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Abstract

This thesis explores the evolution of galaxies and massive black holes (MBHs) since cosmic
dawn, focusing on cosmic reionization and MBH binaries. I develop and employ novel numer-
ical methods for more accurate modeling of cosmic reionization and MBH binaries to better
understand these processes, and for putting astrophysical constraints with ongoing and fu-
ture observations. Cosmic reionization starts with the formation of the first galaxies and
influences all the baryon components in the Universe. I develop and apply semi-numerical
algorithms to better understand the timing and duration of cosmic reionization, as well as
its spatial progression, with current observational constraints from the cosmic wave back-
ground. Massive black hole binaries offer another promising channel for understanding the
Universe since the first galaxies formed. I advance the modeling of the massive black hole
binary population in cosmological simulations of galaxy formation. This leads to a more
accurate characterization of the MBH binary population across all redshift and mass ranges.
I investigated the binary evolution in realistic galaxy environments and made theoretical
predictions for the ongoing and upcoming electromagnetic and gravitational wave observa-
tions of these binaries. These predictions can be useful in interpreting observations and
constraining MBH seeds, growth and assembly histories. My study of cosmic reionization
and MBH binaries constitutes theoretical progress in understanding several aspects of galaxy
formation, especially in the high-redshift Universe.
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for ionizing galaxies, the ionized bubbles are smoother and more clustered on
large scales. However, the overall morphology are not drastically different from
when Mh = 107M⊙. Right: ionized regions with λmfp = 1.0Mpc/h (third
column) and λmfp = 5.0Mpc/h (fourth column). We see that in AMBER,
with a fixed reionization history, λmfp has a stronger effect on the ionization
morphology than the minimum halo mass Mh. With a smaller λmfp, the typical
sizes of ionized regions are significantly smaller than with a larger λmfp. . . . 50
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2.12 Dimensionless power spectra of the AMBER halo density fields (left) and ion-
ization fraction fields (middle and right) with different minimum halo mass
and photon mean free path. For the ionization fraction power spectra we
show the spectra at three global ionization levels (x̄i = 0.25, 0.50, 0.75, cor-
responding to the purple, orange and green lines, respectively). Left: di-
mensionless halo density power spectra for Mh = 107M⊙ (solid) and Mh =
1010M⊙ (dashed). Middle: ∆2

ion(k) for Mh = 107M⊙ (solid) and Mh =
1010M⊙ (dashed). Right: ∆2

ion(k) for λmfp = 1.0Mpc/h (solid) and λmfp =
5.0Mpc/h (dashed). The bottom panels show the ratio of the power spectra,
with the ratio being Pion,log(M)=10.0/Pion,log(M)=7.0 in the left/middle panels and
Pion,λ=5/Pion,λ=1 on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.13 Left: Out of all the parameters, Mh has the least effect on the patchy kSZ
signal. Only when we limit the sources to be above 109M⊙ can we see some
suppression on the small scale power. Right: λmfp is correlated with the
average bubble size of ionized bubbles. Increasing the mean free path shifts
the peak towards higher multipoles in the kSZ spectrum. . . . . . . . . . . 51

2.14 Relationship between the amplitude of the kSZ angular power spectra DpkSZ
ℓ

at ℓ = 3000 and the redshift and duration of reionization. The yellow regions
are the 1σ constraint from Reichardt et al. [2021]. Left: with a fixed du-
ration ∆z = 4.0, AMBER produces DpkSZ

ℓ=3000 that scales almost linearly with
the midpoint redshift of reioziation (orange). Compared with the scaling re-
lation fitted in Battaglia et al. [2013a] (green), we have a slightly steeper
slope. Right: when we fix zmid = 8.0, DpkSZ

ℓ=3000 also scales linearly with the
duration of reionization. Compared with Battaglia et al. [2013a] who found
a power-law dependence of ∼ 0.47, we find a steeper dependence of DpkSZ

ℓ=3000

on ∆z. We also show the relation at λmfp = 1Mpc/h (dotted orange) and
λmfp = 5Mpc/h (dashed orange), in order to demonstrate the dependence of
the scaling relation on λmfp. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.15 Top: Change in the slope of the kSZ power spectrum with the asymmetry of
reionization history Az. Here we show the difference between two sets
of ℓ values: Dℓ=2000 − Dℓ=4000 (orange) which is close to the current
measurement at ℓ = 3000, and Dℓ=3000−Dℓ=8000 (purple) which requires
an extra measurement at a relatively high ℓ. Bottom: Shift in the peak
of kSZ spectrum with the mean free path parameter λmfp (bottom axis) and
the mean bubble sizes (top axis). . . . . . . . . . . . . . . . . . . . . . . . . 53

2.16 Patchy kSZ angular power spectrum with the same reionization history but
different cosmological parameters (Ωm and σ8). While there is complete degen-
eracy between different Ωm values at ℓ = 3000, σ8 affects the kSZ amplitude
on all scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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2.17 The ratio between the electron number density power spectra Pee(k) at σ8 =
0.74 and σ8 = 0.8 (the fiducial value). The the solid curves are generated by
changing only the reionization redshift field zre to σ8 = 0.74, while the dashed
curves are generated by changing both zre and the matter density field δm.
The different colors represent the spectra at different ionization levels. . . . . 54

2.A.1The free-electron number density power spectra at different stages of reioniza-
tion, calculate with reionization redshift fields matched at zmatch = 8 (solid),
zmatch = 10 (dashed), and zmatch = 6.5 (dotted). The bottom panel shows the
ratio between the ∆2

ee at zmatch = 10 (zmatch = 6.5) and that at the fiducial
zmatch = zmid = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.A.2The patchy kSZ power spectra calculated with the reionization redshift field
abundance-matched at different points across the reionization history. Here
we have always assumed the fiducial zmid = 8 and ∆z = 4, but the zre fields
are abundance-matched against the radiation field at zmatch = 6.5 (dark blue),
zmatch = 8 (purple), and zmatch = 10 (yellow). Top: The effect of zmatch at
the fiducial Az = 3 as well as a larger asymmetry of Az = 8. Bottom: The
effect of zmatch at the fiducial Mh = 108M⊙ and a larger source threshold of
Mh = 1010M⊙. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Visualization of 4σ0 density peak of the DF_4_DM_G simulation at z = 4.0 and
z = 3.5. The brightness corresponds to the gas density, and the warmness
of the tone indicates the mass-weighted temperature of the gas. We plot the
black holes (cross) with mass > 106M⊙, as well as the halos (subhalos) hosting
them (red circles correspond to central halos, orange circles correspond to
subhalos. The circle radius shows the virial radius of the halo; halos are
identified by Amiga’s Halo Finder(AHF)). This density peak hosts the two
largest black holes in our simulations (yellow cross), and they are going
through a merger along with the merger of their host halos between z = 4
and z = 3. For the black hole and merger case studies, we will use examples
from the circled halos/black holes shown in this figure. . . . . . . . . . . . . 68
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3.4.1 The evolution of BH2 in Figure 3.3.1 under different BH dynamics prescrip-
tions. We show the distance to halo center (top), black hole mass (middle)
and the x-component of the black hole velocity (bottom). Mergers are shown
in vertical lines (thick dashed lines are major mergers (q > 0.3), and thin dot-
ted lines are minor mergers) (a): comparison between no-DF and DF models.
DF clearly helps the black hole sink to the halo center and stay there. (b):
Effects of DF from stars and dark matter compared with gas drag. DF has a
stronger effect throughout, except that in the very early stage the drag-only
model is comparable to the DF-only model. (c): Comparison between the
DF(fid) and DF(T15) model. In general, the DF(fid) model results in a more
stable black hole motion and faster sinking, but the difference is small. (d):
Black hole dynamics with and without the gravitational bound check during
mergers. Without the gravitational bound check, the black holes can merge
while still moving with large momenta, and thereby get kicked out of the halo
by the injected momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Comparisons between DF and hydro drag. Left: comparison for a single
black hole. In the top panel we show the magnitude of the DF (red) and gas
drag (blue) relative to gravity for the same black hole, in the DF+Drag_4DM_G
run. During the early stage of the black hole evolution, DF and gas drag
have comparable effect, while after z = 7.5 the gas drag becomes less and
less important, as the gas density decreases relative to the stellar density
(middle), and the black hole velocity goes into the subsonic regime (lower).
Right: Ratio between DF and gas drag for all black holes. We plot the ratio
both as a function of redshift (top) and as a function of time after a black
hole is seeded (bottom). The orange lines represent the logarithmic mean of
the scatter. The FDF/Fdrag ratio depends strongly on the evolution time of
the black hole: the longer the black hole evolves, the less important the drag
force is. However, there is not a strong correlation between redshift and the
FDF/Fdrag ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Left: Scattering relation between the FDF/Fdrag ratio and the black hole mass.
For each black hole, we sample its mass at uniformly-distributed time bins
throughout its evolution, and we show the scattered density of all samples. DF
has significantly larger effects over gas drag on larger BHs. We fit the scatter
to a power-law shown in the orange line. Right: Scattering relation between
the FDF/Fdrag ratio and the BHs’ distance to the halo center. Comparing with
the BH mass, we do not see a clear dependence of the FDF/Fdrag ratio on the
distance to halo center. For BHs at all locations within the halo, DF is in
general larger than the gas drag. . . . . . . . . . . . . . . . . . . . . . . . . . 74
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3.4.4 Comparison between different components in the two dynamical friction mod-
els, DF(fid) (red) and DF(T15) (blue) (see Section 3.3 for descriptions). We
show the number of stars and dark matter particles included in the DF den-
sity and velocity calculation (top panel), the density used for DF calculation
(second panel), the Coulomb logarithm used in the two methods (third
panel), the velocity of the BH relative to the surrounding particles (fourth
panel, note that the "surrouding particles" are defined differently for the two
models), and the magnitude of DF relative to gravity (bottom panel). The
higher DF in the DF(fid) model at z > 8 is due to the larger Coulomb log-
arithm. After z ∼ 7, the higher density of DF(T15) due to more localized
density calculation counterbalances its lower log(Λ), resulting in similar DF
between z = 8 and z = 3.5. During the halo merger at z = 3.5, the DF(fid)
model included particles from the target halo into the density calculation, and
therefore yields larger DF during the merger. . . . . . . . . . . . . . . . . . . 77

3.4.5 The comparison between the distance of two merging black holes in the no-
correction, DF(fid), DF(T15) and gas drag models in the early stage (left) and
later stage (right) of the black hole evolution. For early mergers, the effect of
the frictional forces (DF and drag) is not very prominent but still noticeable.
The DF and gas drag both allow the black holes to merge faster compare to
the no-DF case. For the later merger happening in a denser environment, the
effect of dynamical friction is clear. However, the gas drag does not have a
big effect on the black hole at this late stage compared with the no-DF case.
The lower panels show the merging black holes within their host galaxies as
well as their trajectories towards the merger in the DF_4DM_G run. The left
images show the early phase of the orbital decay, and the right images show
the later phase when the orbits get smaller. . . . . . . . . . . . . . . . . . . 79

3.5.1 The effect of different BH dynamics modeling on BH position relative to its
host. We include the reposition model (blue), no-DF model (orange),DF(T15)
model (green), DF(fid) model (red) and the DF+drag model (purple). Top:
The fraction of halos(subhalos) without a black hole for halos with masses
above the black hole seeding mass at Mhalo = 1010M⊙/h. Middle: The
fraction of halos without a central black hole ("central" means within 2ϵg
from the halo center identified by the halo finder), out of all halos with black
holes. Bottom: Distribution of black holes’ distance to its host halo center. 82

3.5.2 The effect of different choice of dynamical mass on the black holes’ sinking
status. We compare our fiducial DF model (L15_DF_4DM, red) with Mdyn =
4Mdm to models with Mdyn = 2Mdm (thick purple), Mdyn = Mdm (purple),
and Mdyn = MBH (thin purple). For Mdyn > Mdm, the majority of the BHs
stay within 2ϵg of the halo center, while for Mdyn < Mdm, many BHs still stalls
at a relatively large radius. Noticeably, if we do not boost the dynamical mass
of the BHs, the sinking is even worse than if we boost the dynamical mass
but do not apply additional dynamical friction. . . . . . . . . . . . . . . . . 83
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3.5.3 Mass functions for reposition, DF and no-DF simulations. With reposition
(blue), we have the highest mass function and earlier formation of 108M⊙
black holes. The no-DF simulations (green) have lower mass functions, which
is expected due to low-accretion and merger rates from the black hole drifting.
The dynamical friction model (red) yields a mass function in between. . . . 83

3.5.4 The delay of mergers due to the dynamical friction time. Here we compare
the numerical dynamical friction time,tnum, to the analytically calculated time
(following Equation 4.7) tanaly. Top left: distribution of the dynamical fric-
tion time from numerical merger (blue) and analytical predictions (red). Top
right: ratio between the numerical and analytical tdf . Their difference is less
than one order of magnitude in all merger cases. Bottom: dynamical friction
time as a function of the virial mass of the host halo for the numerical (blue)
merger and analytical predictions (red). The same merger event is linked by
a grey line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.5 The cumulative mergers for different BH dynamics and merging models. The
reposition model (blue solid) predicts more than two times the total mergers
compared with the other models. Without the gravitational bound check,
the DF (red dashed) and the no-DF model (green dashed) predicts similar
numbers of mergers, indicating that the first encounters of the black hole pairs
are similar under the two models. However, if we add the gravitational bound
check, the dynamical friction model (red solid) yields ∼ 50% more mergers
compared to the no-correction model. Adding the gas drag in addition to
dynamical friction (purple solid) raises the mergers by a few. . . . . . . . 88

3.6.1 Left: Distribution of the mass of the smaller black hole (Ms), and distribution
of the total mass of the binary (Mtot). For both simulations, the mergers in
which at least one of the black holes is slightly above the seed mass dominate.
The most massive binary has a total mass of 3 × 108M⊙. Middle: The
mass ratio q between the two black holes in the binary. We see a peak at
log(q) = −0.5, corresponding to pairs in which one BH is about three times
larger than the other. Right: Scatter of the two black hole masses in the
binaries, binned by redshift. To separate the scatter in the two simulations,
for the DF+drag run we take M1 to be the mass of the larger BH, while for
the NoDF run M2 is the larger BH. . . . . . . . . . . . . . . . . . . . . . . . 90
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3.6.2 Merger rate per year of observation per unit redshift predicted from our
L35_DF+drag_4DM_G (purple) and L35_NoDF_4DM_G (blue) simulations. For
comparison, we also show the the prediction from recent hydro-dynamical
simulations. We include three simulations of similar mass-resolution: Volon-
teri et al. [2020] from the Horizon-AGN simulation (gray), Katz et al. [2020]
(yellow) from the Illustris simulation and Salcido et al. [2016] from the EA-
GLE simulations (pink). We note that the merger rate is sensitive to the BH
seeding criterion which can be different among the simulations shown. Since
we do not apply any post-processing delays after the numerical mergers, we
only compare to results without delays. . . . . . . . . . . . . . . . . . . . . . 91

3.A.1(a): Comparisons of different black hole seed dynamical mass. The effect
of varying Mdyn,seed is small in this case. But this is partially due to the
large BH we pick. (b): Comparison with higher-resolution run with the same
Mdyn/MDM ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.B.1Components of the dynamical friction in the DF(fid)_4DM_G (red) and the
DF(T15)_4DM_G (blue) simulations, for three M < 5× 106M⊙ black holes. In
these cases, the number of particles within the SPH kernel is still at least an
order of magnitude more than 100 at lower redshift. The value of the Coulomb
logarithm is now mainly affected by bmax, because we do not see as much noise
in the velocity of the surrounding particles as in the case of a very large BH.
In all three cases shown, the magnitude of the dynamical friction is similar in
the two models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.C.1The cumulative merger rates for different values of bmax, in the Lbox=15 Mpc/h
simulations. We tested bmax values of 3 ckpc/h,10 ckpc/h and 30 kpc, and
the difference in the cumulative merger rate is less than 10%. The difference
between the DF(fid) models and the DF(T15) model with bmax=1.5 ckpc is also
very small. Hence, although different choices of bmax changes the magnitude of
the dynamical friction, it does not affect the merger rate predictions significantly. 99

4.3.1 The last few orbits (starting from ∼ 80Myrs before the merger) of selected
binaries in the Astrid simulation plotted on their host galaxies. The distance
from left to right of each image is 10 ckpc/h. The brightness corresponds
to the stellar density, and the colors show the stellar age with older stars
being redder. The red curves are the BH pairs’ position relative to their
center of mass. In most cases we see a Rosetta orbit, as the local potential
is a spherical potential dominated by stars and dark matter. We find that
some orbits circularize over time (e.g. third row, fifth column), although the
majority of the orbits still remain eccentric when merging (see e.g. Figure
4.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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4.3.2 Comparison between eccentricity measurements from the shape method and
the energy method. Left: the distribution of the (generalized) orbital eccen-
tricity from the two measurements. In both cases, the distribution is dom-
inated by highly-eccentric binaries, as we can also see from the images in
Figure 4.3.1. The shape method has a more skewed distribution compared
to the energy method. Middle: A scattered plot of the eccentricity from
the two measurements. We can see that the two measurements yield similar
results by comparing the distribution to the diagonal line. In most cases, the
energy measurement is ∼ 10% lower than the shape measurement. Right: In
addition to the eccentricity, we show the apoapses and periapases of the two
measurements. The orange dots are the apoapses and the green dots are the
periapases. The scatter relation also follows the diagonal line quite closely.
When the two black holes merge in the simulation, the apoapsis is usually a
few kpc and the periapsis is usually less than 1kpc. . . . . . . . . . . . . . . 108

4.4.1 Comparison between the pre-merger dynamical friction time and the post-
merger dynamical friction time. Top: Distributions of the pre- and post-
merger DF times for all MBH pairs in Astrid. The two distributions are
similar and both peak around 200 Myrs, indicating that by adding dynam-
ical friction to the simulation, we have resolved more than half of the total
dynamical friction delay. Bottom left: Relation between the DF times and
the mass ratio between the two MBHs (q). We observe the expected negative
correlation between DF times and q. Bottom right: 1D distribution of the
mass ratio q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.2 Density profiles (left) and images (right) of the host galaxies of three MBH
mergers in the simulation. The blue crosses mark all MBHs in the host galaxy,
scaled by the BH mass. The red circles mark the merging binary. Top: Host
of a very massive binary with Mtot = 5.6 × 108M⊙ at z = 3. The stellar
density is the dominant component on scales below ∼ 10 ckpc/h. Middle:
Host of a binary with Mtot = 7.6 × 106M⊙ at z = 3. For this less massive
binary, the density of the three components is comparable at r < 10 ckpc/h,
and the density profile flattens at a larger radius. Bottom: Host of a binary
with two seed-mass MBHs. The mass of the host galaxy is high relative to
the binary mass. The binary is not the most massive MBHs in this galaxy,
but the merger still occurs in a relatively central region. . . . . . . . . . . . . 112
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4.4.3 Left: The density profiles of Astrid galaxies that host a recent numerical
merger. The blue solid line shows the median density of all binary hosts
measured from the simulation and the shaded region encloses 95% of the
population. The power law extrapolation is shown by dashed lines. Here
we show the results for extrapolation scales rext = 1.5ϵg (purple) and rext =
2ϵg (green). A larger rext results in a steeper power-law slope. Middle:
Distribution of the power-law index of the density profile γ, measured at
rext = 1.5ϵg (purple) and rext = 2ϵg (green). For rext = 1.5ϵg, the distribution
peaks at γ = 1.4, while for rext = 2.0ϵg, the distribution peaks at γ = 1.9. We
plot the power-index estimate in Kelley et al. [2017c] for comparison. Right:
Distribution of density extrapolated to 10 pc. We compare the two rext values.
The extrapolated density is sensitive to the change in rext: rext = 1.5ϵg gives
a distribution centered at 10M⊙/pc

3, while rext = 2.0ϵg gives a distribution
centered at 100M⊙/pc

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.4 Variables used to calculate dynamical friction and binary hardening timescales.
Left: Mtot − σ relation measured from all the binaries at the time of merger
in the simulation, compared to the analytical relation given in Tremaine et al.
[2002] and Kormendy and Ho [2013]. Middle: The influence radius derived
from γ and σ measured the simulation, compared with the analytical model
used in Vasiliev et al. [2015] (green dashed line), and in Sesana [2010] with
γ = 1.5 (black dashed line). Our measured σ and rinf are both close to the
analytical models. Right: Density at influence radius extrapolated from the
simulation. To illustrate the effect of extrapolation scales on ρinf , we show the
resulting extrapolation from both 1.5ϵg (pink dots) and 2.0ϵg (green contour).
As was demonstrated in Figure 4.4.3, the density extrapolation is sensitive
to the starting point of the extrapolation. However, even the extrapolated
density from an outer radius is smaller compared with the analytical model
used in Sesana [2010] with γ = 1.5 (black dashed line). . . . . . . . . . . . . 115

4.4.5 Top: The distribution of the loss-cone and gravitational-wave hardening time
for all binaries in the simulation. Here we use rext from 1.5ϵg. The shaded
distribution is computed using the measured eccentricity ϵen. If we assume ϵ =
0 (unshaded), the decay timescales will generally be longer by a factor of ∼ 100
and peak at 100 Gyr, which is much longer than a Hubble time. Middle: the
relation between the hardening timescale and the density at influence radius
ρinf . The timescale is negatively correlated with ρinf . Changing rext from 1.5ϵg
(pink dots) to 2.0ϵg (green contours) shortens the hardening timescale. The
right panel shows a clearer dependency when we remove the seed population.
Bottom: the relation between the hardening timescale and the measured
eccentricity. We see a weak negative correlation between Thard and ϵen. . . . . 119



xix LIST OF FIGURES

4.4.6 Left: The merger rates for all binaries in Astrid down to z = 3 with different
levels of delays. Without considering any post-processing delays (orange), we
expect a total of ∼ 2 mergers per year of observation down to z = 3. The rate
when considering only the DF delay (green) has an at most 50% decrease
compared to the raw rate at the highest redshifts. The binary hardening time
has the most significant effect in reducing the merger rate. The purple band
shows the DF+hardening delayed merger rate estimated using the measured
eccentricity ϵen. The upper limits of the bands assume rext = 2ϵg, and the lower
limits assume rext = 1.5ϵg. The yellow dashed line shows the DF+hardening
delayed merger rate estimated using the half-circularized eccentricity 0.5ϵen,
assuming rext = 1.5ϵg. The bottom panel shows the ratio between the delayed
merger rates and the simulation merger rates. Right: The mass distribution
of the two MBHs involved in the mergers. The red curves correspond to the
more massive MBH and the blue curves correspond to the less massive MBH.
The mass distribution of the simulation mergers is plotted in dashed lines, and
that of the delayed mergers is plotted in solid lines. The bottom panel shows
the ratio between the mass distributions of simulation mergers and delayed
mergers. The seed-mass mergers (enclosed in the vertical dashed lines) are
suppressed most strongly by a factor of ∼ 6. . . . . . . . . . . . . . . . . . 121

4.5.1 Merger rates for different mass cuts and mass-ratio cuts. Left: The merger
rates for the seed-mass population, where the masses of both MBHs are less
than two times their seed masses. The colors are the same as in Figure 4.4.6.
Compared to 4.4.6, this population makes up ∼ 60% of the mergers. Middle:
Merger rate for MBHs with only one of the two grown out of the seed mass.
This rate makes up ∼ 30% of the entire merger population. Compared to the
seed-seed mergers, here we see fewer mergers at high redshifts, but a similar
rate at z = 3. Right: Mergers with both MBHs larger than two times their
seed masses and with q > 0.1. When constrained to major and non-seed
mergers, the effect of DF is barely noticeable. The DF+Hard delayed rate
makes up 50% of the total rate. The lower panels show the ratio between the
delayed merger rates and the simulation merger rates. . . . . . . . . . . . . . 123
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4.5.2 The distribution of mergers on the Mtot − zmerge plane for the simulation
and delayed mergers, color-coded by the number of mergers per Myr. Left:
The distribution for all mergers without delays. Middle: The same merger
population with the post-merger DF time added. Here, we see a slight shift
of the merger population towards a lower redshift, but nothing gets delayed
below z = 2. Right: The distribution after considering both the DF delay
and the hardening time. Note that since the latest redshift of the simulation
is z = 3, all the data points at z < 3 (masked in grey) are results of the
delay from z > 3 numerical mergers, and are not representative of all merger
events at z < 3. We see a significant shift of the mergers towards lower
redshifts. The population most significantly shifted are the low-mass mergers
with Mtot < 106.5M⊙, while the most massive binaries are still able to merge
at relatively high redshifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5.3 The fraction of the merger population in each bin of the galaxy stellar mass
hosting the merger (first column), seeding redshifts of the merged MBHs
(second column), number of MBHs in the host galaxy (third column), and
the ratio between the total MBH mass in the host galaxy and the binary mass
Mtot (fourth column). The top row shows the non-seed merger population,
and the bottom row shows the seed-mass merger population. The simulation
mergers are shown in orange and the DF+Hard delayed mergers are shown
in purple. The total number of z > 3 mergers in each population is shown in
the second column with corresponding colors. . . . . . . . . . . . . . . . . . 127

4.6.1 Left: Example waveforms for three binaries of different masses in Astrid.
The thick curve shows the waveform assuming ϵ = 0, while the thin lines are
the waveform assuming eccentric orbits. We also show the LISA sensitivity
curve from Amaro-Seoane et al. [2017] (black solid) for comparison. The
numerical merging time of all example binaries is z ∼ 3.1. Right: The h− f
distribution after applying the delay models. The arrows indicate the shifts
in strain and frequency by the delay. Most signals are shifted to the upper-
right due to the lower redshift of the merger after the delays. The light grey
region shows the merger population delayed to z < 3, which is not part of our
prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6.2 Left: the joint distribution of the SNR and redshift for Astrid mergers. The
top row is the SNR computed before the DF and hardening delays, and the
bottom row is the SNR after the delay time is applied. The mergers delayed
to z < 3 are masked in grey. Middle: distribution of binary mass for all
Astrid mergers (red), the ones with SNR>8 without the delay model (blue),
and the ones that merge before z = 3 after the delays (brown). The SNR>8
cut eliminates all mergers with Mtot > 108M⊙, while the drop in low-mass
merger events is due to the delays. Right: the distribution of two MBH
masses for LISA detectable merger events at z > 3. Most events are expected
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Chapter 1

Introduction

It is now an exciting era for studying the galaxy evolution in the high-redshift Universe,
and relate it spatially to the evolution of instruction on larger scales, and temporally to the
present-day galaxies. The state of the field rapidly changing change due to a suite of instru-
ments and telescopes that are operating now or will become available in the next few years.
For example, the James Webb Space Telescope (JWST) with its large mirror and infrared
frequency coverage, continues to break the record of the highest redshift galaxies and AGN
observations. These observations also challenge some of the existing theories of high-redshift
galaxy and massive black hole formation. Additionally, our understanding of the epoch of
reionization and the IGM will soon be replaced by a more complete picture of the neutral
hydrogen distribution in the Universe by current and upcoming radio telescopes including
the Low-Frequency Array (LOFAR), Square Kilometer Array (SKA) and Hydrogen Epoch
of Reionization Array (HERA). The recent development in gravitational wave (GW) astron-
omy also enables the study of black holes through the GW emission from black hole mergers.
Particularly relevant to the understanding of high-redshift massive black hole formation is
the Laser Interferometer Space Antenna (LISA), to be launched in about a decade. All the
instruments above will complement each other and revolutionize our understanding of the
galaxy evolution theory since cosmic dawn.

In this thesis, I aim to use novel numerical methods to understand galaxy evolution
since the first galaxies formed, and to make testable theoretical predictions for ongoing and
future observations. In this chapter, I am going to describe a few topics that constitute the
bedrock of this thesis. Section 1.1 describes the key components of modern cosmological
galaxy formation simulations, which is the foundation for many works in this thesis. Section
1.2 introduces massive black holes, with a focus on their numerical modeling and massive
black hole binaries. In Section 1.3 I describe the theoretical modeling of cosmic reionization,
followed by the imprint of reionization on the cosmic wave background.



3 1.1. COSMOLOGICAL HYDRODYNAMIC SIMULATIONS

1.1 Cosmological Hydrodynamic Simulations

Cosmological simulations are computational models used to simulate the evolution of the
Universe from an early time to the present day. They are usually performed in a periodic
box representative of a fraction of the observable Universe. Cosmological simulations can
be broadly categorized into two main types. N-body simulations model only gravitational
interactions and track the motion of individual particles representing matter. These simula-
tions can be performed at > Gpc scales and with a wide range of cosmological parameters,
and are often used to understand the statistical properties of large-scale structure formation
and dark matter halos. These simulations, when combined with semi-analytical modeling of
the baryon and galaxy distribution or other forms of post-processing, can also be useful in
modeling statistics of galaxy properties and evolution.

Building upon N-body simulations of gravity, hydrodynamic simulations also include gas
dynamics and other fluids. They involve complex non-linear interactions of gravity and
hydrodynamics, the formation of stars and black holes. In this approach, the physics at
these much smaller galaxy scales is self-consistently coupled to large cosmological scales.
Here we introduce the basic building blocks of cosmological hydrodynamical simulations,
which enables many works done in this thesis.

1.1.1 Initial Condition

As systems of coupled differential equations, cosmological simulations start from an initial
condition, usually set by the positions (or densities) and velocities of the particles (cells)
involved. The initial condition is often set at an early enough time such that the density
fluctuation is mostly in the linear regime (i.e. the over-densities δ(x) ≪ 1 and can be
approximated by first-order terms). According to the theory of inflation which seeded the
density fluctuations, the initial density field is a Gaussian random field, where the joint
probability distribution of density fluctuations is a multidimensional Gaussian completely
specified by its matter power spectrum defined from the over-densities as〈

δ̃ (k) δ̃ (k′)
〉
= (2π)3P (k) δD (k + k′) (1.1)

where δ̃(k) =
∫
d3xe−ik·xδ(x) is the Fourier transform of the over-density field [see e.g.

Dodelson, 2003, for details].
The initial power spectrum is specified by the transfer function T (k), calculated by solving

the sets of coupled Einstein-Boltzmann equations numerically (with solvers such as CAMB
[Lewis and Challinor, 2011] and CLASS [Lesgourgues, 2011]). After the initial power spec-
trum is set, the density field can be realized with a random phase factor. We then displace
particles involved in the simulation (typically dark matter or baryons) from a uniform-
density background (Cartesian lattice or glass-like) towards the target density field using
first/second-order perturbation theories, sometimes with adjustments on small scales [e.g.
Bertschinger, 2001, Garrison et al., 2016, Hahn and Abel, 2011, Jenkins, 2010, Zel’dovich,
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Figure 1.1: The resolution and box size of existing cosmological galaxy formation simulations
(left), and an illustration of the various scales, physics, and components in the ASTRID
simulation (right).

1970]. Baryon positions and velocities are set similarly, and the baryon temperature is
initialized to the redshift-dependent microwave background temperature.

1.1.2 Gravity

After the initial conditions of particle positions are set, the time evolution of the particles
is governed by the physics relevant to specific species. Gravity is a fundamental force in-
fluencing the evolution of all species modeled in simulations. Gravitationally interacting
particles can be described by the collisionless Boltzmann equation coupled to the Poisson
equation in an expanding universe. A commonly used method to solve gravity is the N-body
method, which uses discrete particles as tracers for the matter distribution and gravitational
potential. Cosmological N-body methods can be categorized into the particle-particle (PP)
method, particle-mesh (PM) method, or a combination/approximation of them (e.g. Tree,
Fast Multipole Method (FMM), TreePM, P3M, refined mesh).

PP method directly calculates the particle-particle interactions and therefore has O(N 2)
computation time. More specifically, it solves the discretized Poisson equation in its integral
form via

ϕ(xi) = −
N∑
j=1

{
mj

|xj − xi|+ ϵ (|xj − xi|)

}
. (1.2)

Here ϵ (|xj − xi|) is a softening kernel that prevents the singularity at close separations, and
the size of the kernel is often empirically set to ∼ 1/30 of the mean particle separation in
cosmological simulations. We also note that in the cosmological context, since we impose
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periodic boundary conditions, the distance is calculated from the nearest image of particle
j [see e.g. Springel et al., 2021, for a detailed mathematical formulation].

The direct PP method, despite its accuracy and simplicity, can be too computationally
expensive to be applied in the cosmological context, and thus its approximations are more
widely used. One popular alternative is the oct-tree algorithm [Barnes and Hut, 1986],
which groups source particles at further distances from the sink particle and only computes
their gravitational contribution as a monopole. Another alternative is the fast-multiple
method [FMM, Greengard and Rokhlin, 1987], which approximates distant interactions
with multipole expansions. The FMM approach can be faster than a classic tree because
the multipole expansion is not only carried out at the source side but also on the sink side
where the target particles are located.

The Poisson equation can also be solved in its differential form

∇2ϕ(x) = 4πGρ(x) (1.3)

using a mesh-based method. Particle-mesh (PM) methods map particles to a density field
on a grid and discretize Poisson’s equation directly. The equation is most conveniently
solved when transformed into the Fourier space as k2Φ̃(k) = −4πGρ̃(k) through fast Fourier
transform-based methods. This algorithm is also O(N log(N )), but here N is the total
grid count instead of the particle count. The advantage of the PM method is that it is
computationally efficient and can be easily parallelized. The primary disadvantage is that
the force accuracy is fixed at the grid size, which is often large in the cosmological context.

P3M combines the direct PP method and the PM approach, by computing the short-
range gravity from direct PP summation, and computing long-range gravity with PM. It
scales better with the number of particles compared to the pure PP method, and has higher
force resolution than the PM method, and therefore is widely used in current cosmological
simulations.

1.1.3 Gas dynamics

Hydrodynamical simulations also model the baryon component, which consists mostly of
hydrogen and helium gas. In addition to gravity, gas is also subject to pressure, cooling, and
heating, and its dynamics follow the set of hydrodynamical equations:

∂ρ

∂t
+∇ · (ρv) = 0, (1.4)

∂v

∂t
+ (v · ∇)v = −

(
∇Φ +

∇P

ρ

)
, (1.5)

∂

∂t

[
ρ

(
v2

2
+ u

)]
+∇ ·

[
ρ

(
v2

2
+

P

ρ
+ u

)
v

]
− ρv · ∇Φ = H− C. (1.6)

Here ρ is the gas density, P is the pressure, v is the velocity and u is the specific internal
energy. The terms on the right-hand side of Equation 1.6 are the heating (H) and cooling
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(C) rates, which we will describe in more detail in the next subsection. The equations are
closed by specifying the equation of state P = (γ − 1)ρu, with γ = 5/3 for monotomic gas.

Current gas dynamics solvers in cosmological simulations can be classified into La-
grangian, Eulerian, and Arbitrary Lagrangian-Eulerian methods. Here we only focus on
a description of the smoothed-particle hydrodynamics (SPH) based Lagrangian method, be-
cause it is employed in most of this thesis. For an introduction to the other two methods in
the context of cosmological simulations, see e.g. Vogelsberger et al. [2020].

Lagrangian methods follow the individual fluid particles as they move through space and
time. The most widely adopted Lagrangian method in astrophysics is the SPH method [e.g.
Monaghan, 1992, Springel, 2010]. In SPH, the moving fluid particles are the carriers of
thermodynamic quantities and their spatial distribution sets the resolution in the flow. The
thermodynamic quantities of particles are obtained by a weighted average of neighboring
particles with an SPH kernel specified by smoothing length h:

Fs(r) ≃
∑
j

mj

ρj
FjW (r− rj, h) , (1.7)

where Fs(r) is the field of interest and W (r− rj, h) is a spatial smoothing kernel. The
advantages of the SPH formation include the adaptive spatial resolution which allows for
detailed modeling of gas elements in dense environments. It is also easy to add to N-body
simulations which are also particle-based. The main disadvantages of the SPH method lie
in its limited capability to capture contact discontinuities, and shocks, and relatively poor
accuracy for (high order) gradient estimates across density jumps. Some SPH implementa-
tions [Springel et al., 2005b] face challenges of spurious surface tension between high-density
regions and low-density regions, prohibiting high-density particles from dissipating into low-
density regions. This is solved by the pressure-entropy SPH formalism Hopkins [2013] that
improves the handling of surface instabilities and model Kelvin- Helmholtz instability sim-
ulation properly.

1.1.4 Gas Cooling, Star Formation, and Stellar Feedback

As was already shown in Equation 1.6, gas can dissipate internal energy through radiative
processes like collisional excitation, ionization, inverse Compton cooling, recombination, and
free-free emission. In cosmological simulations, these processes are represented on a subgrid
level, assuming the gas is optically thin and in ionization equilibrium with the background
radiation field. Cooling processes are coupled to the energy equation using cooling functions
that are either tabulated or extracted from chemical networks.

In this introduction I will only include the modeling of the gas, star-formation and feed-
back mechanisms most relevant to the works included. In SPH simulations, the atomic
cooling process is implemented for individual gas particles. With radiative cooling rates
tabulated for different species. For primordial gas that is mainly composed of hydrogen and
helium, the primordial cooling rate is obtained by calculating the abundance of the different
ionic species of gas after solving the ionization equilibrium between different species [Katz
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et al., 1996]. In addition to primordial cooling, metal line cooling dominates the cooling
process for temperatures 105 ∼ 107K. Gas with T < 104K can only be cooled through the
molecular cooling process.

The cooling process allows gas to collapse into dense clumps of molecular clouds and
form stars. Many simulations transform a portion of the gas into collisionless star particles
to model the star formation process under certain conditions. One widely adopted star-
formation model was a sub-grid model developed by Springel and Hernquist [2003] that uses
an effective equation of state to describe the interstellar medium (ISM). In this model, a gas
particle is considered a mixture of cold, star-forming gas and hot ambient gas that exists
in pressure equilibrium. A star-formation rate is assigned based on the density of gas in
the cold phase and a characteristic timescale t∗. The feedback from supernova explosions of
massive stars is associated with the star-formation rate of the gas particle, and the energy
of this feedback can be deposited thermally or kinetically, depending on how the super-
nova explosion interacts with the gas environment. Stellar wind models are also developed
to emulate the process of galactic-scale outflow launched by the supernova feedback. This
momentum injection is modeled by decoupling star-forming gas from hydrodynamical inter-
action and ejecting it from the dense star-forming region. This is an important mechanism
for regulating star formation. Stellar evolution and supernovae will also enrich the metals
in the gas surrounding and in turn affect the cooling state of gas. To model this process,
some cosmological simulations also track the stellar evolution and mass return of the stars
to the gas environment based on metal yield models derived from stellar evolution theories.
Recent developments in star formation models come up with ISM models that better resolve
the multi-phase gas structure and even model the formation of individual stars.

1.2 Modeling the Evolution of Massive Black Holes

One main topics covered by this thesis are specifically related to the theoretical modeling of
massive black holes. Therefore we spend a subsection to describe aspects of MBH modeling
in cosmological simulations in more detail.

1.2.1 Numerical Modeling

Despite their small physical sizes relative to cosmological scales, MBHs play a large role
in shaping the evolution of galaxies. This motivates modern hydrodynamic simulations to
incorporate subgrid models for MBH-related physics. Examples of large volume simulations
with black hole physics include Magneticum [Hirschmann et al., 2014, Steinborn et al., 2015]
Horizon-AGN [Dubois et al., 2014, Volonteri et al., 2015], Eagle [Rosas-Guevara et al., 2015,
Schaye et al., 2015] Illustris Genel et al. [2014], Sijacki et al. [2015], Vogelsberger et al. [2014],
MassiveBlack-II [Khandai et al., 2015], BlueTides [Di Matteo et al., 2017, Feng et al., 2016],
Romulus [Sharma et al., 2020, Tremmel et al., 2017], IllustrisTNG [Habouzit et al., 2021,
Pillepich et al., 2018, Weinberger et al., 2017], SIMBA [Davé et al., 2019, Thomas et al.,
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Figure 1.2: MBH merger rates across cosmic time predicted from various cosmological simu-
lations. The modeling of accretion, seeding, and dynamics can affect the merger distribution
and event count prediction.

2019], Astrid [Bird et al., 2022, Ni et al., 2022] (list of references follows from Di Matteo
et al. [2023]).

Massive black holes in cosmological simulations are usually modeled as individual particle
species, with their own set of properties. The physics related to MBHs can be roughly
categorized into accretion, feedback, seeding, and dynamics. Here we briefly review the
modeling of each, focusing on the dynamics that directly link to the next subsection on
massive black hole binaries.

Accretion Massive black holes grow by swallowing the gas accumulated into the surround-
ing accretion disk. These disks are made of gas falling in from galaxy scales and typically have
sizes smaller than a parsec. The detailed modeling of the MBH accretion mechanism and
the dynamics in the accretion disk requires spatial and time resolutions beyond the reach
of cosmological simulations and is typically done through GRMHD simulations [e.g. Guo
et al., 2023]. Thus simplified effective models are adopted in cosmological simulations. The
Bondi accretion model is the most widely used prescription for black hole growth in galaxy
formation simulations since its first implementation in idealized galaxy merger simulations,
which is calculated as

ṀBondi = α
4πG2M2

BHρ

(c2s + v2)3/2
, (1.8)

where cs is the local gas sound speed, v is the velocity of the MBH, ρ is the local gas density,
MBH is the black holes mass, and G is the gravitational constant. We note the constant
boost factor α in this formulation, which is added to compensate for the underestimation
of the accretion rate due to the unresolved cold and hot phase of the subgrid interstellar
medium nearby.
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The Bondi accretion is limited by the Eddington rate, which is the maximum growth
rate achieved through spherically symmetric accretion in the presence of radiation pressure:

ṀEdd =
4πGmpMBH

ησTc
, (1.9)

where mp is the proton mass, σT is the Thomson cross-section, c is the speed of light, and η
is the radiation efficiency of the accretion flow.

The Bondi-Hoyle accretion model above can be oversimplified, and recent simulations
showed that in gas-rich galaxies the gravitational torque of the stellar component plays a
major role in transporting gas to the vicinity of the MBH [Anglés-Alcázar et al., 2017, 2021].
Simulations with torque-driven accretion models usually lead to more efficient growth of
under-massive black holes, because the accretion rate is less sensitive to the black hole mass.
However, this scenario may not be realized in early gas-rich galaxies or late-time elliptical
galaxies, and a hybrid accretion model has also been developed to model the hot gas with
Bondi accretion and cold, rotationally supported gas with the torque-driven model [e.g. Davé
et al., 2019].

Feedback The rest-mass energy of the accreted material can be transformed into radiation
through AGN accretion disks. Observations of AGN feedback in action include fast nuclear
outflows, galaxy-scale winds, radio-emitting jets, and ionized QSO proximity zones. The
bolometric luminosity is related to the accretion rate by:

Lbol = ηṀBHc
2, (1.10)

where ṀBH is the black hole accretion rate as in Equation 1.9 and η is the radiating efficiency.
The resulting radiation energy is deposited into the surrounding medium and can have a
significant and long-term impact on the evolution of the AGN host galaxies, which we refer
to as the "AGN feedback". The feedback mechanism is believed to play a major role in
the self-regulation of MBH growth and the regulation of star-formation in galaxies [e.g. Di
Matteo et al., 2005b].

In cosmological simulations, the feedback energy from MBHs can be coupled to the
surrounding medium in multiple ways, depending on the accretion state of the MBH and the
properties of the environments. One widely adopted model injects a fraction of the bolometric
luminosity as thermal energy into the surrounding gas, increasing the gas temperature. To
prevent the effective cooling which counteracts the heating effect of AGN, alternatives to
this method have been applied. These include the temporary suspension of gas cooling of
gas coupled to the AGN, depositing feedback energy in bulks, and injecting momentum
instead of thermal energy into gas. Simulations also adopt a two-mode feedback model
to model the high-accretion state ("quasar mode") and low-accretion state ("radio mode")
separately. This allows for refined control of the MBH and galaxy evolution at different
stages and reproduces the observed population of quenched galaxies and the color bi-modality
[Weinberger et al., 2017].
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Seeding The exact mechanism that seeded the MBHs in the early Universe at z > 15
remains to be revealed by ongoing and future observations. Several theoretical models have
been proposed for the formation of the MBH "seeds" at high redshifts that can potentially
lead to the SMBHs with masses already exceeding ∼ 109M⊙ at z ∼ 6 and larger than
> 1010M⊙ today. One plausible scenario is that the first black holes formed from the first
massive stars (Population-III stars). These stars are quite massive due to the inability of
molecular hydrogen gas to cool and can collapse into MBH seeds with MBH ∼ 100M⊙. A
second channel of seed formation is through the direct collapse of gas clouds into a massive
seed black hole without passing through all the phases of stellar evolution. These “direct
collapse” models form seed black holes with MBH between 104 and 106M⊙. A third channel
involves a gravitational runaway event within a dense stellar cluster, where either massive
stars or stellar-mass BHs go through runaway collision and mergers, which leads to MBH
seeds with MBH ∼ 103M⊙.

The modeling of seed formation in cosmological simulations is usually much coarser than
the proposed physical mechanisms, as the proposed seed masses are usually below the mass
resolution of cosmological simulations. The simplest model of seeding MBHs puts an MBH
seed at a fixed initial mass (usually ranging between 105 − 106M⊙) at the halo center when
the halo first gets above a certain mass threshold (e.g. ∼ 1010M⊙ in simulations such
as Illustris, TNG, and EAGLE). The underlying assumption is that massive seeds through
direct gas collapse form in abundance, or that the lighter seeds formed through other channels
can grow efficiently. To probe the evolution of MBH seeds across a wider mass range, in
ASTRID simulation the seed mass is stochastically drawn from a power-law distribution, in
halos with Mhalo = 109.5 ∼ 1010.5M⊙. Some simulations such as Romulus and Horizon-AGN
also consider the local gas environments in addition to the halo mass and only form MBH
seeds in dense and pristine gas. Higher-resolution simulations with more detailed modeling
of the gas and stellar population at high redshifts are used to explore the physical condition
of MBH seed formation (e.g. the Renaissance and BRAHMA simulation suites), and derive
refined seeding mechanisms for future large cosmological volumes. Finally, it is worth noting
that the challenges of seeding smaller MBHs in cosmological simulations lie not only in
the inability to resolve their forming environments, but also in the difficulty in modeling
their subsequent evolution in dynamics and gas accretion when all other particle species are
significantly heavier than the MBH particles.

Dynamics MBHs are subjected to gravitational interaction with all matter components
and a drag force from the surrounding gas medium. In Section 1.1.2, we already introduced
gravity modeling in cosmological simulations, but these methods are essentially a Monte
Carlo sampling of the underlying gravitational field and are not accurate at the single-
particle level. Thus the dynamics of black hole particles require additional treatment. Like
the obstacles in the modeling of other aspects of MBHs, dynamics modeling is limited by
the resolution in mass, space, and time. Observations found most SMBHs to sit at or close
to the galactic center, while some smaller MBHs have been discovered away from the galaxy
center ("wandering MBHs"). The main mechanism that keeps MBHs close to galaxy centers,
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even after the dynamical disruption following galaxy mergers is the dynamical friction from
dark matter, gas, and stars. When the black hole travels through a continuous medium or
a medium consisting of particles with smaller masses than the black hole, it attracts the
surrounding mass towards itself, leaving a tail of overdensity behind. Dynamical friction is
the resulting gravitational force exerted onto the black hole by this tail of overdensity [e.g.
Binney and Tremaine, 2008, Chandrasekhar, 1943]. Dynamical friction causes the orbits
of SMBHs to decay towards the center of massive galaxies [e.g. Governato et al., 1994,
Kazantzidis et al., 2005], and enables the black holes to stay at the high-density regions
where they could go through efficient accretion and mergers.

In principle, dynamical friction is just a gravitational effect and should be already ac-
counted for in N-body simulations assuming infinite spatial and time resolution. However,
due to the gravitational softening term ϵ in Equation 1.2 (usually set to kpc scales in cos-
mological simulations for computational feasibility), gravity can not be well resolved in the
vicinity of the MBHs, and thus the wake-induced-friction is not captured. As a result,
MBHs have a hard time sinking to galaxy centers after dynamical disruptions (e.g. a galaxy
merger). Another numerical difficulty lies in the mass contrast between other particle species
and the black hole particles. If the MBHs are of comparable mass to the most massive parti-
cle species, the two-body scattering process can artificially inject energy into the MBHs and
displace them from the potential minimum.

A simple fix to the spurious drift of MBHs from galaxy centers is to reposition them to
the galaxy center at each timestep of the MBH evolution. This fix stops the gravitational
interaction of the MBHs with other particles and simply assumes that they will always
reside in the central region. Simulations with this model produce a reasonable central MBH
population when calibrated on observations, but can become problematic when modeling
MBH merger events or wandering MBHs.

Alternatively, we can add a sub-grid force onto the MBHs to account for the insufficient
DF force. The derivation of the added force is motivated by the Chandrasekhar prescription
of dynamical friction:

FDF = −16π2G2M2
BHma log(Λ)

vBH

v3BH

∫ vBH

0

dvav
2
af(va), (1.11)

where MBH is the black hole mass, vBH is the velocity of the black hole relative to its
surrounding medium, ma and va are the masses and velocities of the particles surrounding
the black hole, and log(Λ) = log(bmax/bmin) is the Coulomb logarithm that accounts for the
effective range of the friction between bmin and bmax. f(va) is the velocity distribution of the
surrounding particles. This integral can be done analytically assuming that f(va) follows
a Maxwellian distribution. In Chapter 3 we will dive into the details of this model and its
application in cosmological simulations. Variants of the Chandrasekhar-like models have also
been derived and tested in simulations of MBH orbital decay. For example, Ma et al. [2021]
derived a discrete formulation of the dynamical friction by taking into effect both the local
and global interactions of MBHs. This method has the advantage of efficient implementation
in particle-based simulations and explicit momentum conservation.
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1.2.2 Massive Black Hole Binaries

Massive black holes not only grow in isolation via accretion but are subject to pairing with
other MBHs following galaxy mergers, resulting in massive black hole binaries (MBHBs).
MBHBs are unique multi-messenger sources where the host galaxies, binary AGN and the
gravitational wave emission can potentially be observed simultaneously. Thus they can
be used to constrain cosmology, black hole accretion as well as the MBH-galaxy relation.
In this subsection, we introduce the evolution stages of MBHBs and their signatures in
electromagnetic and gravitational wave observations.

Formation and Evolution of MBHBs MBH pairs’ evolution towards coalescence is first
summarized in Begelman et al. [1980], and the main picture is still adopted in the modeling
of MBHBs today. During galaxy mergers, the central MBHs start at a large separation in
the remnant galaxy (a few tens of kpc). These SMBH pairs slowly spiral toward the center
of mass of the newly merged system and remain at a separation of 0.1 ∼ 100 kpc for a few
hundred Myrs [e.g. Begelman et al., 1980, Milosavljević and Merritt, 2001], during which
dynamical friction is the major mechanism for driving the orbital decay, and enables the
formation of a bound binary. When their separation is within the influence radius (the
radius at which the enclosed stellar mass is equal to the sum of the MBH masses) an MBH
binary begin to form, and other energy-loss channels begin to dominate, such as scattering
with stars [e.g. Vasiliev et al., 2015], gas drag from the circumbinary disk [e.g. Haiman et al.,
2009], and three-body scattering with a third black hole [e.g. Bonetti et al., 2018]. At even
closer separation, GW emission becomes the dominant channel for binary energy loss. We
usually use MBH binaries to refer to two MBHs gravitationally bound to each other, and use
MBH pairs to refer to two MBHs at any evolution stage before the bound binary formation.

Not all MBH pairs can evolve to the stage of a bound binary, and could stall at various
stages. At kpc separations, dynamical friction may not act efficiently, especially on small and
naked MBHs. Thus wandering MBHs are theoretically predicted to reside in moderately-
sized galaxies and also observational found. Even when the MBH pairs made it to the central
∼ pc region of the remnant galaxy center, the inefficient refilling of the loss cone can lead
to binary stalling on PC scales (known as the "final parsec problem"). This is most relevant
in "dry mergers" between late-time elliptical galaxies where the central region is gas-poor.
Some binary MBH accretion disk simulations also found that in certain configurations the
binary can widen instead of decay due to the interaction with surrounding gas. Several
mechanisms have been proposed to alleviate the final-parsec stalling, such as the triaxial
geometry of the remnant galaxy and interactions between more than two MBHs.

Modeling the full range of evolution from galaxy mergers to binary formation and grav-
itational wave emission involves a dynamical range over ∼ 10 orders of magnitude and is
almost impossible (in Chapter 6 we will focus on this problem). Therefore, people usually
use analytical derivation or simulations to model the orbital decay rate at various stages and
add them to estimate the timescale of the full evolution. An example of the evolution time
through different stages and the dominating mechanism at different separations is shown in
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Figure 1.3: The timescale of MBH orbital decay through different mechanisms (dynami-
cal friction (DF), loss-cone scattering (LC), viscous gas disk (VD) and gravitational wave
emission (GW) at different binary separation for the binary population form the Illustris
simulation. The inset panel shows the mechanism dominating the orbital decay at different
scales. The Figure is adopted from Kelley et al. [2017b].

Figure 1.3.

Dual AGN MBHBs or their progenitors (MBH pairs before forming a bound binary)
can be observed electromagnetically as dual AGN when both MBHs are actively accreting.
Based on the binary evolution model in the previous paragraph, dual AGN should exist
across a wide range of separations from before galaxy mergers to the bound binary stage.
The number density across various phases can potentially inform us of the binary evolution
models in each stage. It is also theoretically predicted that galaxy merger induces gas shocks
and inflow which can boost AGN activity. This can also be tested with a detailed comparison
between the single AGN population with dual AGN, and between the observed and simulated
samples.

