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Abstract: We present an analysis of the Dirac equation when the spin symmetry is changed from

SU(2) to the quaternion group, Q8, achieved by multiplying one of the gamma matrices by the

imaginary number, i. The reason for doing this is to introduce a bivector into the spin algebra, which

complexifies the Dirac field. It then separates into two distinct and complementary spaces: one

describing polarization and the other coherence. The former describes a 2D structured spin, and the

latter its helicity, generated by a unit quaternion.
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1. Introduction

Spin, first observed by Stern and Gerlach [1], reveals two up and down states. Spin

is measured to be angular momentum of
√

3
2 h̄ magnitude, a vector quantity, belonging

to the SU(2) group. Spin is a fundamental property of Nature, purely quantum with
no classical analog. The mathematical basis for spin is the Dirac equation [2]. Dirac’s
analysis introduces his relativistic equation by linearizing the Klein-Gordon equation while
respecting the conservation of mass and energy. He was led to his gamma matrices with
four states rather than the two measured [3]. He surmised that his equation described
two spins rather than one. The two are mirror-image twins of each other, which Dirac
interpreted as a matter-antimatter pair [2]. From this hole theory, antimatter production
and the sea of electrons model followed [4].

Under the quaternion group, the two point particles that Dirac found are replaced by
one structured particle called quaternion spin, or Q-spin, that carries two complementary
properties: polarization and coherence. The coherence is helicity, which spins the axis of
linear momentum in free flight, as shown in Figure 1, giving the two helicity states of L
and R. In addition, two mirror states [5] emerge which describe two orthogonal magnetic
axes, each with a magnetic moment of µ. Each is also perpendicular to the axis of linear
momentum. The figure shows that Q-spin is geometrically equivalent to a photon. The two
magnetic fermionic axes e3 and e1 each carry a spin- 1

2 , which can couple to give a composite
spin-1 boson, e13. All three axes are orthogonal to e2 = Y, the axis of linear momentum,
Figure 1. Structured spin makes the intrinsic angular momentum of Dirac spin extrinsic.

To motivate this discussion, consider the well know equation for the geometric product
of Pauli spin components,

σiσj = δij + εijkiσk (1)

Arising from Geometric Algebra [6,7], the first term describes a symmetric component that
gives rise to polarization and measured Dirac spin. The second term is anti-symmetric and
depends upon a bivector, iσk, and the Levi Civita third-rank anti-symmetric tensor. Since
i cannot simultaneously be equal and not equal to j, the geometric product, Equation (1),
is complementary. There is, however, no bivector in the Dirac equation. We introduce a
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bivector by multiplying a gamma matrix by the imaginary number, γ̃2
s ≡ iγ2

s . This makes
the Dirac field complex, which is the origin of helicity. This paper aims to include this
anti-symmetric term as a property of spin, even though it is not measurable.

A spin 1
2 in free flight

Figure 1. Two properties of spin: two orthogonal spin- 1
2 polarization vectors, σ1 and σ3, perpendicular

to the direction of linear momentum, Y. The helicity, generated by iσ2, is in the direction of propaga-

tion, e2 = Y, and spins R or L. The two spin- 1
2 vectors, σ3 and σ1, couple to give a composite boson,

e13, of magnitude 1. These properties show that the spin is geometrically equivalent to a photon.

The procedure here has similarities to Penrose’s Twistor theory [8,9]. Essentially,
Twistor theory complexifies Minkowski space, a four-dimensional real manifold M, into
complex Twistor space, T. As a complex space, it has two projections into helicity states
of + and −, denoted by PT±. The boundary between the two, PN, is a real space of null
vectors, which are light rays from the light cone. Different slices in T lead to different
projections, groups, and algebras.

Here, we complexify the Dirac field in spin spacetime, not Minkowski space. No
additional parameters are introduced, and a non-Hermitian Dirac equation determines the
field. Under parity, this splits further into complementary spaces. In the following, these
ideas are formalized.

This paper is the first of several in which the properties and foundations of Q-spin are
presented. A second paper, “Spin helicity” [10], discusses the geometry and conservation
of correlation. A third paper [11] studies and simulates the EPR correlation between a pair
of spins. A general summary [12] describes some consequences of this symmetry change.

