International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025

The Geant4 Virtual Monte Carlo

Ivana Hiivnacova
Institut de Physique Nucleaire, 91406 Orsay Cedex, France

E-mail: ivana@ipno.in2p3.fr

Abstract. The Virtual Monte Carlo (VMC) [1] provides an abstract interface into the
Monte Carlo transport codes: Geant3, Geant4 and Fluka. The user VMC based application,
independent from the specific Monte Carlo codes, can then be run with all three simulation
programs. The VMC has been developed by the ALICE Offline Project and since then it has
been adopted in other experimental frameworks.

Since its first release in 2002, the implementation of the VMC for Geant4 (Geant4 VMC) [2]
is in continuous maintenance and development, mostly driven by the requirements from new,
non ALICE, users. In this presentation we will give an overview and the present status of this
interface. We will report on new features, such as support for user defined Geant4 classes (the
physics list, detector construction class) or support for Root TGeo geometry definition and
G4Root navigation. We will also discuss the aspects specific to Geant4d and comment on the
strong and weak points of the VMC approach.

1. Introduction

The VMC has already been described in detail in [1] and [3], here we only briefly summarize the
main ideas. The VMC defines an abstract layer between the detector simulation user code and
the transport Monte Carlo code (MC). In this way the user code is independent from a specific
MC and it can be used with different transport codes, as Geant3 [4], Geant4 [5], FLUKA [6],
within the same simulation application (Fig. 1).

In the VMC, we introduce on one side an interface to the transport MC itself, TVirtualMC,
and on the other side an interface to the user application, TVirtualMCApplication, as
schematically shown in Fig. 2. This allows decoupling the dependence between the user code
and the concrete MC. In VMC, we also define T'VirtualMCStack, an interface to a user defined
particle stack. All these classes are available together with a few more utility classes in the vmc
package in the ROOT framework [7].

The overview of the implementation of the VMC for Geant4, its present status and the new
features will be described in this article.

2. Geant4 VMC as a Geant4 application

To use the Geant4 toolkit, users have to define their application based on the Geant4 user classes.
There are three mandatory classes whose methods the user must override in order to implement
a simulation. They require the user to define the detector geometry, specify the physics to be
used, and describe how initial particles are to be generated. Then there are five optional user
action classes whose methods the user may override in order to gain control of the simulation
at various stages.

(© 2008 IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025

=N

Geant3 VMC
Il
Geant4 VMC
1
Fluka VMC

Figure 1. The VMC concept

TVirtual TVirtual
MCApplication MC

- v
[AN use —
~ - ~

implement - ~ -~ - implement

User

MCApplication TGeant3 || TGeant4

\

The concrete MC application The concrete MCs calls
calls the MC only through the MC application only through
the interface the interface

Figure 2. The VMC design

Besides implementing the functions defined in the T'VirtualMC interface, already described in
[3], the Geant4 VMC also fulfills the role of a Geant4 application. In the following sub-sections
we will describe how the Geant4 mandatory and user action classes are implemented in VMC.

2.1. Geometry definition
In a Geant4 application, the geometry definition is implemented in the detector construction
class. The geometry definition in the VMC has evolved in two phases:

e In the first implementation, the VMC provided Geant3-like functions for building geometry.
This facilitated the move to VMC for Geant3 users, however this interface is limited to the
features available in Geant3.

The support for Geant3-like VMC functions is in Geant4 VMC implemented using the
G3toG4 package in Geant4, as already described in [1].

e A new approach came with the introduction in Root of its own geometrical modeller,
TGeo [8], independent from existing simulation tools, which provides 10, visualization and
verification tools. Since the validation of TGeo with Geant3d VMC, the old way of defining
geometry via VMC functions is deprecated and new VMC users are encouraged to start
from TGeo.

The support for TGeo in Geant4d VMC is realized in two ways:

— By geometry conversion from TGeo to Geant4.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025

It was first, in 2003, implemented with a specific roottogd converter, provided with
Geantd VMC, which was later, in 2005, replaced with use of the Virtual Geometry
Model [9], provided as a tool external to Geant4 VMC.