It is nonetheless difficult to collect a statistical sample of confirmed dual AGN in observa-
tions, especially toward small (sub-kpc scale) separation due to limitations in instrumenta-
tion, obscuration by AGN hosts, or confusion with other objects (e.g. lensed quasars). One
method to find dual AGN uses spatial offset detection, which relies on having the angular
resolution to discern a pair of AGN or an AGN displaced from the host galaxy center. Large
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enough samples are beginning to be discovered to begin placing constraints on population
statistics, for example, showing that dual-AGN occurrence rates are higher in more-major
mergers and luminosities tend to increase at smaller separations Koss et al. [2012]—both
consistent with predictions for merger-driven fueling of AGN. Radio observations are most
promising in discovering bound dual AGN due to their superior spatial resolution. Cur-
rently, the closest-separation system is found at ∼ 7 pc projected separation by Rodriguez
et al. (2006) in the radio galaxy 0402+379.

Another method uses the kinematic offsets in spectroscopy, identified either through two
distinct lines components, or a redshifted line (velocity offset) relative to the host galaxy.
Candidates identified through kinematic offsets are subjected to misclassification since double
lines can also be produced by bipolar outflows or jets and even the two sides of an accretion
disk. Therefore follow-up observations of the host galaxies or AGN are used to confirm the
dual AGN nature. Other signatures of dual AGN include the periodic variability in the AGN
brightness and features in the galaxy morphology or kinematics.

Current predictions on the dual AGN population in cosmological simulations are limited
to duals at > kpc scales, as this is the spatial resolution limit for the state-of-the-art large
cosmological boxes (> 100Mpc boxes are needed to build a statistical sample of bright dual
AGN sources). These simulations are useful in constructing a statistical sample of dual
AGN from the underlying single AGN population, identifying distinctive signatures of the
AGN in pairs, and building mock samples of dual AGN observations for the spatial offset
methods. Idealized galaxy merger simulations and binary accretion disk simulations are
useful in modeling the smaller-separation dual AGN and their accretion states. In Chapter
5, I will focus on the properties of the dual AGN sample and their host galaxies extracted
from the ASTRID simulation.

Gravitational Waves from MBHBs Gravitational waves (GWs) from MBH mergers
offer a promising way to observe the first MBH seeds and SMBH binaries [e.g. Barausse,
2012, Klein et al., 2016, Ricarte and Natarajan, 2018, Sesana et al., 2005], especially when
combined with observations of the electromagnetic (EM) counterparts [DeGraf and Sijacki,
2020, Natarajan et al., 2017]. Compared to electromagnetic observations, GWs not only
allow us to probe MBH seeds at higher redshift, but also provide MBH mass estimations
independent of their instantaneous accretion state. GWs of MBH mergers with masses in
the range 104 − 107M⊙ have a frequency around mHz, and they are primary targets for the
Laser Interferometer Space Antenna (LISA), which can detect MBHs with such masses out
to z > 20 [Amaro-Seoane et al., 2017]. At lower frequencies Pulsar Timing Arrays (PTAs)
already detected GW background from MBHBs and the Square Kilometer Array (SKA) in
the next decade will be a major leap forward in sensitivity. PTA observations are also likely
to identify a number of continuous-wave sources representing the early inspiral phase of MBH
binaries.

MBH binaries provide a variety of signals measurable by LISA since their chirp evolution
in the frequency domain occurs near the low-frequency band edge of the LISA sensitivity
curve. Binaries with 105 − 107M⊙ total mass will provide a measurable inspiral, merger,
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and ringdown leading to signals out to the cosmic horizon [Amaro-Seoane et al., 2017]. The
binary inspiral is the initial stage of binary black hole coalescence when the two MBHs
orbit one another at separations greater than the innermost stable circular orbit (ISCO;
R = 6GMBH/c

2). At these separations, the orbit is usually treated with a post-Newtonian
formalism. The merger stage follows the binary inspiral with a highly non-linear relativistic
process. This process continues until the binary components form a single event horizon,
leading to ringdown.

We use the characteristic strain, hs, to model the binary signal which accounts for the
time the binary spends in each frequency bin [Finn and Thorne, 2000]. The characteristic
strain is given by [e.g. Moore et al., 2015]:

hs(f) = 4f 2|h̃(f)|2 (1.12)

where h̃(f) represents the Fourier transform of a time domain signal and can be computed
through phenomenological models such as PhenomD. This hs − f relation assumes circular
orbits for the binaries. The GW strain from an individual, eccentric source can be related
to that of a circular source as [e.g. Amaro-Seoane et al., 2010, Kelley et al., 2017c]:

h2
s(fr) =

(
2

n

)2 ∞∑
n=1

h2
r,circ(fh)g(n, ϵ)|fh=fr/n, (1.13)

where hr,circ is the characteristic strain of a circular source given by Equation 1.12, g(n, ϵ) is
the GW frequency distribution function given by Equation 20 in Peters and Mathews [1963]
with

∑∞
n=1 g(n, ϵ) = F (ϵ), where F (ϵ) is defined by F (ϵ) = (1 − ϵ2)−7/2[1 + (73/24)ϵ2 +

(37/96)ϵ4]. During the GW-driven inspiral, the orbital eccentricity also evolves according to
Peters [1964] Equation (5.7), such that it decays towards zero as the binary inspirals toward
merger.

1.3 Modeling and Constraints of Cosmic Reionization

1.3.1 Theoretical Modeling

The Epoch of Reionization (EoR) is a period when the first stars, galaxies, and quasars
emit UV photons and ionize the neutral hydrogen in the universe. These photons have a
large impact on the state and temperature of the baryonic gas through photoionization and
photoheating and hence also affect the structure formation in the late universe. This process
is spatially inhomogeneous, as photons from galaxies penetrate through the sources and
propagate into the more distant space, ionizing the neutral gas along the way. An accurate
simulation of this process requires radiative transfer modeling on top of hydrodynamical
simulations. These simulations directly trace the propagation of photons across different
frequency bands and their interaction with the gas medium along multiple directions from
the sources. As a result, they are much more costly than typical hydrodynamical simulations
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described in Chapter 1.1, which means they can only be carried out in small boxes (usually
L < 100Mpc).

Here I will focus on introducing analytical and semi-numerical methods of cosmic reion-
ization, which is most relevant for constraining the large-scale or global properties of the
cosmic reionization when combined with CMB observations.

Analytical Models Analytical models are useful in modeling the global properties of
reionization, and in constraining the key parameters such as the ionizing photon budget and
gas clumpiness when combined with observations. We start with the local ionization balance
equation of hydrogen:

dnHII

dt
= ΓnHI + γcollnenHI − α(T )nenHII − 3HnHII, (1.14)

where nHII is the physical number density of ionized hydrogen, ne is the physical number
density of free electrons, γcoll is the collisional ionization rate, Γ is the photoionization rate,
α is the recombination coefficient and H is the Hubble parameter. The right-hand side
contains four effects that govern the local ionization of hydrogen: the first two terms are
photoionization and collisional ionization respectively, which increase ionized hydrogen num-
ber density, the third term is recombination which decreases the ionized hydrogen number
density, while the last term accounts for the decrease in physical number density due to the
universal expansion.

Taking volume-weighted average and dividing both sides by ⟨nH⟩V, we obtain the global
equation for the mass-weighted ionization fraction:

d⟨xHII⟩M
dt

=
⟨ΓnHI⟩V
⟨nH⟩V

− ⟨α(T )nenHII⟩
⟨nH⟩V

. (1.15)

⟨ΓnHI⟩V is effectively the global photon production rate and we can refactor the last term
to express it in terms of the clumping factor CR:

d⟨xHII⟩M
dt

=
⟨ṅγ⟩V
⟨nH⟩V

− CR⟨α(T )⟩V⟨nH⟩V
(
1 +

Y

4X

)
⟨xHII⟩2M, (1.16)

Here CR is the recombination clumping factor:

CR =
⟨α(T )nHIIne⟩V

⟨α(T )⟩V⟨nHII⟩V⟨ne⟩V
. (1.17)

and is usually estimated through radiative transfer simulations. The differential equation in
1.16 summarizes the key components in the global evolution of reionization and will give a
global reionization history with assumptions on ṅ and CR. This formalism can be applied,
for example, to estimate the integrated Thomson depth τe
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Semi-Numerical Models Semi-numerical simulation of reionization uses approximation
methods for simulating the ionization state of the IGM. These simulations do not trace or
resolve the detailed photon interaction with the gas, but approximate the structure of the
IGM ionizing state, with much lower computation complexity compared to the radiative
transfer simulations. Hence, these methods are widely used in modeling reionization in the
cosmological context and in carrying out parameter space studies. The applications include
21cm cosmology and the fluctuations in the cosmic wave background (CMB).

One of the earliest and most popular semi-numerical codes for reionization is 21cmFast.
It represents a class of semi-numerical methods using excursion-set formalism to track the
ionization front through time. The key assumption is that the ionizing fronts propagate in
an "inside-out" fashion from collapsed halos. More specifically, the size R of a spherically
ionized region around the source halo is calculated by equating the total ionizing photon
number produced within this region with the number of neutral hydrogen atoms. The
ionizing photon number is assumed to be proportional to the fraction of matter collapsed
into halos (related by parameters such as the star-formation efficiency f∗ and the ionizing
photons produced per baryon in stars) and fesc of these photons can penetrate into the IGM.
The baryon distribution is assumed to trace the underlying dark matter distribution, which
is evolved through Lagrangian perturbation theory.

Another semi-numerical model class directly models the reionization redshift field, assum-
ing that it is correlated with the underlying matter distribution or the radiation intensity
field. AMBER, the model we use in Chapter 2 to study the patchy kSZ effect, is a recent
development in this category. AMBER is motivated by the solution to the radiative transfer
equation for the radiation angle-averaged intensity:

Jv(x) =
a

4π

∫
d3x1

Sv (x1)

(x− x1)
2 e

−τv(x,x1), (1.18)

where Sv (x1) is the source function. Under the assumption that τv (x,x1) ∝ 1
λmfp(v)

∥x− x1∥,
the radiation intensity at x can be easily calculated as a radial convolution of the source
field, significantly reducing the computation cost. The relative radiation intensity between
cells then determines the order in which the cell gets ionized. This assumption is validated
against radiative transfer simulations such as the SCORCH simulation suite [Trac, 2018].

1.3.2 Constrain Reionization with CMB Observations

In the ongoing CMB experiment, the most well-constrained EoR observable has been the
Thomson-scattering optical depth τe. Constraints on τe informs us about the integrated
electron number density ne along the light-of-sight, as τe is related to ne by:

τe(z) = σT

∫ z

0

dz′
cdt

dz′
⟨ne(z

′)⟩V, (1.19)

where σT is the Thomson cross section and ⟨ne(z
′)⟩V is the volume-averaged free electron

number density. Both the amplitude and shape of the CMB EE and TE power spectra on
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large scales (low l) are very sensitive to the Thomson optical depth. In practice, the EE
power spectrum alone is sufficient to discriminate different values of the optical depth from
CMB polarisation measurements: its excess power around l = 4 − 5 is referred to as the
reionization bump. This bump occurs on large scales because CMB photons stream freely
after decoupling on the LSS until they are scattered off newly formed free electrons.

Because the mean baryon number density increases with redshift, an earlier reionization
leads to higher values of τe, thus the EE spectrum could put constraints on the reionization
redshift. However, it cannot discriminate between different reionization scenarios yielding
the same value of τe, and it has been shown that τe is not sensitive to the detailed reionization
histories beyond the redshift [e.g. Battaglia et al., 2013a].

The detailed reionization histories can be constrained by the patchy kinetic Sunyaev-
Zel’dovich (kSZ) effect, which is the temperature fluctuation in the CMB due to the scatter-
ing of CMB photons off of free electrons in bulk motion during cosmic reionization. Small-
scale temperature anisotropies are then generated by the coupling of large-scale velocity
perturbations and the patchiness of the ionized field on small scales. The fractional temper-
ature fluctuation induced by the patchy kSZ effect is calculated by integrating the electron
momentum along the line of sight:

∆Tksz

T
= σT

∫
dz

cdt

dz
e−τe(z,n̂)ne(z, n̂)n̂ · v (1.20)

where v is the peculiar velocity of free electrons, τe is the Thomson optical depth calculated
in Eq.1.19, and the integration limits are the beginning and end of reionization. Currently,
most constraints on reionization from patchy kSZ come from the angular power spectrum
[but see e.g. Smith and Ferraro, 2017, for the use of high-order statistics]. This is also the
quantity of interest in the next chapter, and we will go into more detail about the calculation
of the power spectrum and modeling of the patchy kSZ signal using simulations.

1.4 Thesis Outline
This thesis will focus on the modeling of and constraints on galaxy formation and mas-
sive black hole evolution since cosmic dawn using the numerical techniques and observation
probes laid out in this Chapter. In Chapter 2, I use semi-numerical simulation AMBER to
characterize the impact of reionization history and the morphology of the ionization field
on the patchy kinetic Sunyaev-Zel’dovich signal, and evaluate the constraints on these pa-
rameters with current and future CMB observations. Chapter 3-6 focus on the dynamical
modeling of massive black holes in cosmological simulations and the massive black hole binary
population. In Chapter 3 I introduce the dynamical friction subgrid modeling of massive
black holes accounting for surrounding dark matter, gas, and stars, and validate the model
in the cosmological context. I also evaluate the impact of this more realistic modeling of
MBH dynamics on the MBH merger rates compared with previous simulations. Chapter 4
uses the ASTRID cosmological simulation with the new dynamical friction model developed
in Chapter 3 to study the MBH merger population and their host galaxy properties, with



19 1.4. THESIS OUTLINE

a full binary evolution modeling as was described in Section 1.2.2. I also make predictions
for the future LISA gravitational wave detector of high-redshift MBH mergers. In Chapter
5, I study the electromagnetic signatures of massive black hole pairs also using the ASTRID
simulation by looking at the statistical properties such as separation distribution, and lumi-
nosity distribution. I also trace the gas environments and host galaxy properties of the dual
AGN. In Chapter 6, I go beyond the current merger modeling in cosmological simulations
and study the timescale of seed MBH mergers using high-resolution galaxy simulations, with
initial conditions directly extracted from cosmological galaxy mergers.

The work in Chapters 2, 3, 4, 5, and 6 have been published in peer-reviewed journals
Chen et al. [2023c], Chen et al. [2022c], Chen et al. [2022b], Chen et al. [2023a] and Chen
et al. [2023b].
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Abstract

Using the novel semi-numerical code for reionization AMBER, we model the patchy
kinetic Sunyaev-Zel’dovich (kSZ) effect by directly specifying the reionization history with
the redshift midpoint zmid, duration ∆z, and asymmetry Az. We further control the ionizing
sources and radiation through the minimum halo mass Mh and the radiation mean free
path λmfp. AMBER reproduces the free electron number density and the patchy kSZ power
spectrum of radiation-hydrodynamic simulations at the target resolution (1Mpc/h) with
matched reionization parameters. With a suite of (2Gpc/h)3 simulations using AMBER,
we first constrain the redshift midpoint 6.0 < zmid < 8.9 using the Planck2018 Thomson
optical depth result (95% CL). Then, assuming zmid = 8, we find that the amplitude of
DpkSZ

ℓ=3000 scales linearly with the duration of reionization ∆z, and is consistent with the 1σ
upper limit from the South Pole Telescope (SPT) results up to ∆z < 5.1 (∆z encloses 5%
to 95% ionization). Moreover, a shorter λmfp can lead to a ∼ 10% lower DpkSZ

ℓ=3000 and a
flatter slope in the DpkSZ

ℓ=3000 −∆z scaling relation, thereby affecting the constraints on ∆z at
ℓ = 3000. Allowing zmid and λmfp to vary simultaneously, we get spectra consistent with the
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SPT result (95% CL) up to ∆z = 12.8 (but Az > 8 is needed to ensure an end of reionization
before z = 5.5). We show that constraints on the asymmetry require ∼ 0.1µk2 measurement
accuracy at multipoles other than ℓ = 3000. Finally, we find that the amplitude and shape
of the kSZ spectrum are only weakly sensitive to Mh under a fixed reionization history and
radiation mean-free path.

2.1 Introduction

The epoch of reionization (EoR) is the period in cosmic history when ionizing radiation
emitted by the first galaxies and quasars ionized the baryons in the Universe, leading to a
transition of the gas content from a neutral state to an ionized state. Because EoR happens
at a relatively high redshift (z = 5 ∼ 15), the limited observational evidence has hindered
our full understanding of the whole physical process involved. Nevertheless, recent and
future experiments using various probes are making the picture of the EoR more and more
complete. For example, Planck Collaboration et al. [2018] recently inferred τ = 0.054±0.007
from measurements of the Cosmic Wave Background (CMB) temperature and polarization
angular power spectra, implying a late reionization midpoint at redshift z ≈ 7.7 ± 0.6 [e.g.
Glazer et al., 2018]. Becker et al. [2015] find evidence of a dark Lyα trough extending down
to z ≈ 5.5 in the spectrum of a high-redshift quasar, suggesting that reionization could have
ended at z < 6 [e.g. Keating et al., 2019], later than previously assumed. In addition, we also
expect to gain tomographical information of the EoR through the 21cm observations such
as Hydrogen Epoch of Reionization Array [DeBoer et al., 2017] and Square Kilometer Array
[Koopmans et al., 2015], and a better understanding of the first ionizing sources through
the space-based telescopes such as the James Webb Space Telescope [Windhorst et al., 2006]
and Roman Space Telescope [Spergel et al., 2015].

Of particular interest to this paper is the use of CMB secondary at high multipoles to
constrain the EoR. With the improvements in recent ground-based CMB experiments such as
Atacama Cosmology Telescope (ACT1) and the South Pole Telescope (SPT2), we are already
able to use anisotropies in the CMB temperature map to constrain reionization through
Sunyaev-Zel’dovich (SZ) effect [Sunyaev and Zeldovich, 1980, Zeldovich and Sunyaev, 1969].
The SZ effect results from inverse-Compton scattering of CMB photons off high-energy
electrons in the IGM, and it has the largest contribution among CMB secondary anisotropies
on arc-minute scales. There are two types of SZ effect: thermal SZ effect (tSZ) comes from
the electron pressure within the intra-cluster medium (ICM) and has a spectrum shifted from
the CMB black body spectrum, while kinetic SZ (kSZ) effect is due to the bulk motion of
electrons in the IGM with respect to the CMB rest frame and has the same spectrum as the
CMB [e.g. Carlstrom et al., 2002]. kSZ signal can be further divided into two components
and they have comparable amplitude [e.g. Shaw et al., 2012, Trac et al., 2011]: patchy
kSZ originates from the inhomogeneous free-electron fraction in the universe during cosmic

1https://act.princeton.edu
2http://pole.uchicago.edu

https://act.princeton.edu
http://pole.uchicago.edu
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reionization, and homogeneous kSZ results from the peculiar velocities of the galaxies after
the universe is fully ionized [e.g. Ostriker and Vishniac, 1986].

Because patchy kSZ originates from inhomogeneous reionization, its amplitude and power
spectrum are sensitive to the timing, duration, and detailed history of reionization. Thus,
by probing patchy kSZ fluctuation we can put constraints on reionization history provided
that we have a thorough understanding of their relation. In recent years, developments in
numerical simulations enables us to understand connection between the patchy kSZ angular
power spectrum and reionization [e.g. Alvarez, 2016, Battaglia et al., 2013a, Choudhury et al.,
2021, Gorce et al., 2020, Iliev et al., 2007, McQuinn et al., 2005, Mesinger et al., 2011, Park
et al., 2013, Paul et al., 2021, Tashiro et al., 2011, Zhang et al., 2004]. In particular, multiple
works have demonstrated that semi-numerical simulations are powerful tools to study kSZ
with various reionization scenarios in a relatively quick fashion. For example, Mesinger et al.
[2012] and Choudhury et al. [2021] have used the semi-numerical simulations to study the
dependence of reionization history and patchy kSZ power spectrum on the ionizing efficiency
of high-redshift galaxies, the minimum virial temperature of haloes, and the ionizing photon
mean free path. Battaglia et al. [2013a] combined N-body simulations with post-processed
reionization-redshift field to study the effect of reionization history on the patchy kSZ power
spectrum. Alvarez [2016] uses very large-scale simulations to study the different components
to the kSZ signal, as well as the four-point statistics of patchy kSZ.

However, the majority of semi-numerical codes of reionization are based on the excursion
set formalism method for reionization [e.g. Bond et al., 1991, Furlanetto et al., 2004], and it
has been shown that [Zahn et al., 2011] these semi-numerical methods are in good agreement
with radiative transfer simulations when compared at the same ionization fraction, but not
at the same redshift without renormalization. Moreover, most of the semi-analytical models
parametrize reionization on the power-spectrum level [e.g. Battaglia et al., 2013a, Gorce
et al., 2020, Shaw et al., 2012], without directly controlling the reionization history [but see
Paul et al., 2021, who controls the duration of reionization by varying the ionizing efficiency
across redshift]. This motivates us to study the patchy kSZ signal using the novel semi-
numerical simulation Abundance Matching Box for the Epoch of Reionization [AMBER;
Trac et al., 2021], which takes reionization history as a direct input.

In this paper, we use the semi-numerical simulation AMBER to generate reionization
CMB observables such as the Thomson optical depth and patchy kSZ for different sets of
reionization history parameters and cosmological parameters. By doing so, we can disentan-
gle the effect of individual parameters on the observed spectra. We present the dependence
of kSZ power spectrum and Thomson optical depth on reionization parameters as well as
cosmological parameters.

The paper is organized as follows: In Section 2.2, we introduce the theory and com-
putation of the Thompson optical depth, patchy kSZ effect, and the patchy kSZ angular
power spectra. In Section 6.2, we summarize the semi-analytical models used in AMBER,
as well as the RadHydro simulations we use to calibrate the AMBER models. Section
2.4 shows comparisons between the AMBER outputs and the RadHydro simulations with
matched reionization parameters and resolutions. In Section 2.5, we systematically study
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the effect of reionization parameters and cosmological parameters on the patchy kSZ sig-
nal, including the maps and angular power spectra, and compare the results with obser-
vational constraints. Unless otherwise stated, we assume a flat ΛCDM cosmology with
[Ωm,Ωb, σ8, ns, h] = [0.3, 0.045, 0.8, 0.96, 0.7], and our fiducial values for reionization param-
eters are [zmid,∆z, Az,Mh(M⊙), λmfp(Mpc/h)] = [8.0, 4.0, 3.0, 108, 3.0] (see later sections for
a detailed description of these parameters).

2.2 Thomson Optical Depth and kSZ Effect

2.2.1 Thomson Optical Depth

In the ongoing CMB experiment, the most well-constrained EoR observable has been the
Thomson-scattering optical depth τe. Constraints on τe informs us about the integrated
electron number density ne along the light-of-sight, as τe is related to ne by:

τe(z, n̂) = σT

∫ z

0

dz′
cdt

dz′
ne(z

′, n̂), (2.1)

where σT is the Thomson scattering cross section, n̂ is the direction of observation, and
ne(z

′, n̂) is the free electron number density at a specific redshift in the observed direction.
The angular variation in τe is weak, so usually we drop the angular dependence in the
computation, and use the global ionization fraction to compute τe(z) instead:

τe(z) = σT

∫ z

0

dz′
cdt

dz′
⟨ne(z

′)⟩V, (2.2)

where ⟨ne(z
′)⟩V is the volume-averaged free electron number density.

Because the mean baryon number density increases with redshift, an earlier reionization
leads to higher values of τe, and it has been shown that τe is not sensitive to the detailed
reionization histories beyond the redshift [e.g. Battaglia et al., 2013a]. Moreover, current
constraints on τe are primarily driven by the measurement of the low-ℓ EE polarization power
spectrum (which is proportional to τ 2e ), and is independent of the small-scale anisotropies (in
particular the patchy kSZ effect). Therefore, constraints on τe help break the degeneracy of
reionization history parameters in the small-scale patchy kSZ measurements. Reversely, one
can also use the patchy kSZ signal to break the degeneracy between τe and the primordial
amplitude of scalar fluctuations As [e.g. Alvarez et al., 2021].

2.2.2 Patchy kSZ Effect

Next, we introduce the patchy kSZ effect and the computation of the kSZ power spectrum.
The patchy kSZ effect is the temperature fluctuation in the CMB due to the scattering of
CMB photons off of free electrons in bulk motion during cosmic reionization. Small-scale
temperature anisotropies are then generated by the coupling of large-scale velocity pertur-
bations and the patchiness of the ionized field on small scales. The fractional temperature
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fluctuation induced by patchy kSZ effect is calculated by integrating the electron momentum
along the line of sight:

∆Tksz

T
= σT

∫
dz

cdt

dz
e−τe(z,n̂)ne(z, n̂)n̂ · v (2.3)

where v is the peculiar velocity of free electrons, τe is the Thomson optical depth calculated
in Eq.2.1, and the integration limits are the beginning and end of reionization.

Currently, most constraints on reionization from patchy kSZ come from the angular power
spectrum [but see e.g. Smith and Ferraro, 2017, for the use of high-order statistics]. This is
also the quantity of interest in this paper. To compute the kSZ angular power spectrum, we
use the Limber approximation following Park et al. [2013]. First, we define the specific free
electron momentum as:

q = xiv(1 + δ), (2.4)

where xi is the mass-weighted ionization fraction, v is the peculiar gas velocity, and δ is the
gas overdensity. Then, Equation 2.3 can be re-written as:

∆Tksz

T
(n̂) = σTne,0

∫ zend

zbeg

ds

a2
e−τ(z)n̂ · q, (2.5)

where ne,0 is the total number of electrons at the present epoch, a is the scale factor, and s
is the comoving distance. The kSZ angular power spectrum is given by:

Cℓ =
(σTne,0

c

)2 ∫ ds

s2a4
e−2τ(z)Pq⊥(k = ℓ/s, s)

2
. (2.6)

To compute Pq⊥(k), let q̃ be the 3D Fourier transform of the momentum field. Then,
the projection of q̃ on the plane perpendicular to the mode vector is given by q̃⊥(k) =
q̃(k)− k̂(q̃(k) · k̂). Finally, Pq⊥(k) is the power spectrum of q̃⊥(k) given by:

(2π)3Pq⊥(k)δ(k− k′) = ⟨q̃⊥(k) · q̃∗
⊥(k)⟩. (2.7)

Note that we can also directly compute the kSZ power spectrum from full-sky patchy kSZ
maps. However, since the scale of interest is small (ℓ > 1000) and is well-approximated by
the Limber approach, we choose to follow the Limber approximation for a less noisy spectrum
and faster computation.

2.3 Simulations
The simulations in this work are run with the new semi-numerical code AMBER [Trac et al.,
2021]. In this section, we will introduce the main models in the AMBER code relevant
for calculating the kSZ signal. Moreover, we also briefly introduce the RadHydro simula-
tion suite from the Simulations and Constructions of the Reionization of Cosmic Hydrogen
(SCORCH) project [Chen et al., 2020, Doussot et al., 2019, Trac et al., 2015]. We will later
use these RadHydro simulations to calibrate AMBER models and compare results from both
simulations.
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Figure 2.1: Top: example reionization histories with the same ∆z,90 but different Az, leading
to different ∆z,50. Note that ∆z,90 better captures the high-redshift tail of reionization.
Bottom: Scaling relation between ∆z,90 and ∆z,50 for different levels of asymmetry.
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2.3.1 AMBER

The reionization history xi(z) is the fraction of hydrogen that are ionized at a certain redshift.
It is of primary interest to our understanding of the EoR, because it reveals the possible
astrophysical process during the EoR, and also directly affects many key EoR observables.
For example, the integrated Thomson optical depth and the evolution of the global 21cm
brightness temperature depend linearly on the ionized electron fraction x̄i(z) and neutral
hydrogen fraction x̄HI(z), respectively. One of the major novelties of AMBER is that we
directly control the reionization history in our reionization modeling.

Following the argument in Trac et al. [2008], AMBER parametrizes the reionization
history with the midpoint, duration, and asymmetry parameters. In AMBER, we use the
mass-weighted global ionization fraction x̄i,M, and drop the subscript hereafter.

We define the midpoint redshift zmid as the redshift at which 50% of the universe is ionized
by mass. To characterize the duration of reionization ∆z, let zear > zmid and zlat < zmid

correspond to the early and late stage of reionization, respectively. The duration is then
defined as:

∆z ≡ zear − zlat. (2.8)

There are various definitions of ∆z in previous works depending on how one defines zear and
zlat. Throughout this work, we take (zear, zlat) as the redshifts at which the universe is 5%
and 95% ionized, respectively. Under this definition, ∆z more effectively quantifies the whole
EoR. We refer to this definition as ∆z,90. We will drop the subscript "90" when we are not
explicitly comparing with other definitions of ∆z. Another popular definition takes (zear, zlat)
as the redshifts at which the universe is 25% and 75% ionized [e.g. Battaglia et al., 2013b,
Gorce et al., 2020]. We will refer to the duration under this definition as ∆z,50, as it encloses
50% of the ionization process.

Finally, to characterize the likely asymmetric reionization scenarios, we define the asym-
metry parameter as:

Az ≡
zear − zmid

zmid − zlat
. (2.9)

Symmetric reionization histories would correspond to Az = 1, but reionization simulations
typically find that the early stage of reionization takes longer than the later stage such that
Az > 1. Note that with different levels of asymmetry, there is not a one-to-one correspon-
dence between ∆z,90 and ∆z,50. In Figure 2.1, we show the relation between ∆z,90 and ∆z,50

for asymmetries ranging from 1 to 9. When the asymmetry level is lower, ∆z,90 corresponds
to a higher value of ∆z,50. Hence, the scaling coefficient between observables and ∆z,50 is
also affected by Az. This is important for interpreting the comparisons between our results
and previous works in later sections.

In AMBER, we interpolate the three ionization points at (zear, zmid, zlat) with a modified
Weibull function [Weibull, 1951],

x̄i(z) = exp

[
−max

(
z − aw
bw

, 0

)cw]
, (2.10)
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where the coefficients aw, bw, cw are all positive values. The coefficients can be easily de-
termined by first solving a nonlinear equation for cw and then substituting its value into
algebraic equations for the other two coefficients. We find that solutions exist for the asym-
metry range Az ≲ 15, which is more than sufficient for parameter space studies.

L [h−1Mpc] Ndm Ngas NRT f8 a8 τ zmid ∆z Az Mh

50 20483 20483 5123 0.13 1 0.060 7.91 5.45 2.69 108M⊙

Table 2.1: Simulation parameters and measured reionization history parameters for the
RadHydro Sim 1 in SCORCH II.

Reionization-Redshift Field

The key assumption in AMBER is that the order in which a cell gets ionized is determined
by the relative radiation intensity in that cell. In this way, given a global reionization
history x̄i(z), we can obtain a reionization redshift field by abundance matching against the
unnormalized radiation intensity.

To begin with, the dark matter density and velocity fields are generated with second-
order perturbation theory (2LPT) at the desired redshift. On moderately nonlinear scales,
the dark matter and gas distributions are highly correlated and assumed to exactly trace
each other. Thus we use the dark matter overdensity to approximate the gas overdensity in
AMBER.

We then construct halo mass density fields with the Lagrangian version of the excursion
set formalism (ESF-L) [see Trac et al., 2021, for more detailed descriptions]. We use the
minimum halo mass parameter Mh to control the lowest halo mass for hosting ionizing
sources. This step gives us the halo density field ρhalo(x), which is a proxy of the ionizing
sources in the simulation.

Then, assuming that radiation intensity of ionizing sources is proportional to the halo den-
sity, and that the photon flux attenuation follows e−r/λmfp , we obtain the (unnormalized) ra-
diation intensity field r(x, z) by convolving ρhalo(x) with a kernel function 1

4πr2
exp

(
− r

λmfp

)
.

λmfp would affect how much radiation is received by each cell in our simulation, and as a
result how early each cell is ionized. Here we use an effective mean free path λmfp to account
for the attenuation of the radiation field. In principle, the mean free path of photons is a
local variable that could depend on the halo mass and redshift. However, given the semi-
analytical nature of our model and the resolution at 1 Mpc/h, we set the photon mean free
path as a global variable λmfp. We plan to incorporate the temporal and spatial variations
of λmfp in future developments.

Finally, the reionization-redshift field zre(x) is assumed to be correlated with the radia-
tion field r(x, z). A region with higher radiation intensity is considered to be photoionized
earlier and has a higher reionization-redshift. The abundance matching technique assigns
redshift values such that the reionization history follows a given mass-weighted ionization
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Figure 2.2: Visualization of a 50 Mpc/h× 50 Mpc/h× 1 Mpc/h (shown in 642 pixels) slice
of the free electron number density at z = 8, from the RadHydro Sim 1 and AMBER with
the matched reionization parameters. AMBER produce slightly more concentrated ionized
regions compared to RadHydro.

fraction x̄i(z), specified with the redshift midpoint, duration, and asymmetry parameters
and interpolated with a Weibull function (Equation 2.10).

We perform the abundance matching based on the radiation field at a single redshift zmid

for computational efficiency, but it can also be done tomographically using multiple redshift
intervals. In Appendix 2.A, we discuss the effect of abundance matching at a single redshift
zmid, and characterize the changes in the electron number density as well as the patchy kSZ
signal when the abundance-matching redshift is chosen differently. The abundance matching
at zmid is performed as follows: at a given redshift bin zn, we have a corresponding mass-
weighted ionization fraction x̄i(zn) from the specified reionization history. We then rank
order the cells at this redshift in descending order by r(x, zmid). Then we ionize the first kn
cells by this rank such that we reach an ionized mass fraction of x̄i(zn). Here the ionized
mass fraction is calculated from the linearly extrapolated overdensity with respect to the
overdensity at the midpoint redshift. We note that the volume-weighted ionization fraction
in this case is kn/Ncell and it is typically lower than the mass-weighted x̄i(zn).

2.3.2 RadHydro

The Simulations and Constructions of the Reionization of Cosmic Hydrogen (SCORCH)
project [Chen et al., 2020, Doussot et al., 2019, Trac et al., 2015] is a set of N-body and
radiation-hydrodynamic simulations that is designed to provide theoretical predictions and
mock observations of reionization for more accurate comparisons with present and future
observations. It is the motivation of AMBER, so we will briefly summarize the SCORCH
simulations here. For details of the SCORCH project, please refer to Trac et al. [2015] and
Doussot et al. [2019].

SCORCH II [Doussot et al., 2019] is a set of three radiation-hydrodynamic (RadHydro)
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simulations with the same cosmic initial conditions, same galaxy luminosity functions, but
with different radiation escape fraction fesc(z) models. The simulations are designed to have
the same Thomson optical depth τ ≈ 0.06, consistent with recent CMB observations [Planck
Collaboration et al., 2018], and similar midpoints of reionization 7.5 ≲ z ≲ 8, but with
different evolution of the ionization fraction x̄i(z). They model high-redshift galaxies using
an updated subgrid approach that allows systematic control of the galaxy distributions in
the simulations while matching the observed luminosity functions from HST [e.g. Bouwens
et al., 2015, Finkelstein et al., 2015].

Table 2.1 summarizes the parameters for RadHydro Sim 1, which we will later use to
compare with the output of AMBER. Here a8 and f8 defines the redshift dependence of
the photon escape fraction through fesc(z) = f8

(
1+z
9

)a8 [see Doussot et al., 2019, for a
more detailed description] We also show the measured midpoint, duration, and asymmetry
parameters from the simulation output.

2.4 Comparison with RadHydro
In this section, we present the comparison of the free electron number density, the patchy
kSZ 2D projected maps, and the patchy kSZ power spectra between AMBER and RadHydro
Sim 1.

Since our target resolution when running AMBER is 1Mpc/h, we first bin down the
RadHydro Sim 1 to 643 cells in the 50Mpc/h box. More specifically, for the density and
momentum fields we take the average over an 83 local region, and for the reionization redshift
field, we smoothed it by calculating the redshift at which all the 83 local cells are ionized.
Then we re-measure the reionization parameters in the binned Sim 1 and obtain zmid = 7.85,
∆z = 4.73, Az = 2.25. Note that this is slightly different from the parameter measured
in the original resolution shown in Table 2.1 because the we have averaged over a much
larger region when determining the reionization redshift. In particular, some cells with
early reionization may be postponed to a later time because the surroundings are not yet
ionized. For the comparison, we run AMBER at the same resolution (643), with the same
cosmological parameters and the same initial condition phase as RadHydro Sim 1, and we
match the reionization parameters measured above. In RadHydro Sim 1, the minimum
halo mass is 108M⊙, so we fix this parameter in AMBER. By varying λmfp in the range
[1Mpc/h, 5Mpc/h], we find that λmfp = 2.8Mpc/h best matches the reionization redshift
field of RadHydro Sim 1, so we present our comparison results at this value. Because we are
using a small box here, we can calculate the maps under the flat sky approximation and do
the 2D projection by summing the field along the z-axis at a fixed redshift.

2.4.1 Free Electron Number Density

We first examine the evolution of the free electron number density, as it is a crucial component
for calculating both the Thomson optical depth and the patchy kSZ signal. The fluctuation
in free-electron number density will dominate the patchy kSZ signal on small scales.
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Figure 2.3: The distribution of gas densities in ionized regions. The ionized regions in
AMBER have a peak at higher densities compared to RadHydro, especially during the early
stage of reionization (x̄i < 0.5). The disagreement in under-dense regions is not concerning
because it is due to the much smaller number of LPT particles and the different assignment
and deconvolution process for AMBER. We would find the same effects for RadHydro if we
use a lower resolution simulation and not done the simple binning.

After getting the reionization redshift field zre following the procedures described in
Section 2.3.1, we can use it to obtain the electron number density field at all redshifts by

ne(x, z) = xi(x, z)nb(x, z)(X +
Y

4
), (2.11)

where nb is the baryon number density, X is the mass fraction of hydrogen, Y is the mass
fraction of helium. xi = ne,free/ne,total is the free electron fraction, and is set to be xi(x, z) = 1
if z < zre(x) and xi(x, z) = 0 if z > zre(x).

In Figure 2.2 we show the visualization of a 50× 50× 1Mpc3/h3 slice of the free electron
number density at z = 8, from the RadHydro Sim 1 and AMBER with matched reionization
parameters. At z = 8, about half of the mass in the universe is ionized, and we can see from
both simulations that the ionized regions also correspond to the higher-density regions. The
morphology of ionized regions from the AMBER code is very similar to RadHydro Sim 1.
However, from the slice we notice that the RadHydro simulation has a larger ionized region
in volume. Given the same mass-weighted ionization fraction, a larger volume-filling factor
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the ionized electron field becomes a less biased tracer of the matter density field. At very
high redshift, AMBER has larger power on large scales, but from z = 9 onwards, the two
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Figure 2.5: The 2D projected patchy kSZ temperature maps under flat sky approximation
for RadHydro Sim 1 (right) and AMBER (left) in the same simulation as described in Figure
2.2. The projection is done at the redshift z = 8.0. Here we sum along z axis the electron
momentum to get the fractional temperature difference in the CMB. The projected kSZ
map of AMBER resembles that of RadHydro Sim 1 when the reionization parameters are
matched.
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Figure 2.6: Top: The distribution of ∆T of the projected kSZ maps generated using AMBER
(green) and RadHydro (orange) shown in Figure 2.5. Bottom: The 2D power spectra of
the patchy kSZ maps from the two simulations. To disentangle the effect from the velocity
difference, we also show the spectrum calculated using the AMBER ne field with the velocity
from RadHydro (dashed purple). We find good agreement at ℓ ∼ 3000. The difference at
ℓ < 6000 mainly results from the electron number density as opposed to the velocity.

in RadHydro means that the mean density of the ionized region is smaller, and that the
ionizing front propagates further into the IGM.

This is confirmed by the distribution of the gas density in ionized regions shown in Figure
2.3. We can see from the distribution that the ionized regions in AMBER have a peak at
higher densities compared to RadHydro, especially during the early stage of reionization
(x̄i < 0.5). This happens for two main reasons. First, the high-density regions have a high
recombination rate and may remain neutral in RadHydro. However, this is currently not
treated in AMBER, and thus AMBER tends to ionize more high-density regions. Second,
the RadHydro simulations have episodic star formation and the highest-density collapsed
regions do not necessarily produce the highest number of photons. These fluctuations show
up more when there are small HII regions early on during reionization. The two processes
combined lead to the more tilted PDF of ionized gas density in AMBER.
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Figure 2.7: The evolution of τe with different values of zmid ranging from zmid = 6.0 to
zmid = 9.0. Out of the values shown, zmid = 9.0 are mildly inconsistent with the constraint
from Planck Collaboration et al. [2018] at the 2σ level, while the other values are consistent.
The dashed band shows the re-analysis of the Plank2018 data by de Belsunce et al. [2021],
who found larger values of τe and favors higher zmid.

Then in Figure 2.4, we further compare between the AMBER and RadHydro free electron
number density power spectra Pee(k, z) at different ionization levels. In both simulations,
the overall Pee(k, z) gets lower as reionization evolves, because as more mass in low-density
regions gets ionized, the ionized electron field becomes a less biased tracer of the matter
density field. At the beginning of reionization, the ionized regions are concentrated in high-
density regions around the source galaxies, and therefore ne has a higher power on large
scales compared to the underlying matter density field. From the comparison between the
two simulations, we see that when reionization just begins (z ∼ 12), AMBER has larger
power on large scales. The disagreement in under-dense regions is not concerning because
it is due to the much smaller number of LPT particles and the different assignment and
deconvolution process for AMBER. We would find the same effects for RadHydro if we use
a lower resolution simulation and not done the simple binning. As we have already seen in
Figure 2.3, AMBER ionizes more high-density regions during the beginning of reionization.
This leads to more bias on large scales at high redshifts.

From z = 9 onwards, the two simulation matches well with each other, because the bias
in AMBER is less prominent as the ionizing fronts propagate further into the low-density
regions. Finally, once reionization is almost over (z ∼ 6) and all IGM atoms are ionized, the
fluctuations in free electrons density follow those of dark matter on large scales.

2.4.2 Patchy kSZ

Next, we compare the 2D projected patchy kSZ temperature maps under flat sky approxima-
tion for RadHydro and AMBER. To get the flat-sky maps, we simply sum the free-electron
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momentum along the z-axis to get the fractional temperature difference in the CMB intro-
duced by the patchy kSZ effect, and then multiply by the CMB temperature TCMB = 2.725k
to obtain the temperature fluctuation in the 2D plane. Here we assume a fixed z = zmid

(xHII = 0.5) since the box size is small enough for ignoring the redshift evolution.
From the projected maps in Figure 2.5, we can see that visually, the AMBER kSZ signal

resembles that of RadHydro Sim 1. The blue and red regions correspond to the signal from
the ionized regions along the line-of-sight, while the small white regions are neutral. Similar
to what we have seen in Figure 2.2, because RadHydro has larger ionized regions, we see
fewer white pixels in the kSZ map here.

Besides the visualization, in Figure 2.6 we further show the one-point and two-point
statistics for the projected kSZ maps. The distributions of the temperature fluctuations
shown in the top panel are very similar in the two simulations. From the PDF we do see
a higher peak around ∆T = 0 from AMBER, as we have discussed from the maps in the
previous paragraph. Other than the difference in the peak, the overall shape and width of
the distribution match well.

The bottom panel shows the dimensionless power spectrum of the flat-sky maps, related
to the angular power spectrum Cℓ by Dℓ = ℓ(ℓ + 1)Cℓ/2π. We first notice that from both
simulations, the power spectrum peaks at ℓ ∼ 3500. This scale corresponds to a size of
the ionized bubbles of ∼ 11Mpc/h at z = 7.8. Then, comparing the two curves, we see
that the spectrum of RadHydro has ∼ 5% higher power on small and large scales, while
AMBER produces ∼ 10% higher power at ℓ = 3500 − 4000. There are two sources of the
differences: first, RadHydro uses a P 3M N-body simulation to generate the velocity field,
while AMBER uses 2LPT and produces less power on small scales compared to N-body
[see e.g. Trac et al., 2021]; second, as was shown in the previous section, there are also
differences in the free-electron number density field due to the slightly different morphology
of ionized regions. To disentangle the two effects, we also show the spectrum calculated
using the AMBER ne field with the velocity from RadHydro (shown in dashed purple). We
can see that when we correct for the difference from the velocity fields, the power on small
scales (ℓ > 6000) matches perfectly with RadHydro. This indicates that the small-scale
difference is primarily due to the coupling of the ne fields with the velocity fluctuations.
For ℓ < 6000 multipoles, however, using the RadHydro velocity does not change the kSZ
spectrum in AMBER. This tells us that the ℓ < 6000 arises from the difference in the free
electron number density. Despite the minor differences we just discussed, we still find that
overall the kSZ 2D spectrum from AMBER matches well with RadHydro.

2.5 Parameter Space Study
Having shown that AMBER agrees well with the RadHydro simulation for observations at
the matched parameter values, now we vary the parameters around their fiducial values in
order to study their effect on the patchy kSZ signal. We summarize the fiducial values for
the parameters we study in Table ??. Previous works [e.g. Battaglia et al., 2013a, Mesinger
et al., 2012, Zahn et al., 2012, 2007] have shown that the kSZ signal from patchy reionization
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depends on the midpoint redshift and duration of reionization. However, they did not directly
parametrize the simulations with these parameters, so it is hard to control the reionization
history and directly study its influence on the patchy kSZ signal. In this work, we will
directly examine the effect of reionization history, parametrized by the midpoint, duration,
and asymmetry, on the patchy kSZ effect of reionization. To generate the kSZ maps and
power spectra shown in this section, we run Lbox = 2Gpc/h simulations on 20483 grids.

2.5.1 Redshift Midpoint

The midpoint redshift zmid is the redshift at which half of the universe is ionized (by mass).
When other parameters are kept fixed, a higher zmid means that the whole reionization
process is pushed to an earlier time when the universe has a higher energy density. We note
that because we currently generate the reionization redshift field by abundance matching at
zmid, a change in zmid can also affect the relative order of ionization of the cells (i.e. we do
not preserve the exact same ionization morphology by fixing all other parameters). However,
we expect such an effect to be small, because the large halos at z = 9 should also correspond
to large halos at z = 7. Therefore, we expect the main effect from varying zmid to be the
amplitude of the kSZ spectra: the overall amplitude should be larger with a higher zmid,
because there would be a higher electron density when we integrate along the line of sight.

In the top two panels of Figure 2.8, we visualize the free electron number density ne

and the kSZ temperature change ∆TkSZ for a relatively early (zmid = 9) and late (zmid = 7)
reionization. In this figure, the horizontal axis is the line-of-sight, and in the direction
perpendicular to the page we plot a 1Mpc/h slice from the 3D simulation box. From the
ne plots, we can see ionized bubbles form around the first galaxies at the beginning of
reionization. These bubbles continue to grow in size and finally overlap and merge, leading
to a fully ionized universe. In the left panel of Figure 2.10, we can see that increasing
the midpoint redshift of reionization increases the amplitude of the kSZ spectra without
changing the shape. Physically, the scenario that corresponds to an earlier zmid could be
a higher escape fraction, the ionization dominated by smaller sources, or a combination of
multiple effects.

We note that there exist degeneracies between zmid and other reionization parameters
(most noticeably the duration of reionization), in terms of their effects on the patchy kSZ
power spectrum (we will discuss more about it later). Such degeneracy is often broken by
constraints from the Thompson optical depth τe from the low-ℓ EE polarization [e.g. Ferraro
and Smith, 2018]. The value of τe is mainly affected by the redshift of reionization without
being sensitive to other reionization parameters [e.g. Battaglia et al., 2013a]. In Figure 2.7,
we show the evolution of τe with different values of zmid ranging from zmid = 6.0 to zmid = 9.0.
Out of the values shown, zmid = 9.0 is mildly inconsistent with the constraint from Planck
Collaboration et al. [2018], while the other values are all within the 2σ range. However, we
note that recent re-analysis of the Planck2018 data by Pagano et al. [2020] and de Belsunce
et al. [2021] (shown as dashed lines) found larger values of τe and favors higher zmid. In
either case, the constraint we get from τe on zmid is tighter compared to the constraint from
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purely patchy kSZ.

2.5.2 Duration

In the previous section, we have hinted at the degeneracy between zmid and duration of
reionization. Now we will turn to the effect of the duration on the patchy kSZ temperature
fluctuations. Out of all the reionization parameters, ∆z has the strongest effect on the
amplitude of the spectra. For this reason, observations of the kSZ amplitude have been used
to constrain the reionization duration for the past decade. The ACT and SPT-SZ surveys
have published upper limits on the kSZ power [Addison et al., 2013, Dunkley et al., 2013,
George et al., 2015], with a 95% CL upper limit on the patchy kSZ power being DpkSZ

ℓ=3000 <
3.3µK2 from the 2500 degree2 SPT-SZ survey. By combining SPT results with large-scale
CMB polarization measurements, Zahn et al. [2012] constrains the amplitude of the patchy
kSZ by setting an upper limit DpkSZ

ℓ=3000 ≤ 2.1µK2 (95% CL). The most recent observational
constraints come from the SPTPol survey, where Reichardt et al. [2021] constrained the
patchy kSZ amplitude to DpkSZ

ℓ=3000 = 1.1+1.0
−0.7µK

2 using the models of homogeneous signal
given in Shaw et al. [2012]. Using the fitting template provided in Battaglia et al. [2013a],
they find the 95% CL upper limits on the duration of reionization to be ∆z,50 < 5.4 (6.9/4.3
when considering a 25% uncertainty in the homogeneous spectrum), and a 68% confidence
interval of ∆z,50 = 1.1+1.6

−0.7. Using a more recent semi-numerical model, Choudhury et al.
[2021] placed a tighter constraint on the duration to be ∆z,50 < 2.9 at 99% CL.

Before diving into the kSZ angular power spectra prediction with AMBER, we start by
visualizing the patchy kSZ temperature fluctuations with different durations of reionization.
In the middle panels of Figure 2.8, we show the light-cone projections of the free electron
number density ne and the kSZ temperature change ∆TkSZ assuming a quick reionization
(∆z = 2, third row) and a slow reionization (∆z = 6, fourth row). From the comparison
between the two durations, we see that under the ∆z = 6 scenario, reionization starts earlier,
and there are more ionized bubbles along the line-of-sight. The motion of these ionized
bubbles relative to the background CMB would result in the observed kSZ fluctuation in the
CMB we see from the bottom panels. In the bottom panels, we can clearly see the large-scale
velocity fluctuations. These fluctuations dominate ∆TkSZ on large scales, while the ne field
fluctuation dominate on small scales.

In Figure 2.9, we show 4 × 4 degree2 patches of the ∆TkSZ maps from the 2Gpc/h
simulations with different durations. These maps are made by ray-tracing through past light
cones during reionization (5 ≤ z ≤ 30), and generated using HEALPix [Górski et al., 2005]
with Nside = 4 × Nmesh. The maps shown here are processed with a high-pass filter, where
we only keep the spherical harmonics with ℓ > 1000. This is because we are more interested
in the small-scale features which is a direct result of patchy reionization. From the maps, we
can see that a longer duration leads to larger fluctuations on small scales, because the small-
scale kSZ is sourced by the electron number density fluctuation from patchy reionization.
These fluctuations are incoherent and accumulate along the line of sight, leading to a larger
small-scale inhomogeneity for a longer duration.
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Finally, we show the change in the angular power spectra with respect to the duration
in the second panel of Figure 2.10. Compared with the first panel on zmid, we see a strong
degeneracy of the two parameters as expected, but the spectra are more sensitive to duration
than the midpoint redshift. Here we also show the 1σ and 2σ confidence intervals derived
in Reichardt et al. [2021], in order to show the extent of variation with the ∆z parameter
within the confidence intervals. For the colored lines, we keep all other parameters at their
fiducial values, and we can see that durations of ∆z < 5.1 yield results consistent with the 1σ
constraints from Reichardt et al. [2021]. This translates to ∆z,50 < 2.0 under the definition
of duration in Battaglia et al. [2013b], assuming a mildly asymmetric reionization history at
Az = 3 (see Figure 2.1 for the conversion). The limit agrees with the recent picture from a
variety of observations arguing that reionization happened quickly.

Then we explore the maximum ∆z that produces a DpkSZ
ℓ=3000 consistent with the 2σ con-

straint from Reichardt et al. [2021]. In order to do this, we also vary the other two parameters,
zmid and λmfp, that affect DpkSZ

ℓ=3000 most. Since we know that lower values of zmid and λmfp

decreases DpkSZ
ℓ=3000, we want zmid and λmfp to be low in order to allow for a longer duration.

We set zmid = 6.5, a value slightly below the 1σ interval from the τe prediction from Planck
Collaboration et al. [2018]. We also set λmfp = 1Mpc/h, and Az = 8.0 in order to ensure an
end of reionization by z = 5.5. After minimizing DpkSZ

ℓ=3000 with other parameters in consis-
tency with other observation channels, we find that duration of ∆z = 12.8 reaches the top
of the 2σ interval. This converts to ∆z,50 < 3.5 under the assumption that Az = 8.0.

We emphasize, however, that this should not be interpreted as a strict 2σ constraint of
∆z < 12.8 (or ∆z,50 < 3.5), because here we do not systematically vary other reionization
parameters. A full parameter space study is needed in order to derive a constraint on the
duration from the simulation data and the observation data. We also note that our DpkSZ

ℓ

are integrated from z = 5 to z = 30, while the confidence interval derived in Reichardt
et al. [2021] is derived using an end of reionization redshift of z = 5.5. Converting to
an end of reionization redshift of 5.0 may move the interval up by ∼ 5 − 10%. Finally, the
uncertainty within the homogeneous kSZ spectra can cause ∼ 25% fluctuations in the patchy
kSZ estimation, according to Reichardt et al. [2021].