This four-state spin is called Q-spin to distinguish it from the usual Dirac spin. A
modified form of the Dirac equation admits both polarization and helicity, complementary
elements of reality. It describes spin as it exists in the absence of interactions and, therefore,
in free flight. Additionally, when measured, the boson spin decouples into a fermion of
spin- 1

2 . This is the measured spin that Dirac formulation.
Q-spin is a boson of odd parity in free flight, a wave, and a fermion of even parity

when measured, a particle. A similar conclusion was reached by Geurdes, [13], who showed
the Maxwell field equations for many photons is related to the Dirac equation describing
fermions. Spin has also been studied using quaternions as bosons and fermions [14,15] and
extends to relativistic quantum mechanics, as shown by Adler [14], Rotelli [16], Colladay
et al. [17], and Leo et al. [18,19], who also reformulated the Dirac equation from quaternions
in an electromagnetic field [20–22]. A large volume of work studies the Supersymmetric
formulation of spin using quaternions, Davies [23]

Our work has similarities to the above. We emphasize the structure of Q-spin as a
consequence of complexification. We also present the fermion and boson forms of Q-spin
and describe mechanisms for a transition between the two.

2. Spin Spacetime Algebra

No bivector is found in the Dirac equation because his point-particle spin is defined
in Minkowski space, a four-dimensional real manifold. In contrast, introducing a bivector
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gives spin structure and since it can be oriented randomly relative to Minkowski space;
we introduce spin spacetime, (βs, e1, e2, e3), which is the Body-Fixed (BFF) of one spin.
Minkowski space is the Laboratory-Fixed Frame (LFF) (β, X, Y, Z).

Dirac’s gamma matrices,
(

γ0, γ1, γ2, γ3
)

, represent the 4x4 Dirac field. Within this field,

there are two point-particle spins of 1
2 —each described by the three Pauli spin components

and the identity (I, σX , σY, σZ)—which belong to the SU(2) group; each is the mirror twin of
the other: Dirac’s matter–antimatter pair.

Introducing γ̃2
s = iγ2

s complexifies spin spacetime (subscript s) [8,9]. Minkowski
space obeys Clifford algebra Cℓ1,3. In contrast, the Clifford algebra of spin spacetime is
Cℓ2,2. An extensive body of literature discusses this split group [9,24–26]. The immediate
consequence of introducing the bivector is that the Dirac equation becomes non-hermitian,
with two fields expressed by

(

γ0
s , γ1

s ,±γ̃2
s , γ3

s

)

, and the solutions are mirror states, ψ± with
no parity. The ± division is complex conjugation.

The mirror states can be combined into odd and even parity states, and upon doing
this, the field separates once more into two distinct spaces and the algebra changes from
Cℓ2,2 to a 2D plane with the algebra Cℓ1,2, and a connection to the S3 hypersphere via γ̃2

s .
Spin spacetime decomposes into two complementary spaces: polarization spacetime (0,1,3)
of even parity and coherence space (2) of odd parity. It has the structure of a 2D plane of
polarization, Figure 2.

Minkowski and spin spacetime

Figure 2. Spin is oriented in spin spacetime by the BFF basis vectors (e1, e2, e3), which spin about

the axis e2 so that in Minkowski space, with the basis vectors (X, Y, Z), only a smeared-out image

of the precessing spin is projected. The lower right insert contrasts Dirac spin and Q-spin, which is

displayed as the resonance formed from coupling the N and E axes.

The bivector, iσ2, connects spin spacetime to the complementary space of the helicity
states generated by quaternions in the S3 hypersphere. This has four spatial dimensions
and cannot be measured. Its only role is to spin the axis of linear momentum, Y = e2,
either L or R, which are the two helicity states. Note that the helicity generates its own S3

hyperspace in free flight. It does not exist when measured.
Q-spin is one particle with four states, not two particles with two states each. This is

an entirely different interpretation from Dirac’s matter-antimatter pair. It suggests that only
Q-spin electrons and no positrons formed in the Big Bang. This obviates the need for Baryon
asymmetry, [27], to explain the dominance of matter. We do not deny that antimatter is
produced [28], but not as Dirac proposed if quaternion spin is accepted. Instead, consistent
with observations, antimatter is produced in small amounts from radioactive isotopes and
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pair particle production from high-energy photons. There can be no mirror universe under
quaternion symmetry.

