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Abstract

In this master thesis various aspects of instantons are explored. To begin with
the SU(2) Yang-Mills instanton, followed by the extremal D-instanton of type IIB
string theory, both obtained via a Wick rotation. The D-instantons give rise to
wormholes, which are further investigated, especially for the Schwarzschild and
Reissner-Nordstrøm black holes. To obtain instantons, Kaluza-Klein reductions
over a time-like component are introduced, which can be seen as an alternative way
to obtain instantons, without a Wick rotation thus. This also relates instantons
to solitons. For various Lagrangians the instantons obtained in this way have
been explored, most notably the Reissner-Nordstrøm and dilatonic black holes,
the latter resembles the D-instanton if one of the scalar fields is turned off. This
system is investigated in depth, including the presence of wormholes and how they
are related to different frames used in string theory. The non-extremal solutions
obtained are uplifted and compared to standard literature and a prediction is
made of their effect on the effective IIB string theory action. It is conjectured
that besides the R4 contribution, which is due to the extremal D-instanton, the
non-extremal D-instantons give raise to a R8 contribution.

[When using standard letter size (10 pt) it is 86 pages, including
appendix, list of figures... etc.]
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Chapter 1

Introducing the Instanton

1.1 The Instanton

The name instanton dates back to 1976, due to G. ’t Hooft [28], and he describes
it as

My starting point is the solution of classical field equations . . . in four
dimensional (4D) Euclidean gauge-field theories . . . the solution is
not only localized in three-space, but also instantaneous in time. I
shall refer to such objects as ”Euclidean-gauge solitons”, EGS for short.

These ”Euclidean-gauge solitons” are now called instantons and the two relevant
words are written in bold. In this article ’t Hooft also explains why instantons are
relevant to physics

There is a simple heuristic argument that explains why these solutions
of the Euclidean field equations are relevant for describing a tunnelling
mechanism in real (Minkowsky) space-time . . .Consider an ordinary
quantum mechanical system with a potential barrier V larger than the
available energy E, which I put equal to zero. Then the leading expo-
nential of the tunnelling amplitude is exp(− ∫

pdx) with

p2/2m = V − E (1.1)

This corresponds to the classical equations of motion, except for a sign
difference. Thus the leading exponential is obtained by replacing in the
equations of motion t by it and computing the action S for a path from
one to the other vacuum.

Generalizing these two quotes to modern day theoretical theories, which are often
field theories, the concept of instantons play a role in calculating (parts of) the
path integral

G =
∫
D[φ]eiSMin(φ(x,t),φ̇(x,t)) (1.2)

where φ stand for the fields, SMin for the action in Minkowskian space-time and
the path integral D[x] goes over all fields φ that satisfy appropriate boundary
conditions. Only rarely can one explicitly solve these path integrals.
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Figure 1.1: Double well potential V (x),
without a classical solution

Figure 1.2: Rotated double well potential
V (x), with a classical solution

To explain these two quotes the instanton belonging to the double well poten-
tial, see figure 1.1, will be worked out in some detail. As a working definition of
the instanton will be used

Definition: An instanton is a finite action solution of the Euclidean
version of the Minkowskian action.

How one obtains the Euclidean (Euc) theory from the corresponding Minkowskian
(Min) action is explained in appendix A.1 [1]. Note that ’t Hooft uses in his
article the Euclidean version of the equations of motion, instead of the action. To
calculate the tunnelling amplitude (putting ~ = 1) for going from a at −τ

2 to b at
τ
2 one can use the Feynman path integral formalism

< b,
τ

2
|a,−τ

2
>=

∫
D[x]eiSMin (1.3)

where

S[x(t), ẋ(t)]Min =
∫ t

0

dt′
[1
2
m(ẋ(t′))2 − V (x(t), ẋ(t′))

]
(1.4)

and the path integral is over all paths that begin at a at −τ
2 and end at b at τ

2 .
A standard trick is to apply the stationary phase approximation (SPA) or saddle
point method: one realizes that the greatest contribution to the path integral
comes from a) the classical path (x(t)) that extremize the action, i.e. those paths
satisfying

∂S[x(t)]
∂x(t)

∣∣∣
x(t)

= 0 (1.5)

and b) from the fluctuations around it. Because the integrand of the sum over paths
in (1.3) is an oscillating function with phase S, only those paths that have roughly
the same action will interfere constructively and thus contribute to the sum. The
potential in figure 1.1 however does not have a classical solution connecting the
two wells at a and b. If however the action (1.4) is analytically continuated to the
whole complex plane by applying a Wick rotation to the time t via

t = τe−iδ δ ∈ [0, 2π] τ, δ ∈ R (1.6)

solutions do exist, as will be shown below. These are the instantons if they have
finite action. This continuation is allowed if there are no singularities throughout
the complex plane swept by δ, for convenience take δ = π

2 . This is now a Euclidean
theory, since a timelike component t has been changed into a spacelike component
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τ . To obtain a real action one has to multiply by −i, see appendix A.1 for more
details. Applying rules one and four to (1.4) gives

SEuc[x(τ), ẋ(τ)] =
∫ τ

0

dτ ′
[1
2
m(ẋ(τ ′))2 + V (x(τ ′), ẋ(τ ′))

]
(1.7)

and one achieves a sign flip before the potential, see figure 1.2. Also observe that
the tunnelling amplitude becomes now

< b,
τ

2
|a,−τ

2
>=

∫
D[x]e−SEuc (1.8)

which explains why the finite action requirement is needed. The sign change in
the action (1.7) means that there is now a classical path connecting a and b, since
these are now the maximum of the flipped potential, see figure 1.2. This classic
path is an extreme of the Euclidean action, in general a minimum. It will therefore
give an important contribution to the path integral (1.8), the instanton method
has thus induced tunnelling between a and b and an extra (perturbative) part of
the path integral has been calculated in this way. An anti-instanton solution is
obtained, if one takes into account the tunnelling from b to a. For physical results
a Wick rotation back to the normal time t (i.e. τ → it) must be applied to the final
results. When doing the full calculation one gets the same result as one normally
obtains via the WKB [34] method of quantum mechanics. This example shows
that the use of instantons is (amongst other things) to obtain more information
about the path integral. Later in this chapter it will be shown that instantons
in string theory also give corrections to the Einstein-Hilbert (EH) action in the
context of string theory.

1.2 SU(2) Yang-Mills[1]

The double well example explains both what instantons are and what they are
good for. Modern day theories like the Standard Model and extensions thereof
require groups like SU(N). Therefore a physically more interesting instanton is
the SU(2) Yang-Mills instanton. Let the vector-fields be Aa

µ, a = 1, 2, 3 and to
make the notation simpler introduce

Aµ(x) ≡
∑

a

g
σa

2i
Aa

µ(x) (1.9)

where x stands for (x1, x2, x3, x4), g is a coupling constant and σa are the Pauli
spin matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(1.10)

The σa

2 form the three generators of the two-dimensional representation of the
SU(2)-group1. The field tensor is defined analogously

Gµν ≡
∑

a

g
σa

2i
Ga

µν = ∂µAν − ∂νAµ + [Aµ, Aν ] (1.11)

1Which satisfies the Lie algebra [σa

2
, σa

2
] = iεabc σc

2
.
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where
Ga

µν ≡ ∂µAa
ν − ∂νAa

µ + gεabcAb
µAc

ν (1.12)

and εabc is the Levi-Civita symbol. The SU(2) gauge transformation U acts as

Aµ → UAµU−1 + U∂µU−1

Gµν → UGµνU−1
(1.13)

and the Minkowskian and the corresponding Euclidean action are

SMin =
1

2g2

∫
d4xTr[GµνGµν ] (1.14)

SEuc = − 1
2g2

∫
d4xTr[GµνGµν ] (1.15)

Note that in Euclidean space there is no difference between co- and contravariance.
A standard approach to obtain the Yang-Mills instantons is via the Bogomol’nyi
bound. Begin with the identity (Euclidean signature)

−
∫

d4xTr[(Gµν ± G̃µν)2] ≥ 0 ⇒ −
∫

d4xTr[GµνGµν ] ≥ ∓
∫

d4xTr[G̃µνGµν ]

(1.16)
where G̃µν = 1

2εµνρσGρσ is the dual of Gµν
2 and using (1.15)

S ≥ 8π2

g2
|Q| (1.17)

where |Q| is the Pontryagin index (see below)

Q ≡
∫

Q(x)d4x = − 1
16π2

∫
d4xTr[G̃µνGµν ] (1.18)

The minimum action is according to (1.16) obtained when

G̃µν = ∓Gµν (1.19)

Thus, self-dual (+) and anti-self-dual (−) configurations extremize the action for
this system3. Using as an ansatz

Aµ(x) = i
∑

µν
∂ν log[φ(x)] (1.20)

where

∑
µν

=
1
2




0 σ3 −σ2 −σ1

−σ3 0 σ1 −σ2

σ2 −σ1 0 −σ3

σ1 σ2 σ3 0


 = ηiµν σi

2
(1.21)

and

ηiµν = −ηiνµ =
{ εiµν for µ, ν = 1, 2, 3

−δiµ for ν = 4 (1.22)

2Tr[GµνGµν ] = Tr[G̃µνG̃µν ]
3This of course need not be it’s only extreme, when however the system has supersymmetry

extra conditions follow from that and fix the extreme uniquely.
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which means that
∑

µν is both antisymmetric and anti-self dual in its indices.
Substituting this into (1.19) and using (1.20) leads to the N -instanton solution

φ(x) = 1 +
N∑

i=1

λ2
i

|xµ − aiµ|2 ⇒ Aµ(x) = i
∑

µν
∂ν

(
log

[
1 +

N∑

i=1

λ2
i

|yi|2
])

(1.23)

where yµ ≡ (x− a)µ and y2 ≡ yµyµ. The special case N = 1 gives

Aµ(x) = −2iλ2
1

∑
µν

yν

y2(y2 + λ2
1)

(1.24)

This instanton is clearly singular at y = 0. This can be removed by applying the
gauge transformation

U1(x) =
(x4 + ixjσj)

|x| =
∑

µ

x̂µsµ (1.25)

leading to

Aµ(x)′ = −2i
∑
µν

yν

y2 + λ2
1

= −2i
∑
µν

(x− a1)ν

|(x− a1)|2 + λ2
1

(1.26)

where

∑
µν

= ηiµν σi

2
(1.27)

ηiµν = −ηiνµ =
{

εiµν for µ, ν = 1, 2, 3
δiµ for ν = 4 (1.28)

This is the one instanton solution4 with the corresponding action

SEuc = − 1
2g2

∫
d4xTr[GµνGµν ] =

8π2

g2
(1.29)

Note that
∑

µν is self-dual and hence it solves (1.19) with the plus sign. The cor-
responding Pontryagin index is via (1.17) Q = 1. Now that an instanton solution
has been obtained, a tunnelling interpretation will be described. First analyze the
classical vacuum configurations of the Minkowskian action (1.14): SMin = 0 ←→
Gµν = 0. However according to (1.13) this is a gauge invariant statement and thus
the vacuum is described by the pure gauges

Aµ(x) = U(x)∂µ

(
U−1(x)

)
(1.30)

When working in the A0(x, t) = 0, gauge the only gauge transformations still per-
mitted are the time-independent ones described by the time-independent matrices
Λ(x, t) = α(x), i.e.

Ai(x) = e−α(x)∇ie
α(x) (1.31)

4The anti-instanton solution can be obtained by replacing
∑

µν by
∑

µν .
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Restricting to those α(x) which satisfy eα(x) = 1 at spatial infinity (all points
|x| = ∞) implies that three-dimensional space is compacted into the surface S3

phy,
where the subscript phy stands for physical space. The topology of the SU(2)
group is the three-dimensional surface of a unit sphere in four dimensions, S3

int,
where the subscript int refers to the fact that this is the ”group space” or internal
space. The eα(x) therefore map S3

phy into S3
int and such mappings can be classified

into homotopy sectors which form the homotopy group π3(SU(2)) = Z. Each
sector is characterized by an integer, the Pontryagin index N

N =
1

24π2

∫
d3xTr[(e−α(x)∇ie

α(x))(e−α(x)∇je
α(x))(e−α(x)∇keα(x))]εijk (1.32)

Thus the classical vacua described by (1.31) can be divided into sectors, labelled
by the index N . As an example look at

A
(1)
i (x) = e−α1∇ie

α1 (1.33)

with
α1(x) =

iπσ · x
(x2 + a2)1/2

+ iπσ3 (1.34)

which belongs to the N = 1 sector and at spatial infinity eα1(x) → 1. The gauge
transformation

g1(x) = e−α1(x) (1.35)

takes the N = 0 configurations Ai = 0 into the N = 1 configuration A
(1)
i (x).

Around each homotopy class N , of classical vacua, one can construct a topological
vacuum state |N >, these states in different homotopy sectors are not gauge
equivalent. To explain this look at Gauss’s law

I(x) = ∇E(x)− j0(x) = 0 (1.36)

In a quantized theory this becomes an operator I(x) and cannot be equal to zero,
for it must obey the canonical commutation relation

[I(x1), Ax(x2)]t=0 = i
∂

∂x1
[δ(x1 − x2)] 6= 0 (1.37)

where t = 0 is taken because of the temporal gauge chosen. To satisfy the above
two relations in a quantum theory, define the physical states as those states that
satisfy

I(x)|Phys >= 0 (1.38)

The Yang-Mills version of this is

I(x) ≡ DiG
0i = ∂iE

i + [Ai, E
i] = 0 (1.39)

where Ei ≡ G0i is the Yang-Mills ’electric’ field. To explain where this generalized
Gauss’s law follows from, look at the equation of motion that follows from the
Yang-Mills action (1.15)

DµGµν ≡ ∂µGµν + [Aµ, Gµν ] = 0 (1.40)

In the temporal gauge this leads to (1.39) and quantizing this leads to the physical
state constraint

DiE
i|Phys >= 0 (1.41)
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Infinitesimal the gauge transformation (1.13) with U = e−Λ(x) ' 1− δΛ(x) leads
to

Ai → Ai + [Ai, δΛ] +∇i(δΛ) = Ai + Di(δΛ) (1.42)

with Di the covariant derivative. Restrict to those Λ̂(x) which behave at spatial
infinity as

lim
x→∞

Λ̂(x) → 0 (1.43)

which are called the ’little’ gauges. The canonical momentum conjugate to Ai is

∂L
∂0Ai

=
2
g2

Ei (1.44)

and thus the operator in quantum theory generating these gauge transformations
e−Λ̂ is

U = e
2i
g2

∫
d3xTr(DiΛ̂E) = e

−2i

g2

∫
d3xTr[Λ̂DiE

i] (1.45)

where integration by parts has been used and the fact that Λ̂ is a little gauge.
This operator acts on physical states due to the generalized Gauss’s law as

U |Phys >= |Phys > (1.46)

Gauge equivalence applies only to these little gauges. The example given by g1(x)
(1.35) does not belong to these, since at spatial infinity eα goes to one. To obtain
the tunnelling interpretation a link must be made to the Euclidean action (1.15)

SEuc =
1

2g2

∫
d4xTr[GµνGµν ] (1.47)

To have finite action, the fields Aµ(x, t) must approach vacuum (pure gauge)
configurations at the boundary of Euclidean space-time. This boundary is again
a S3

phy, e.g. S3
phy ⇒ SU(2). Such mappings can be described by the Pontryagin

index Q

Q = − 1
16π2

∫
d4xTr[GµνG̃µν ] =

1
24π2

∮

s3
dσµεµνρσTr[AνAρAσ] (1.48)

Note that in the classical vacuum analysis the index N goes only over the spatial
part, i.e.

∫
d3x, due to the A0 = 0 gauge chosen, whereas here the integral goes

over the full Euclidean space. The relevant Euclidean path integral G is

G =
∫
D[Aµ]e−SEuc (1.49)

where the path integral is over all fields Aµ that satisfy the vacuum boundary
conditions at spatial infinity. The Pontryagin index is a homotopy index and
hence two different values of Q cannot be related. Therefore (1.49) can be split
into a sum over all different values Q

G =
∑

Q

∫
D[Aµ]Qe−SEuc ≡

∑

Q

GQ (1.50)

Go again to the A0 = 0 gauge and picture the boundary of space-time as shown
in figure 1.3. The two flat surfaces of the cylinder stand for all three-dimensional
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Figure 1.3: Boundary of the spacetime for the Yang-Mills system

space at τ ′ = ±∞, while the curved surface stands for the boundary of space,
x → ∞ at all τ ′. In the A0 = 0 gauge the index µ of (1.48) can only take the
value µ = 0. Therefore

Q =
1

24π2

∫
d3xεijkTr[AiAjAk]τ ′=±∞ (1.51)

Now compare this to the classical vacuum index N (1.32)

Q = N+ −N− (1.52)

where N+ stands for τ ′ = +∞ and N− on τ ′ = −∞ . To use the full gauge
freedom available, set α(x) = 0 at τ ′ = −∞. This means that N− = 0 and thus
Q = N+. The GQ’s can then be interpreted as the Euclidean transition amplitude,
connecting the classical vacuum labelled by N = 0 to the classical vacuum labelled
by N = Q. Of course this interpretation is only valid within the gauges chosen. An
interesting consequence of this all is that the true vacuum is no longer described
by N but one should introduce the so called θ-vacuum

|θ >=
+∞∑

N=−∞
eiNθ|N > (1.53)

and this is the true vacuum of the SU(2) Yang-Mills system. As explained the
operator U(g1), (1.45)5 which performs the gauge transformation g1, acts on a
state |N > as

U(g1)|N >= |N + 1 > (1.54)

because this is not a little gauge transformation and hence can change the homo-
topy index N . It still has to commutate with the Hamiltonian H, [U(g1),H] = 0,
and since U(g1) is unitary its eigenvalues are of the form e−iθ. The eigenstates
of the hamiltonian are |N > and in combination with the unitary requirement it
follows that the θ-vacuum does the job, since

U(g1)|θ >=
+∞∑

N=−∞
eiNθ|N + 1 >=

+∞∑

N=−∞
ei(N+1)θ|N + 1 >= |θ > (1.55)

5This means take for Λ̂ = g1.
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The action will be influenced as follows

< θ|e−Hτ |θ >=
∑

N,Q

e−iQθ < N + Q|e−Hτ |N >

= 2πδ(0)
∑

Q

e−iQθ

∫
D[Aµ]Qe−SEuc ]

= πδ(0)
∫
D[Aµ]all Qe

(
−SEuc+

iθ
16π2

∫
Tr(GµνG̃µνd4x)

)
(1.56)

where the first equality follows from the definition of the θ-vacuum (1.53), the
second one follows from the Feynman path integral formalism for calculating ex-
pectation values and the last one from the definition of Q, (1.48). The exponent
now defines a new contribution to the action

Stotal ≡ SEuc − iθ

16π2

∫
Tr[GµνG̃µν ]d4x (1.57)

This results into adding to the Minkowskian Lagrangian density the extra term

∆Lθ =
θ

16π2
Tr[GµνG̃µν ] (1.58)

This too is a gauge invariant result like the θ-vacuum and can be shown to be a total
divergence, it will thus not affect the classical Yang-Mills equations. However for
each θ it will yield a different quantum theory, where the corresponding θ-vacuum
is the ground state of the system. Another interesting aspect of this additional
Lagrangian is that it can be rewritten as

∆Lθ =
θ

16π2
Tr[GµνG̃µν ] =

θ

16π2
Tr[4EiB

i] (1.59)

if the definition of Gµν is substituted. Now under time-reversal T the electric field
is invariant, but the magnetic field changes sign, whereas the opposite happens
under a parity transformation P 6. The original Lagrangian can be shown to be
equal to Tr[EiE

i −BiB
i] and thus invariant under both parity and time reversal.

Hence for all θ 6= 0 the total Lagrangian becomes P and T violating. Finally
observe that the original Lagrangian of this theory (1.14) does not have a clear
potential as the double well system has (1.4), only by going to the temporal gauge
it was possible to give a tunnelling interpretation.

1.3 D-instantons in type IIB String theory

The massless bosonic content of the chiral type IIB superstring consists of a gravi-
ton gµν , an antisymmetric two-index tensor B

(2)
µν , a dilaton φ from the NS-NS

(Neveu-Schwarz) sector, an axion (zero-form) a, a 2-form C(2) and a four form
C(4) with a self-dual field strength from the R-R (Ramond) sector. These fields
correspond to a total of 128 physical degrees of freedom, of which 35 are associ-
ated with the graviton, 28 with the 2-form B

(2)
µν , one with the dilaton, one with

6Under a parity transformation the time t remains unchanged and the spatial part changes
sign, (t,x) → (t,−x).
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the zero-form a, 28 with the 2-form C(2) and 35 with the four-form C(4). The
signature being used in this section is diag = (−, +, ..., +).

A simple way to explain why the axion a has to be a pseudoscalar is the
following. Type IIA string theory is defined by multiplying the Majorana-Weyl
spinors7 with opposite chirality (8s + 8v) × (8s + 8v), [27], causing a left-right
symmetry under parity. Here (8c, 8s) are the two fundamental eight dimensional
spinor spaces, 8s with positive chirality, 8c with negative chirality and 8v the
massless Neveu-Schwarz representation. The particle spectrum has this mirror
symmetry too. The action described below (1.61) is the massless (bosonic) sector
only, for massless particles helicity and chirality agree

chirality = helicity =
~s · ~p
|~p| (1.60)

where ~s is spin and ~p is the momentum. Applying a parity transformation, as
defined at the end of the previous section, changes the helicity to its opposite sign
as is clear from the momentum. In type IIA this merely interchanges the left-
and right sector and parity and thus helicity is conserved. For type IIB the two
Majorana-Weyl spinors have the same chirality: (8s + 8v) × (8s + 8v). Under a
parity transformation there is no left-right symmetry then. This should apply to all
particles, including the scalars. A scalar is invariant under a parity transformation
and thus does not agree with this. A pseudoscalar however changes sign under a
parity transformation8 and thus does the job.

The low energy effective action of the type IIB string can be written in the
string frame (SF ) as [4]

SSF
Min,IIB =

∫
d10x

√
ge−2φR+

∫ [
e−2φ

(
4dφ ∧ ∗dφ− 1

2
H(3) ∧ ∗H(3)

)

− 1
2
F (1) ∧ ∗F (1) − 1

2
F̃ (3) ∧ ∗F̃ (3) − 1

4
F̃ (5) ∧ ∗F̃ (5) −

1
2
C(4) ∧H(3) ∧ F (3)

]
(1.61)

Where R stands for the Ricci scalar, g = Det[gµν ],

H(3) = dB(2), F(1) = da, F(3) = dC(2), F(5) = dC(4) (1.62)

and

F̃ (3) = F (3) − a ∧H(3), F̃ (5) = F (5) − 1
2
C(2) ∧H(3) +

1
2
B(2) ∧ F (3) (1.63)

The use of the wedge product ∧ implicitly already takes into account the presence
of

√
|g|, it is therefore not written except in the Ricci scalar term. The string

frame is that metric9 for which there is no coupling between the kinetic term of
the axion a and the dilaton φ. Solving all fields in the action (1.61) is a very
difficult task. To make things simpler, truncate away all field except φ, a and the

7Weyl means that they are helicity eigenstates and Majorana means that the particle is equal
to its anti-particle, i.e. that it is neutral like for example the photon.