2.5.3 Asymmetry

The asymmetry parameter Az characterizes the relative length of the beginning and end of
reionization. Park et al. [2013] showed that the model adopted in Battaglia et al. [2013b]
failed to account for an asymmetric reionization history, and cannot be used to provide
universal modeling of the kSZ spectrum. In AMBER, the asymmetry parameter Az allows
us to have more control over the overall shape of the reionization history and reduce the
modeling bias. When we set the asymmetry large, we are enforcing an earlier but slower
beginning, and an earlier and abrupt end of reionization. When Az ∼ 1, we get a symmetric
reionization history where the beginning and end have an equal length. In the bottom panels
of Figure 2.8, we show the redshift evolution of ne and ∆TkSZ with a symmetric reionization
and a highly asymmetric reionization. We can see that even when the duration is kept fixed,
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for the asymmetric reionization scenario, the ionizing bubbles begin to form at a much earlier
redshift.

The right panel of Figure 2.10 shows the change in the kSZ spectrum when we only
change the asymmetry of the reionization history. Compared with the other two reionization
history parameters, the dependence of the kSZ spectra on Az is weak. We notice that at
the ℓ = 3000 scale where the observation data lies, there is almost complete degeneracy
between the different asymmetric reionization cases (but note that the cross-over scale may
be different for other fiducial parameters.). Yet there is a noticeable change in the slope of
the kSZ spectrum: large asymmetry would decrease the power on large scales and introduce
slightly more power on small scales. This indicates that to further constrain the early and end
phase of reionization in addition to the overall length, we will need more data at multipoles
other than ℓ = 3000.

2.5.4 Minimum Halo Mass

The minimum halo mass parameter, Mh, is a lower mass limit of halos that host ionizing
sources in the simulation. Usually in simulations where we do not keep the reionization
history and the photon mean-free path fixed, a smaller Mh can lead to earlier reionization
because the ionizing sources are more abundant at high redshifts. However, this effect can be
counter-balanced if the ionizing photon budget is small (e.g. the escape fraction is low). By
directly controlling the reionization history, however, we do not have to explicitly account
for the degeneracy between the sources and sinks.

In the left two columns of Figure 2.11, we show the evolution of the ionization fraction
field assuming two extreme values in our parameter study, Mh = 107M⊙ and Mh = 1010M⊙,
while fixing all other parameters at their fiducial values. Because the reionization history
is fixed, at each redshift the global ionization fractions are the same. We can see that the
change in Mh affects the morphology of ionized regions, but not very significantly. Before the
Universe gets half ionized, larger Mh leads to more large-scale clustering of ionized regions
around heavier sources, and there are fewer small ionized regions. In AMBER, when we
change Mh from 1010M⊙ to 107M⊙, the smaller halos at z = zmid will no longer be treated
as sources. However, such effect is small if we only care about the rank-ordering of the
radiation field: even when the smaller sources are turned on, they will have less radiation
compared to large sources, and therefore have a lower priority in reionization compared to
larger sources. On the other hand, compared with the non-source regions, the small sources
are likely nearer to the large sources than under-dense regions are because of the clustering
in structure. Hence, even when smaller sources are not turned on, they are still likely ionized
earlier than the under-dense regions. We note that one limitation to the above argument
is that we currently only use the halo density field at zmid to seed the ionized bubbles.
If we instead use a redshift-dependent source field for abundance matching, we may find
fewer M > 1010M⊙ sources at high redshifts, and so the ionizing bubbles could be more
concentrated around larger peaks at the beginning of reionization. In Appendix 2.A, we
discuss the effect of abundance matching at various redshifts, and show that at the spectrum
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level the changes due to different abundance-matching redshifts is within 5%.
A more quantitative characterization of the difference in clustering is shown in the left

and middle panels of Figure 2.12, where we plot the power spectrum of the halo density field
and ionization fraction field at x̄i = 25%, 50% and 75% for the two Mh values. From the
halo density spectra shown on the left, we see that there is a constant rise in halo bias by a
factor of ∼ 3 on large scales, while on scales above k = 1Mpc−1h the bias increases to > 10.
The bias contrast in the ionization fraction field, however, is not as significant. On large
scales (k < 0.2Mpc−1h), there is a constant increase of power in the Mh = 1010M⊙ field, but
only by < 5%. On smaller scales, the power of the Mh = 1010M⊙ ionization fraction field
falls compared with the Mh = 107M⊙ field by ∼ 30% near the end of reionization.

Now that we understand the effect of Mh on the ionization morphology, in the left panel
of Figure 2.13, we show the dependency of DpkSZ

ℓ on Mh, while keeping the reionization
history fixed. We can see that out of all the parameters, Mh has the least effect on the
patchy kSZ signal, as should be expected from the small changes in the ionization fraction
power spectrum. Only when we limit the sources to be above 109M⊙ can we see a slight
increase in the angular power at ℓ ∼ 2000 and suppression of the smaller scale power. This
means that a very large Mh can still affect the morphology of ionized regions, even if we
fix the reionization history. While for smaller Mh values, we do not see an effect on the
kSZ spectra when we change Mh. Note that this is not generally true if we do not fix the
reionization history, because Mh can affect the timing of reionization and thus the kSZ power.

Figure 2.13 includes a wide range of Mh from 107M⊙ to 1010M⊙. However, the change
in DpkSZ

ℓ is at most 0.15µK2 at the higher multipoles. This is in contrast to the result
shown in Paul et al. [2021], who predicts a 30 ∼ 60% increase in DpkSZ

ℓ=3000 with a fixed
reionization history. This is likely due to the different assumptions we made in order to keep
the reionization history fully controlled (in our case the abundance-matching scheme, and in
their case, a manually-set ionizing efficiency at each time step). In the context of our model,
we cannot gain many constraints from DpkSZ

ℓ directly on the ionizing halos. We will need
to infer such constraints with extra assumptions on astrophysical parameters that link the
reionization history and Mh.

2.5.5 Radiation Mean Free Path

Finally, we study the mean free path parameter λmfp that controls on average how far ionizing
photons travel in the IGM before being absorbed. Many previous works have empirically
related the angular scale at which the patchy kSZ power spectrum reaches its maximum ℓmax

to the typical size of ionized regions during reionization [e.g. Gorce et al., 2020, Iliev et al.,
2007, McQuinn et al., 2005, Mesinger et al., 2012]. Under the scenario described in Section
2.5.2, larger bubbles result in a larger mean free path, as photons travel through the ionized
region without being absorbed. Therefore, the photon mean free path is strongly correlated
with the average bubble size during reionization. The ionized bubble size determines the
peak of the patchy kSZ spectrum, as we would expect the kSZ spectrum to attain the most
power on the scale of the size of these bubbles.
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In AMBER, the mean free path parameter λmfp is not equivalent to the physical mean
free path of photons measured in the IGM. Firstly, our λmfp is defined at the midpoint of
reionization, as opposed to the usual definition at the end of reionization. Secondly, λmfp

does not directly control the size of the ionized regions at a fixed redshift. The sizes of
ionized regions depend on the relative radiation intensity as well as the ionization fraction
at a specific redshift. Hence, we can imagine that even with λmfp = 3Mpc/h, the sizes of
ionized regions will be much smaller than that at xHII = 0.05. Finally, even though the λmfp

is a global parameter, it does not mean that the ionized regions all have fixed sizes. Large
halos will still have larger ionized regions around them, because the photon budget of a cell
is affected by the density in addition to the mean free path parameter.

Similar to the previous section, we begin by visualizing the evolution of ionized regions
throughout the EoR with various λmfp. On the right two columns of Figure 2.11, we show
the ionization fraction fields with λmfp = 1Mpc/h and λmfp = 5Mpc/h. Compared to Mh,
we see a larger contrast in the ionization morphology when varying λmfp: there are more
numerous and smaller ionized bubbles in the λmfp = 1Mpc/h run than the λmfp = 5Mpc/h
run throughout the entire EoR.

On the right panel of Figure 2.12, we plot the power spectrum of the ionization fraction
field at λmfp = 1Mpc/h and λmfp = 5Mpc/h. As was expected from the 2D visualizations,
the λmfp = 5Mpc/h field has ∼ 3 times more power on k < 0.5Mpc−1h scales, and half of
the power on small scales. The increase in λmfp induces an almost constant large-scale bias
at all ionization levels. Compared to Mh, we see that increasing λmfp has a much stronger
effect on the ionization morphology. Moreover, there is a shift in the peaking scale of ∆2

ion

with λmfp. To correlate the λmfp parameter with the typical sizes of ionized bubbles, we
measure the kpeak value at which ∆2

ion peaks, and use rpeak = 2π/kpeak to approximate the
characteristic size of ionized bubbles. The vertical lines in Figure 2.12 mark the peaking
bubble scales for the ionization fraction 50%. For λmfp = 1Mpc/h, the characteristic bubble
size is rpeak = 8.3Mpc/h. λmfp = 5Mpc/h corresponds to rpeak = 21.6Mpc/h. For more
detailed correspondence between λmfp and rpeak, please refer to the axes of Figure 2.15.

From the right panel of Figure 2.13, we see that when we increase the global mean free
path of photons, the peak of the spectra is shifted towards the higher end of ℓ, corresponding
to a larger angular scale subtended by the ionized bubbles. At our fiducial λmfp = 3.0Mpc/h,
the spectra peaks at ℓ = 2300. Our finding is consistent with previous works [e.g. Gorce
et al., 2020], although our λmfp parameter is different from their characterization of the
bubble sizes. We note that our current model has no spatial and temporal variation of λmfp.
In future works the halo mass and redshift dependence of λmfp will be studied. The details
of where these spectra peak and how they shift with the mean free path will be studied later
in Section 2.5.6.

2.5.6 Scaling of DpkSZ
ℓ=3000 with Reionization Parameters

As was discussed in the previous sections, the amplitude of the kSZ spectrum is most sensitive
to zmid and ∆z, the slope of the spectra is affected by Az, and the peak of the kSZ spectrum
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is most sensitive to λmfp. Now we want to study more quantitatively the dependence of the
amplitude and shape of the kSZ spectrum on reionization parameters. Note that for the
scaling relation study, we always only change one parameter at a time, and keep the other
parameters fixed at their fiducial values.

In Figure 2.14, we show the amplitude of kSZ at ℓ = 3000 with different zmid and ∆z

values, respectively. From both panels, DpkSZ
ℓ=3000 scales almost linearly with the parameter

values. For comparison, we also plotted the scaling relation fitted in Battaglia et al. [2013a]
(Equation (10) in their paper). Note that in Battaglia et al. [2013a], the duration is defined
to be ∆z,50, and the asymmetry parameter is not measured. For comparison with our ∆z, we
assume an asymmetry of Az = 3 and use the Weibull function (Equation 2.10) to specify the
reionization history at ∆z = [2, 3, 4, 5, 6]. Then, for each of these reionization histories, we
measure the value of ∆z,50. Finally, we input these measured ∆z,50 values into the Battaglia
et al. [2013a] fits together with a specified zmid value to obtain the green lines.

Comparing with Battaglia et al. [2013a]’s power law index of 0.47 on the duration, our
measured DpkSZ

ℓ=3000 has a steeper dependence on ∆z. This is consistent with the findings in
Gorce et al. [2020], although we did not directly show their results as we have different zmid

values. One possible difference in the scaling is the asymmetrical nature of our reionization
histories. As was shown in Figure 2.1, if the asymmetry of the reionization history is not
fixed, the relation between ∆z,50 and ∆z,90 may not be linear. Thus Battaglia et al. [2013a]’s
0.47 power-law index could result from an increase in asymmetry with the duration under
their model. Another possible explanation is that Battaglia et al. [2013a] does not inde-
pendently control the mean-free path parameter, which degenerates with ∆z at ℓ = 3000.
To demonstrate the effect of λmfp on the ∆z dependency, on the right panel we show the
DpkSZ

ℓ=3000 −∆z relation with λmfp = 1Mpc/h and λmfp = 5Mpc/h. We see that DpkSZ
ℓ=3000 actu-

ally peaks around λmfp = 3Mpc/h, and the values at λmfp = 1Mpc/h and λmfp = 5Mpc/h
are both lower. In the Battaglia et al. [2013a] model, because there is a decrease in λmfp

with increased duration [see e.g. Figure 9 of Battaglia et al., 2013b] since the large-scale bias
parameter of the reionization redshift field is fixed [e.g. Trac et al., 2021], the DpkSZ

ℓ=3000 −∆z

relation deviates from a linear relationship.
Next, we look at how the asymmetry of reionization and λmfp affect different aspects

of the kSZ spectrum. In the top panel of Figure 2.15, we plot the difference between the
amplitudes at two sets of multipoles as a function of Az. We show Dℓ=2000−Dℓ=4000 which is
close to the current measurement at ℓ = 3000, and Dℓ=3000−Dℓ=8000 which requires an extra
measurement at a relatively high ℓ = 8000. As we have discussed in Section 2.5.3, the spectra
get flatter as asymmetry rises, and so ∆DpkSZ

ℓ falls with larger Az. The difference between
Dℓ=3000 and Dℓ=8000 is larger at all Az values, but the constraining power on Az is simular
between the two sets of ∆Dℓs. To distinguish between two asymmetry values such as Az = 1
and Az = 8, we need to be able to measure either Dℓ=2000 − Dℓ=4000 or Dℓ=3000 − Dℓ=8000

at ∼ 0.3µk2 accuracy. Previously, Gorce et al. [2020] argued that focusing on Dℓ=3000 is
not sufficient to characterize the kSZ signal, especially with various reionization scenarios
that lead to asymmetric reionization histories. Our result further supports this argument by
showing a quantitative scaling between the slope of the kSZ power and the asymmetry of
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reionization.
In the bottom panel of Figure 2.15 we plot the location of the kSZ power spectrum peaks

as a function of λmfp. From the plot we see that ℓmax scales as 1/λmfp. This is expected as
λmfp is correlated with the size of ionized regions, and is in general agreement with Figure 9
in Gorce et al. [2020]. To establish a correspondence between our effective mean-free path
parameter and the typical ionized bubble sizes at zmid, on the top axis we label the peaking
scale of the ionizing fraction power spectrum (i.e. the right panel of Figure 2.12). At our
fiducial λmfp = 3Mpc/h, the typical bubble size is 14.4Mpc/h (comoving) at z = 8.

We note that for all the scaling relations shown in this section, we have always fixed all
the other reionization parameters and varied one at a time. This means that all the relations
are conditioned, and so one should take caution when using such scaling relations directly
to perform parameter constraints.

2.5.7 Cosmological Parameters

The process of reionization involves a complicated interplay between cosmology and astro-
physical parameters, a large fraction of which remains highly uncertain. For instance, a
larger σ8 could lead to earlier onset of reionization, provided that the nature of the ionizing
sources and the photon escape fraction is fixed. However, there is a lack of comprehensive
study on how different cosmologies affect the astrophysics of reionization. In AMBER, the
reionization history and cosmology are modeled independently. This circumvents the compli-
cated treatment and unknown relation between the two, and allows us to separately analyze
the effect of cosmology on the patchy kSZ signal. In this section, we study the change in the
kSZ power spectra when we change two cosmological parameters Ωm and σ8.

In Figure 2.16, we show the change in the patchy kSZ spectra when we vary Ωm and σ8.
From the left panel, we can see that DpkSZ

ℓ is only weakly sensitive to the change in Ωm,
especially at ℓ = 3000. Larger Ωm leads to slightly higher amplitude on ℓ < 2000 scales. On
the right panel, σ8 has more direct effects on the amplitude of the kSZ spectrum: the kSZ
power doubles when we change σ8 from 0.74 to 0.86. Such effect comes from two different
sources. Firstly, in linear theory, both the density and velocity fluctuations scale as σ2

8. Since
the kSZ effect measures the momentum fluctuations, we should expect ∼ σ4

8 contribution
from the change in the matter density and velocity fields [also see e.g. Shaw et al., 2012,
Trac et al., 2011]. Secondly, the change in density contrast and clustering can also influence
the reionization redshift field through the radiation intensity. Hence, a change in σ8 will
also affect the morphology of ionized regions at different redshifts. By comparing with the
effects of reionization parameters in Figure 2.10 and 2.13, we see that there are degeneracies
between σ8, ∆z, zmid and λmfp in terms of DpkSZ

ℓ=3000.
Compared with reionization parameters such as zmid and ∆z which only affect the patchy

kSZ and τe through the reionization redshifts, cosmological parameters change the signals
through both the density/velocity fields and the reionization redshift field (which is also
correlated with the change in the density). For example, when we change σ8 from 0.8 to
0.7, the decrease in the matter power spectrum will in itself decrease Pee(k), even when the
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reionization redshift and morphology is fixed. On the other hand, decreasing the amplitude of
the matter power spectrum also results in a different reionization redshift field, as the number
of large ionizing sources decreases at the midpoint of reionization. In order to disentangle
the change due to matter density from the change due to the reionization redshift field when
varying σ8, we show in Figure 2.17 the change in Pee(k, z) purely from zre, compared with
the total change, at different ionization levels. Here we compare the ratio between Pee(k, z)
at σ8 = 0.74 with Pee(k, z) at the fiducial σ8 = 0.8. For the dashed curve, we simply change
the value of σ8 in the code, so that both the gas density and the reionization redshift fields
are affected. For the solid curve, we use σ8 = 0.74 to generate the reionization redshift
field, while the matter overdensity is kept at σ8 = 0.8. By comparing the dashed curves at
different ionization levels, we see that as the ionization level x̄i raises, the ratio between the
two Pee’s drops on all scales. Noticeably, only near the end of reionization at x̄i = 0.95 does
the Pee ratio approach the expected matter power spectrum ratio of 0.85 on large scales. At
higher ionization levels, the effect of the matter density field is subdominant, especially on
large scales, where > 95% of power is retained. On small scales (k > 1Mpc/h), however,
the power drops significantly. By comparing with the solid curves where only zre varies, we
can see that the suppression on small scales still comes from the change in δm instead of
zre, as the suppression in the solid curves are not as significant. Therefore, we conclude that
changing σ8 mostly affects Pee near the end of reionization. Before the end of reionization,
the change in zre has a dominant effect over δm on large scales and only mildly affects Pee.
On small scales, Pee is mainly affected by the matter density and varies more significantly
with σ8.

2.6 Conclusion

In this work, we use the new semi-numerical code for reionization AMBER to study the
patchy kSZ effect under different reionization scenarios. We calibrate and test the AMBER
predictions against the radiative-transfer RadHydro simulation suite [Doussot et al., 2019].
We find that at our target resolution of 1Mpc/h, AMBER produces electron number density
field and kSZ angular power spectra that resemble those from RadHydro at all redshifts.

AMBER explicitly parametrizes the reionization history by the midpoint redshift, dura-
tion, and asymmetry parameters. By varying the midpoint redshift of reionization, we find
that the range zmid = [6.0, 8.9] has Thomson optical depth values consistent with the Planck
Collaboration et al. [2018] measurements at the 2σ level. We also find that the peaking scale
of the kSZ angular power spectrum is not sensitive to the midpoint redshift.

Then, assuming a value of zmid = 8.0 consistent with the Planck measurement, and
fixing the other parameters at their fiducial values, we find that the amplitude of DpkSZ

ℓ at
ℓ = 3000 scales linearly with the duration of reionization ∆z. The resulting DpkSZ

ℓ=3000 values
are consistent with the 1σ measurement from Reichardt et al. [2021] up to ∆z < 5.1 (∆z here
encloses redshifts from 5% to 95% reionization). This translates to ∆z,50 < 2.0 under the
definition of duration in Battaglia et al. [2013b], assuming a mildly asymmetric reionization
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history at Az = 3. Then, allowing for other reionization parameters to vary simultaneously,
we find that ∆z < 12.8 is the maximum duration consistent with the Reichardt et al. [2021]
estimation at the 2σ level (∆z,50 < 3.5 assuming Az = 8). Note that this extreme scenario
requires a high asymmetry of the reionization hitory of Az > 8, in order for reionization to
end before z = 5.5. This is in broad agreement with the constraint from Reichardt et al.
[2021] of ∆z,50 < 5.4 (95% CL) using the Battaglia et al. [2013a] model, and the constraint
by Choudhury et al. [2021] at ∆z,50 < 2.9 (99% CL) using a different semi-numerical model.

Then, by considering reionization histories with different degrees of asymmetry, we find
that the kSZ amplitude at ℓ = 3000 is not sensitive to the detailed shape of reionization
history beyond redshift and duration. However, the slope of the kSZ angular power spectrum
does depend on the asymmetry. This is in line with the results shown in [e.g. Gorce et al.,
2020, Park et al., 2013], and makes constraints on the beginning and end of reionization
through patchy kSZ possible if measurements are made at different multipoles. Nevertheless,
we find that constraints on the asymmetry require ∼ 0.1µk2 measurement accuracy of the
patchy kSZ power spectrum at various multipoles other than ℓ = 3000.

We also independently control the size of sources through the minimum halo mass (Mh),
and the relative radiation intensity through the effective mean free path (λmfp). With a fixed
reionization history, the minimum halo mass has little effect on the ionization morphology
at a fixed redshift. Therefore, the amplitude and shape of the kSZ spectrum are only mildly
affected by the minimum halo mass Mh. This is in contrast to the results shown in Paul
et al. [2021], and thus a more detailed investigation of which assumptions in our models lead
to the differences is needed. The effective photon mean-free path affects the peaking location
of the kSZ power spectrum, and at our fiducial λmfp = 3Mpc/h (fitted to the RadHydro
simulations), the spectrum peaks at ℓ ≈ 2100. Moreover, we explicitly showed that there
is a degeneracy between the mean free path λmfp and the duration of reionization in terms
of DpkSZ

ℓ at ℓ = 3000. A shorter λmfp can lead to a ∼ 10% lower DpkSZ
ℓ=3000 and a flatter

slope in the DpkSZ
ℓ=3000−∆z scaling relation. This partly explains the steeper power-law scaling

relationship we get compared with Battaglia et al. [2013a], as the ionized bubble sizes in
their model decrease with a longer duration.

Finally, we study the effect of cosmological parameters Ωm and σ8 on the patchy kSZ
power spectrum under fixed reionization parameters. We find that with a fixed reionization
history, the kSZ power spectrum does not have noticeable change with Ωm, especially near
ℓ = 3000. However, σ8 affects the overall amplitude of the kSZ power spectrum, which
results in a degeneracy between σ8 and ∆z. On large scales (k < 1Mpc−1h), σ8 affects the
electron number density mainly through the zre field, while on small scales (k < 1Mpc−1h),
the effect comes from the matter density field.

Even though we have given a rough estimate of the duration of reionization consistent
with current observations from ground-based telescopes, such constraints are only a first-
order estimation because we only search a 1D parameter space at a time. To carry out the
analysis properly, we need to take into account the correlation between different parameters
by marginalizing over other model parameters. In order to achieve that, we will need a tool
to estimate the kSZ spectra faster than what we can achieve with our simulations.
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Moreover, in order to separate out the patchy component from the spectrum, one would
need a good description of the homogeneous spectrum. Currently, the homogeneous spectrum
quoted in Reichardt et al. [2021] comes from Shaw et al. [2012], but we can use results
updated with more recent simulations [e.g. He et al., 2021] to get a better estimation of how
accurately one can recover the patchy signal.

2.A Effect of Abundance Matching at the Midpoint Red-
shift

In Section 2.3.1, we mentioned that currently in AMBER, the reionization redshift field is
abundance-matched against the radiation intensity at a single redshift zmid for computation
efficiency. However, we do note that due to the non-linear growth of structure and espe-
cially the non-linearity in the halo density field, this choice can cause uncertainties in the
EoR observables. To make the model more physical, we will work towards a tomographic
abundance-matching scheme, where the reionization redshift is determined by the source
field at several redshifts spanning the EoR. Since this work is based on the single-redshift
abundance matching, here we characterize the level of uncertainties induced by the choice
the abundance-matching redshift zmatch.

We keep all parameters at their fiducial values unless otherwise stated (in particular we
always fix zmid = 8), and we change the redshift at which we generate the source field for
matching zre(x). Here we have chosen two relatively extreme values: at z = 10, xHII ≈ 0.1
and reionization has just started; at z = 6.5, xHII ≈ 0.95 and we are approaching the end
of EoR. We note that for single-redshift abundance matching, zmatch = zmid is still a better
choice than the others. At higher redshifts, the sources are scarce and so the resulting zre(x)
can be noisier. The sources at lower redshifts are more abundant, but they are not the main
driver of reionization since the EoR has almost finished by then. Hence, the zmid halos are
a better representation of the sources that are responsible for driving the ionization process.
Here by showing the zmatch at extreme values, we aim to bracket the range of uncertainty
caused by the single-redshift abundance matching.

In Figure 2.A.1, we show the (dimensionless) free-electron number density power spectra
∆2

ee with zre(x) matched against the radiation field at zmatch = 6.5, zmatch = 8 (which is the
zmid) and zmatch = 10. Compared with the original choice of zmatch = 8, using the source
field at zmatch = 10 increases the power on most scales by a constant factor of < 5% except
at the beginning of reionization, and there is a larger difference on small scales compared to
large scales. Using the reionization redshift matched at a later time (zmatch = 6.5) decrease
∆2

ee by < 5%.
Figure 2.A.2 shows the effect of changing zmatch on the patchy kSZ power spectra. At our

fiducial set of reionization parameters (see Table ??), using zmatch = 10 increases the kSZ
power at ℓ > 1000 by an almost-constant factor of 5%, while using zmatch = 6.5 decreases
the power by a similar fraction (shown by the solid curves on both the top and bottom
plots). To further investigate the potentially larger influence of zmatch on highly asymmetric
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reionization scenarios, we also show on the top panel the difference between three zmatch at
Az = 8 (without changing the midpoint or the duration). We see that for a larger Az, the
change in Dℓ is indeed larger, but the overall fluctuation is still kept within ∼ 7% on all
scales of interest. On the bottom panel of Figure 2.A.2, we show the effect of various zmatch

with larger sources at Mh = 1010M⊙. A higher source threshold is expected to enlarge the
effect of varying zmatch, as the halo mass function increases more with redshift at the high-
mass end. Indeed, we can see that with Mh = 1010M⊙, the deviation of zmatch = 10 and
zmatch = 6.5 from zmatch = 8 reaches a maximum of ∼ 15% at ℓ = 500− 1000. Nonetheless,
on the scale of interest for the patchy kSZ measurement (ℓ ⪆ 2000), effect of zmatch is still
kept within 5%. Hence, we conclude with our investigations that changing the redshift at
which we match the reionization redshift field does have an impact at the observable level,
but on the scale of interest this impact is within ∼ 5%.
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Figure 2.8: Visualization of the redshift evolution of ne (dark background) and ∆TkSZ (white
background). Row 1/2: we vary the midpoint of reionzation from zmid = 7.0 to zmid = 9.0,
while keeping other parameters at their fiducial values. Row 3/4: we vary the duration
of reionzation from ∆z = 2.0 to ∆z = 6.0. We can see the large-scale velocity coherence
across redshifts. With a longer duration, there is more ionizing bubbles stacked along the
line-of-sight. Row 5/6: we vary the asymmetry of reionzation history from Az = 1.0 to
Az = 8.0. With a larger Az, ionizing bubbles begin to form as early as z = 18, although zmid

and ∆z is kept fixed.
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Figure 2.9: 4× 4 degree2 maps of the kSZ temperature fluctuation for different durations of
reionization. This is a filtered map with only the small-scale (ℓ > 1000) modes to show the
effect of patchy reionization rather than the large-scale velocity fluctuation. A longer dura-
tion (∆z = 6, right) leads to larger fluctuations on small scales, while the map with a shorter
duration appears smoother. This is because the small-scale kSZ is sourced by the electron
number density fluctuation from patchy reionization. These fluctuations are incoherent and
accumulate along the line of sight, leading to a larger small-scale inhomogeneity for a longer
duration.



49 2.A. EFFECT OF ABUNDANCE MATCHING AT THE MIDPOINT REDSHIFT

0 2000 4000 6000 8000
`

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
`(
µ
k

2
)

zmid = 7.0

zmid = 7.5

zmid = 8.0

zmid = 8.5

zmid = 9.0

Reichardt+21

0 2000 4000 6000 8000
`

∆z = 2

∆z = 3

∆z = 4

∆z = 5

∆z = 6

∆z = 12.8

0 2000 4000 6000 8000
`

Az = 1

Az = 2

Az = 3

Az = 5

Az = 8

Figure 2.10: Patchy kSZ angular power spectrum for different reionization history parame-
ters. The fiducial parameters are [zmid,∆z, Az] = [8.0, 4.0, 3.0]. The smaller error bars show
the 1σ confidence interval of DkSZ

ℓ=3000 from Reichardt et al. [2021], and the larger error bar
in the middle panel shows the 2σ confidence interval. Left: The overall amplitude of the
kSZ spectrum increases as we shift the midpoint redshift of reionization earlier, but all vari-
ations are consistent with the 1σ interval. Middle: Increasing the duration of reionization
also increases the overall power of the kSZ spectrum, and it affects the kSZ amplitude most
significantly. The black line shows the maximum ∆z that produces DkSZ

ℓ=3000 within the 2σ
interval, where we let zmid = 6.5, Az = 8 (to ensure reionization ended before z = 5.5), and
λmfp = 1.0Mpc/h. Right: The asymmetry parameter Az does not have a big impact on the
kSZ spectrum comparing with the midpoint and duration, but we can see that increasing
the asymmetry (meaning that the beginning of reionization is longer) results in flatter slope
of the kSZ spectrum.
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Figure 2.11: Ionization fraction field across different (mass-weighted) ionization levels, with
white regions marking the ionized bubbles. From top to bottom with show a (200Mpc/h)2×
1Mpc/h slice at x̄i = 5%, 25%, 50%, 75%, and 95% , respectively. Left: ionized regions
with a minimum halo mass of 107M⊙ (first column) and 1010M⊙ (second column). With
very large minimum halo mass for ionizing galaxies, the ionized bubbles are smoother and
more clustered on large scales. However, the overall morphology are not drastically different
from when Mh = 107M⊙. Right: ionized regions with λmfp = 1.0Mpc/h (third column)
and λmfp = 5.0Mpc/h (fourth column). We see that in AMBER, with a fixed reionization
history, λmfp has a stronger effect on the ionization morphology than the minimum halo mass
Mh. With a smaller λmfp, the typical sizes of ionized regions are significantly smaller than
with a larger λmfp.
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Figure 2.12: Dimensionless power spectra of the AMBER halo density fields (left) and ion-
ization fraction fields (middle and right) with different minimum halo mass and photon
mean free path. For the ionization fraction power spectra we show the spectra at three
global ionization levels (x̄i = 0.25, 0.50, 0.75, corresponding to the purple, orange and green
lines, respectively). Left: dimensionless halo density power spectra for Mh = 107M⊙
(solid) and Mh = 1010M⊙ (dashed). Middle: ∆2

ion(k) for Mh = 107M⊙ (solid) and
Mh = 1010M⊙ (dashed). Right: ∆2

ion(k) for λmfp = 1.0Mpc/h (solid) and λmfp = 5.0Mpc/h
(dashed). The bottom panels show the ratio of the power spectra, with the ratio being
Pion,log(M)=10.0/Pion,log(M)=7.0 in the left/middle panels and Pion,λ=5/Pion,λ=1 on the right.
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signal. Only when we limit the sources to be above 109M⊙ can we see some suppression
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bubbles. Increasing the mean free path shifts the peak towards higher multipoles in the kSZ
spectrum.
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constraint from Reichardt et al. [2021]. Left: with a fixed duration ∆z = 4.0, AMBER
produces DpkSZ
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Abstract

In this work we establish and test methods for implementing dynamical friction for mas-
sive black hole pairs that form in large volume cosmological hydrodynamical simulations
which include galaxy formation and black hole growth. We verify our models and parame-
ters both for individual black hole dynamics and for the black hole population in cosmological
volumes. Using our model of dynamical friction (DF) from collisionless particles, black holes
can effectively sink close to the galaxy center, provided that the black hole’s dynamical mass
is at least twice that of the lowest mass resolution particles in the simulation. Gas drag
also plays a role in assisting the black holes’ orbital decay, but it is typically less effective
than that from collisionless particles, especially after the first billion years of the black hole’s
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evolution. DF from gas becomes less than 1% of DF from collisionless particles for BH
masses > 107 M⊙. Using our best DF model, we calculate the merger rate down to z = 1.1
using an Lbox = 35 Mpc/h simulation box. We predict ∼ 2 mergers per year for z > 1.1
peaking at z ∼ 2. These merger rates are within the range obtained in previous work using
similar-resolution hydro-dynamical simulations. We show that the rate is enhanced by factor
of ∼ 2 when DF is taken into account in the simulations compared to the no-DF run. This
is due to > 40% more black holes reaching the center of their host halo when DF is added.

3.1 Introduction
Super Massive Black Holes (SMBHs) are known to exist at the center of the majority of
massive galaxies [e.g. Kormendy and Ho, 2013, Kormendy and Richstone, 1995, Magorrian
et al., 1998, Soltan, 1982]. As these galaxies merge [e.g. Lacey and Cole, 1993, Lotz et al.,
2011, Rodriguez-Gomez et al., 2015], the SMBHs that they host also go through mergers,
resulting in the mass growth of the SMBH population [e.g. Begelman et al., 1980]. SMBH
mergers following their host galaxy mergers become an increasingly important aspect of
SMBH growth for more massive black holes (BHs) in dense environments [e.g. Kulier et al.,
2015]. As a by-product of BH mergers, gravitational waves are emitted, and their detection
opens up a new channel for probing the formation and evolution of early BHs in the universe
[e.g. Barausse, 2012, Sesana et al., 2007b].

The gravitational wave detection by LIGO [Abbott et al., 2016] proves the experimental
feasibility of using gravitational waves for studying BH binaries. While LIGO cannot detect
gravitational waves from binaries more massive than ∼ 100M⊙ [Mangiagli et al., 2019],
long-baseline experiments are being planned for detections of more massive BH binaries.
Specifically, the upcoming Laser Interferometer Space Antenna (LISA) [Amaro-Seoane et al.,
2017] mission will be sensitive to low-frequency (10−4−10−1Hz) gravitational waves from the
coalescence of massive black holes (MBHs) with masses 104 − 107M⊙ up to z ∼ 20. At even
lower frequencies Pulsar Timing Arrays (PTAs) are already collecting data and the Square
Kilometer Array (SKA) in the next decade will be a major leap forward in sensitivity. PTA
observations are likely to identify a number of continuous-wave sources representing the early
inspiral phase of MBH binaries. PTAs experiments [e.g. Jenet et al., 2004, 2005] may also
detect the inspiral of tight MBH binaries with mass > 108M⊙. While massive BH binaries
are the primary sources for PTAs and LISA, these two experiments probe different stages of
massive BH evolution. PTAs are most sensitive to the early inspiral (orbital periods of years
or longer) of nearby (z < 1) (massive) sources [Mingarelli et al., 2017]. In contrast, LISA is
sensitive to the inspiral, merger, and ringdown of MBH binaries at a wide range of redshifts
[Amaro-Seoane et al., 2012]. The two populations of MBH binaries probed by PTAs and
LISA are linked via the growth and evolution of SMBH across cosmic time.

LISA will provide a unique way of probing the high-redshift universe and understanding
the early formation of the SMBHs, especially when combined with the soon-to-come ob-
servations of the electromagnetic (EM) counterparts [DeGraf and Sijacki, 2020, Natarajan
et al., 2017]. For instance, they will potentially allow us to distinguish between different BH
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seeding mechanisms at high-redshift [Ricarte and Natarajan, 2018], to obtain information on
the dynamical evolution of massive black holes [Bonetti et al., 2019], and to gain information
about the gas properties within the accretion disc [Derdzinski et al., 2019].

To properly analyze the upcoming results from the gravitational wave as well as the EM
observations, we need to gain a thorough understanding of the physics of these MBH mergers
with theoretical tools and be able to make statistical predictions on the binary population.
In particular, it is important that the BH dynamics is modeled accurately, so that we can
minimize the degeneracy with other physical properties of the merger, and gain accurate
information about when and where BH coalescence is expected.

Hydrodynamical cosmological simulations provide a natural ground for studying the evo-
lution and mergers of MBHs. In particular, large-volume cosmological simulations [e.g. Davé
et al., 2019, Feng et al., 2016, Hirschmann et al., 2014, Pillepich et al., 2018, Schaye et al.,
2015, Vogelsberger et al., 2014, Volonteri et al., 2016] have the statistical power to make
merger rate predictions for the upcoming observations.

In order to accurately predict when black hole mergers occur in these simulations, one
must account for the long journey of the central black holes after the merger of their host
galaxies: during galaxy mergers, the central SMBHs are usually separated by as much as a
few tens of kpc. These SMBHs then gradually lose their orbital energy and sink to the center
of the new galaxy due to the dynamical friction exerted by the gas, stars and dark matter
around them [e.g. Chandrasekhar, 1943, Ostriker, 1999]. When their separation reaches the
sub-parsec scale, they form a binary and other energy-loss channels begin to dominate, such
as scattering with stars [e.g. Quinlan, 1996, Sesana et al., 2007a, Vasiliev et al., 2015], gas
drag from the circumbinary disk [e.g. Haiman et al., 2009], or three-body scattering with a
third black hole [e.g. Bonetti et al., 2018].

However, due to limited mass and spatial resolution, large-scale cosmological simulations
cannot feasibly include detailed treatment of the black hole binary dynamics. Without any
additional correction to the BH dynamics, the smoothed-away small-scale gravity prevents
effective orbital decay of the black hole after the orbit approaches the gravitational softening
length. Once the binary reaches the innermost region of the remnant galaxy, the gravitational
potential (close to the resolution limit) can be noisy. Such a noisy potential can scatter the
black hole around within the host galaxy, or in some cases even kick the BH to the outskirts of
the galaxy if the black hole mass is small. To avoid unexpected scattering of the BHs around
the center of the galaxy, large-volume cosmological simulations usually resort to pinning
the black holes at the halo minimum potential (a.k.a. repositioning). This repositioning
algorithm has the undesirable effect of making the black holes merge rather efficiently once
they reach the center of the galaxy. Post-processing techniques have been used [e.g. Katz
et al., 2020, Kelley et al., 2017a, Salcido et al., 2016, Volonteri et al., 2020] to account for the
additional dynamical friction effects on scales close to the gravitational smoothing scales of
the black holes. This allows for an approximate estimation of the expected delay in the BH
mergers. The post-processing calculations are mostly based on idealized analytical models,
and therefore do not account for the variety of individual black hole environments.

Due to the increased merger efficiency induced by BH repositioning and the limits of
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post-processing in dynamical friction calculations, emerging works have been adding sub-grid
modeling of dynamical friction self-consistently in cosmological simulations and removing the
artificial repositioning approximation. Chapon et al. [2013], Dubois et al. [2014] are the first
large simulations to include the dynamical friction from gas, while Hirschmann et al. [2014]
and Tremmel et al. [2017] account for dynamical friction from collisionless particles, and both
have shown success in stabilizing the black holes at the halo centers. The dynamical friction
modeling and its effect on the BH merger time scale have been well-tested in Tremmel et al.
[2015] and Pfister et al. [2019] in the context of their relatively high-resolution simulations in
a controlled single-halo environment, but they have also pointed out the failure of their model
when the dark matter particle mass exceeds the black hole mass, and so their models might
not be directly applicable to lower-resolution cosmological simulations. In the context of
low-resolution cosmological simulations, the dynamical friction modeling is less well-tested,
and its effects on the BH evolution and merger rate are not fully explored.

In this work, we carefully develop and test the sub-grid modeling of dynamical friction
from both gas and collisionless particles in the context of cosmological simulations with
resolution similar to the aforementioned large-volume, low-resolution hydrodynamical simu-
lations (i.e. with a spatial resolution of ∼1kpc and mass resolution of MDM ∼ 107M⊙). We
evaluate the models both by looking at individual black hole dynamics, growth and mergers,
and by statistically comparing the behavior of different models in terms of the mass growth
and merger statistics. In particular, we focus on how various models affect the BH merger
rate in the cosmological simulations, which is essential for making merger rate predictions
for the LISA mission.

This paper proceeds as follows: in Section 3.2 we describe the numerical code and the
gaussian-constrained technique we use to study large SMBHs within a small volume. In
Section 3.3, we talk about the different dynamical models for black hole mergers that we
study and test in this work. Section 3.4 is dedicated to investigating the effect of the different
models on the evolution of individual black holes, while Section 3.5 studies the differences
statistically. Finally, in Section 3.6, we show merger rate predictions with a model chosen
based on the results of the previous sections, and compare with previous simulations at
similar resolutions.

3.2 The Simulations

3.2.1 The Numerical Code

We use the massively parallel cosmological smoothed particle hydrodynamic (SPH) simula-
tion software, MP-Gadget [Feng et al., 2016], to run all the simulations in this paper. The
hydrodynamics solver of MP-Gadget adopts the new pressure-entropy formulation of SPH
[Hopkins, 2013]. We apply a variety of sub-grid models to model the galaxy and black hole
formation and associated feedback processes already validated against a number of observ-
ables [e.g. Bhowmick et al., 2018, Di Matteo et al., 2017, Feng et al., 2016, Huang et al.,
2018, Marshall et al., 2020, 2021, Ni et al., 2018, 2020, Tenneti et al., 2018, Waters et al.,
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2016, Wilkins et al., 2017]. Here we review briefly the main aspects of these. In the simula-
tions, gas is allowed to cool through radiative processes [Katz et al., 1999], including metal
cooling. For metal cooling, we follow the method in Vogelsberger et al. [2014], and scale a
solar metallicity template according to the metallicity of gas particles. Our star formation
(SF) is based on a multi-phase SF model [Springel and Hernquist, 2003] with modifications
following Vogelsberger et al. [2013]. We model the formation of molecular hydrogen and
its effects on SF at low metallicity according to the prescription of Krumholz and Gnedin
[2011]. We self-consistently estimate the fraction of molecular hydrogen gas from the baryon
column density, which in turn couples the density gradient to the SF rate. We include Type
II supernova wind feedback [the model used in BlueTides Feng et al., 2016, Okamoto et al.,
2010] in our simulations, assuming that the wind speed is proportional to the local one
dimensional dark matter velocity dispersion.

BHs are seeded with an initial seed mass of Mseed = 5 × 105M⊙/h in halos with mass
more than 1010M⊙/h if the halo does not already contain a BH. We model BH growth and
AGN feedback in the same way as in the MassiveBlack I&II simulations, using the BH sub-
grid model developed in Di Matteo et al. [2005a], Springel et al. [2005a] with modifications
consistent with BlueTides. The gas accretion rate onto the BHs is given by Bondi accretion
rate,

ṀB = α
4πG2M2

BHρ

(c2s + v2rel)
3/2

, (3.1)

where cs and ρ are the local sound speed and density of the cold gas, vrel is the relative velocity
of the BH to the nearby gas, and α = 100 is a numerical correction factor introduced by
[Springel et al., 2005b]. This can also be eliminated (without affecting the values of the
accretion rate significantly) in favor of a more detailed modeling of the contributions in the
cold and hot phase accretion [Pelupessy et al., 2006].

We allow for super-Eddington accretion in the simulation [e.g. Volonteri and Rees, 2005,
Volonteri et al., 2015], but limit the accretion rate to 2 times the Eddington accretion rate:

ṀEdd =
4πGMBHmp

ησT c
, (3.2)

where mp is the proton mass, σT the Thompson cross section, c is the speed of light, and
η = 0.1 is the radiative efficiency of the accretion flow onto the BH. Therefore, the BH
accretion rate is determined by:

ṀBH = Min(ṀB, 2ṀEdd). (3.3)

The SMBH is assumed to radiate with a bolometric luminosity LBol proportional to the
accretion rate ṀBH:

LBol = ηṀBHc
2 (3.4)

with η = 0.1 being the mass-to-light conversion efficiency in an accretion disk according
to Shakura and Sunyaev [1973]. 5% of the radiated energy is thermally coupled to the



61 3.3. BH DYNAMICS

surrounding gas that resides within twice the radius of the SPH smoothing kernel of the BH
particle. This scale is typically about ∼ 1− 3% of the virial radius of the halo.

The cosmological parameters used are from the nine-year Wilkinson Microwave Anisotropy
Probe (WMAP) [Hinshaw et al., 2013] (Ω0 = 0.2814, ΩΛ = 0.7186, Ωb = 0.0464, σ8 = 0.82,
h = 0.697, ns = 0.971). For our fiducial resolution simulations, the mass resolution is
MDM = 1.2× 107M⊙/h and Mgas = 2.4× 106M⊙/h in the initial conditions. The mass of a
star particle is M∗ = 1/4Mgas = 6× 105M⊙/h. The gravitational softening length is ϵg = 1.5
ckpc/h in the fiducial resolution for both DM and gas particles. The detailed simulation and
model parameters are listed in Tables 3.2.1 and 3.2.2.

3.2.2 Gaussian Constrained Realization

MBHs at high redshift typically reside in rare density peaks, which are absent in the small
uniform box (∼ 10 Mpc/h) simulations. In order to test the dynamics for more massive BHs
(with MBH > 108M⊙) in our small volume simulation, we apply the Constrained Realization
(CR) technique 1 to impose a relatively high density peak in the initial condition (IC), with
peak height ν = 4σ0 on scale of RG = 1 Mpc/h.

The prescription for the CR technique was first introduced by Hoffman and Ribak [1991]
as an optimal way to construct samples of constrained Gaussian random fields. This for-
malism was further elaborated and extended by van de Weygaert and Bertschinger [1996]
as a more general type of convolution format constraints. The CR technique imposes con-
straints on different characteristics of the linear density field. It can specify density peaks in
the Gaussian random field with any desired height and shape, providing an efficient way to
study rare massive objects with a relatively small box and thus lower computational costs
[e.g. Ni et al., 2020]. In this study, we specify a 4σ0 density peak in the IC of our 10 Mpc/h
box, boosting the early formation of halos and BHs to study the dynamics of massive BHs.
Before applying the peak height constraint, the highest density peak has ν = 2.4σ0 and the
largest BH has mass < 6× 107M⊙ at z = 3 in our fiducial model (DF_4DM_G in Table 3.2.1).
After applying the 4σ0 constraint, the largest BH has mass 3× 108M⊙ at z = 3 in the same
box.

3.3 BH Dynamics

3.3.1 BH Dynamical Mass

In our simulations, the seed mass of the black holes is 5×105M⊙/h, which is 20 times smaller
than the fiducial dark matter particle mass at 1.2× 107M⊙/h. Such a small mass of the BH
relative to the dark matter particles will result in very noisy gravitational acceleration on the
black holes, and causes instability in the black hole’s motion as well as drift from the halo
center. Moreover, as shown in previous works [e.g. Pfister et al., 2019, Tremmel et al., 2015],

1https://github.com/yueyingn/gaussianCR

https://github.com/yueyingn/gaussianCR
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under the low MBH/MDM regime, it is challenging to effectively model dynamical friction in
a sub-grid fashion.

To alleviate dynamical heating by the noisy potential due to the low MBH/MDM ratio, we
introduce a second mass tracer, the dynamical mass Mdyn, which is set to be comparable to
MDM when the black hole is seeded. This mass is used in force calculation for the black holes,
including the gravitational force and dynamical friction, while the intrinsic black hole mass
MBH is used in the accretion and feedback process. Mdyn is kept at its seeding value Mdyn,seed

until MBH > Mdyn,seed. After that Mdyn grows following the black hole’s mass accretion. With
the boost in the seed dynamical mass, the sinking time scale will be shortened by a factor
of ∼ MBH/Mdyn compared to the no-boost case. Because of the boost in mass, we note that
while our model can be safely applied to the more massive black holes, there is limitation
in the seed black hole dynamics. On the other hand, we also note that the bare black hole
sinking time scale estimated in the no-boost case could over-estimate the true sinking time,
as the high-density stellar bulges sinking together with the black hole are not fully resolved
[e.g. Antonini and Merritt, 2012, Biernacki et al., 2017, Dosopoulou and Antonini, 2017].

The boost we need to prevent dynamical heating depends on the dark matter parti-
cle mass MDM (if we have high enough resolution the boost is no longer necessary), so we
parametrize the dynamical mass in terms of the dark matter particle mass, Mdyn,seed =
kdynMDM, instead of setting an absolute seeding dynamical mass for all simulations. We
expect that as we go to higher resolutions where MDM is comparable to MBH,seed, the dy-
namical seed mass should converge to the black hole seed mass, if we keep kdyn constant.
We study the effect of setting different kdyn by running three simulations with the same
resolution and dynamical friction models, but various kdyn ratios. They are listed in Table
3.2.1 as DF_4DM_G, DF_2DM_G, and DF_1DM_G, with kdyn = 4, 2, 1, respectively.

To explore the effects of the BH seed dynamical mass on the motion and mergers of the
black hole, we test a variety of Mdyn,seed values in our simulations. The comparison between
different Mdyn,seed can be found in Appendix 3.A.

3.3.2 Modeling of Black Hole Dynamics

Reposition of the Black Hole

Before introducing our dynamical friction implementations, we first describe a baseline model
utilized by many large-volume cosmological simulations: the reposition model. As the name
suggests, the reposition model of black hole dynamics places the black hole at the location of
a local gas particle with minimum gravitational potential at each time step, in order to avoid
the unrealistic motion of the black holes due to limited mass and force resolution. This is
particularly preferred for large-volume, low-resolution cosmological simulations [e.g. Booth
and Schaye, 2009, Pillepich et al., 2018, Schaye et al., 2015, Sijacki et al., 2007, Springel
et al., 2005b], where the black hole mass is smaller than a star or gas particle mass and the
BH can be inappropriately scattered around by two-body forces as well as the noisy local
potential.

This simple fix of repositioning, however, comes with many disadvantages. For example,
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it may lead to higher accretion and feedback of the black holes, as they sink to the high-
density regions too quickly. As was shown in Wurster and Thacker [2013] and Tremmel et al.
[2017], repositioning also leads to burstier feedback of the BHs, which is more likely to quench
star-formation in the host galaxies. Moreover, repositioning leads to ill-defined velocity and
non-smooth trajectories of the black hole particles. Because of the ill-defined velocity and
extremely short orbital decay time, such methods cannot be reliably used for merger rate
predictions without careful post-processing calculations to account for the orbital decays.

In our study, we use the reposition model as a reference for the black hole statistics, as
it is still widely adopted in many existing simulations. We want to compare the dynamical
friction models with the reposition model and quantify the effect of repositioning on BH
mass growth and merger rate compared with the dynamical friction models.

Dynamical Friction from Collisionless Particles

When the black hole travels through a continuous medium or a medium consisting of particles
with smaller masses than the black hole, it attracts the surrounding mass towards itself,
leaving a tail of overdensity behind. Dynamical friction is the resulting gravitational force
exerted onto the black hole by this tail of overdensity [e.g. Binney and Tremaine, 2008,
Chandrasekhar, 1943]. Dynamical friction causes the orbits of SMBHs to decay towards the
center of massive galaxies [e.g. Governato et al., 1994, Kazantzidis et al., 2005], and enables
the black holes to stay at the high-density regions where they could go through efficient
accretion and mergers.

We follow Equation (8.3) in Binney and Tremaine [2008] for the acceleration of the black
hole due to dynamical friction:

FDF = −16π2G2M2
BHma log(Λ)

vBH

v3BH

∫ vBH

0

dvav
2
af(va), (3.5)

where MBH is the black hole mass, vBH is the velocity of the black hole relative to its
surrounding medium, ma and va are the masses and velocities of the particles surrounding
the black hole, and log(Λ) = log(bmax/bmin) is the Coulomb logarithm that accounts for
the effective range of the friction between bmin and bmax(we will specify how we set these
parameters later). f(va) is the velocity distribution of the surrounding particles (unless
we explicitly state otherwise, all variables involving the black hole’s surrounding particles
are calculated using stars and dark matter particles). Here we have assumed an isotropic
velocity distribution of the particles surrounding the black hole, so that we are left with an
1D integration.

We test two different numerical implementations of the dynamical friction (DF) in our
simulations: one with a more aggressive approach which likely overestimates the effective
range of DF, but could be more suitable for large-volume simulations (we refer to it as DF(fid)
in places where we carry out explicit comparisons between the two DF models, and drop
the ’fid’ in all other places); the other with a more conservative method which aims to only
account for the DF below the gravitational softening length, and is well-tested for smaller
volume, high-resolution simulations [Tremmel et al., 2015] (we refer to it as DF(T15)).
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We begin by introducing the DF(fid) model. In this model, we further follow the deriva-
tion in Binney and Tremaine [2008], and approximate f(va) by the Maxwellian distribution,
so that Equation 4.2 reduces to:

FDF,fid = −4πρsph

(
GMdyn

vBH

)2

log(Λfid)F
(
vBH

σv

)
vBH

vBH

. (3.6)

Here ρsph is the density of dark matter and star particles within the SPH kernel (we will
sometimes refer to these particles as "surrounding particles") of the black hole. All other
definitions follow those of Equation 4.2, except that we have substituted MBH with Mdyn

following the discussion in 3.3.1. We caution the reader that throughout our paper, this
boost in mass could lead to an overestimation of the dynamical friction, and therefore an
underestimation of the dynamical friction decay timescale, especially for seed black holes.
The function F defined as:

F(x) = erf(x)− 2x√
π
e−x2

, x =
vBH

σv

(3.7)

is the result of analytically integrating the Maxwellian distribution, where σv is the velocity
dispersion of the surrounding particles.

The subscript "fid" in log(Λ) means that this definition of Λ is specific to the DF(fid)
model, with

Λfid =
bmax,fid

(GMdyn)/v2BH

, bmax,fid = 10 ckpc/h. (3.8)

Note that here we have defined bmax as a constant roughly equal to 6 times the gravitational
softening. As there is no general agreement on the distance above which dynamical friction is
fully resolved, we tested several values ranging from ϵg to 20ϵg. We found that values above
2ϵg are effective in sinking the black hole, although a smaller bmax tends to result in more
drifting black holes at higher redshift. By using this definition, we are likely overestimating
the effective range of dynamical friction. However, we find this over-estimation necessary in
the early stage of black hole growth to stabilize the black hole motion.