The treatment here shows that the two fermionic axes are exact reflections of each
other, remaining in phase with equal and opposite frequency. Q-spin does not have the
negative energy problem Dirac encountered.

When the spin is measured, the helicity stops, and the usual two polarized states of
up and down are observed in some direction, |±, n̂⟩. Away from polarizing fields, the
spinning axis of linear momentum averages out the spin polarization. Only the helicity is
then present.

The spin-polarized structure can be expressed in Minkowski space. The bivector cannot.

3. Mirror States and Parity

The spin space-time gamma matrices
(

γ0
s , γ1

s ,±γ̃2
s , γ3

s

)

anticommute and have a differ-
ent signature from Minkowski space,

η̃
µν
s =









+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1









(2)

so the term γ̃2
s is not a spatial component, but rather, time-like and a frequency.

The commutation relations are changed from the usual three-dimensional generator
of rotations in Minkowski space,

S
ij

(3)
=

i

4

[

γi, γj
]

=
1

2
εijkσk I4 (3)

to ones that generate rotations in only two dimensions in spin spacetime

S
ij

(2)
=

i

4

[

γi
s, γ

j
s

]

=
i

2
εi2jσ̃s2 I4 (4)

Si2
(2) =

i

4

[

γi
s, γ̃2

s

]

=
i

2
εi2jσsj I4 (5)

The former equation describes rotations in the 31 plane in the direction of 2, whereas the
imaginary term in the latter equation damps all rotation attempts out of the 31 plane. This
leaves a disc of spin polarization.

Two new equations in spin spacetime follow from the gamma algebra, which gives a
non-Hermitian equation due to γ̃2

s ,

(

iγ0
s ∂0 − iγ1

s ∂1 ± iγ̃2
s ∂2 − iγ3

s ∂3 − m
)

ψ± = 0 (6)

We suppress the subscript s on the derivatives. By treating a spin in free flight in an isotropic
environment, the two axes (1, 3) are indistinguishable. Therefore, permutation with the
parity operator P13 does not change the (1, 3) dependence in Equation (6), but the bivector
iσ2 = σ3σ1 is anti-symmetric to the 13 permutation. Therefore, the above equations provide
two solutions in the left- and right-handed coordinate frames, which are mirror states [5,29],
Figure 3:

P13ψ± = ψ∓ (7)

The parity operator is given by [30],

P13 =
1

2

(

I1 ⊗ I3 + σ1 · σ3
)

(8)
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and permutes the (1,3) labels,

P13σ1P−1
13 = σ3 and P13σ3P−1

13 = σ1 (9)

The anti-commutation of the γ
µ
s matrices ensures energy is conserved and the Klein–Gordon

equation is recovered.

Mirror states of Q-spin

Figure 3. The mirror states of a Q-spin with ψ+ on the right and ψ− on the left. Note that adding

these states is independent of iσ2 and subtracting them is independent of σ1 and σ3.

Adding and subtracting the two equations in Equation (6) leads to their separation
into a Hermitian part and an anti-Hermitian part,

(

iγ′0
s ∂0 − iγ1

s ∂1 − iγ3
s ∂3 − m

)

Ψ
+ = 0 (10)

γ̃2
s ∂2Ψ

− = 0 (11)

where the two mirror states combine into states with odd and even parity, P13Ψ
± = ±Ψ

±,
with the definition

Ψ
± =

1√
2

(

ψ+ ± ψ−) (12)

The even-parity states describe polarization, and the odd-parity states describe its helicity.
The separation of the Dirac field into reflective states means each axis precesses

in the opposite direction. These two polarization axes, each with a magnetic moment
µ, constructively interfere, producing resonance and purely coherent spin, as shown in
Figure 4 (middle top). Such a resonance structure lowers the energy and stabilizes the 2D
structure over that of two point-particle spins.

The Hermitian part, Equation (10), is the same as the usual Dirac equation but in two
dimensions rather than three. It describes a disk, as visualized in Figures 1 and 2.

The bivector component, (2), describes a massless Weyl spinor in coherent space,
Equation (11).Time does not exist within this space beyond the constant frequency of its
spinning. Time and rest mass remain in polarization space. Similar to the two comple-
mentary inverse spaces of position and momentum, the two spin spaces carry the two
complementary properties of polarization and coherence.