8See appendix A.1
9Obtained by a conformal mapping via eαφ, where α is a constant. See for example the

Einstein frame below.
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metric gµν . This system allows an instanton solution, the so called D-instanton.
The truncated version of the action (1.61) is

SSF
Min =

∫
d10x

√
g{ e−2φ{R+ 4∂µφ∂µφ} − 1

2
∂µa∂µa} (1.64)

The coupling between R and φ makes calculating the equations of motion difficult.
Removing this coupling can be achieved by going to the Einstein frame (EF ) via
a conformal mapping of the metric

gSF
µν = e

φ
2 GEF

µν

⇒ √
gSF e−2φRSF =

√
GEF e−2φ

[
REF − 4

D − 1
D − 2

(∂φ)2
]

=
√

GSF e−2φ
[
REF − 9

2
(∂φ)2

]
(1.65)

for D = 10. The definition of the Einstein frame is that frame in which the
Einstein-Hilbert action,

√
|G|R, is not coupled to the dilaton. Note that this

implies two different infinitesimal line elements

ds2
SF = GSF

µν dxµdxν

ds2
EF = GEF

µν dxµdxν

⇐⇒ds2
SF = e

φ
2 ds2

EF

(1.66)

The word frame here has nothing to do with the word frame as used in special
relativity. There a boost means viewing the event in a different frame, e.g. a co-
moving or a laboratory frame, the infinitesimal line element ds2 is invariant under
such transformations, see also below (1.79). Applying this conformal change to
(1.64) gives10

SEF
Min =

∫
d10x

√
G{R − 1

2
∂µφ∂µφ− 1

2
e2φ∂µa∂µa} (1.67)

To obtain an instanton solution, a Wick rotation needs to be applied. As explained
in appendix A.1 the pseudoscalar a picks up a factor of i. The Euclidean (Euc)
action in the Einstein frame becomes then

SEF
Euc =

∫
d10x

√
G{−R+

1
2
∂µφ∂µφ− 1

2
e2φ∂µa∂µa} (1.68)

The field equations that follow from (1.68) are for respectively Gµν , a and φ

Rµν =
1
2

(
∂µφ∂νφ− e2φ∂µa∂νa

)
(1.69)

∂µ

(√
|G|e2φGµν∂νa

)
= 0 (1.70)

and
∂µ(

√
|G|Gµν∂νφ) +

√
|G|e2φGµν∂µa∂νa = 0 (1.71)

10
√
|g|e−2φ∂µφ∂µφ =

√
|g|e−2φgµν∂µφ∂νφ =

√
|G|e+ 5φ

2 e−2φ∂µφ∂νφe−
φ
2 Gµν =√

|G|∂µφ∂νφGµν
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Note that the first equation of motion is nothing else than the Einstein equation

Gµν ≡ Rµν − 1
2
GµνR = Tµν (1.72)

To see this realize that to derive this equation of motion also the term

δ(
√
|G|)

δGµν
= −1

2

√
|G|Gµν (1.73)

needs to be taken into account. To solve these equations of motion use as a metric
ansatz flat space. In flat Euclidean space R = 0, taking the trace of (1.69) and
substituting this into (1.71) gives

∂µ

(√
|G|Gµν∂νeφ

)
= ¤eφ = 0 (1.74)

which is the spatial D’Alembertian in spherical coordinates. This means that eφ is
a harmonic function and hence the spherically symmetric solution for the dilaton
is

eφ = eφ∞ +
c

r8
(1.75)

Here eφ∞ ≡ g, the coupling constant and c is an integration constant, which will
later be related to a conserved charge. The low energy approximation used here
is only valid if g is small. From the trace of (1.69) and realizing that e−φ∂µφ =
−∂µe−φ follows

∂µa = ±∂µe−φ ⇒
∫ a∞

a

d10x ∂µa = ±
∫ φ∞

φ

d10x ∂µe−φ (1.76)

And thus the axion solution is

a = ±(e−φ − e−φ∞) + a∞ = ±(e−φ) + ã∞ (1.77)

where + refers to the instanton and − to the anti-instanton. Harmonic functions
are valid for all r, except at the origin. In general one solves this problem by
adding a delta function as a source term to the action [31]. The solutions for φ
and a still solve the equations of motion in the string frame,

SSF
Min =

∫
d10x

√
g{e−2φ{−R− 4∂µφ∂µφ} − 1

2
∂µa∂µa} (1.78)

For example the corresponding equation of motion for a is

∂µ

(1
2

√
|G|Gµν∂νa

)
= 0 (1.79)

which is still solved with (1.77). Besides this mathematical proof, there is a more
physical argument why this had to be so. A metric is used to measure time and
distances, by a conformal mapping of the metric one only changes the ”units” in
which one wishes to measure. Note that the coordinates are not changed by this
mapping, only the overall factor, therefore the solutions should not change.
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The action of the instanton (the triplet dilaton, axion and the metric) is clearly
zero when plugged into (1.68)11. This seems awkward and can be resolved by
realizing that adding a total derivative (e.g. a boundary term) to the action
will not change the equations of motion. As derived in appendix A.2 the correct
boundary term Ssurf is

Ssurf =
∫

d10x∂µ{
√

GGµνe2φ(a∂νa)} =
∮

e(2φ)a ∧ ∗da (1.80)

This will give for the instanton action (see appendix A.2 for details)

SInst =
8cV ol(S(9))

g
(1.81)

The action above can be connected to a conserved charge. Namely one of the con-
served Noether currents JNoether

µ = e2φ∂µa, which comes from a ⇒ a + constant.
The corresponding conserved charge Q is

|QInst,a| =
∣∣∣∣∣
∮

S9
r=∞

e2φ∂µadΣµ

∣∣∣∣∣ =

∣∣∣∣∣
∮

S9
r=∞

eφ∂µφdΣµ

∣∣∣∣∣
= 8cV ol(S(9))

(1.82)

and thus the following relation between the charge and the action holds

SInst =
|QInst|

g
(1.83)

Note the characteristic SInt ∝ 1
g for instantons. So far no tunnelling phenomenons

have come into play. To observe this the flat infinitesimal line-element must be
written in the string frame (1.65)

ds2 = (eφ∞ +
c

r8
)

1
2 (dr2 + r2dΩ2

9) =
√

eφ∞ r4 +
c

r4

[
(
dr

r
)2 + dΩ2

9

]
(1.84)

where dΩ2
9 is

dΩ2
9 = dθ2

1 + sin2 θ1dθ2
2 + ... + Π8

m=1 sin2 θmdθ2
9 (1.85)

It is clear that
eφ∞r4 ←→ c

r4
(1.86)

is a symmetry of the metric. This symmetry interchanges the regions around r = 0
with those around r = ∞, both are asymptotically flat spaces. To see that the
region near r = 0 is an asymptotically flat space, approximate it by

ds2 =
√

c

r4
[(

dr

r
)2 + dΩ2

9] (1.87)

and substitute the new coordinate ρ = c1/4

r in it

ds2 = dρ2 + ρ2dΩ2
9 (1.88)
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Figure 1.4: Wormhole interpretation (in the string frame)

Such a connection between two distant areas of space or a connection between two
different spaces is often called a wormhole, see figure 1.4 and chapter two for more
details.

It is important to realize that only in the string frame this wormhole interpre-
tation holds. In a way this is similar to the SU(2) Yang-Mills instanton, for there
only the tunnel interpretation works in the A0 = 0 gauge. In chapter four the
D-instantons obtained in this section will be extended to so called non-extremal
D-instantons (i.e. non-flat space ansatz) and their wormhole behavior will be
investigated.

According to Feynman [5] the connection between the D-instanton and path
integrals can be made via

< g2, φ2, S2|g1, φ1, S1 >=
(∫

D[g, φ]eiS[g,φ]
)

Min
=

(∫
D[g, φ]e−S[g,φ])

)
Euc

(1.89)
where D[g, φ] is a measure on the space of all field configurations g (the metric)
and φ, S[g, φ] is the action of the fields, and the integral is taken over all fields
which have the given values on S1 and S2.

1.3.1 The Bogomol’nyi bound

A much more straightforward derivation of the D-instanton can be achieved by
going to the dual form (dual) of (1.68). For a full derivation of how to obtain
this correctly and how this is related to the added boundary term (1.80), see
appendix A.2. Also is explained there why this procedure only works in the dual
formulation and not for the axion formulation. Ignoring the Ricci scalar and let
F (9) = dC(8) = e2φ ∗ da

SEF
Euc,dual = −1

2

∫
dφ ∧ ∗dφ + e−φdC(8) ∧ ∗dC(8) (1.90)

The idea of a Bogomol’nyi bound is to rewrite this as

S = −1
2

∫
(dφ± e−φ ∗ dC(8)) ∧ ∗(dφ± e−φ ∗ dC(8))∓

∫
e−φdφ ∧ dC(8) (1.91)

and realizing that the first term on the right hand side is ≥ 0, see also (1.16).
Taking the equal sign gives for the instanton action

11Since R is zero in flat space and via (1.76).
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S ≥
∫

M

e−φdφ ∧ dC(8) = −
∫

M

d
(
e−φdC(8)

)
= −

∮

∂M

e−φF (9) (1.92)

Here ∂M = ∂M∞+ ∂M0 denotes the boundary of space-time which consist of the
S9 at r = ∞ (∂M∞) and the S9 at r = 0 (∂M0)12. The minimum of (1.91) is
obtained when

dφ = ∓e−φ ∗ dC(8) ←→ ∗dφ = ±e−φF (9) (1.93)

Using F (9) = dC(8) = e2φ ∗ da this can be rewritten too

dφ = ±eφda (1.94)

The D-instanton solutions (1.75) and (1.77) satisfy this relation and (1.92) becomes
with these solutions

S =
∣∣∣∣
∮

∂M

∗dφ

∣∣∣∣ =
8cV ol(S9)

eφ∞
(1.95)

Two remarks can be made now. The first one deals with the fact that due
to the added boundary term the action is now bounded from below in the scalar
sector, as is evident from (1.92). Note that this is not the case if one ignores the
boundary term (1.68). The second remark has to do with solutions that obey the
Bogomol’nyi bound. A special condition in string theory is the so called BPS-
condition. This BPS condition is useful because it results in the cancellation
of quantum corrections to the effective action for string theory, so that precise
answers can be found by simple calculations at lowest order in perturbation theory.
In general it can be shown that a BPS-state preserves precisely one half of the
supersymmetry, this characterizes a BPS state. So to turn it around, a BPS
state can be seen as preserving half of the supersymmetry transformations. If a
system satisfies the Bogomol’nyi bound, it is a BPS state, which implies that the
D-instanton is a BPS-state. More about supersymmetry in section 1.5.

1.3.2 Multi-instantons solution

It is interesting to note that there are also multi-instanton solutions to this system.
Looking at (1.75)

eφ = eφ∞ +
c

r8
(1.96)

which obeys
∂2(eφ) = 0 (1.97)

a more general solution is obviously

eφ = eφ∞ +
∑

i

λi

|x− xi|8 (1.98)

where the λi are the corresponding Noether charges. This is consistent with (1.76)

∂µa = ±∂µe−φ ⇒ a = ±(e−φ − e−φ∞) + a∞ (1.99)

and eφ from (1.98).
12Taking both nine-spheres as a boundary is consistent with the wormhole interpretation.
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1.3.3 SL(2,R)-symmetry

The action (1.67) 13 possesses an SL(2,R) symmetry (the set of all 2× 2 matrices
over the real numbers with determinant 1), which becomes apparent if the complex
field

τ = a + ie−φ (1.100)

and the 2× 2 matrix

M =
1

Im τ

( |τ |2 −Re τ
−Re τ 1

)
= eφ

( |τ |2 a
a 1

)

=
(

a2 + e−2φ a
a 1

) (1.101)

are introduced. This changes (1.67) into

SEF
Min =

∫
d10x

√
G

(
R+

1
4
Tr[∂µM∂µM−1]

)
(1.102)

which is invariant under the following transformations

M→M′ = ΛMΛT (1.103)

Gµν → G′µν = Gµν (1.104)

where T stands for transpose and

Λ =
(

ã b̃

c̃ d̃

)
ãd̃− b̃c̃ = 1 (1.105)

Alternatively (1.103) can also be written as the rational form

τ → τ ′ =
ãτ + b̃

c̃τ + d̃
(1.106)

Consider the special SL(2,R) matrix

Λ0 =
(

0 1
−1 0

)
(1.107)

Then from (1.103) it is clear that

M|a=0 =
(

e−φ 0
0 eφ

)
→M′

|a=0 =
(

eφ 0
0 e−φ

)
(1.108)

i.e. φ → −φ and thus for the coupling constant g

gs =< eφ > → < e−φ >=
1
gs

(1.109)

This is the weak/strong coupling duality, called S duality, which is a symmetry of
the effective action of the type IIB string theory.

13This symmetry also applies to the full action(1.61).
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Noether currents and conserved charges

SL(2,R) has three generators and thus there should also be three corresponding
conserved charges. In appendix A.4 the general derivation of Noether currents is
given for Lagrangians of the type

L =
1
4

√
|G|Tr[∂µM−1∂µM] (1.110)

As is shown there, these currents can be represented in terms of the 2× 2 matrix
(A.37)

Jµ = −M−1∂µM =
( J11µ

J12µ

J21µ
J22µ

)
(1.111)

Applying this to the SL(2,R) matrix (1.105) gives

Jµ = e2φ

(
1 −a
−a |τ |2

)
×

( |τ |2∂µφ + ∂µ|τ |2 a∂µφ + ∂µa
a∂µφ + ∂µa ∂µφ

)
→

J11µ
= e2φ

(
|τ |2∂µφ + ∂µ|τ |2 − a2∂µφ− a∂µa

)
= −J22µ

J12µ = e2φ∂µa

J21µ = −a2e2φ∂µa + ∂µa + 2a∂µφ

(1.112)

This is all in terms of the matrix M. To make connection to the symmetries of
the individual fields note that besides the current already mentioned that follows
from the shift in a (1.82), one other symmetry Kµ follow from the re-scaling
eφ → eνeφ, a → e−νa [16]

Jµ = e2φ∂µa

Kµ = −2∂µφ + 2e2φa∂µa

Lµ = (a2 + e−2φ)Jµ − aKµ

(1.113)

and this agrees with (1.112). An other interesting alternative approach is by
Meessen and Ortin [15] and also by Bergshoeff et al [17]. They rewrite (1.102)
to14

SEF =
∫

d10x
√

G
(
R− 1

4
Tr[(∂MM−1)2]

)
(1.114)

The corresponding SL(2,R) currents can then nicely be written in matrix form

Jµ = (∂µM)M−1 =
(

Kµ Lµ

Jµ −Kµ

)
(1.115)

Note that the off-diagonal elements are switched by this definition for Jµ. The
advantage of working with the matrix M is that this allows for an easy general-
ization by allowing complex scalars φ and a, a generalized coupling ebφ instead
of just b = 2 and a complex metric gµν . Instead of the real matrix M (1.101)
introduce the complex matrix15

MC = e
bφ
2

(
1
4b2a2 + e−bφ 1

2ba
1
2ba 1

)
(1.116)

14Using MM−1 = 1 it follows that ∂µM∂µM−1 = ∂µM(M−1M)∂µM−1 =
−∂µMM−1∂µMM−1

15The subscript C stands for complex, also a different metric sign convention is used as in the
two cited articles.
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which gives via the same way as in the previous section rise to the Lagrangian

LC =
√
|G|

(
R+

1
b2

Tr[∂MC∂M−1
C ]

)
=

√
|G|

(
R− 1

2
∂µφ∂µφ− 1

2
ebφ∂µa∂µa

)

(1.117)
Obviously the symmetry of this Lagrangian is now a SL(2,C)

M→M′ = ΛMΛT (1.118)

Gµν → G′µν = Gµν (1.119)

where

Λ =
(

ã b̃

c̃ d̃

)
ε SL(2,C) (1.120)

and corresponding currents16

Jµ =
1
2
bebφ∂µa

Kµ =
1
2
ebφ∂µ

(
e−bφ +

1
4
b2a2

)

Lµ = −baKµ + Jµ

(
e−bφ +

1
4
b2a2

)
(1.121)

To obtain (1.101) choose all fields and (ã, b̃, c̃, d̃) real and b = 2. To obtain the
Euclidean case of the D-instanton, redefine a → ia and choose all fields and
constants real, with the resulting matrix

MEuc = e
bφ
2

( − 1
4b2a2 + e−bφ 1

2 iba
1
2 iba 1

)
(1.122)

The corresponding Lagrangian for b = 2 is

LEuc = −
√
|G|

(
R+

1
4
Tr[∂MEuc∂M−1

Euc]
)
=

√
|G|

(
−R+

1
2
∂µφ∂µφ− 1

2
e2φ∂µa∂µa

)

(1.123)
which corresponds to (1.68). The corresponding currents are17

Jµ = e2φ∂µa = −eφ∂µφ

Kµ =
1
2
e2φ∂µ(e−2φ − a2) = −∂µφ− ae2φ∂µa

Lµ = (−a2 + e−2φ)Jµ − 2aKµ

(1.124)

Via the generalized Gauss’s law the conserved charge matric Q becomes then by
definition

Q =
∮

S9
J =

∮

S9
Jµnµ ≡

(
q3 iq2

iq1 −q3

)
(1.125)

In appendix A.4 (A.41) it is explained how to calculate this charge matrix

Q = Vol(S9)rD−1g
D−2

2
rr Jr (1.126)

Besides the already calculate charge q1 (1.81), the other two follow from straight-
forward substitution of Jr into the above charge matrix.

16Note that Kµ is redefined by a factor two.
17Note that to have real charges, Jµ and Lµ are redefined to iJµ and iLµ.
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Figure 1.5: Dirichlet Dp-brane

1.4 Dp-branes

In terms of strings, D-instantons can be regarded as p = −1- branes. But what
exactly is a brane? An open string in D dimensions18 has endpoints, which have to
satisfy appropriate boundary conditions. The first type of boundary conditions is
that of Neumann, in short this condition allows the string endpoints to be located
anywhere, it is the only choice compatible with translation invariance and Lorentz
invariance in D dimensions. If some (or all) of the endpoints are constrained to
lie on some definite surface, one speaks of Dirichlet boundary conditions. These
are clearly incompatible with translation and Lorentz invariance, and such objects
may preserve at most a part of these invariants. As an example consider Dirichlet
boundary conditions applied to all endpoints of the open string, i.e. along all
the D − 1 spatial coordinates (x1, x2, ..., xD−1). This constrains the endpoint of
the string to lie at a single point in space, while the rest of the string is free
to fluctuate, since only time is a Neumann condition. Then this point becomes
like a point particle, which is called a D-particle. If one applies p Neumann and
D − p − 1 Dirichlet boundary conditions, the corresponding state is extended in
p spatial directions and one time direction, and is called a Dirichlet p-brane or
Dp-brane, see figure 1.5. The p + 1 = d dimensional volume is called the world
volume and the D − p − 1 directions are orthogonal to this. Coming back to D-
instantons, it is called a p = −1 brane since also the time direction is ”fixed”. All
directions are thus transverse and form a Euclidean D-dimensional space. In more
mathematical terms Dp-branes can be described as

ds2 = e2A(−dt2 + dx2
p) + e2B(dr2 + r2dΩ2

D−p−2) (1.127)

where the first block is the (p+1)-dimensional Minkowskian world volume and the
second block the transverse Euclidean space. The functions A and B depend only
on r and determine the gravity in each block. If one now looks at D-instantons,
which is a p = −1 brane, the first part disappears and the second part covers the
whole space. It is thus a natural extension of Dp-branes, taking time as a Dirichlet
condition too. There exist various generalizations (deformations), for example one
can add a term ef(r) in front of the t and r components.

It is surprising that such extended objects are present in string theory, since
only open and closed strings are put explicitly in the theory. At various points
in this master thesis, p-form fields appear. It turns out that a (p + 2)-form field
strength couples to sources that are Dp-branes. To see this take a D-dimensional
spacetime with a (p +1)-form vector potential A, the corresponding field strength

18Here D stands for one timelike and (D − 1) spacelike coordinates, this notation is different
from what is used in the rest of the text.
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F is then a (p + 2)-form and the volume element Υ is a D-form: Υ = dt ∧ dx1 ∧
. . . ∧ dxD−1 The dual field strength ∗F is a (D − p − 2)-form and d ∗ F is a
(D − p− 1)-form. The generalized Maxwell relation

d ∗ F = 4π ∗ J (1.128)

shows that the current (and source term) J is also a (D − p− 1)-form. To make
the analysis simpler go to the rest frame, where J = (ρ,~0) and thus

∗J ∝ ρ×ΥD−p−1 (1.129)

where ΥD−p−1 is the volume element of a (D−1−p)-dimensional subspace of the
D-dimensional space. This subspace needs to be taken since ∗J is a (D − p− 1)-
form. Charges are defined in the standard way via Gauss’s law, i.e.

Q =
∫

ΥD−p−1

∗J =
∫

SD−p−2
∗J (1.130)

Theses charges act as sources and are objects with (D − 1) − (D − p − 1) = p
dimensions, which are exactly the Dp-branes.

For instantons p = −1 and the corresponding field strength is a one form or
a zero form potential, i.e. indeed the kinetic term of the scalar a. The dilaton φ
cannot be taken as a source, since it is also present as eαφ.

1.5 Effect of D-instantons: R4 and R8 contribu-
tions

In the case of the double well potential, the reason why one should look at instan-
tons is that they allow for a tunnelling calculation, which gives the same result as
the WKB approximation of quantum mechanics. But what does the D-instanton
contribute? A clear tunnelling interpretation cannot be given, since there is no
potential present, only a wormhole picture in the string frame. To answer this
question one needs to know a bit about supersymmetry (SUSY) and fermionic
zero modes.

SUSY and fermionic zero modes

String theory is a supersymmetric theory, which means that at each mass level as
many bosons as fermions degrees of freedom are present. This is a topic in itself
and therefore only some basic facts will be mentioned.

As mentioned at the beginning of section three, type IIB is defined as (8s +
8v)×(8s+8v). Group theory says that the bosonic Neveu-Neveu sector 8v×8v is a
64 dimensional representation, consisting of the graviton (35v), the B-field (a 28-
dimensional antisymmetric tensor) and the dilaton. The bosonic 8s× 8s Ramond-
Ramond sector consists of representations of also 35, 28 and 1 dimensions. The
cross terms 8s×8v and 8v×8s are identical for type IIB theory (i.e. same chirality)
and consists out of the gravitino ψµ (56) and the dilatino λ (8).