We also implement a more localized version of dynamical friction following Tremmel
et al. [2015] which we call DF(T15). Under the DF(T15) model, the dynamical friction is
expressed as:

FDF,T15 = −4πρ(v < vBH)

(
GMdyn

vBH

)2

log(ΛT15)
vBH

vBH

. (3.9)

vBH is the velocity of the black hole relative to its surrounding medium. Note that different
from Equation 4.2, the surrounding density here only accounts for the particles moving slower
than the BH with respect to the environment. More formally,

ρ(v < vBH) =
M(< vBH)

Mtotal

ρT15, (3.10)
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where Mtotal is the total mass of the nearest 100 DM and stars, M(< vBH) is the fractional
mass counting only DM and star particles with velocities smaller than the BH, and ρT15 is
the density calculated from the nearest 100 DM/Star particles (note that in comparison, the
SPH kernel contains 113 gas particles but far more collisionless particles (see Figure 3.4.4)).
By using ρ(v < vBH) in place of ρsphF , we are approximating the velocity distribution of
surrounding particles by the distribution of the nearest 100 collisionless particles. Another
major difference from the DFsph model is the Coulomb logarithm, where in this model we
define:

ΛT15 =
bmax,T15

(GMdyn)/v2BH

, bmax,T15 = ϵg. (3.11)

The choice of a lower bmax is consistent with the localized density and velocity calculations,
and by doing so we have assumed that dynamical friction is fully resolved above the gravi-
tational softening.

Gas Drag

In addition to the dynamical friction from dark matter and stars, the black hole can also
lose its orbital energy due to the dynamical friction from gas (to distinguish from dynamical
friction from dark matter and stars, we will refer to the gas dynamical friction as "gas
drag" hereafter). Ostriker [1999] first came up with the analytical expression for the gas
drag term from linear perturbation theory, and showed that in the transonic regime the gas
drag can be more effective than the dynamical friction from collisionless particles. Although
later studies show that Ostriker [1999] likely overestimates the gas drag for gas with Mach
numbers slightly above unity [e.g. Chapon et al., 2013, Escala et al., 2004], simulations with
gas drag implemented still demonstrate that this is an effective channel for black hole energy
loss during orbital decays [e.g. Chapon et al., 2013, Dubois et al., 2013, Pfister et al., 2019].

In order to investigate the relative effectiveness of DF and gas drag, we also include gas
drag onto black holes in our simulations following the analytical approximation from Ostriker
[1999]:

Fdrag = −4πρ

(
GMdyn

c2s

)2

× I(M)
vBH

vBH

, (3.12)

where cs is the sound speed, M = |vBH−vgas|
cs

is the Mach number, and I(M) is given by:

Isubsonic = M−2

[
1

2
log
(
1 +M
1−M

)
−M

]
(3.13)

Isupersonic = M−2

[
1

2
log
(M+ 1

M− 1

)
− logΛfid

]
, (3.14)

where logΛfid is the Coulomb logarithm defined similarly to the collisionless dynamical fric-
tion.
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Figure 3.3.1: Visualization of 4σ0 density peak of the DF_4_DM_G simulation at z = 4.0
and z = 3.5. The brightness corresponds to the gas density, and the warmness of the tone
indicates the mass-weighted temperature of the gas. We plot the black holes (cross) with
mass > 106M⊙, as well as the halos (subhalos) hosting them (red circles correspond to
central halos, orange circles correspond to subhalos. The circle radius shows the virial
radius of the halo; halos are identified by Amiga’s Halo Finder(AHF)). This density peak
hosts the two largest black holes in our simulations (yellow cross), and they are going
through a merger along with the merger of their host halos between z = 4 and z = 3. For
the black hole and merger case studies, we will use examples from the circled halos/black
holes shown in this figure.
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3.3.3 Merging Criterion

In all of our simulations, we set the merging distance to be 2ϵg, because the BH dynamics
below this distance is not well-resolved due to our limited spatial resolution. We conserve
the total momentum of the binary during the merger.

Under the baseline repositioning treatment of the BH dynamics, the velocity of the black
hole is not a well-defined quantity. Therefore, in cosmological simulations with repositioning,
the distance between the two black holes is often the only criterion imposed during the time
of mergers (for example BlueTides [Feng et al., 2016], Illustris [Vogelsberger et al., 2013] and
IllustrisTNG [Pillepich et al., 2018]). One problem with using only the distance as a merging
criterion is that it can spuriously merge two passing-by black holes with high velocities, when
in reality they are not gravitationally bound and should not merge just yet (or may never
merge). Although some similar-resolution simulations such as EAGLE [Crain et al., 2015,
Schaye et al., 2015] also check whether two black hole particles are gravitationally bound,
the black holes still do not have a well-defined orbit and sinking time due to the discrete
positioning.

When we turn off the repositioning of the BHs to the nearby minimum potential, the
BHs will have well-defined velocities at each time step (this is true whether or not we add the
dynamical friction). This allows us to apply further merging criteria based on the velocities
and accelerations of the black hole pair, and thus avoid earlier mergers of the gravitationally
unbound pairs. Also, as the BH pairs now have well-defined orbits all the way down to the
numerical merger time, we will be able to directly measure binary separation and eccentricity
from the numerical merger, and use the measurements as the initial condition for post-
processing methods without having to assume a constant initial value [e.g. Kelley et al.,
2017a].

We follow Bellovary et al. [2011] and Tremmel et al. [2017], and use the criterion

1

2
|∆v|2 < ∆a∆r (3.15)

to check whether two black holes are gravitationally bound. Here ∆a,∆v and ∆r denote
the relative acceleration, velocity and position of the black hole pair, respectively. Note that
this expression is not strictly the total energy of the black hole pair, but an approximation
of the kinetic energy and the work needed to get the black holes to merge. Because in the
simulations the black hole is constantly interacting with surrounding particles, on the right-
hand side we use the overall gravitational acceleration instead of the acceleration purely from
the two-body interaction.

3.4 Case Studies of BH Models

Given the variety of models we have described so far, we first study the effect of different
BH dynamics models by looking at the individual black hole evolution and black hole pairs
using the constrained simulations. The details of these simulations and specific dynamical
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Figure 3.4.1: The evolution of BH2 in Figure 3.3.1 under different BH dynamics pre-
scriptions. We show the distance to halo center (top), black hole mass (middle) and the
x-component of the black hole velocity (bottom). Mergers are shown in vertical lines (thick
dashed lines are major mergers (q > 0.3), and thin dotted lines are minor mergers) (a):
comparison between no-DF and DF models. DF clearly helps the black hole sink to the halo
center and stay there. (b): Effects of DF from stars and dark matter compared with gas
drag. DF has a stronger effect throughout, except that in the very early stage the drag-only
model is comparable to the DF-only model. (c): Comparison between the DF(fid) and
DF(T15) model. In general, the DF(fid) model results in a more stable black hole motion
and faster sinking, but the difference is small. (d): Black hole dynamics with and without
the gravitational bound check during mergers. Without the gravitational bound check, the
black holes can merge while still moving with large momenta, and thereby get kicked out of
the halo by the injected momentum.



71 3.4. CASE STUDIES OF BH MODELS

models are shown in Table 3.2.1. For all the constrained simulations, we use the same initial
conditions, which enables us to do a case-by-case comparison between different BH dynamical
models.

For the case studies, we choose to study the growth and merger histories of the two largest
black holes and a few surrounding black holes within the density peak of our simulations.
The halos and black holes at the 4σ0 density peak in DF_4DM_G are shown in Figure 3.3.1. The
halos and subhalos shown in circles are identified with Amiga’s Halo Finder [AHF, Knollmann
and Knebe, 2009]. The halos are centered at the minimum-potential gas particle within the
halo, and the sizes of the circles correspond to the virial radius of the halo. Throughout the
paper, we will always define the halo centers by the position of the minimum-potential gas
particle, and we note that the offset between the minimum-potential gas and the halo center
given by AHF (found via density peaks) is always less than 1.5 ckpc/h. The cyan crosses
are black holes with mass larger than 106M⊙/h, and the yellow crosses are the two largest
black holes in the simulation. From the plot, we can see that in the DF_4DM_G simulation,
most of the black holes already reside in the center of their hosting halos at z = 4, although
we also see some cases of wandering BHs outside of the halos.

3.4.1 Black Hole Dynamics Modeling

To compare different dynamical models, we look at the distance between the black hole and
the halo center ∆rBH (we will sometimes refer to this distance as "drift" hereafter), the black
hole mass, and the velocity along the x direction through the entire history of BH2 from
Figure 3.3.1.

We evaluate the black hole drift with two approaches: at each time-step, we find the
minimum potential gas particle within 10 ckpc/h of the black hole and calculate the distance
between this gas particle and the black hole. This is a quick evaluation of the drift that allows
us to trace the black hole motion at each time step, but it fails to account for orbits larger
than 10 ckpc/h, and the minimum-potential gas particle may not reside in the same halo as
the black hole. Therefore, for each snapshot we saved, we define the drift more carefully by
running the halo finder and calculate the distance between the black hole and the center of
its host halo. Whenever the black hole is further than 9 ckpc/h from the minimum potential
gas particle, we take the distance from the two nearest snapshots and linearly interpolate
in time between them. Otherwise we use the distance to the local minimum potential gas
particle calculated at each time step.

DF and No Correction

Before calibrating our dynamical friction modeling, we first demonstrate the effectiveness of
our fiducial DF model, DF_4DM_G, by comparing it with the no-DF run NoDF_4DM_G (note that
throughout the paper, no-DF means no correction to the BH dynamics of any form besides
the resolved gravity). We keep all parameters fixed except for the black hole dynamics
modeling. The details of these simulations can be found in Table 3.2.1.
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In Figure 3.4.1(a), we show the evolution of BH2 in Figure 3.3.1 under the no-DF and
the fiducial DF models. Without any correction to the black hole dynamics, even the largest
black hole in the simulation does not exhibit efficient orbital decay throughout its evolution:
the distance from the halo center is always fluctuating above 2ϵg. This is because the black
hole does not experience enough gravity on scales below the softening length, and cannot
lose its angular momentum efficiently. Now when we add the additional dynamical friction
to compensate for the missing small-scale gravity, the black hole is able to sink to within 1
ckpc/h of the halo centers in <200 Myr and remain there.

The 90 ckpc/h peak in the drift of the black hole marks the merger between BH1 and
BH2 in Figure 3.3.1, when the host halo of BH2 merges into the host of BH1, and the halo
center is redefined near the merger. After the halo merger, dynamical friction is able to sink
the black hole to the new halo center and allows it to merge with the black hole in the other
halo, whereas in the no-DF case we do not see the clear orbital decay of the black holes after
the merger of their host halo until the end of the simulation.

Besides the drift, we also show the x-component of the black hole’s velocity relative to
its surrounding collisionless particles (lower panel). Here we show one component instead of
the magnitude to better visualize the velocity oscillation. With dynamical friction turned
on, the velocity of the black hole is more stable, as the black hole’s orbit has already become
small and is effectively moving together with the host halo. Without dynamical friction, the
black hole tends to oscillate with large velocities around the halo center without losing its
angular momentum.

The different dynamics of the black hole can also affect accretion due to differences in
density and velocities, so we also look at the black holes’ mass growth in the two scenarios
(middle panel). The mass growths of the two black holes are similar under the two models,
although when subjected to dynamical friction, the black holes have more and earlier mergers.
Even though the black hole mass is less sensitive to the dynamics modeling, the merger rate
predictions can be affected significantly as we will discuss later.

Note that for our no-DF model, we have also boosted the dynamical mass to 4×MDM at
the early stage to prevent scattering by the dark matter and star particles. However, even
after the boost, the black holes cannot lose enough angular momentum to be able to stay at
the halo center. This means that even though dynamical heating is alleviated through the
large dynamical mass, the sub-resolution gravity is still essential in sinking the black hole to
the host halo center.

Dynamical Friction and Gas Drag

In the previous subsection, we’ve only included collisionless particles (DM+Star) when mod-
eling the dynamical friction, now we will look into the effects of dynamical friction of gas
(gas drag) in comparison with the collisionless particles in the context of our simulations.

From Equation 4.3 and 3.12, the relative magnitudes of DF and drag mainly depend on
two components: the relative density of DM+stars versus gas, and the values of F(x) and
I(M). Ostriker [1999] has shown that when a black hole’s velocity relative to the medium
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Figure 3.4.2: Comparisons between DF and hydro drag. Left: comparison for a single black
hole. In the top panel we show the magnitude of the DF (red) and gas drag (blue) relative
to gravity for the same black hole, in the DF+Drag_4DM_G run. During the early stage of
the black hole evolution, DF and gas drag have comparable effect, while after z = 7.5 the
gas drag becomes less and less important, as the gas density decreases relative to the stellar
density (middle), and the black hole velocity goes into the subsonic regime (lower). Right:
Ratio between DF and gas drag for all black holes. We plot the ratio both as a function of
redshift (top) and as a function of time after a black hole is seeded (bottom). The orange
lines represent the logarithmic mean of the scatter. The FDF/Fdrag ratio depends strongly on
the evolution time of the black hole: the longer the black hole evolves, the less important the
drag force is. However, there is not a strong correlation between redshift and the FDF/Fdrag

ratio.
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Figure 3.4.3: Left: Scattering relation between the FDF/Fdrag ratio and the black hole mass.
For each black hole, we sample its mass at uniformly-distributed time bins throughout its
evolution, and we show the scattered density of all samples. DF has significantly larger
effects over gas drag on larger BHs. We fit the scatter to a power-law shown in the orange
line. Right: Scattering relation between the FDF/Fdrag ratio and the BHs’ distance to the
halo center. Comparing with the BH mass, we do not see a clear dependence of the FDF/Fdrag

ratio on the distance to halo center. For BHs at all locations within the halo, DF is in general
larger than the gas drag.
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falls in the transonic regime (i.e. near the local sound speed), I is a few times higher than F ,
while in the subsonic and highly supersonic regimes I is smaller or equal to F . Therefore,
we would expect the gas drag to be larger when the black hole is in the early sinking stage
with a relatively high velocity and a high gas fraction.

In Figure 3.4.2, the left panel shows the comparison between the magnitude of DF and
gas drag through different stages of the black hole evolution, as well as the factors that
can alter the effectiveness of the gas drag. In the very early stages (z > 7.5) of black hole
evolution, DF and gas drag have comparable effects, while after z = 7.5 the gas drag becomes
significantly less important and almost negligible compared with DF. The reason follows what
we have discussed earlier: the gas density decreases relative to the stellar density (shown
in the middle panel), and the black hole’s velocity relative to the surrounding medium goes
into the subsonic regime as a result of the orbital decay (shown in the lower panel). Around
z = 3.5, there is a boost in the black hole’s velocity due to disruption during a major merger
with a larger galaxy and black hole. The effect of gas is again raised for a short period of
time (although still subdominant compared to the DF).

In Figure 3.4.1(b) we plot the black hole evolution for the DF-only (DF_4DM_G), drag-
only (Drag_4DM_G), and DF+drag (DF+Drag_4DM_G) simulations. Both the drag-only and
DF-only models are effective in sinking the black hole at early times (z > 7). However, at
lower redshifts, the gas drag is not able to sink the black hole by itself, whereas DF is far more
effective in stabilizing the black hole at the halo center. For this reason, in low-resolution cos-
mological simulations, dynamical friction from collisionless particles is necessary to prevent
the drift of the black holes out of the halo center.

To further illustrate the relative importance between DF and gas drag for the entire BH
population, we examine the dependencies of the FDF/Fdrag on variables related to the BH
evolution for all BHs in the DF+Drag_4DM_G simulation. First, in the right panel of Figure
3.4.2 we show the time evolution of FDF/Fdrag. The top panel shows the ratio as a function of
cosmic time, while the bottom panel shows the ratio as a function of each BH’s seeding time.
The DF/Drag ratio has a wide range for different BHs, but overall DF is becoming larger
relative to the gas drag as the black hole evolves. From the mean value of the DF/drag ratio,
we see that when the black holes are first seeded, DF is only a few times larger than the gas
drag. After a few Gyrs of evolution, DF becomes 2-3 orders of magnitude larger than the gas
drag. However, there is not a strong correlation between redshift and the FDF/Fdrag ratio.
Given the resolution of our simulations, we do not resolve some high-density gas clumps nor
the stellar clusters in our simulations, and therefore the comparison between DF and drag is
only limited to simulations of a comparable resolution. The result from very high-resolution
simulations may be different from ours.

In the left panel of Figure 3.4.3, we show the scattering relation between the FDF/Fdrag

ratio and the black hole mass MBH. We see a strong correlation between the FDF/Fdrag ratio
and the black hole mass: DF has significantly larger effects over gas drag on larger BHs,
although the range of the ratio is large ar the low mass end. We fit a power-law to the
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median of the scatter:
FDF

Fdrag

= 250

(
MBH

107M⊙

)1.7

, (3.16)

which roughly characterize the effect of the two forces on BHs of different masses. From this
relation we see that for BHs with masses > 107M⊙, gas drag is in general less than 1% of
DF. Finally, the right panels show the relation between the FDF/Fdrag ratio and the BH’s
distance to the halo center: there is not a strong dependency on the BH’s position within
the halo.

Comparisons with the T15 Model

For the collisionless particles, we test and study two different implementations for the dy-
namical friction: DF(fid) and DF(T15) (see Section 3.3 for detailed descriptions). In Section
3.3 we pointed out three main differences between them: different kernel sizes (SPH ker-
nel vs. nearest 100 DM+star), different definitions of bmax (10 ckpc vs. 1.5 ckpc/h), and
different approximation of the surrounding velocity distribution (Maxwellian vs. nearest
100-sample distribution). Essentially, these differences mean that DF(fid) is a less-localized
implementation than DF(T15). Now we would like to evaluate the effectiveness of these two
implementations and show how different factors affect the final dynamical friction calcula-
tion.

Figure 3.4.4 shows the relevant quantities in the DF computation for the two methods.
The two kernels both contain ∼ 100 dark matter and star particles at high redshift (z > 8),
but after that the SPH kernel (defined to include the nearest 113 gas particles) begins to
include more and more stars and dark matter. The mass fraction of stars in the SPH kernel
dominates over that of dark matter by ∼ 10 times for a BH at the center of the galaxy.
The larger kernel of DF(fid) has two effects: first, the DF density will be smoother over
time; second, during halo mergers, the DF(fid) kernel can "see" the high-density region of
the larger halo, which results in a higher DF near mergers compared to DF(T15). This is
confirmed by the second panel, where we show the density for dynamical friction calculation
from the two kernels. The densities calculated from the two kernels are similar in magnitude
throughout the evolution, although the DF(T15) kernel yields slightly larger density due to
its smaller size. Around the BH merger, the density in DF(fid) is larger due to its inclusion
of the host halo’s central region.

The third panel shows the Coulomb logarithm in the two models. Recall that Λ =
bmax

(GMBH)/v2BH
, and so the Coulomb logarithm depends on the black hole’s mass, its velocity

relative to the surrounding particles, and the value of bmax. From Figure 3.4.1(c), the mass
of the DF(T15) black hole is slightly smaller, but the mass difference is small compared with
the 6 times difference in bmax. Given bmax=10 ckpc/h in DF(fid) and bmax=1.5 ckpc/h in
DF(T15), we would expect the Coulomb logarithm to be larger for the former. However,
there is yet another tweak: the v2BH term turns out to be significantly larger in the DF(T15)
model(fourth panel). Note that in the DF(T15) model v2BH is calculated using only 100
surrounding particles, and for the high-density region we are considering here, the velocity
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Figure 3.4.4: Comparison between different components in the two dynamical friction
models, DF(fid) (red) and DF(T15) (blue) (see Section 3.3 for descriptions). We show the
number of stars and dark matter particles included in the DF density and velocity calculation
(top panel), the density used for DF calculation (second panel), the Coulomb logarithm
used in the two methods (third panel), the velocity of the BH relative to the surrounding
particles (fourth panel, note that the "surrouding particles" are defined differently for the
two models), and the magnitude of DF relative to gravity (bottom panel). The higher
DF in the DF(fid) model at z > 8 is due to the larger Coulomb logarithm. After z ∼ 7,
the higher density of DF(T15) due to more localized density calculation counterbalances
its lower log(Λ), resulting in similar DF between z = 8 and z = 3.5. During the halo
merger at z = 3.5, the DF(fid) model included particles from the target halo into the density
calculation, and therefore yields larger DF during the merger.
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of the nearest 100 particles is very noisy in time. As we will show in Appendix 3.B, for
smaller black holes the difference in v2BH is not as large, and usually DF(fid) has a larger
logΛ due to its larger bmax.

In Figure 3.4.1(c), we show the evolution of the black hole under these two models. At
high redshift (z > 8), due to the large log(Λ), the black hole in the DF(fid) simulation
sinks slightly faster to the halo center. Between z = 8 and z = 3.5, both models have
similar dynamical friction (as discussed in the previous paragraph) and the motion and mass
accretion are also similar. Then at z = 3.5, within the host halo of the black hole major
merger, dynamical friction in DF(fid) is again larger because the density kernel includes
more particles from the high-density region in the target halo, and this leads to an earlier
merger time.

Overall, the performance of the two models is similar. However, as we have seen in the
velocity calculation of the black holes relative to the surrounding particles, DF(T15) could
be too localized for simulations of our resolution (ϵg ∼ 1kpc/h) and is sometimes subject to
numerical noise. Therefore, in our subsequent statistical runs we pick DF(fid) as our fiducial
model, and will drop the ’fid’ in its name hereafter.

Gravitationally Bound Merging Criterion

The merging criterion can affect not only the merging time, but also the dynamics and
evolution of the black holes. Naively, we might expect the distance-only merging to produce
more massive black holes, because black holes are merged more easily. However, in many
cases this is not true, and we will illustrate here through one example.

Figure 3.4.1(d) shows the evolution of the same black hole with the same dynamical
friction prescription, but different merging criteria. We note a drastic difference in the black
hole’s trajectories: while the BH in the gravitationally bound merger case is staying at the
center of its host halo, the BH in the distance-only merger flies out of its host after a merger.
This is because with the distance-only model, it is possible for one black hole to have a very
large velocity at the time of the merger, since we do not limit the black hole’s velocity. By
momentum conservation, the black hole with a larger velocity can transfer the momentum
to the other black hole (and the merger remnant) which might have already sunk to the
halo center. The sunk black hole then drifts out of the halo center after a merger due to the
large momentum injection. This is especially common in simulations where the black hole’s
dynamical mass is boosted, because the injected momentum is also boosted with mass and
a smaller black hole in a satellite galaxy can easily kick a larger black hole out. If we add
on the gravitational bound check, there will be more time for the black holes to lose their
angular momentum, and so the injected momentum is far less, and in most cases does not
kick each other out of the central region.

3.4.2 Black Hole Mergers

Having seen the effect of different dynamical models on the evolution of individual black holes,
next we will discuss how the dynamics, together with different BH merging criteria, affect
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Figure 3.4.5: The comparison between the distance of two merging black holes in the no-
correction, DF(fid), DF(T15) and gas drag models in the early stage (left) and later stage
(right) of the black hole evolution. For early mergers, the effect of the frictional forces (DF
and drag) is not very prominent but still noticeable. The DF and gas drag both allow the
black holes to merge faster compare to the no-DF case. For the later merger happening in
a denser environment, the effect of dynamical friction is clear. However, the gas drag does
not have a big effect on the black hole at this late stage compared with the no-DF case.
The lower panels show the merging black holes within their host galaxies as well as their
trajectories towards the merger in the DF_4DM_G run. The left images show the early phase
of the orbital decay, and the right images show the later phase when the orbits get smaller.
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the evolution and mergers of the black holes. In particular, we want to study their merging
time and trajectories before and after the mergers. Similar to the previous subsection, we
will draw our examples from the two halos shown in Figure 3.3.1.

Effect of Dynamical Friction Modeling

We first look at how different dynamical models affect the time scale of black hole orbital
decay and mergers. We pick two cases of mergers: one is an early merger at z > 5 when the
black holes have not outgrown their dynamical masses; the other is a later merger at z ∼ 3.3
when both BHs are larger than their seed dynamical masses (the major merger between BH1
and BH2 in Figure 3.3.1). Following Tremmel et al. [2015], we also compute the dynamical
friction time for the two mergers using Equation (12) - Equation (15) from Taffoni et al.
[2003]:

tDF = 0.6× 1.67Gyr × r2cVh

GMs

log−1

(
1 +

Mvir

Ms

)(
J

Jc

)α

, (3.17)

where Ms is the mass of the smaller black hole (which we treat as the satellite), Mvir is
the virial mass of the host halo of the larger black hole (found by AHF), Vh is the circular
velocity at the virial radius of the host, and rc is the radius of a circular orbit with the
same energy as the satellite black hole’s initial orbit. The last term

(
J
Jc

)α
is the correction

for orbital eccentricity, where J is the angular momentum of the satellite, Jc is the angular
momentum of the circular orbit with the same energy as the satellite, and α is given by:
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(
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In our calculation, the virial radius, velocity, and mass are obtained from the AHF outputs,
and the circular radius, orbit energy, and angular momentum are calculated by fitting the
halo density profile to the NFW profile.

Figure 3.4.5 shows distances between two merging black holes in the no-DF, DF(fid),
DF(T15), and gas drag models in the early and later stages of their evolution. For the early
merger, the effect of the frictional forces (DF and drag) is not very big but still noticeable.
The DF and gas drag have similar effects on the orbital decay at higher redshifts, consistent
with our discussion in Section 3.4.1. The DF(T15) model sinks the black hole a little slower
than the DF(fid) model, but the difference is within 50 Myrs. All three friction models allow
the black holes to merge faster compared to the no-DF case by ∼ 150 Myrs.

For the later merger, which takes place in a denser environment, the effect of dynamical
friction is clearer: the dynamical friction allows the black holes to sink within the grav-
itational softening of the particles in < 200 Myrs. Without dynamical friction the black
hole’s orbit does not have a clear decay below 2 kpc and does not merge at the end of our
simulation. Furthermore, the gas drag does not have a big effect on the black hole at this
late stage compared with the no-correction case. This follows from our discussion in section
3.4.1 that gas drag is much less effective at lower redshift compared to dynamical friction.
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In both plots, the yellow shaded region is the dynamical friction time from the analytical
calculation in Equation 4.7. Here we draw a band instead of a single line, because the black
hole’s orbit is not a strict ellipse, and the black hole is continuously losing energy. We
calculate tDF at multiple points between the first and second peak in the black hole’s orbit
(e.g. between z = 5.9 and z = 5.7 in the earlier case), and plot the range of those tDF.
For both mergers, the analytical prediction is less than 150 Myrs later than the merger of
the (fid) model. We note that the Taffoni et al. [2003] analytical tDF is a fit to the NFW
profiles, and the previous numerical and analytical comparisons on the black hole dynamical
friction[e.g. Pfister et al., 2019, Tremmel et al., 2015] are performed in idealized NFW halos
with a fixed initial black hole orbit. In our case, the halo profiles and black hole orbits are
not directly controlled, and therefore deviation from the analytical prediction is expected.
We will study such deviations statistically later in Section 3.5.3.

Effect of Gravitational Bound Check

In Section 3.3.3 we introduced two criteria which we use to perform black hole mergers in
our simulations: we can merge two BHs when they are close in distance, and we can also
require that the two BHs are gravitationally bounded in addition to the distance check.

In Figure 3.4.5 we show the difference in black holes’ merging time with and without the
gravitational bound criterion. The vertical dashed line marks the time that the two black
holes in the DF_4DM_G simulation would merge if there was not the gravitational bound
check. Without the gravitational bound check, the orbit of the black holes is still larger than
1 kpc when they merge, whereas with the gravitational bound check, the orbit size generally
decays to less than 300 pc when the black holes merge. The merger without gravitational
bound check generally makes the merger happen earlier by a few hundred Myrs (we will
study the orbital decay time statistically in the next section). Therefore, for more accurate
merger rate predictions as well as the correct accretion and feedback, it is necessary to
apply the gravitational bound check during black hole mergers whenever the black hole has
a well-defined velocity.

3.5 Black Hole Statistics

After looking at individual cases of black hole evolution, we now turn to the whole SMBH
population in the simulations with different modeling of black hole dynamics. For statistics
comparison, instead of using the Lbox = 10 Mpc/h constrained realizations where we added
4σ density peaks to our small volumes (see Section 3.2.2), we now use Lbox = 15
Mpc/h unconstrained simulations. The details of our Lbox = 15 Mpc/h simulations are
shown in Table 3.2.2.
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Figure 3.5.1: The effect of different BH dynamics modeling on BH position relative to
its host. We include the reposition model (blue), no-DF model (orange),DF(T15) model
(green), DF(fid) model (red) and the DF+drag model (purple). Top: The fraction of
halos(subhalos) without a black hole for halos with masses above the black hole seeding
mass at Mhalo = 1010M⊙/h. Middle: The fraction of halos without a central black hole
("central" means within 2ϵg from the halo center identified by the halo finder), out of all
halos with black holes. Bottom: Distribution of black holes’ distance to its host halo center.
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mass but do not apply additional dynamical friction.
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Figure 3.5.3: Mass functions for reposition, DF and no-DF simulations. With reposition
(blue), we have the highest mass function and earlier formation of 108M⊙ black holes. The
no-DF simulations (green) have lower mass functions, which is expected due to low-accretion
and merger rates from the black hole drifting. The dynamical friction model (red) yields a
mass function in between.
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3.5.1 Sinking of the Black Holes

With the added dynamical friction, we hope to assist the orbital decay of the black holes and
prevent the stalling due to the smoothed gravity. Hence, we start by looking at the black
holes’ position relative to the host halos. Due to the resolution limit of our simulations, we
would not expect the black holes to be able to sink to the exact minimum potential. Instead
we consider a < 2ϵg = 3 ckpc/h distance to be "good sinking".

In Figure 3.5.1, we show the statistics related to black holes’ sinking status. We in-
cluded the comparison between the reposition model (L15_Repos_4DM), the no-DF model
(L15_NoDF_4DM), the two dynamical friction models (L15_DF_4DM and L15_DF(T15)_4DM)
and the DF+drag model(L15_DF+drag_4DM). To start with, we simply count the fraction of
halos without a black hole when its mass is already above the black hole seeding criterion
(i.e. 1010M⊙/h). The top panel shows the fraction of large halos without a BH for different
models at z = 3.5 and z = 2. Surprisingly, the no-DF model ends up with the least halos
without a black hole. This is because even though the black holes without dynamical cor-
rections cannot sink effectively, the high dynamical mass still prevents sudden momentum
injections from surrounding particles, and therefore most BHs still stays within their host
galaxies. The dynamical friction models perform equally well, with < 10% no-BH halos
at the low-mass end. The reposition model, however, ends up with the most no-BH halos,
even though repositioning is meant to pin the black holes to the halo center. This happens
because under the repositioning model, the central black holes tend to spuriously merge into
a larger halo during fly-by encounters, leaving the smaller sub-halo BH-less.

Next we look at where the black holes are located within their host galaxies. For all
the halos with at least one black hole, we examine whether the black hole is located at the
center (i.e.< 2ϵg = 3ckpc/h from the halo center). The middle panel of Figure 3.5.1 shows
the fraction of halos without a central BH. The no-DF model has significantly more halos
without a central BH compared to the other models, with over half of the halos hosting
off-center BHs. Among the three runs with dynamical friction, the DF(T15) and DF(fid)
models have a similar fraction of halos (∼ 20%) without a central BH, and we can see this
fraction dropping from z = 3.5 to z = 2, meaning that many BHs are still in the process of
sinking towards the halo center. When we further add the gas drag, 10% more halos host at
least one central BH, and the difference between the drag and no-drag central BHs is more
prominent at high redshifts.

Our definition of a "central" BH depends on the resolution of our simulation, but we
note that our conclusions above do not change if we shift this criterion by a factor of ∼ 2.
Moreover, even though we consider the smaller fraction of off-centered BHs as an evidence
that the dynamical friction is taking effect, we note that there are both theoretical and
observational evidences that off-center BHs do exit and merge with each other [e.g. Bellovary
et al., 2010, Kulier et al., 2015, Volonteri and Rees, 2005]. In the case of dual/offset AGN
observations, we should also expect to see BHs further than 5 kpc apart [e.g. Barrows et al.,
2018, Reines et al., 2020]. Therefore, the amount of off-center BHs should not be treated as
an absolute standard for evaluating BH dynamical models.

Interestingly, the repositioning algorithm is not as efficient at sinking the BHs at z = 2 as
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the DF. This is because our repositioning algorithm places the BHs at the minimum potential
position within the accretion kernel, instead of within the entire halo. The majority of the
offset between the BH positions and the halo center comes from the offset between the
minimum-potential position accessible to the BH (i.e. minimum-potential in the accretion
kernel) and the minimum-potential position in the halo. Such offset can be especially severe
at lower redshift, when the size of the accretion kernel gets smaller and mergers happen more
frequently, making it easier for the black holes to get stuck at a local minimum.

In the bottom panels we show the distributions of the black holes’ distance to the halo
centers under different models. For the no-DF run, again we see that the black holes fail
to move towards the halo center at lower redshift, resulting in a much flatter distribution
compared to all the other models. In comparison, when we add dynamical friction to the
black holes, for both the DF(fid) and the DF(T15) models the distributions are pushed much
closer to the halo center, with a peak around the gravitational softening length. When we
then add the gas drag in addition to DF, the peak at ϵg becomes slightly higher than those
in the DF-only runs. The combination of DF and gas drag, as we would expect from the case
studies, is the most effective in sinking the black holes to the halo centers and stabilizing
them. Finally, we plot the repositioning model for reference. It does well in putting the black
hole close to the minimum potential, and often the black holes can be located at the exact
minimum-potential position (the distributions peak at 0 for z = 3.5). However, as discussed
in the previous paragraph, there are cases where the local minimum potential found by the
repositioning algorithm does not coincide with the global minimum potential of the halo,
and that is why we also see non-zero probability density for ∆r > 3 ckpc/h at z = 2.

In Figure 3.5.2, we show the effect of different choice of dynamical mass on the black
holes’ sinking status. We compare our fiducial DF model (L15_DF_4DM) with Mdyn = 4Mdm

to models with Mdyn = 2Mdm, Mdyn = Mdm, and Mdyn = MBH. We can see that for Mdyn >
Mdm, the majority of the BHs stay within 2ϵg of the halo center, while for Mdyn < Mdm, many
BHs still stalls at a relatively large radius. Noticeably, if we do not boost the dynamical
mass of the BHs, the sinking is even worse than if we boost the dynamical mass but do not
apply additional dynamical friction.

The statistics we have seen for the models above are consistent with the results from the
case studies. This shows that even though for the case studies we have focused mainly on
large black holes in one of the biggest halo, a similar trend still applies to other black holes
in the cosmological simulations, which are embedded in smaller halos or subhalos. Moreover,
the fact that we still have off-center BHs even after adding the dynamical friction is in line
with predictions from previous simulations [e.g. Bellovary et al., 2011, Governato et al., 1994,
Tremmel et al., 2018a, Volonteri and Rees, 2005], and is not due to the inefficient sinking
within our simulation.

3.5.2 Black Hole Mass Function

Next we look at how different dynamics affect the black hole mass function (BHMF). One
problem with the repositioning method is that it places the black holes at the galaxy center
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too quickly, which could result in excess accretion and thus a higher mass function. On the
other hand, if we do not add any correction to the black hole motion, many BHs will not
go though efficient accretion and mergers, and we will see a lower mass function. We would
expect the BHMF in the dynamical friction run to fall between the repositioning case and
the no-DF case.

Figure 3.5.3 shows the BHMF from the reposition(L15_Repos_4DM), dynamical friction
(without gravitational bound check:L15_DF_4DM; with gravitational bound check:L15_DF_4DM_G),
and no-DF (without gravitational bound check: L15_NoDF_4DM; with gravitational bound
check: L15_NoDF_4DM_G) runs. The reposition model yields the highest mass function, and
is the only simulation with more than one 108M/h black holes at z = 2. This is expected
from the over-efficient BH mergers and the high-density surroundings in the reposition model.
Moreover, it creates increasingly more massive BHs over time, as the increased merger rate
produces a stronger effect over time. The no-DF runs produces the lowest mass function
due to the off-centering, while the DF mass function falls between the reposition and no-DF
case as we expected.

Naively, we would expect the models without gravitational bound checks to produce a
higher mass function, because it allows for easier mass-accretion via mergers. However, as
discussed in Section 3.4.1, this is not the case if we compare the dashed lines and solid
lines with the same colors. For example, under the DF model, the L15_DF_4DM_G simulation
forms more massive black holes than the L15_DF_4DM simulation, especially at lower redshift.
The reason can be traced back to what we have seen in Figure 3.4.1(d): when there is no
gravitational bound check, the large momentum injection during a merger kicks the black
hole out of the halo center, thus preventing the efficient growth of large black holes.

Considering the relatively large uncertainties due to the limited volume, the difference in
the mass function is not very significant. We would expect other factors such as the black
hole seeding, accretion and feedback to have a larger effect on the mass function compared
to the dynamical models we show here [e.g. Booth and Schaye, 2009].

3.5.3 Dynamical Friction Time and Mergers

Because the reposition method is used in most large-volume cosmological simulations, a post-
processing analytical dynamical friction time is calculated in order to make more accurate
merger rate predictions. Now that we have accounted for the dynamical friction on-the-fly,
we want to study how our numerical mergers with dynamical friction compare against the
analytical predictions, and how different dynamical models impact the black hole merger
rate.

In Section 3.4.2, we compared the numerical merging time to the analytical predictions for
two merger cases. Now we use the same method to calculate an analytical dynamical friction
time for all black hole mergers in our L15_DF_4DM_G simulation. For each pair, we begin
the calculation at the time tbeg when the black hole pair first comes within 3 ckpc/h of each
other, as this mimics the merging time without the gravitational bound check, and is also
close to the merging criterion under the reposition model. The numerical dynamical friction
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Figure 3.5.4: The delay of mergers due to the dynamical friction time. Here we compare
the numerical dynamical friction time,tnum, to the analytically calculated time (following
Equation 4.7) tanaly. Top left: distribution of the dynamical friction time from numerical
merger (blue) and analytical predictions (red). Top right: ratio between the numerical
and analytical tdf . Their difference is less than one order of magnitude in all merger cases.
Bottom: dynamical friction time as a function of the virial mass of the host halo for the
numerical (blue) merger and analytical predictions (red). The same merger event is linked
by a grey line.
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Figure 3.5.5: The cumulative mergers for different BH dynamics and merging models. The
reposition model (blue solid) predicts more than two times the total mergers compared
with the other models. Without the gravitational bound check, the DF (red dashed) and
the no-DF model (green dashed) predicts similar numbers of mergers, indicating that the
first encounters of the black hole pairs are similar under the two models. However, if we add
the gravitational bound check, the dynamical friction model (red solid) yields ∼ 50% more
mergers compared to the no-correction model. Adding the gas drag in addition to dynamical
friction (purple solid) raises the mergers by a few.
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time tnum is the time between the numerical merger and tbeg. The analytical dynamical
friction time tanaly is calculated using the host halo information in the snapshot just before
tbeg and the black hole information at the exact time-step of tbeg.

Figure 3.5.4 shows the comparison between the numerical and analytical dynamical fric-
tion times. In the top panel we show the distribution of the two times as well as the
distribution of their ratio. We note that for all the mergers happening numerically, tanaly
does not exceed 2 Gyrs, and most have tanaly less than 1 Gyr. This means that we do not
have many fake mergers that shouldn’t merge until much later (or never). Also, the ratio
plot shows that the numerical and analytical times are always within an order of magnitude
of each other, with most of the numerical mergers earlier than the analytical mergers. The
numerical merger time is peaked between 100 Myrs and 1 Gyrs, whereas the analytical cal-
culation yields a flatter distribution. We would expect tanaly to be longer than tnum, both
because we have a selection bias on tDF by ending the similation at z = 2, and because we
numerically merge the black holes when their orbit is still larger than 3 ckpc/h. However,
this does not explain why tanaly has a higher probability between 10 Myrs and 100 Myrs.

To see the individual merger cases in the distribution more clearly, in the lower panel of
Figure 3.5.4 we plot all the numerical and analytical dynamical friction times as a function
of the host halo’s virial mass. From this figure we do not see a clear dependence of either
dynamical friction times on the host halo’s virial mass. There is also no strong correlation
between the tnum/tanaly ratio and the halo mass. We do not further investigate the discrep-
ancies between the numerical and analytical results, as these results can vary significantly
from system to system.

We note that although the numerical model has free parameters (such as bmax, Mdyn,seed)
that can impact the merging time (but see Appendix 3.C), it can account for the immediate
environment around black hole and adjust the dynamical friction on-the-fly. More impor-
tantly, it also accounts for the interaction between the satellite BH and its own host galaxy,
which could reduce the sinking time significantly [e.g. Dosopoulou and Antonini, 2017]. The
analytical model, though verified by N-body simulations, does not react to the environment
of the merging galaxies by always assuming an NFW profile. Moreover, it only models the
sinking of a single BH without embedding it in its host galaxy. Therefore, we expect the
numerical result to be a more realistic modeling of the binary sinking process.

After comparing the DF model against the analytical prediction, next we compare dif-
ferent numerical models in terms of the black hole merger rate. Figure 3.5.5 shows the
cumulative mergers from z = 8 to z = 2. We have included comparisons between the reposi-
tion, dynamical friction and no-DF models, both with and without the gravitational bound
check. The reposition model predicts more than twice the total number of mergers compared
to the other models. Without the gravitational bound check, the DF and the no-DF models
predict similar numbers of mergers, indicating that the first encounters of the black hole pairs
are similar under the two models. However, if we add the gravitational bound check, the DF
model yields ∼ 50% more mergers compared to the no-DF model, because the addition of
DF assists energy loss of the binaries and leads to earlier bound pairs. Finally, the merger
rate is not very sensitive to adding the gas drag: the merger rate in the DF-only model is
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Figure 3.6.1: Left: Distribution of the mass of the smaller black hole (Ms), and distribution
of the total mass of the binary (Mtot). For both simulations, the mergers in which at least
one of the black holes is slightly above the seed mass dominate. The most massive binary
has a total mass of 3 × 108M⊙. Middle: The mass ratio q between the two black holes
in the binary. We see a peak at log(q) = −0.5, corresponding to pairs in which one BH is
about three times larger than the other. Right: Scatter of the two black hole masses in the
binaries, binned by redshift. To separate the scatter in the two simulations, for the DF+drag
run we take M1 to be the mass of the larger BH, while for the NoDF run M2 is the larger
BH.

similar to that of the DF+drag model. This can be foreseen in the comparison shown in
Figure 3.4.2, where the gas drag is subdominant in magnitude.

3.6 Merger Rates in the 35Mpc/h Simulations
Based on all the previous test of BH dynamics modeling, we have reached the conclusion
that the DF+drag model with Mdyn = 4MDM is most capable of sinking the black hole to
the halo center. Hence, we choose to use this model to run our larger-volume simulation
L35_DF+drag_4DM_G for the prediction of the BH coalescence rate. Besides this model, we
also perform a same-size run without the dynamical friction, L35_NoDF_4DM_G, as a lower
limit for the predicted rate. Our L35 simulations are run down to z = 1.1. The black hole
seed mass is 5× 105M⊙/h and the minimum halo mass for seeding is 1010M⊙/h. The details
of these two simulations are shown in Table 3.2.2.

3.6.1 The Binary Population

Because this work mainly focuses on model verification and is not intended for accurate
merger-rate predictions, we do not account for the various post-numerical-merger time de-
lays. These delays can be caused by physical processes such as sub-ckpc scale dynamical
friction, scattering with stars, gravitational wave driven inspiral and triple MBH systems
[e.g. Bonetti et al., 2018, Dosopoulou and Antonini, 2017, Quinlan, 1996, Sesana et al.,
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Figure 3.6.2: Merger rate per year of observation per unit redshift predicted from our
L35_DF+drag_4DM_G (purple) and L35_NoDF_4DM_G (blue) simulations. For comparison,
we also show the the prediction from recent hydro-dynamical simulations. We include three
simulations of similar mass-resolution: Volonteri et al. [2020] from the Horizon-AGN sim-
ulation (gray), Katz et al. [2020] (yellow) from the Illustris simulation and Salcido et al.
[2016] from the EAGLE simulations (pink). We note that the merger rate is sensitive to the
BH seeding criterion which can be different among the simulations shown. Since we do not
apply any post-processing delays after the numerical mergers, we only compare to results
without delays.
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2007a, Vasiliev et al., 2015]. We consider all the numerical mergers as true black hole merger
events. Without any post-process selection, there are 25224 black holes and 4237 mergers in
the L35_DF+drag_4DM_G run, and 27693 black holes and 2349 mergers in the L35_NoDF_4DM_G
run down to z = 1.1.

Figure 3.6.1 shows the distribution of the binary parameters for the mergers in our
simulations. For both simulations, there is at least one black hole around the seed mass for
most mergers, but the peak does not lie at the exact seed mass. The most massive binary
has a total mass of 3 × 108M⊙. For the mass ratio q between the two black holes in the
binary, we see a peak at log(q) = −0.3, corresponding to pairs in which one BH is about two
times larger than the other. Finally, we show the scatter of the two progenitor masses. The
low mass end of the population deviates more from q = 1, while the majority of same-mass
mergers come from the 5× 106M⊙ ∼ 5× 107M⊙ mass range.

Comparing with previous simulations such as Katz et al. [2020], Salcido et al. [2016], we
do not see as many cases of seed-seed mergers, but our distribution in q is similar to that
shown in Weinberger et al. [2017] where the larger progenitor is a few times larger than
the small progenitor. This is due to our larger black hole seed mass of 5 × 105M⊙ (106M⊙
in Weinberger et al. [2017]): the mass accretion in the early stage is proportional to M2

BH,
and so during the time before the black hole mergers, our black holes accrete more mass
compared to the simulations with smaller seeds. This explains why both of our black holes
in the binaries are not peaked at the exact seed mass.

3.6.2 Merger Rate Predictions

We use the binary population shown in the previous section to predict the merger rate
observed per year per unit redshift. The merger rate per unit redshift per year is calculated
as:

dN

dz dt
=

N(z)

∆zVc,sim

dz

dt

dVc(z)

dz

1

1 + z
, (3.19)

where N(z) is the total number of mergers in the redshift bin z, ∆z is the width of the
redshift bin, Vc,sim is the comoving volume of our simulation box and dVc(z) is the comoving
volume of the spherical shell corresponding to the z bin.

We compare our results against recent predictions from hydro-dynamical simulations of
similar resolution, Salcido et al. [2016], Katz et al. [2020] and Volonteri et al. [2020]. Here
we briefly summarize relevant information about their merger catalogs. The Ref-L100N1504
simulation in the EAGLE suite used in Salcido et al. [2016] has an 23 times larger simulation
box and slightly higher resolution than our simulations. They seed 1.4× 105M⊙ black holes
in 1.4×1010M⊙ halos. They adopt the reposition algorithm for black hole dynamics, but set
a distance and relative speed upper limit on the repositioning to prevent black holes from
jumping to satellites during fly-by encounters. We compare with their no-delay rate during
the inspiral phase. The Illustris simulation used in Katz et al. [2020] has a similar box size,
resolution and BH dynamics to the Ref-L100N1504 simulation in EAGLE, except that their
halo mass threshold for seeding BHs is 7 × 1010M⊙. We compare against their ND model,



93 3.6. MERGER RATES IN THE 35MPC/H SIMULATIONS

in which mergers are also taken to occur at the numerical merger time without any delay
processes. The Horizon-AGN simulation in Volonteri et al. [2020] is 43 times larger than our
simulation box, with ∼ 5 times coarser mass resolution and a black hole seed mass of 105M⊙.
Instead of seeding BHs in halos above certain mass threshold, the seeding in Volonteri et al.
[2020] is based on the local gas density and velocity dispersion, and seeding is stopped at
z = 1.5. For black hole dynamics, they apply dynamical friction from gas, but not from
collisionless particles.

Figure 4.5.1 shows our merger rate prediction in the L35_DF+drag_4DM_G and L35_NoDF_4DM_G
simulations. The L35_DF+drag_4DM_G run predicts ∼ 2 mergers per year of observation down
to z = 1.1, while the L35_NoDF_4DM_G run predicts ∼ 1. The merger rates from both simula-
tions peak at z ∼ 2. This factor-of-two difference between the two simulations is consistent
with what we predicted in the Lbox = 15 Mpc/h runs in Figure 3.5.5. Although we did not
run a Lbox = 35 Mpc/h simulation with the repositioning model, we expect such a run to
predict 5 ∼ 6 mergers per year down to z = 1.1 according to 3.5.5.

Generally speaking, our simulations yield similar merger rates as the raw predictions
from the previous works of comparable resolution. However, we still note some differences
both in the overall rates and in the peak of the rates. We will now elaborate on the reasons
for those discrepancies.

First, both of our simulations predict more mergers compared with the Katz et al. [2020]
ND model prediction. This is surprising given that in the 15 Mpc/h runs we saw 2 ∼ 3
times more mergers when we used the reposition method like Katz et al. [2020] and Salcido
et al. [2016] did, comparing to our DF+Drag model. Although Katz et al. [2020] cut out
∼ 25% secondary seed mergers and binaries with extreme density profiles, their rate is still
lower after adding the cut-out population. One major reason for the higher rate from our
simulation compared to Katz et al. [2020] is the different seeding parameters we use: our
minimum halo mass for seeding a black hole is 1010M⊙/h, which is 5 times smaller compared
with Katz et al. [2020]. Moreover, our seeds are a factor of 5 larger. Hence, we have a denser
population of black holes in less-massive galaxies, which is likely to result in a higher merger
rate even compared to the reposition model used in Illustris.

Second, although the rates from EAGLE, Horozon-AGN and our L35_DF+drag_4DM_G
simulation cross over at z ∼ 2, the slope of our merger rate is very different. Volonteri et al.
[2020] predicts most mergers at z ∼ 3, whereas the Salcido et al. [2016] rate peaks at z ∼ 1.
This difference can also be traced to the different seeding rate in the three simulations: in
Salcido et al. [2016], the seeding rate keeps increasing until z ∼ 0.1, while we observe a drop
in seeding rate at z = 3 in our simulations. In Volonteri et al. [2020], due to the different
seeding mechanism, BH seeds form significantly earlier, leading to a peak in merger rate at
a higher redshift. Hence the peak in the BH merger rate is strongly correlated with the peak
in the BH seeding rate.

Finally, besides the effect due to different BH seed models on the merger rate, higher
resolution can significantly increase the BH merger rates in the simulations. As was shown
in previous work [e.g. Barausse et al., 2020, Volonteri et al., 2020], dwarf galaxies in low-mass
halos can have large numbers of (small mass) BH mergers, and so resolving such halos and
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galaxies can increase the BH merger rate significantly. The merger rate differences between
high and low resolution and the associate choice for the seed models can lead to large
differences in the predictions of merger rates than taking account DF in the BH dynamics.

3.7 Conclusions
In this work we have tested methods for implementing dynamical friction from collisionless
particles (i.e. stars and dark matter) and gas in low-resolution cosmological simulations
(with mass resolution MDM ∼ 107M⊙ and spatial resolution of ϵg ∼1kpc/h), both for single
black hole evolution/mergers using constrained simulations, and for the black hole population
using unconstrained simulations.

We showed that dynamical friction from collisionless particles can effectively assist the
black hole orbit to decay to within 2ϵg of the galaxy center, representing a marked improve-
ment over models that do not include any dynamical correction. Importantly, we find that
for our prescription to work well, the dynamical mass of the black holes must be at least twice
the mass of the dark matter particles. This is in agreement with results from Tremmel et al.
[2015]. The dynamical friction implementation from Tremmel et al. [2015] (DF(T15)) and
our implementation adapted to lower-resolution simulations (DF(fid)) result in dynamical
friction of a similar magnitude, and have comparable effects on the black holes’ dynam-
ics. However, we find that our fiducial model is marginally more suitable for low-resolution
simulations, as the nature of the calculation results in less noisy force corrections.

After applying the dynamical friction and performing the gravitational bound check on
the black hole pairs, the dynamical friction time of the black holes is consistent with analytical
predictions, although the variances can be large for individual black holes due to their varied
environments. We note that checking whether the two black holes are gravitationally bound
at the time of the merger is necessary both for preventing sudden momentum injection onto
the black holes, and for allowing a more realistic orbital decay time.

By direct comparison of the force magnitudes throughout the simulation, we find that
dynamical friction from collisionless particles dominate in the majority of cases. The in-
fluence of gas drag is highest at the high redshifts, but even then it is typically similar to
or less than the contribution from stars and dark matter. This is in broad agreement with
the results from Pfister et al. [2019], though we stress that our simulations cannot resolve
the structure of gas on the smallest scales. It is possible that interactions with gas is still
important, such as migration within circumbinary disks [e.g. Haiman et al., 2009].

Using our fiducial DF+drag model, we calculate the cumulative merger rate down to
z = 1.1 using a Lbox = 35 Mpc/h simulation. Without considering any post-merger de-
lays, we predict ∼ 2 mergers per year for z > 1.1, and we lower bound our prediction by a
no-dynamical-friction run which predicts ∼ 1 merger per year. Compared with existing pre-
dictions from hydro-dynamical simulations [Katz et al., 2020, Salcido et al., 2016, Volonteri
et al., 2020], our rates are consistent with the raw merger rates (rates before post-processing
delays are added) from previous works of similar resolution. While the dynamics modeling
has significant effects (factor of a few according to our experiments) on the BH merger rate,
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we also found that the different BH seeding criteria and mechanisms account also play a big
role in the merger rate predictions.

Our work has demonstrated the feasibility of recovering sub-kpc-scale BH dynamics in
low-resolution cosmological simulations by adding the unresolved dynamical friction. This is
the first step in improving upon the widely-adopted reposition model and in tracking the BH
dynamics directly down to the resolution limit. Beyond the resolution limit, we still need to
account for several smaller-scale binary processes before we can make realistic merger rate
predictions [e.g. Bonetti et al., 2018, Dosopoulou and Antonini, 2017, Haiman et al., 2009,
Katz et al., 2020, Kelley et al., 2017a, Quinlan, 1996, Sesana et al., 2007a, Vasiliev et al.,
2015]. Nevertheless, having access to the full dynamical information of the binary at the
time of the numerical merger also helps us to better model these small-scale processes. We
will leave the analysis of post-merger delays for future works.