— By direct interaction between the T'Geo navigator and the Geant4 simulation toolkit.
By the end of 2006, Geant4 VMC was integrated with the G4Root package [10], which
provides the interface between the T'Geo navigation and Geant4 simulation toolkit.

Users have the possibility to choose between Geant4 native navigation and G4Root
navigation, which are available in both cases to define geometry: via the VMC interface or
via TGeo. The possible selections are:

VMCtoGeant4, VMCtoRoot, RootToGeant}, Root, Geant/,
where the first word refers to the geometry input and the second one to the navigator to be
used. The last option is reserved for geometry defined via the Geant4 geometry model, which is
supported in Geant4 VMC, too.

Once the options selected are specified in the user code, the necessary packages are
automatically connected and the selected navigator is activated (Fig. 3).

Geant4

T

G4Navigator

TGeoMC G3toG4a

Geometry
User code User code User code
via via via
TGeo VMC Geant4 . .
Figure 3. Geometry options

2.2. Tracking media

The tracking medium in VMC has the same meaning as in Geant3. It represents a set of tracking
parameters associated to a material: sensitivity flag, parameters for magnetic field, maximum
step, etc.

As Geant4d did not adopt the Geant3 concept of tracking media, in Geantd VMC a
specialization of the G4UserLimits class is used to hold the relevant information from user
defined tracking media: the step limit, the vector of cut values and the vector of process controls.
The user limits are then used by the special processes, described in the next chapter, to apply
user defined values in tracking.

2.3. Physics selection
Geant4 does not have any default particle or physics process. Users have to define them explicitly
in their application.

Geantd VMC provides a helper physics list class, TG/ComposedPhysicsList (Fig. 4),
which allows to combine several G4V UserPhysicsList derived classes together. By default,

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025

G4VUser
PhysicsList
A
TG4Composed o*] G4VUser
PhysicsList PhysicsList
A
G4VModular
PhysicsList
TG4Modular TG4Special
PhysicsList PhysicsList
Definition of Special processes to .
physics setup implement VMC features Figure 4. The Geantd VMC default

physics list

G4VModular | *, G4VPhysics G4VModular G4VPhysics
PhysicsList Constructor PhySFSLISt COHS;’UC'EOF
TP?fZifSI?iEcr TG4Special TG4PC
y PhysicsList SpecialControls
o ——| TG4PC
TG4PCHadron TG4PCGeneral SpecialCuts
| | TG4PC
| TG4PClon TG4PCEM | StepLimiter
| | TG4PC
| | TG4PCOptical TG4PCMuon | | StackPopper
Definition of Constructors for special processes
physics setup to implement VMC features
Figure 5. The Geant4 VMC modular Figure 6. The Geantd VMC special

physics list physics list

this composed physics list includes two physics lists: TG4ModularPhysicsList, implementing
the physics setup, and TG4SpecialPhysicsList, implementing VMC specific features. Both
implement the G4 VModularPhysicsList class, which allows to decompose the physics setup into
the G4 VPhysicsConstructor objects.

The physics setup implemented in T'G4ModularPhysicsList (Fig. 5), has been collected from

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025

Geant4 novice examples and it is not tuned to any particular physics problem. That is why
users are invited to implement their own physics list class. The special processes are re-usable
in the user physics list.

The VMC defines its own identifiers associated with given physics processes. First, the
processes are associated with Geant3-like flag names, which can be used by users for activation
or inactivation of a selected process. Then, the TMCProcess codes are defined for getting the
information during tracking via T VirtualMC.

If users want to use certain VMC functions, they have to fill in the maps for the process
controls and for the process codes in the physics list. The mapping itself is already done in
TG4 ModularPhysicsList.