A zero mode is an eigenfunction of an operator Ô with zero eigenvalue(s) [31].
As an example look at the bosonic Lagrangian L = 1

2 (∂µφ)2 − U(φ) and the path
integral

G =
∫
D[φ(x, t)]eiS[φ]

∣∣∣
Min

=
∫
D[φ(x, τ)]e−S[φ]

∣∣∣
Euc

(1.131)
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Applying the stationary phase approximation to the Euclidean action S around
the classical path φcl gives

SEuc[φ(x, τ)] = V [φcl]τ +
1
2

∫
dx

∫
dτ ′[y(x, τ ′)ÔEuc(x, τ ′)y(x, τ ′)] + O(y3)

(1.132)
where τ = −it as before and

ÔEuc(x, τ ′) ≡ − ∂2

∂τ ′2
− ∂2

∂x2
+

(∂2U

∂φ2

)
φcl

y(x, τ ′) ≡ φ(x, τ ′)− φcl

(1.133)

Via standard mathematical tricks [1] this can be rewritten as

G ∝ e−V [φcl]τ{Det[ÔEuc(x, τ ′)]−1/2} (1.134)

As is evident from the last expression, a zero mode causes a divergence in G and
must therefore be extracted, see for example [31]. Naively one would expect that
the same problem occurs for fermions, however fermions obey the anti-commutator
or Grassmann algebra. The path integral G becomes then

G ∝ Det[Ô] (1.135)

and no divergence take place for a zero mode of Ô. Type IIB theory has two
gravitino’s (N = 2) and therefore there are two Majorana spinors QA

i , i = 1, 2
and A = 1, . . . , 16 giving in total 32 supersymmetries. The gravitino and dilatino
supersymmetry (SUSY) rules are for flat Euclidean space in the Einstein frame
[33]

δψ±µ ∝ (∂µ ∓ 1
4
eφ∂µa)ε±

δλ± ∝ ε∓
1
4
(∂µφ± eφ∂µa)

(1.136)

where ε are the 16 components of the Majorana spinor19. Substituting the anti-
instanton solution (1.77) leads to

ε+ = 0, ε− = e
φ
4 ε−0 (1.137)

where ε−0 is a constant spinor and because ε+ = 0 these 16 symmetries are broken.
To understand the consequences of this one needs to know a bit about string

scattering, look at figure 1.6. The s broken spacetime SUSY generators have the
form of open string fermion vertex operators and have a natural interpretation as
generating fermionic zero modes in the instanton background [32]. In this figure
the circle represents the D-instanton, which has Dirichlet boundary conditions
in all space-time directions, attached to this is a state labelled by Ψ, which can
be for example the graviton. Each broken SUSY leads to the attachment of an
open string, in the D-instanton case s = 16 thus. In other words an instanton
carrying some zero modes corresponds, at lowest order, to a disk world-sheet20

with open-string states attached to the boundary, see figure 1.6.
19In 2D dimensions the dimension d of a spinor is d = 2D/2, but the Majorana condition

reduces the number of dimension by 2.
20Since it is a p = −1-brane, the word sheet is a point.
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Figure 1.6: Tadpole: Scattering picture Figure 1.7: Scattering of four gravitons in
a D-instanton background, the 16 fermionic
open strings are due to the broken SUSY

Various types of scattering can of course happen in the presence of the D-
instanton, a very interesting one is shown in figure 1.7. It represents the scattering
of four gravitons with each four fermionic zero modes attached to the D-instanton
disk. This scattering diagram has an interesting effect for general relativity. The
Einstein vacuum equation

Gµν = Rµν − 1
2
gµνR = 0 (1.138)

where Rµν is the Ricci tensor and R = Rµνgµν the Ricci scalar can be obtained,
when as a starting point is used the Einstein-Hilbert Lagrangian

L =
√
|g|R (1.139)

One of the reasons why string theory is so popular is that it unifies all force,
including gravity. Therefore it is expected that at least (1.139) is obtained in the
low energy domain. Doing however an exact calculation as done for the one-loop
case by [23] and at tree level by [24] gives an additional factor proportional to R4.
Taking into account the tadpole of figure 1.7 gives also a R4 contribution

A ∝
∫

d10yd16ε0 < h1 >< h2 >< h3 >< h4 >

∝
∫

d10yRm1n1
i1j1

Rm2n2
i2j2

Rm3n13
i3j3

Rm4n4
i4j4

(1.140)

where < hi > stands for the contribution for each graviton with four open string
attached to it. Adding up all three contributions have led to conclusion that the
second order correction to the Einstein-Hilbert action in the Einstein frame is

∆SIIB ∝
∫

d10x
√−gEF f(τ, τ̄)R4 (1.141)

where

τ = τ1 + iτ2 = a + ie−φ

f(τ, τ̄) =
∑

(p,n) 6=(0,0)

τ
3/2
2

|p + nτ |3|
(1.142)
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It can be shown that expanding this around large τ2 gives back the terms corre-
sponding to the tree level, one loop and D-instanton contributions.

A simpler reason why such a contribution was to be expected is by realizing that
new D-instantons are generated due to the broken SUSY’s, since applying a broken
SUSY transformations means that one longer stays ”within” the system but gets
”outside”, i.e. new solutions. Therefore to include all different D-instantons one
should integrate over all the 16 degrees of freedom of the spinor ε+. Furthermore
one can show that when comparing units, for example in three dimensions, the
product of four fermions ([F ] = 3/2) has the same unit as the Ricci scalar ([R] = 2)
or to be precise

[
1
κ4

(four fermions)] = [R], κ ∝
√

GN ∝ 1/MPlanck (1.143)

where
√

GN is the gravitational constant in four dimensions. Since fermions obey
the Grassmann algebra, integration gives only a non-zero contribution if

∫
da1

∫
da2 =

∫
da1a1

∫
da2 = 0

∫
da1

∫
da2a1a2 = 1

(1.144)

where ai are fermions. Generalizing this to the case at hand here, one can have a
non-zero contribution only if for each integrated fermion, one also has a fermion
to integrate over, meaning in total 16 fermions are needed. But the unit of these
16 fermions is equal to R4, therefore it was to be expected that the effect would
be ∝ R4.

In chapter four the non-extremal (non-flat space) version of the D-instanton
will be discussed, which breaks all 32 SUSY’s. It is to be expected that these
non-extremal solutions give a correction to the effective low energy action of IIB
string theory of the form

∆SIIB ∝
∫
R8 (1.145)

since now one has to integrated over all 32 broken SUSY’s.
So far in three different system the instantons have been investigated. Any

theory which has in its Euclidean version a solution with finite (Euclidean) action,
has by definition an instanton solution, therefore many other instantons exist.
Most notably is the instanton in QCD, for this may solve the problem of quark
confinement, although it is not yet clear if it will really solve this important issue,
but this will not be discussed any further.

1.6 Solitons

The instanton related to the Lagrangian in a D-dimensional Minkowskian space-
time is a solution of the corresponding Euclidean theory. At the classical level, in-
stantons are not very different from static solutions of the corresponding Minkowskian
equations of motion, since the static solutions involve only spatial coordinates, i.e
the Euclidean subspace of the full Minkowskian space-time. This subspace is linked
to the domain of solitary waves and solitons. Rajaraman defines a solitary wave
as:

26



Definition: A solitary wave is the localized non-singular solution of
any non-linear field equation (or coupled equations, when several fields
are involved) whose energy density ε, as well as being localized, has a
space-time dependence of the form

ε(~x, t) = ε(~x− ~ut) (1.146)

where ~u is some velocity vector.

In other words, the energy density should move undistorted and with constant
velocity. Note that any time-independent (~u = 0) localized solutions is automati-
cally a solitary waves. Solitons are a special kind of solitary waves, namely those
solitary waves whose energy density profiles are asymptotically restored to their
original shapes and velocities in the limit t → ∞. The distinction between soli-
tons and solitary waves is often ignored and most people just talk about solitons
or solitonic interpretations.

In some systems, instantons in a D-dimensional system can be seen as static
solitons. As an illustration look at the Klein-Gordon system

SMin =
∫

dt

∫
d~x

[1
2

(∂φ

∂t

)2

− 1
2
(∇φ)2 −m2φ2

]
(1.147)

The Euclidean version of this is

SEuc =
∫

dx4

∫
d~x

[1
2

( ∂φ

∂x4

)2

+
1
2
(∇φ)2 + m2φ2

]
(1.148)

via t = −ix4. This Euclidean action has the same structure as the energy of a static
field. Finiteness of energy is replaced by finiteness of the action for instantons.
That this is not a mere coincidence, look at the energy E

E =
∫

dD+1xH =
∫

dtdDx[pẋ− L] −→ ”E” = −
∫

dDxL ≡ −S (1.149)

where H is the hamiltonian, L the Lagrangian, p the momentum and after the
−→ one ignores the time.

To obtain instanton solutions one can look at a system and search for a way to
turn ”off” the time, a successful way, besides the Wick rotation, will be via Kaluza-
Klein reductions (KK) over the timelike coordinate, as will be explained in later
chapters in some detail. This is an alternative to the Wick rotation method, to
see this realize that after a Wick rotation one has the same number of dimensions,
whereas after a KK reductions one loses a (timelike) direction.

One can of course turn it around. Given an instanton solution, can it be
considered a soliton, i.e. can it be linked to a one (timelike) dimensional higher
system? To answer this question one should do the inverse Kaluza-Klein reduction,
which is known by the name uplifting. In chapter five this will be done for the non-
extremal D-instanton. This way an instanton is considered as a (static) soliton of
the corresponding higher dimensional theory.
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Chapter 2

Wormholes

In the string frame of type IIB string theory a wormhole interpretation is found
for the metric. So far the concept of a wormhole has not been specified. It is
”something” that connects two asymptotically flat spaces via a symmetry of the
metric, r ←→ 1

r , see (1.86).

2.1 What is a wormhole?

According to Matt Visser [25] a definition for a wormhole is

Definition: A wormhole is any compact region of spacetime with a
topologically simple boundary but a topologically nontrivial interior.

To understand this look at (1.86). At r = 0 and r = ∞ there are asymptotically
flat spaces (=boundary) but at r8 = c

e∞ it has a nontrivial interior, namely an
Einstein-Rosen bridge, see below. Notice that this is only a symmetry of the
metric, not that of any fields also present in the Lagrangian, whereas instantons
are the whole set of solutions to the Euclidean Lagrangian. So the above definition
of Visser can best be casted in the following working definition

Working definition: A wormhole is a symmetry of the metric of the
form r ←→ constant

r , which connects two asymptotically flat space(times).

Wormholes are one of the most fascinating objects appearing in the General Theory
of Relativity (GRT)1. As early as 1916 the first ’wormhole’ physics took place
by Flamm and the famous Einstein-Rosen bridge was looked into in 1935 by A.
Einstein and N. Rosen [26]. Wormholes can be classified into two classes

• Lorentzian wormholes

• Euclidean wormholes

The difference is merely the metric used, respectively Minkowskian and Euclidean.
Note that the D-instanton belongs to the later class and is also an inter -universe
wormhole for it connects two different universes, see figure 1.4. A wormhole that
connects to distant regions in one universe is called an intra-universe wormhole.
Note however that GRT only talks about local physics and not fixes the global
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Figure 2.1: Sectors in Kruskal-Szekeres
spacetime

Figure 2.2: Kruskal-Szekeres spacetime di-
agram

topology. To describe what an Einstein-Rosen bridge is, look at the Schwarzschild
metric

ds2 = (1− 2m

r
)dt2 − dr2

1− 2m
r

+ r2dΩ2
2 (2.1)

which describes the spacetime outside a heavy object (r > 2m) and has a (coor-
dinate) singularity at r = 2m. The maximally extended version is obtained by
introducing Kruskal-Szekeres coordinates [2]

ds2 =
32m3e−

r
2m

r

(
−dT 2 + dX2

)
+ r2

(
dθ2 + sin2 θdφ2

)
(2.2)

The relations between the coordinates (t, r) of the Schwarzschild metric and the
Kruskal-Szekeres coordinates (T, X) are given by

( r

2m
− 1

)
e

r
2m = X2 − T 2 (2.3)

t

2m
= log

(T + X

X − T

)
= 2 tanh−1(

T

X
) (2.4)

This metric can be split into four sectors, see figure 2.1. Sector I is the ordinary
Schwarzschild metric solution for r > 2m (2.1), sector II and III are respectively
the black hole and white hole and sector IV is like sector I an asymptotically flat
spacetime but note that because the lightcones are always at 45 degrees, figure
2.2, two observers in sectors I and IV cannot communicate with each other, for
light always ends up at the black hole sector II. In figure 2.2 the mass m used
in the text can be related to the mass M of the object via m = GM , where
G is the gravitational constant and the speed of light c = 1. So in Kruskal-
Szekeres coordinates there are four sectors and in Schwarzschild coordinates there
is only one sector, I. To see the Einstein-Rosen bridge introduce the new coordinate
u2 = r − 2m with u ε (−∞,∞). This changes the Schwarzschild metric into

ds2 = − u2

u2 + 2m
dt2 + 4(u2 + 2m)du2 + (u2 + 2m)2dΩ2

2 (2.5)

1Quantum effects will not be discussed in relation to wormholes.
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By the definition of u the coordinate singularity at r = 2m has been excluded. In
the Kruskal-Szekeres picture, figure 2.1, this means only sectors I and IV remain,
i.e. in these coordinates two asymptotically flat regions are covered instead of
just one. The Einstein-Rosen bridge is the ’bridge’ at u = 0 ←→ r = 2m. This
bridge connects the asymptotically flat regions near u = ±∞ (I and IV). Thus the
Einstein-Rosen bridge (or Schwarzschild ’wormhole’) is identical to a part of the
maximally extended Schwarzschild geometry.

2.2 Morris and Thorne wormholes

The previous wormhole has been generalized by the pioneering work of Morris
and Thorne [12]. They describe a whole class of static Lorentzian wormholes2 by
taking as an ansatz for the metric

ds2 = e2φ(r)dt2 − dr2

1− b(r)
r

− r2(dθ2 + sin2 θdφ2) (2.6)

where the functions φ(r) and b(r) are referred to as redshift function3 and shape
function respectively. Cataldo et al state four general constraints for these func-
tions

1. The no-horizon condition, i.e. e2φ(r) is finite and nonzero throughout space-
time, so that there are no horizons nor singularities present.

2. Minimum value of the r-coordinate, i.e. at the throat of the wormhole r =
b(r) = b0, b0 being the minimum value of r. This is the generalized Einstein-
Rosen bridge, which also defines the position of the wormhole.

3. Finiteness of the proper radial distance b(r)
r ≤ 1 for r ≥ b0 throughout the

spacetime. This is required in order to ensure the finiteness of the proper
radial distance l(r) defined by

l(r) = ±
∫ r

b0

dr√
1− b(r)

r

(2.7)

where the ± refers to the two asymptotically flat regions which are connected
by the wormhole. The equality sign in b(r)

r ≤ 1 holds only at the throat.

4. Asymptotic flatness condition, i.e. when r → ∞ flat spacetime must be
obtained, b(r)

r → 0.

To see that the metric (2.6) implies a wormhole, it is useful to visualize the geome-
try of curved four dimensional space at a fixed moment of time t. Since the ansatz
is spherically symmetric, without loss of information take θ = π

2 . This leads to

ds2 = − dr2

1− b(r)
r

− r2dφ2 (2.8)

2A more recent review is by Cataldo et al [11].
3The redshift of light is related to the g00 component of the metric via ∆λ

λ
= (g00)

− 1
2 − 1.
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The goal is now to construct, in flat three dimensional Euclidean space, a two-
dimensional surface with the same geometry as this slice4. Take for the embedding
coordinates (z(r), r, ψ) and the Euclidean metric of the embedding space becomes

−ds2 = dr2 + r2dψ2 + dz2 =
[
1 +

(dz

dr

)2]
dr2 + r2dψ2 (2.9)

The last equality holds since the embedded surface will be axially symmetric. This
line element will be the same as that of (2.8) if φ is identified with ψ and if the
following holds

dz

dr
= ±

( r

b(r)
− 1

)− 1
2

(2.10)

The shape function b(r) clearly determines the shape of the wormhole. The third
condition is needed since a wormhole has a minimum radius b(r) = b0 at which
the embedded surface becomes vertical, i.e. dz

dr → ∞ when r → b0. To overcome
this difficulty near the throat use the proper radial distance l defined by (2.7).
This quantity is well behaved everywhere, if b(r)/r ≤ 1 is required throughout
spacetime. The above two formulas imply

dz

dl
= ±

√
b(r)
r

(2.11)

In the following sections various examples will be shown, especially the Schwarzschild
and Reissner-Nordstrøm wormholes will be investigated thoroughly.

2.3 Schwarzschild metric

Begin with the well-known spherically symmetric Schwarzschild metric at constant
time t and in the equatorial plane θ = π

2

−ds2 =
dr2

1− 2m
r

+ r2dφ2 (2.12)

Embed this into a flat three-dimensional Euclidean space R3 (ρ, z, ψ) as explained
in (2.9)

dρ2 + ρ2dψ2 + dz2 =
[
1 +

(dz

dr

)2]
dρ2 + ρ2dψ2 ≡ dr2

1− 2m
r

+ r2dφ2 (2.13)

Comparing and concluding that φ = ψ, r = ρ and solving the differential equation
leads to

z(r) = ±
√

8m(r − 2m) ⇒ r(z) =
1

8m
z2 + 2m (2.14)

which is non-singular for all z, including z = 0 ←→ r = 2m5. r(z) is called
Flamm’s parabola, which is the analytically continuated solution to the Schwarzschild
metric. Plotting z(r) with both signs then gives the wormhole, see figure 2.3, where
the plus sign of z(r) is the upper half of the figure, the minus sign the lower half.

4This is like picturing a sphere in flat three dimensional space, instead of looking at it two
dimensionally.

5(2.14) is only valid for r > 2m, i.e. outside the Schwarzschild radius.

31



-10
-5

0
5

10
x

-10

-5

0

5
10

y

-5

0

5

z

-10
-5

0
5

10
x

-10

-5

0

5
10

y

Figure 2.3: The Schwarzschild wormhole, here x = r cos θ, y = r sin θ and z = z(r).

It is important to realize that only the drawn surface resembles any physics
in figure 2.3. The way this visualization has been set up is that the curvature of
the two dimensional (truncated) metric (2.12) has been made visible in flat three
dimensional Euclidean space (2.13). Drawing a spaceship ”falling” into the throat,
free from the surface is thus un-physical.

The position of the wormhole throat is at r = 2m, which is the Schwarzschild
radius, this is the Einstein-Rosen bridge. Clearly dz

dr → ∞ when r → 2m, this
is merely a coordinate deficit, caused by the fact that z(r) only describes the
curvature outside the Schwarzschild radius.

Looking back it is perhaps surprising that this wormhole, figure 2.3, is found
since the Schwarzschild metric describes one spacetime outside a heavy object. To
explain the origin of this second spacetime look at the Kruskal-Szekeres coordinates
system (T,X) and the relations with the coordinates (t, r) of the Schwarzschild
metric (2.3, 2.4). Take t = 0 ←→ T = 0 and θ = π

2 and from (2.3) it follows that

du = ±r

√
e

r
2m (r−2m)

m

4
√

2(r − 2m)
⇒ −ds2 =

r

r − 2m
dr2 + r2dφ2 (2.15)

which is indeed the Schwarzschild metric of the previous section. Now a good
interpretation is possible. For this look at the figures 2.1 and 2.2, the two asymp-
totically sectors I and IV are now connected via this wormhole. This leads also
to the conclusion that this is an inter-wormhole. So the method of embedding
diagrams ”analytically” extends the Schwarzschild metric here, similarly as (2.5).

2.3.1 Embedding diagrams versus symmetry of the metric

Remember that in the D-instanton case the wormhole was not described via an
embedding diagram, but via a symmetry of the metric, see (1.86). To make the
connection to this wormhole interpretation, which should of course agree with the
embedding diagram approach, introduce the coordinate ρ̃

r = ρ̃
(
1 +

m

2ρ̃

)2

←→ ρ̃(r) =
1
2

(
r −m±

√
r2 − 2mr

)
(2.16)
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and substitute this into (2.1). Then the metric in isotropic coordinates6 becomes

ds2 =
(1− m

2ρ̃

1 + m
2ρ̃

)2

dt2 −
(
1 +

m

2ρ̃

)4[
dρ̃2 + ρ̃2(dθ2 + sin2 θdφ2)

]
(2.17)

This metric has as a symmetry

ρ̃ ←→ m2

4ρ̃
(2.18)

similar to the D-instanton symmetry. Defining the position of the wormhole by
that point which get mapped into itself gives

ρ̃ =
m

2
←→ r = 2m (2.19)

which confirms the Schwarzschild case. The region near ρ̃ = 0 is a second asymp-
totically flat region, to show this look at the asymptotic geometry near ρ̃ = 0

ds2
ρ̃→0 = dt2 −

( m

2ρ̃

)4[
dρ̃2 + ρ̃2dΩ2

2

]

≡ dt2 − d˜̃ρ2 − ˜̃ρ2dΩ2
2, where ˜̃ρ =

m2

4ρ̃

(2.20)

An important observation can be made now. For what happens when this metric
is embedded in flat three dimensional Euclidian space? One would guess that since
the same information is present as in the original Schwarzschild metric, the same
embedding diagram should appear. Embedding (2.17) in flat three dimensional
Euclidean space as before (ρ̃, ψ, z) gives

[
1 +

(dz

dρ̃

)2]
dρ̃2 + ρ̃2dψ2 ≡

(
1 +

m

2ρ̃

)4[
dρ̃2 + ρ̃2dφ2

]
(2.21)

but this last equality can never happen. Introducing therefore (ρ, ψ, z) and rewrite
the above to

−ds2 = dρ2 + ρ2dψ2 + dz2 =
[(dρ

dρ̃

)2

+
(dz

dρ̃

)2]
dρ̃2 + ρ2(ρ̃)dψ2

≡
(
1 +

m

2ρ̃

)4[
dρ̃2 + ρ̃2dφ2

] (2.22)

Upon identifying φ = ψ and comparing both sides leads to

ρ(ρ̃) = ρ̃
(
1 +

m

2ρ̃

)2

, ρ ≥ 2m

ρ̃(ρ)± =
1
2

(
−m + ρ±

√
−2mρ + ρ2

)
, ρ̃(2m)± =

m

2

z(ρ̃) = ±
√

2m(m− 2ρ̃)√
ρ̃

(2.23)

6The name isotropic comes from the fact that in these coordinates the spatial part of the
metric is written as a function of r times the flat three dimensional Euclidean metric (in spherical
coordinates), and this Euclidean metric does not pick out any preferred direction.
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Figure 2.4: Wormhole of the isotropic ver-
sion of the Schwarzschild metric
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Figure 2.5: Difference between the embed-
ding functions (2.24) and (2.14).