There are still several aspects of the DF model that remain somewhat uncertain. Most
importantly, the parameters (e.g. bmax,Mdyn,seed) in the current dynamical friction model can
induce uncertainties in the sinking timescale and the merger rate predictions. For example,
reducing Mdyn,seed to a value similar to or below the dark matter particle mass will reduce the
merger rate by a factor of two or more. Our current choice is well tested in our simulations,
but it is still subject to the limitations of our spatial and mass resolution. The limit in the
MBH/MDM ratio also hinders comprehensive studies of BH seeding scenarios in the cosmolog-
ical context. We would need insights from high-resolution simulations [e.g. Dosopoulou and
Antonini, 2017, Pfister et al., 2019] to better model the dynamics of low-mass BHs within
cosmological simulations.

3.A Dynamical Mass and Resolution Effect

3.A.1 Varying Dynamical Mass

One major difference between our model and previous modeling of the dynamical friction
is that we boost the mass term during the early stage of black hole growth by a factor of
kdyn = Mdyn,seed/MBH. This is to prevent the drifting of the black holes due to dynamical
heating when the black hole mass is below the dark matter particle mass in the context of
large and low-resolution cosmological simulations.

Here we show the effect of setting different kdyn by running three simulations with the
same resolution and dynamical friction models, but various kdyn ratios. They are listed in
Table 3.2.1 as DF_4DM_G, DF_2DM_G, and DF_1DM_G, with kdyn = 4, 2, 1, respectively.

Figure 3.A.1(a) shows the evolution of the same black hole for different kdyn. By com-
paring the three cases, we can see that the black hole’s behavior is very similar for all the
physical quantities we have plotted. However, we also note that the similar behavior of
different Mdyn is case-dependent. The case we present here is a black hole within a large
density peak where the black hole is subject to a deep potential and can sink more easily,
but the sinking of BHs in shallower potentials can be more sensitive to the seed dynamical
mass. Nevertheless, kdf = 2 is generally sufficient to assist the sinking of most black holes
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Figure 3.A.1: (a): Comparisons of different black hole seed dynamical mass. The effect of
varying Mdyn,seed is small in this case. But this is partially due to the large BH we pick. (b):
Comparison with higher-resolution run with the same Mdyn/MDM ratio.
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and produces similar merger rates to kdf = 4 (see Appendix 3.C). The convergence at kdf = 2
is consistent with the MBH/MDM = 3 ratio used in Tremmel et al. [2018a], and relaxes the
ratio used in previous works [e.g. Pfister et al., 2019, Tremmel et al., 2015] of MBH ∼ 10MDM.

3.A.2 Resolution Effect

Here we show how our model performs under different resolutions. For this experiment
we use our fiducial resolution run DF_4DM_G, a higher resolution run DF_HR_4DM_G with
the same kdf , but a factor of three difference in the mass resolution, and a high resolution
run DF_HR_12DM_G with the same Mdyn,seed as the fiducial resolution run. We would want
the black holes to behave similarly independent of resolution if the Mdyn,seed/MDM is kept
constant.

Figure 3.A.1(b) shows the same black hole in the simulations with different resolution.
In the high-resolution run DF_HR_4DM_G, even though the seeding dynamical mass is 3 times
smaller than the low-resolution run, the sinking time remains the same. Furthermore, if
we keep the absolute seeding dynamical mass the same in the low-resolution and high-
resolution runs (by comparing DF_HR_12DM_G with DF_4DM_G), the black holes still shows
similar evolution. This indicates that a constant kdf = Mdyn,seed/MDM is robust under
different resolutions, and our model of dynamical mass does converges to the true black hole
mass if we go to higher resolutions.

3.B DF(fid) vs. DF(T15): cases of smaller black holes
evolution

In Section 3.4.1, we compared the two DF models by showing the example of an early
forming black hole located at the center of the largest halo in the simulation. However,
that black hole might not be representative of the entire BH population due to its early
seeding and large mass. Now we pick more cases of smaller black holes to demonstrate the
differences/similarities between the models. In particular, we will look at how the smaller
BHs are affected by the DF(fid)/DF(T15) implementation.

Figure 3.B.1 shows the evolution of three small BHs in the DF_4DM_G and the DF(T15)_4DM_G
simulations. We plot three MBH < 5 × 106M⊙ black holes. In these cases, the number of
particles within the SPH kernel is still at least an order of magnitude more than 100 at lower
redshift, and so the density calculated in DF(T15) still tends to be larger but more noisy.
The value of the Coulomb logarithm is now mainly affected by bmax, because we do not see
as much noise in the velocity of the surrounding particles as in the case of a very large BH.
The density and the Coulomb logarithm counteract each other, and the magnitude of the
dynamical friction is similar in the two models.

These cases again verifies that the two models are consistent with each other, with
DF(T15) a more localized implementation than DF(fid). The choice of DF(fid) as our fiducial
model is mainly due to our resolution limit.
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Figure 3.B.1: Components of the dynamical friction in the DF(fid)_4DM_G (red) and the
DF(T15)_4DM_G (blue) simulations, for three M < 5 × 106M⊙ black holes. In these cases,
the number of particles within the SPH kernel is still at least an order of magnitude more
than 100 at lower redshift. The value of the Coulomb logarithm is now mainly affected by
bmax, because we do not see as much noise in the velocity of the surrounding particles as in
the case of a very large BH. In all three cases shown, the magnitude of the dynamical friction
is similar in the two models.
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Figure 3.C.1: The cumulative merger rates for different values of bmax, in the Lbox=15 Mpc/h
simulations. We tested bmax values of 3 ckpc/h,10 ckpc/h and 30 kpc, and the difference in
the cumulative merger rate is less than 10%. The difference between the DF(fid) models and
the DF(T15) model with bmax=1.5 ckpc is also very small. Hence, although different choices
of bmax changes the magnitude of the dynamical friction, it does not affect the merger rate
predictions significantly.

3.C Effect of Model Parameters on the Merger Rate
For the merger rate predictions in 3.6, we use the DF+Drag model with bmax=10 ckpc/h
and Mdyn,seed = 4MDM. In this section, we will show that the merger rate prediction is not
sensitive to the choice of these two parameters, and hence our prediction is relatively robust
against parameter variations within a reasonable range.

Figure 3.C.1 shows the cumulative merger rates for different values of bmax in the Lbox=15
Mpc/h simulations. We tested bmax values of 3 ckpc/h,10 ckpc/h and 30 kpc, and the differ-
ence in the cumulative merger rate is less than 10%. The difference between the DF(T15)
models and the DF(fid) model with bmax=1.5 ckpc is also very small. Hence, although dif-
ferent choices of bmax changes the magnitude of the dynamical friction, it does not affect the
merger rate predictions significantly.

We also test a lower value of Mdyn,seed = 2MDM using the Lbox=15 Mpc/h simulation.
The resulting cumulative merger rate prediction is also shown in Figure 3.C.1. Compared
with the similar run with Mdyn,seed = 4MDM, the earliest merger is slightly postponed, but
the cumulative rate at z ∼ 2 has very little difference. Therefore, even though for the
predictions in Section 3.6 we have chosen a particular set of parameter values, changing
those parameters would not affect the result significantly given the larger effects of other
factors such as the resolution and seeding.
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Abstract

We examine massive black hole (MBH) mergers and their associated gravitational wave
signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy
formation and black hole models recently updated with an MBH seed population between
3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow
the MBH dynamics down to 1.5 ckpc/h. We calculate the initial eccentricities of MBH
orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for
most MBH pairs before the numerical merger. After approximating unresolved evolution on
scales below ∼ 200 pc, we find that the in-simulation DF on large scales accounts for more
than half of the total orbital decay time (∼ 500Myrs) due to DF. The binary hardening
time is an order of magnitude longer than the DF time, especially for the seed-mass binaries
(MBH < 2Mseed). As a result, only ≲ 20% of seed MBH pairs merge at z > 3 after considering
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both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are
hosted in a biased population of galaxies with the highest stellar masses of > 109M⊙. With
the higher initial eccentricity prediction from Astrid , we estimate an expected merger rate
of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼ 7 higher than the
prediction using the circular orbit assumption. The LISA events are expected at a similar
rate, and comprise ≳ 60% seed-seed mergers, ∼ 30% involving only one seed-mass MBH,
and ∼ 10% mergers of non-seed MBHs.

4.1 Introduction

Massive Black Holes (MBHs) are known to exist at the center of galaxies [e.g. Kormendy
and Ho, 2013, Kormendy and Richstone, 1995, Magorrian et al., 1998, Soltan, 1982]. As
these galaxies merge [e.g. Lacey and Cole, 1993, Lotz et al., 2011, Rodriguez-Gomez et al.,
2015], the MBHs that they host will also merge, resulting in the mass growth of the MBH
population [e.g. Begelman et al., 1980]. MBH mergers following their host galaxy mergers
are an important aspect of the growth of MBHs in dense environments [e.g. Kulier et al.,
2015]. Even more importantly, as a by-product of MBH mergers, gravitational waves are
emitted, and their detection opens up a new channel for probing the formation and evolution
of early MBHs in the universe [e.g. Barausse, 2012, Sesana et al., 2007b].

The gravitational wave (GW) detection by LIGO [Abbott et al., 2016] proves the exper-
imental feasibility of using gravitational waves for studying black hole (BH) binaries. While
LIGO cannot detect GWs from binaries more massive than ∼ 100M⊙ [Mangiagli et al., 2019],
long-baseline experiments are being planned for the detections of more massive BH binaries.
Specifically, the upcoming Laser Interferometer Space Antenna (LISA) [Amaro-Seoane et al.,
2017] mission will be sensitive to low-frequency (10−4−10−1Hz) gravitational waves from the
coalescence of MBHs with masses 104 − 107M⊙ up to z ∼ 20. At lower frequencies, Pulsar
Timing Arrays (PTAs) are already collecting data and the Square Kilometer Array (SKA)
in the next decade will be a major leap forward in sensitivity. While MBH binaries are the
primary sources for PTAs and LISA, these two experiments probe different stages of MBH
evolution. PTAs are most sensitive to the early inspiral (orbital periods of years or longer)
of nearby (z < 1) massive (MBH ≳ 108M⊙) sources [Mingarelli et al., 2017]. In contrast,
LISA is sensitive to the inspiral, merger, and ringdown of MBH binaries at a wide range of
redshifts [Amaro-Seoane et al., 2012] and from smaller sources (MBH ∈ [104M⊙, 10

7M⊙]).
GWs from MBH mergers will provide a unique way of probing the high-redshift universe

and understanding the early formation of the MBH seeds, especially when combined with
observations of the electromagnetic (EM) counterparts [DeGraf and Sijacki, 2020, Natarajan
et al., 2017]. For instance, an MBH merger multi-messenger detections should allow us
to distinguish between different MBH seeding mechanisms at high-redshift [Ricarte and
Natarajan, 2018], to obtain information on the dynamical evolution of massive black holes
[Bonetti et al., 2019], and to gain information about the gas properties within the accretion
disc [Derdzinski et al., 2019].
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To properly access the potential of the upcoming GW signals as well as the EM ob-
servations of MBH binaries, we need to gain a thorough understanding of the physics of
these events with theoretical tools and be able to make statistical predictions for the binary
population. Early studies have provided merger rate predictions for MBH binaries using
analytic models [e.g. Haehnelt, 1994, Jaffe and Backer, 2003, Wyithe and Loeb, 2003]. Some
more recent predictions made use of semi-analytic models [e.g. Barausse, 2012, Ricarte and
Natarajan, 2018, Sesana et al., 2004, Tanaka and Haiman, 2009] to enhance the model com-
plexity and physical realism. Recent developments in large-volume cosmological simulations
[e.g. Davé et al., 2019, Feng et al., 2016, Hirschmann et al., 2014, Pillepich et al., 2018,
Schaye et al., 2015, Vogelsberger et al., 2014, Volonteri et al., 2016] have enabled the study
of MBH mergers within the context of cosmological galaxy formation [e.g. Katz et al., 2020,
Kelley et al., 2017b, Salcido et al., 2016, Volonteri et al., 2020]. These simulations directly
associate MBH binaries with their host galaxies, and they are carried out in large enough
cosmological volumes to provide the statistical power to make merger rate predictions across
cosmic time which are crucial for the upcoming observations.

In order to accurately predict when MBH mergers occur in these simulations, one must
account for the orbital decay and binary hardening timescales in a wide dynamical range.
During galaxy mergers, the central MBHs start at large separation in the remnant galaxy (as
much as a few tens of kpc). These MBHs then gradually lose their orbital energy and sink to
the center of the remnant galaxy due to the dynamical friction exerted by the gas, stars, and
dark matter around them [e.g. Chandrasekhar, 1943, Ostriker, 1999]. When their separation
is ≲ 1 parsec, a MBH binary forms and other energy-loss channels begin to dominate, such as
scattering with stars [e.g. Berczik et al., 2006, Berentzen et al., 2009, Khan et al., 2011, 2013,
Quinlan, 1996, Sesana et al., 2007a, Vasiliev et al., 2015], gas drag from the circumbinary
disk [e.g. Haiman et al., 2009], or, if relevant, three-body scattering with a third black hole
[e.g. Bonetti et al., 2018].

Among these processes, only the dynamical friction decay affects the dynamics at orbital
separation above the resolution of large-volume cosmological simulations. However, so far
there is limited attempt to directly model dynamical friction (at small scales, close to the
resolution) in the large-volume cosmological simulations mentioned above. In most cosmo-
logical simulations, once MBHs are within a given halo, they are simply repositioned to the
minimum potential position of the host galaxy at each time step. For these simulations, (al-
though sometimes the effects of subgrid dynamical friction are treated in post-processing),
many spurious mergers occur during fly-by encounters. Among simulations that do include
subgrid modeling of DF on-the-fly, Dubois et al. [2014] only includes the friction from gas
but not stars, while Tremmel et al. [2017] and Hirschmann et al. [2014] model the dynamical
friction from stars and dark matter particles. Most recently, Mannerkoski et al. [2021] uses
a hybrid model to track the MBH dynamics during galaxy mergers on small scales, while
including on-the-fly dynamical friction and stellar scattering computations.

Here we study MBH mergers using the large volume cosmological simulation Astrid which
uses a novel power-law seeding with a range of MBH seed masses and so includes relatively
low mass MBHs. More importantly, it directly incorporates additional dynamical friction
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modeling, following the recent model by [Chen et al., 2021] for the MBH dynamics down to
the resolution limit [see also similar implementations by Hirschmann et al., 2014, Tremmel
et al., 2015]. With more physical modeling of the MBH dynamics, we can follow the in-
simulation mergers for a more extended period of time over hundreds of Myrs, and almost
completely prevent mergers during fly-by encounters. Moreover, for the first time we can
aim to measure the orbital evolution and eccentricities of MBH pairs on sub-kpc scales. Such
information should be important both for estimating the binary hardening timescales and
for predicting the GW signals from the MBH mergers.

This paper is organized as follows: in Section 6.2 we introduce the Astrid simulation,
in particular the MBH modeling, and describe how we obtain the merger catalog from
the simulation; in Section 4.3, we describe our methods for measuring the MBH orbital
eccentricity from the simulation, and present results of our measurements. Section 4.4 focuses
on the modeling of post-processing delay times including the dynamical friction time and
binary hardening time after the numerical merger. Then in Section 4.5, we present our
prediction for MBH merger rate at z > 3, and investigate the properties of high-redshift
MBH merger systems. Finally, in Section 4.6 we show the GW strain and signal-to-noise
ratios for the binary population that merges at z > 3.

4.2 Simulation

4.2.1 The Astrid Simulation

The Astrid simulation is a large-scale cosmological hydrodynamic simulation in a 250Mpc/h
box with 2 × 55003 particles. Astrid contains a statistical sample of halos which can be
compared to future survey data from JWST, while resolving galactic halos down to 109M⊙
(corresponding to 200 dark matter particles). The initial conditions are set at z = 99 and
the current final redshift is z = 3. The cosmological parameters used are from [Planck
Collaboration et al., 2020], with Ω0 = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, σ8 = 0.82,
h = 0.6774, As = 2.142 × 10−9, ns = 0.9667. The mass resolution of Astrid is MDM =
6.74 × 106h−1M⊙ and Mgas = 1.27 × 106h−1M⊙ in the initial conditions. The gravitational
softening length is ϵg = 1.5h−1 kpc for both DM and gas particles.

Astrid contains models for inhomogeneous hydrogen and helium reionization, baryon
relative velocities and massive neutrinos, as well as ’full-physics’ star formation model, BH
accretion and associated supernova and AGN feedback respectively. The star formation
model is unchanged from Feng et al. [2016], which followed the implementation of Springel
and Hernquist [2003]. The BH model includes mergers driven by dynamic friction rather
than repositioning. Our treatment of MBHs largely follows the BlueTides simulation in
terms of the BH accretion and feedback, which is based on the earlier work by Di Matteo
et al. [2005b], Springel et al. [2005b]. The gas accretion rate onto the BH is estimated via the
Bondi-Hoyle-Lyttleton-like prescription applied to the smoothed properties of the 112 gas
particles within the SPH kernel of the BH. We allow for short periods of super-Eddington
accretion in the simulation, but limit the accretion rate to 2 times the Eddington accretion
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rate. The MBH produces thermal feedback on the surrounding gas, and radiates with a
bolometric luminosity LBol proportional to the accretion rate ṀBH, with a mass-to-light
conversion efficiency η = 0.1 in an accretion disk according to Shakura and Sunyaev [1973].
5% of the radiated energy is thermally coupled to the surrounding gas, residing within twice
the radius of the SPH smoothing kernel of the BH particle.

Compared with BlueTides , we slightly changed the seeding scheme of MBHs by drawing
the seed mass from a power-law distribution instead of using a universal seed mass. Further-
more, we use a dynamical friction model [tested and validated in Chen et al., 2021] to evolve
the binary black holes and include the sinking and merger of MBHs in the simulation in a
more physical way. Here we briefly summarize the black hole seeding and dynamics treat-
ment in Astrid, and refer to Bird et al. [2021] and Ni et al. [2021] for detailed presentations
of physical models for star formation and black holes.

MBH Seeding

To seed MBHs in the simulation, we periodically run a FOF group finder on the fly with a
linking length of 0.2 times the mean particle separation, to identify halos with a total mass
and stellar mass satisfying the seeding criteria { Mhalo,FOF > Mhalo,thr; M∗,FOF > M∗,thr}. We
apply a mass threshold value of Mhalo,thr = 5× 109h−1M⊙ and M∗,thr = 2× 106h−1M⊙.

Considering the complex astrophysical process involved in BH seed formation in realistic
cases, halos with the same mass can form different mass MBH seeds. Therefore, in Astrid,
instead of applying a uniform seed mass for all MBHs, we probe a mass range of the MBH
seed mass Mseed drawn probabilistically from a power-law distribution:

P (Mseed) =


0 Mseed < Mseed,min

N (Mseed)
−n Mseed,min ≤ Mseed ≤ Mseed,max

0 Mseed > Mseed,max

(4.1)

where N is the normalization factor. The minimum seed mass is Mseed,min = 3× 104h−1M⊙
and the maximum seed mass is Mseed,max = 3× 105h−1M⊙, with a power-law index n = −1.
For each halo that satisfies the seeding criteria but does not already contain at least one BH
particle, we convert the densest gas particle into a BH particle. The new-born BH particle
inherits the position and velocity of its parent gas particle.

MBH Dynamics and Mergers

Instead of constantly repositioning the black hole towards the potential minimum, as in
earlier simulations, in Chen et al. [2021] we implemented and tested a model for sub-grid
dynamical friction [similar to Tremmel et al., 2015, 2017]. Dynamical friction is an artificial
force for modeling unresolved small-scale interactions between the MBH and nearby stars
and dark matter. These interactions transfer momentum from the MBH to individual stars
in the surrounding star clusters, gradually reducing the momentum of the MBH particle
relative to the surrounding collisionless objects in the bulge [e.g. Governato et al., 1994,
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Kazantzidis et al., 2005]. The additional dynamical friction also stabilizes the MBH motion
at the center of the galaxy.

We estimate dynamical friction on MBHs using Eq. 8.3 of Binney and Tremaine [2008]:

FDF = −16π2G2M2
BHma log(Λ)

vBH

v3BH

∫ vBH

0

dvav
2
af(va), (4.2)

where MBH is the BH mass, vBH is the BH velocity relative to its surrounding medium,
ma and va are the masses and velocities of the particles surrounding the BH, and log(Λ) =
log(bmax/bmin) is the Coulomb logarithm that accounts for the effective range of the friction
between the specified bmin and bmax. f(va) in Eq. 4.2 is the velocity distribution of the sur-
rounding collisionless particles including both stars and dark matter. Here we have assumed
an isotropic velocity distribution of the particles surrounding the BH so that we are left with
a 1D integration.

In Astrid, the BH seed mass extends down to 3 × 104M⊙/h, which is one order of
magnitude smaller than the stellar particle mass. In this regime, the dynamical friction of
BH is likely unrealistic due to its small mass compared to the masses of other particles, and
so the dynamics of the seed BH would be unstable due to dynamical heating (when MBH is
below the mass resolution). Therefore, we boost the dynamical friction in this regime with
Mdyn = 2×MDM when MBH < Mdyn < 1. This temporarily boosts the BH dynamical mass
for BHs near the seed mass and helps stabilize their motion during the early post-seeding
evolution.

We approximate the distribution function f(va) by the Maxwellian distribution [as, e.g.
Binney and Tremaine, 2008], and account for the neighbouring collisionless particles up to
the range of the SPH kernel of the BH particle [see, Chen et al., 2021, for more details].
Eq. 4.2 becomes

FDF = −4πρsph

(
GMdyn

vBH

)2

log(Λ)F
(
vBH

σv

)
vBH

vBH

. (4.3)

Here ρsph is the density of dark matter and star particles within the SPH kernel, F is the
integral in Equation 4.2 assuming a Maxwellian distribution of stellar velocities. σv is the
velocity dispersion of the dark matter and star particles within the SPH kernel.

The boost of the initial Mdyn may overestimate the dynamical friction for small BHs
and the resultant sinking timescale will be shortened by a factor of ∼ MBH/Mdyn compared
to the no-boost case. On the other hand, it is also possible that the BH sinking time
scale estimated in our simulation in the no-boost case could overestimate the true sinking
time, as the high-density stellar bulges are not fully resolved [e.g. Antonini and Merritt,
2012, Biernacki et al., 2017, Dosopoulou and Antonini, 2017]. Therefore, boosting the initial
Mdyn seems a reasonable compromise to model the dynamics of small mass BHs while also
alleviating the noisy perturbation of dynamic heating brought by the limit of resolution. Note
that even if our dynamic friction implementation overestimates the force, it still provides
a substantially more conservative estimation of BH sinking than the common model where
BHs are repositioned to the potential minimum.
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In our simulations, we set the merging distance to be 2ϵg = 3 ckpc/h, because the MBH
dynamics below this distance is not well resolved. We conserve the total momentum of the
binary during the merger. Moreover, when we turn off the repositioning of the MBHs to
the nearby potential minimum, the MBHs will have well-defined velocities at each time step
(this is true whether or not we add the dynamical friction). This allows us to apply further
merging criteria based on the velocities and accelerations of the black hole pair, and thus
avoid early mergers of gravitationally unbound pairs.

We follow Bellovary et al. [2011] and Tremmel et al. [2017], and use the criterion

1

2
|∆v|2 < ∆a∆r (4.4)

to check whether two black holes are gravitationally bound. Here ∆a,∆v and ∆r denote
the relative acceleration, velocity and position of the black hole pair, respectively. Note that
this expression is not strictly the total energy of the black hole pair, but an approximation
of the kinetic energy and the work needed to get the black holes to merge. Because in the
simulations the black hole is constantly interacting with surrounding particles, on the right-
hand side we use the overall gravitational acceleration instead of the acceleration purely from
the two-body interaction.

4.2.2 The Merger Catalog

There are a total of 445635 BH mergers in the simulation for z > 3. We note that since
our merging criterion has a distance threshold at 2ϵg = 3 ckpc/h (0.75 pkpc/h at z=3) below
which the gravitational force cannot be reliably computed, most of the MBH pairs retain an
orbital size of a few hundred parsecs when "merged" in the simulation. Moreover, we may
have missed some z > 3 mergers due to an underestimation of the dynamical friction from
the flattened density profiles near our resolution limit.

The subsequent MBH dynamics and merging time will have to be calculated in post-
processing, and the result depends on the subgrid models used for those calculations (to
be described later in more detail). For each merger event, we extract the relevant environ-
mental variables (the density profiles of gas, dark matter and stars, and the stellar velocity
dispersion) from the nearest snapshot before and after the merger. The snapshots used are
separated by ∼ 20 Myrs. In a small fraction of cases, the mergers take place within 20Myrs
after one of the MBHs is born, and so we cannot find the corresponding MBH in the previous
snapshot. We remove these mergers from the catalog, after which 440999 mergers remain.

From the snapshots immediately before and after the merger, we identify the host halos
and subhalos containing the binaries using FOF and SubFind, respectively. Out of the merg-
ers that remain in the catalog, we further remove those not associated with any halo/subhalo,
and those whose host galaxy has less than 200 star particles. The hosts for these binaries
are not well resolved in our simulation, so we cannot reliably compute the binary hardening
time in post-processing. This leaves us with a final catalog of 430938 black hole merger
candidates. For each host halo identified, we define the halo center as the position of the
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Figure 4.3.1: The last few orbits (starting from ∼ 80Myrs before the merger) of selected
binaries in the Astrid simulation plotted on their host galaxies. The distance from left to
right of each image is 10 ckpc/h. The brightness corresponds to the stellar density, and the
colors show the stellar age with older stars being redder. The red curves are the BH pairs’
position relative to their center of mass. In most cases we see a Rosetta orbit, as the local
potential is a spherical potential dominated by stars and dark matter. We find that some
orbits circularize over time (e.g. third row, fifth column), although the majority of the orbits
still remain eccentric when merging (see e.g. Figure 4.3.2).

particle with the minimum potential, and calculate galaxy properties such as the density
profiles and half-mass radius with respect to this point.

In Figure 4.3.1, we show the last few orbits of a few selected BH pairs in our merger
catalog plotted on their host galaxies’ stellar distributions. The distance from left to right
of each image is 8 ckpc/h. The brightness corresponds to the stellar density, and the colors
show the stellar age with older stars being redder and younger stars being whiter. The red
curves are the BH pairs’ positions relative to their center of mass.

4.3 Orbital Eccentricity

As was described in Section 4.2.1, our simulation has a build-in sub-grid dynamical friction
model, which allows us to follow the black holes’ orbits before their numerical mergers down
to the resolution limit. Figure 4.3.1 shows several examples of the last few orbits of BH pairs
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Figure 4.3.2: Comparison between eccentricity measurements from the shape method and
the energy method. Left: the distribution of the (generalized) orbital eccentricity from the
two measurements. In both cases, the distribution is dominated by highly-eccentric binaries,
as we can also see from the images in Figure 4.3.1. The shape method has a more skewed
distribution compared to the energy method. Middle: A scattered plot of the eccentricity
from the two measurements. We can see that the two measurements yield similar results by
comparing the distribution to the diagonal line. In most cases, the energy measurement is
∼ 10% lower than the shape measurement. Right: In addition to the eccentricity, we show
the apoapses and periapases of the two measurements. The orange dots are the apoapses
and the green dots are the periapases. The scatter relation also follows the diagonal line
quite closely. When the two black holes merge in the simulation, the apoapsis is usually a
few kpc and the periapsis is usually less than 1kpc.
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just before they merge in the simulation. The black hole orbits are plotted in the center-of-
mass frame of the BH pairs, with a face-on projection on the 2D plane perpendicular to the
mean angular momentum of the last orbit. Since we record the BH information at each time
step when the BH is active, the orbits are much better resolved in time compared with the
galaxies. Most orbits start off at a semi-major axis of > 1 kpc, and gradually go through
orbital decay until the merger.

From the images, we see that the majority of the orbits are very non-circular during
the initial encounter of the BHs. While some of them circularize with time, most orbits
still retain a high eccentricity at the time of the merger in the simulation. This motivates
us to characterize the orbital eccentricity before merging, as it is an important piece of
information not only for estimating the binary hardening time with analytical models, but
also for calculating the GW signals from the merger events. In this section, we will describe
two ways of characterizing the orbital eccentricities of the BH pairs in our simulation.1

4.3.1 Shape Measurement

Given the images in Figure 4.3.1, a natural way of measuring the orbital eccentricity is to
use the shape of the orbits just before the numerical merger, and this is the first approach
we take.

On ∼ kpc scales, since most orbits are not Keplerian except those of the most massive
BHs and the orbits are constantly shrinking, the BH orbits do not fit an ellipse. Instead,
they exhibit the feature of a Rosetta orbit (the feature is most prominent in e.g. second
row, second column of Figure 4.3.1, although standard Rosetta orbits do not shrink over
time). For orbits resulting from the spherically symmetric potential, we can characterize the
eccentricity by the size of the inner radius and the size of the outer radius. More specifically,
for each orbit, we define ∆r2 to be the position of the secondary BH with respect to the
center of mass, and we take the local minimum of ∆r2 as the (generalized) periapsis of
the orbit, and the local maximum of ∆r2 as the apoapsis. Then, we represent the orbital
eccentricity of the binary by the generalized eccentricity, defined for a spherical potential as:
[Binney and Tremaine, 2008]:

ϵ =
rapo − rperi
rapo + rperi

, (4.5)

where rapo and rper are the apoapsis and the periapsis of the orbit, respectively. To distinguish
between the measurement of the two methods, we will use the subscript "sh" to refer to the
measurements from this shape-based method. We average the eccentricity measurements
over the last three orbits. We note, however, that the distribution in eccentricity does not
change significantly when we take the average of the last one, two, or three orbits.

1We also tried applying the method of osculating elements [e.g., Efroimsky and Goldreich, 2004, and
references therein] to the orbital trajectories; however, we found that the stellar environment dominated the
binary’s evolution, such that it could not be adequately described as a post-Keplerian orbit.
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4.3.2 Solving the Orbital Equation

In addition to the shape-based measurement in §3.1, we also calculate the generalized orbital
eccentricity by simply solving the orbital equation. Using these two independent methods
we will then be able to compare the robustness of the BH orbit eccentricity distribution
measurement from the simulations.

When the BH merger occurs in the simulation, the separation between the black hole pair
is ∼ 3 ckpc/h. At this distance, the gravitational potential is dominated by the surrounding
stars and dark matter particles instead of the BHs themselves. Under such circumstances,
the orbit of the satellite BH is non-Keplerian, as we have shown in Section 4.3.1. In the case
of a spherical potential, the (generalized) apoapsis and periapsis can be obtained by solving
the generalized orbital equation [Binney and Tremaine, 2008]:

1

r2
+

2[ϕ(r)− E]

J2
= 0, (4.6)

where ϕ(r) is the gravitational potential computed from the density profile of surrounding
particles, E is the total energy per unit mass and J is the angular momentum per unit mass
of the secondary black hole with respect to the host galaxy center. The larger root of the
equation corresponds to rapo and the smaller root is rperi.

When solving Equation 4.6, we take E and J to be the average energy and angular
momentum over the last half-orbit (i.e. from the last local maximum to the last local
minimum of the BH separation) of the BH. We did not take the average over a more extended
period of time because the black hole pair is constantly losing energy. After getting the two
apses, we again use Equation 4.5 to calculate the orbital eccentricity. We refer to this method
as the energy method, and use the subscript "en" when showing results.

Figure 4.3.2 shows a comparison between the (generalized) eccentricity measurements
from the shape method and the energy method. The left panel shows the distribution of
eccentricities for all the mergers in the simulation. The measurements from both methods
show that the BH binary population is dominated by highly eccentric orbits, with a peak at
ϵ ∼ 0.85 for the shape-based method and ∼ 0.75 for the energy-based method. Comparing
the two distributions, we see that the shape measurement generally produces a distribution
with higher eccentricities than the energy method. In the middle panel, we show a scatter
plot of the eccentricities from the two measurements. There is a positive correlation between
the two eccentricities, with the majority of the measurements close to the diagonal line. This
means that the two measurements are not only close in distribution, but also yield correlated
results for each individual orbit. Similar to what is shown by the 1D distributions, the shape
method predicts higher values of eccentricity for most pairs than the energy method (typically
∼ 10% lower).

In addition to the eccentricity, in the right panel of Figure 4.3.2 we further compare the
apoapses and periapases from the two measurements. Overall, we can see that the apoapsis
peaks around 1 ∼ 3 kpc, while the periapsis peaks around 0.1 ∼ 0.7 kpc. Again there is
a good alignment between the two measurements, with the peaks distributed close to the
diagonal line. In the majority of cases, the shape measurement gives a larger apoapsis value.
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Figure 4.4.1: Comparison between the pre-merger dynamical friction time and the post-
merger dynamical friction time. Top: Distributions of the pre- and post- merger DF times
for all MBH pairs in Astrid. The two distributions are similar and both peak around 200
Myrs, indicating that by adding dynamical friction to the simulation, we have resolved more
than half of the total dynamical friction delay. Bottom left: Relation between the DF
times and the mass ratio between the two MBHs (q). We observe the expected negative
correlation between DF times and q. Bottom right: 1D distribution of the mass ratio q.

To estimate the binary hardening time, we will use the measured binary eccentricities as
an input to the model. By doing so, we do not consider any time-evolution of the binary
eccentricity due to dynamical friction beyond the point of numerical merger [Colpi et al.,
1999, Hashimoto et al., 2003]. In particular, we will only show results using the values from
the energy-based method (ϵen) in later sections, and we have tested that the effect of using
the shape-based values is minor compared with the uncertainties from other sources (e.g.
density in the central region of the galaxy).

4.4 Post-processing Delays

4.4.1 Dynamical Friction

In Astrid, we have already accounted for the dynamical friction timescale above the resolu-
tion limit, leading to significant delays of in-simulation mergers compared to the traditional
MBH repositioning methods. However, dynamical friction will continue to dominate over
other delay processes on scales of 10 ∼ 100 pc [e.g. Kelley et al., 2017b], which is beyond
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Figure 4.4.2: Density profiles (left) and images (right) of the host galaxies of three MBH
mergers in the simulation. The blue crosses mark all MBHs in the host galaxy, scaled by
the BH mass. The red circles mark the merging binary. Top: Host of a very massive binary
with Mtot = 5.6× 108M⊙ at z = 3. The stellar density is the dominant component on scales
below ∼ 10 ckpc/h. Middle: Host of a binary with Mtot = 7.6× 106M⊙ at z = 3. For this
less massive binary, the density of the three components is comparable at r < 10 ckpc/h, and
the density profile flattens at a larger radius. Bottom: Host of a binary with two seed-mass
MBHs. The mass of the host galaxy is high relative to the binary mass. The binary is not
the most massive MBHs in this galaxy, but the merger still occurs in a relatively central
region.
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Figure 4.4.3: Left: The density profiles of Astrid galaxies that host a recent numerical
merger. The blue solid line shows the median density of all binary hosts measured from the
simulation and the shaded region encloses 95% of the population. The power law extrapola-
tion is shown by dashed lines. Here we show the results for extrapolation scales rext = 1.5ϵg
(purple) and rext = 2ϵg (green). A larger rext results in a steeper power-law slope. Mid-
dle: Distribution of the power-law index of the density profile γ, measured at rext = 1.5ϵg
(purple) and rext = 2ϵg (green). For rext = 1.5ϵg, the distribution peaks at γ = 1.4, while
for rext = 2.0ϵg, the distribution peaks at γ = 1.9. We plot the power-index estimate in
Kelley et al. [2017c] for comparison. Right: Distribution of density extrapolated to 10 pc.
We compare the two rext values. The extrapolated density is sensitive to the change in rext:
rext = 1.5ϵg gives a distribution centered at 10M⊙/pc

3, while rext = 2.0ϵg gives a distribution
centered at 100M⊙/pc

3.
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our current resolution. In this section, we will compute the unresolved DF timescales for the
MBH mergers, and compare them with the in-simulation DF timescale.

For the in-simulation DF time, we measure it in the following way: for each black hole
pair that merges within the simulation at zmerge, we track their trajectories before the merger
event, and find the redshift zencounter at which they are first within 2ϵg of each other. zencounter
is the approximate time at which the BHs would merge if we did not account for the dynami-
cal friction time at all (note that under the reposition model, BHs usually merge even before
zencounter). We consider the time difference between zencounter and zmerge as the in-simulation
DF time, TDF,sim. Among all BH mergers in the simulation, 5713 mergers (∼ 1.4% of the
whole merger population) happen at the first encounter.

For the post-processed DF time TDF,post, we adopt the treatment from Merritt [2013] and
Dosopoulou and Antonini [2017], who modifies the Chandrasekhar formalism [e.g. Binney and
Tremaine, 2008, Chandrasekhar, 1943] to include the effect of the secondary BH embedded
in a tight core of stars brought in from the secondary galaxy. The increased dynamical
friction allows the secondary to sink faster towards the primary galaxy’s center, and thus
the resulting dynamical friction time is less than the prediction from the canonical Binney
and Tremaine [2008] treatment assuming a bare BH. In Dosopoulou and Antonini [2017] the
assumption is that the mass of stars bound to the secondary BH is 1000 times the mass of
the BH itself, and the resulting dynamical friction timescale is:

tDF,post = 0.12Gyr

(
r

10kpc

)2(
σ

300km/s

)(
108M⊙

M2

)
1

log(Λ)
, (4.7)

where log(Λ) is the Coulomb logarithm, M2 is the mass of the secondary black hole. For the
initial separation r, we use the radius of the circular orbit that has the same energy as the last
orbit of the binary before the (numerical) merger. Note that the model in Equation 4.7 does
not account for the effect of non-circular orbits on the DF time. Taking the eccentricity into
consideration can further reduce the estimated DF time [e.g. Taffoni et al., 2003]. Following
the method in [Chen et al., 2021],we compute the Coulomb logarithm by:

Λ =
bmax

(GM2)/v2BH

, bmax = 10 ckpc/h, (4.8)

where M2 is the mass of the secondary black hole and vBH is the velocity of the secondary
black hole with respect to the host galaxy center.

Figure 4.4.1 shows the comparison between the in-simulation dynamical friction time
and the post-processed dynamical friction time from above. The top panel shows the overall
distributions of the DF times. The two distributions are on the same order of magnitude at
around 102 Myrs, with a range from 10 Myrs to 1 Gyrs. For most BH pairs, TDF,sim is longer
than TDF,post. This means that by accounting for dynamical friction in the simulation, we
have already included about half of the total dynamical friction delay effects. Note that both
DF timescales are shorter than 1 Gyr. In the case of the resolved DF time, this is mainly
due to the fact that most of the black holes have not existed for more than 1 Gyr at z = 3.
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Figure 4.4.4: Variables used to calculate dynamical friction and binary hardening timescales.
Left: Mtot−σ relation measured from all the binaries at the time of merger in the simulation,
compared to the analytical relation given in Tremaine et al. [2002] and Kormendy and
Ho [2013]. Middle: The influence radius derived from γ and σ measured the simulation,
compared with the analytical model used in Vasiliev et al. [2015] (green dashed line), and in
Sesana [2010] with γ = 1.5 (black dashed line). Our measured σ and rinf are both close to
the analytical models. Right: Density at influence radius extrapolated from the simulation.
To illustrate the effect of extrapolation scales on ρinf , we show the resulting extrapolation
from both 1.5ϵg (pink dots) and 2.0ϵg (green contour). As was demonstrated in Figure 4.4.3,
the density extrapolation is sensitive to the starting point of the extrapolation. However,
even the extrapolated density from an outer radius is smaller compared with the analytical
model used in Sesana [2010] with γ = 1.5 (black dashed line).

In the bottom panel of Figure 4.4.1, we show the relation between the two DF times
and the binary mass ratio q. Here we only show the times involving at least one non-seed
MBH, defined as mergers with M1 > 2M1,seed. This is because our merger population is
dominated by seed MBHs which have not grown out of their dynamical mass and thus
the in-simulation DF time estimation is not exact. From Equation 4.7, we can see that
the DF time is correlated with the mass of the primary galaxy (and MBH) through σ,
and that it is inversely proportional to the secondary black hole mass. Hence, we expect
that minor mergers will have longer decay timescales, and in the plot we do see a negative
correlation between TDF,post and q. For the in-simulation DF, although this relation is not
imposed explicitly, we still observe a negative correlation between q and the DF time. This
indicates that the negative correlation is still captured by the in-simulation dynamical friction
modeling.

4.4.2 Loss Cone Scattering and Gravitational Wave Hardening

Once the two MBHs become gravitationally bound, the dynamical friction formalism is no
longer a valid approximation, and individual interactions between singular stars and the
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binary must be considered. These interactions extract angular momentum from the binary,
driving them closer to each other [e.g. Merritt, 2013, Vasiliev and Merritt, 2013]. This regime
is the loss-cone scattering (LC) regime, which refers to the specific cone in parameter space
where stars have to exist in order to extract angular momentum from the binary [e.g. Frank
and Rees, 1976, Lightman and Shapiro, 1977]. On even smaller scales, the binary will enter
the gravitational wave regime where it will evolve until coalescence. Once the binary enters
the gravitational wave regime, its dynamics follow the formalism of Peters [1964] at small
separations of 10− 1000 Schwarzschild radii.

For the loss-cone scattering and gravitational-wave hardening phase, we adopt the ana-
lytical prescription in Vasiliev et al. [2015] (V15 hereafter). However, the time estimation in
Equation (25) of V15 assumes a single family of Mtot − σinf − rinf relation, and thus it may
over-simplify the properties of the galaxies hosting the merger events. Hence we will adopt
the V15 formalism but with some slight changes, so that we can use the host galaxy prop-
erties measured from the simulation. In this section, we first explain how we measure the
relevant galaxy properties, then we give our binary hardening time estimation by combining
analytic modeling with the measured properties.

Extrapolated Galaxy Properties

To compute the hardening time for the binaries, the important quantities to measure are:
the influence radius rinf defined as the radius containing a stellar mass equal to two times
the binary mass, the velocity dispersion of stars at the influence radius σinf , the power-law
slope of the stellar density profile γ, and the stellar density at the influence radius ρinf . Since
the binary hardening phase begins after the dynamical friction phase, we use the snapshot
immediately following the numerical merger to measure these properties.

Among the quantities above, the velocity dispersion can be measured directly from the
simulation without extrapolation (for an isothermal sphere, the velocity dispersion is inde-
pendent of radius). Therefore, we make the approximation that σinf = σgal, and use the
measured velocity dispersion within the half-mass radius of the host galaxy.

The next galaxy property we measure from the simulation is the power-law slope γ of the
stellar density profile. In Figure 4.4.2, we show three examples of the density profiles of dark
matter, gas, and stars for galaxies hosting recently merged binaries. We show the profiles of
a massive binary with Mtot = 5.6× 108M⊙, a less massive one with Mtot = 7.6× 106M⊙ at
z = 3, and a seed-mass binary with Mtot = 1.9×106M⊙. For the most massive binary (top),
the stellar density is the dominant component on scales below ∼ 10 ckpc/h. The stellar
density profile follows a power law down to the gravitational softening length ϵg, where the
profile flattens due to gravitational softening. In the case of the medium-mass binary, the
density of all three components is comparable at r < 10 ckpc/h, and the density profile
flattens at a larger radius compared to the massive one. In the third case of a seed-seed
merger, the mass of the host galaxy is high relative to the binary mass. The binary is not
the most massive MBHs in this galaxy, but the merger still occurs in a relatively central
region. We note that this binary belongs to the seed MBH population that still merges after
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the post-processing delays.
As we do not resolve the scale of interest for the loss-cone scattering, we assume that

below a scale rext close to the resolution limit ϵg, the stellar density profile follows a single
power-law ρ ∝ r−γ. By doing so, we are able to extrapolate the stellar density to the inner
region of the host galaxy. To measure the value of γ, we take the measured density from
10 bins just above rext, and fit it to the power-law profile. Our choice of rext is motivated
by the flattening of the profile at ∼ 1.5ϵg in Figure 4.4.2 and the fact that gravity is not
well-resolved within ∼ 2ϵg. Since the exact scale on which the simulation density becomes
unrealistic is uncertain, we use both rext = 1.5ϵg and rext = 2.0ϵg to bracket our predictions.
We also note that the modeling of the inner regions of the galaxy is a simple one, where
a single power-law profile is assumed. In reality, the relation between the density of the
inner core of the galaxy and the profile at kpc-scales may be more complicated. Therefore,
we take into account the lack of resolution in our simulations by measuring the profiles at
different radii and including a range in our final predictions (whereas in previous works this
uncertainty is not explicitly considered, or often a constant power-law index is assumed).

The left panel of Figure 4.4.3 shows the measured stellar density profiles and extrapola-
tions beyond rext for all binaries in Astrid. We show the median as well as the 95% contour
of the measured density, and we compare the power-law extrapolation from rext = 1.5ϵg and
rext = 2.0ϵg. From the comparison, we see that the measurement of γ is sensitive to the ex-
trapolation scale, and that larger rext results in a steeper power-law slope and thus a higher
density at the inner region. However, we also note that the shift due to rext is comparable
to the width of the distribution, and that both measurements are consistent with the values
assumed in various binary hardening models.

This is further illustrated by the middle/right panel of Figure 4.4.3, where we show the
distribution of the measured γ and the density extrapolated to 10 pc. For rext = 1.5ϵg, the
distribution peaks at γ = 1.4, while for rext = 2.0ϵg, the distribution peaks at γ = 1.9. These
values are consistent with the range of values used in most loss-cone scattering models [e.g.
Merritt, 2013, Sesana, 2010, Sesana and Khan, 2015, Vasiliev et al., 2015]. In the figure,
we also compared our distributions with the measured distribution in Kelley et al. [2017c]
from the Illustris simulation. Compared to Kelley et al. [2017c], our measured profiles are
significantly steeper, which also leads to a higher extrapolated density at r = 10pc. Our
simulation has a higher resolution than Illustris, and thus resolves the stellar density profiles
better on kpc scales. This is also due to the fact that we begin our extrapolation at different
scales: Kelley et al. [2017c] uses the inner-most eight density bins that contain at least four
particles, which could lie well below the gravitational softening. From the right panel, we see
that the extrapolated density is sensitive to the change in rext: rext = 1.5ϵg gives a distribution
centered at 10M⊙/pc

3, while rext = 2.0ϵg gives a distribution centered at 100M⊙/pc
3. The

order-of-magnitude difference motivates us to propagate the uncertainty in rext throughout
subsequent analyses, as it may have non-trivial impacts on the final merger rate predictions
from the simulation.

Finally, we compute rinf and ρinf from the quantities measured above. As we cannot
resolve the inner cusp of the galaxies in our simulation, a direct measurement of rinf is not
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possible. To estimate the influence radius, we adopt the analytical relation [e.g. Sesana,
2010]:

rinf = (3− γ)
GMtot

σ2
inf

, (4.9)

where γ is the density power-law slope we just showed, and σinf is approximated by the
measured galaxy velocity dispersion.

To get the density at the influence radius ρinf , we extrapolate the power-law relation of
the density profile down to rinf , using the measured γ and ρ. Note that our simulation does
not resolve the high-density peaks below our resolution, or nuclear star clusters, and thus
the extrapolated ρinf is likely a lower limit. Moreover, since the nuclear star clusters are not
resolved, we do not account for effects such as tidal disruption, which can to a shorter binary
hardening time [e.g. Arca-Sedda and Gualandris, 2018, Biava et al., 2019, Ogiya et al., 2020].

Figure 4.4.4 shows all of the measured or derived variables for computing the binary
hardening timescales, and their relation with the binary mass. The MBH−σ relation follows
the relation in Tremaine et al. [2002] for binaries with Mtot > 2 × 106M⊙, but is flatter
compared to the relation in Kormendy and Ho [2013]. There is a large scatter in σ for
seed-mass binaries. Since the influence radius rinf is derived from σ, γ, and the binary mass,
we expect it to stay close to the analytical models from binary hardening papers. Here we
compared it with the analytical model adopted in Sesana [2010] and Vasiliev et al. [2015].
Our values are in line with the Sesana [2010] model with a constant γ = 1.5, although the
scatter is large. This is also consistent with the fact that our distribution in γ peaks around
γ = 1.4 when measured at rext = 1.5ϵg.

Finally, in the right panel of Figure 4.4.4 we show the density at the influence radius
extrapolated from the simulation. To illustrate the effect of extrapolation scales on ρinf , we
show the resulting extrapolation from both 1.5ϵg and 2.0ϵg. As shown in Figure,4.4.3, the
density extrapolation is very sensitive to the starting point of the extrapolation. Shifting
the starting point by 0.5ϵg = 0.75ckpc/h can result in an order of magnitude difference in
ρinf . However, we note that even the density extrapolated from the outer radius is smaller
than the analytical model used in Sesana [2010] with γ = 1.5.

Binary Hardening Timescales

After measuring the quantities of interest for computing the binary hardening time, we
will proceed to describe the analytical model for estimating the hardening timescale. As was
mentioned earlier, we base most of our model on Vasiliev et al. [2015] (V15), with appropriate
changes to incorporate information from the simulation.

V15 models a separation-dependent LC hardening rate by:

S∗(a) = µSinf

(
a

ah

)ν

, (4.10)

where a is the binary separation, ah is the hardening radius given by ah = q
4(1+q)2

rinf , µ is the
filling fraction of the loss cone, and ν characterizes the radial dependence of the hardening
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Figure 4.4.5: Top: The distribution of the loss-cone and gravitational-wave hardening time
for all binaries in the simulation. Here we use rext from 1.5ϵg. The shaded distribution is
computed using the measured eccentricity ϵen. If we assume ϵ = 0 (unshaded), the decay
timescales will generally be longer by a factor of ∼ 100 and peak at 100 Gyr, which is much
longer than a Hubble time. Middle: the relation between the hardening timescale and the
density at influence radius ρinf . The timescale is negatively correlated with ρinf . Changing
rext from 1.5ϵg (pink dots) to 2.0ϵg (green contours) shortens the hardening timescale. The
right panel shows a clearer dependency when we remove the seed population. Bottom:
the relation between the hardening timescale and the measured eccentricity. We see a weak
negative correlation between Thard and ϵen.
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rate. We adopt the fiducial values of µ = 0.3 and ν = 0.4 from V15. Sinf is the full LC
hardening rate at the influence radius given by:

Sinf = H
Gρinf
σinf

, (4.11)

where σinf and ρinf are the velocity dispersion and stellar density at the influence radius rinf ,
and H is a constant LC hardening rate given by H = 2πA, with A = 4 in V15. This value
is slightly larger than the H = 15 rate given by Sesana and Khan [2015]. We note that this
model is tested under the assumption that γ ∈ [1, 2], and in the case of a shallower density
profile from core depletion, the value of A may be smaller [e.g. Mannerkoski et al., 2019].

At a closer separation, GW emission becomes the dominant channel for binary energy
loss. The hardening rate in the GW regime is given by [Peters, 1964], which considers the
evolution of the Keplerian orbital due to the leading radiation reaction term at the PN2.5
level:

SGW(a) =
1

a5
64G3M1M2MtotF (ϵ)

5c2
, (4.12)

where ϵ is the eccentricity of the binary orbit and

F (ϵ) = (1− ϵ2)−7/2[1 + (73/24)ϵ2 + (37/96)ϵ4] (4.13)

accounts for the eccentricity dependence of the GW hardening rate.
The separation at which the binary spends the most time, agw, is calculated by setting

S∗(a) = SGW(a), which leads to:

aGW =

(
64G3M1M2MtotF (ϵ)

5c2
aνhσinf

µSinf

)1/(5+ν)

(4.14)

Finally, we can estimate the LC+GW hardening timescale by:

T
ϵgw
hard =

1

S∗(aGW)× aGW

. (4.15)

Note that in this expression, we have only accounted for the eccentricity dependence during
the GW hardening stage, and thus the superscript ϵgw. However, the orbital eccentricity also
evolves during the LC scattering phase and can impact the hardening time. V15 models this
effect by:

Thard = T
ϵgw=0
hard × (1− ϵ2)[k + (1− k)(1− ϵ2)4] (4.16)

where k = 0.4 + 0.1 log10(Mtot/10
8M⊙). At higher eccentricities, Equation 4.15 and 4.16

give similar results, but for ϵ ∼ 0, the former underestimates the hardening timescale by a
factor of ∼ 3.

For the binaries in our simulation, we use the galaxy and binary properties shown in
Section 4.4.2, together with the above formalism to estimate the binary hardening time.
Note that the hardening timescale depends on the orbital eccentricity as the BHs enter the
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Figure 4.4.6: Left: The merger rates for all binaries in Astrid down to z = 3 with different
levels of delays. Without considering any post-processing delays (orange), we expect a total
of ∼ 2 mergers per year of observation down to z = 3. The rate when considering only the DF
delay (green) has an at most 50% decrease compared to the raw rate at the highest redshifts.
The binary hardening time has the most significant effect in reducing the merger rate. The
purple band shows the DF+hardening delayed merger rate estimated using the measured
eccentricity ϵen. The upper limits of the bands assume rext = 2ϵg, and the lower limits
assume rext = 1.5ϵg. The yellow dashed line shows the DF+hardening delayed merger rate
estimated using the half-circularized eccentricity 0.5ϵen, assuming rext = 1.5ϵg. The bottom
panel shows the ratio between the delayed merger rates and the simulation merger rates.
Right: The mass distribution of the two MBHs involved in the mergers. The red curves
correspond to the more massive MBH and the blue curves correspond to the less massive
MBH. The mass distribution of the simulation mergers is plotted in dashed lines, and that
of the delayed mergers is plotted in solid lines. The bottom panel shows the ratio between
the mass distributions of simulation mergers and delayed mergers. The seed-mass mergers
(enclosed in the vertical dashed lines) are suppressed most strongly by a factor of ∼ 6.