The special processes in T'G4SpecialPhysicsList (Fig. 6) implement the following VMC
features:

e Special controls process
This process implements the activation and inactivation of selected processes via
TVirtualMC using the VMC control flags. The flag names and the flag values have the
same meaning as in Geant3.
Below we give the declaration of the T'VirtualMC function and an example of its use for
the global activation of the Compton process:

TVirtualMC: :SetProcess(const char* flagName, Int_t flagValue);
gMC->SetProcess ("COMPT", 1);

e Special cuts process
In Geant4, cuts are applied as cuts in range per particle and region. In VMC instead,
there are introduced Geant3-like cuts in energy which are applied globally or per tracking
medium. In Geantd VMC, Geant3-like cuts are implemented by the special cuts process
and user limits. These cuts are applied as tracking cuts, not as a threshold.
Below we give the declaration of the T'VirtualMC' function and an example of its use for
setting the global energy cut 1 MeV to gamma particle:

TVirtualMC: :SetCut (const char* cutName, Double_t cutValue);
gMC->SetCut ("CUTGAMA", 1e-03);

e Step limiter process
The Geantd G4StepLimiter process is used to limit the step if step limitation is selected by
the user.

e Stack popper process
This process implements adding user defined secondary particles and will be discussed in
detail in the next section.

The special processes are not activated by default, they have to be activated by the user explicitly.

2.4. Primary generator and VMC Stack

The VMC provides the interface for the stack of particles, which has to be implemented by the
user. Users can also re-use the stack implementations from the VMC examples. The particles
in the VMC stack are of the Root TParticle type.

The primary particles are first filled by the user application in the user VMC stack as
TParticle objects, then they are transformed by Geant4 VMC in Geant4 objects and passed
to the Geant4 kernel. This sequence is shown in Fig. 7.

The secondary particles, created by Geant4 physics processes, are stored by Geantd VMC
in the user VMC stack. By default, storing happens at the beginning of tracking a secondary
particle. Optionally, users can choose to store a particle already in the step of the parent track,

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07)

Journal of Physics: Conference Series 119 (2008) 032025

VMC
Application | PushTrack

a

PopPrimary

VMC
stack of
TParticles

VMC

Application | PushTrack

VMC
stack of
TParticles

PopNextTrack

PushTrack

Geant4 Geant4)
kernel Geant4 kernel Geant4
stack(s) of stack(s) of
G4Tracks G4Tracks
Figure 7. Stacking of Figure 8. Stacking of

primary particles

secondary particles

IOP Publishing
doi:10.1088/1742-6596/119/3/032025

just when the secondary particle is produced. The storing of secondary particles can be also
inactivated.

In VMC, users also have the possibility of adding particles to the VMC stack during tracking.
In this case, the particle added by the user is considered as a secondary particle of a current
particle tracked. This feature is used by the ALICE collaboration to simulate the generation
of feedback photons in an avalanche close to a multiplicative wire. In Geant4d VMC, this
functionality has been implemented in the special T'G4StackPopper process, which monitors
the VMC stack, and if a new particle in the stack is detected, it is popped from the VMC stack
and passed to the Geant4 tracking.

Stacking of secondary particles is shown in Fig. 8, where the processing with an activated
stack popper process is highlighted in blue.

3. Geant4 VMUC specific features

Though the goal of the VMC is to hide to the user the specific transport codes, it does not
necessarily intend to prevent a user to access their facilities like various debug printing, geometry
verification and visualization tools. Geant4d VMC has been implemented in a modular and easy
extensible way and allows the user to re-use already existing Geant4 based code.

3.1. Run configuration
The run configuration class, TG4RunConfiguration, see Fig. 9, takes care of creating all Geant4
user defined mandatory and action classes that will be initialized and managed by the Geant4
kernel. This class can be extended in a user application by inheritance; this gives a user the
possibility to override the Geantd VMC default behavior or extend it for each Geant4d user
defined class.

The use cases for a user defined physics list, detector construction and primary event
generation are demonstrated and tested in the VMC example EO03, .