The minus sign in ρ̃(ρ)± is applicable to the interval 0 < ρ̃ ≤ m
2 , the plus sign in

ρ̃ ≥ m
2 . Since the event horizon is at ρ̃ = m

2 , the plus sign is the correct one to use
then. The final result in terms of ρ is then

z(ρ) = ±
2
√

m
(
−2m + ρ +

√
−2mρ + ρ2

)
√(

−m + ρ +
√
−2mρ + ρ2

) (2.24)

The embedding diagram of this solution is shown in figure 2.4. An important
question that needs some attention is why the embedding function z(ρ) is not
exactly the same as in the normal Schwarzschild case z(r) =

√
8m(r − 2m)? This

is what one would expect since the same information is present, changing coordi-
nates should not make a wormhole disappear or be altered7. The answer lies in
the difference of these two embedding functions, see figure 2.5, which is (almost)
equal to zero and realizing that the horizon is at the correct position, see (2.19)
and (2.23).

2.4 Reissner-Nordstrøm metric

Adding charge ε to the Schwarzschild metric leads to the Reissner-Nordstrøm
metric (A.24)

ds2
NR =

(
1− 2m

r
+

ε2

r2

)
dt2 − dr2

(
1− 2m

r + ε2

r2

) − r2
(
dθ2 + sin2 θdφ2

)
(2.25)

and embedding this in flat Euclidean space leads to the differential equation
(dz

dr

)2

=
1(

1− 2m
r + ε2

r2

) − 1 (2.26)

7Unless of course one analytically continuates or discontinues the metric.
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In general there are different three sectors

• r > r+

• r− < r < r+ where r± = m±√m2 − ε2

• r < r−

To begin with the first sector: r > r+. The solution to the differential equation
(2.26) is

z(r) = ±
∫ r

r+

dr

√
2mr − ε2

r2 − 2mr + ε2
(2.27)

The embedding diagram that follows from this function is similar to the Schwarzschild
wormhole of the previous section, figure (2.4). In the second region the r coordinate
becomes timelike. Embedding must therefore take place in (2 + 1)-Minkowskian
spacetime, with the resulting embedding equation

ds2 =
−1

2m
r − 1− ε2

r2

dr2 + r2dφ2 = −dz2 + dρ2 + ρ2dφ2 (2.28)

and the corresponding solutions

ρ = r

z(r) = ±
∫ r+

r−
dr

√
2mr − ε2

2mr − r2 − ε2
(2.29)

The third section is the same as the first one, except that now r < r−. There
is however a special distance related to this solution, since the solution (2.27)
becomes complex at r = rsp where

rsp =
ε2

2m
(2.30)

The last two sectors are in the interior of the black hole. The second sector is
behind the first horizon which is located at r+, the last sector is even behind
both horizons. Although an embedding diagram merely reflects the curvature, a
possible interpretation to these sectors will be given for the extremal case, m = ε.
The three sectors above now collapse to two sectors

• r > r±

• r < r±, where r± = m

• rsp = m
2

The embedding differential equation that needs to be solved is

z(r) = ±
∫

dr

√
2rm−m2

(m− r)2
(2.31)

Mathematica gives as an exact solution

z(r) = ±
{2(m− r)

√−m2 + 2mr√
m2 − 2mr + r2

− 2m(m− r)arctanh[
√−m2+2mr

m ]√
m2 − 2mr + r2

}
(2.32)
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Figure 2.6: Wormhole of the internal Reissner Nordstrøm with m = ε = 1.

For general m this function is valid only in the region r ε [0.5m,m) due to the
arctanh. This is all within the second sector, i.e. the interior region of the
extremal Reissner-Nordstrøm black hole. Also note that indeed the embedding
fails for r < rsp = m

2 .
Two interpretations can be done here for the extremal case. First consider

it a failure, so embedding fails for the exterior wormhole, this is however to be
expected since in the extremal case spacetime is flat. To understand this, realize
that gravity is attractive and opposite charges repel, having the same amount of
both means no net force. This is similar to D-instanton case before, only in the
string frame was a wormhole present, not in the Einstein frame. The presence of
a wormhole is rather special, not all frames obtained by a conformal re-scaling of
the metric have such a r ←→ 1

r symmetry. In the next chapters the Kaluza-Klein
versions (over the time) of these systems are investigated and more remarks about
in what frame a wormhole is present are made.

The alternative interpretation is that the wormhole is now behind the horizon,
it is a wormhole connecting two of such spaces. This seems a valid interpreta-
tion, although what it means physically is open for debate, this possible interior
wormhole is shown in figure 2.6.

2.5 Type IIB String Theory

So far all wormholes have been of the Lorentzian type. Now let’s take a look at
the proposed Euclidean wormhole of the type IIB string theory metric (1.84)

ds2 = (eφ∞ +
c

r8
)

1
2 (dr2 + r2dΩ2

9) (2.33)

Due to the SO(10) symmetry take the angles θ1 = ... = θ8 = π
2 and θ9 variable.

The effective line element which needs to be embedded is then

(eφ∞ +
c

r8
)

1
2

(
dr2 + r2dθ9

)
←→ r8 =

c

eφ∞
(2.34)
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Embedding this in flat Euclidean space (ρ, ψ, z) results in

ρ(r) = (eφ∞r4 +
c

r4
)

1
4 ≥ 2

1
4 e

1
8 φ∞c

1
8 (2.35)

Note that the minimum of ρ is indeed at r8 = c
eφ∞ . The embedding function z

should be a function of ρ, since this is the radial parameter defined in the flat
Euclidean three space. Inverting ρ(r) gives a total of eight functions and taking
only the physical ones

r1(ρ) =
( ρ4

2eφ∞
+

√
ρ8 − 4eφ∞c

2eφ∞

) 1
4
, r8

1 ≥
c

eφ∞

r2(ρ) =
( ρ4

2eφ∞
−

√
ρ8 − 4eφ∞c

2eφ∞

) 1
4
, 0 < r8

1 ≤
c

eφ∞

(2.36)

Mathematica does unfortunately not give an analytical solution to the embedding
differential equation for z(r), drawing a wormhole picture is therefore not possible.
But based on the experience so far it seems that a figure like 1.4 will appear if one
could solve the differential equation.

There can be said a lot more about wormholes, for example about the exotic
matter that is needed to keep the wormhole open and many energy conditions that
exist. A good overview of the material can be found in [25], but for the analysis
of instantons in the coming chapters this is all the wormhole physics needed.
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Chapter 3

Introducing Kaluza-Klein
reductions

3.1 Introduction

In chapter one various examples of instantons were given. As said an instanton is
a Euclidean version of the original Minkowskian system with finite action. Effec-
tively one could say that it is a system without any time coordinate. An alternative
way to obtain systems without time is by considering a Kaluza-Klein reduction
over a timelike coordinate, normally a Kaluza-Klein reduction takes place over
one of the spatial coordinates. In the case of a static metric, it seems likely that
the wormhole in the full theory and the wormhole corresponding to the instanton
metric obtained via a time compactification have similarities, since a wormhole
embedding diagram is obtained by taking slices of constant t.

Begin with the four dimensional metric ĝµ̂ν̂
1 and write it as

ĝµ̂ν̂ =
(

ĝ00 ĝ0ν

ĝµ0 gµν

)
(3.1)

The idea is to consider gµν as the corresponding metric in 3 spatial dimensions
and the time coordinate to have a circle symmetry S1, i.e. compactifications of
M3+1 = M3 × S1. Since the time-direction has an assumed S1 manifold with
radius Rt, in the limit Rt → ∞ one gets back the normal behavior of time. The
boundary condition that needs to be satisfied is

Φ̂(xµ, t + 2πRt) = Φ̂(xµ, t) (3.2)

and the Fourier-expansions in terms of the eigenfunctions of the circle become

Φ̂(xµ, t) = ΣnΦn(xµ)e
int
Rt (3.3)

Note that Φn(xµ) is assumed to be independent of t. The equation of motion for
massless scalar fields is the Klein-Gordon equation gives

∂̂µ̂∂̂µ̂Φ̂ = 0 (3.4)

1Hatted (unhatted) objects refer to the uncompactified (compactified) case.
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and inserting Φ̂(xµ, t) (3.3) in this equation

∂̂µ̂∂̂µ̂Φ̂ =
(
∂µ∂µ + ∂t∂

t
)
Φ̂ = Σn

[
e

int
Rt ∂µ∂µΦn(xµ)− (

n

Rt
)2Φn(xµ)e

int
Rt

]

⇒
[
∂µ∂µΦn(xµ)− (

n

Rt
)2

]
Φn(xµ) = 0

(3.5)

which is the massive Klein-Gordon equation. In the limit Rt → 0 the mass m ∝ 1
Rt

decouples in the low energy limit and only the massless state n = 0 needs to be
taken into account. The results is that, after dimensional reduction over a circle
of infinitesimal radius, a massless (D + 1) scalar field is effectively described by a
massless scalar field in D Euclidean dimensions. Whereas taking the limit Rt →∞
makes this mass spectrum continuously again and the uncompactified (D + 1)-
dimensional theory is regained2. The best way to interpreted this physically is
by comparing it to a movie. In the limit Rt → ∞ the normal time situation is
obtained and the limit Rt → 0 can best be seen as ”pause” or as taking a picture.

A relevant question is whether or not it is consistent to ignore these massive
fields. For the (D + 1)-dimensional example above, it is consistent, since both the
reduced equation and the starting point (3.4) are massless Klein-Gordon equations.
For n 6= 0 the mass terms are infinite heavy in the limit Rt → 0 and decouple from
the theory, consistency is therefore guaranteed.

Looking back at the D-instanton of the truncated type IIB string theory of
chapter one it is clear that there are, from daily life experience, six spacelike
dimensions too many. In light of the example above one can imagine that a similar
reduction can take place over these six dimensions, to obtain a four dimensional
description. Difficulties arise now from choosing which way to reduce and possibly
inconsistencies as a result of that, but this will not be discussed here. For a good
introduction on Kaluza-Klein reductions, see for example [7].

Finally a word on the physics of all this. If string theory is the correct way
to describe the world, an (future) accelerator should be able to see these extra
dimensions. To understand this one has to realize that the particles have to match
the symmetry of these extra dimensions, i.e. a circle symmetry in the scalar field
example above. The ”wavelength” of this field has to match the radius R of this
circle dimension, for example the wavelength is equal to the circumference, similar
to the behavior of the strings of a guitar. These are the states n 6= 0, which
are ignored in (3.5), i.e. the higher Fourier modes. If one has a strong enough
accelerator, then from a certain energy point extra excited states of this scalar
field will be observed. The mass spectrum of these excited fields will be such
that it matches the wavelength pattern, since mass and distances are inversely
proportional, via analyzing this mass spectrum one can estimate the radii of extra
dimensions.

The (time) compactification together with keeping only the n = 0 term (mass-
less fields) in (3.5), is called Kaluza-Klein reduction. One way of justifying the
ansatz (3.1) is by requiring that the ĝ0ν and ĝ00 transform as vectors Aµ and
scalars φ should do in three dimensions. To be specific consider an infinitesimal
transformation in four dimensions

xµ̂ → xµ̂ + εξµ̂(xµ) (3.6)

2As an example here has been taken a timelike reduction, but as is clear from the derivation
it works equally well for a spacelike reduction.
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where the transformation is independent of the zeroth coordinate, i.e. µ̂ runs from
(0, 1, 2, 3) and µ from (1, 2, 3). The transformation (3.6) implies the use of the
Lie-derivative. For example

δĝµ̂ν̂ = ĝµ̂ρ̂(∂ν̂ξρ̂) + ĝρ̂ν̂(∂µ̂ξρ̂) + ξρ̂(δρ̂δĝµ̂ν̂) (3.7)

For example the transformation of ĝ00

δĝ00 = δĝµ̂ν̂ |µ̂=ν̂=0 = ĝ0̂ρ̂(∂0̂ξ
ρ̂) + ĝρ̂0̂(∂0̂ξ

ρ̂) + ξρ̂(δρ̂δĝ0̂0̂)

= ĝ00∂0ξ
0 + ĝ0µ∂0ξ

µ + ĝ00∂0ξ
0 + ĝ0µ∂0ξ

µ + ξ0∂0ĝ00 + ξµ∂µĝ00

= ξµ∂µĝ00

(3.8)

since ξµ̂ does not depend on the zeroth coordinate x0 by construction (3.6). This
is the transformation rule for a scalar and thus identifying ĝ00 = ϕ = e

χ
2 , ensuring

that it is a time-like component (ϕ > 0). Similarly for
(

ĝ0ν

g00

)

δ
( ĝ0ν

g00

)
=

( ĝ0ν

g00

)
∂µξµ + ξµ∂ν

( ĝ0µ

g00

)
+ ∂νξ0 (3.9)

By rewriting ξµ̂ = (Λ, ξµ) and
(

ĝ0µ

g00

)
= Aµ one sees then that Aµ has the right

transformation property in three dimensions for a vector and note that the last
term in (3.9) is a U(1)-gauge term. Thus (3.1) can be rewritten as

ĝµ̂ν̂ =
(

φ φAν

φAµ gµν + φAµAν

)
=

(
e

χ
2 e

χ
2 Aν

e
χ
2 Aµ gµν + e

χ
2 AµAν

)
(3.10)

To obtain the action in pure three dimensions ĝ = Det[ĝµ̂ν̂ ] is needed. Because of
the nice form of (3.10) this turns out to be

ĝ = Det[gµν ]φ = g
√

φ = ge
χ
4 (3.11)

From the relation ĝµ̂ρ̂ĝ
ρ̂ν̂ = δν̂

µ̂ follows the inverse metric

ĝµ̂ν̂ =
( 1

φ + A2 −Aν

−Aµ gµν

)
(3.12)

As an explicit example the four dimensional Einstein-Hilbert action will be reduced
over a timelike coordinate [9]3

Ŝ4 = −
∫

d4x
√
|ĝ|R̂(ĝ) (3.13)

The metric ansatz (3.10) has a Kaluza-Klein vector Aµ. If one is interested in a
theory with scalars only (besides the metric), then this vector should be set equal
to zero. It can be shown that this is consistent to do, but setting the scalar field
equal to zero cannot be done in general [7]. Setting Aµ = 0 turns (3.10) into

ĝµ̂ν̂ =
(

e
χ
2 0
0 gµν

)
(3.14)

3The minus sign is due to the chosen metric convention gµν =diag(1,−1,−1,−1). To under-
stand this better realize that Γc

ab ∝ g2, Ra
bcd ∝ Γc

ab → Rab ∝ g2 and finally R = gabRab →
R ∝ gab and thus clearly influenced by the choice of the metric.
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The four dimensional Christoffel symbol

Γ̂ρ̂
µ̂ν̂ =

1
2
ĝρ̂σ̂

(
∂µ̂ĝν̂σ̂ + ∂ν̂ ĝµ̂σ̂ − ∂σ̂ ĝµ̂ν̂

)
(3.15)

with the non-zero entries4

Γ̂ρ
µν = Γρ

µν , Γ̂0
µ0 =

1
2
g00∂µg00 =

1
4
∂µχ, Γ̂ρ

00 = −1
2
gµρ∂µg00 = −1

4
e

χ
2 ∂ρχ (3.16)

A very useful formula is
√
|g|eαφR =

√
|g|gµρeαφ

(
Γσ

µλΓλ
σρ − Γσ

σλΓλ
µρ

)

+ α
√
|g|eαφ∂µφgµρΓσ

σρ − α
√
|g|eαφ∂σφgµρΓσ

µρ

(3.17)

It is important to note that this is only valid under an integral sign, for the
straightforward (but a bit lengthy) proof makes use of partial integration:

∫
d4x

√
|g|eαφR =

∫
d4x

√
|g|eαφgµρ

(
∂σΓσ

µρ − ∂µΓσ
σρ + Γσ

σλΓλ
µρ − Γσ

µλΓλ
σρ

)

=−
∫

d4x∂σ

(√
|g|gµρeαφ

)
Γσ

µρ +
∫

d4x∂σ

(√
|g|gµρeαφ

)
Γσ

σρ

+
∫

d4x
√
|g|eαφgµρ

(
Γσ

σλΓλ
µρ − Γσ

µλΓλ
σρ

)
=

∫
d4x

√
|g|gµρeαφ

(
Γσ

µλΓλ
σρ−Γσ

σλΓλ
µρ

)

+ α
√
|g|eαφ∂µφgµρΓσ

σρ − α
√
|g|eαφ∂σφgµρΓσ

µρ

)

(3.18)

where in the second step a total derivative has been ignored and in the third
equality the following standard rules are used

∂µg = ggρη∂µgρη

∇µgρη = 0 ⇒ ∂µgρη = Γν
ρµgνη + Γν

ηµgρν

∂µgρη = −Γρ
νµgνη − Γη

νµgρν

(3.19)

Let’s apply this to the action (3.13) with α = 0 in (3.17)

L̂4 = −
√
|ĝ|ĝµ̂ρ̂

(
Γ̂σ̂

µ̂λ̂
Γ̂λ̂

σ̂ρ̂ − Γ̂λ̂
µ̂ρ̂Γ̂

σ̂
λ̂σ̂

)

= − e
χ
4
√
|g|gµρ

(
Γ̂σ̂

µλ̂
Γ̂λ̂

σ̂ρ − Γ̂λ̂
µρΓ̂

σ̂
λ̂σ̂

)
− e−

χ
4
√
|g|

(
Γ̂σ̂

0λ̂
Γ̂λ̂

σ̂0 − Γ̂λ̂
00Γ̂

σ̂
λ̂σ̂

) (3.20)

since ĝµ0 = 0 due to (3.14). Upon substituting (3.16) this becomes

L3 = −
√
|g|eχ

4R(g) (3.21)

At first sight it seems strange that a kinetic term like ∂µχ∂µχ is absent. This can
be understood however if one realizes that this Lagrangian is not written in the
standard Einstein-Hilbert canonical form, i.e. there is a scalar - metric coupling
(no EF ). To remove this perform a conformal re-scaling of the metric

gµν = e
χ
2 Gµν

EF (3.22)

4The minus sign in front of Γ̂ρ
00 is due to the time-compactification instead of the more familiar

space-compactification.
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Because there are now two metrics involved, it can be confusing which metric to
raise and lower indices. To prevent this, all raising of indices will be avoided by
keeping them covariant, so gµνxν will be used instead of xµ. The conformal change
of the metric will influence the Christoffel symbols in the following way

Γµ
νρ(g) =

1
2
gµη

(
∂νgρη + ∂ρgνη − ∂ηgνρ

)

= Γµ
νρ(G) +

1
4

{
−δµ

ρ ∂νχ− δµ
ν ∂ρχ + GνρG

µη∂ηχ
} (3.23)

where Γµ
µρ(G) is the Christoffel symbol for the metric Gµν . The easiest way to

calculate the effect of this conformal mapping is by using (3.17)
√
|g|eχ

4 R(g) =
√
|g|gµρe

χ
4

(
Γσ

µλΓλ
σρ − Γσ

σλΓλ
µρ

)

+
1
4

√
|g|eχ

4 (∂µφ)gµρΓσ
σρ −

1
4

√
|g|eχ

4 (∂σφ)gµρΓσ
µρ

(3.24)

and substituting (3.23). After some lengthy algebra one finds
√
|g|eχ

4 R(g) =
√
|G|

(
Γa

bc(G)Γc
af (G)− Γa

bf (G)Γd
da(G)

)
Gbf −

√
|G|1

8
∂µχ∂νχGµν

(3.25)
Realizing that the first term on the right hand side is (3.17) with α = 0 gives for
the dimensionally reduced Einstein-Hilbert Lagrangian

L(G) = −
√
|G|R+

√
|G|1

8
∂µχ∂νχGµν (3.26)

The factor 1
8 is due to the ansatz for ĝtt, redefining therefore χ = 2φ gives the

standard form

L(G,φ) = −
√
|G|R+

√
|G|1

2
∂µφ∂νφGµν (3.27)

which is called the canonical Einstein-Hilbert action (in the Einstein frame). The
equations of motion that follow from (3.26) are5 for Gµν and χ

Rµν =
1
8
∂µχ∂νχ (3.28)

1
4
∂µ

(√
|G|∂νχGµν) = 0 (3.29)

The question that needs attention is whether or not these two equations are with
respect to a Cartesian coordinate (Car) system6 or valid for all coordinate sys-
tems. To find the answer to this question [22] first observe that the presence of the
determinant of the metric

√
|g| implies an invariance under a coordinate transfor-

mation. As an explicit example rewrite the action belonging to the Lagrangian
(3.27) in spherical coordinates (sph)

SSch =
∫

d3x
√
|GCar|

(
−RµνGµν

Car +
1
2
∂µφ∂νφGµν

Car

∣∣∣
Car

=
∫

drdθdφ
√
|Gsph|

(
−RµνGµν

sph +
1
2
∂µφ∂νφGµν

sph

)∣∣∣
sph

(3.30)

5The variation of Rµν can be ignored in this case, for further information see Wald, appendix
E and this is only true in the Einstein frame.

6The three axes of three-dimensional Cartesian coordinates, conventionally denoted the x−,
y−, and z-axes are chosen to be linear and mutually perpendicular. In three dimensions, the
coordinates x, y, and z may lie anywhere in the interval (−∞,∞).
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The equations of motion now obtained in spherical coordinates are the same as the
previously obtained equations of motions in Cartesian coordinates, see (3.28) and
(3.29). The more fundamental reason why this is so comes from the presence of
the combination dDx

√
|g|, which is valid in all coordinate systems, the Jacobian

that appears in a coordinate transformation is automatically included.