CHAPTER 4 122

hardening regime: more eccentric orbits merge faster compare to circular ones. To take this
effect into account, we use the orbital eccentricity shown in Section 4.3 as a proxy for the
orbital eccentricity at the beginning of the binary hardening phase, assuming that the post-
processed dynamical friction does not change the orbital eccentricity greatly [e.g. Colpi et al.,
1999, Hashimoto et al., 2003]. There are many very recent works investigating the change
in the orbital eccentricity during the dynamical friction and loss cone scattering evolution
phases. Vasiliev et al. [2022] has shown that the orbital eccentricity tends to increase for the
low-q, shallow-profile pairs, while Mannerkoski et al. [2021] and Gualandris et al. [2022] saw
the circularization of the orbits during the dynamical friction phase. Nonetheless, all these
simulations agree on the result that the initial eccentricity of the MBH orbit at ∼ 100 pc
scales is high, and that the eccentricity by the end of the loss-cone scattering phase still
traces the initial eccentricity of the MBH. Hence, our assumption of using the measured
eccentricity ϵen as a proxy for the eccentricity at the hardening phase still aligns with their
results. In Section 4.5 and in Appendix 4.A, we will further discuss the change in the merger
rate estimation due to possible circularization of the orbit during the unresolved dynamical
friction phase.

We also note that the galaxy properties we put into the calculation are instantaneous
properties from the simulation after the BHs go through the numerical merger. Given that
the galaxy and central stellar densities will only grow with time (as well as the BH masses),
our estimations are likely upper limits of the hardening time.

Figure 4.4.5 shows the relation between the binary hardening time and ρinf as well as
the energy-based eccentricity ϵen. We also show the 1D distribution of hardening times.
The left column includes all binaries in the catalog, while the right column only includes
binaries with M1 > 2Mseed,1. For all binaries, given our measured initial eccentricities, the
hardening timescale falls between 100 Myrs and 100 Gyrs, with a peak around 5 Gyrs. The
timescale is strongly correlated with ρinf and therefore also rext. Changing the value of rext
from 1.5ϵg to 2.0ϵg leads to a shorter estimated hardening timescale. This is because higher
stellar density leads to shorter hardening timescales, as the LC stars can more efficiently
carry away the energy from the binary. In fact, we find that the inner stellar density is
the most important property for determining the hardening timescale. Nonetheless, in both
cases, the hardening timescale is much longer than the dynamical friction timescale. Note
that if we do not account for the eccentricities of the binary orbits, the decay timescales will
generally be longer by a factor of ∼ 100 and peak at 100 Gyr, which is much longer than a
Hubble time.

The bottom row of Figure 4.4.5 shows the relation between the hardening timescale and
the measured eccentricity. When looking at the whole binary population, we see a negative
correlation between Thard and ϵen. This is expected as eccentric orbits have accelerated
hardening rates. However, when we only focus on the non-seed mergers, the ϵen dependence
is washed out by the strong correlation with ρinf .

Because of the strong dependence of the delay timescale on the uncertain variable ρinf ,
we will propagate this uncertainty to the merger rate predictions in the next session, and
characterize how the uncertainty due to numerical resolution affects the mergers in Astrid.
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Figure 4.5.1: Merger rates for different mass cuts and mass-ratio cuts. Left: The merger
rates for the seed-mass population, where the masses of both MBHs are less than two times
their seed masses. The colors are the same as in Figure 4.4.6. Compared to 4.4.6, this
population makes up ∼ 60% of the mergers. Middle: Merger rate for MBHs with only one
of the two grown out of the seed mass. This rate makes up ∼ 30% of the entire merger
population. Compared to the seed-seed mergers, here we see fewer mergers at high redshifts,
but a similar rate at z = 3. Right: Mergers with both MBHs larger than two times their
seed masses and with q > 0.1. When constrained to major and non-seed mergers, the effect
of DF is barely noticeable. The DF+Hard delayed rate makes up 50% of the total rate. The
lower panels show the ratio between the delayed merger rates and the simulation merger
rates.

4.5 MBH merger rate and Host galaxy properties

After characterizing the delay time, in this section we present the rate at which GW sig-
nals from MBH mergers will reach the earth, taking into account the sub-resolution delay
processes. We also examine how the DF and binary hardening delay affects the different pop-
ulations of MBH mergers. Finally, we investigate the galaxy properties for different parts of
the merger population.

4.5.1 Merger Rate Predictions

We calculate the rate by integrating the number of mergers in the simulation over redshifts,
incorporating the cosmic volume at the given redshift:

dN

dz dt
=

d2n(z)

dz dVc

dz

dt

dVc

dz

1

1 + z
(4.17)
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Figure 4.5.2: The distribution of mergers on the Mtot − zmerge plane for the simulation and
delayed mergers, color-coded by the number of mergers per Myr. Left: The distribution for
all mergers without delays. Middle: The same merger population with the post-merger DF
time added. Here, we see a slight shift of the merger population towards a lower redshift, but
nothing gets delayed below z = 2. Right: The distribution after considering both the DF
delay and the hardening time. Note that since the latest redshift of the simulation is z = 3,
all the data points at z < 3 (masked in grey) are results of the delay from z > 3 numerical
mergers, and are not representative of all merger events at z < 3. We see a significant shift
of the mergers towards lower redshifts. The population most significantly shifted are the
low-mass mergers with Mtot < 106.5M⊙, while the most massive binaries are still able to
merge at relatively high redshifts.
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where dVc is the comoving volume element of the universe at a given redshift and n(z) is
the number of mergers at that redshift. The 1/(1 + z) term redshifts the infinitesimal time
element in dz/dt to the observer frame time interval.

To calculate this rate from our simulation, we take the finite-interval approximation:

d2n(z)

dz dVc

=
N(z)

∆z Vsim

, (4.18)

where ∆z is the width of the redshift bin, N(z) is the total number of mergers within that
redshift bin, and Vsim = (250Mpc/h)3 is the volume of our simulation in comoving units.

To clearly see the effect of each stage of the delay, we calculate three different rates.
We first compute the "Sim" rate which uses the numerical merging time as the redshift
of the merger [also see DeGraf et al., in prep]. Then we add the post-processed DF time
to the numerical merger time to compute the "DF-only" rate. We further account for
the binary hardening timescales and calculate the "DF+Hard" rate. Finally, to account
for the possible circularization of the orbital eccentricity during the unresolved dynamical
friction evolution, we compute the "half-circularization" rate assuming that binaries only
retain 50% of their initial eccentricities at the beginning of the hardening phase. Our "half-
circularization" model uses a simple assumption that all the binaries lose 50% of the initial
measured eccentricities, regardless of the environment. In reality, the eccentricity evolution
can depend on various factors such as the density profile and the mass ratio of the host
galaxies, and could deviate from a simple linear relation. Nonetheless, due to the lack of an
analytical model for eccentricity evolution in the dynamical friction phase, we choose this
simplified linear relation in order to estimate the uncertainties.

In the left panel of Figure 4.4.6, we plot the merger rates with different levels of post-
processed delays, for the whole merger population in Astrid. First, we notice that the
number of mergers keeps increasing with decreasing redshift for all three models. This is
because we keep seeding BHs as structures form and grow, and we have not reached the
peak in seeding rate at z = 3. Without considering any post-processed delays ("Sim"), we
expect a total of ∼ 1.8 mergers per year of observation down to z = 3. The post-processed
DF time does not significantly impact the total observed merger rate ("DF-only"), with a
∼ 50% decrease at the highest redshift (z ∼ 8). The binary hardening time has the most
significant impact on the merger rate at all redshifts ("DF+Hard"). We see that the merger
rate is reduced by a factor of 3 ∼ 7 after adding the delay from binary hardening. The
resulting merger rate is 0.3 ∼ 0.7 at z > 3. Here the upper limit is given by assuming
rext = 2ϵg and the lower limit is given by rext = 1.5ϵg. Finally, if we further consider the
circularization of MBH orbits during the unresolved dynamical friction evolution, the rate
estimation decreases to 0.1 ∼ 0.3 per year at z > 3. This is again a factor of ∼ 5 decrease in
the merger rate, comparable to the uncertainties due to the density profile measurements.
In Appendix 4.A, we will investigate in more details how various eccentricity assumptions
affect our merger rate predictions. There we will show that the difference between a "half-
circularizaiton model" and a "full-circularization" model (where all orbits are assumed to
be circular) is within 15% in terms of the merger rate prediction. Thus by investigating the



CHAPTER 4 126

"half-circularization" model here, we have approached the lower-bound in the merger rate
due to orbital circularization. On the bottom panel, we show the ratio between the delayed
merger rate and the simulation merger rate as a function of redshift. For both DF-only and
DF+Hard delays, the fractional rates get higher at lower redshifts. This is a result of the
high-redshift mergers being pushed down to low redshifts.

In the right panel, we show the mass distribution of the two MBHs involved in each
merger. The dashed lines correspond to the simulation merger without any delays, and the
solid lines show the distribution of the merger population after the DF+hardening delays.
First, we can see that both before and after the delay, the merger population is dominated
by seed-mass mergers (the ones enclosed by the vertical dashed lines), with M1 evenly dis-
tributed across the seed masses and M2 concentrated on the lower-mass end of the seeds. It is
also this seed-mass merger population that gets suppressed the most by the delay. From the
ratio between the mass functions shown in the bottom panel, we see that for the seed-mass
mergers, only ∼ 15% still merge at z > 3 after the delays, whereas at the high-mass end this
fraction increases to 50%.

In order to disentangle different merger populations, in Figure 4.5.1 we further split the
rate by how many seed MBHs are involved in the merger. The left panel shows the merger
rates for the seed-mass population, where the masses of both MBHs are below two times
their seed masses. This population makes up ∼ 60% of the mergers. At z > 5, the seed-seed
mergers are strongly suppressed by the binary hardening delays because the stellar density
is relatively low. The middle panel shows the mergers with the only more massive MBH
grown beyond two times its seed mass. At z = 3, the rate from this group is comparable to
the rate from the seed-seed mergers. However, the number decreases more steeply as we go
to higher redshifts. Compared to the seed-seed mergers, this group has a higher mass ratio
and thus a longer DF time. The effect of the binary hardening delay, however, is smaller
because of the higher density in the remnant galaxy. Finally, on the right panel, we show
the more massive and major mergers. Compared to the previous two groups where at least
one seed-mass MBH is involved in the merger, the mergers from this group are ∼ 6 times
lower. The effect of delay is also the smallest. In particular, we noticed that the DF-only
rate is very similar to the simulation rate. Even for this group where the effect of delays is
the smallest, the merger rate is still suppressed by > 50% at each redshift compared to the
simulation merger rate.

Figure 4.5.2 shows the distribution of MBH mergers on the Mtot − zmerge plane for both
the simulation and delayed mergers, color-coded by the number of mergers per Myr. Without
any delay, the majority of the merger events are seed-seed mergers around z = 3− 4. As we
would expect from the black hole mass growth over time, we see more massive mergers at
lower redshifts. The middle panel shows the same merger population with the post-merger
DF time added. As was discussed in the previous paragraph and in Section 4.4.1, the post-
processed DF peaks around 200 Myrs and does not significantly delay the mergers. Here,
we see a slight shift of the merger population towards a lower redshift.

In the right panel of Figure 4.5.2, we show the distribution after considering the DF delay
and hardening phase. Note that since the final simulation output is at z = 3, all the data
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Figure 4.5.3: The fraction of the merger population in each bin of the galaxy stellar mass
hosting the merger (first column), seeding redshifts of the merged MBHs (second col-
umn), number of MBHs in the host galaxy (third column), and the ratio between the
total MBH mass in the host galaxy and the binary mass Mtot (fourth column). The top
row shows the non-seed merger population, and the bottom row shows the seed-mass merger
population. The simulation mergers are shown in orange and the DF+Hard delayed mergers
are shown in purple. The total number of z > 3 mergers in each population is shown in the
second column with corresponding colors.

points at z < 3 are the results of delayed z > 3 numerical mergers, and are not representative
of all merger events at z < 3. Compared with the other two panels, we see a significant shift
of the mergers towards lower redshifts. The population that is most significantly shifted are
the low-mass mergers with Mtot < 106.5M⊙, while the most massive binaries are still able to
merge at relatively high redshifts. This is a consequence of the large hardening time scale of
smaller BHs associated with lower ρinf .

4.5.2 Properties of High-z MBH Mergers

From the previous section, we have seen that while some low-mass mergers are significantly
delayed and do not merge at z > 3, ∼ 15% of them still do. For the non-seed mergers,
although the delay is generally less significant, we still see a 50% decrease in merger rate
when accounting for the delays. Now we will investigate which part of the merger population
gets significantly delayed, and which still manages to merge at high redshifts.

In Figure 4.5.3 we show the properties of MBHs involved in both the simulation mergers
and the delayed mergers. The top row shows the properties of the non-seed mergers, and the
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bottom row shows the properties of the seed-seed mergers. We start by looking at the mass
distribution of galaxies hosting the mergers (shown in the first column). For the simulation
mergers consisting of two non-seed MBHs, the masses of the host galaxies peak at 4×109M⊙.
For systems that still merge after the delays, we see a clear shift towards the higher-end in
stellar masses with a peak at ∼ 1010M⊙. This is because for more massive galaxies, the high
stellar density enables more efficient hardening through loss-cone scattering, and thus the
delay time is shorter (also see Figure 4.4.5). For mergers involving two MBH seeds shown on
the bottom, we observe a similar trend. Overall, seed mergers reside in less massive galaxies
with stellar masses below 4 × 108M⊙. The delayed merger events also pick up the more
massive galaxy population out of the simulation mergers with galaxy masses distributed
around 109M⊙.

In addition to the stellar environment which plays an important role in the delay time
estimation, the seeding redshift of the MBHs can also affect whether the two MBHs still
merge at a high redshift after the delay. This is shown in the second column of Figure 4.5.3.
While the seeding redshift of the simulation merger MBHs is z ∼ 7, the MBHs involved
in delayed mergers are seeded as early as z = 10. For the seed-seed mergers shown on the
bottom, the overall seeding redshift is lower, but we also see a shift towards a higher redshift
when comparing the delayed mergers to the simulation mergers. The bias towards early
MBH seeding for delayed mergers is also correlated with the higher host galaxy mass we
have seen earlier: because the delayed mergers favor earlier seeds, they also tend to reside
in galaxies that are massive enough at high redshifts to host an MBH seed.

On the right two columns, we examine the properties of other MBHs embedded in the
host galaxy of the mergers. The third column shows the total number of MBHs embedded in
the host galaxy of the merger, in the snapshot immediately following the numerical merger
(so the merging MBHs will be counted as one object). The fourth column is the mass ratio
between all MBHs in the host galaxy and the merging system. For both the seed and non-
seed merger populations, the merging system is the sole MBH in the host galaxy in the
majority of mergers. For the non-seed population, there is still a > 50% fraction of mergers
happening next to a third MBH (or more). Interestingly, the delayed merger systems favor
galaxies with more MBHs near the merging ones (also correlated with larger galaxy masses).
Nonetheless, the merging system is still the most massive MBH in its host galaxy in most
cases when we look at the MBH,gal/Mtot ratio.

When constrained to seed-seed mergers, we see that ∼ 70% of the mergers are the single
MBH in the host galaxy. The delayed mergers also tend to pick out the galaxies with more
MBHs compared to the simulation mergers. However, contrary to the non-seed case where
the merging MBH is more massive than the other MBHs in the same galaxy, for seed-seed
mergers that do occur near a third MBH, the mass of the third MBH is more likely to
be larger. This can be seen from the fact that the NBH,gal distribution is more peaked at
NBH,gal > 1 compared to the MBH,gal/Mtot > 1 distribution (it means that if there is a
third MBH, its mass can be larger than Mtot in some cases, resulting in the longer tail of
MBH,gal/Mtot).

From the investigations above, we conclude that the z > 3 mergers after the DF and
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hardening delay make up a small and biased sample of the simulation mergers. In particular,
they are systems with MBHs seeded earlier and embedded in more massive galaxies compared
to the overall simulation merger population. Moreover, the majority of the merger remnant is
the only MBH in its host galaxy, especially for the seed-mass mergers. However, the delayed
mergers tend to pick out more systems that have other nearby MBHs in the remnant galaxy
compared to the overall simulation merger population.

4.6 Gravitational Wave Emission from MBH Mergers

With a catalog of merging binaries, their merging time, and orbital eccentricities, we can
not only compute the rate of mergers reaching the Earth, but also predict the gravitational
wave signal that can be observed from these sources. This section is dedicated to predicting
the gravitational wave signal and detectability of the Astrid mergers with LISA. We first
briefly describe the characteristic strain for circular sources, and then we generalize to the
signal from eccentric sources. After that, we combine with the LISA sensitivity curve and
compute the signal-to-noise ratio (SNR) for each merger in the simulation.

4.6.1 Characteristic Strain of Circular Orbits

MBH binaries provide a variety of signals measurable by LISA since their chirp evolution
in the frequency domain occurs near the low-frequency band edge of the LISA sensitivity
curve. Binaries with 105 − 107M⊙ total mass will provide a measurable inspiral, merger,
and ringdown leading to signals out to the cosmic horizon [Amaro-Seoane et al., 2017]. The
binary inspiral is the initial stage of binary black hole coalescence when the two MBHs
orbit one another at separations greater than the innermost stable circular orbit (ISCO;
R = 6GMBH/c

2). At these separations, the orbit is usually treated with a post-Newtonian
formalism. The merger stage follows the binary inspiral with a highly non-linear relativistic
process. This process continues until the binary components form a single event horizon,
leading to ringdown.

We use the characteristic strain, hs, to model the binary signal which accounts for the
time the binary spends in each frequency bin [Finn and Thorne, 2000]. The characteristic
strain is given by [e.g. Moore et al., 2015]:

hs(f) = 4f 2|h̃(f)|2 (4.19)

where h̃(f) represents the Fourier transform of a time domain signal.
To generate the waveforms, we use the phenomenological waveform PhenomD [Husa

et al., 2016, Khan et al., 2016] implemented within the gwsnrcalc Python package [Katz
and Larson, 2019]. The input parameters are the binary masses, merging redshift, and the
dimensionless spins of the binary. For the MBH masses, we do not account for mass growth
after the numerical merger. However, we note that the MBH can potentially gain a significant
fraction of its mass during the > 1Gyr of time in the dynamical friction [e.g. Banks et al.,
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Figure 4.6.1: Left: Example waveforms for three binaries of different masses in Astrid.
The thick curve shows the waveform assuming ϵ = 0, while the thin lines are the waveform
assuming eccentric orbits. We also show the LISA sensitivity curve from Amaro-Seoane et al.
[2017] (black solid) for comparison. The numerical merging time of all example binaries is
z ∼ 3.1. Right: The h−f distribution after applying the delay models. The arrows indicate
the shifts in strain and frequency by the delay. Most signals are shifted to the upper-right
due to the lower redshift of the merger after the delays. The light grey region shows the
merger population delayed to z < 3, which is not part of our prediction.

2021] or loss-cone scattering phase. The dimensionless spin a characterizes the alignment of
the spin angular momentum with the orbital angular momentum, and the value of a ranges
from −1 to 1. However, we do not have any information on the spin of the SMBHs in our
simulation. Therefore, following the argument in Katz et al. [2020], we assume a constant
dimensionless spin of a1 = a2 = 0.8 for all binaries [e.g. Miller, 2007, Reynolds, 2013].

In Figure 4.6.1, we show the distribution of the merging frequency fmerge and the strain at
this frequency for all binaries in the simulation, before and after applying the DF+Hardening
delay models. To evaluate the detectability of the population with LISA, we also plot the
proposed LISA sensitivity curves. We use the LISA sensitivity configuration from the LISA
Mission Proposal [Amaro-Seoane et al., 2017], and we use hN =

√
SN [Moore et al., 2015] to

convert from the proposed power spectral density SN to strain hN .
In the left panel of Figure 4.6.1, we show example waveforms for binaries of different

masses but similar numerical merging time. The thick curve shows the waveform assuming
ϵ = 0, with the dot representing the merging frequency fmerge. We will discuss the thin lines
with non-zero eccentricities in later sections. From the example waveforms, we see that at
a fixed source redshift, the more massive binary has a higher strain amplitude. However,
this does not necessarily lead to a more significant detection, because the lower frequency
at which the wave is emitted falls into the region where the LISA sensitivity is worse. Out
of these three binaries, the two least massive binaries are detectable by LISA while the
most massive one is not. After the DF and hardening delays, all curves have higher strain
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amplitudes, as the strength of the signal is negatively correlated with redshift.
After looking at individual cases, we turn to the whole binary population. On the right

panel, we show the distribution of fmerge and hs(fmerge) for Astrid mergers, after the post-
processed delays. We have masked the signals from z < 3 mergers in light grey, as they are
purely due to the post-processed delays, and are not part of our simulation predictions. The
majority of merger events within the simulation lie above the LISA sensitivity curve. From
example waveforms, we see that once any given GW signal crosses the detector sensitivity
curve, the ratio of the signal to the sensitivity curve rapidly increases by a few orders of
magnitude. Since the merger population is dominated by seed-seed mergers, we see a peak
around fmerge ∼ 10−2Hz, corresponding to the example green curve. Finally, we demonstrate
the shift of the signal due to the delay model by the colored arrows. The tail of the arrows
indicates the location of the frequency/strain before the delays. The head of the arrows
are the signals after the delays. We see that in the example cases, the signal shifts to the
high-strain, high-frequency region of the plane. This is mainly because of the delay of the
mergers from z > 3 to z < 3.

4.6.2 GW Signal from Eccentric Sources

In the previous section, we have shown a single hs − f relation by assuming circular orbits
for the binaries. In this section, we will utilize the eccentricity measured from the simulation
when calculating the strain and signal-to-noise ratio (SNR) for each binary.

The GW strain from an individual, eccentric source can be related to that of a circular
source as [e.g. Amaro-Seoane et al., 2010, Kelley et al., 2017c]:

h2
s(fr) =

(
2

n

)2 ∞∑
n=1

h2
r,circ(fh)g(n, ϵ)|fh=fr/n, (4.20)

where hr,circ is the characteristic strain of a circular source given by Equation 4.19, g(n, ϵ) is
the GW frequency distribution function given by Equation 20 in Peters and Mathews [1963]
with

∑∞
n=1 g(n, ϵ) = F (ϵ), where F (ϵ) is defined by Equation 4.13.

During the GW-driven inspiral, the orbital eccentricity also evolves according to Peters
[1964] Equation (5.7), such that it decays towards zero as the binary inspirals toward merger.
This will affect the orbital frequency by:

forb
f0

=

[
1− ϵ20
1− ϵ2

(
ϵ

ϵ0

)12/19(1 + 121
304

ϵ2

1 + 121
304

ϵ20

)870/2299
]−3/2

, (4.21)

where ϵ0 is the initial eccentricity at the reference frequency f0.
In Figure 4.6.1, the multiple thin lines are the waveforms from higher-order harmonics

assuming eccentric orbits. For circular orbits, the GW is emitted at a single frequency at
a fixed separation, while the eccentric binaries emit GW at higher-order harmonics at a
given time. One consequence of this is that the energy dissipated in higher-order harmonics
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Figure 4.6.2: Left: the joint distribution of the SNR and redshift for Astrid mergers. The
top row is the SNR computed before the DF and hardening delays, and the bottom row is
the SNR after the delay time is applied. The mergers delayed to z < 3 are masked in grey.
Middle: distribution of binary mass for all Astrid mergers (red), the ones with SNR>8
without the delay model (blue), and the ones that merge before z = 3 after the delays
(brown). The SNR>8 cut eliminates all mergers with Mtot > 108M⊙, while the drop in low-
mass merger events is due to the delays. Right: the distribution of two MBH masses for
LISA detectable merger events at z > 3. Most events are expected to involve two seed-mass
MBHs.

is below the detection sensitivity, and thus the signal will be smaller compared with the
circular orbits.

We note that by using the simulation measurement of the orbital eccentricity as the initial
eccentricity in the inspiral phase, we did not account for any possible increase in ϵ during
the loss-cone scattering phase [see, e.g. Sesana, 2010]. However, such changes mostly affect
low initial eccentricity pairs [e.g. Kelley et al., 2017b]. Since the initial binary eccentricities
of our MBH pairs are already very high, we expect the loss-cone scattering to have only a
minor effect on the final eccentricity.

4.6.3 Detectability Prediction

Although the strain in Figure 4.6.1 is a good estimation of the detectability of a circular
binary, for the eccentric case a more careful prediction comes from the signal-to-noise ratio
(SNR). The SNR is estimated by integrating the ratio of the signal to the noise in the
frequency domain. The sky, orientation, and polarization averaged SNR are given by :

⟨SNR⟩2 = 16

5

∫ fend

fstart

h2
s

h2
N

f−1df, (4.22)

where fstart = f(tstart) and fend = f(tend), with tstart and tend representing the starting
and ending time of when the signal is observed. Note that here we are assuming eccentric
waveforms for the binaries, and thus hs is given by the sum over different modes following
Equation 4.20. As it is not computationally feasible to sum an infinite number of modes,
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we truncate the sum in Equation 4.20 at n = 50 and we have checked that the difference
between the first 50 and the first 100 modes is less than 5%.

For the current configuration, we assume that the LISA observation lasts for 4 years.
We further assume a most optimistic SNR for all mergers by taking tend = tpeak and tstart =
tpeak−4yrs. Under this assumption, we are always integrating the part of the waveform where
the strain is maximized. However, as was discussed in Salcido et al. [2016] and Katz et al.
[2020], the actual SNR may be smaller if there is an offset between the LISA observation
window and the merger time of the binary.

Figure 4.6.2 shows the distribution of the SNR computed for all mergers in the simulation.
The left column shows the joint distribution of SNR and the merging redshift. The top row
is the SNR computed with merging redshifts before the DF and hardening delays, and the
bottom row is the SNR after the delay time is applied. As was expected from the simpler
calculation shown in Figure 4.6.1, the majority of the binary population in the simulation
has an SNR larger than the LISA detection threshold of 8 (plotted as dashed gray lines).
The ones that fall below the SNR cut are mainly massive mergers with Mtot > 107M⊙.
When we account for the delays, the mergers are pushed towards lower redshifts, and the
resulting SNR is higher for each event.

The middle panel of Figure 4.6.2 shows the effect of delays and the SNR cut on mergers
with different masses. The SNR cut removes all mergers with Mtot > 108M⊙ from the
LISA-detectable population. On the low-mass end of MBH mergers, the reduction results
from the DF and binary hardening delays. Combining both the delays and SNR cut, we
see that the overall detectable mergers at z > 3 are ∼ 15% of the original Astrid merger
population across all masses. The seed-mass mergers still dominate over other events even
though they are most strongly suppressed by the delays. Finally, on the right panel, we show
the mass distribution of the two MBHs involved in each detectable event. The majority of
these events are expected to be mergers from two seed-mass MBHs. On the high-mass end,
the detectable events have a mass ratio of q ∼ 1 (close to the diagonal line). Based on these
results, the likelihood that a LISA detection comes from mergers of MBH seeds is high, but
the detectable MBH seed mergers is only a small sample of the seed MBH pairs and the
associated galaxy mergers.

Here, accounting for the delay time to merger affects the resulting SNR more than the
eccentricity. The eccentricity itself, however, may affect the prospects for multi-messenger
follow-up. For example, eccentric binaries may spend a shorter amount of time in the
LISA band compared to circular binaries. Spin-orbit interactions in eccentric binaries may
change the orbital inclination with respect to the line of sight, which may also play a role
in detectability and sky localization. We will explore such effects and their implications for
multi-messenger follow-up in a companion paper.

4.7 Conclusion and Discussion
In this work, we have made predictions for the MBH merger rate and associated LISA events
for a cosmological population of MBHs with masses ranging between 5×104M⊙ and 1010M⊙
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down to z = 3, using the large volume cosmological simulation Astrid. At high redshifts,
MBH mergers and the associated GW signal should provide strong constraints for models
of seed black hole formation. In Astrid , MBH seeds range from 5× 104M⊙ to 5× 105M⊙,
covering down to masses that LISA will be most sensitive to. Moreover, in Astrid we have
included an on-the-fly subgrid dynamical friction prescription, which allows us to trace the
MBH orbits down to the resolution limit.

Using the MBH orbits directly from the simulation, we estimated the (generalized) or-
bital eccentricity for unbounded MBH pairs that undergoDF-donimated orbital decay in the
Astrid simulation. In addition, we use the most recent post-processing models to account
for the additional delay in MBH mergers due to dynamical friction [Dosopoulou and An-
tonini, 2017] and binary hardening [Vasiliev et al., 2015] at scales not resolved directly by
Astrid. This is done by accounting for the orbital eccentricities constrained by the simula-
tion which is important for the loss-cone scattering and gravitational-wave hardening phase.
After considering the effect of these processes in delaying the MBH merger, we made a de-
tailed prediction of the expected number of mergers down to z = 3, the redshift that the
simulation has currently reached. Finally, we computed the detectability of these events by
LISA.

We find that most MBHs pairs in Astrid have eccentric orbits distributed near ϵ =
0.8. We verify the eccentricity measurements by using both the shape and the dynamical
information of the MBHs and find general agreement on the result. While some orbits
circularize during the dynamical friction decay, the majority of them still maintain a high
level of eccentricity at the time of the numerical merger. The orbital eccentricity is important
in accelerating the binary hardening process. In particular, we show that the assumption of
circular orbits for all binaries leads to estimates for the binary hardening time that can exceed
20 Gyrs for most Astrid binaries. Taking into account the measured orbital eccentricities,
our estimated hardening times fall between 1 ∼ 10 Gyrs.

Even after considering the accelerated binary hardening rate due to eccentric orbits,
for Astrid mergers close to the seed mass, the binary hardening (including LC and GW
hardening) time typically provides the longest delay, and it remains more important than
the dynamical friction component (including DF time modeled in Astrid directly and the
estimated sub-resolution component). For MBH binaries above the seed mass, the hardening
time becomes comparable to the DF time and always remains < 1 Gyrs. By comparing
the DF directly modeled in Astrid with the post-processed (sub-resolution) DF time, we
find that they are comparable, accounting for 100 ∼ 300 Myr of binary evolution. At the
resolution of Astrid, the sub-grid DF added directly in the simulation is able to recover
more than half of the dynamical friction decay process before the numerical merger.

Without accounting for any additional post-processed binary dynamics delays, we expect
∼ 2 merger events per year [DeGraf et al., in prep] from the z > 3 MBH population in Astrid.
With the post-processed dynamical friction and binary hardening taken into account, the
expected merger rate reduces to 0.3 ∼ 0.7 per year at z > 3. Astrid predicts for merger
rates that are higher than most previous predictions from hydro-dynamical simulations of
comparable volumes [e.g. Katz et al., 2020, Salcido et al., 2016, Volonteri et al., 2020],
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because Astrid accounts for a seed population [see DeGraf et al., in prep, for a more direct
comparison] in halos about an order of magnitude lower in mass than e.g. Illustris (Mhalo,thr =
7 × 1010M⊙) and EAGLE (Mhalo,thr = 1.4 × 1010M⊙). Among the whole MBH merger
population, the seed-mass mergers are most affected by the delays, with only < 20% of
the original simulation mergers still merging at z > 3. Nonetheless, because the seed-mass
mergers dominate the merger population in absolute numbers (250455 out of 440999), they
still occupy a large fraction of the delayed mergers. Out of the delayed merger events at
z > 3, ∼ 60% involve two seed-mass MBHs, ∼ 30% are mergers between one non-seed MBH
and one seed-mass MBH, and ∼ 10% are mergers between two large mass MBHs.

We use a 4-year LISA observation time to calculate an upper limit on the SNR for
each merger event. Many of these high-z mergers result in SNRs around ∼ 200. With a
SNR>8 threshold, high-mass merger (Mtot > 108M⊙) events are removed from the detectable
population at z > 3. The Mtot < 107M⊙ mergers are still detectable. As a result, the LISA
detectable population is still dominated by seed MBH mergers, and the expected detection
rate is similar to the total merger rate of 0.3 ∼ 0.7 per year at z > 3.

Based on these results, a LISA detection of merger events from MBH seeds population is
highly feasible. However, the detectable MBH seed mergers are predicted to correspond to
the sample of the seed MBH pairs that occur in hosts with stellar masses close to 109M⊙.
This is about three times larger than the typical stellar mass at which seed-mass mergers
are expected to occur if loss cone scattering was not accounted for. We also find that ∼ 80%
of the seed-seed merger remnants in the simulation are the only MBH residing in their
host galaxies. Accounting for the DF and binary hardening delays slightly favors systems
embedded in a larger galaxy with a more massive MBH around. This is because the more
massive hosts tend to provide a higher stellar density and hence a more effective loss-cone
scattering. However, sole MBH remnants still make up ∼ 70% of the seed-seed merger
population after the delays. Regardless, Astrid predicts the host galaxies of the detectable
z > 3 mergers to be galaxies of M∗ ∼ 109−1010M⊙. These host galaxies are detectable with
current and upcoming telescopes.

We note also that our estimation of the low-mass MBH merger rate is a lower-limit,
since we do not resolve the MBHs residing in low-mass dwarf galaxies. Observations have
provided evidence that dwarf galaxies host MBHs in their center [e.g. Lemons et al., 2015,
Moran et al., 2014, Nguyen et al., 2019, Pardo et al., 2016, Reines et al., 2013, Sartori et al.,
2015, Satyapal et al., 2014]. Simulations [e.g. Bellovary et al., 2019, Van Wassenhove et al.,
2010, Volonteri et al., 2020] also shows that dwarf galaxies consistently merge into larger
galaxies over time. Hence, missing the dwarf galaxy MBHs could bias our merger rate and
detection rate estimation towards the lower end.

Moreover, in this work, we do not evolve the orbital eccentricity during the loss-cone
scattering phase. Loss-cone scattering can increase the orbital eccentricity of the binary [e.g.
Kelley et al., 2017c, Sesana, 2010], and may affect the detected GW signal. We also do not
consider circumbinary-disk interactions [e.g. Haiman et al., 2009], since circumbinary-disk
simulations for eccentric binaries have not yet been comprehensively explored for a wide-
enough range of binary parameters and disk properties. A significant amount of progress,
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however, has been made in the hydrodynamic modeling of such systems [e.g., D’Orazio and
Duffell, 2021, Duffell et al., 2020, Tiede et al., 2020]. Binary-disk interactions may also affect
the spin orientations of each MBH. It is also currently uncertain how a circumbinary disk
would respond when an eccentric binary undergoes post-Newtonian spin-orbit interactions.
We thus leave such analyses with our cosmological binary population for future work.

Despite the limitations in the modeling discussed above, we find that current simulations
such as Astrid are getting closer to predicting DF timescales for the binary evolution.
The estimation of the binary hardening timescale remains more uncertain as it depends
on the properties of central stellar densities below the resolution limit. We have shown
that changing the stellar density extrapolation starting point from 1.5ϵg to 2ϵg increases
the estimated density at the influence radius by a factor of ∼ 10, and thereby shortens the
estimated binary hardening timescale by a factor of ∼ 10. This translates to a factor of ∼ 3
different in the merger rate predictions. To more confidently estimate the binary hardening
timescale and thus the MBH merger rate in the context of cosmological simulations, better
modeling of the inner region of the galaxy would be needed. Nonetheless, we still expect
the merger rates to be within a factor of a few of what a cosmological simulation is able to
predict (at the resolution of Astrid)

4.A Effect of Unresolved Eccentricity Evolution
As was discussed in Section 4.4.2 and Section 4.6.2, when computing the delay of mergers
due to loss-cone scattering and when calculating the SNR for eccentric binaries, we have
not taken into account possible circularization of the orbits during the unresolved dynamical
friction phase. In this section, we will investigate the possible effect of orbit circularization
on the merger rate predictions as well as on the SNR calculation.

We still assume simple models for binary circularization, because there is not yet a
analytical model we can apply for the eccentricity evolution on < 100 pc scales. We assume
two scenarios for the orbit circularization: the first model is an extreme case, where we
assume that all orbits are fully circularized before entering the loss-cone scattering phase.
This model deviates from the results in previous works such as Mannerkoski et al. [2021],
Vasiliev et al. [2022] and Gualandris et al. [2022], but we take it as a lower limit on our rate
predictions. The second model is motivated by the result in Gualandris et al. [2022], who
found that in the DF regime, the orbit goes through a certain degree of circularization, while
still retaining a fraction of the high eccentricity at the beginning of the DF phase. Hence,
we assume that by the end of the DF-dominated orbital decay, the binary retains half of its
original eccentricity. This is in line with the median eccentricity loss in the simulations of
Mannerkoski et al. [2021] and Gualandris et al. [2022], although these simulations also show
a wide range of circularization.

In Figure 4.A.1, we show the merger rate similar to those calculated in Figure 4.4.6,
but for different initial eccentricity assumptions. When we assume that all orbits have zero
eccentricity before the loss-cone scattering phase, the binary hardening time is significantly
longer, and the merger rate decreases by a order of magnitude compared with our original
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Figure 4.A.1: Merger rates after the DF and hardening delays when we assume different
eccentricities for the binary population. We compare the constant-eccentricity cases with
ϵ = 0 (thin blue), ϵ = 0.5 (thin green), and ϵ = 0.9 (thin pink) with the merger rate
assuming our measured eccentricity during the DF phase (thick blue). We also show the
merger rate when assume that the eccentricity decreased by half during the unresolved DF
phase (thick yellow), based on the conclusion of Gualandris et al. [2022].

predictions using the measured eccentricities. When assuming half-circularized orbit, the
hardening time also increases, resulting in a 70% decrease in the merger rate before z = 3.

Figure 4.A.2 further shows the impact of the assumed initial eccentricity on the SNR
predictions for LISA. In the top panel we reproduce our original predictions based on the
measured eccentricities. The middel panel assume a full-circularization model. Note that
here the eccentricity not only affects the merging redshifts throught the hardening time,
but also affects the waveform of the final signals. We can see that the most of the mergers
still have SNRs above the detection limit, but there are significantly less mergers before
z = 3. The bottom panel shows the SNR for the half-circularizaiton model. Comparing
with the full-circularization model, the overall SNR is slightly lower at high-redshifts, and
the distribution of SNR better traces the measured-eccentricity model. In both cases, the
assumed eccentricity does not have a large impact on the SNR for each merger event, but
does affect the high-redshift merger rate.
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Figure 4.A.2: SNR and merging redshift distribution for different eccentricities assumed at
the beginning of the loss-cone scattering phase. Top: same as the lower left panel of Figure
4.6.2, where we have used the eccentricity measured from the last orbit in the simulation.
Middle: The merging time and SNR assuming that all orbits are completely circularized
before entering the loss-cone scattering regime. Bottom: The merging time and SNR
assuming that the orbits are half-circularized during the unresolved DF and the LC phase.
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Abstract

We examine the dual (both BHs active) and offset (one BH active and in distinct galaxies)
AGN population (comprising ∼ 2000 pairs at 0.5 kpc ≲ ∆r < 30 kpc) at z = 2 ∼ 3 in the
ASTRID simulation covering (360 cMpc)3. The dual (offset) AGN make up 3.0(0.5)% of
all AGN at z = 2. The dual fraction is roughly constant while the offset fraction increases
by a factor of ten from z = 4 ∼ 2. Compared with the full AGN population, duals are
characterized by low MBH/M∗ ratios, high specific star-formation rates (sSFR) of ∼ 1Gyr−1,
and high Eddington ratios (∼ 0.05, double that of single AGN). Dual AGN are formed in
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major galaxy mergers (typically involving Mhalo < 1013M⊙), with simular-mass BHs. At
small separations (when host galaxies are in the late phase of the merger) duals become
2 ∼ 8 times brighter (albeit more obscured) than at larger separations. 80% of the bright,
close duals would merge within ∼ 500Myrs. Notably, the initially less-massive BHs in duals
frequently become the brighter AGN during galaxy mergers. In offset AGN, the active BH
is typically ≳ 10 times more massive than its non-active counterpart and than most BHs
in duals. Offsets are predominantly formed in minor galaxy mergers with the active BH
residing in the center of massive halos (M halo ∼ 1013−14M⊙). In these deep potentials,
gas stripping is common and the secondary quickly deactivates. The stripping also leads to
inefficient orbital decay amongst offsets, which stall at ∆r ∼ 5 kpc for a few hundred Myrs.

5.1 Introduction
Super-Massive Black Holes (SMBHs) are believed to reside in the center of most massive
galaxies [e.g. Kormendy and Ho, 2013]. As a consequence of the hierarchical structure
formation [e.g. Blumenthal et al., 1984], pairs of SMBHs were found in the merger remnant
after mergers between two galaxies. These SMBH pairs slowly spiral toward the center of
mass of the newly merged system and remain at a separation of 0.1 ∼ 100 kpc for a few
hundred Myrs [e.g. Begelman et al., 1980, Milosavljević and Merritt, 2001], during which
dynamical friction is the major mechanism for driving the orbital decay, and enables the
formation of a bound binary.

During the galaxy mergers, active galactic nuclei (AGN) can be triggered by the gas
driven towards the center of the merger remnant and onto the SMBHs [e.g. Di Matteo et al.,
2005b, Hopkins et al., 2008], making these SMBH pairs observable as either dual AGN
[when both of the SMBHs are active, e.g. Comerford et al., 2009, Gerke et al., 2007], or
offset AGN [when only one of the SMBHs is active, e.g. Steinborn et al., 2016]. Because
of the tight connections between the galaxy assemblies and SMBH pairs, the detection and
characterization of dual and offset AGN are fundamental for understanding the formation
and accretion history of SMBHs across cosmic ages.

There have been significant observational efforts to search for these SMBH pairs using
various techniques [see e.g. De Rosa et al., 2019, for a comprehensive review of recent
observational works]. Candidates of dual AGN can be found by searching for double-peaked
narrow AGN emission lines in optical spectroscopy [e.g. Barrows et al., 2013, Comerford et al.,
2009], with follow-up confirmation through other bands [e.g. Fu et al., 2012, McGurk et al.,
2011, Shen et al., 2011]. Hard X-ray observations are widely used to detect multiple AGN in
a galaxy especially at high redshifts [e.g. Bianchi et al., 2008, Koss et al., 2018, Lanzuisi et al.,
2018, Piconcelli et al., 2010], being less affected by contamination from stellar processes and
absorption [e.g. Fragos et al., 2013, Lehmer et al., 2016]. Among the observed samples, some
controversial conclusions arise likely due to the different selection functions from different
observational techniques. For example, a number of studies find a higher fraction of dual
AGN in galaxies with a closer separation, suggesting that galaxy interactions play a role in
triggering of dual AGN [e.g. Ellison et al., 2011, Kocevski et al., 2015, Koss et al., 2012, 2018,
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Liu et al., 2012, Satyapal et al., 2014, Silverman et al., 2011]. On the other hand, there are
also studies showing no enhanced AGN activity in mergers compared to a matched control
sample of inactive galaxies [e.g. Cisternas et al., 2011, Mechtley et al., 2016].

Despite the massive effort in catching AGN in their dual phase, there have been very
limited number of z ≳ 2, close separation (∆r ∼ kpc) pairs, due to the limitation in spatial
resolution to distinguish between the close pairs. However, very recently, several groups have
been pushing the limit of detecting these high-redshift close pairs using novel observational
techniques. For example, Chen et al. [2022d] uses varstrometry with Gaia DR2 [also see
e.g. Hwang et al., 2020, Shen et al., 2019, 2021] to identify several z ≳ 2 dual/offset AGN
candidates. Silverman et al. [2020] uses the double quasar samples from the Hyper Suprime-
Cam (HSC) Subaru Strategic Program and identified 421 dual AGN candidates out to a
redshift of 4.5. By looking for distinguished stellar bulges in a sample of AGN host galaxies,
Stemo et al. [2021] put up a catalog of 204 offset and dual AGN candidates down to a
separation of < 4 kpc, among which a few are z ≳ 2 AGN. In recent works, Shen et al. [2022]
characterizes the statistical properties of galactic-scale quasar pairs using a statistically large
sample of 60 double quasars. Mannucci et al. [2022] uses the novel Gaia Multi-Peak method
to select over 200 multiple AGN candidates between z = 0.3 ∼ 4 down to ∼kpc separations.

In light of these recent observations of high redshift AGN pairs, a sample of simulated
counterparts is needed to understand the observed sample and its astrophysical implications.
In the realm of idealized galaxy-merger simulation, Blecha et al. [2013], Capelo et al. [2017],
Van Wassenhove et al. [2012] studied AGN activation at various pair separations as well
as the impact of the galaxy merger parameters such as the host galaxy mass ratio and
morphology. Recent developments in cosmological hydrodynamical simulations also allow
studies of dual and offset AGN and galaxy mergers in a cosmological context [e.g. Ricarte
et al., 2021, Rosas-Guevara et al., 2019, Steinborn et al., 2016, Tremmel et al., 2017, Volonteri
et al., 2016, 2022], where the number and the properties of dual AGN relative to all AGN
can be calculated at different redshifts.

Among the cosmological simulations mentioned above, very few were able to produce a
statistically large sample of kpc-separation AGN pairs at z ≳ 2, due to several reasons. First,
because the dual and offset AGN only make up a few percent of the total AGN population
[e.g. Fu et al., 2011, Liu et al., 2011], and because bright AGN are already rare at high
redshifts, a large (≳ 100Mpc/h)3 cosmological volume is required to produce those pairs.
Moreover, ∼ kpc spatial resolution is needed in order to resolve pairs separated by a few
kpc. Finally, even for simulations satisfying the above resolution requirements, in most
cosmological simulations BHs are pinned to the gravitational potential minimum to avoid
artificial kicks of the BH. Consequently, during a galaxy merger, the two central MBHs merge
too quickly to be captured at the ∼ kpc separation. The BH dynamics modeling after the
host galaxy merger is even more important for studying offset pairs [e.g. Allen et al., 2015,
Barth et al., 2008, Comerford et al., 2012, 2015, Müller-Sánchez et al., 2015] , which are
thought to originate mostly from galaxy merger events.

The Astrid simulation is among the few cosmological simulations that meet the above
requirements for studying high-redshift AGN pairs [Bird et al., 2022, Chen et al., 2022a, Ni
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et al., 2022]. First, with a volume of (250Mpc/h)3, Astrid contains > 104 massive AGN
already at z = 2 ∼ 3, among which ≳ 3% are in pairs. More importantly, the high spatial
resolution of ∼ 1.5 ckpc/h relative to the volume can resolve AGN pairs at close separations
a few hundred Myrs after the host galaxy mergers. Finally, the dynamical-friction modeling
in Astrid allows for one of the first studies of the evolution of ∆r ≲ 1 kpc AGN pairs and
their activation in the context of cosmological simulations (previously only done in idealized
galaxy merger simulations).

This paper is organized as follows: in Section 6.2 we introduce the Astrid simulation,
in particular the MBH modeling, and describe our selection criterion for the dual and offset
AGN from the simulation; in Section 5.3, we focus on a sample of dual and offset AGN at z =
2, and investigate their properties such as the separation, mass/luminosity distributions, host
galaxy mass, AGN activation levels and obscuration, with comparisons with high-redshift
observations where possible; then, in Section 5.4, we characterize the evolution of AGN
pairs at z = 3 during and after the host galaxy merger, with an emphasis on the effect of
pericentric passages and the difference between the evolution of dual and offset AGN.

5.2 Simulation
The Astrid simulation is a large-scale cosmological hydrodynamic simulation in a 250Mpc/h
box with 2 × 55003 particles. Astrid contains a statistical sample of halos which can be
compared to future survey data from JWST, while resolving galactic halos down to 109M⊙
(corresponding to 200 dark matter particles). The initial conditions are set at z = 99 and
the current final redshift is z = 2. The cosmological parameters used are from Planck
Collaboration et al. [2020], with Ω0 = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, σ8 = 0.82,
h = 0.6774, As = 2.142 × 10−9, ns = 0.9667. The mass resolution of Astrid is MDM =
6.74×106h−1M⊙ and Mgas = 1.27×106h−1M⊙ in the initial conditions, and our star particles
have a median mass of 105.5M⊙. The gravitational softening length is ϵg = 1.5 ckpc/h for
both DM and gas particles.

5.2.1 Black Hole Modeling

Here we briefly describe the BH modeling used in Astrid most relevant for the dual and
offset AGN. For a thorough description of the sub-grid models and BH statistics, please refer
to Bird et al. [2022], Ni et al. [2022], and Chen et al. [2022a].

Astrid contains models for inhomogeneous hydrogen and helium reionization, baryon
relative velocities and massive neutrinos, as well as ’full-physics’ galaxy formation models
including star formation, BH accretion and the associated supernova and AGN feedback. The
star formation model is unchanged from Feng et al. [2016], which followed the implementation
of Springel and Hernquist [2003]. The BH model includes mergers driven by dynamic friction
rather than repositioning. Our treatment of BHs largely follows the BlueTides simulation
in terms of the BH accretion and feedback, which is based on the earlier work by Di Matteo
et al. [2005b], Springel et al. [2005b]. The gas accretion rate onto the BH is estimated via the
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Bondi-Hoyle-Lyttleton-like prescription applied to the smoothed properties of the 112 gas
particles within the SPH kernel of the BH. We allow for short periods of super-Eddington
accretion in the simulation, but limit the accretion rate to 2 times the Eddington accretion
rate.

The BH radiates with a bolometric luminosity Lbol proportional to the accretion rate
ṀBH, with a mass-to-light conversion efficiency η = 0.1 in an accretion disk according to
Shakura and Sunyaev [1973]. We include both thermal (or quasar-mode) feedback and
kinetic AGN feedback. In quasar mode feedback, 5% of the radiated energy is thermally
coupled to the gas residing within twice the radius of the SPH smoothing kernel of the
BH particle. A BH switches to the kinetic mode only when the accretion rate drops below
the Eddington ratio χthr,max = 0.05 and the BH mass is MBH ≳ 108.5M⊙. The kinetic
feedback follows Weinberger et al. [2017], with slightly different parameters. Kinetic feedback
energy is deposited as ∆Ėkin = ϵf,kinṀBHc

2, where ϵf,kin scales with the BH local gas density
and has a maximum value of ϵf,kin,max = 0.05. The energy is accumulated over time and
released in a bursty way once the accumulated kinetic feedback energy exceeds the threshold
Einj,min = fre

1
2
σ2
DMmenc. σ2

DM is the one-dimensional dark matter velocity dispersion around
the BH, menc is the gas mass in the feedback sphere and fre = 5. The released kinetic
energy kicks each gas particle in the feedback kernel in a random direction with a prescribed
momentum weighted by the SPH kernel. Kinetic feedback is enabled in Astrid at z < 2.4.

To seed MBHs in the simulation, we periodically run a FOF group finder on the fly with
a linking length of 0.2 times the mean particle separation, to identify halos with a total mass
and stellar mass satisfying the seeding criteria { Mhalo,FOF > Mhalo,thr; M∗,FOF > M∗,thr}. We
apply a mass threshold value of Mhalo,thr = 5× 109h−1M⊙ and M∗,thr = 2× 106h−1M⊙.

Instead of applying a uniform seed mass for all BHs, we probe a mass range of the BH
seed mass Mseed drawn probabilistically from a power-law distribution:

P (Mseed) =


0 Mseed < Mseed,min

N (Mseed)
−n Mseed,min ≤ Mseed ≤ Mseed,max

0 Mseed > Mseed,max

(5.1)

where N is the normalization factor. The minimum seed mass is Mseed,min = 3× 104h−1M⊙
and the maximum seed mass is Mseed,max = 3× 105h−1M⊙, with a power-law index n = −1.
For each halo that satisfies the seeding criteria but does not already contain at least one BH
particle, we convert the densest gas particle into a BH particle.

Instead of repositioning the black hole towards the potential minimum, in Chen et al.
[2021] we implemented and tested a model for sub-grid dynamical friction [similar to Tremmel
et al., 2015, 2017], using a BH dynamical mass of Mdyn = 2 ×MDM = 1.3 × 107M⊙. This
means that we boost the mass of the BHs to Mdyn = 2 ×MDM = 1.3 × 107M⊙ only when
calculating the acceleration if the original mass of the BH is less than this threshold, in
order to avoid the unphysical scattering off of dark matter particles. With this dynamical
mass, the orbital decay timescale of seed-mass BHs is likely underestimated, but for the
current work, since we focus on the massive BHs, the dynamical mass does not deviate
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greatly from the true mass and thus should not affect the sinking timescale. We set the
merging distance to be 2ϵg = 3 ckpc/h, because the BH dynamics below this distance is
not well resolved. We conserve the total momentum of the MBHs during the merger (i.e.
MBH,1v1 +MBH,2v2 = MBH,remvrem). Moreover, as we do not have repositioning of the BHs
to the nearby potential minimum, the BHs have well-defined velocities at each time step
(this is true whether or not we add the dynamical friction). This allows us to apply further
merging criteria based on the velocities and accelerations of the black hole pair, and thus
avoid early mergers of gravitationally unbound pairs.

We follow Bellovary et al. [2011] and Tremmel et al. [2017], and use the criterion

1

2
|∆v|2 < ∆a ·∆r (5.2)

to check whether two black holes are gravitationally bound. Here ∆a, ∆v and ∆r denote
the relative acceleration, velocity and position of the black hole pair, respectively. Note that
this expression is not strictly the total energy of the black hole pair, but an approximation
of the kinetic energy and the work needed to get the black holes to merge. Because in the
simulations the black hole is constantly interacting with surrounding particles, on the right-
hand side we use the overall gravitational acceleration instead of the acceleration purely from
the two-body interaction. We note, however, that the mergers in the simulation following
the criterion above do not correspond to the real coalescence of the two MBHs: the typical
separations between the MBH pairs are still ∼ 1 kpc, and the MBH should experience further
orbital decay by dynamical friction, loss-cone scattering and drags due to the circum-binary
disk before the final coalescence.

