _1
K™, = ~2F™. (63)

All other components of the bundle contorsion are taken to be vanishing
(Egs. (36), (60), (61), (47), and (48)), namely,

Oty = Oty = OK™, = Ok, = OKm. = 0. (64)
Next we can substitute Eq. (62) in Eq. (39) and obtain

@, = 9. (65)
Also, if we substitute Eq. (62) in Eq. (42), we get

E 7w, = 0. (66)
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Furthermore, in accordance with Eq. (44), we also make the simple ansatz

@ u,, =0. (67)

Next, if we substitute Egs. (64) and (67) in the expression for #) K™, given
by Eq. (13), we obtain

(g™gba + 6™46%)OT%, = 0. (68)
Equation (68) suggests the simple ansatz

@7, = 0. (69)

Next, if we substitute Eqs. (64), (69), and (67) in the expression for &) K™,
given by Eq. (13), we obtain directly,

@™, =0. (70)
Furthermore, if we substitute Eq. (64) in the expression for B) K™, given
by Eq. (13), we obtain

8) .
(gmlgad5"b + 9™ gbab"s + 6md6na61b)( "4, = 0. (71)

Equation (71) suggests the simple ansatz

(8)Tdn1 =0. (72)

Finally, if we substitute Eqgs. (65) and (63) in the expression for &) K™,4
given by Eq. (13), we get

(S)Tmap = —~F"p5. (73)

In summary, the only nonvanishing component of the torsion is in the

fiber-base-base sector, and is given by Eq. (73). All other components of

the bundle torsion are vanishing (Eqgs. (37), (65)-(67), (69), (70), and (72)),
namely,

(8)1—1“66 = (S)TuSe = (S)Tude = (S)Tﬂde = (S)Tmﬁe = (S)dee: = (S)dee =0.

(74)
Equations (36), (37), (43), (44), (46)-(48), and (51)-(54) are trivially satisfied
by Eqs. (74) and (64). Equations (39) and (42) are satisfied by Eqgs. (74) and
(62). Equation (40) is satisfied by Eq. (62) together with Eq. (49). Equation
(45) is satisfied by Eq. (63) together with Eq. (49). Equation (55) is satisfied
by Eq. (62) together with Eq. (50). Equations (38) and (41) are satisfied by
Eq. (62). And finally, Eq. (56) is satisfied by Eq. (63) together with Eq. (50).
Thus, all of the torsion relations are satisfied by the simple solution given
by Eqs. (73) and (74).
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5. Conclusion

The Finsler-spacetime tangent bundle with bundle torsion is compatible
with Cartan’s theory of Finsler space, and is almost complex with a van-
ishing covariant derivative of the almost complex structure, provided that
the torsion satisfies the relations given by Eqs. (36)-(48) and (51)-(56). A
simple particular solution to these torsion relations is given by Egs. (73)
and (74), in which the only nonvanishing component of the torsion is in
the fiber-base-base sector of the bundle, and is given by the negative of the
gauge curvature field.

References

[1] Brandt H. E.: Differential Geometry of Spacetime Tangent Bundle, Internat. J.

Theor. Phys. 31 (1992) 575.

[2] Brandt H. E.: Finsler-Spacetime Tangent Bundle, Found. Phys. Lett. 5 (1992) 221.

[3] Brandt H. E.: Kdhler Spacetime Tangent Bundle, Found. Phys. Lett. 5 (1992) 315.

[4] Brandt H. E.: Complex Spacetime Tangent Bundle, Found. Phys. Lett. 6 (1993) 245.

[5] Brandt H. E.: Spacetime Tangent Bundle with Torsion, Found. Phys. Lett. 8 (1993)
339.

[6] Brandt H. E.: Structure of Spacetime Tangent Bundle, Found. Phys. Lett. 4 (1991)

523.

6