3.2 Example: Schwarzschild metric

In the previous section the four dimensional Einstein-Hilbert action has been di-
mensionally reduced over a timelike coordinate. The metric ansatz (3.10) requires
no off-diagonal terms, since the Kaluza-Klein vector Aµ has been set equal to zero.
An example of such a system is the Schwarzschild metric

ĝµ̂ν̂ =




1− 2m
r 0 0 0

0 − 1
1− 2m

r

0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


 ≡

(
e

χ
2 0
0 e−

χ
2 GEF

µν

)
(3.31)

Solving the above matrix equation gives as the solutions for χ and Gµν

e
χ
2 = 1− 2m

r
←→ χ = 2 log(1− 2m

r
) (3.32)

Gµν =



−1 0 0
0 2mr − r2 0
0 0 (2mr − r2) sin2 θ


 (3.33)

ds2 = −dr2 − (r2 − 2mr)dθ2 − (r2 − 2mr) sin2 θdφ2 (3.34)

The solutions to the equations of motion belonging to the Schwarzschild system
(3.28) and (3.29) are already know now. As a consistency check however one can
calculate the Ricci tensor in two differen ways. First via a direct computation
of the Ricci tensor via the standard formulas for Γc

ab, Ra
bcd, Rab = Rc

acb and
R = GabRab, which gives

Rµν(G) =




2m2

(r2−2mr)2 0 0
0 0 0
0 0 0


 ⇒R =

−2m2

(r2 − 2mr)2
(3.35)

Note that it has a genuine singularity at r = 2m, which is at the Schwarzschild
radius of the uncompactified metric (2.14), where it is merely a coordinate singular-
ity. Further note thatRrr is non-zero, this is not the case for the full Schwarzschild
metric (outside the body of mass m) and that R < 0 and thus indeed the minus
sign is needed in (3.13) to have non-negative action. The second approach is via
using (3.28) and substituting the solution for χ (3.32), which gives the same an-
swer. From the Einstein equation Gµν (1.72) follows the energy momentum tensor
of this compactified system

Tµν =
1
8π

(
m2

(r2−2mr)2 0

0 m2

r2−2mr dΩ2
2

)
(3.36)
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Thus no longer the vacuum Einstein equations are in use, instead a matter term
is introduced with the resulting Tµν from above. In section 2.3 the Schwarzschild
metric was given in isotropic coordinates, the advantage of isotropic coordinates
is that the possible wormhole symmetry

r ←→ constant
r

(3.37)

can be easily found by reading it off from the conformal factor. Demanding a
isotropic form leads to

ds2 = − dr2 + (2mr − r2)dθ2 + (2mr − r2) sin2 θdφ2

= − f2(ρ)dρ2 − f2(ρ)(ρ2dθ2 + ρ2 sin2 θdθ2)
(3.38)

Comparing both sides leads to the differential equation

∂ρ(r)
∂r

=
ρ(r)√

(r2 − 2mr)
−→ ρ(r) = 2(r −m +

√
r2 − 2rm)C1

←→ r(ρ) =
4m2C2

1 + 4mρC1 + ρ2

4ρC1

←→ f2(ρ) =
r2 − 2mr

ρ2
=

(4m2C2
1 − ρ2)2

16ρ4C2
1

(3.39)

where C1 is a constant of integration. The infinitesimal line element changes to

ds2 = −
( 4m2C2

1
ρ − ρ)2

16C2
1

[
(dρ

ρ

)2

+ dΩ2
2] (3.40)

The symmetry that follows from the conformal factor ( 4m2C2
1

ρ − ρ)2 is

ρ ←→ ±4m2C2
1

ρ

or r = 2m

(3.41)

which seems to satisfy the wormhole condition of chapter two at first sight, if one
takes the plus sign, since ρ > 0 by definition. The position of the wormhole would
then be

ρ2 = 4m2C2
1 (3.42)

and for C2
1 = 1/2 this is at the same position as the original Schwarzschild worm-

hole. As is clear from the conformal factor, only due to the square is the plus sign
a symmetry. In the next chapter the D-dimensional Schwarzschild metric will be
dimensionally reduced, there the square is replaced by a different constant (di-
mensionally dependant) and the symmetry is no longer present, see (4.24). Why
then should it be for three dimensions a wormhole symmetry? Therefore look at
the embedding function z(ρ̃) corresponding to (3.34), this turns out to be

z(ρ̃) = C1 ± 2mi log[
√√

m2 + ρ̃2 −m +
√

m +
√

m2 + ρ̃2] (3.43)

which is complex. One should therefore reject this as a genuine wormhole and take
only the plus sign as a legitimate symmetry. But this symmetry exchanges positive
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and negative values of ρ, which cannot be considered an acceptable physical sym-
metry. The conclusion must be that this system does not have a wormhole in the
Einstein frame, more about this in the next chapter when the (D+1)-dimensional
Schwarzschild black hole is dimensionally reduced and since the Schwarzschild met-
ric is a special case of the Reissner-Nordstrøm metric, a wormhole can be found
via the latter.

Note by the way that nothing changes when one does the more conventional space
compactification. For the same Lagrangian

L4 = −
√
|g|eχ

4R (3.44)

is obtained. What is different of course is the ansatz for ĝµ̂ν̂

ĝµ̂ν̂ =
(

gµν 0
0 ĝzz

)
=

(
e−

χ
2 Gµν 0
0 −e

χ
2

)
(3.45)

but the same conformal mapping is needed to remove the scalar-metric coupling. A
direct comparison between the Schwarzschild metric and this ansatz is not possible
for if one compactifies in the ẑ-direction the spherically symmetric Schwarzschild
metric must first be rewritten in Cartesian coordinates first. The reason that this is
not needed in the time compactification case is that the time t in the Schwarzschild
metric is used in an Cartesian way, i.e. t ε (−∞,∞).
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Chapter 4

Various Kaluza-Klein
reductions

In the previous chapter Kaluza-Klein reductions were introduced via the four di-
mensional Schwarzschild metric. To make connection to the D-instanton of chap-
ter one, two scalar fields are needed. As a first step to obtain this, the (extremal)
Reissner-Nordstrøm black hole is explored.

4.1 General Reissner-Nordstrøm black hole

By adding charge to the Schwarzschild black hole, one obtains the Reissner-
Nordstrøm black hole. An interesting conclusion of the previous section was that
the wormhole of the uncompactified theory had disappeared after the reduction (in
the Einstein frame). Since the Reissner-Nordstrøm black hole is a generalization
of the Schwarzschild case, new insights may appear why this wormhole disappears.

From (3 + 1) dimensions to (D + 1) dimensions

In the previous chapter the compactification was done from (3 + 1) to (3 + 0)
dimensions, generalizing to (D + 1) dimensions is the logical next step to do.
Taking again only scalars into account by setting all vector fields that appear
equal to zero, will change the metric ansatz for ĝµ̂ν̂ to

ĝµ̂ν̂ =
(

e
χ
2 0
0 gµν

)
(4.1)

where gµν is now a (D×D) matrix. To begin with the general Reissner-Nordstrøm
metric in (D + 1) dimensions, i.e.

L̂RN = L̂R + L̂MW

=−
√
|ĝ|R̂ − 1

4

√
|ĝ|ĝµ̂ρ̂ĝν̂η̂F̂µ̂ν̂ F̂ρ̂η̂

(4.2)

where a hat now refers to a (D + 1)-dimensional object and the field strength is
expressed through the vector potential F̂µ̂ν̂ = ∂µ̂Âν̂ −∂ν̂Âµ̂, which is the standard
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Maxwell (MW ) field strength to describe electromagnetism. To obtain the con-
formal mapping that results in the Einstein frame. the first part of (4.2) needs to
be re-examined. The (D + 1)-dimensional Christoffel symbol

Γ̂ρ̂
µ̂ν̂ =

1
2
ĝρ̂σ̂

(
∂µ̂ĝν̂σ̂ + ∂ν̂ ĝµ̂σ̂ − ∂σ̂ ĝµ̂ν̂

)
(4.3)

has as non-zero entries

Γ̂ρ
µν = Γρ

µν , Γ̂0
µ0 =

1
2
g00∂µg00 =

1
4
∂µχ, Γ̂ρ

00 = −1
2
gρ u∂ug00 = −1

4
e

χ
2 ∂ρχ (4.4)

Using (3.17), the first part of the action (4.2) can be rewritten as (with α = 0)

L̂D+1 = −
√
|ĝ|ĝµ̂ρ̂

(
Γ̂σ̂

µ̂λ̂
Γ̂λ̂

σ̂ρ̂ − Γ̂λ̂
µ̂ρ̂Γ̂

σ̂
λ̂σ̂

)

= − e
χ
4
√
|g|gµρ

(
Γ̂σ̂

µλ̂
Γ̂λ̂

σ̂ρ − Γ̂λ̂
µρΓ̂

σ̂
λ̂σ̂

)
− e−

χ
4
√
|g|

(
Γ̂σ̂

0λ̂
Γ̂λ̂

σ̂0 − Γ̂λ̂
00Γ̂

σ̂
λ̂σ̂

)

(4.5)

since ĝµ0 = 0 due to (4.1). Upon substituting (4.4) this becomes

LD = −
√
|g|eχ

4R (4.6)

So far the dimension D did not explicitly come into play, the reason for this is that
the metric ansatz for ĝµ̂ν̂ (4.1) has the same form for all dimensions. But to go to
the Einstein frame remember that the determinant

√
|g| and the Ricci scalar R

changes in D dimensions as

gµν ⇒ Gµνeαχ

Rg ⇒ RGe−αχ
(4.7)

and thus to obtain the Einstein frame demand

e
χ
4
√
|g|Rg = e

χ
4
√
|G|eDα

2 χRGe−αχ ≡
√
|G|R

⇒ Dα

2
+

1
4
− α = 0 ⇒ α =

1
4− 2D

(4.8)

The conformal mapping of the metric will influence the Christoffel symbols in the
following way

Γµ
νρ(g) =

1
2
gµη

(
∂νgηρ + ∂ρgνη − ∂ηgνρ

)

= Γµ
νρ(G)− 1

8− 4D

{
−δµ

ρ ∂νbχ− δµ
ν ∂ρχ + GνρG

µη∂ηχ
} (4.9)

where Γρ
µν(G) is the Christoffel symbol for the metric Gµν . The easiest way to

calculate the effect of this conformal mapping is by using (3.17)

√
|g|eχ

4 R(g) =
√
|g|gµρe

χ
4

(
Γσ

µλΓλ
σρ − Γσ

σλΓλ
µρ

)

+
1
4

√
|g|eχ

4 ∂µφgµρΓσ
σρ −

1
4

√
|g|eχ

4 ∂σφgµρΓσ
µρ

(4.10)
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and substituting (4.9). Note however that the factor 1
4 in this formula comes

purely from the e
χ
4 and is not influenced by generalizing to D dimensions. After

some lengthy algebra one obtains

√
|g|eχ

4R(g) =
√
|G|R(G) +

[ D − 1
16(2−D)

]
∂µχ∂νχGµν (4.11)

The second part of (4.2) is straightforward

L̂MW = −

√
|ĝ|
4

ĝµ̂ρ̂ĝν̂η̂Fµ̂ν̂Fρ̂η̂

= −
√
|g|
4

e
χ
4

(
ĝµρĝνdFµνFρη + ĝ00ĝνηF0νF0η + ĝµρĝ00Fµ0Fρ0

)

= −
√
|g|
4

e
χ
4

(
gµρgνηFµνFρη + e

−χ
2 gνηF0νF0η + gµρe

−χ
2 Fµ0Fρ0

)

= −
√
|g|
4

e
χ
4

(
gµρgνηFµνFρη + 2e

−χ
2 gνηF0νF0η

)

(4.12)

Setting the vector part Fµν equal to zero and labelling Â0 = `

LMW = −
√
|g|
4

e
χ
4

(
2e

−χ
2 gνηF0νF0η

)
= −

√
|g|
2

e−
χ
4

(
gνη(∂0Aν − ∂νA0)(∂0Aη − ∂ηA0)

)

= −
√
|g|
2

e
−χ
4

(
gνη∂νA0∂ηA0

)
= −1

2

√
|g|e−χ

4 gνη∂ν`∂η`

(4.13)

To go to the Einstein frame apply the conformal mapping with α from (4.8)

LEF
MW = −1

2

√
|G|Gµν∂µ`∂ν`e

−χ
2 (4.14)

which is independent of the dimension used. The time-compactified Einstein
Reissner-Nordstrøm Lagrangian (CRN) in D dimensions becomes thus

LEF
CRN = −

√
|G|R(G)−

√
|G|

[ D − 1

16(2−D)

]
∂µχ∂νχGµν − 1

2

√
|G|

(
Gµν∂µ`∂ν`

)
e
−χ
2

(4.15)
The equations of motion that follow from this Lagrangian are for respectively Gµν ,
` and χ

−Rµν −
[ D − 1
16(2−D)

]
∂µχ∂νχ− 1

2

(
∂µ`∂ν`

)
e
−χ
2 = 0

∂µ

(√
|G|Gµνe

−χ
2 ∂ν`

)
= 0

∂µ

(√
|G|

[ D − 1
16(2−D)

]
Gµν∂νχ

)
+

√
|G|
8

e
−χ
2 Gµν∂µ`∂ν` = 0

(4.16)

The field ` is a pseudoscalar, to understand this go for example to four dimensions
and compare in appendix A.1 rule one and three. A pseudoscalar transforms the
same as time does under a Wick rotation and since ` is the time component of a
four vector Âµ̂, rule number two shows that it is a pseudoscalar.
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In [20] the (D + 1)-dimensional Schwarzschild and Reissner-Nordstrøm metric
are given

ds2
SCH =

(
1− α

rD−2

)
dt2 −

(
1− α

rD−2

)−1

dr2 − r2dΩ2
D−1 (4.17)

ds2
RN =

(
1− α

rD−2
+

β2

r2D−4

)
dt2−

(
1− α

rD−2
+

β2

r2D−4

)−1

dr2− r2dΩ2
D−1 (4.18)

where α and β are the generalized mass and charge and dΩ2
D−1 represents the

angular parts of a SD−1 sphere

dΩ2
D−1 = dθ2

1 + sin2 θ2dθ2
2 + ... +

D−2∏
m=1

sin2 θmdθ2
D−1 (4.19)

Note that the Schwarzschild metric has a coordinate singularity at r = α
1

D−2 and
the general Reissner-Nordstrøm metric at β2r4 − αrD+2 + r2D = 0.

Schwarzschild metric in (D + 1) dimensions

To obtain the equations of motion for the dimensionally reduced Schwarzschild
metric in D dimensions put ` = 0 in (4.16). The Schwarzschild line element in
(D + 1) dimensions gives for ĝµ̂ν̂

ĝµ̂ν̂ =




(
1− α

rD−2

)
0 0 0 0

0 −
(
1− α

rD−2

)−1
0 0 0

0
0 0 −r2 0 0
0 0 0 ... 0

0 0 0 0 −r2
∏D−2

m=1 sin2 θm




=
(

e
χ
2 0
0 gµν

)
=

(
e

χ
2 0
0 e

χ
(4−2D) GEF

µν

)
(4.20)

Comparing both sides of this matrix equation leads to

e
χ
2 =

(
1− α

rD−2

)
⇒ χ = 2 log

[
1− α

rD−2

]
(4.21)

Gµν =



−
(
1 − α

rD−2

)−D−3
D−2 0 0 0

0
(

r2D−4 − αrD−2
) 1
(D−2) 0 0

0 0 ... 0

0 0 0
(

r2D−4 − αrD−2
) 1

D−2 ∏D−2
m=1 sin2 θm




(4.22)
A problem with this reduction is that for α > 0 (which corresponds to masses
larger then zero) Grr becomes imaginary, this happens for rD−2 < α. Note that
for D = 3 this problem does not arise (3.33). Demanding a conformal flat metric
leads to

ρ(r) = (r(D−2)/2 +
√

rD−2 − α)2/d−2C1

f(ρ)2 =
( (ρ2(D−2) − α2C

2(D−2)
1 )

1
D−2

2
2

D−2 ρ2C2
1

)2 (4.23)
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The symmetry of the conformal factor is

ρD−2 ←→ −︸︷︷︸
α2C

2(D−2)
1

ρD−2
(4.24)

Note that only for D = 3 does (4.23) imply a (possible) wormhole symmetry,
since then 1/(D − 2) = 1 and a plus sign can be chosen in (4.24) instead of the
minus sign. But as was noted in the last section of the previous chapter, this
gives an imaginary embedding functions, see (3.43), which was therefore discarded
as a genuine wormhole. The conclusion is thus that for the (D + 1)-dimensional
Schwarzschild metric, the Kaluza-Klein reduced system does not have a worm-
hole interpretation in any dimension in the Einstein frame and that the metric
becomes imaginary at a certain point. This last issue is due to the fact that the
Schwarzschild metric is valid only for r larger than the Schwarzschild radius, which
is in (D + 1) dimensions determined by rD−2 = α.

Also not that Grr is not just −1, this only happens for D = 3. As a consistency
check compare the trace of the Ricci scalar via two different paths, similar as to
the three dimensional example (3.35). The first approach leads to the D×D Ricci
tensor

Rµν =

(
(D − 1) α2(−2+D)

4(−αr+rD−1)2
0

0 0

)
(4.25)

and thus the trace of the Ricci scalar is (D− 1) α2(−2+D)r2

4(−αr2+rD)2
which agrees with the

first equation of motion of (4.16)

Rµν =
[ D − 1
16(D − 2)

]
∂µχ∂νχ ⇒ Tr[Rµν ] =

[ D − 1
16(D − 2)

]
∂rχ∂rχ

=(D − 1)
α2(D − 2)r2

4(−αr2 + rD)2

(4.26)

Note that the Ricci scalar has a singularity at r = α
1

D−2 , which was merely a
coordinate singularity in the uncompactified case, see below (4.19).

Reissner-Nordstrøm metric

The equations of motion for the D-dimensional time reduced Reissner-Nordstrøm
metric are given by (4.16). The Reissner-Nordstrøm line element (4.18) in (D +1)
dimensions gives with the same metric ansatz as (4.20)

e
χ
2 =

(
1− α

rD−2
+

β2

r2D−4

)
⇒ χ = 2 log

[
1− α

rD−2
+

β2

r2D−4

]

Gµν =



−
(
1− α

rD−2 + D2

r2D−4

)−D−3
D−2

0 0

0 ... 0

0 0 −
(
r2(D−2) − αrD−2 + β2

) 1
(D−2) ∏D−2

m=1 sin2 θm




(4.27)
and the corresponding Ricci tensor is

Rµν =

(
(D−1)(D−2)(α2−4β2)r2+2D

4(β2r4+r2D−αr2+D)2
0

0 0

)
(4.28)
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Note that it has a genuine singularity at β2r4 − αrD+2 + r2D = 0, which was the
condition for merely a coordinate singularity in the uncompactified case, see below
(4.19).

To find the radial solution for the field ` integrate out the second equation of
(4.16) with the help of the solution for χ (4.27)

`(r) =
β
√

2(D − 1)
rD−2

√
D − 2

+ µ2 (4.29)

This gives for D = 3, β = ε and µ2 = 0 the result

`(r) =
2ε

r
(4.30)

which is nothing but the potential of a point charge and see also (A.23). Demand-
ing a conformal metric to investigate the wormhole symmetry leads to

f(ρ)2 =
(ρ2(d−2) − (α2 − 4β2)C2(d−2)

1 )2/(d−2)

24/(d−2)ρ4C2
1

(4.31)

This agrees with the three dimensional Schwarzschild case (3.39) if β = 0 and
α = 2m. The symmetry of the conformal factor is

ρD−2 ←→ − (α2 − 4β2)C2D−4
1

ρD−2
(4.32)

Only in the special case D = 3 can one also take the plus sign due to 2/(D − 2)
in (4.31). It is a genuine wormhole symmetry for the case α2 − 4β2 < 0 which
means a naked singularity. This condition is called naked singularity, because the
uncompactified metric does not have a horizon. So one can travel to the singularity
at r = 0 and still be able to go back, according to the so called Cosmic censorship
hypothesis these objects do not appear in nature. To have a wormhole for the
other situation go to the dual frame, see appendix A.5. From the general case
(A.51) one gets with b = −1/2 and φ = χ

GDF
µν = e

−χ
2D−4 gEF

µν (4.33)

Comparing this with (4.20) shows that the dual frame mapping cancels the initial
Kaluza-Klein reduction, which explains why the wormhole obtained in the dual
frame is the same one as in the original metric of the (D + 1)-dimensional un-
compactified system, this compactified system is simply the radial part of the full
system. Further note that in the limit β → 0 this still works and for the wormhole
of the D-dimensional Schwarzschild metric one also find that it is in the dual frame
and is equal to the wormhole of the (D + 1)-dimensional Schwarzschild metric. In
the special case D = 3 this means that in the dual frame the wormhole is at the
same position as the uncompactified case, which was discussed in section 2.3 and
answers the question of the last section of chapter three about where the wormhole
has gone to.

Extremal Reissner-Nordstrøm metric

All that remains to investigate is the extremal Reissner-Nordstrøm metric. Based
on the knowledge of the extremal D-instanton, it is expected that a wormhole
appears in the string frame.
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To obtain the extremal case, rewrite the Reissner-Nordstrøm metric in terms
of α̃ = α

2 and set α̃ = β. The infinitesimal line element becomes

ds2
RN =

(
1− α̃

rD−2

)2

dt2 −
(
1− α̃

rD−2

)−2

dr2 − r2dΩ2
D−1 (4.34)

and the solutions

e
χ
2 =

(
1− α̃

rD−2

)2

⇒ χ = 4 log
[
1− α̃

rD−2

]

Gµν =




−
(
1− α̃

rD−2

)− 2(D−3)
D−2

0 0

0 ... 0

0 0 −
(
rD−2 − α̃

) 2
D−2 ∏D−2

m=1 sin2 θm




(4.35)

The Ricci tensor becomes identical to zero, which of course confirms the fact that
this is the extremal solution, see also (4.37). The solution for the field `(r) is

`(r) =
α̃
√

2(D − 1)
rD−2

√
D − 2

(4.36)

This system in the Einstein frame is nothing else then flat Euclidean space, to see
this note that the corresponding conformal factor f(r) of the isotropic version is

f(r) =
1
C1

(4.37)

The reason why this is flat space, is the same as discussed in chapter two, see
below (2.32). A wormhole may be present in the string frame and to get there it
follows from (4.15) that the mapping should be

GEF
µν = e

χ
D−2 gSF

µν (4.38)

which gives for the string frame metric

gSF
µν =




(
1− α̃

rD−2

)− 2D−2
D−2

0 0
0 . . . 0

0 0 −r2
(
1− α̃

rD−2

) −2
D−2 ∏D−2

m=1 sin2 θm


 (4.39)

Demanding isotropic coordinates gives for the conformal factor

f(ρ) =
[ (ρD−2 + α̃CD−2

1 )2

ρ2(D−2)CD−2
1

] 1
D−2

(4.40)

and the symmetry that follows is

ρ
D−2

2 ←→ α̃CD−2
1

ρ
D−2

2

or r = (2m)
1

D−2 (4.41)

For the three dimensional case this extremal wormhole can be embedded in flat
Euclidean space (taking one angle constant), with the resulting figure 4.1. In
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Figure 4.1: Wormhole of the compactified
Extremal Reissner-Nordstrøm black hole

Figure 4.2: ”Semi-wormhole”

section 2.4 the uncompactified extremal Reissner-Nordstrøm metric did not have
a good wormhole interpretation, only a wormhole connecting the interior part of
two black holes, see figure 2.6. In the compactified case here, there is a genuine
wormhole in the string frame, so the compactification has generated an extra
wormhole. This was also the case for the naked singularity, see (4.32).

The analysis of the previous cases lead to the following conclusions

• The wormholes in the Einstein frame of the uncompactified metrics are found
back in the dual frame after the Kaluza-Klein reduction. This can be under-
stood if one realizes that the mapping to the dual frame cancels the mapping
needed to get in the Einstein frame after the Kaluza-Klein reduction, see for
example (4.33).

• Extra wormholes are generated by the Kaluza-Klein reduction of the original
metrics in the Einstein and string frame. Theses are for example the extremal
wormholes in the string frame (4.41) or the naked singularity wormholes
(4.32) in the Einstein frame.

• The coordinate singularities in the uncompactified case, become genuine sin-
gularities of the Ricci scalar in the compactified case, see for example below
(4.28).