5.2.2 AGN Pair Selection

Among all MBHs in the simulation at a fixed redshift, we define an MBH pair as two MBHs
with a separation of ∆r < 30 kpc (proper). The upper limit in separation chosen here
follows from previous simulation works such as Steinborn et al. [2016]. For this work, we
only focus on the massive end of our population by restricting to MBH pairs with both
MBHs above 107M⊙ for two main reasons: first, with the current dynamical-friction model
in Astrid, there remain large uncertainties in the dynamics of lower-mass MBHs due to the
introduction of the dynamical mass; second, the low-mass/faint-end luminosity function from
most hydrodynamical simulations are high compared with observations, so that including
the MBH < 107M⊙ MBHs may lead to an over-estimation of dual AGN passing certain
luminosity thresholds.

Among the large MBHs, we then define AGN as MBHs with bolometric luminosity Lbol >
1043 erg/s. Dual AGN are MBH pairs in which both of the MBHs are bright enough to be
AGN. There is also a significant population of MBH pairs with only one MBH powering
an AGN, while the other remains faint (Lbol < 1043 erg/s). We define such MBH pairs as
"one-AGN pairs", indicating that these are still MBH pairs resulting from mergers between
massive galaxies, but only one MBH is powering an AGN. If a one-AGN pair is in the
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Figure 5.2.1: Illustration of different categories of MBH pairs defined in this work. Note that
offset AGN are the subset of one-AGN pairs in which the two MBHs are found in distinct
galaxies. See Section 5.2.2 for the detailed definitions.
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Figure 5.2.2: Dual AGN and one-AGN pairs in a 250 cMpc/h × 150 cMpc/h × 20 cMpc/h
slice of the Astrid simulation. The background image shows the gas distribution of the
simulation, color-coded by the gas temperature where warmer regions correspond to higher
temperatures. For each dual AGN in the slice, we locate it with white squares in the snapshot
and zoom in on their surrounding IGM and host galaxies. About half of the duals are in
separated galaxies with ∆r > 10kpc/h, and the other half have already gone through galaxy
mergers. Among all pairs shown, there are two one-AGN pairs, out of which one is an offset
AGN (see the definitions in Figure 5.2.1), and we have labeled them in cyan text.
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early stage of a galaxy merger, their host galaxies still retain distinguishable bulges, and the
inactive MBH may be inferred by the presence of a second bulge close to the AGN host.
Following the definition in previous works such as Comerford et al. [2015], De Rosa et al.
[2019], and Stemo et al. [2021], we will refer to the one-AGN pairs hosted by two galaxies
as "offset AGN". In contrast, some one-AGN pairs are found after their host galaxies have
merged. Observationally, such pairs may be very hard to distinguish from a single AGN.
We note that sometimes in the literature, "offset AGN" also refers to single AGNs which
are found at a large distance from the galaxy center [e.g. Blecha et al., 2016], or AGN
with kinematic offset from their host galaxies that can be observed through offsets in the
spectral lines [Comerford and Greene, 2014]. Note that for the inactive MBHs in the offset
pairs, we also require them to have masses > 107M⊙. This is to separate the MBHs that
only become inactive during the galaxy merger from a much larger population of low-mass
companions around the bright AGN. To avoid confusion with definitions from various works
in the literature, in Figure 5.2.1 we show a schematic diagram of each type of objects defined
in this work.

After applying the above criterion, there are 2008 (439) MBH pairs with MBH > 107M⊙
at z = 2 (z = 3), among which 1087 (329) are dual AGN, 842 (110) are one-AGN pairs, and
79 (10) are no-AGN pairs. For this work, we do not explicitly search for MBH multiplets, so
our catalog is subject to double-counting in the case of multiplets. More specifically, ∼ 10%
of the AGN in the dual catalog are involved in triplets, and < 1% is involved in quadruplets.
This means that there could be up to 20% decrease in our pair counts if those multiplets
were to be removed from the pair catalog. However, here we did not remove these pairs
entirely from our catalog, because these are still tracers of galaxy mergers, and they have
shared features with the “pure” dual AGN. For these AGN mutiplets, when we show the
mass/luminosity functions or the halo/galaxy mass for individual AGN in the pairs (e.g. in
Figure 5.3.4), we avoid counting one AGN multiple times by counting the most massive one
as the primary (only once) and the rest as secondaries. For statistics involving the pairs as
a single object (e.g. Figure 5.3.2), we will use all three pairs in a triplet. For the two MBHs
in the pair, we will refer to the more massive one at the time of observation as the primary
MBH (or BH1), and the less massive one as the secondary MBH (or BH2). By the "time
of observation", we refer to the fixed redshifts (z = 2 or z = 3) at which we measure the
properties of the BHs and host galaxies. We note that the mass ratio may change before or
after this fixed redshift, but we do not switch our notation of the primary and secondary
with the change in redshift. Note that we assign the primaries and secondaries by the MBH
masses instead of the luminosities. We will refer to the more luminous MBH as the brighter
AGN, and the less luminous MBH as the fainter AGN.

We identify the host galaxies of the MBHs with Subfind [Springel et al., 2001], where
MBHs are treated as baryons in the Subfind when assigned to host galaxies, and are therefore
gravitationally bound to the corresponding subhalo. We note that during the close encounters
of galaxies, Subfind may not be able to separate the merging systems well. This is especially
the case for offset AGN hosts since the gas and stellar disruption is very strong. For this
reason, in our analysis we show the properties of one-AGN pairs as well as offset AGN, as
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some of secondaries among close one-AGN pairs may retain their stellar bulges that our
simulation or Subfind is not able to resolve/identify. The observed offset AGN should be
bracketed by our one-AGN pairs and offset AGN populations. Finally, when tracing the
MBH and galaxy properties back in redshift, we always follow the more massive progenitor
if the MBH of interest has gone through prior mergers.

In Figure 5.2.2, we show the dual AGN and one-AGN pairs in a 250 cMpc/h×150 cMpc/h×
20 cMpc/h slice of the Astrid simulation. The background image shows the gas distribution
of the simulation, color-coded by the gas temperature where warmer regions corresponds
to higher temperatures. At the position of each pair, we zoom into the IGM and galax-
ies surrounding the AGN pairs. The green dots mark all AGN with MBH > 107M⊙ and
Lbol > 1043 erg/s. Note that we have shown all of the dual AGN and one-AGN pairs in this
slice, and we can see that the pair distribution is a sparse representation of the underlying
galaxy/AGN distribution.

5.3 Properties of High-z AGN in Pairs
In this section, we investigate the properties of the duals and one-AGN pairs at a fixed
redshift z = 2. Specifically, we will look at the separation of the pairs, their mass/luminosity
function, Eddington ratio, and host galaxy properties compared with the underlying AGN
population.

5.3.1 Dual Fraction

The fraction of dual AGN relative to the underlying single AGN population could be a proxy
for the number of massive galaxies undergoing galaxy mergers. Observational studies suggest
that the fraction of dual AGN is small [e.g. Fu et al., 2011, Rosario et al., 2011]. The dual
AGN fraction in the local Universe has been estimated from the dual AGN sample of Koss
et al. [2012] detected with X-ray spectroscopy to be about 2%. Liu et al. [2011] used a sample
from the Seventh Data Release of the SDSS survey at z = 0.1 based on diagnostic emission-
line ratios and estimated a dual AGN fraction with ∆r < 30 kpc to be 1.3%. Constraint
on the evolution of dual AGN fraction at higher redshifts is still an ongoing work: recently
Silverman et al. [2020] found a dual quasar fraction of 0.26± 0.18% from z = 3 to z = 1.5,
with no evidence for a redshift evolution [also see Shen et al., 2022, for the fraction of bright
double quasars at z ∼ 2]. Although our simulation contains a few double quasars by z = 2
with both quasars above Lbol > 1046 erg/s, the sample size is still too small for statistical
comparison. Here, we still use a selection criterion consistent with previous simulation works
and do not directly draw comparisons between our dual fraction and those computed from
observations. We refer the readers to Shen et al. [2022] and Chen et al. [2022e] for more
information of the bright double quasar pairs in Astrid and a direct comparison with recent
observations.

In Figure 5.3.1, we show the redshift dependence of the dual AGN, one-AGN pair, and
offset AGN fraction in the Astrid simulation. To compute the fraction, we take the number
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Figure 5.3.1: Fraction of dual AGN (solid pink), one-AGN pairs (dashed pink) and offset
AGN (pink cross, we only show data points at redshifts where we have the subhalo infor-
mation of the AGN) among the underlying massive AGN population. We also show the dual
fraction with a selection criterion of 5 kpc < ∆r < 30 kpc (purple). For comparison, we
plot the dual fractions in recent simulation works of comparable box sizes including EAGLE
(beige square), HorizonAGN (brown diamond), and Magneticum (grey triangle).
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Figure 5.3.2: Distribution of the distance between the two MBHs in the dual AGN (top)
and one-AGN pairs (bottom) at z = 3 (left) and z = 2 (right). Here we separate each
population by whether the two MBHs are embedded in the same galaxy (brown) or not
(green). Between z = 3 and z = 2, the number of duals goes through a three-fold increase,
whereas the number of one-AGN pairs becomes seven times larger. We also show the dual
AGN and one-AGN pairs selected based on the 2D projected distance instead of the true
distance, to mimic the selection from observations (grey dashed). For those pairs, the x-
axis represents the projected distance.
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of dual AGN/one-AGN pairs/offset AGN selected based on the criterion in Section 5.2.2
as the numerator, and take all AGN with MBH > 107M⊙, and Lbol > 1043 erg/s as the
denominator. From z = 4 to z = 3, the dual fraction shows no redshift dependence and
remains ∼ 2.3%. After z = 3, we see a slight rise in the fraction of duals to ∼ 3%. Above
z = 4, there is a drop in the dual fraction to ∼ 1%. The fraction of one-AGN pair increases
significantly from z = 4 to z = 2, likely due to the increasing number of minor galaxy
mergers which is the major sight for the one-AGN pairs [see e.g. Section 5.3.4, also Ricarte
et al., 2021, Tremmel et al., 2018a]. Offset AGN make up ∼ 30% of the one-AGN pairs from
z = 2− 4.

Also in Figure 5.3.1, we compare our result to the dual fraction estimates from previous
numerical works at high redshifts [e.g. Rosas-Guevara et al., 2019, Steinborn et al., 2016,
Volonteri et al., 2022]. Among the three simulations we compare with, HorizonAGN [Volon-
teri et al., 2022] uses the same distance/mass/luminosity criterion for the duals, and they
also adopt dynamical-friction modeling of the MBH dynamics, and indeed our prediction of
the dual fraction aligns closely with their predictions.

In contrast, the predictions from Steinborn et al. [2016] (using the Magneticum simula-
tion) and Rosas-Guevara et al. [2019] (using the EAGLE simulation) show a lower fraction
of the dual population, and they see a decrease in the dual fraction with redshift. The lower
fraction in Steinborn et al. [2016] and Rosas-Guevara et al. [2019] is likely due to their exclu-
sion of close pairs and lower spatial resolution of the MBH merger. To show the resolution
dependence of the dual fraction, we also plot the fraction calculated only using duals sep-
arated by ∆r > 5 kpc. With this selection criterion, the dual fraction systematically drops
by ∼ 50% at all redshifts, but compared with Steinborn et al. [2016] and Rosas-Guevara
et al. [2019], our dual fraction remains higher at lower redshifts. This can be a result of the
velocity-based merging criterion we have adopted, which was absent from most previous sim-
ulations: it has been shown that applying the velocity-based merging criterion can uniquely
lead to long-lived pairs of MBHs at galaxy-scale separations [e.g. Chen et al., 2021, Tremmel
et al., 2018a,b], such that a larger fraction of high-redshift pairs remains observable as dual
AGNs at z ∼ 2.

The different trend in redshift likely arises because the samples in Rosas-Guevara et al.
[2019] are not subjected to the MBH > 107M⊙ mass cut [see e.g. Volonteri et al., 2022, for
the effect of applying various mass and luminosity cuts]. Finally, we note that the underlying
AGN population is also different in their masses and luminosities, due to the BH model used
in each simulation [e.g. Habouzit et al., 2022].

5.3.2 Pair Separations

In Figure 5.3.2, we plot the distributions of the separations between the two MBHs in the dual
AGN and one-AGN pairs at z = 3 and z = 2. Among duals and one-AGN pairs, we further
categorize the pairs as same and different galaxy duals (one-AGN pairs) according to whether
the two MBHs are in the same galaxy or not, where the host galaxies are identified with the
subhalo catalog generated by Subfind. Previously, Rosas-Guevara et al. [2019] and Volonteri
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et al. [2022] also distinguish between the dual AGN before and after the host galaxy merger,
in order to establish the relation between dual AGN activation and the host galaxy merger.
In our case, we made this distinction both for the same reason as these works, and because
this classification selects out the small-separation pairs which are of particular interest to the
most recent observations. Since our simulation adopts a sub-grid dynamical friction model
with a stricter merging criterion than most previous works of similar resolutions, we are able
to identify more pairs at closer separations, down to ∆r < 1 kpc.

On the top panels, we show the separation of dual AGN with ∆r < 30 kpc. The same-
galaxy dual AGN have separations below ∆r = 5kpc, with a peak near ∆r = 2kpc for
both z = 2 and z = 3. Within our sample, the probability of seeing a ∆r < 2 kpc dual
AGN is five times the probability at larger separations. Finally, the distribution is flat at
∆r > 5 kpc, showing no preferred separation for the different-galaxy duals during the galaxy
merger. In previous works, Rosas-Guevara et al. [2019] find a peak of dual separations within
[20 kpc, 25 kpc], but they did not consider any pairs below 5 kpc. Steinborn et al. [2016] and
Volonteri et al. [2022] also uses various models for the sub-grid dynamical friction, and found
a higher probability density of duals at ∆r < 5kpc.

On the bottom panels of Figure 5.3.2, we show the separation distribution of the one-
AGN pairs. Contrary to the dual AGN which accumulates near separation of 1 kpc, there
are almost no one-AGN pairs at such close separations: most are found at separations
around 5 kpc. As we will see in the later sections, this is mainly because the stripping of
the secondary host galaxy is most severe when the two merging galaxies are separated by
around 5 kpc, causing the secondary MBH to lose its gas supply and become inactive. When
the separation of the MBHs gets closer to ∼ 1 kpc, however, the secondary MBH begins to
accrete from the gas in the primary galaxy, thereby turning the one-AGN pair into a dual
at the 1 kpc separation.

We also see differences between the z = 2 and z = 3 populations. Only 30% of the dual
AGN at z = 3 reside in the same host galaxy and are within ∆r < 5 kpc in separation,
but this fraction becomes 50% at z = 2. The evolution from z = 3 to z = 2 also saw a
large increase in the fraction of one-AGN pairs: while the number of duals has increased by
∼ 200%, the one-AGN pairs has grown by ∼ 700%. The growth of the same-galaxy, close
duals as well as one-AGN pairs is a result of the dynamical friction model and merger criterion
in Astrid which prevent dual AGNs from merging immediately after the host galaxy merger
(also see the detailed discussion in Section 5.3.1). During the dynamical-friction dominated
orbital decay, an increasing number of AGN go through gas stripping and become one-AGN
pairs instead of duals.

Also in Figure 5.3.2, we show the pairs selected with the 2D projected separation ∆rproj,
rather than the true separation, to mimic the selection function of observations. Here we take
∆rproj to be the projection of ∆r on the x−y plane, and we also limit the projection depth to
be |∆z| < 100 kpc. Using the projected separation increases dual AGN by ∼ 30%, meaning
that at separations of ∆r > 30 kpc, there are still a significant number of pairs residing in
separated galaxies. Furthermore, using projected separation also increases the probability
of pairs at ∆rproj < 5 kpc. For the one-AGN pairs, however, ∆rproj-based selection only
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Figure 5.3.3: Distribution of the distances between the MBHs in duals (top panel)/one-
AGN pairs (bottom panel) and their host galaxy centers (defined as the position of the
particle at the potential minimum in each subhalo) at z = 2. While the primary AGN
among duals and one-AGN pairs is usually within 1 kpc from the galaxy center, the majority
of the secondaries are quite off-center (∆rAGN,gal > 1 kpc). We distinguish the BHs in pairs
both by their masses (solid lines) and their luminosities (shaded). For one-AGN pairs, the
more massive BH is always brighter, while for duals some of the brighter AGN is the less
massive one (see Figure 5.3.4).

includes < 10% more pairs, which is a lot less compared with the increase in the dual AGN.
With a mass cut of MBH > 107M⊙, the secondary MBHs rarely fall below Lbol < 1043 erg/s
without severe disruption of the gas during galaxy mergers (see e.g. Figure 5.3.5). Hence, at
∆r > 30 kpc and ∆rproj < 30 kpc when the host galaxies have barely interacted, massive but
inactive secondaries are hard to find. Another consequence of the lack of large-separation
one-AGN pairs is that using the projected distance will bias the observed distance separation
towards the lower end and thus raise the resolution requirements.
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Figure 5.3.4: Top: Mass functions (left two columns) and luminosity functions (right
two columns) of the dual AGN and one-AGN pairs, compared with the underlying MBH
population and MBH pairs. The solid red (blue) shows the distribution of the more (less)
massive MBH in the dual/one-AGN pairs. The mass and luminosity function of all MBHs are
shown in solid grey (we start the bins at MBH = 106M⊙ and Lbol = 1042 erg/s for a clearer
view of the high-mass end). To illustrate the effect of our mass threshold at MBH > 107M⊙,
we also show the "dual AGN" and "one-AGN pairs" without applying the mass threshold
(dashed). Note that for such "duals", the luminosity threshold of Lbol,1,2 > 1043 erg/s is still
present, while for the "one-AGN pairs", the only constraint is Lbol,1 > 1043 erg/s. Finally,
we show the mass and luminosity functions of all MBH pairs with ∆r < 30 kpc (dotted).
Bottom: mass and luminosity ratio between the less massive MBHs and the more massive
MBHs in the duals and one-AGN pairs. One-AGN pairs have greater mass and luminosity
contrasts compared with duals. Also note that for duals, the more massive MBHs do not
necessarily correspond to the brighter AGN.
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5.3.3 Off-centered Pairs

As dual and offset AGN are typically found during/after mergers between massive galaxies,
the associated MBHs are likely displaced from the host galaxy centers due to dynamical
interactions. The distance between the MBH and the host galaxy centers could correlate with
the accretion efficiency of the MBHs, and also indicate the existence of a hidden secondary
in case only one AGN is observed.

In Figure 5.3.3, we show the distances between the MBHs in pairs and the centers of
their host galaxies (identified by the minimum potential position). The more massive MBH
in both duals and one-AGN pairs are usually found very close to the galaxy centers, with
a typical separation of ∼ 0.1 kpc (we note that due to our resolution limit, we consider
∆dAGN,gal < 2ϵg = 1kpc to be "central"). The secondaries among duals are typically more
perturbed, with about half of the population "off-center". Nonetheless, most of them are still
within 5 kpc from the host galaxy center, which keeps them accreting relatively efficiently
compared to the secondaries among one-AGN pairs. These secondaries among duals could
potentially be detected as merger-induced off-center AGN if both the AGN and the host
galaxy can be resolved.

We also show the separation distribution for the brighter and fainter BH in the pair, since
it is possible for the less massive MBH to be brighter and visible. However, this is in fact
never the case for one-AGN pairs, and even though around 15% of the duals have brighter
secondaries (see Section 5.3.4 for details), the overall distribution of the distance to the host
galaxy center does not change significantly.

5.3.4 Mass and Luminosity

Figure 5.3.4 shows the mass and luminosity functions of the two MBHs involved in duals
and one-AGN pairs at z = 2, in comparison with the underlying single MBH population and
the MBH pairs without the mass/luminosity cuts. By comparing the thin dotted lines which
include all MBH pairs with the solid brown line showing the single MBH distribution, we
can see that almost all MBHs with MBH > 106M⊙ or Lbol > 1043 erg/s have a companion
black hole, typically with a much smaller mass. After applying a luminosity threshold of
Lbol > 1043 erg/s to both MBHs in the "dual" AGN case (note that since this is not how we
define our dual AGN and one-AGN pair for this work, we have added quotes when referring
to "duals" and "one-AGN pairs" selected only by their luminosities but not their masses.),
we see a significant drop in the pair fraction shown by the dashed lines. This means that
even though all massive MBHs have a close companion, only ∼ 10% have a companion that
is also luminous. For the "one-AGN pair", however, since we only apply the luminosity
threshold to the more luminous MBH in the pair, the mass and luminosity distributions
of the primary MBH are almost not affected at the high-mass end. For the less-luminous
MBH in the "one-AGN pair", selecting only the luminous primary suppresses the mass and
luminosity function of the secondary. Requiring the secondary to be under-luminous also
suppresses the high-mass end, as these pairs would fall into the "dual AGN" category.

Finally, we show the mass and luminosity functions of our dual AGN and one-AGN
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Figure 5.3.5: Top: Eddington ratio of the dual AGN and offset AGN (with the more
massive one shown in red, and the less massive one shown in blue), compared with the
underlying massive MBHs with MBH > 107M⊙ (grey, adding the extra Lbol > 1043 erg/s
constraint does not affect the peak of the distribution). Bottom: Masses and luminosities
of BH1 (purple contour) and BH2 (blue contour), plotted on top of all MBHs with
masses above 107M⊙ (grey cross). The horizontal dashed line marks the threshold for an
AGN, and the points below it are the secondary MBHs in a one-AGN pair. Almost all the
Lbol < 1043 erg/s MBHs with MBH > 107M⊙ are involved in a one-AGN pair.
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Figure 5.3.6: The relation between the pair separation and MBH luminosities. At large
separations (∆r > 10 kpc), the luminosities are not sensitive to the separation. For closer
pairs, the luminosity of the fainter MBH is inversely correlated with ∆r.
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pair catalog in solid lines. When adding the MBH > 107M⊙ threshold to both MBHs in
the pair, the dual fraction dropped to ∼ 3%. The change in the mass and luminosity
functions are not greatly affected by the additional cut on the mass, since among MBHs
with luminosities above 1043 erg/s, most already have MBH > 107M⊙. The effect on the
one-AGN pairs is more significant. Requiring the less luminous MBH in the one-AGN pair
to have MBH > 107M⊙, we are explicitly selecting out the rare population of massive but
very under-luminous secondaries. By making this selection, we can separate the naturally
low-luminosity secondaries due to their low mass, from the under-luminous secondaries that
only become faint due to the galaxy merger events.

The mass and luminosity ratios between the two MBHs in the dual AGN and one-AGN
pairs are shown in the bottom panels of each figure. Here we take the ratio of both the
mass and the luminosity between the less massive and more massive MBHs (in particular,
we do not take the luminosity ratio between the fainter and the brighter AGN). Dual AGN
are mostly found in major mergers (> 80% duals have q > 0.1), while only ∼ 20% one-AGN
pairs have q > 0.1 and a significant fraction even has q ∼ 0.01. The luminosity contrast
between the two MBHs in the one-AGN pairs is even greater: the primary AGN are usually
> 100 times brighter than the secondaries among all one-AGN pairs. For dual AGN, this
feature has already been found in observational works such as Koss et al. [2012], and has
been seen in various simulations [e.g. Callegari et al., 2009, Capelo et al., 2017, Steinborn
et al., 2016]. Finally, we also note that in 20% of dual AGN, the less massive MBHs are
brighter, but for one-AGN pairs (including offset AGN), the brighter or active AGN is always
the more massive one.

The top panel of Figure 5.3.5 shows the distribution of the Eddington ratios of the
pairs at z = 2 compared with all MBHs with MBH > 107M⊙ (note that adding an extra
Lbol > 1043 erg/s threshold to the underlying single AGN population does not change our
conclusion here, so we do not show an extra line for that population). Compared to the
overall AGN population at the same masses with a typical Eddington ratio of ∼ 0.025, the
pairs have a higher level of activation, where the Eddington ratios peak above 0.05. On the
bottom panel, we show the mass-luminosity relation for the dual and offset AGN, plotted on
top of all MBHs. The primary MBHs follow the underlying MBH distribution but appear
slightly over-luminous compared to the mean relation of the non-pair population. The blue
contour marks the secondary MBHs in the pair, and the ones falling below the dashed line
are the secondaries of one-AGN pairs. Comparing these secondaries to the overall MBH
population, we can see that the inactive MBHs of the one-AGN pairs are extremely under-
luminous. In fact, the secondaries among one-AGN pairs appear to be the majority of the
Lbol < 1043 erg/s MBHs with MBH > 107M⊙. It is very rare for an MBH > 107M⊙ MBH to
have Lbol < 1043 erg/s if it is not involved in a galaxy merger. Finally, we note that another
group of low-Eddington ratio MBHs are the heaviest MBHs with MBH ≳ 109M⊙ (the blob
on the lower-right). This is due to the kinetic AGN feedback that actively suppresses the
gas accretion among the most massive BHs.

The enhancement in the AGN activation among pairs shown above is usually attributed
to the gas-inflow during galaxy mergers. Previous simulation works have seen peaks in the
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Figure 5.3.7: The MBH −M∗ relation of dual AGN (left panels) and one-AGN pairs(right
panels). For different-galaxy pairs, we show the more massive MBH in each pair in red and
the less massive one in blue. For same-galaxy pairs, we plot the sum of the MBH masses
against their host galaxy mass in green. The grey line shows the median BH mass of all
MBHs with MBH > 107M⊙. The side panels show the 1D distribution of the MBH masses
and galaxy masses.
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pair activation at 1 ∼ 10 kpc [Van Wassenhove et al., 2012] and 0.1 ∼ 2 kpc [Blecha et al.,
2013]. Recent observations by Stemo et al. [2021] have seen a bump in AGN activation at a
bulge separation of ∼ 10 ∼ 15 kpc. Also in the nearby universe, enhanced AGN activation is
seen in close pairs with less than tens of kpc separations [e.g. Ellison et al., 2011, Liu et al.,
2012].

In Figure 5.3.6, we show the relationship between the dual/offset AGN luminosity and
the pair separations. Here we log-binned the pairs by their separation, and for each bin,
we plot the median luminosity enclosed by the interval including 80% of MBHs in that bin.
The red (blue) lines correspond to the brighter (fainter) MBH, and the solid (dashed) curves
represent the dual/offset pairs. For the dual AGN, both the brighter and the fainter AGN
exhibit an increase in luminosity at separations below ∼ 4 kpc. The median luminosities
then drop slightly at a separation around 5 kpc, but then increase again at around 10 kpc.
Because of the rise in AGN luminosity at ∆r < 5kpc, observations targeted at bright quasar
pairs could see a larger fraction of close pairs than observations that also include fainter
AGN pairs [see also the Appendix of Volonteri et al., 2022]. In the observation work by
Shen et al. [2022], for example, we can see that using a higher luminosity threshold for the
dual selection from our simulation than our sample here results in a larger contrast between
the number of small-separation duals and large-separation duals.

For the offset AGN, the brighter MBH are overall more luminous than the duals, and
the luminosity depends less on the pair separation. The fainter MBHs in the pair, however,
show an increase in luminosity with smaller separations, and as a result, there are no offset
secondaries at separations below 5 kpc. Our ∆r − Lbol relation suggests that when obser-
vations only limit to ∆r > 5 kpc pairs, it may be hard to establish a relation between the
AGN activation and the pair separation.

5.3.5 Host Galaxies

Figure 5.3.7 shows the MBH −M∗ relation for the dual AGN and one-AGN pairs and their
host galaxies. For the pairs identified in the same galaxy, we plot the total mass of the
MBH pair and the mass of their host, while for the different-galaxy pairs, we show the mass
of each MBH and host separately. The central panels show the scattered relation between
MBH and M∗, while the top and right panels show the 1D distributions of the galaxy and
MBH masses, respectively. To compare the dual AGNs and one-AGN pairs with the single
AGN population, we show the distribution of all MBHs with MBH > 107M⊙ in grey. For
the middle panels, the solid curve shows the median galaxy mass within each MBH bin, and
the shaded region encloses the scatter of the middle 95% of the galaxy masses in that MBH

bin.
From the 1D distributions of the MBH and galaxy masses, we can see that the pairs favor

the more massive MBHs and galaxies among the overall MBH population. For all MBHs
selected with MBH > 107M⊙, the galaxy masses center around 2 × 1010M⊙. For the dual
AGN, the host galaxy masses peak near 1011M⊙, regardless of whether the two MBHs are
in the same galaxy. This is in general agreement with the findings of Rosas-Guevara et al.
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Figure 5.3.8: Comparisons between the galaxy mass (left) and specific star formation rate
(right) of the dual AGN (top) and one-AGN pairs (bottom) AGN with those of all AGN
with Lbol > 1045 erg/s (grey shadow). For the dual and one-AGN pairs, we have added
the Lbol > 1045 erg/s luminosity threshold to the bright AGN in the pairs for a direct
comparison with observations. For reference we also show the distributions of all AGN
under our canonical definition (M > 107M⊙, Lbol > 1043 erg/s) in
dashed grey. The vertical arrows on the top mark the median of each distribution (the

grey arrow corresponds to the Lbol > 1045 erg/s population).
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[2019], although we see a greater difference between the dual AGN and single AGN host
galaxy masses. From the MBH − M∗ relation of duals with that of all massive MBHs, we
see that almost all pairs have galaxy masses above the median relation in the same MBH
mass bin, meaning that MBHs in duals are under-massive relative to their host galaxies. A
previous study by Steinborn et al. [2016] of the z = 2 pairs using the Magneticum simulation
has found a similar trend, where their MBH in pairs are systematically under-massive with
respect to the host galaxy masses. Volonteri et al. [2022] also examines the ratio between
the MBH and galaxy masses for dual AGNs, and finds that before the host galaxy merger,
stripping can lead to "overmassive" MBHs relative to the host galaxy among duals, while
after the galaxy merger the MBH can be "undermassive" compared with the merger remnant.
In our case, we find that both before and after the host galaxy mergers, the dual-hosting
galaxies are generally "overmassive" relative to the MBHs.

For one-AGN pairs, the contrast of the host galaxy masses with those of the single AGN
population is even greater. Most one-AGN pairs reside in galaxies of M∗ ∼ 2 × 1011M⊙.
This is again a consequence of two factors: the MBHs with a massive but under-luminous
companion are among the most massive BHs, so they naturally reside in large galaxies;
galaxy mergers also play a role, because even when compared with other AGN in the same
MBH mass bin, the host galaxies of one-AGN pairs are still larger than the median. A
significant fraction even falls into the top 2.5% of the galaxy mass when compared with their
similar-mass single-AGN counterparts.

We notice that there is a contrast between our comparisons of the single-AGN and AGN-
pair population and the observational results shown in Stemo et al. [2021], who found that the
MBH mass and galaxy mass distributions of the AGN pairs are not significantly different from
the single AGN samples. One reason for the differences is that our underlying single-AGN
samples have a lower MBH distribution compared with their selection function, especially
at high redshifts. To mitigate the difference in the underlying AGN sample, in Figure
5.3.8 we raise the luminosity threshold from 1043 erg/s to 1045 erg/s. We apply the same
luminosity threshold to our dual AGN and one-AGN pair samples. The resulting galaxy-
mass distribution of the single AGN is closer to the single AGN from Stemo et al. [2021],
which peaks around 1011M⊙. After the stricter luminosity cut, we find that the galaxy mass
distribution of the duals is similar to that of the single AGN, with the primary galaxy mass
slightly higher. The one-AGN pairs, however, still tend to reside in the high-mass galaxies
compared to the underlying single AGN population.

In the right panels of Figure 5.3.8, we show the specific star-formation rate (sSFR) for
the pairs with Lbol,1 > 1045 erg/s, compared with all AGN with Lbol > 1045 erg/s. The sSFR
is calculated by summing the gas star formation rate within the half-mass radius of the
host galaxy, and then dividing it by the total stellar mass within the half-mass radius. For
the Lbol > 1045 erg/s AGN sample, the sSFR peaks around 0.6 × 10−9 yr−1. The sSFR of
the different-galaxy duals is similar to the AGN at similar luminosities and stellar masses,
with the primary AGN’s sSFR slightly higher. The hosts of the same-galaxy duals have
an overall higher sSFR, with a peak around 10−9 yr−1. Our statistics are consistent with
previous studies using idealized galaxy merger simulations [e.g. Van Wassenhove et al., 2012],
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who saw peaks in the host galaxies’ SFR after a few pericentric passages, when the duals
are separated by a few kpcs. In our case, such duals mostly fall into the same-galaxy
dual category. For the one-AGN pairs, even though the galaxy mass is generally higher
compared to the overall luminous AGN, the sSFR of the host galaxies does not differ from
the underlying AGN sample.

Comparing our sSFR with the observations from Stemo et al. [2021] with similar galaxy
masses, we see that our sSFR peaks at a higher value. Moreover, Stemo et al. [2021] does
not see an enhancement in the SFR among the pairs compared to their underlying AGN
sample, whereas we see a shift towards higher SFR in our duals. One reason is that the
sSFR increase is most significant for the same-galaxy duals, typically with separations of
∆r < 5 kpc. However, the sample selected based on distinct galaxy bulges from Stemo et al.
[2021] consists only of the different-galaxy pairs, among which the increase in star formation
has not taken place.

5.3.6 Host Halo

Figure 5.3.9 shows the host FOF halo mass of the dual AGN, one-AGN pairs, and offset
AGN at z = 2, together with the host halo mass of all MBHs with M > 107M⊙. The
fraction of pairs in each halo mass bin is shown on the bottom panel. Dual AGN prefer halos
with masses ranging between 1012.3M⊙ − 1013M⊙, and are very rarely found in halos with
Mhalo > 1013.5M⊙. The one-AGN pairs and offset AGN typically reside in more massive
halos compared with the duals, with the majority of them found in halos in the mass range
of 1013M⊙ − 1014M⊙. The fraction of one-AGN pairs increases significantly with the mass
of the host halo: < 0.1% of the ∼ 1012.2M⊙ halos host a one-AGN pair, whereas ∼ 40%
of the most massive halos with MBH > 1013.5M⊙ host a one-AGN pair. There is a similar
trend in offset AGN, although the overall fraction is lower.

One explanation for why we find more one-AGN pairs than duals in the most massive ha-
los is that the deep potential of such massive halos causes the most gas and stellar disruption
of the secondary [also see e.g. Ricarte et al., 2021]. Therefore, even though the secondary
MBH in the one-AGN pair is initially more massive (as we will show in Section 5.4.3 and
Figure 5.4.8), it falls victim to the gravitational potential around the primary AGN and ends
up lurking in the most massive halos for an extended period.

The fact that the most massive halos preferentially host one-AGN pairs instead of du-
als also has observational implications: one way to search for dual AGN is by looking for
companion AGN around a sample of single AGN. At high redshift, the luminosity threshold
for detecting AGN is typically high, and thus the resulting observed AGN sample could be
embedded in the most massive halos. These most luminous AGN are more likely to be in-
volved in one-AGN pairs rather than duals, such that its companion may not be detectable
through EM observations albeit its high mass.
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Figure 5.3.9: Top: Host halo mass functions of the same-galaxy dual AGN (green) and
one-AGN pairs (purple), plotted with the mass function of all halos hosting at least one
MBH with MBH > 107M⊙ (grey, and we checked that adding the extra Lbol > 1043 erg/s
requirement results in a similar line). For hosts of duals and one- AGN pairs, we only count
unique halos, but the fraction of halos hosting two pairs is less than 5%. Bottom: the ratio
between the number of dual/one-AGN pair host halos and MBH > 107M⊙ MBH host halos
in each mass bin.
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Figure 5.3.10: Top: The relation between gas column density NH and pair separations for
the dual AGN (the more luminous AGN in red solid, the less luminous AGN in blue solid)
and one-AGN pairs (we only show the active AGN in red dashed). For each AGN we
compute NH along 48 random sight lines. The curves show the median NH of all lines-of-
sight in each ∆r bin, with the shaded area/vertical lines covering the 16 - 84th percentile
of the distribution. Bottom: The AGN covering fraction of dual AGN, one-AGN pairs and
offset AGN assuming various NH thresholds. To compare with the underlying AGN sample
(grey), we apply the same Lbol lower limit to the pairs. The covering fraction of pairs is
higher than the underlying AGN population.
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5.3.7 Obscuration of high-redshift pairs

Previous theoretical works have found that the offset in AGN triggering time and the dy-
namics of the merger are the main factors that explain the paucity of observed AGN pairs
[e.g. Blecha et al., 2013, Van Wassenhove et al., 2012]. Besides these factors, AGN obscu-
ration could also hinder the discovery of dual AGN. As was discussed in the recent review
paper by De Rosa et al. [2019], some AGN in many confirmed dual systems show no (or very
weak) explicit AGN evidence in their optical/near-infrared spectra, indicating that these
AGN pairs are heavily dust-enshrouded, and there is also strong evidence that they are also
heavily obscured in the X-rays. It is also known that 20 − 40% of AGN are hidden behind
Compton-thick column densities (with NH > 1024 cm−2) and ∼ 75% of the remaining pop-
ulation are obscured, with NH = 1022 ∼ 1024cm−2 [e.g. Aird et al., 2015, Buchner et al.,
2015, Ueda et al., 2014] at the peak of AGN activity at redshift z = 0.5 − 3. Meanwhile,
Capelo et al. [2017] examined the effect of obscuration in hard X-ray luminosities on re-
solvable scales (> 100 pc) in their idealized galaxy merger simulations, and found it to be
negligible for z = 3 galaxies. In this section, we investigate the role of AGN obscuration in
pair detection from our sample of dual AGN and one-AGN pairs.

To calculate the column density for each AGN, we follow the method in Ni et al. [2020],
and estimate the contribution to the obscuration only due to the gas in the host galaxy. By
doing so, we do not account for the AGN obscuration associated with the nuclear torus, on
scales of ∼ 10 pc surrounding the accretion disk of the BH, which is beyond the resolution
of cosmological simulations.

In Figure 5.3.10, we show the gas column density of dual AGN and one-AGN pairs binned
by the pair separation. For each AGN we compute NH along 48 random sight lines, and for
each ∆r bin we show the median and the middle 68% of all lines-of-sight within that bin. For
the one-AGN pairs, we only show the column density of the primary AGN, as the inactive
MBH is likely not observable through EM signatures. We find that for both dual AGN
and one-AGN pairs, the column density increases with decreasing pair separations. This is
particularly true for dual AGN at separations below ∼ 2 kpc: at this separation, most duals
have NH > 1022.6 cm−2. Our finding is in line with the recent observational studies by e.g.
Ricci et al. [2017], who find that AGN obscuration reaches its maximum at the late galaxy
merger stage, when the nuclei of the two merging galaxies are at a projected distance of
< 10 kpc. Our results are also in broad agreement with the findings of Capelo et al. [2017],
who used higher-resolution isolated galaxy merger simulations to evaluate NH , and found
that NH around duals are close to 1023 cm−2. They also found such values of NH only have
minor effects on the hard X-ray flux of the z = 3 duals but may reduce the flux by half at
low redshifts.

Between the two AGN in a dual, the secondary has a larger increase in the obscuration
with decreasing pair separation, as it enters into the gas reservoir of the primary AGN.
Moreover, we also find that the NH of the secondary varies with the angle between the line-
of-sight and the dual separation: the NH integrated from the line-of-sight passing near the
primary AGN can be three times higher than the NH calculated from the opposite direction,
or perpendicular to the dual separation. One implication is that pairs projected at a smaller
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separation can have a more obscured secondary, compared to pairs viewed at their true
separation.

The bottom panel of Figure 5.3.10 shows the AGN covering fraction at different NH

thresholds. Here we take the median overall line-of-sights for all the pairs to compute the
covering fraction at each threshold. To do a fair comparison with the log(Lbol) > 43 AGN
sample, we also apply a log(Lbol) > 43 lower limit to both AGN of the duals and the brighter
AGN of the one-AGN pair. The AGN covering fraction for the duals is generally higher than
that of the underlying AGN population, especially at higher NH thresholds. At log(NH) > 23,
only < 3% of the sight lines among all AGN are covered, for dual AGN and one-AGN pairs
the fraction ranges from 10% to 20%.

5.4 Evolution of Dual and Offset AGN
Up until now, we have focused on the properties of dual AGN, one-AGN pairs, and offset
AGN at a fixed redshift of z = 2, in order to make comparisons with observational properties.
In this section, we will take advantage of the simulation’s access to the evolution of the pairs
across different redshifts and the evolutionary stage of the pairs. For this purpose, we will
use the 329 dual AGN and 110 one-AGN pair samples at z = 3, because we would like
to trace the evolution of those pairs both before and after the time of observation. When
studying the pairs across a range of redshifts, we do not single out offset AGN from one-AGN
pairs for two reasons: first, we will focus our analysis on how the secondary becomes inactive
during the galaxy merger, and this applies to both offset AGN and the entire one-AGN pair
population; second, practically we cannot identify offset AGN at all redshifts, because we do
not have the subhalo information in all simulation snapshots.

5.4.1 Connections between pairs across different redshifts

Previous simulations have associated AGN triggering with galaxy mergers, showing that the
MBH pairs are observable as duals only during a small fraction of time during the host
galaxy merger. Hence, a fraction of the observable duals at z = 3 could have been one-AGN
pairs or inactive pairs in the past. Furthermore, some dual AGN may suffer suppression
in activation during galaxy mergers, due to the gas outflows and heating induced by the
galaxy mergers, and thus become a one-AGN pair at closer separations [e.g. Steinborn et al.,
2016]. The future of the dual AGNs is also of great interest, as they are progenitors of the
MBH merger event. Here we will look into the past and future of AGN in pairs, and draw
connections between the pair population at different redshifts.

In Figure 5.4.1, we show the classification of the dual AGN and one-AGN pairs at z = 3
through different times. The top panels show the evolution of the same- and different-galaxy
duals, where the width of each colored band shows the fraction of z = 3 duals falling into
each category at different times. We have categorized the pairs into five categories: dual
AGN and one-AGN pairs as defined throughout this paper, inactive pairs when the MBHs
are separated by < 30 kpc but do not fall into the dual AGN and one-AGN pair categories
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Figure 5.4.1: Top: the classification of same-galaxy dual AGN (left) and different-galaxy
dual AGN (right) identified at z = 3, throughout z = 2.4 ∼ 4.5. The width of each band
corresponds to the fraction of dual AGN falling into each category. We have categorized the
pairs into duals (green), one-AGN pairs (purple), inactive pairs (pink), mergers (grey) and
non-pairs (beige) . Here the dual AGN and one-AGN pair categories have been previously
defined for our work. Inactive pairs are pairs with both MBHs under Lbol < 1043 erg/s. The
merger category refers to simulation mergers, with the merging criterion defined in Section
6.2. Bottom: the classification of same-galaxy one-AGN pairs (left) and offset AGN
(right) identified at z = 3, across the same redshift range.
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due to the luminosity threshold (not the mass threshold), mergers when the two MBHs
merge in the simulation, and ∆r > 30kpc when the two MBHs do not form a pair. For the
same-galaxy duals at z = 3, the pairs were formed as early as z = 4.5, and 50% of those
duals were observable as duals from z = 3.5 to z = 3. After z = 3, the same-galaxy duals go
through rapid mergers because they are already very close at the time of observation, and
also have similar masses compared to one-AGN pairs (so that the dynamical friction time is
short). By z = 2.4, more than 80% of these duals would merge in the simulation. Volonteri
et al. [2022] also investigated the connection between dual AGN and the subsequent MBH
mergers, and they reached a similar conclusion that ∼ 80% of the same-galaxy duals at
z = 3 would merge by z = 2.5. Moreover, most of the remaining 20% same-galaxy duals
that do not merge by z = 2.5 never merge in their simulation even after that. We note that
mergers in the simulation do not guarantee an MBH coalescence, due to the sub-resolution
dynamical friction time [e.g. Chandrasekhar, 1943, Dosopoulou and Antonini, 2017, Pfister
et al., 2019] and the binary hardening time [e.g. Sesana, 2010, Vasiliev et al., 2015], as well
as the possibility of a three-body scattering. For example, Volonteri et al. [2022] showed that
after considering these delays, only 40% instead of 80% of their same-galaxy duals would
merge by z = 0. Nonetheless, the delay time calculation is largely model-dependent, and in
the regime where both MBHs are massive, the delay due to the above mechanisms is expected
to be within ∼ Gyr [see e.g. Chen et al., 2022a]. Finally, about 5% of the same-galaxy duals
would fall into the one-AGN pair category at other redshifts. They may be observable as
duals at z = 3 only because of the time variability of the AGN activation.

The different-galaxy duals at z = 3 have come to within 30 kpc of each other more
recently, with more than 50% forming pairs after z = 3.2. The different-galaxy duals can
be viewed as the progenitors of three distinct populations when we look at their evolution
after z = 3. At z = 2.5, only ∼ 25% of the different-galaxy duals remain to be dual AGN,
and most would become small-separation, same-galaxy duals. Another 25% of the different
galaxy duals would evolve into one-AGN pairs, due to the gas disruption of the secondaries
during the galaxy close encounters. Finally, an increasing fraction of the different-galaxy
duals would first become same-galaxy duals, with ∼ 50% having merged at z ∼ 2.5. Notably,
10% of the different galaxy duals would be separated by more than 30 kpc after z = 2.5,
while ∼ 25% are separated to > 30kpc shortly after z = 3, before getting closer again. This
is because at z = 3, we happened to have caught those duals at their pericentric passage, and
they will get into larger separations for some time before settling into ∆r < 30 kpc orbits.

Next, we show the history of one-AGN pairs at z = 3 on the bottom panels of Figure
5.4.1. Among these pairs, at least 35% were once dual AGN at z ∼ 3.5, and have only
become one-AGN pairs between z = 3 and z = 3.5. In fact, if we trace the same-galaxy
duals and one-AGN pairs back to z = 3.5, we see an equal fraction of them were once dual
AGN, but these z = 3.5 duals then quickly parted ways and evolve into duals and one-AGN
pairs at z = 3. We will investigate the reasons for the diverging paths of the duals and
one-AGN pairs during this time in later sections.

When we follow these one-AGN pairs to lower redshifts, we can see that once the pair
becomes a one-AGN pair, it will very likely remain so for a very long time, without going
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Figure 5.4.2: The galaxy (top) and gas (bottom) surrounding a dual AGN during the
galaxy merger. The galaxies are color-coded by the stellar age (warmer colors correspond to
older stars), and the gas is color-coded by the gas temperature (warmer colors correspond to
higher temperature), with brightness representing the densities for both. The crosses mark
the two MBHs. The bottom panels show the gas and stellar densities around the MBH with
the corresponding color. The host galaxy masses of the two MBHs are marked with the
corresponding color. The host galaxies merge between z = 3.1 and z = 3.05.

through mergers or both MBHs becoming active again. The stellar stripping of the inactive
MBH leads to very inefficient orbital decay [also see e.g. Tremmel et al., 2018b], such that
the MBH stalls at relatively large orbits for up to > Gyrs. During this long period of in-fall
time, we also see that ∼ 10% of the same-galaxy one-AGN pair will be dissociated, likely
due to the disruption from a third galaxy. Finally, only around 5% of the one-AGN pair will
be observable as a dual at a given time, mostly during the pericentric passages when the
secondary MBH passes through the high-density regions near the primary AGN.

5.4.2 Pair evolution during galaxy mergers: case studies

Previously, we have found that duals and one-AGN pairs are luminous at a closer pair
separation, and that the high-mass ratio, different-galaxy duals may be the progenitor of one-
AGN pairs at a closer separation. In this subsection, we will follow some of the z = 3 duals
and one-AGN pairs throughout their formation histories, and investigate their surrounding
environment and activation during different stages of the galaxy mergers.

In Figure 5.4.2, we show the evolution of the galaxy and gas surrounding the two MBHs
in a z = 3 dual AGN during the pair formation, where the galaxies are color-coded by the
stellar age (warmer colors correspond to older stars), and the gas is color-coded by the gas
temperature (warmer colors correspond to higher temperature), with brightness representing
the densities for both. The bottom panels show the density profiles of the stars and gas,
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Figure 5.4.3: Similar to Figure 5.4.2, but for an MBH pair that evolved from a dual AGN
to a one-AGN pair after the galaxy merger. The color ranges of the gas and galaxy images
are the same as the dual pair for comparison. The host galaxies merge between z = 3.1
and z = 3.05. After z = 3.1, the secondary galaxy is almost completely disrupted and the
secondary MBH becomes an inactive bare MBH. We also note that the gas temperature
around the one-AGN pair is higher, and we find this to be generally true among one-AGN
pairs.

Figure 5.4.4: The evolution of a dual (top) and an one-AGN pair (bottom), where we
traced their luminosity (first panel), surrounding gas density (second panel), masses (third
panels) and the pair separation (fourth panel), throughout the pair formation time. We
mark the time of the first (dark blue), second (blue) and third (green) pericentric (solid) and
apocentric (dashed) passages by the vertical lines.
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centered around the two MBHs. The evolution of the luminosities, gas densities, masses,
and the separation between the two MBHs in the same pair are shown in the top panel
of Figure 5.4.4. For this system, we see that the initially less-massive and inactive MBH
(cyan in Figure 5.4.2 and red in Figure 5.4.4) was embedded in a galaxy with newly formed
stars and a denser cold gas reservoir. During the galaxy merger, this less-massive MBH goes
through very rapid growth by accreting from its surrounding gas and becomes the brighter
AGN at the third pericentric passage. Then, after about 50Myrs, its mass also catches up
with the initially more massive MBH (yellow in Figure 5.4.2 and blue in Figure 5.4.4). In
the meantime, the central density of its surrounding gas also grows by more than an order
of magnitude.

The chosen dual AGN is typical among the few hundred duals, although there is a large
variance among the population (see e.g. the distribution shown in Figure 5.4.8). The evolu-
tion of this pair is also in concordance with the cases of idealized galaxy mergers presented
by Callegari et al. [2009, 2011] and Van Wassenhove et al. [2012] in many aspects: during the
galaxy merger, there is a weaker SFR in the initially more massive MBH, while the initially
lighter MBH has a higher central SFR during the galaxy merger, building up a dense cusp
while outgrowing and disrupting the initially more massive MBH.

In Figure 5.4.3 and the bottom panels of Figure 5.4.4, we show the same information but
for a one-AGN pair at z = 3. Compared with the dual AGN example, both MBHs in this
one-AGN pair are more massive, but we note that the mass contrast between the two MBHs
in this one-AGN pair before the encounter is actually smaller, indicating that minor mergers
are not necessary conditions for forming a one-AGN pair. The large-scale environment can
also play a key role: the gas temperature surrounding the one-AGN pair is hotter, and we
find this to be generally true for the majority of one-AGN pairs, compared with the dual
AGN. The hotter ISM/environment can be attributed to these objects being embedded in a
more massive halo than a typical dual. This is illustrated in Figure 5.3.9.

From the luminosity and gas density shown on the bottom panel of Figure 5.4.4, we
can see that between the first and the second pericentric passages, the primary AGN goes
through a very rapid phase of gas accretion, when its surrounding gas density increases
by two orders of magnitude, and its luminosity also increases by two orders of magnitude.
On the other hand, there is a very clear gas stripping of the gas surrounding the secondary
MBH immediately after the secondary pericentric passage (marked by the purple solid lines).
After this point, the secondary MBH remains inactive for the majority of the time, although
occasionally during the pericentric passages of the orbits, the inactive secondary comes very
close to the primary, so that its luminosity peaks above 1043 erg/s.

From the pair separation shown in the fourth panel of Figure 5.4.4, we can also see that
another effect of the complete star and gas stripping of the secondary is that the MBH orbit
remains large for a very long time: even though the galaxy merger of the one-AGN pair
takes place before the dual example shown in the top panel, the MBHs do not merge in the
next Gyr.
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5.4.4).
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5.4.3 Pair evolution during galaxy mergers: population statistics

From the previous section, we have selected two typical cases among the dual AGN and one-
AGN pairs at z = 3 to illustrate the difference in their time evolution. Now we will apply a
similar time-evolution analysis but for the whole dual and one-AGN pair population.

Similar to the case studies, the point at which the pericentric passage is identified is
shown by the vertical lines of the same colors in the fourth panel of Figure 5.4.4. We show
the redshift distribution of the first three pericentric passages for the same-galaxy duals
and one-AGN pairs in Figure 5.4.5. Note that duals and one-AGN pairs have similar first-
passage redshifts, but the orbital periods of one-AGN pairs are shorter, leading to an earlier
third passage among one-AGN pairs (as was illustrated in the cases of Figure 5.4.4). When
comparing the pair properties of duals and one-AGN pairs, the difference between the time of
the third passage should also be noted, while the comparison between the first two passages
is fair. Finally, the time before the encounter is defined to be the first time that the two
MBHs are separated by less than the virial radius of the smaller subhalo, such that there
has not been any significant dynamical interaction between the gas and stars surrounding
the two MBHs.

In Figure 5.4.6, we show the Eddington ratio of two MBHs involved in the dual and
one-AGN pairs at different stages of the galaxy merger. The top panels show the evolution
of the primary MBH at z = 3 (but note that they are not necessarily more massive at all
stages), and the bottom panel shows the evolution of the secondary MBH at z = 3. Here we
trace the AGN activation before the galaxy merger and during the first, second, and third
pericentric passages of the orbits.

For the dual AGN, both MBHs start at an Eddington ratio slightly above 0.1, but there
are 20% in each population with Eddington ratios below 0.03. During the first pericentric
encounter, we see an increase in AGN activity in both MBHs of the dual: a large fraction
of the initially inactive tails activated with an Eddington ratio around 0.1. The divergence
between the evolution of the two MBHs happens at the second pericentric passage: the
primary AGN becomes more active with Eddington ratios peaking around 0.3, whereas
some of the secondaries show a decrease in activity.