We redefine the spinor mirror states as ψ+ ≡ ψR and ψ− ≡ ψL.
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Spin decoupling

Figure 4. The longer arrow denotes the direction of the polarizing field. Middle top: The two mirror

states are in free flight, and e1 and e3 couple to give a boson spin-1. Left and right: The fermionic axis

closer to the field axis aligns, and the boson decouples. Middle bottom: When the boson spin is close

to the field, it initially precesses as a spin-1 without decoupling.

4. The Weyl Spinor

From Equation (11) and using references [3,31], a Weyl spinor transforms under boosts
and rotations as follows:

ψR →
(

1 − iχ
σ2

2
+ iβ

σ2

2

)

ψR(0) (13)

ψL →
(

1 − iχ
σ2

2
− iβ

σ2

2

)

ψL(0) (14)

Since time exists only in polarization space, Equation (10), a boost of polarizations carries
along the spinors. There are no boosts in coherent space; the left and right wave functions
are equal.

ψR = ψL (15)

This state is a unit quaternion which spins the axis of linear momentum in coherence space
(2) by angle χ, thereby generating helicity.

ψL(χ) = exp
(

−i
χ

2
σ2

)

ψL(0) =
(

cos
χ

2
− iσ2 sin

χ

2

)

ψL(0) (16)

The usual definition [32] identifies helicity as the projection of the spin vector onto
the axis of linear momentum in Minkowski space. The helicity of the axis, L or R, gives a
spin state of +1 or −1. Spin and helicity are related and not independent. Q-spin is quite
different.

Here, helicity is defined only in quaternion space, the S3 hypersphere [33–35], where
there is no momentum to contract. Choosing Y = e2 connects Minkowski space to spin
spacetime and finally to the S3 hypersphere, where the component iσ2 generates the
quaternion in Equation (16), and provides a mechanism for helicity.

Within the spinning disc in the (3,1) plane, the fermionic axes couple to give the com-
posite boson of spin-1. However, the rapid spinning averages out the boson polarization
in the disc, so only helicity is present in free flight: an electron is then a boson of odd
parity, e−B .
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Helicity is a distinct element of reality and complementary to observed polarized spin.
All we observe of the helicity in our spacetime is its stereographic projection, which is the
spinning of the Y axis, giving a spinning disc of angular momentum in Minkowski space,
Figure 2.

5. The 2D Dirac Equation

We can transform from the BFF of the spin to the LFF using

e3 = cos θZ + sin θ cos φX + sin θ sin φY

e1 = − sin θZ + cos θ cos φX + cos θ sin φY

e0 = cos φY − sin φX

(17)

giving

γ1
s =

(

− sin θγ3 + cos θ cos φγ1 + cos θ sin φγ2
)

γ3
s =

(

cos θγ3 + sin θ cos φγ1 + sin θ sin φγ2
)

p3 = p · e3 = (cos θpZ + sin θ cos φpX + sin θ sin φpY)

p1 = p · e1 = (− sin θpZ + cos θ cos φpX + cos θ sin φpY)

(18)

The following expression is independent of θ:

γ1
s p1 + γ3

s p3 = γ3 pZ +
(

cos φγ1 + sin φγ2
)

(cos φpX + sin φpY) (19)

Taking the linear momentum in the direction Y = e2 requires setting φ = 0, giving,

γ1
s p1 + γ3

s p3 = γ1 pX + γ3 pZ (20)

The polarization in spin spacetime is projected onto Minkowski space. The spinning from
helicity is in coherent space, which spins the polarization in Minkowski space.

In contrast, a two-state fermion spin forms the unusual Dirac point particle e−F when
it encounters a polarizing field. A Fermi electron is even to parity. It has two states of up
and down. For boson electrons, the two polarized states are suppressed, leaving the two
helicity states of L and R.

We can define a momentum vector, p = p3e3 + p1e1, and the equation for 2D polariza-
tion becomes

(

E − m −p · σ
+p · σ −(E + m)

)(

u+

v+

)

= 0 (21)

where the even-parity state is written as Ψ
+ =

(

u+

v+

)

. This leads to the same Klein-Gordon

equation in Minkowski and spin spacetime,

(

∂2
0 − ∂2

Z − ∂2
X − m2

)

ψ = 0 (22)

(

∂s
2
0 − ∂2

3 − ∂2
1 − m2

)

ψs = 0 (23)

with eigenvalues for the latter of

E = ±
√

m2 + p2
3 + p2

1. (24)