The analysis of the general Reissner-Nordstrøm black hole has given rather
interesting (and surprising) results. For the well known case of three dimensions
the mass β is m and the charge α is ε, see also (2.25). For the extremal case
one finds a wormhole in the string frame, for the (un-physical) m2 − ε2 < 0 case
in the Einstein frame and for m2 − ε2 > 0 in the dual frame (and thus also for
the Schwarzschild case). The special behavior of the extremal case m = ε can
be better understood if one looks at the proper radial distance [14]. Introduce
r± = m±√m2 − ε2 and rewrite the metric of the Reissner-Nordstrøm black hole
as

ds2 = −∆
r2

dt2 +
r2

∆
dr2 + r2dΩ2 (4.42)

where
∆ = (r − r+)(r − r−) (4.43)
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The distance to the horizon at r = r+ along a curve of constant (t, θ, φ) from
r = R is

s =
∫ R

r+

dr√
(1− r+

r )(1− r−
r )

(4.44)

which goes to ∞ when (r+ − r−) → 0, i.e. as m− ε → 0. So the wormhole has an
infinitely long throat when the charge becomes equal to the mass in the Einstein
frame, see figure 4.2.

4.2 Dilatonic black hole

In the previous section of this chapter the dilaton χ came from the metric ĝµ̂ν̂ and
the axion ` came from the vector Ââ. In ten dimensional type IIB string theory
there are however already from the start (i.e. before any compactification) both a
dilaton and an axion present. A more general and thus interesting generalization
is possible [18]

L = LR̂ + L̃F̂µ̂ν̂
+ Lφ̂ (4.45)

where LR̂ is the same as in the previous sections and L̃F̂µ̂ν̂
has now an extra

coupling with the initial dilaton field φ̂

L̃F̂µ̂ν̂
= −1

2
eaφ̂ ∗ F̂µ̂ν̂ ∧ F̂µ̂ν̂

Lφ̂ = −1
2
∗ dφ̂ ∧ dφ̂

(4.46)

so that he full Lagrangian of this system becomes

L̂ =
√
|ĝ|R̂ − 1

4

√
|ĝ|eaφ̂ĝµ̂ρ̂ĝν̂η̂F̂µ̂ν̂F̂ρ̂η̂ − 1

2

√
|ĝ|∂µ̂φ̂∂ν̂ φ̂ĝµ̂ν̂ (4.47)

where the metric is diag = (−1, 1, . . . , 1). To obtain the Lagrangian with the same
metric convention as in the previous sections observe that both the Ricci scalar R̂
and the kinetic part ∂µ̂φ̂∂ν̂ φ̂ĝµ̂ν̂ are sensitive to such a change

L̂DB = −
√
|ĝ|R̂ − 1

4

√
|ĝ|eaφ̂ĝµ̂ρ̂ĝν̂η̂F̂µ̂ν̂F̂ρ̂η̂ +

1
2

√
|ĝ|∂µ̂φ̂∂ν̂ φ̂ĝµ̂ν̂ (4.48)

where DB stands for dilatonic black hole, it is a charged black hole and an extra
scalar field φ, the dilaton, is taken into account. Note however that in this case
there is only a Lagrangian present and not an explicit metric, see for example
(4.20). Will the extra dilaton field φ̂ destroy the metric ansatz, i.e. does still hold

ĝµ̂ν̂ =




u n k n
o w n −
u n k n
o w n −


 =

(
e

χ
2 0
0 gµν

)
? (4.49)

Taking in the ansatz ĝ0µ 6= 0 means that an extra vector field will appear, see
(3.10). So although the exact metric form of the full ĝµ̂ν̂ is unknown, it seems
likely that the same ansatz will still work. The extra dilaton field φ̂ will only
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show up when the Lagrangian becomes time compactified, but it is not to be
expected to influence the metric ansatz as given by (4.49). Also note that in the
previous section, knowing the metric ĝµ̂ν̂ from the start, meant that only the field
` was unknown. In the D-instanton case however it was the other way around,
by assuming a flat Minkowskian space in the Einstein frame the D-instanton was
solved.

The Einstein-Hilbert and Maxwell terms with extra dilaton coupling eαφ̂ in
(D + 1) dimensions are

L̂RN = −
√
|ĝ|R̂ − 1

4
ĝµ̂ρ̂ĝν̂η̂F̂µ̂ν̂F̂ρ̂η̂eαφ̂ (4.50)

and reduces to

LRN =−
√
|G|R(G)−

√
|G|

[ D − 1
16(2−D)

]
∂µχ∂νχGµν

−
√
|G|
2

(
Gµν∂µ`∂ν`

)
e
−χ
2 eαφ

(4.51)

in the Einstein frame. The extra dilaton field in (D + 1) dimensions

L̂φ̂ =
1
2

√
|ĝ|∂µφ̂∂ν φ̂ĝµν (4.52)

becomes under the time compactification

Lφ =
1
2

√
|g|∂µφ∂νφgµνe

χ
4 ⇒ LEF

φ =
1
2

√
|G|e Dχ

2(4−2D) ∂µφ∂νφGµνe
−χ

4−2D e
χ
4

=
1
2

√
|G|∂µφ∂νφGµν

(4.53)

Thus the D-dimensional Lagrangian for the compactified dilatonic black hole
(CDB) becomes in the Einstein frame

LEF
CDB = −

√
|G|R(G) +

√
|G|

[ D − 1
16(D − 2)

]
∂µχ∂νχGµν

−
√
|G|
2

Gµν∂µ`∂ν`e
−χ
2 eαφ +

1
2

√
|G|∂µφ∂νφGµν

(4.54)

The two fields χ and φ are both scalars, whereas ` is a pseudoscalar, so a more
democratic treatment must be possible for the scalars. To help achieve this, com-
pare to the work of Cremmer et al [21]

L̂ =
√
|ĝ|R̂ − 1

2

√
|ĝ|(∂φ̂)2 − 1

2n!

√
|ĝ|eâφ̂F̂ 2

n (4.55)

Here F̂n is an n-index antisymmetric tensor in (D + 1) dimensions. Start with
the Kaluza-Klein reduction over a timelike component t, i.e. xM̂ = (xM , t). The
metric ansatz of Cremmer et al is

dŝ2 = e−2αϕds2 − e2(D−2)αϕ(dt +A2
(1))

2

Â(n−1)(x, t) = A(n−1)(x) + A(n−2)(x) ∧ dt

φ̂(x, t) = φ(x)

(4.56)
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where α = (2(D − 1)(D − 2))−1/2. The time-compactified metric becomes then

L =
√
|gR− 1

2

√
|g|(∂φ)2 − 1

2

√
|g|(∂ϕ)2 +

1
4

√
|g|e2(D−1)αϕF2

(2)

−
√
|g|

2n!
e2(n−1)αφ+âφF 2

(n) +

√
|g|

2(n− 1)!
e−2(D−n)αϕ+âφF 2

(n−1)

(4.57)

where

F(n) = dA(n−1) − dA(n−2) ∧ A(1)

F(n−1) = dA(n−2)

(4.58)

To make connection to (4.54) observe first the following [7]. Reducing the (D+1)-
dimensional Einstein-Hilbert Lagrangian with the Kaluza-Klein vector not turned
off leads to

L =
√
|ĝ|R̂ =

√
|G|

(
R− 1

2
(∂ϕ)2 − 1

4
e−2(D−1)βϕF2

)
(4.59)

where β is a constant here. Thus the fourth term on the right hand side of (4.57)
is the vector part of the metric ansatz, which was set equal to zero in (4.54), this
term must thus be discarded. To make connection to the D-instanton, only the
scalars must be kept, this means that n = 2. The field F(n) = F(2) must be turned
off, since else there has to be a Aµ 6= 0. Further F 2

(n−1) = F 2
(1) = ∂µ`∂ν`Gµν and

the non-zero terms of the Lagrangian become

L =
√
|G|R − 1

2

√
|G|∂µφ∂νφGµν − 1

2

√
|G|∂µϕ∂νϕGµν

+
1
2
e−2(D−2)αϕ+âφ∂µχ∂νχGµν

(4.60)

Note that the last term on the right hand side depends on D. To explain this
look at the metric ansatz Cremmer et al use (4.56), there is an explicit D in the
exponent. They then rewrite the non-zero parts of this Lagrangian to

L =
√
|G|R − 1

2

√
|G|(∂φ1)2 − 1

2

√
|G|(∂φ2)2 +

√
|G|e2φ1(∂χ)2 (4.61)

where
φ1 =

1
2
âφ− (D − 2)αϕ, φ2 = (D − 2)αφ +

1
2
âϕ (4.62)

How do they get this last equality? First of all there seems to be a 1
2 missing

in front of the last term. Secondly this equality is good if and only if a2 ≡
( â2

4 +(D− 2)2α2) = 1. When correcting for this, the good normalized Lagrangian
becomes

L =
√
|G|R − 1

â2

4 + (D − 2)2α2

[1
2

√
|G|(∂φ2)2 +

1
2

√
|G|(∂φ1)2

]

+
1
2

√
|G|e2φ1(∂χ)2

(4.63)

where both modifications are taken into account. The solutions for the fields are
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in the case a2 = 1

ds2 = e
2f

D−2 (e−2fdr2 + r2dΩ2)

φ1 = −f + log[H], φ2 = f

√
D

D − 2
χ = H−1 coth(µ)

H = 1 +
k sinh2 µ

rd̃
, e2f = 1− k

rd̃

(4.64)

where d̃ = D− 2 and k and µ are constants related to the mass and charge. Note
that there are three scalar fields present, to link this to the D-instanton case one
of the fields must be set equal to zero. For consistency φ2 must be turned off, since
in the Lagrangian (4.61) this is the only field not coupled to any of the other fields.
The solution for φ2 means that setting this field equal to zero, also f = 0, i.e. it
is not possible to obtain solutions with non-flat space, the so called non-extremal
D-instantons. This is not interesting, because it does not allow for a generalization
of the extremal D-instanton of chapter one.

But nonetheless, this same procedure can also be applied to (4.54) and this
may give a more fruitful solution. To write this in terms of fields φ1 and φ2 first
introduce χ =

√
(8(D − 2))/(D − 1)χ̃ which turns the Lagrangian into

LD = −
√
|G|R(G) +

√
|G|1

2
∂µχ̃∂ν χ̃Gµν

+
1
2

√
|G|∂µφ∂νφGµν − 1

2

√
|G|Gµν∂µ`∂

−
√

8(D−2)
D−1 χ̃

2
ν eαφ

(4.65)

Introduce now γ =

√
8(D−2)

D−1

4 , α = 2α̃ and

φ1 = −γχ̃ + α̃φ

φ2 = α̃χ̃ + γφ
(4.66)

which yields for the Lagrangian

LD = −
√
|G|R(G) +

1
α̃2 + γ2

(1
2

√
|G|∂µφ1∂νφ1G

µν

+
1
2

√
|G|∂µφ2∂νφ2G

µν
)
− 1

2

√
|G|Gµν∂µ`∂2φ1

ν

(4.67)

Further introduce
b̃2 = α̃2 + γ2, b̃ϕi = φi, b = 2b̃ (4.68)

which turns the Lagrangian into

LD = −
√
|G|R(G) +

1
2

√
|G|∂µϕ1∂νϕ1G

µν

+
1
2

√
|G|∂µϕ2∂νϕ2G

µν − 1
2

√
|G|Gµν∂µ`∂ν`ebϕ1

(4.69)
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and the corresponding equations of motion

−Rµν +
1
2
∂µϕ1∂νϕ1 +

1
2
∂µϕ2∂νϕ2 − 1

2
ebϕ1∂µ`∂ν` = 0

− b

2

√
|G|ebϕ1Gµν∂µ`∂ν`− ∂µ

(√
|G|Gµν∂νϕ1

)
= 0

∂µ

(√
|G|Gµν∂νϕ2

)
= 0

∂µ

(√
|G|ebϕ1Gµν∂ν`

)
= 0

(4.70)

Note that the difference with Cremmer et al is the general coupling b and that there
is one scalar field too many here too, but that it is consistent to set ϕ2 = 0 since
it does not interact with any of the other fields as is evident from the Lagrangian
and equations of motion above.

4.3 Non-extremal D-instanton

To help solving these equations of motion, a metric ansatz is needed. The extremal
D-instanton has a SO(10) symmetry (1.85), it makes therefore sense to consider
in this case a metric with SO(D) symmetry. Furthermore having flat space at
infinitely is customary, i.e. demand thus a conformally flat metric

ds2 = −e2B(r)
(
dr2 + r2dΩ2

D−1

)
(4.71)

To have a SO(D) symmetry, only radial field solutions are acceptable, the angular
components of the Ricci scalar must vanish, see the Einstein equation (4.70). This
leads to a differential equation for B(r), with as a solution

B(r) = C2 + log
[(

1 +
κ2

r2(D−2)

) 1
D−2

]
(4.72)

where κ2 and C2 are constants of integration. Note that C2 is related to the
following symmetry of the equations of motion

gµν → eλgµν (4.73)

where λ is a constant, it thus also determines the behavior at spatial infinity, only
for C2 = 0 does the metric approaches pure flat space. This symmetry is called
the Weyl re-scaling of the metric, it is an extra symmetry besides the SL(2,R)-
symmetry1. The line element becomes with this choice for B(r)

ds2 = −e2C2

(
1 +

κ2

r2(D−2)

) 2
D−2

(
dr2 + r2dΩ2

D−1

)
(4.74)

The difference with the case of Cremmer et al is that they do not take a manifestly
SO(D) symmetric line element, see (4.64). The metric above has the following
symmetry (for the case κ2 > 0 only)

rD−2 ←→ κ2

rD−2
(4.75)

1Of the equations of motion only, not the action.
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at the position
r = κ

1
D−2 (4.76)

To see that it indeed connects two asymptotically flat spaces first observe that for
large r the infinitesimal line element becomes

ds2 = −e2C2

(
dr2 + r2dΩ2

D−1

)
(4.77)

and for small values of r

ds2 = −e2C2

( κ2

r(D−2)

) 2
D−2

[(dr

r

)2

+ dΩ2
D−1

]
≡ −dρ2 − ρ2dΩ2

D−1 (4.78)

where

ρ = eC2
κ

2
D−2

r
(4.79)

This clearly satisfies the working definition of a wormhole as defined in section 2.1,
for it connects two asymptotically flat spaces. Now the following interesting obser-
vation follows. For the extremal D-instanton there is a wormhole interpretation
possible only in the string frame, whereas for the non-extremal D-instanton (to be
obtained below), a wormhole is present in the Einstein frame (4.75) (if κ2 > 0).
This should be compared to the instantons of for example the three dimensional
compactified Reissner-Nordstrøm black holes. There was concluded that the ex-
tremal case m2 = ε2 (≈ κ2 = 0) has a wormhole in the string frame (4.41), whereas
for the non-extremal case m2 − ε2 < 0 (≈ κ2 > 0) in the Einstein frame (4.32)
and finally the wormhole of the physical situation m2 − ε2 > 0 (≈ κ2 < 0) was
obtained in the dual frame (4.70). Also observe that taking the combined limit
κ → 0 and C2 → 0 implies that the metric (4.74) becomes that of flat space. The
wormhole symmetry disappears however, see (4.75).

The Ricci tensor belonging to this conformally flat ansatz is for all values of κ2

Rµν =

(
ακ2r2(D−3)

(κ2+r2(D−2))2
0

0 0

)
(4.80)

which is independent of C2 and where

α = 2[(2D − 2)(D − 2)] (4.81)

For the case κ2 < 0 it has a singularity at r2(D−2) = κ2. Since the field gµν is
already know, it may seem that there is one equation of motion too many. But
since the conformal factor of the metric depends only on B(r) and not on any
fields, all four turn out to be relevant.

First case: κ2 > 0

To solve the coupled differential equations (4.70) begin with the third one, for it
only contains the unknown function ϕ2

∂r

(√
|G|∂rϕ2G

rr
)

= 0 (4.82)

The radial solution to this equation of motion is

ϕ2(r) =
arctan[ rD−2

κ ]C3

(D − 2)κ
+ C4 (4.83)
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As said at the end of the previous section, setting this field zero is consistent
with the third equation of motion (4.70), since there are no source terms on the
right hand side and note that this solution is valid for 0 < r < ∞. Further it is
interesting to point out that the argument of the arctan can also be inverted, i.e.

ϕ2(r) =
arctan[ κ

rD−2 ]C3

(D − 2)κ
+ C4 (4.84)

where arccot[r] = arctan[ 1r ]. This too solves the equation of motion for ϕ2(r),
because these two functions are related

arctan(x) + arccot(x) =
π

2
, x > 0 (4.85)

For the non-extremal D-instantons this field will be set equal to zero, but for
completeness the solution has been given.

To obtain the solution for the field ϕ1 integrate out the last equation of motion

∂r`(r) =
e−bϕ1C3

grr
√
|g| =

e−bϕ1rD−3C3

κ2 + r2(D−2)
(4.86)

and substitute this into the first equation of motion

− b

2

√
|G|ebϕ1Gµν

(e−bϕ1rD−3C3

κ2 + r2(D−2)

)2

−∂r

(√
|G|∂rϕ1G

rr
)

= 0 (4.87)

Solving this differential equation gives

e−
bϕ1(r)±

2 = b
√

C4csc
[
b2

√
C4

(± arctan[ rD−2

κ ]C3 + (D − 2)κC5

2(D − 2)κ

)]
(4.88)

where csc(x) = 1/ sin(x). This solution is valid for 0 < r < ∞ only if

b2
√

C4

[π
2 C3 + (D − 2)κC5]

2(D − 2)κ
<

π

2
(4.89)

since the arctan(x) ε (−π
2 , π

2 ) and this condition makes sure that the sin(x) > 0
so that e−bϕ1(r)±/2 > 0, else the field ϕ1 becomes imaginary. If this condition is
not satisfied then define the point R as that point at which the argument of the
csc takes on the value π/2. This happens then at the point where ϕ1(R) goes to
zero, hence at weak coupling and thus there is no hope that string theory may
come to the rescue.

To obtain the solution for the pseudoscalar use (4.86)

`(r)± = C6 − 2
√

C4 cot
[b2

√
C4

(
arctan[ rD−2

κ ]C3 ± (D − 2)κC5

)

2(D − 2)κ

]
(4.90)

The ± in both the solution above and in ϕ1 can be absorbed in the constant of
integrations. Finally the Einstein equation with ϕ2 6= 0 is only satisfied if

2ακ2 + C2
3 (1− b2C4) = 0

ϕ2 6=0
(4.91)
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and with ϕ2 = 0 this condition becomes

2ακ2 − b2C2
3C4 = 0

ϕ2=0
(4.92)

So there are only four independent constant of integration: (κ,C3, C5, C6). The
constant C2 is of course also a free parameter, but if one requires pure flat space
at infinity it should be set equal to zero.

If one uses the opposite argument of the arctan the ` solution becomes

`(r)± = C6 + 2
√

C4 cot
[b2

√
C4

(
arccot[ rD−2

κ ]C3 ± (D − 2)κC5

)

2(D − 2)κ

]
(4.93)

Second case:κ2 < 0

The second case is when κ2 < 0, this is the same as replacing κ by iκ in all
solutions obtained above. The following relations are important

• arctan(ir) = iarctanh(r)

• arccot(ir) = −iarccot(r)

Looking back at the solutions of the previous section, this means that one can
replace everywhere in these solutions the corresponding function on the left hand
side of this list by the corresponding right hand side function. Reality of the fields
is guaranteed, because everywhere there are compensating κ’s, for example the
three dimensional case

ϕ2(r) =
arctanh[ r

κ︸︷︷︸ ]C3

κ︸︷︷︸
+ C4

e−
bϕ1±

2 = b
√

C4csc
[
b2

√
C4

(±arctanh[ r
κ︸︷︷︸ ]C3 + κ︸︷︷︸C5

2 κ︸︷︷︸

)]

`(r)± = C6 + 2
√

C4 cot
[
b2

√
C4

(arctanh[ r
κ ]C3 ± κC5

2κ

)]

16κ2 + C2
3 (1− b2C4) = 0|ϕ2 6=0, 16κ2 − b2C2

3C4 = 0|ϕ2=0

(4.94)

where, as in the previous section, one can also choose the inverted argument via
replacing the arctanh by arccoth. Note however that in this case C4 is negative
and that thus the solutions for φ and ` have csch and coth instead of csc and cot,
if the relation for C4 is substituted in these solutions. The relations between the
integration constants Ci and the ones by Bergshoeff et al [17] are

κ = q, C3 =
√

2αq−, C5 =
2C1q−

bq
, C6 =

−2q3

bq−
, C2 = 0 (4.95)

It is important to note that these relations are obtained via the solutions with
arccoth.

The infinitesimal line element becomes in this situation with the re-definition
−κ2 = κ̃2 > 0

ds2 = −e2C2

(
1− κ̃2

r2(D−2)

) 2
D−2

(
dr2 + r2dΩ2

D−1

)
(4.96)
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Two interesting observations can be made now. First note that the metric becomes
imaginary if

r2D−4 < κ̃2 (4.97)

but this happens at strong coupling g, since eφ blows up at this point. The low
energy effective theory is not sufficient in this case, higher order corrections to the
type IIB effective action need to be considered to see if this really is a problem.
Secondly the metric has the symmetry

rD−2 ←→ − κ̃2

rD−2
< 0 (4.98)

which exchanges positive values of r with negative values. In this case the metric
does not have a wormhole in the Einstein frame.

Dual frame wormhole?

For the non-extremal Reissner-Nordstrøm black hole with m2 − ε2 > 0 the same
situation as above happened. There the wormhole issue could be resolved by going
to the dual frame, because this frame cancels the initial Kaluza-Klein reduction.

For the dilatonic black hole the same metric ansatz is used in the KK reduction
as for the D-dimensional Reissner-Nordstrøm black hole

GEF
µν = gµνe

χ
2D−4 (4.99)

and, as explained in appendix A.5, the mapping to the dual frame is achieved by

gDF
µν = e

bϕ1
D−2 GEF

µν (4.100)

The net effect of these two mapping is via using amongst others (4.66) (and see
also (5.22))

gDF
µν = e(b2− 2D−4

D−1 )ϕ1gµν (4.101)

where gµν is the spatial part of the uncompactified metric ĝµ̂ν̂ . This becomes the
identity if

b = ±
√

2D − 4
D − 1

(4.102)

What system is obtained under this identity mapping? First note that the worm-
hole pattern described in this section, was also found for the Schwarzschild and
Reissner-Nordstrøm black holes in sections 3.2 and 4.1. Can this be understood
in the light of the conclusion above? In other words, can these systems be seen
as a subclass of the compactified dilatonic black hole for a proper choice of b? As
is evident from a comparison between the dilatonic black hole Lagrangian (4.48)
and the Lagrangian of the Reissner-Nordstrøm black hole (4.2), this is not imme-
diately clear. However to obtain a useful compactified dilatonic system, various
redefinition are used and ϕ2 is set equal to zero. It is therefore better to compare
the compactified dilatonic black hole with ϕ2 = 0 (4.69)

LD = −
√
|G|R(G) +

1
2

√
|G|∂µϕ1∂νϕ1G

µν − 1
2

√
|G|Gµν∂µ`∂ν`ebϕ1 (4.103)
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with the compactified Reissner-Nordstrøm black hole

LRN = −
√
|G|R(G)−

√
|G|

[ D − 1
16(2−D)

]
∂µχ∂νχGµν −

√
|G|
2

Gµν∂µ`∂ν`e
−χ
2

(4.104)

and introduce χ = χ̃
√

8(D−2)
D−1 , which results in

LRN = −
√
|G|R(G) +

1
2

√
|G|∂µχ̃∂ν χ̃Gµν −

√
|G|
2

Gµν∂µ`∂ν`e
−χ̃

√
8(D−2)

D−1
2 (4.105)

A quick look shows that if

ϕ1 = χ̃ and b = −

√
8(D−2)

D−1

2
= −

√
2D − 4
D − 1

(4.106)

indeed the compactified Reissner-Nordstrøm black hole can be seen as a subclass
of the compactified dilatonic black hole. Comparing to (4.102) shows that this
happens under the identity mapping. So the system obtained under this mapping
is precisely the compactified Reissner-Nordstrøm black hole, but from section 4.1
it is known that it has a wormhole in the dual frame (4.33). So there is a wormhole
present in the dual frame for this special choice of b, which is identical to the radial
part of the uncompactified Reissner-Nordstrøm black hole.

