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Abstract. A set of algebraic relations involving the bundle torsion, gauge curvature field, 
and four-velocity in the Finsler-spacetime tangent bundle is presented that maintains (1) 
compatibility with Cartan's theory of Finsler space, (2) the almost complex structure, and 
(3) the vanishing of the covariant derivative of the almost complex structure. This avoids 
the much more restrictive condition of vanishing gauge curvature field. A simple solution 
to the torsion relations is also obtained. 

1. Introduction 

It was demonstrated recently that the spacetime tangent bundle of a Finsler 
spacetime [1, 2] is almost complex, and also Kahlerian [1, 3] and complex 
(4] with vanishing covariant derivative of the almost complex structure, pro­
vided that the gauge curvature field is vanishing. A vanishing gauge curva­
ture field is equivalent to the condition that the four-velocity tangent-space 
coordinate be a parallel vector field. The vanishing of the gauge curvature 
field was also shown to be a sufficient condition for the bundle connection to 
have a form consistent with Cartan's theory of Finsler space [1, 2]. However, 
through the introduction of bundle torsion satisfying prescribed conditions, 
the Finsler-spacetime tangent bundle can be made to remain consistent with 
Cartan's theory of Finsler space, and remain almost complex with a vanish­
ing covariant derivative of the almost complex structure, without the need 
to impose the relatively restrictive condition of vanishing gauge curvature 
field [5]. However, a nonvanishing gauge curvature field precludes that the 
bundle be complex [5]. A number of implied relations involving the torsion, 
gauge curvature .field, and four-velocity can be demonstrated. 

In the present work, we first review the basis for the torsion relations and 
then obtain a simple solution, in which the only nonvanishing component of 
the torsion is in the fiber-base-base sector of the bundle, and is given by the 
negative of the gauge curvature field. 
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2. Finsler-Spacetime tangent bundle with torsion. 

The components of the bundle connection (8)rM AB of the Finsler-spacetime 
tangent bundle, including bundle torsion, and written in an anholonomic 
basis adapted to the spacetime connection/are given by [5] 

(8)rµ /3 - { µ } + (8) Kµ /3 
<> - o.(3 <> ' 

(1) 

(8)fµab = IP'ab + ~Fbd' + (8)Kµab, (2) 

(8)fµba = ITµab + ~Fbaµ + (8) Kµba, (3) 

(8)fµ b - PoV).. D II if+ (8) Kµ b 
a - Dx>. a a, (4) 

(8)rm _-II m +~Fm + (8)Km 
<>/3 - <>/3 2 <>/3 <>/3• (5) 

(8)rm b - - PoV).. D rrbm + (8) Km b 
"' - Dx>. "' "' ' 

(6) 

(8)rm _ { m } + (8)Km 
ba - ba ba, (7) 

(8)rm _ nm + (8) Km 
ab - ab ab· (8) 

Here recall that a generic point in the bundle manifold has coordinates 
{xM; M = 0, 1, ... , 7} = {xµ,xm;µ = 0, 1,2,3; m = 4,5,6, 7} = {xµ,povµ; 

µ = 0, 1, 2, 3}, where xµ and vµ are the spacetime and four-velocity coordi­
nates, respectively. Greek indices refer to spacetime and range from 0 to 3; 
lower case Latin indices refer to four-velocity space and range from 4 to 7; 
and upper case Latin indices refer to a point in the bundle and range from 
0 to 7. Any lower case Latin index n appearing in a canonical spacetime 
tensor or connection is defined to be n - 4 implicitly. The length p0 is of the 
order of the Planck length [6]. Also in the above equations, there appears 
the spacetime connection 

in which the gauge potential is given by 
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(10) 

where { µ af3 } is the ordinary Christoffel symbol 

{ µ }- ! µv (~ ~ - ~ ) af3 - 29 {)x/3 Yv0t + 8xP Yv/3 8x" Y0t/3 ' (11) 

and 9µv is the spacetime metric tensor. Also, the Christoffel symbol of four­
velocity space is given by 

IIµ 1 -1 µ>. {) 
0t/3 = 2 Po g [)v>. 90t/3. (12) 

Also in the above, (S) KM AB is the bundle con torsion 

where (B)f'MAB is the bundle torsion, and the bundle metric is given by 

G = (9µv 0 ) 
MN 0 9mn 

(14) 

in the adapted anholonomic basis. Also in the above, the gauge curvature 
field is given by 

(15) 

where 

RJJ>.0t/3 = fl'>./3,DI - fJJ>.0t,/3 + fJJ-yDII"\f3 - flJ-y/Jf'Y>.0t (16) 

is the spacetime Riemann curvature tensor, written in the adapted basis. 
Here, the comma followed by a lower case Greek index denotes the operator 
,v = {)I ax" - Po-1 Af3,,{) I fJvf3' corresponding to the adapted basis. Also in the 
above fJ/ Dx>. denotes the ordinary spacetime convariant derivative with the 
spacetime connection Eq. (9). The anholonomic basis vectors are defined by 