We interpret the two energy states as internal energy, which is absent for point particles.
This is caused by the precession of the two spin axes on the same particle, Figure 4. As
mirror states, they are depicted as being in phase with equal, but opposite, energy—the
two couple to give a resonance spin-1. Precession, as shown, gives one component of, say,
m = +1. Reversing these precessions gives the m = −1 component. The m = 0 component
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cannot form since it would violate the reflective symmetry between the mirror states. Note
also that a photon has no m = 0 component. The two axes form the resonance boson, as
shown in Figure 4. Rather than Dirac’s matter-antimatter pair, Q-spin resolves the negative
energy problem Dirac encountered because the two axes must have equal energy but spin
oppositely.

We define the helicity matrix, Hg = γ1γ̃2γ3, which gives the spatial gamma matrices:

σi ⊗ Hg = σi ⊗
(

0 +I
−I 0

)

= γi (25)

The gamma algebra of Q-spin is virtually the same as for Dirac spin.

6. Quaternion Spin

In this section, we present more specific equations that describe the structure and
some properties of Q-spin. The equations that lead to the illustrations in Figure 4 are given.

Figure 5 shows the BFF with the Y axis perpendicular to the screen. The four bisectors
are shown, and the first quadrant is (e3, e1). Also shown is the long LFF Z axis oriented
relative to the BFF by angle θ. The field axis, a, is oriented by angle θa from Z, and finally,
the boson spin, e31, is at angle θ31 from the Z axis. The spinning disc is orthogonal to the
direction of motion, and therefore, the polarizing filter and the disc are co-planar.

Q-spin in a field

Figure 5. The BFF showing the (e3, e1) plane and the bisectors of the quadrants with boson spins-1.

The e31 boson is labeled. The plane is oriented in the LFF by the Z axis, and the angle θ31 is shown.

Also, θa orients the field vector a in the LFF. The angle θ is the orientation of a spin vector on the

Bloch sphere.

The complementary attributes of spin, polarization and coherence, simultaneously
exist, but only one is manifest at any instant. Just as the geometric product, Equation (1), is
the sum of two complementary contributions, so too we extend the usual definition of spin,
σ, to define Q-spin, Σk, as possessing both these properties:

Σk = σk + hk
g
= σk + ε · iσk : (k = 1 or 3) (26)

Based on the geometric product, Equation (1), the geometric helicity operator, h
g
= ε · iσ, is

an anti-symmetric, anti-Hermitian, second-rank tensor of odd parity [10].
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The state operator, ρ, expresses the expectation values for the Hermitian observables,
A, of a system, and is defined by the quantum trace over the operators [36]:

⟨A⟩ = Tr(Aρ) (27)

Despite helicity being an element of reality, it is not observable in Minkowski space where
we observe. Therefore, we express the pure state operator of Q-spin in terms of the
normalized sum of the two orthogonal axes that we can observe, and include nothing about
the S3 hyperspace. The state operator describes a pure state of one Q-spin,

ρ =
1

2

(

I +
1√
2
(σ3 + σ1)

)

=
1

2
(I + σ · r) (28)

The vector is identified r = 1√
2
(e3 + e1) in the BFF. From this, the expectation values are

calculated for the spin axes, Σ3, Σ1, using Equation (28),

⟨Σ1⟩ = ⟨σ1⟩+ ε · ⟨iσ1⟩ =
1√
2
(e1 + ie3Y)

⟨Σ3⟩ = ⟨σ3⟩+ ε · ⟨iσ3⟩ =
1√
2
(e3 − ie1Y)

(29)

with ⟨σi⟩ = + 1√
2

ei, and the vector products are,

ε · ⟨iσ1⟩ = +i
1√
2

e3Y; ε · ⟨iσ3⟩ = −i
1√
2

e1Y (30)

Permuting each axis in Equation (29) shows that the two fermionic axes are mirror states,
P13⟨Σ1⟩ = ⟨Σ3⟩∗. The first term in Equation (29) is the usual spin polarization observed.
The second shows the planes orthogonal to the axes: e1 is orthogonal to e3Y, and e3 is
orthogonal to e1Y. These terms form the wedge or vector product from GA [6] leading to
the formulation of helicity.

In free flight, the angular momentum of the two axes, Equations (29), constructively
interferes to produce the resonance spin, a boson of magnitude 1.