It is interesting to observe that this (almost) matches the claim by Bergshoeff
et al, for they say that if they take in their article bc = 2, the solution with2

q2 ≥ 0 can be related to the radial part of the Reissner-Nordstrøm black hole. To
be precise

bc = 2 ←→ b =

√
2D − 4
D − 1

(4.107)

which agrees with (4.106) up to a sign. A second thing they claim is that for
bc = 2 their non-extremal D-instanton lifts up to a Reissner-Nordstrøm black hole.
But this can be understood now, for the interesting thing is that both (4.106)
and (4.107) agree with the identity map (4.102) and thus under this condition
the compactified dilatonic black hole is identical to the compactified Reissner-
Nordstrøm black hole. This implies that the D-instanton of bc = ±2 in the dual
frame indeed corresponds to the radial part of the Reissner-Nordstrøm black hole,
since this dual map brings the compactified metric back to the spatial part of the
original metric (4.102). Or to put it in other words, the bc = ±2 cases are special
situations of the radial part of the p = 0-brane of Pope et al [29], namely those
that have µ = 0, as will be shown in the next chapter.

Third case: κ2 = 0

Looking at B(r) (4.72) this should agree with flat Euclidean space if κ = 0. Taking
the limit

κ → 0 (4.108)

in the solutions for ϕ1 and ` lead to

e
bϕ1
2 =

b

2

(r2−DC3

D − 2
+ C5

)
, ` =

2
b
e−bϕ1/2 + C6 (4.109)

2The case q2 ≥ 0 is the same as κ2 < 0.
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To see if this is correct, look at the generalization of the extremal D-instanton

SEF
Euc =

∫
dDx

√
|g|{R − 1

2
∂µφ∂µφ− 1

2
ebφ∂µa∂µa} (4.110)

with the corresponding solutions

ebφ/2 =
bα

2(D − 2)rD−2
+

b

2
eφ∞ , a = a∞ ± 2

b
e−bφ/2 (4.111)

where α can be related to a conserved charge and eφ∞ is the coupling constant in
D dimensions. Evidently these solutions correspond to the solutions obtained in
the limit κ → 0 above (4.109) if

` = a, ϕ1 = φ, C3 = α, C5 = eφ∞ , C6 = a∞ (4.112)

4.4 Noether currents, Bogomol’nyi bound and R8

In chapter one the charge matrix Q has been introduced and in appendix A.4 a
general expression for Q (A.41) has been given. Substituting the non-extremal
solutions in this expression give

Q =
( − 1

4b2C3C6 γ
bC3
2

1
4b2C3C6

)
(4.113)

where γ is defined by

Det[Q] = κ2b

√
α

2
(4.114)

As said in chapter one (above (1.113)), the equations of motion are invariant under
the shift of the pseudoscalar ` by a constant, which gave rise to the conserved
current Jµ. This is the R subgroup of SL(2,R) and it is evident from ` (4.90)
that C6 is that constant. The SO(1, 1) symmetry related to Kµ has the effect
eφ → eνeφ, ` → e−ν`. Looking at the solutions for φ (4.88) and ` (4.90) shows
that C4 takes on this role, in combination with C5 to counterbalance the effect in
the argument of csc and cot.

Bogomol’nyi bound

The extremal D-instanton satisfied the Bogomol’nyi bound, which meant it broke
half the SUSY’s as was shown in chapter one. For the non-extremal case, with gen-
eral dilaton coupling b in D dimensions, the Bogomol’nyi bound can be obtained
in a similar way as explained in section 1.3.1 and also for the same reasons as
explained there does one need to introduce a boundary term. The only difference
is now a general dilaton coupling b, general dimension D and that the dual of a
one form is now a (D − 1) form. Take the Euclidean version of (A.5)

SEuc(ϕ1, dC(D−2)) = −1
2

∫
(dϕ1 ∧ ∗dϕ1 + e−bϕ1dC(D−2) ∧ ∗dC(D−2)) (4.115)
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where dC(D−2) = ebϕ1 ∗d` and use the fact that in Euclidean space ∗ ∗dC(D−2) =
(−)D−1dC(D−2) which means that it can be rewritten too3

SEuc(ϕ1, dC(D−2)) = − 1
2

∫ [
(dϕ1 ± e−bϕ1/2 ∗ dC(D−2)) ∧ ∗(dϕ1 ± e−bϕ1/2 ∗ dC(D−2))

]

∓ (−1)D 2
b

∫
d(e−bϕ1/2dC(D−2))

(4.116)

Clearly this action is now bound from below if

dϕ1 ± e−bϕ1/2 ∗ dC(D−2) = 0 ←→ dϕ1 = ±(−1)Debϕ1/2d` (4.117)

which agrees with the extremal D-instanton case of chapter one (1.93). Substitut-
ing the general solution for the non-extremal cases κ2 < 0 and κ2 > 0 in this lead
to the conclusion that they are not BPS-states since the above condition is not
obeyed.

R8 contribution

The question that remains than is how many SUSY parameters are left unbro-
ken. To answer this question one should substitute the non-extremal D-instanton
solutions in the (Euclidean) supersymmetry transformations belonging to a grav-
itational background. Sticking to ten dimensions these are for the dilaton and
axion[8]

δψ±µ =
(
∂µ − 1

4
ωab

µ Γab ∓ 1
4
eϕ1∂µ`

)
ε± = 0

δλ± =
1
4
Γµε∓

(
∂µϕ1 ± eϕ1∂µ`

)
= 0

(4.118)

The difference with the SUSY transformations of chapter one (1.136) is the pres-
ence of the spin connection term ωab

µ , this is zero in the flat space ansatz. The
Γµ’s are the Dirac gamma matrices obeying the Clifford algebra {Γµ,Γν} = 2ηµν .
Substituting the non-extremal D-instanton solutions in these two equations lead
to the conclusions that

ε+ = ε− = 0 (4.119)

and thus all 32 SUSY’s are broken. The same arguments can now be used as in
section 1.5. Over all 32 broken spinors need to be integrated and comparing units
shows that the product of 32 fermions is the same as a R8 term. But this should
of course be confirmed by an exact D-instanton calculation, but this is beyond the
scope of this master thesis.

3The general rule is ∗ ∗Ap = (−1)(D−1)pAp.
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Chapter 5

Uplifting instanton systems

In the previous section various instanton solution were obtained corresponding
to Kaluza-Klein reduced Lagrangians. These instanton solutions live in a D-
dimensional Euclidean space. To get back to a (D + 1)-dimensional Minkowskian
spacetime one must undo the Kaluza-Klein reduction, i.e. uplift the systems ob-
tained in the previous chapters. Formally this can be achieved by realizing that
the right hand side of (4.49) is known (Gµν , χ) and solving for the left hand side
gives ĝµ̂ν̂ , the required uplifted version of the metric Gµν

(
e

χ
2 0
0 e−

χ
2 Gµν

)
= ĝµ̂ν̂ (5.1)

This is only half of the story, for the Lagrangian must be uplifted too. This is
however not difficult since the Lagrangian, before the Kaluza-Klein reduction is
know, only the D-dimensional solutions need to be uplifted and substituted in
this.

As an illustration these steps will be applied to the general Reissner-Nordstrøm
black hole in four dimensions, after that it will be applied to the non-extremal D-
instantons obtained in the previous chapter. General Dp-branes are investigated
by Pope et al [29], the uplifted solutions should correspond to a subsector of this
system with p = 0.

The compactified four dimensional Reissner-Nordstrøm black hole can be ob-
tained by taking D = 3 in the (D+1)-dimensional case as discussed in section 4.1.
Uplifting the metric is simple in this case, since in that chapter the opposite path
was followed, i.e. the (D + 1)-dimensional general Reissner-Nordstrøm black hole
was given explicitly, (4.18), together with the uncompactified Lagrangian, (4.2)
and then the compactified system was solved, see (4.27). One can thus simply
substitute these solutions in the equations of motion that follow from the uncom-
pactified case and note that this indeed is a solution of the system, see below
(5.5).

However in general one does not know the uncompactified metric, for example
in the non-extremal D-instanton case the compactified metric was ”obtained” via
the ansatz (4.71), but did not follow from a higher dimensional metric ĝµ̂ν̂ , however
the system can still be uplifted. As an illustration of this, assume that only the
metric of the compactified system gµν in three dimensions is known (4.27) and the
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corresponding solution for ` (4.29), i.e.

χ = 2 log(1− 2m

r
+

ε2

r2
)

Gµν =
( −1 0

0 −(r2 − 2mr + ε2)dΩ2
2

)

A0 = `(r) =
2ε

r
+ µ2, Ai = 0

ĝµ̂ν̂ =
(

e
χ
2 0
0 e−

χ
2 Gµν

)

(5.2)

Combining the above information (ĝµ̂ν̂ , Gµν and χ) gives for the uncompactified
four dimensional Reissner-Nordstrøm metric

ĝµ̂ν̂ =




(1− 2m
r + ε2

r2 ) 0 0 0
0 −1

(1− 2m
r + ε2

r2 )
0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ


 (5.3)

which agrees with the (D + 1)-dimensional case (4.18) if α = 2m and β = ε. The
four dimensional Lagrangian is given by

L̂Ĝ = −
√
|ĝ|R̂ − 1

4

√
|ĝ|ĝµ̂ρ̂ĝν̂η̂Fµ̂ν̂Fρ̂η̂ (5.4)

The solutions obtained in three dimensions should also solve the equations of
motion that follow from this Lagrangian, if the reduction went consistent. The
equations of motion that follow from the above Lagrangian are

− R̂µ̂ν̂ − 1
2

(
F 2

µ̂ν̂ −
1
4
F 2gµ̂ν̂

)
= 0

− ∂µ̂

(√
|ĝ|gα̂µ̂gρ̂ν̂Fα̂ρ̂

)
= 0

(5.5)

Looking at appendix A.3 it is clear that the first equation of motion is nothing
else then the Einstein equation, see (A.21). The solution for ` = A0 is then (A.20)
or

A0(r) =
2ε

r
(5.6)

which is indeed also the solution found (5.2).
Having explained the general concept of uplifting, it is now interesting to uplift

the non-extremal instanton, since this uplifted system is a p = 0 or black hole
solution, it should agree with the work as presented in an article by Pope et al
[29], which will be discussed next.

5.1 General Dp-branes

The non-extremal Dp-branes1 of Pope et al are solution of the Lagrangian

L =
√
|g|

[
R− 1

2
(∂φ)2 − 1

2(n)!
eaφF 2

n

]
(5.7)

1In this subsection the metric is diag = (−1, . . . , 1).
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where n can be related to the p of a general Dp-brane via n = p + 2. The metric
ansatz Pope et al use is

ds2 = e2Adxµdxνηµν + e2Bdymdym = e2Adxµdxνηµν + e2B
(
dr2 + r2dΩ2

D−d−1

)

(5.8)

where xµ are the coordinates of the d-dimensional world volume of the Dp-brane,
ym are the coordinates of the (D − d) dimensional transverse space and A and B
are functions of r =

√
ymym. It turns out that the following definitions are useful

a2 = ∆− 2dd̃

D − 2
, d̃ = D − d− 2 (5.9)

Pope et al solve this system in the most general way, i.e. no special requirements
about retaining (a fraction) of the supersymmetry. The field strength Fn can be
defined as

Fmµ1...µn−1 = εµ1...µn−1∂meC (5.10)

where C is a function of r only. This can be done since Pope et al are only
interested in radial solutions, i.e. taking one of the n-indices equal to r, say m = r,
and the remaining n − 1 indices are governed by the n − 1 rank anti-symmetric
tensor εµ1...µn−1 . The equation of motion [30] that follows for φ is

¤φ = − a

2n!
e−aφF 2 (5.11)

For gµν one has two contributions, to begin with the contribution from gµν ”di-
rectly”. Realizing that F 2 = Fµ1...µnFν1...νngµ1ν1 . . . gµnνn this gives

√
|g|Rµν − 1

2
∂µφ∂νφ− 1

2(n− 1)!

√
|g|e−aφF 2

µν (5.12)

where
F 2

µν ≡ F 2
µ1ν1

= Fµ1µ2...µnFν1ν2...νngµ2ν2 . . . gµnνn (5.13)

For the second contributions use (1.73) and this gives

−1
2
√

gRηρg
ηρgµν +

1
4

√
|g|∂ηφ∂ρφgηρgµν +

1
4n!

√
|g|e−aφF 2gµν (5.14)

Adding these two up gives the following Einstein equation

Rµν − 1
2
gµνR =

1
2
∂µφ∂νφ− 1

4

√
|g|∂ηφ∂ρφgηρgµν +

1
2(n− 1)!

√
|g|e−aφF 2

µν

− 1
4n!

√
|g|e−aφF 2gµν

(5.15)

Multiplying by gµν gives the Ricci scalar and substituting this back leads to

Rµν =
1
2
∂µφ∂νφ + Sµν

Sµν =
1

2(n− 1)!
e−aφ

(
F 2

µν −
n− 1

n(D − 2)
F 2gµν

) (5.16)
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The last equation of motion for the anti-symmetric tensor is obtained if one realizes
than any n-form can be written as FMµ1...µn−1 = ∂[MAµ1...µn−1]

∂M

(√
|g|e−aφFMµ1...µN−1

)
= 0 (5.17)

Doing the substitutions

X ≡ dA + d̃B, Y ≡ A +
εd̃

a(D − 2)
φ, Φ ≡ εaφ− 2dA, ρ = r−d̃,

kρ = tanh(kξ)
(5.18)

are useful to find the solutions, which turn out to be2

e−
(D−2)∆

2d̃
A =

λ
√

∆
2d̃β

sinh(βξ + α)e
a2(D−2)µξ

2d̃

e
(D−2)∆

2d B =
λ
√

∆
2d̃β

sinh(βξ + α)e
a2(D−2)µξ

2d̃ (cosh(kξ))−
(D−2)∆

dd̃

e
ε∆
2a φ =

λ

2d̃β
sinh(βξ + α)e−dµξ

(5.19)

where µ, k and α are constants, λ is an integration constant following from the
equation of motion for C and β is defined via

d̃β2 = 2(d̃ + 1)∆k2 − 1
2
a2d(D − 2)µ2 (5.20)

Demanding that A, B and φ go to zero at r = ∞ lead to the conclusion that
sinh(α) = 2d̃β

λ
√

∆
, which implies for the metric that it approaches a D-dimensional

Minkowskian spacetime. The definition for ξ implies that at ξ = ∞ ←→ kρ =
1 ←→ rd̃ = k there is a horizon and demanding φ to be finite at this position leads
to

β = µd ←→ µ =
√

(d̃ + 1)/(d(D − 2)) (5.21)

To compare this work to the non-extremal D-instanton, it is important to realize
the different meaning of the dimension D in both cases. In this section D stands
for both space and time, so to avoid confusion in the next section it will be referred
to as Dthis section ≡ DPope = D̃ + 1, where D̃ are the number of spatial directions
Pope et al use, i.e. D̃ = DPope − 1

5.2 Uplifting the non-extremal D-instanton

The special case p = 0 of the general Dp-branes obtained in the previous section,
should agree with the solutions obtained if one uplifts the D-instanton of the
dilatonic black hole obtained in chapter four. Clearly it will depend on the sign
chosen for κ2 and looking at the work of Pope et al it seems that the negative sign
is the correct one to take and also the arccoth (4.93) is needed. Although arctanh

2As will be explained later, the formula for φ is not correct, a factor
√

∆ has been forgotten.
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will of course work too, but to match it to the work of Pope et al at the end, the
same transformation is needed.

Via the relations in section 4.3, amongst others (4.66), one finds

φ =
aϕ1

b
, χ =

−4(D − 2)ϕ1

b(D − 1)
, b2 = a2 +

2(D − 2)
D − 1

(5.22)

The D-dimensional solutions are with ϕ2 = 0

ds2 = −e2C2

(
1− κ2

r2(D−2)

) 2
D−2

(
dr2 + r2dΩ2

D−1

)

e−
bϕ1(r)±

2 = b
√

C4csc
[
b2

√
C4

(±arctanh[ κ
rD−2 ]C3 + (D − 2)κC5

2(D − 2)κ

)]

`(r)± = C6 + 2
√

C4 cot
[b2

√
C4

(
arctanh[ κ

rD−2 ]C3 ± (D − 2)C5

)

2(D − 2)κ

]

2ακ2 + b2C2
3C4 = 0

(5.23)

and note that C4 is negative according to the last relation. The Einstein frame
mapping for the D-dimensional case was derived in chapter four, see (4.8). This
gives for the higher dimensional metric

ĝµ̂ν̂ =
(

e
χ
2 0
0 e

χ
4−2D GEF

µν

)
(5.24)

with GEF
µν from the infinitesimal line element (5.23).

To connect it to Pope et al first observe that their time component is3

gPope
tt = e2A (5.25)

The solution for φ follows from the first formulae of (5.22), Âµ̂ = (`,~0) and the
metric ĝµ̂ν̂ follows finally from (5.24). This gives in terms of the solutions of the
fields

gtt = e−
bϕ1(r)+

2

4(D−2)
b2(D−1)

,

grr = −e−
bϕ1(r)+

2

− 4
b2(D−1)

e2C2

(
1− κ2

r2(D−2)

) 2
D−2

gθθ = grrr
2, gφφ = grrr

2 sin2 θ

(5.26)

This agrees with to the general solutions of Pope et al for µ = 0, d = 1 and
DPope = D̃ + 1:

gPope
tt = e2A =

(λ
√

∆
2d̃β

sinh(βξ + α)
)−4(D̃−2)

(D̃−1)∆

gPope
rr = e2B = e

(D̃−2)∆
2d̃

B =
(λ
√

∆
2d̃β

sinh(βξ + α)
) 4

(D̃−1)∆ (1− k2

r2(D̃−2)
)

2
D̃−2

eφ =
( λ

2(D̃ − 2)β
sinh(βξ + α)

) 2a
ε∆

(5.27)
3Pope uses as a sign convention: diag = (−1, 1, . . . , 1).
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if the following relations are used

k = µ, C3 =
λ
√

2αk
√

∆
2(D̃ − 2)β

, b =
2(D̃ − 2)β

k
√

2α
, C2 = 0, C5 =

αλ
√

∆
(D̃ − 2)βb

(5.28)
A remark must be made. When comparing the expressions for φ, agreement can
only be made if the one by Pope et al is

e
ε∆
2a φ =

λ

︷︸︸︷√
∆

2d̃β
sinh(βξ + α)e−dµξ (5.29)

In other words an extra factor
√

∆ is needed, this turns out to be also the case if
one calculates φ via the relations as given in the article of Pope et al.

As a final check the uncompactified Lagrangian in (D +1) dimensions is (4.47)

L̂ = −
√
|ĝ|R̂ − 1

4

√
|ĝ|eaφ̂ĝµ̂ρ̂ĝν̂η̂F̂µ̂ν̂F̂ρ̂η̂ +

1
2

√
|ĝ|∂µ̂φ̂∂ν̂ φ̂ĝµ̂ν̂ (5.30)

where R̂ follows now from (5.26), the field φ̂ = φ from (5.22) and Âµ̂ = (`,~0). The
equations of motion that need to be satisfied are

∂r

(√
|ĝ|ĝrr∂rφ̂

)
+

a

4

√
|ĝ|eaφ̂F̂ 2

2 = 0

R̂µ̂ν̂ +
1
2
eaφ̂

(
F̂ 2

µ̂ν̂ −
1
4
F̂ 2ĝµ̂ν̂

)
− 1

2
∂µφ∂νφ = 0

∂r

(√
|ĝ|eaφ̂F̂ rµ̂

)
0 = 0

(5.31)

By a direct substitution of the metric and fields just obtained, it follows that
indeed these are solutions. For this realize that

F̂ 2
2 = F̂µ̂ν̂ F̂ µ̂ν̂ = 2F̂0rF̂

0r = 2(∂rÂ0)2ĝ00ĝrr (5.32)

and
F̂ 2

µ̂ν̂ ≡ F̂ 2
µ̂1ν̂1

= F̂µ̂1µ̂2 F̂ν̂1ν̂2 ĝ
µ̂2ν̂2 (5.33)

In this section the general dilatonic black hole or p = 0-brane has been solved,
via first determining the instantons belonging to the compactified version of the
Lagrangian (5.30). Besides the rather complicated solutions, an interesting con-
clusion is that the uplifting works only if b2 = a2 + 2(D−2)

D−1 , see (5.22), which puts
for a given dimension D, a minimum on b

b ≥
√

2(D − 2)
D − 1

(5.34)

This concludes the investigation of non-extremal dilatonic black holes.
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Chapter 6

Summary, conclusions and
remarks

Summary and conclusions

This thesis started with the introduction of instantons, most notably the D-
instanton. Various aspects were being investigated and the wormhole (1.86) found
in the string frame, made clear that a firmer introduction to these special objects
was needed. This was done in chapter two, especially for the Schwarzschild and
Reissner-Nordstrøm metric. The solitonic interpretation via embedding diagrams
was explained and that these diagrams are equivalent to having a metric with a
symmetry of the form

r ←→ constant
r

(6.1)

see section 2.3.1. To combine instantons and wormholes and ultimately generalize
the extremal D-instantons, Kaluza-Klein reductions over the time were introduced
for the Schwarzschild and (extremal) Reissner-Nordstrøm black holes. An inter-
esting observation was that for the extremal case a wormhole was present in the
string frame (figure 4.1), whereas for the non-extremal cases the wormhole was
found in the Einstein frame if α2 − 4β2 < 0 and for the opposite sign in the dual
frame, see below (4.41).