3.2. User Interface
The Geantd VMC brings together two toolkits: Geant4 and Root, both with their own user
interface, with quite different aspects.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing

Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025
TG4Run create TG4
Configuration DetConstruction
\ TG4Modular
PhysicsList
TG4

PrimaryGenerator

UserRun create User
Configuration PhysicsList

Figure 9. The run configuration class

In Geant4, the user interface consists of implemented commands associated to selected Geant4
or user objects. The commands are sensitive to the application state, and they perform strong
checking of user input.

In Root, the user interface is based on the CINT interpreter. All Root and user objects, for
which the dictionary exists, are accessible in the user interface. Any object public function can
be called at any time.

In Geant4 VMC, both Geant4 and Root user interfaces are available for the user. User can
switch between the two shells and it is also possible to call a foreign command or a foreign
macro in both shells. However it is not possible to access Geant4 objects from the Root shell,
as their dictionaries are not produced. A set of Geant4 commands associated with the objects
defined in Geantd VMC is implemented. To make their Geantd VMC relation apparent, all
these commands start with the prefix mec.

4. VMC examples and test suite

4.1. Examples

In order to demonstrate the use of VMC, four Geant4 novice examples (N01, N02, N03, N06) were
rewritten as VMC applications. In all examples, the geometry is defined using the Root TGeo
modeller and, alternatively for testing purpose, using the VMC functions. In the E03 example,
user defined run configuration with physics list, geometry and primary generator defined directly
via Geant4 is demonstrated.

4.2. Test suite
In the test suite script, all examples are executed with all options, the output is saved in files
and can be compared with the reference outputs stored in CVS.

5. The VMC Approach
The greatest advantage of the VMC approach is the possibility to run the VMC application
with different transport codes with minimum effort and so compare immediately the results.

As the VMC is integrated in the Root framework, it naturally provides the user the possibility
to define the simulation application entirely in this framework: the application is run from the
Root program and can be steered by a Root macro.

On the other hand, the user who opted for the VMC approach should be aware of some of
its limitations. The Geant4 toolkit is constantly upgraded with new features, implemented by
Geant4 collaboration developpers on request of its growing number of users . Naturally, not all
these features can be immediately interfaced in the VMC, some of them being difficult to fulfill
with other MC implementations.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 032025 doi:10.1088/1742-6596/119/3/032025

As the VMC represents an additional layer between the user application and Geant4, it brings
some overhead in performance. This depends on the user application, but in average it can be
of the order of 10%.

6. Conclusions
Geant4 VMC is in production since 2002. In this paper we gave an overview of the tool and of
its new features such as the support for user defined Geant4 classes, the support for Root TGeo
geometry definition and navigation, or the user defined secondary particles.

The Geant4d VMC is under test by several collaborations who adopted the VMC code: ALICE,
CBM, PANDA, Opera, MINOS.

References

Hiivnacova I et al 2003 Proc. of Computing in High Energy and Nuclear Physics (La Jolla) Id THJT006

http://root.cern.ch/root/vinc/Geant4dVMC.html

Carminati et al 2004 Proc. of Computing in High Energy and Nuclear Physics (Interlaken) Id 433

Brun R et al 1985 GEANTS User Guide (CERN Data Handling Division, DD/EE/84-1)

Agostinelli S et al 2003 Nucl. Instrum, and Methods A506 250-303

Fasso A et al 2001 Proc. of the MonteCarlo 2000 Conference (Lisbon, Springer Verlag Berlin) 159-164 and
955-960.

http://root.cern.ch

Brun R, Gheata A and Gheata M 2003 Proc. of Computing in High Energy and Nuclear Physics (La Jolla)
Id THMT001

[9] Hfivnacova I 2004 Proc. of Computing in High Energy and Nuclear Physics (Interlaken) Id 387

[10] Gheata A and Gheata M 2007 Computing in High Energy and Nuclear Physics Id 38

U W N =

DOV A N =

N