Σ31 = Σ3 + Σ1 (31)

Substituting Equation (29) gives the free-flight boson in the BFF, exp
(

±i π
4 Y

)

= 1√
2
(1 ± iY),

⟨Σ31⟩ = e1 exp
(

−i
π

4
Y
)

+ e3

(

+i
π

4
Y
)

(32)

This shows each axis multiplied by a unit quaternion that rotates around the Y axis. The e1

axis is rotated by −π
4 , and the e3 axis is rotated by +π

4 . Hence, the two axes coincide, bisect
the first quadrant, and form the resonant boson spin, labeled as e31 in Figure 5. Bisectors of
all the quadrants are possible corresponding to the boson resonance spins at any instant.
Each quadrant gives the same results, so we use the first.

In Figure 5, the axis of linear momentum, Y, is orthogonal to the (e1, e3) plane, showing
once again the geometric equivalence with a head-on view of a photon with the orthogonal
magnetic and electric components oscillating out-of-phase.

Equation (32) couples the two fermionic axes, depicted in the middle figure forming
the spin-1. When a boson encounters a polarizing field, it decouples into a fermion.
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7. Measured Spin

Rotate Equation (32) to the LFF using Equations (17) with φ = 0 and contract with a
polarizing field, oriented by angle θa in the LFF.

a = cos θaZ + sin θaX (33)

This gives a unit quaternion,

a · ⟨Σ3⟩ = cos(θa − θ)− i sin(θa − θ)Y

= exp(−i(θa − θ)Y)
(34)

When a boson spin encounters a field a, the Least Action Principle dictates that the closer
axis is influenced more than the further axis. This destroys the mirror property between the
axes as one aligns with the field. The helicity stops as the second fermionic axis, orthogonal
to the aligning axis, spins about the first (see the left and right panels of Figure 4). In the
presence of a field, the expectation value of the boson spin is

a · ⟨Σ31⟩ = a · ⟨Σ1⟩+ a · ⟨Σ3⟩ (35)

7.1. Competition between Axes

Equation (32) shows Q-spin in its BFF. Transforming to the LFF and using Equation (33)
leads to

a · ⟨Σ31⟩ =
1√
2

(

cos(θa − θ) exp
(

+i
π

4
Y
)

+ sin(θa − θ) exp
(

−i
π

4
Y
))

(36)

and shows the projections determine the contributions from each axis in the LFF,

a · e3 = cos(θa − θ)

a · e1 = sin(θa − θ)
(37)

and the competition between them, Equation (36).
Consider the angles which can be seen from Figure 5; using Equation (37) shows that

if θa − θ = 0 or π
2 , then the field is aligned with the e3 or e1 axis, respectively. However,

polarization along these axes is reduced from unity to 1√
2
, Equation (36). This is because

the polarization of the orthogonal axis to the aligned axis is averaged out and, therefore,
reduced. The angle must be aligned with the resonance boson spin to obtain full polariza-
tion. This occurs by choosing θa − θ = π

4 . In Figure 5, this value shows the field co-linear
with the bisector, e31, with equal contributions from both the e3 and the e1 axes, so the
polarization has a magnitude of 1. Choosing θa − θ = −π

4 shows the field vector orthogonal
to e31 with a value of zero.

7.2. The Boson Projections

If the field is co-linear with the boson spin, it precesses without uncoupling with
magnetic moment of 2µ. This is illustrated in the lower middle part of Figure 4, but as
the field is oriented further from the bisector and closer to one of the axes, the precession
changes to nutation, wobbles, and then decouples. Decoupling occurs when the field
strength increases and overpowers the boson spin-spin coupling. Alternately, as the field
axis moves further from a resonance spin, and closer to one of the fermionic axes, e3 or e1,
decoupling occurs directly. One of the two spin axes precesses with a magnetic moment of
µ, while its orthogonal axis is averaged out.

In Figure 5, the bisector lies 45◦ from either the e3 or e1 axis. We, therefore, assume,
again based on the Least Action Principle, that within the 45◦ wedge on either side of the
bisector, the boson spin remains intact. That is, the boson precesses without decoupling
when the field axis lies within 22.5◦ from the bisector. Outside the cone, decoupling occurs,
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and one of the two axes, e3 or e1, aligns. Depending on these orientation effects, Q-spin
either persists as a boson or rapidly decouples to a fermion.