{EM} ::::{ Eµ, Em} :::: { {)~µ - po-1 
A/3µ {)~/3, Po-1 {)~µ }. (17) 

The associated structure coefficients C Aifi are defined by the commutator 

[EA, EB]= CABM EM, 

and the only nonvanishing components are 

(18) 



370 HOWARD E. BRANDT 

(19) 

(20) 

where 

AJ.I -1 8 Aµ 
'I' 0tf3 = Po 8vf3 0t· (21) 

In Cartan's theory of Finsler geometry, involving the base manifold only, 
the connection coefficients are those corresponding to Eqs. (1) and (2). Those 
of Eq. (1) are identical to one set of connection coefficients appearing in 
Cartan's theory, provided 

(22) 

Those appearing in Eq. (2) are identical to the remaining set of connection 
coefficients of Cartan's theory, only if 

(23) 

If the bundle torsion is not present, then the contorsion is vanishing, and 
Eq. (23) then requires that the gauge curvature field be vanishing, but a 
nonvanishing torsion circumvents the latter more severe restriction. From 
Eqs. (23) and (13) and the antisymmetry of the torsion, it follows that 

(8) - (8) - 1 (8) Tµb0t = - Tµ0tb = -Fbcf' + Kµb0t· 
2 

Next define the antisymmetric part of the bundle connection by 

(8) M (8) M 1 (8) M 1 ( M (8) - M ) r AB= - r BA = - r [ABJ = - -CAB + T AB . 
v v 2 2 

(24) 

(25) 

Throughout, we employ the notation T::[µ .. 11] •• = T::µ .. 11 •• - T::11 •• µ ... According 
to Eqs. (13) and (22) and the antisymmetry of the torsion, one also has 

(s)tµ0tf3 =(8) Kµ[0tf3J = O. (26) 

Then using Eqs. (25), (18), and (26), we obtain 

(8)fµa/l = 0. 
v 

(27) 

Next, if.we use Eqs. (25), (18), and (24), we deduce that 
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(s) 1 (s) - 1 l(s) rµ b = - Tµ b = - - Fib µ - - K µ,b 
~ 2 "' 4 "' 2 "'' 

(28) 

and 

(s) 1 (s) - 1 l(s) rµba = - Tµba = -Fbd' + - Kµba· 
v 2 4 2 

(29) 

Also, according to Eqs. (25) and {18), one has 

(8) 1 -
fµab = -Tµab· 

v 2 
(30) 

Only the components of the antisymmetric part of the connection Eqs. (27)­
(30) are needed explicitly for the considerations that follow. 

3. Almost complex structure 

The Finsler-spacetime tangent bundle is almost complex, and in the an­
holonomic basis adapted to the spacetime connection, the almost complex 
structure is given by [1, 3] 

J = ( 0 -g,,,b) 
AB 9a(3 0 (31) 

in the absence of torsion. In the presence of bundle torsion, the bundle 
connection has an antisymmetric part, and the almost complex structure 
becomes [5] 

[ 

2po(8)fµa.BVµ -g,,,b + 2po(s)rµabVµ] 
JAB - v v 

- 9a(3 + 2po(B)fµa,BVµ 2po(B)fµabVµ · 
v v 

(32) 

If we use Eqs. (27)-(30) in Eq. (32), and compare with Eq. (31), we conclude 
that the almost complex structure (Eq. (31)) is preserved in the presence of 
torsion, if the following conditions are satisfied: 

(33) 

and 

(34) 

Next, if one expands the convariant derivative of the almost complex 
structure "VEJAB by using Eqs. (31), (14), (1)-(8), (22) and (23), together 
with the corresponding results of [3] one concludes that 

(35) 
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provided that the following relations involving the bundle torsion are satis­
fied (including the other relations obtained above): 

(36- 38) 

(39,40) 

(41,42) 

(s)Kµ pdb _ o 
de µa - , 

(s)Km pli _ 11:' 
lit: /3ma - 2"C[a/3Jt:• (43 - 45) 

(46 - 48) 

where 

P /35 _ c/3 cli _{3/j 
µa - u µU a - y Yµa• (49) 

In summary, Eqs. (36)-(39) and ( 42) insure compatibility of the bundle con­
nection with Cartan's theory of Finsler space; Eqs. ( 41) and ( 44) insure that 
the almost complex structure is maintained; and Eqs. ( 40), ( 43), and ( 45)­
( 48) insure that the covariant derivative of the almost complex structure is 
vanishing. 