To make the connection to the D-instanton, an extra scalar field was needed
(the dilaton), which was coupled to the Maxwell term via the constant a. This gave
rise to the dilatonic black hole (4.47) which was subsequently Kaluza-Klein reduced
(4.69). Turning off one of the scalar fields resulted in a Lagrangian which described
non-extremal D-instantons (i.e. non-flat space) with a generalized dilaton-axion
coupling parameter b. For this reason the extra dilaton field was added to the
Reissner-Nordstrøm black hole, else b would have been just a number, see (4.105).

The solutions to the corresponding equations of motion were the non-extremal
D-instantons (section 4.4). These are described by a total of five independent
parameters (κ2, C2, C3, C5, C6), of which C2 has to be set equal to zero if asymp-
totically flat space has to be obtained. These parameters can be related to the
parameters (q, q−, q3, C1) in the recently published article by Bergshoeff et al, see
(4.95).

The parameter κ2 separates the solutions in three distinct sectors: equal,
smaller or larger than zero. The sector κ2 = 0 is the standard D-instanton (4.109),
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κ2 < 0 is valid for all r larger than a critical value(4.97), beyond this point the
metric becomes imaginary, but the coupling constant, g = eφ∞ , becomes infinite
which implies that a low energy effective theory is no longer valid to make any
claims near this point. The last sector κ2 > 0 can be made valid everywhere if the
constants are chosen properly, otherwise the field φ will become complex (4.89).
This then happens at low coupling constant.

For the sector κ2 > 0 a wormhole was found in the Einstein frame (4.75). To
obtain a wormhole for the case κ2 < 0, a mapping to the dual frame was needed
(4.101) and demanding this to be the identity mapping gave a value for b (4.102).
Comparing the Lagrangian with the minus sign for this value of b with the Reissner-
Nordstrøm metric lead to the conclusion that the Reissner-Nordstrøm metric can
be considered as a subclass of the general Dilatonic black hole (4.106), which was
not completely surprising since the same wormhole pattern was obtained for this
system already, see below figure 4.1, the plus sign has been discussed in a different
way by Bergshoeff et al. Taking the limit κ2 → 0 of the wormholes obtained in the
two non-extremal cases do not lead to a wormhole, to be precise the limit leads to
a ”semi-wormhole”, see figure 4.2. In the string frame it is a genuine wormhole.

To show that the (non-)extremal D-instantons can be considered as static soli-
tons of the corresponding one (timelike) dimensional higher theory, an uplifting
was needed which was performed in chapter five. This uplifting changes a p = −1-
brane to a p = 0-brane. General Dp-branes have been discussed by Pope et al [29]
and therefore this uplifting had to agree with a subsector of their solutions. It was
shown that only in the limit µ goes to zero this connection can be made and that
also κ2 < 0 had to be taken. Pope chooses µ such that there are no singularities
present, the field φ remains finite everywhere. This value of µ is different from
zero and it is therefore no wonder that the metric has a singularity for this sector.
To be precise the critical value found is (4.97) and the article by Pope et al gives
the same position also if one takes p = −1 and n = 1, which is the D-instanton
requirement. Finally it was shown that the uplift works only if

b ≥
√

2(D − 2)
D − 1

(6.2)

for a given dimension D.
As was discussed in sections 1.5 and 4.4, one reason why people should inves-

tigate (non)-extremal D-instantons is that they give higher order corrections to
the effective IIB action. The extremal D-instanton gave rise to R4 terms, since
they break half the supersymmetry. The non-extremal D-instantons do not sat-
isfy the Bogomol’nyi bound (4.117). To see that they break all SUSY one has to
check the effect of these non-extremal solutions on the SUSY transformations in a
gravitational background (4.119). If the non-extremal D-instantons are genuine
instantons (S < ∞), the logical conclusion seems to be that they give rise to R8

contributions, since now over all 32 broken SUSY’s need to be integrated and the
unit of 32 fermions is the same a R8 term. This of course should be confirmed by
an exact D-instanton calculation and should be a subject of future research.

Remarks

In the introduction it was stated that instantons are solutions with finite ac-
tion. Except for the extremal D-instanton, nowhere has the action explicitly been
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calculated, so formally one should put quotes around the word instanton: D-
”instanton”. Calculating the action is far from trivial, as was already shown for
the extremal case. The bulk action was zero and only by realizing that a boundary
term should be included (1.80), could one find finite action. A contribution which
has been neglected is the so called Gibbons-Hawking term (GH)

SGH = −2
∫

∂M

Tr[K −K0] (6.3)

where ∂M is the boundary of the (Euclidean) space, and K −K0 is the difference
between the trace of the extrinsic curvature on the boundary of M and the value it
would have had if the boundary were in flat space, this is needed as a normalization,
see [6]. The reason why it could be ignored is because it turns out to be equal to
zero.

For the non-extremal D-instantons it is not yet fully clear what the total action
is for the two sectors κ2 6= 0. Partly this is due to the GH-term and partly related
to the fact that in the case κ2 < 0 there is a point at which the metric becomes
complex, but this happens at strong coupling. Whether or not then this should be
considered a genuine boundary is unclear1. More research is needed in this area
to determine whether or not these non-extremal cases are genuine instantons as
defined in section 1.1.

Finally an interesting side remark is that even in published articles mistakes
still happen. See for example the article by Cremmer et al [21], formulae (4.61)
and also Pope et al [29], formula (5.19).

1Remember that in the D-instanton case it was a boundary term that gave the action, there-
fore it is to be expected that boundaries are very important in this case too.
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Appendix A

A.1 Rules for analytical continuation

The whole concept of instantons is based on the analytical continuation of the
time t via1

t = τe−iδ δ ∈ [0, 2π]

(for convenience one often takes δ = π
2 ), which is also called a Wick rotation.

Important is to note that τ is not a physical time as t is, although it is real. The
rules for a proper Euclidinazation are:

Rule 1: t ⇒ −iτ

Rule 2: aµ = (a0, a1, . . . , aD) ⇒ (−ia0, a1, . . . , aD)
Rule 3: pseudoscalar a: a ⇒ −ia

Rule 4:
∫ t

0
dt ⇒ ∫ τ

0
−idτ

Rule 5: SEuc = −i(SMin)analytical continuated for obtaining a real Eu-
clidean action

Rule 6: Results obtained must be Wick rotated back τ ⇒ it

A pseudoscalar a changes sign under a parity transformation P . Therefore rewrite
it in terms of the scalars Si, i = 0, . . . , 9

a = εµ0µ1...µ9(∂µ0S0) . . . (∂µ9S9)

This is still a pseudoscalar, since in (9+1) dimensions it picks up an odd number of
minus signs (nine) under P . Going to a its Euclidean ”partner” α, it is clear that
it picks up an extra factor of i due to the ∂µi in combination with the εµ0µ1...µ9 ,
i.e. there is always one term ∂/∂t present [35]. A less mathematical ”proof” is
the following. A parity transformation flips the spatial coordinates ~x to −~x, i.e.
a rotation of 180 degrees. A Wick rotation is thus the square root out of a parity
transformation. The pseudoscalar a changes by definition sign under a parity
transformation, a → −a and thus taking the square root implies a → −ia, it is −i
since a Wick rotation is clockwise, see figure (A.1). To compensate for the −i of
rule four, the fifth is necessary, so that the Euclidean action is still real.

Having said all this, the question that still needs to be answered is why extra
information is extracted about the path integral when using instantons. Solving a
path integral is in general difficult, only in special cases does one exactly know the

1This section discusses only the Wick rotation method, not the Kaluza-Klein approach.

75



Figure A.1: Path integrals and instantons

answer. Therefore people often use tricks as the stationary phase approximation,
see for example the double well of chapter one. The instanton belonging to that
system introduces an extra classical path, see figure 1.2. Picture now the path
integral as the rectangle shown in figure A.1. In real time t only the black part is
known via for example a SPA, after a Wick rotation2 one arrives at τ = it. Here
the instanton can be used as a second point to do an expansion, as indicated by the
second colored box. If one then Wick rotates back via rule six, extra information
about the path integral is known. This is a good way to understand why instanton
can extract extra information about a path integral.

A.2 Boundary term: Giving D-instantons action

Introduce the dual of the axion a, F (9) = e2φ ∗ da. If as a starting point one uses
the action3

SEF
Min =

∫
d10x

√
|g|R − 1

2

∫ [
dφ ∧ ∗dφ + e2φda ∧ ∗da

]
(A.1)

and treating the dual transformation e−2φF (9) ∧ ∗F (9) = e2φ ∗ da ∧ ∗ ∗ da =
−e2φda ∧ ∗da 4 as a formal substitution, turns (A.1) into5

SEF
Min =

∫
d10x

√
|g|R − 1

2

∫ [
dφ ∧ ∗dφ− e−2φF (9) ∧ ∗F (9)

]
(A.2)

which has the wrong sign compared to the action used in chapter one, (1.90)6.
This example was shown to make clear that ”dualizing” a theory is something else
than a substitution, see also [16]. Adding the boundary term

SEF
Surf =

∫
d(e2φa ∧ ∗da) (A.3)

2It is assumed here that there are no singularities in the IV quarter.
3Which gives zero for the instanton solution of chapter one.
4Let a(p) be a p-form and s be the number of minuses in the metric, then ∗∗a(p) = (−1)p+sa(P )

in ten dimensions.
5R is zero in flat space and can therefore be omitted.
6Identifying ∗dC(8) as F (9).
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to (A.1) will not only make the action positive definite, but it will also change the
sign in front of the nine-form in formula (A.2), as is shown below. The equations
of motion, (1.69) - (1.71), will not be altered since (A.3) is a total derivative. A
clear way of obtaining this surface term and proving the sign change is by looking
at the ansatz

SMin(P (d−1), φ, a) = −1
2

∫ [
dφ ∧ ∗dφ + e−bφP (D−1) ∧ ∗P (D−1) − 2a ∧ dP (D−1)

]

(A.4)
where P (D−1), φ and a (pseudoscalar) are the fundamental independent fields, a
generalized coupling b is introduced and D dimensions are used instead of ten.
Looking at the Euler-Lagrange equation for a it is clear that dP (D−1) = 0 and
hence P (D−1) = dC(D−2). Substituting this back into (A.4) gives

SMin(C(D−2), φ) = −1
2

∫
(dφ ∧ ∗dφ + e−bφdC(D−2) ∧ ∗dC(D−2)) (A.5)

which is the action (1.90) for b = 2 and D = 10. To obtain the action in terms
of the axion a (in the Euclidean metric) first note that the Euclidean ansatz that
follows from (A.4) is

SEuc(P (D−1), φ, a) =
1
2

∫ [
dφ ∧ ∗dφ + e−bφ(P (D−1) ∧ ∗P (D−1))− 2ia ∧ dP (D−1)

]

(A.6)
The advantage of using the nine-form P (D−1) is that it is invariant under a Wick
rotation. Rewriting (A.6) as

SEuc(P (D−1), φ, a) =
1
2

∫ [
dφ ∧ ∗dφ + e−bφ(P (D−1) + iebφ ∗ da) ∧ ∗(P (D−1) + iebφ ∗ da)

+ ebφda ∧ ∗da− 4
b
d(iaP (D−1))

]

(A.7)

and performing a shift of variables P
′(D−1) = (P (D−1)+iebφ∗da) and substituting

the equation of motion for P
′(D−1) leads to7

SEuc(P (D−1), φ, a) =
1
2

∫ [
dφ ∧ ∗dφ + ebφda ∧ ∗da)− 4

b
d(iaP (D−1))

]
(A.8)

Realizing that the shift of variables should not lead to a complex field P
′(D−1),

a = ia (a real) and the main result of this section is the Euclidean action with the
appropriate boundary term for b = 2

SEuc(φ, a) =
1
2

∫ [
dφ ∧ ∗dφ− e2φda ∧ ∗da + 2d(e2φa ∧ ∗da)

]
(A.9)

Via Gauss’s law the last term can be written as a boundary term

SEF
Surf =

∮
e2φa ∧ ∗da (A.10)

7which is ∗P ′(D−1) = 0
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There are thus two equivalent formulations for calculating the action of the in-
stanton on a manifold M

SEF
Euc =

∫

M
d10x

√
|g|(−R)+

1
2

∫

M

[
dφ∧∗dφ−e2φda∧∗da+2d(e2φa∧∗da)

]
(A.11)

This action gives rise to the same equations of motion as (1.69) - (1.71), for it
differs only a total derivative. Or

SEF
Euc =

∫

M
d10x

√
|g|(−R) +

1
2

∫

M

[
dφ ∧ ∗dφ + e−2φF (9) ∧ ∗F (9)

]
(A.12)

First note the different sign in front of the terms e2φda ∧ ∗da in (A.11) and
e−2φF (9) ∧ ∗F (9) in (A.12), this is important for the Bogomol’nyi bound. For
the latter action can be written in such a form (1.91) and the former not. Note
secondly that in Euclidian ten dimensional space

e−2φF (9) ∧ ∗F (9) = e2φ ∗ dφ ∧ ∗ ∗ dφ = e2φdφ ∧ ∗dφ (A.13)

and hence (A.12) becomes

SEF
Euc =

∫
d10x

√
|g|(−R) +

∫
dφ ∧ ∗dφ =

∫
d10x

√
|g|[−R+ ∂µφ∂µφ

]
(A.14)

and thus the action of the instanton (1.75) in flat space becomes

SEF
E,Inst =

∫
d10x

√
|g|∂µφ∂µφ = −

∫
d10x

√
|g|∂2φ (A.15)

where for the second equality (1.74) has been used. To evaluate this integral apply
Gauss’s law [6]

SEF
Euc = −

∫

R10

√
|g|∂2φ = −

∮

S9
r=∞

√
|gS9 |∂µφnµ +

∮

S9
r=0

√
|gS9 |∂µφnµ (A.16)

where nµ is an outward pointing unit vector, i.e. radial

nµnνgS9
µν = 1 ←→ nr =

1√
grr

(A.17)

and gS9
µν is the metric on the nine sphere. Upon using (1.75), grr = 1 and defining

the unit volume of a (D − 1)-sphere as8

Vol(SD−1) =
∮

S9

sinD−2 θ1 . . . sin θD−2dθ1 . . . dθD−1 (A.18)

leads to the D-instanton action

SEF
Euc = −Vol(S9)

∮

S9
r=∞

√
|gS9 |∂rφnr =

8cVol(S9)
eφ∞

(A.19)

8It is convention to call this a volume element, although more correctly it should be called
the hypersurface area.

78



A.3 Reissner-Nordstrøm metric[3]

The Reissner-Nordstrøm metric is obtained via demanding spherical symmetry
and a point charge at the origin of the coordinate system. The same ansatz for
the metric gµν is used as for the Schwarzschild metric, only Tµν is non-zero now.
Let’s begin with the potential field in spherical coordinates

Fµν = E(r)×



0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ←→ Frt = ∂rA0 = E(r) (A.20)

and use for Tµν and the infinitesimal line element [3]

Tµν =
1
2
(−gρηFµρFνη +

1
4
gµνFρηF ρη) ≡ 1

2
(−F 2

µν +
1
4
gµνF 2)

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2
2

(A.21)

Tµν can be shown to be traceless and hence the Einstein equation becomes Gµν =
Rµν − 1

2gµνR = Rµν = Tµν
9. The Maxwell’s equations in source-free regions are

∇µF νµ = 0
∂[µFνρ] = 0

(A.22)

Substituting the metric and Fµν ansatz in the Maxwell equations and using the
Einstein equation lead to

E(r) =
2ε

r2
= ∂rA0 ←→ A0(r) =

−2ε

r
(A.23)

Looking at the limit r →∞, the charge of the system is ε. The metric becomes

ds2
RN =

(
1− 2m

r
+

ε2

r2

)
dt2 − dr2

(
1− 2m

r + ε2

r2

) − r2
(
dθ2 + sin2 θdφ2

)
(A.24)

It contains the removable singularities

r± = m±
√

m2 − ε2 (A.25)

There are therefore three cases to consider. To begin with m < |ε|. Clearly there
are now no real roots in the case, hence there is no horizon and thus the singularity
at r = 0 is a naked singularity, this is like the case m < 0 for the Schwarzschild
metric. According to the cosmic censorship hypothesis this case cannot occur in
gravitational collapse. The second case of interest is when m > |ε|, then the two
real roots are (A.25). The third case m = |ε| is often referred to as the extremal
Reissner-Nordstrøm (ERN) black hole and has only one singularity

r = m (A.26)

with the corresponding metric

ds2
ERN =

(
1− m

r

)2

dt2 − dr2

(
1− m

r

)2 − r2
(
dθ2 + sin2 θdφ2

)
(A.27)

9The convention used in this section is: gµν =diag(1,−1,−1,−1).
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As explained many times in the text, the easiest way to see if a wormhole is
present, is rewriting the metric in isotropic form. This requires the radial part of
the line element (A.24) to be described by a conformal factor, giving

ds2 =
(4ρ2 −m2 + ε2)2

(4ρ2 + 4mρ + m2 − ε2)2
− 1

ρ2

(
ρ + m +

m2 − ε2

4ρ

)2(
dρ2 + ρ2dΩ2

2

)
(A.28)

where

ρ(r) =
1
2

(
r −m +

√
ε2 − 2mr + r2

)

r(ρ) = m + ρ +
m2 − ε2

4ρ

(A.29)

The metric has only for the case m2 − ε2 > 0 a wormhole symmetry

ρ ←→ m2 − ε2

4ρ
or r = m +

√
m2 − ε2 (A.30)

For general dimensions (D + 1) > 3 the transformation rules are

r(ρ) =

(
2αρD−2 + ρ2(D−2)

C
(D−2)
1

+ α2CD−2
1 − 4β2CD−2

1

) 1
D−2

2
2

D−2 ρ

ρ(r) =
(
2rD−2 − α + 2

√
r2(D−2) − rD−2α + β2

) 1
D−2

C1

(A.31)

where α (β) is the generalized mass (charge) and the conformal factor in front of
the explicit SO(D) symmetry

f(ρ) =

(
2αρD−2 + ρ2(D−2)

C
(D−2)
1

+ α2CD−2
1 − 4β2CD−2

1

) 1
D−2

2
2

D−2 ρ2
(A.32)

with the wormhole symmetry

ρD−2 ←→ (α2 − 4β2)C2(D−2)
1

ρD−2
(A.33)

if α2 − 4β2 > 0. To compare to the four dimensional case above choose C1 = 1
4 ,

α = 2m and β = q.

A.4 Noether currents and conserved charges[21]

In type IIB string theory Lagrangians of the form

L =
1
4

√
|g|Tr[∂µM−1∂µM] (A.34)

are important. As an example take M with a SL(2,R) symmetry, just like the
type IIB action. Since this group has three generators, there are also three con-
served currents present. To derive these observe that due to the cyclic permutation
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property of the trace the Lagrangian above is invariant under the global transfor-
mations

M→M′ = ΛTMΛ (A.35)

for a SL(2,R) matrix Λ, see for example chapter one (1.105). Infinitesimally this
can be written as

Λ = 1 + λ

δM = λTM+Mλ
(A.36)

with λ infinitesimal. To obtain the Noether currents, the Lagrangian is varied with
respect to a space-time dependent transformation and keeping only those terms
where a derivative falls on the parameter λ

δL = δ
1
4

√
|g|Tr[∂µM−1∂µM]

= − Tr[∂µλM−1∂µM] ⇒

Jµ = −M−1∂µM =
( J11µ J12µ

J21µ −J11µ

)
with

∇µJ µ = 0

(A.37)

for systems with SL(2,R) symmetry. Via the generalized Gauss’s law one can
define the corresponding conserved charges as

Q =
∮

S9

J =
∮
Jµnµ (A.38)

where nµ is an outward directed unit vector, see (A.17) and where gS9
µν stands for

the metric on the nine sphere,
√
|gS9 | = rD−1g

D−1
2

rr sinD−2 θ1 . . . sin θD−2 (A.39)

To calculate this integral for the D-instanton realizes that the integrand becomes

Jµnµ =
√
|gS9 |Jrn

r = rD−1g
(D−2)

2
rr Jr sinD−2 θ1 . . . sin θD−2 (A.40)

which gives for the conserved (Euclidean) charge matrix

Q = Vol(S9)rD−1g
(D−2)

2
rr Jr (A.41)

As an example look at one of the conserved currents of the extremal D-instanton

J12r = −eφ∂rφ → Q12r = 8cVol(S9) (A.42)

which gives to the constant of integration c the interpretation as a charge. Com-
bining this with the action (A.19) gives

S =
|Q|
g

(A.43)

where
Q = Q12r (A.44)
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A.5 Another frame: The dual frame

The Einstein frame and the string frame have been used a lot in the text. The
Einstein frame definition implies a canonical Einstein-Hilbert term, i.e.

√
|gEF |R,

whereas the string frame has an axion a kinetic term free from dilaton φ coupling,√
|GSF |(∂a)2. These two frames appear in the theory naturally, one can of course

choose a random conformal mapping (RM) , for example

gEF
µν ≡ GRM

µν eαφ (A.45)

for any α ε R, but what would they mean physically? It turns out that there is a
frame which has a physical background, the so called dual frame (DF ). To see this
consider first the truncated type IIB low energy effective action in D dimensions
with again a generalized coupling b in front of the generalized p-form Fp+2

SEF = α

∫
dDx

√
|g|

[
R− 4

D − 2
(∂φ)2 − βebφF 2

p+2

]
(A.46)

where α and β are constants which are needed to have proper units, but these are
irrelevant for the story. Note that with b = 2, p = −1 and D = 10 one obtains
the action for the D-instanton as discussed in chapter one. This is the so called
electric formulation, taking the Hodge dual of Fp+2 gives the magnetic formulation
F̃D−p−2

F̃µ1...µD−p−2 =
(−1)D+p−1

√
|g|(p + 2)!

ebφεν1...νp+2µ1...µD−p−2Fν1...νp+2 (A.47)

Introducing d̃ = D − d− 2 and d = p + 1 gives for the action

S = α

∫
dDx

√
|g|

[
R− 4

D − 2
(∂φ)2 − β̃e−bφF 2

d̃+1

]
(A.48)

where β̃ and −b are a result from taking the Hodge dual (A.47). The dual frame
can be obtained via demanding an overall dilaton coupling, i.e.

SDF ∝
∫

dDxeγφ
√
|G|

[
R− 4

D − 2
(∂φ)2 − β̃F 2

d̃+1

]
(A.49)

To determine γ observe that under (A.45) the terms change as

√
|g|Rg →

√
|GD|RD

Ge( Dα
2 −α)φ

√
|g|e−bφF 2

d̃+1
→

√
|GD|F 2

d̃+1
e( Dα

2 −b−(d̃+1)α)φ
(A.50)

These two changes have to be equal in the dual frame

α = − b

d̃
−→ γ = − (D − 2)b

2d̃
= − b

2
(A.51)

where the last equality holds only if p = −1. Note that in the electric formulation
this fails, unless one takes b = 0. How about the physical interpretation? It can
be shown that the dual frame describes a (d + 1)-dimensional Anti-de Sitter (Ad)
spacetime times a (d̃+1)-dimensional sphere: AdSd+1×Sd̃+1, see for example [10]
for details.
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