Working in the first quadrant defined by (e1, e3), and using Equation (17) with φ = 0,
the relation between the bisector in the BFF and the LFF is

(e3 + e1) = (cos θ − sin θ)Z + (cos θ + sin θ)X

(e3 − e1) = (cos θ + sin θ)Z + (sin θ − cos θ)X
(38)

Alternately, Equation (37) projects e1 and e3 onto the field direction. First, we express Q-spin
in its BFF (see Equation (29)).

⟨Σ31⟩ = ⟨Σ3⟩+ ⟨Σ1⟩ =
1√
2
((e3 + e1) + i(e3 − e1)Y) (39)

Substitution of Equation (38) leads to

a · ⟨Σ31⟩ =
1√
2

(

(cos θ − sin θ)e−iθaY + (cos θ + sin θ)e+i( π
2 −θa)Y

)

=
1√
2

(

(cos θa + sin θa)e
iθY − (cos θa − sin θa)e

−i( π
2 −θ)Y

)

(40)

Each axis is multiplied by a unit quaternion, and the two are orthogonal. In Equation (38),
and contracting with Z and X, we see that the first term is the projection of the bisectors
along the LFF Z axis, and the second term is the projection along X axis. These projections
depend only on the spin’s orientation via θ,

(e3 + e1) · Z = (cos θ − sin θ)

(e3 + e1) · X = (cos θ + sin θ)
(41)

A similar interpretation follows from the second line of Equation (40). These can be
compared to Equation (36), which projects the axes e3 and e1 rather than their bisector, as
shown in Figure 5. Either equation can be used to determine the spin-polarization.

7.3. Q-Spin as Quaternions

Equations (36) and (40) lead to a quaternion in terms of the angle differences (θ31 − θa),
which is independent of θ.

a · ⟨Σ31⟩ = exp(i(θ31 − θa)Y) (42)

In the first quadrant, the bisector is normalized to

e31 =
1√
2
(e3 + e1) (43)

with the angle given by

e31 · Z = cos θ31

e31 · X = sin θ31

(44)

Clearly, Equation (42) shows that the boson aligns with the field when the angles are equal,
θa = θ13. As discussed above, when aligned and when a small amount offsets the field, the
boson does not decouple but precesses as a spin-1 with a magnetic moment of 2µ. This is
shown in the middle lower panel of Figure 4.

To determine which fermion axis will align, we use Equation (36) or Equation (40)
and determine which has the larger magnitude. The larger axis aligns, and its sign then
determines if the aligned spin is up or down. Note that the two axes, e3 and e1, have
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opposite magnetic moments of µ each. Consider further Equation (36), which can be
written as,

a · ⟨Σ31⟩ = exp
(

i
(π

4
− (θa − θ)

)

Y
)

= ei π
4 Ye+iθYe−iθaY

(45)

This shows that the product of three quaternions determines Q-spin. The first is a phase,
Equation (30), that maintains Alice and Bob’s spins anti-parallel; the second is a geometric
factor that orients the disc and is determined at the source; the third is a field quaternion
that pulls the axis.

8. The EPR Paradox

These features of Q-spin are crucial [10] in understanding the extra correlation found in
coincidence EPR experiments [37–40] and which is more fully discussed in paper three [10].
That is, the spin orientation relative to the field direction and strength of spin coupling rela-
tive to the field strength provide two mechanistic pathways for boson decoupling. The vio-
lation of BI [41] is due to the transition from a free-flight boson to a measured fermion.

Even though measurement reveals two real states, spin is a complex element of
reality and is defined by Equation (26). We have shown down to Equation (45) that
unit quaternions govern spin.

Consider the correlation between an EPR pair, which, using Q-spin, is written as a
product state between Alice and Bob.

E(a, b) = a · 1

2

(〈

Σ
A
31

〉〈

Σ
B
31

〉∗
+

〈

Σ
A
31

〉∗〈
Σ

B
31

〉)

· b

=
1

2
exp

(

i
(π

2
− (θa − θ)

)

Y
)

exp
(

i
(π

2
+ (θb − θ)

)

Y
)

+ c.c.

= − cos(θa − θb)

(46)

We have taken the angle θ to be θ ± π for Alice and Bob, so the two spins at the source have
a common orientation of θ that differs by π to keep the two anti-parallel. Since we only
measure in real space, similar to light, the complex part can be removed by forming linear
or circularly polarized components.