By means of the following identity [5], 

(50) 

together with Eqs. (39)-( 42) and ( 45), the following additional torsion rela­
tions can also be demonstrated [5]: 

(8)T-µ ne _ 0 
Serbµa - , 

(8)Kµd v"nbd - 0 e r1 µa - ' 

(s)T-µ na _ o 
derbµa - , 

(s)Km epli _ o 
lit;V {3ma - • 

(51,52) 

(53,54) 

(55,56) 



FINSLER SPACETIME TANGENT BUNDLE 373 

4, Simple solution to torsion relations 

A general solution to the torsion relations, Eqs. (36)-( 48) and (51 )-(56), 
expressing the components of the bundle torsion explicitly in terms of the 
gauge curvature field and four-velocity, will be addressed elsewhere. Here we 
instead seek a simple particular solution. 

Begin by considering Eq. ( 45) with the following ansatz 

(8)Km _ pm' 
Se - K Se, (57) 

as part of a possible self-consistent solution, where K is a constant. If we 
substitute Eq. (57) in Eq. (45), it follows, that K = -1/2, and therefore 

(8) Kms" = _!pm5e· 
2 

Also, Eq. ( 41) immediately suggests 

(8)Kµd" = _!F,J'. 
2 

(58) 

(59) 

Furthermore, in accordance with Eqs. ( 43) and ( 46), we can make the simple 
ansatz 

(60,61) 

Thus, the only nonvanishing components of the contorsion are given by Eqs. 
(38), (58), and (59), which are assembled here: 

and 

(8)Kµd" =(8) K,,ed = _!Fd 
2 

(62) 

(63) 

All other components of the bundle contorsion are taken to be vanishing 
(Eqs. (36), (60), (61), (47), and (48)), namely, 

(8) K µ51! = (8) K µde = (8) Kmse = (8) Kmde = (8) Km de = O. ( 64) 

Next we can substitute Eq. (62) in Eq. (39) and obtain 

(8)f'µse = 0. (65) 

Also, if we substitute Eq. (62) in Eq. ( 42), we get 

(66) 
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Furthermore, in accordance with Eq. (44), we also make the simple ansatz 

(67) 

Next, if we substitute Eqs. (64) and (67) in the expression for (8)Kmab given 
by Eq. (13), we obtain 

(gm19bd + 15md6~)(8)fdal = 0. (68) 

Equation (68) suggests the simple ansatz 

(69) 

Next, if we substitute Eqs. (64), (69), and (67) in the expression for (8) Kmba 

given by Eq. (13), we obtain directly, 

(70) 

Furthermore, if we substitute Eq. (64) in the expression for (8) Kmab given 
by Eq. (13), we obtain 

(
ml _en+ ml .en +.cm .en d)(

8
)T-d 0 

9 9adU b 9 9bdU a U dU aU b nl = • 
Equation (71) suggests the simple ansatz 

(71) 

(72) 

Finally, if we substitute Eqs. (65) and (63) in the expression for (S)Kmaf3 

given by Eq. (13), we get 

(8)T-m _ Fm 
a{3 - - a{3· (73) 

In summary, the only nonvanishing component of the torsion is in the 
fiber-base-base sector, and is given by Eq. (73). All other components of 
the bundle torsion are vanishing (Eqs. (37), (65)-(67), (69), (70), and (72)), 
namely, 

(S)fµse = (8)f'µ8e = (S)f'µde = (S)f'µde = (8)f'mse = (8)f'mde = (8)f'mde = 0. 
(74) 

Equations (36), (37), ( 43), ( 44), ( 46)-( 48), and (51 )-(54) are trivially satisfied 
by Eqs. (74) and (64). Equations (39) and (42) are satisfied by Eqs. (74) and 
(62). Equation (40) is satisfied by Eq. (62) together with Eq. (49). Equation 
(45) is satisfied by Eq. (63) together with Eq. (49). Equation (55) is satisfied 
by Eq. (62) together with Eq. (50). Equations (38) and (41) are satisfied by 
Eq. (62). And finally, Eq. (56) is satisfied by Eq. (63) together with Eq. (50). 
Thus, all of the torsion relations are satisfied by the simple solution given 
by Eqs. (73) and (74). 
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5, Conclusion 

The Finsler-spacetime tangent bundle with bundle torsion is compatible 
with Cartan's theory of Finsler space, and is almost complex with a van­
ishing covariant derivative of the almost complex structure\ provided that 
the torsion satisfies the relations given by Eqs. (36)-(48) and (51)-(56). A 
simple particular solution to these torsion relations is given by Eqs. (73) 
and (74), in which the only nonvanishing component of the torsion is in 
the fiber-base-base sector of the bundle, and is given by the negative of the 
gauge curvature field. 
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