In EPR coincidence experiments, only the real part is measured, but the complex-
ity is essential to give the observed result, − cos(θa − θb), with a violation of BI [37] of
CHSH = 2

√
2. However, to obtain this result, both spins of Alice and Bob must be complex,

Equation (46). If one spin is polarized, there is no helicity, and only the scalar part of the
quaternion is present.

exp
(

i
(π

2
+ (θb − θ)

)

Y
)

= ei π
2 Y exp(i(θb − θ)Y)

no helicity−−−−−→ i cos(θb − θ)

(47)

We separate the π
2 phase needed for anti-correlation. Only the product state survives even

if one spin is coherent,

E(a, b) =− 1

2
exp(i(θa − θ)Y) cos(θb − θ) + c.c.

= − cos(θa − θ) cos(θb − θ)
(48)

Equation (46) shows Alice and Bob’s particles must both be boson spins to obtain the full
correlation. If one or the other has decoupled into a fermion, only a product state is possible.
The correlation from coherence is only present when Alice and Bob spin simultaneously
and precess as a spin-1.

The product state, Equation (48), satisfies BI with CHSH = 2, whereas the full corre-
lation in Equation (46) with CHSH = 2

√
2 violates the inequality. The part that violates
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BI is the correlation due to helicity [10,11]. Helicity replaces non-locality. Bell’s Theo-
rem [42] proves that real classical systems cannot violate his inequality, but is inapplicable
to complex complementary quantum properties that exist is two distinct convex spaces.

9. Discussion

In free flight, the spinning disc is reminiscent of the worldsheet Susskind intro-
duced [43]. A spin system is also an anyon [44], which can be either a fermion or a
boson. An important point about a boson in free flight is that the spinning axis aver-
ages out the boson polarization, Figure 1, so only the odd-parity helicity remains. Upon
measurement, a transition from a boson to a fermion occurs, giving the usual two-state
Dirac spin.

The motivation behind Twistor theory, [8,9], is Nature is fundamentally complex, and
we measure the real part. Q-spin supports this concept, as seen from the discussion above
on EPR. The coherence carried by the helicity accounts for the violation of BI [11]. Dropping
the complexity removes the quantum coherence, leaving only the classical correlation that
obeys BI. Without helicity, we have Dirac’s two-state spin and no coherent properties.

Introducing the bivector into spin algebra significantly changes our view of a spin
from a structureless point particle of intrinsic angular momentum in Minkowski space to
a four-dimensional structured spin with extrinsic angular momentum in spin spacetime.
Four axes compose Q-spin. One is the axis of linear momentum spun by the quaternion.
Two more are the magnetic axes, which couple to give the fourth, being the boson spin.
Figure 1.

The question arises: does Q-spin exists and is it more fundamental than point-particle
Dirac spin. That Q-spin and a photon have structure and properties in common is com-
pelling, Figure 1. Other quantum observables come in complementary pairs, like position
and momentum, etc., in spaces that are the inverse of each other. It is, therefore, reasonable
that spin also has two complementary properties, real polarization in its spin spacetime
and imaginary coherence on the S3 hypersphere.

Measurement has a central premise that the act of observation perturbs the system.
Q-spin makes a distinction between the measurement of a fermi electron, e−F (polarized,
particle, fermion, even to parity) and the free flight of a boson electron, e−B (coherence, wave,
boson, odd to parity). They epitomize particle-wave duality. An advantage of Q-spin lies in
its expression in terms of quaternions. One can envisage a spin as a stable qubit where the
two axes carry opposite spin. The evolution is calculated using the products of quaternions,
Equation (45), and the coherence maintains correlation between gates.

The mathematical foundations of Q-spin are the same as those of Dirac spin. Changing
the symmetry from SU(2) to Q8 is our only modification to the Dirac field. The solution
to the 2D Dirac equation and the spin spacetime gamma algebra carry over from the
usual treatment without difficulty. One advantage of Q-spin is that it gives alternate
interpretations of some troubling properties: non-locality is repudiated [11]; negative
energies of the antimatter particle are resolved; and several other changes challenge our
existing view of the microscopic, [12].

Nature is complex, and a free-flight electron is a boson of odd parity, and a measured
electron is a fermion of even parity.
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