The effect of pericentric passages on the one-AGN pairs is more significant, as was shown
in the right panels of Figure 5.4.6. From the plot on the left, we can see that the activation
of the primary MBH of the one-AGN pairs steadily increases with each pericentric passage.
The secondary MBHs (which are inactive at z = 3) start at a similar Eddington ratio as the
primary, with an Eddington ratio of ∼ 0.1, and maintain this Eddington ratio at the first
pericentric passage. However, we see a sharp decrease in the Eddington ratio at the second
pericentric passage, when half of the secondaries now have Eddington ratios below ∼ 0.03.
At the third passage, the gas stripping is more severe, and the majority of the secondary
becomes inactive with Eddington ratios below 0.01. This is illustrated earlier in Figure 5.4.4,
where we see a very sudden drop of the secondary MBH’s surrounding gas density at exactly
the second pericentric passage.

The strong gas stripping and the deactivation of the initially bright secondary among
one-AGN pairs is a result of many factors. For example, Callegari et al. [2011] and Van
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Figure 5.4.6: The distributions of the Eddington ratio of the z = 3 same-galaxy duals (top)
and one-AGN pairs (bottom), traced back to before the encounter galaxies, and the first,
second and third pericentric passages of the MBHs. The left column shows the Eddington
ratio of the primary AGN, and the right column shows the Eddington ratio of the secondary
AGN. We also plot the Eddington ratio of all MBHs with MBH > 107M⊙ at z = 3.25 (250
Myrs before z = 3, grey) for reference.

Wassenhove et al. [2012] find that compared to coplanar galaxy mergers, inclined mergers can
have less central star formation in the secondary, leading to disruption at ∼ kpc separations
rather than efficient pairing. Here we investigate one specific factor that could affect the
degree of gas stripping: the velocity difference between the two MBHs at their first pericentric
passages. In Figure 5.4.7, we show the velocity difference ∆vfirst between the two MBHs in
duals and one-AGN pairs, at their first passage. Compared with duals, one-AGN pairs
have a larger velocity offset at the first encounter. This could also be a consequence of the
deep potential associated with the large host halo of one-AGN pairs. The high potential
energy is transformed into high kinetic energy during the pericentric passages. Since large
(∆v > 150 km/s) velocity offsets between AGN pairs are also important for pair detection,
one-AGN pairs will more likely satisfy the velocity criterion than duals.

In Figure 5.4.8, we show the evolution of the MBH masses and host galaxy masses for
the duals and one-AGN pairs, as well as the MBH and galaxy mass ratio between the host
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Figure 5.4.7: The distribution of the velocity difference between the two MBHs in the z = 3
same-galaxy duals (green) and one-AGN pairs (purple) at the first pericentric passage.
The dashed lines show the median of each distribution. The one-AGN pairs generally have
larger velocity offsets compared to duals.

0.0

0.5

1.0

1.5

PD
F

Same Galaxy Duals
q = 1

107 109

MBH, 1 [M ]
0.0

0.5

1.0

1.5

PD
F

Same Galaxy 
One-AGN Pairs

107 109

MBH, 2 [M ]
10 1 101

qBH
1010 1012

Mgal, 1 [M ]
1010 1012

Mgal, 2 [M ]
10 1 100

qgal

Before encounter
1st pericentric
2nd pericentric
3rd pericentric

Figure 5.4.8: (a/b): the mass evolution of the two MBHs in the dual (top) and the one-
AGN (bottom) pairs before the encounter of the host galaxies, and at the first, second and
third pericentric passages between the MBH pair. Here BH1 is the more massive MBH at
z = 3, and BH2 is the less massive MBH at z = 3. (c): mass ratio between the two MBHs
in the pair. (d/e): the stellar mass of the host galaxies for each MBH in the dual and
one-AGN pairs. If the galaxies of the two MBHs merged, then we show the mass of the
merger remnant. (f): the evolution of the galaxy mass ratio between the galaxy hosting the
secondary MBH and that hosting the primary MBH.
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galaxies. Here we denote the more massive MBH at z = 3 as the primary (BH1) and its host
as gal1, and the less massive MBH at z = 3 as the secondary (BH2) and its host as gal2.

Before the encounter of their host galaxies, MBHs in duals have typical BH masses below
107M⊙, and a subset as low as MBH < 106M⊙. The one-AGN pairs start with typically
higher masses than duals, with about 50% of one-AGN pairs with BH masses above 107M⊙
before their host’s first encounter. During the interaction of their host galaxies, the primary
MBHs, in both the duals and one-AGN pairs, accrete a significant amount of mass, and by
the end of the third pericentric passage, the peaks, in the respective BH mass distributions,
shift up by an order of magnitude. This is expected from the high Eddington ratio of the
primary BH in duals and one-AGN pairs during this period shown in Figure 5.4.6. As for
the secondary MBHs in duals, the BH mass growth is less significant, but most secondaries
still reach a mass of 107M⊙ by the second passage. However, after this point, the growth
stalls, and the masses of the secondaries do not go much beyond 107M⊙. Notably, ≳ 50% of
duals have a mass ratio greater than unity before the host galaxy encounter, meaning that
the initially less massive MBH among duals ends up accreting more mass during the galaxy
merger and becomes the primary at z = 3.

We also see similar trends for the respective host galaxy masses of duals and one-AGN
pairs. Before the first encounter, the primary MBHs of the duals reside in galaxies with
masses between 109M⊙ and 1011M⊙. The secondary galaxy is generally slightly less massive,
with distribution peaked near 5×109M⊙. Notably, none of the dual pairs has a galaxy mass
above 1011M⊙ before the encounter. Now looking at the time evolution of the masses, we
see that the primary galaxy mass grows by an order of magnitude during the few hundred
Myrs of the orbital passages. The galaxy mass of the secondary grows even faster, and by
the time of the third pericentric passage, the majority of the two hosts have already merged
and thus share the same galaxy mass.

The evolution of the mass ratio between the two MBHs in the pairs and between their
host galaxies is particularly worth noting. Observational studies such as Comerford et al.
[2015] found that all dual AGN and dual AGN candidates in their sample share the feature
that the MBH in the less luminous galaxy always has the highest Eddington ratio. From the
host galaxy mass ratio of our dual AGN sample, we see that although the distribution of the
secondary’s host galaxies does initially peak at a lower value (consistent with observations),
about 30% of the duals have an original galaxy mass ratio above unity. This means that
30% of the more massive MBH in the duals at z = 3 starts off residing in the smaller galaxy,
which then picks up a lot of its mass during the galaxy merger. Steinborn et al. [2016] also
saw a similar trend in their sample of one-AGN pairs. Volonteri et al. [2022] also studies the
galaxy mass evolution of the dual AGN hosts before the galaxy merger by looking at the
evolution of a sample of dual AGNs at z = 1. In their sample, qgal almost always decreases
with time before the galaxy mergers, whereas we see a larger mass growth in the galaxy that
hosts the secondary AGN. Our result is in agreement with high-resolution hydrodynamical
simulations of galaxy mergers, which find that the Eddington rate is higher for the AGN
in the less massive of the two merging galaxies [Capelo et al., 2015]. Van Wassenhove
et al. [2012] also produced situations where the less massive black hole accretes at a higher
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Eddington fraction until the less massive galaxy’s gas is lost to ram pressure stripping. The
higher mass gain in the less massive galaxies can happen if the less massive galaxies have
higher gas fractions, or if the gas accretion is more efficient in less massive galaxies due to
their stronger gravitational instabilities during mergers.

5.5 Conclusion
In this work, we characterize the properties and evolution of dual AGN, one-AGN pairs,
and offset AGN at z = 2 ∼ 3 within the Astrid simulation, identified with the canonical
Lbol,12 > 1043 erg/s, MBH,12 > 107M⊙ and ∆r < 30 kpc thresholds (Lbol,2 < 1043 erg/s for
one-AGN pairs, and offset AGN are one-AGN pairs residing in separate galaxies). At these
redshifts, dual and offset AGN pairs are very rare (with a number density of ∼ 10−5 cMpc−3),
but with the large volume of Astrid, we are able to identify a statistically large sample of
AGN pairs (1087 duals, 842 one-AGN pairs, and 197 offsets at z = 2; 329 duals, 110 one-
AGN pairs, and 32 offsets at z = 3). Having included an on-the-fly subgrid dynamical
friction prescription in Astrid, we can trace the MBH orbits down to the resolution limit of
∼ 3 ckpc/h (∼ 1 kpc at z = 2), and capture tens of dual AGN at (small) kpc separations.

Among the massive (MBH > 107M⊙) and luminous (Lbol > 1043 erg/s) AGN at z = 2,
the dual fraction is 3% with separations below 30 kpc. Another 2.2% (0.5%) of the AGN are
involved in one-AGN (offset) pairs, where the secondary is massive but not luminous (with
Lbol < 1043 erg/s). We do not see a strong redshift dependence in the dual fraction from
z = 2 to z = 4, but the fraction drops below 2% above z = 4.

Out of the z = 2 dual AGN, ∼ 50% are AGN within the same galaxy and separated
by < 5 kpc. The number of duals increases with decreasing separation, and over half of
the same-galaxy duals are found at separations below 2 kpc. For the dual AGN residing in
different galaxies, we do not see a strong separation dependence in the number of duals.
Among the offset pairs, over 80% are found at separations between 5− 10 kpc. Offset pairs
are rare at smaller or larger separations because their formation involves both strong gas
stripping which becomes most effective at < 10 kpc scales, and large enough separation
between the pair such that the two MBHs are not accreting from the same gas reservoir
(which would equalize their luminosities).

The luminosities of both AGN in duals increase by up to an order of magnitude with
decreasing separation below ∆r = 5kpc, indicating that observations with high luminosity
threshold could bias towards close pairs (if the spatial resolution allows for detection of
those pairs). Nonetheless, we find that the gas column density of duals also increases with
decreasing separation, which adds complication to the detection of the close pairs. At larger
separations, we find indications of an enhancement in the dual luminosities at ∆r = 10 −
15 kpc, similar to the result shown in Stemo et al. [2021]. We then confirm with the time
evolution analysis of the duals AGN that there is an enhanced AGN activity among both
AGN in the pair following the first pericentric passage, which could lead to this bump.

The details in dynamical interaction during galaxy mergers play a crucial role in explain-
ing the emergence of the dual AGN, one-AGN pair, and offset AGN populations. Compared
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with the typical Eddington ratio of ∼ 0.025 among the MBHs with MBH > 107M⊙ in the
simulation, both the dual AGN and the active AGN in the offset AGN correspond to BHs
with an increased level of activity with Eddington ratios peaking around 0.05. Following
each pair through the initial stages of galaxy mergers, we find that the AGN activity of
the primary BH in both duals and one-AGN pairs increases with each pericentric encounter
of the pair due to the enhanced gas supply brought in by the galaxy merger, whereas the
secondaries suffer from various degrees of gas stripping mostly starting from the second peri-
centric passage and are thus tend to be less active over time. The secondary MBHs of the
one-AGN pairs experience the most severe/complete stripping, and typically remain inactive
on orbits with ∆r > 2 kpc for a few hundred Myrs. For the secondaries among duals, the
central stellar bulges are not completely disrupted during the galaxy merger. Thus, > 80%
these secondaries can go through more efficient orbital decays towards a simulation merger,
usually within 500Myrs. The host-galaxy disruption among one-AGN pairs also implies that
dual/offset candidates selected through distinguishable galaxy bulges[e.g. Stemo et al., 2021]
are more likely dual AGN pairs with one of the AGN hidden.

By further investigating the host galaxies of the dual and offset AGN, we find that MBHs
involved in duals and offsets are under-massive relative to their hosts, with an MBH/M∗ ratio
below the median value of the similar-mass MBHs. One possible reason is that the triggering
of star formation preludes the phase of high MBH accretion during galaxy mergers [also see
e.g. Callegari et al., 2011, Van Wassenhove et al., 2012]. Indeed, we find that the pair-
hosting galaxies show an enhanced specific star-formation rate compared with galaxies of
similar masses, especially after the merger of the two hosts.

Notably, there is a switch between the primary and the secondary MBH as well as in
their host galaxy mass in ∼ 50% of dual AGN during the galaxy merger: the initially
less massive MBH embedded in the smaller galaxy ends up becoming the primary AGN
shortly after the galaxy merger. This switch mostly takes place after the second pericentric
passage between the two BHs/AGN. Our finding is in concordance with higher-resolution
galaxy merger simulations [e.g. Capelo et al., 2015] as well as recent observation results [e.g.
Comerford et al., 2015]. This may give rise to a significant population of bright off-center
AGN in the smaller companion galaxy.

The large separation, different-galaxy dual AGNs are progenitors to both duals and
one-AGN pairs at closer separations. Whether a large-separation dual evolves into a close-
separation dual or one-AGN pair depends largely on the level of gas and star stripping
during the first three pericentric passages. The secondary in one-AGN pairs started with a
similar level of activation as the secondary of dual AGN, and are even more massive before the
galaxy mergers, but they show a sudden decrease in the AGN activity by the third pericentric
passage. One reason for the more severe gas stripping among one-AGN pairs is that they
preferentially reside in some of the most massive halos and have the deepest gravitational
potential. The velocity difference between the one-AGN pairs at the first pericentric passage
is higher compared with the duals. Other factors such as the rotation of the galaxies relative
to the orbit, and the angle of the initial galaxy merger also play important roles, but we do
not explicitly quantify these effects from our samples.



CHAPTER 5 180

In this work, we do not explicitly separate the multiple AGN systems from the pairs as
in e.g. Volonteri et al. [2022]. Nonetheless, we have checked that the multiple AGN systems
make up < 10% of all pairs and do not have a large impact on the overall statistics. We
defer further study of triples and quadruple systems in Astrid to upcoming work.
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Abstract

The elusive massive black hole (MBH) seeds stand to be revealed by the Laser Space An-
tenna Interferometer through mergers. As an aftermath of galaxy mergers, MBH coalescence
is a vastly multi-scale process connected to galaxy formation. We introduce the “Massive
black hole Assembly in Galaxies Informed by Cosmological Simulations" (MAGICS) suite,
with galaxy/MBH properties and orbits recovered from large-volume cosmological simulation
ASTRID. The simulations include subgrid star formation, supernovae feedback, and MBH
accretion/feedback. In this first suite, we extract fifteen representative galaxy mergers with
seed MBHs to examine their dynamics at an improved mass and spatial resolution (by ∼ 2000
and ∼ 20) and follow MBH orbits down to ∼ 10 pc. We find that the seed MBH energy
loss and orbital decay are largely governed by global torques induced by the galaxy merger
process on scales resolvable by cosmological simulations. Specifically, pairs sink quickly if
their orbits shrink rapidly below 1 kpc during the first ∼ 200Myr of pairing due to effective
energy loss in major galaxy mergers, whereas MBHs gaining energy in minor galaxy mergers
with close passages are likely to stall. High initial eccentricities (einit > 0.5) and high stellar
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densities at kpc scales (ρstar > 0.05M⊙/pc3) also lead to most efficient decays. ∼ 50% high-
redshift seed MBH pairs experience consecutive galaxy mergers and are more likely to stall at
∼ 1 kpc. For a subset of systems, we carry out N-Body re-simulations until binary formation
and find that some systems merge at high-z when embedded in sufficient nuclear star clusters.

6.1 Introduction

Observations of local galaxies suggest that a supermassive black hole (SMBH) is harbored
in almost all galactic centers [e.g. Kormendy and Ho, 2013, Tremaine et al., 2002]. These
SMBHs has already grown to ≳ 107M⊙ and some even to ≳ 109M⊙ at high redshift (z ∼ 6)
through observations of high-redshift quasars [e.g. Bañados et al., 2018, Fan et al., 2001,
Wang et al., 2021, Wu et al., 2015]. They are thought to have formed in the high-redshift
Universe (z ∼ 20), but the exact seeding mechanism remains largely unconstrained [e.g.
Woods et al., 2019] due to their low masses and faint electromagnetic emissions [e.g. Reines
and Comastri, 2016].

Recently, an MBH was found at z ∼ 11 [Maiolino et al., 2023], and more high-redshift
MBHs have been revealed by JWST [e.g. Harikane et al., 2023, Kocevski et al., 2023, Matthee
et al., 2023, Übler et al., 2023]. These MBHs are found to be over-massive compared to their
host galaxies compared with the low-redshift relation [e.g. Pacucci et al., 2023]. Such over-
massive MBHs pose new challenges to the growth of MBHs in early galaxies, especially for
MBH seeding by Pop-III stars, or runaway stellar growth in dense star clusters, since they
usually need to grow at super-Eddington rates to reach the mass of the observed high-redshift
MBHs.

Gravitational waves (GWs) from MBH mergers offer a promising way to observe the first
MBH seeds [e.g. Barausse, 2012, Klein et al., 2016, Ricarte and Natarajan, 2018, Sesana et al.,
2005], especially when combined with observations of the electromagnetic (EM) counterparts
[DeGraf and Sijacki, 2020, Natarajan et al., 2017]. The gravitational waves of MBH mergers
with masses in the range 104 − 107M⊙ have a frequency around mHz, and they are primary
targets for the Laser Interferometer Space Antenna (LISA), which can detect MBHs with such
masses out to z > 20 [Amaro-Seoane et al., 2017]. Compared to electromagnetic observations,
GWs not only allow us to probe MBH seeds at higher redshift, but also provide MBH mass
estimations independent of their instantaneous accretion state. However, modeling of MBH
mergers depends heavily on the dynamics during the formation and shrinking of black hole
(BH) binaries which are poorly constrained from kpc [e.g. Pfister et al., 2019, Tremmel et al.,
2017], to pc [e.g. Colpi, 2014] scales. This can lead to a large spread in detection rates for
LISA depending on the assumptions made [e.g. Klein et al., 2016, Sesana, 2010]. Therefore,
an accurate understanding of the dynamical journey of seed MBHs in the early galaxy
assembly is key to robust constraints on the seed MBH population with GW detections.

The dynamics of MBH pairs towards coalescence are first summarized in Begelman et al.
[1980]. During galaxy mergers, the central MBHs start at a large separation in the remnant
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galaxy (a few tens of kpc). The MBHs then gradually lose their orbital energy and sink to the
center of the remnant galaxy due to the dynamical friction exerted by the gas, stars, and dark
matter around them [e.g. Chandrasekhar, 1943, Ostriker, 1999]. When their separation is
≲ 1 parsec, an MBH binary forms, and other energy-loss channels begin to dominate, such as
scattering with stars [e.g. Berczik et al., 2006, Berentzen et al., 2009, Khan et al., 2011, 2013,
Quinlan, 1996, Sesana et al., 2007a, Vasiliev et al., 2015], gas drag from the circumbinary
disk [e.g. Haiman et al., 2009, Lai and Muñoz, 2023], and three-body scattering with a third
black hole [e.g. Bonetti et al., 2018, Mannerkoski et al., 2021].

Currently, our most accurate understanding of the MBH binary population and its re-
lation with galaxy evolution comes from cosmological simulations [see e.g. Amaro-Seoane
et al., 2023, for an overview]. Cosmological simulations self-consistently follow the coevolu-
tion of MBHs with host galaxies, and contain rich information about the environments where
MBH interactions and mergers take place [e.g. Katz et al., 2020, Kelley et al., 2017c, Salcido
et al., 2016, Tremmel et al., 2017, Volonteri et al., 2020, ?]. These environments include
a wide range of scenarios from isolated dwarf galaxies to infalling satellites of a massive
central galaxy in a cluster. However, realistic and large-volume modeling comes at the cost
of limited resolutions, and at best they can follow MBH dynamics to ∼ kpc scales. These
simulations are also subject to the simplistic subgrid-seeding mechanism that only considers
the higher end of the MBH seed mass [out of these, Dubois et al., 2014, Tremmel et al., 2015,
probes relatively low MBH seeds at high-redshifts]. To compensate for the resolution limit in
large-volume simulations, cosmological “zoom-in" simulations are also applied to study the
sinking behavior of specific merging systems [e.g. Bortolas et al., 2020, Pfister et al., 2019],
but they are also subjected to high-computational cost and low flexibilities in configuration
and subgrid models. Only a few galaxies and the MBHs can be studied at a time.

To accurately model the MBH orbital evolution on sub-kpc scales, high-resolution, ideal-
ized galaxy merger simulations, and direct N-body simulations are often used to investigate
the detailed dynamical processes of galaxy/MBH mergers [e.g. Gualandris et al., 2022, Liao
et al., 2023b, ?]. These methods have great flexibility in varying the galaxy properties, or-
bital configurations, and subgrid models, and allow us to gain a detailed understanding of
how different physics mechanisms impact the orbital decay and hardening of the MBH pairs
and binaries. Most of the idealized merger simulations, however, do not account for the
fully realistic scenario of the orbital properties of the MBH pairing and consecutive galaxy
mergers frequent at high redshifts.

Very recently, many emerging works have started to consider the more realistic scenarios
of MBH dynamics. This realism is approached in various ways. For example, Mannerkoski
et al. [2021] and Koehn et al. [2023] directly recover the initial condition of cosmological
mergers with accurate, high-resolution N-body methods and study the dynamics of binary
and triple SMBHs across a wide dynamical range. Partmann et al. [2023] considers the
scenario of multiple infalling satellites with seed MBH, which is typical for a high-redshift
massive galaxy, and studies the many-body interactions with a treatment of gravitational
recoils. Liao et al. [2023a,b] used realistic subgrid models of hydrodynamics simulations in
combination with small-scale treatment of binary hardening to study the impact of galaxy
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types and physics modeling on the merging timescale of SMBH binaries.
To truly bridge the gap between cosmological simulations and small-scale MBH dynamics,

we introduce the “Massive Black Hole Assembly in Galaxies Informed by Cosmological Sim-
ulations" (MAGICS) suite, which combines the realistic MBH and galaxy population from
the state-of-the-art cosmological hydrodynamics simulation ASTRID with the idealized galaxy
merger simulations. This suite (also referred to as “resimulations" hereafter) directly recov-
ers the high-redshift galaxy merger properties to include both isolated and multiple galaxy
mergers, and uses the “full-physics" hydrodynamical subgrid modeling with star formation
and various feedback channels. This is the first work to recover not only the collisionless
component (e.g. dark matter and stars) in cosmological MBH merger events but also the full
hydrodynamics evolution of the merging system. The importance of the latter in gas-rich
environments (typical of high-redshift galaxies) has already been pointed out in e.g. Fiacconi
et al. [2013], Tamburello et al. [2017], Liao et al. [2023a].

This paper is organized as follows. Section 6.2 introduces the simulation code and the
subgrid models used in the simulations. Section 6.3 gives an overview of the high-redshift
MBH merger population in ASTRID, which is the base population for the high-resolution
resimulation suite. We also show the detailed properties of the systems selected for the first
suite of high-resolution resimulations in this work. In Section 6.4, we describe how we set up
galaxy merger initial conditions to directly mimic the original cosmological system. Finally,
in Section 6.5 we present the results for the dynamical friction time scales of seed MBH
mergers in various environments, and the correlation with large-scale galaxy and orbital
properties. We also investigate the effect of multiple galaxy mergers on the MBH sinking
and the inclusion of nuclear star clusters.

6.2 Idealized Galaxy Simulation with MP-Gadget

6.2.1 The subgrid physics model for galaxy formation

The subgrid gas, black hole, and galaxy-formation physics in the resimulations largely follow
from the model in the Astridcosmological simulation [Bird et al., 2022, Ni et al., 2022]. We
summarize the key components here. In our simulations, gas cools via primordial radiative
cooling [Katz et al., 1996] and via metal line cooling, with the gas and stellar metallicities
traced following Vogelsberger et al. [2014]. In the context of isolated-galaxy simulation, we
do not include the patchy reionization model. The ionizing ultra-violet background from
Faucher-Giguère [2020] is employed with gas self-shielding being factored in as outlined in
Rahmati et al. [2013]. Star formation is based on a multi-phase model for stellar formation as
described in Springel and Hernquist [2003], accounting for the influence of molecular hydro-
gen [?]. Type II supernova wind feedback is incorporated into the simulation in accordance
with Okamoto et al. [2010], with wind speeds proportional to the local one-dimensional dark
matter velocity dispersion.

MBHs are represented by particles that can accrete gas, merge, and apply feedback to the
surrounding gas medium. For this work, we do not seed extra BHs during the resimulation,
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Figure 6.2.1: Top Row: Evolution of a disk galaxy with the “SH03" model in MP-Gadget
after 500 Myrs. 2D projected gas density (left), density-weighted temperature (middle) and
2D projected density of newly-formed stars (right). Middle Row: Evolution of the same
disk galaxy run with the ASTRID subgrid model in MP-Gadget after 500 Myrs. Bottom Row:
evolution of the same disk galaxy as the middle row run with the ASTRID subgrid model, but
with 50% of the gas put into the gas halo component.
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but include them in the initial conditions. Gas accretion onto BHs is modeled with a Bondi-
Hoyle-Lyttleton-like prescription [Di Matteo et al., 2005a]:

ṀB =
4παG2M2

BHρ

(c2s + v2rel)
3/2

(6.1)

where cs and ρ are the local sound speed and density of the gas, vrel is the relative velocity
of the BH with respect to the nearby gas, and α = 100 is a dimensionless fudge parameter
to account for the underestimation of the accretion rate due to the unresolved cold and hot
phase of the subgrid interstellar medium in the surrounding. We allow for short periods of
super-Eddington accretion in the simulation but limit the accretion rate to two times the
Eddington accretion rate. The BH radiates with a bolometric luminosity Lbol proportional
to the accretion rate Ṁ•, with a mass-to-energy conversion efficiency η = 0.1 in an accretion
disk according to Shakura and Sunyaev [1973].

LBol = ηṀBHc
2 (6.2)

5% of the radiated energy is coupled to the surrounding gas as the AGN feedback.
The dynamics of the BHs are modeled with a sub-grid dynamical friction model [Chen

et al., 2021, Tremmel et al., 2015] in both ASTRID and the resimulations. This model provides
an improved treatment for calculating BH trajectories and velocities. Two BHs merge if their
separation is within two times the spatial resolution 2ϵg,BH (this is ∼ 500 pc in ASTRID at
z = 6, and 20 pc in the resimulations), once their kinetic energy is dissipated by dynamical
friction, and they are gravitationally bound to the local potential. We note that since we
numerically merge the MBHs at 20 pc in the resimulations, our modeling ends before the
MBH pairs become a bound binary. Therefore we do not attempt to model binary formation
and binary hardening process (except in Section 6.5.5). In the ASTRID simulation, we use
a separate mass tracer Mdyn to reduce the noisy gravitational forces (dynamical heating)
acting on the small seed mass black holes during the force calculations of BHs (gravity and
dynamical friction). When a new BH is seeded, Mdyn is set to Mdyn,seed = 107h−1M⊙, which
is about 1.5MDM. Mdyn is kept at its seeding value until MBH > Mdyn,seed. After that, Mdyn

grows following the BH mass accretion.
Although this approach is a necessary step to alleviate dynamic heating and stabilize the

BH motion in the early growth phase, it can also lead to underestimation of the DF timescale
and over-predict high-redshift seed MBH mergers. In the high-resolution resimulations, with
a stellar particle mass of 2000M⊙, we alleviate the boost of the dynamical mass of BH
particles in the original simulation and use Mdyn = 2× 105M⊙. This is ∼ 100 times smaller
than the values used in ASTRID and gives a more faithful estimation of the true merging
timescale. In future works, we will further push the resolution limit to directly model the
true mass of seed MBHs. This typically requires a mass ratio of > 10 between dark matter
and MBH particles with moderate softening and the inclusion of DF subgrid modeling, and
∼ 1000 without [Ma et al., 2021, Pfister et al., 2019].
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Figure 6.2.2: Comparison between the gas surface density profile (top panel), gas disk height
(middle panel), and star-formation rate (SFR) surface density between the three runs. The
lines with light colors show the gas properties in the initial conditions, and the lines with
dark colors show the properties after 1 Gyr of evolution. The “SH03" run (purple) and the
“Astrid Model" run (green) share the same IC (light blue). The “Astrid Model+Gas Halo"
run (orange) has 50% gas in the disk and 50% gas in the halo for the initial condition (light
orange).
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Figure 6.2.3: Evolution of the total star formation rate in the three validation runs. Without
wind and AGN feedback, the “SH03" run has the most (up to ∼ 4 times higher) star formation
throughout the simulation.
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6.2.2 Code Validation

Disk Galaxy with Star Formation

We first validate the physical models and implementations in MP-Gadget in the context of an
isolated disk galaxy. We set up the initial condition (IC) following the Agora code comparison
suite [Kim et al., 2014, 2016], using the MakeDisk IC generator Springel et al. [2005b], with
parameters matching with Table 3 of Kim et al. [2016], except that we use a disk gas fraction
of 0.4 to match our high-redshift application. We model the multiphase interstellar medium
following the prescription of Springel and Hernquist [2003] that incorporates gas cooling, star
formation, and SN thermal feedback. (this run is denoted as “SH03"). In this first validation
step, we did not match the full ASTRID physical models: we did not include the wind feedback
from TypeII supernova and the influence of molecular hydrogen on star-formation; we also
did not include BHs in this run, so there is no BH accretion and feedback. We run the
simulation for 1Gyr and observe a stable disk throughout the simulation.

In the top row of Figure 6.2.1, we show the 2D projected density and density-weighted
temperature of the gas, along with the projected density of newly formed stars after 500
Myrs of evolution. In this model, the central star formation is high because we do not
include feedback mechanisms to mitigate the gas condensation. In Figure 6.2.2, we show the
2D profiles of gas properties in the initial condition and after 1 Gyr of evolution for this run
(light blue and purple lines). The gas surface density is computed as the total gas mass in
each radial bin divided by the area of the bin. The disk height is the mass-weighted distance
to the x-y plane for particles in each radial bin. We note that to compare with runs with
feedback and a gas halo, where the disk component is only a fraction of the total particle,
we only take the star-forming gas with |z| < 2 kpc in the disk height computation. Finally,
the star-formation rate (SFR) surface density is the total SFR in each radial bin divided by
the area of the bin. The gas density and SFR decrease throughout 1 Gyr due to the gradual
depletion of gas, while we can maintain a thin disk throughout the evolution.

Figure 6.2.3 shows the total SFR in the isolated galaxy over 1 Gyr. Since our initial gas
fraction in the disk is two times larger than the Agora suite, the SFR is also higher. After
500 Myrs of evolution, 18% of the stars are newly formed out of 26% of disk gas, mostly
residing at the center of the galaxy, as can be seen from the top-right panel of Figure 6.2.1.

Disk Galaxy with ASTRID Models

To match the physical models used in the ASTRID simulation, as a further validation of the
resimulation subgrid modeling we include a BH with an initial mass of 4× 106M⊙ and turn
on all the ASTRID subgrid physics models described in Section 6.2. Compared with the vanilla
SH03 modeling shown in the previous section, adding wind and AGN feedback is expected
to remove the dense gas at the galaxy center and regulate the star formation in the disk [e.g.
Di Matteo et al., 2005b, Okamoto et al., 2010, Weinberger et al., 2017]. We use two different
initial conditions for this “Astrid-Model" run: we first keep the same IC as the “SH03" run
in the previous section, with only the addition of a central BH. Then, to match more closely
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with the high-redshift gas environments where only a small fraction of the total gas in the
halo is star-forming and in disk structure (∼ 10− 40%, see e.g. Table ?? in Appendix ??),
we use a modified version of MakeDisk to put 50% of the total gas into the gaseous halo
component, following the method laid out in Su et al. [2019]. We set up the gas halo in
thermal equilibrium following a β profile with β = 0.66 and Rc/Rs = 0.5. We adiabatically
relax the IC for 250Myrs until it becomes stable, before turning on other subgrid models.

In Figure 6.2.1 we show comparisons of projected gas properties and newly formed stars
in the SH03 run, the “Astrid Model" run with all gas in the disk, and the “Astrid Model"
run with a gas halo (“Astrid Model+Gas Halo"). With feedback models turned on, we see
a significant drop in central star formation (the right column), and the disk gas can cool to
much lower temperatures (middle column). We find that the supernova wind feedback is
more efficient at removing gas from the galaxy center and thus lowering the central SFR,
compared with AGN feedback. Figure 6.2.2 shows the comparisons between the gas profiles
in the three runs, along with their corresponding ICs (note that the “SH03" run and the
“Astrid Model" run share the same IC so it is only shown once by the light blue curve). We
see that the disk height and a high star-formation rate are maintained throughout the “SH03"
run. The “Astrid Model+Gas Halo" run has a flattened star-formation surface density and
gas surface density after a Gyr of evolution.

Finally, Figure 6.2.3 shows the total SFR in the isolated galaxies in the three runs during
1 Gyr. The “SH03" run has the most (up to ∼ 4 times higher) star formation throughout the
simulation. The model with a gaseous halo displays more efficient star formation compared
to the no-halo run because more central gas is pushed to further distances by wind feedback
in the disk-only model. In the “Astrid Model+Gas Halo" run we observe a continuous inflow
of cold gas clumps, which sustains the star formation in the disk for a longer time. These
clumps can also impact the dynamics of seed MBHs. We will use the “Astrid Model+Gas
Halo" modeling in all of the resimulations in this work.

6.3 High-Redshift MBH Mergers
Previous works have shown that the dynamical friction timescales are long for MBH seeds,
but with MBH seeds modeled down to 5×104M⊙, we should still expect order unity mergers
per year, dominated by seed-seed mergers [e.g. Tremmel et al., 2017, Volonteri et al., 2020,
?]. However, the seed-seed merger is also the regime where the current simulation lacks
prediction confidence due to the limited particle resolution. In this section, we examine
the high-z merger population in the ASTRID simulation and select typical cases from the
population for comparison with high-resolution resimulation.

6.3.1 z ∼ 6 merger population in ASTRID

We focus on resimulating the population of z ∼ 6 merger events in the ASTRID simulation,
to study the sub-kpc scale sinking and merger timescales of seed MBHs. Here we give a brief
overview of this population and their environments. There are 2107 MBH mergers between
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Figure 6.3.1: The z = 6 MBH merger population in Astrid. From left to right: the mass
distribution of the more massive MBH among the pair (first panel); the distribution of the
mass ratio between the two merging MBHs (second panel); the number of MBHs in the
central region (< 3kpc from the galaxy center) of the remnant galaxy (third panel); the
seeding redshift of the more massive BH in the pair (fourth panel). The background green
histogram shows the entire merger population, and we also show two sub-populations: the
blue histogram is the "isolated" mergers with no third MBH coming into the central region
of the host galaxy before z = 6, and the red histogram shows the "complex" mergers with
multiple MBH in the host galaxy center already at z = 6. The numbers overlaid on each
plot label where the resimulated systems lie within each distribution (only the x-values are
meaningful, and the y-values are randomly taken).

Figure 6.3.2: Host galaxy properties of the z = 6 MBH merger remnant in Astrid. First
and second panels: the 2D distribution of the galaxy mass with the dark matter halo and
total gas mass in the halo. Third panel: power-law index of the dark matter and stellar
density profiles measured at the ASTRID resolution. Fourth panel: dark matter and stellar
densities measured at at the ASTRID resolution (0.8 kpc from the galaxy center).
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Figure 6.3.3: Initial orbital eccentricities of the merging MBH pair in ASTRID, calculated
from the first periapsis and the first apoapsis. The overall distribution peaks at ∼ 0.7, and
the selected resimulation systems (scattered numbers) cover a range of eccentricities from
0.2 to 0.9 (similar to Figure 6.3.1, the y-values are randomly chosen for readability).
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z = 6− 6.2 in ASTRID. We collect their host galaxy properties from the z = 6 snapshot (i.e.
shortly after the merger).

In Figure 6.3.1, we show the MBH properties of all mergers in this redshift bin, including
the primary mass, mass ratio, the total number of MBHs in the remnant galaxy, and the
seeding redshift of the primary MBH. We subdivide the merger population into three groups,
according to the total number of MBHs in the remnant galaxy at z = 6 (we take this as a
proxy for the complexity of the host environment). The first group is the “isolated mergers"
which have no new infalling structures interacting with the merging MBHs at least until z = 6
(blue population in Figure 6.3.1). This group consisted of the majority of high-z mergers
(1531/2107), with the merger remnant being the only MBH in its host galaxy. Within these
“isolated mergers", however, a significant fraction will have new infalling MBHs/galaxies
soon after the ASTRID merger at z = 6 (i.e. we found new structures on the outskirts of
the remnant halo at z = 6). Although these new infalls will not impact MBHs that already
merged in ASTRID by z = 6, they may interfere with the binary formation in the high-
resolution resimulations. Hence, we treat these systems separately (shown as the orange bar
in the third panel of Figure 6.3.1) when setting up resimulations.

The second group consists of “multiple MBH" systems (the red population), where at
z = 6, the galaxy remnant has 1 − 2 other MBHs besides the merging pair. This means
that the orbits of the pair go through more complex interactions already before z = 6
with other galaxies/MBHs. From Figure 6.3.1, we see that about 25% (542 out of 2107) of
z = 6 MBH pairs reside in these multiple galaxy interaction environments. This highlights
the importance of considering multiple MBH interactions when modeling the dynamics of
MBHs even in such high-redshift mergers. Finally, we leave out a group of the most complex
(with > 3 MBHs in the remnant galaxy) merger systems for this work. This group makes
up a very small fraction of the total merger population (34 out of 2107). In future works, it
is still worthwhile to study these systems, as they often reside in the high-density peaks of
the Universe and may trace the merger events during the formation of the first quasars.

In Figure 6.3.2, we show the host galaxy/halo information of the z ∼ 6 mergers. The left
two panels show the mass distribution of the dark matter, gas, and stellar components of the
merger remnant at z = 6. The majority of z = 6 mergers are between MBH seeds in dwarf
galaxies, with a host halo mass of 1010 − 1012M⊙, and a host galaxy mass of 108 − 1010M⊙.
At z = 6, the merger host halos are often rich in gas, with the total gas fraction about ten
times that of stars. Previous works have shown that in such environments, the clumpy cold
gas can result in the ejection of MBHs at kpc scales [e.g. Fiacconi et al., 2013, Tamburello
et al., 2017] and result in early wandering MBHs. Therefore, it is important to take gas
physics into account when simulating mergers between the MBH seeds.

The right two panels of Figure 6.3.2 show the power-law index of the density profiles
and the densities measured at the ASTRID resolution limit [similar to the method used in ?].
Specifically, we assume that below a scale rext close to the resolution limit 2.8×ϵg = 0.85 kpc,
the stellar density profile follows a single power-law ρ ∝ r−γ. To measure the value of γ, we
take the measured density from 10 bins just above rext, and fit it to the power-law profile.
The gravitational potential of high-redshift galaxies is dominated by the dark matter halo
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Table 6.3.2: Mass and spatial resolutions of the resimulation suite. The maximum separation
for two MBHs to merge in the simulation is 2× ϵBH.

MDM Mgas Mstar MBH,dyn ϵDM ϵgas ϵstar ϵBH

8000 M⊙ 8000 M⊙ 2000 M⊙ 2× 105M⊙ 80 pc 80 pc 20 pc 10 pc
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above kpc scales. In most cases, the dark matter density exceeds the stellar density by a
factor of ∼ 10. However, these galaxies are gas-rich and mergers can also trigger a phase of
rapid star formation. Therefore, as we will also show later, the stellar densities are subjected
to growth by a factor of ∼ 10 over the timescale of a few hundred Myrs, and can dominate
over dark matter on sub-kpc scales.

Finally, Figure 6.3.3 shows eccentricities of the first orbit between the MBH pairs during
the galaxy merger in ASTRID. This is measured from the pericentric and apocentric separation
between the MBH pair, and may be different from the Keplerian orbital parameters of the
galaxy mergers. The initial eccentricities have a wide distribution, with most ranging between
0.5 and 0.8. We note that about ∼ 20% of the pair has an initial eccentricity below 0.5, and
these pairs may experience much longer time (up to ∼ 2 times longer than a pair with an
initial eccentricity of ∼ 0.8) in the dynamical friction phase before the formation of a hard
binary [e.g. Gualandris et al., 2022]. It is therefore important to include this population in
the study of the seed sinking time.

6.3.2 Resimulation System Selection

As was described in the previous section, we categorize the merger systems according to the
host environment complexity and use the number of MBHs in the merger remnants’ host
halo as a proxy for the complexity. To obtain a good representation of different seed MBH
merging environments, we sample merger events from all three categories for high-resolution
idealized galaxy merger simulations. We will resimulate a total of 15 ASTRID z ∼ 6 mergers,
including 7 in isolated galaxies, 6 in galaxies with new infalls at z = 6, and 2 in multiple-
galaxy interactions. These systems are all chosen randomly from each population, to cover
a statistical representation of all the merger events.

We show the sampled merger events on top of the overall z ∼ 6 MBH merger population
in Figures 6.3.1, 6.3.2, 6.3.3 with the corresponding labels. The colors represent the sub-
population that each system belongs to (isolated, isolated with new infall, multiple galaxies).
For Figures 6.3.1 and 6.3.3, the y-values are randomly chosen to spread out the data points for
better visibility, while the x-values represent the MBH and orbital properties of the systems.
All the selected systems are mergers between two seed-mass MBHs with MBH < 106M⊙.
They cover a wide range of galaxy, MBH, and orbital properties with high probability density
in the parameter space.

In Table 6.3.1, we list the detailed properties of the resimulation systems before and after
the galaxy mergers. For each system with an MBH merger at z ∼ 6, we trace the host
galaxies back to the snapshot before their interactions at zinit to initialize the resimulation
IC. For the selected systems, this corresponds to either z = 9 or z = 7.6. During the galaxy
merger, the total dark matter mass in the halo grows by a factor of ∼ 2 for most systems
due to further matter clustering. The galaxy masses grow more significantly because of star
formation: the galaxy remnant mass is usually an order of magnitude higher than the sum
of the two parent galaxies. We found that the SFR grew most rapidly during the galaxy
merger. Finally, all of the host galaxies are gas-dominated, with gas masses much larger
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Figure 6.4.1: Left column: visualization of stars in the Astrid merging galaxies and MBHs
(top) compared with the IC of the high-resolution resimulation (bottom). The background
brightness corresponds to the stellar density, with matched color scales between the top
and bottom panels. Two merging MBHs are shown as red crosses on top of their host
galaxies. Middle column: Visualization of the gas environment in the Astrid system and
the resimulation IC. The brightness represents gas density, and the colors represent the
temperature (bluer colors are colder gas). Right column: density profile comparisons between
the Astrid galaxies (dashed lines) and the resimulation galaxies (solid lines). We compare
the profiles of all three components (dark matter in green, gas in blue, and stars in pink),
and show that the resimulation profiles matched well with the original profiles, but with
extrapolations down to > 10 times smaller scales than the original system.

than the stellar masses.

6.4 Resimulation Set-up

6.4.1 Initial Conditions

As was described in Section 6.2, in our idealized simulations, each subhalo consists of a dark
matter halo component characterized by an NFW profile, a gaseous halo component with
a beta profile, an exponential gaseous disk and stellar disk, and a stellar bulge following a
Hernquist profile. To best mimic the original ASTRID systems, we initialize each idealized
halo/galaxy in the resimulation IC according to the measured properties of the subhalos
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Figure 6.4.2: Similar to Figure 6.4.1, but for a more complex system with multiple galaxies
in the IC as well as two new infalling MBHs and galaxies before the MBH pairs merge in
the simulation. Right column: The density profiles of the two infalling galaxies in Astrid
and the resimulation.
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from a snapshot of the ASTRID simulation. Here we describe how we set the parameters in
idealized galaxy ICs.

We initialize an idealized galaxy for each subhalo identified by Subfind in the ASTRID
merging systems with stellar mass > 106M⊙ and dark matter mass > 109M⊙. We set Mvir

as the total subhalo mass of the ASTRID subhalo. The dark matter halo is initialized with an
NFW density profile, with the inner slope controlled by the concentration parameter c, and
with the halo spin initialized to a constant value 0.033. We find that at the current ASTRID
resolution and for the dwarf galaxies, we do not have enough information in the central
region to provide a good fit for c. Thus we set c = 4 to fit with the dark matter density
profile at the high-redshift regime of this work [see e.g. Prada et al., 2012] and find that this
value fits the profiles well on the Astrid-resolved scales. We note that the sinking time of
seed MBHs can be sensitive to the inner DM density profiles [e.g. Tamfal et al., 2018], and
can potentially be used to distinguish between different dark matter models. However, this
should not affect our major conclusions as we are only sampling from a single cosmology.

In ASTRID, there is no explicit gas disk (especially at high redshifts), and so we set the
mass of disk gas according to the fraction of star-forming gas in the ASTRID subhalo. The
rest of the gas is put into the gaseous halo component. We assume exponential, rotation-
supported disk gas with scale lengths fitted to the original system’s density profile, and we fix
the scale height at 0.2 times the scale length. The gas temperatures are initialized to pressure
equilibrium Springel et al. [2005b]. We also initialize a hydrostatic gas halo according to a
beta profile with Rc/Rs = 0.5 and β = 0.4 (we tested that the dynamics of MBHs are not
very sensitive to this choice, and defer the detailed study of its effect to future works).

The stellar disk and bulge fraction are decomposed following the kinematic decomposition
algorithm in [e.g. Abadi et al., 2003, Scannapieco et al., 2009]. The stellar disk follows the
same profile as the gas disk, and the stellar bulge follows the Herquist profile with scale length
set according to the half-mass radius of the ASTRID galaxy: a = rhalf/(1 +

√
2) [Hernquist,

1990]. We relax the initial conditions for each galaxy adiabatically and in isolation for
200Myrs, before assembling the merging system and putting in the MBHs. After relaxation,
we assemble all galaxies in the system according to their relative positions, velocities, and
the direction of the rotation vectors originally found in ASTRID. We also add MBH particles
according to their positions, velocities, and masses in ASTRID.

Figure 6.4.1 shows the comparisons between the ASTRID merging system and the res-
imulation initial conditions generated as described above. In the left and middle columns,
we show visualizations of the host galaxies and gas environments, with matched color scales
between Astrid and the resimulation (brightness corresponds to the density, and gas is color-
coded by temperature with blue corresponding to cold gas). The resimulation IC resembles
the morphologies, stellar densities, and gas temperature of the original system, but shows
significant improvement in mass and spatial resolution. The improvement in resolution can
be seen more clearly from the left column, where we show the density profiles of the original
halos and the resimulation halos (measured after the adiabatic relaxation, just before we
start the resimulations). The detailed properties of all components in each recovered galaxy
are shown in Appendix ??.
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6.4.2 Other In-falling Galaxies/BHs During the MBH Pairing

When we resimulate the cosmological merging MBHs at a much higher resolution, the re-
solved DF timescale between galaxy mergers and MBH mergers may lengthen, both because
we do not boost the dynamical mass of the BH particles and because we use a stricter merg-
ing criterion with smaller softening lengths. One result of the longer DF timescale is the
infall of other galaxies and BHs to the merging system that may either intervene or acceler-
ate the orbital decay of the original pair. To fully mimic the cosmological system, we need
to take these newcomers into account, as they can both interfere with the original mergers
and alter the properties of the remnant host galaxies.

To treat this scenario, we put new galaxies into the resimulated system at the time (t1)
when we see another galaxy with a BH coming within two times the virial radius of the
original system. Similar to how we set up the original system’s initial condition, we first
initialize the new galaxies based on the properties of their cosmological counterpart at t1.
Then we compute the position (∆x(t1)) and orientation (∆θ(t1)) of the new galaxy relative
to the original galaxy. To keep the total momentum of the new system at zero, we compute
the velocities of both the original galaxy (∆vold(t1)) and the new galaxy (∆vnew(t1)) with
respect to the COM of the combined system. Finally we add the new galaxy at (∆x(t1),
∆vnew(t1), ∆θ(t1)) to the resimulation, and modify the total velocity of the original galaxy
to be ∆vold(t1).

Figure 6.4.2 shows an example system where we add new infalling galaxies and BHs
during the resimulation, based on the information from the ASTRID system. This system
originally consists of a merger between five dwarf galaxies with two seed MBHs. After we
evolve the resimulation for ∼ 300Myrs down to z = 6, we observe a new infalling galaxy
that is about to merge with the original system in ASTRID (the green cross and the galaxy
associated with it in the top row, third column of Figure 6.4.2). We initialize this galaxy
following the procedures described above and add it into the resimulation (bottom row, third
column), so that it will start to interact with the original MBH pair. The right columns
show the density profiles of the new galaxies in the simulation compared with ASTRID, and
again we can see that we match the ASTRID galaxy/halo profiles well on the > kpc scale,
while achieving more than ten times better spatial resolution.

We note that during the resimulation, the mass of the original system does not grow,
and hence the new galaxies may fall into different potentials in the cosmological simulation
and the resimulation. In general, we verify that the total mass of the original system does
not grow by more than a factor of three before the injection of new galaxies. We defer more
detailed investigations of this effect and careful treatments of the mass growth to future
works.

6.5 Results

Using the method described in Section 6.4, we set up a total of 15 galaxies and MBH merger
initial conditions for the chosen ASTRID merging systems shown in Section 6.3, and with the
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Figure 6.4.3: Top row: trajectories of the MBH pair (crosses) plotted on top of the merging
host galaxies in ASTRID system3. The simulation merger happens between the third and
fourth frames. Middle row: evolution of the same system in the high-resolution resimulation.
The large-scale galaxy merger and MBH orbital properties are paralleled, but the orbits are
resolved down to ∼ 20 pc scales, close to the binary hardening (last frame). Bottom row:
comparison between the stellar density profiles of the primary galaxy (first two frames) and
the remnant galaxy (last three frames) in ASTRID (purple) and the resimulation (pink). The
density profiles in the resimulation match well with the ASTRID system, with an extrapolation
to > 10 times smaller scales.
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“full-physics" subgrid physics models depicted in Section 6.2. In this section, we show the
results from these high-resolution resimulations.

.

6.5.1 Evolution of the host galaxies

Although the initial conditions for the resimulations are set to match the ASTRID system
as closely as possible, it is not guaranteed that their subsequent evolution will be similar.
As a first test, we want to make sure that the general properties of the galaxies and MBH
orbits in the resimulations still mimic the evolution in ASTRID to at least the ASTRID MBH
merger time. Only in this case can we draw further comparisons and connections between
the cosmological simulation and idealized galaxy merger simulations.

In Figure 6.4.3, we show a parallel comparison between the galaxy merger and BH orbits
in ASTRID and in the resimulation system for an isolated galaxy merger (system1). On large
scales, we find a good match between the progress of the galaxy merger and MBH orbits
between the two systems (also shown later in Figure 6.5.3). The ASTRID system merged in
the fourth frame, while in the resimulation we further evolve the orbits down to ∼ 20 pc, and
the sinking timescale is much longer (fifth frame). The bottom panels show the evolution
of the stellar density profiles in both systems. The overall density profile evolution of the
resimulation system matches well with the ASTRID system over ∼ 1Gyr, because we also
try to match the gas properties in the resimulation initial conditions. More importantly, we
note that the central density grows by a factor of ∼ 10 during the orbital decay time of the
MBH pair. The growth in central stellar density can significantly impact the dynamics of
the BHs on sub-kpc scales.

Figure 6.5.1 shows the galaxy merger comparison for a more complex system with multiple
galaxies merging (system15). In this case, the ASTRID system goes through two consecutive
MBH mergers within ∼ 350Myrs(between BH1 with BH2, then with BH4). In the resim-
ulation system, the MBHs have a difficult time merging: BH3 and BH4 (and their host
galaxies) will start to interfere with the orbits of BH1 and BH2 before they can merge. As a
result, BH2 is disrupted to a wider orbit (column 4) where the dynamical friction becomes
inefficient.

We summarize the evolution in central stellar density across all resimulated systems in
Figure 6.5.2, from the start of the resimulation (∼ 300Myrs before the ASTRID merger) to
the resimulation merger time. The thick colored lines show the systems that merged in the
resimulation, while the thin grey lines show the systems that stall at ∼ kpc scales for more
than 1.5Gyr. For almost all systems the stellar densities increase by an order of magnitude
during the MBH sinking. After the ASTRID merger, the stellar density still increases by a
factor of 2 ∼ 3. This direct comparison implies that one should account for the newly formed
stars when using post-processed analytical models to compute the binary hardening time for
mergers in cosmological simulations, and the resulting hardening efficiency may increase. We
also note that for the system with the steepest increase in central stellar density (system11,
shown in light brown), the MBH sinks even more efficiently in the resimulation system and
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Figure 6.5.1: Similar to Figure 6.4.3 but for a system with multiple galaxy mergers
(system15). The MBH orbits are more stochastic for this system, and the orbit of BH2
(orange) widens with the infall of BH3/BH4 and their host galaxies.
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Figure 6.5.2: Top panel: Evolution of the central stellar density (measured at 100 pc from
the most massive galaxy center) during the MBH inspiral and merger in the simulations.The
colored lines show the density evolution until the resimulation merger time (crosses) for
systems that merged in the resimulations. The thin grey lines are systems that stall in the
resimulations. The vertical dotted line marks the ASTRID merger time. Bottom panel: the
ratio between stellar density measured at the resimulation merger and the initial condition
(green), and between the resimulation merger and the ASTRID merger (orange).

merges before the ASTRID merger takes place.
The recent work by Liao et al. [2023a] has shown that the increase in central stellar density

and the development of a nuclear stellar core can significantly increase the binary hardening
efficiency in SMBHs. Our result again highlights the effect of central star formation on
MBH sinking timescales, in the context of high-redshift seed-mass MBH mergers. In the
resimulation runs, we include the “full-physics" modeling of both star formation and AGN
feedbacks (thermal and kinetic), and thus the stellar density profile flattens (similar to the
“CoolStarKinAGN" modeling in Liao et al. [2023a]). Nonetheless, we still find very high star
formation rates (up to 50M⊙/yr) and the development of stellar nuclei when the merging
galaxies are compact enough (e.g. system11), and the MBH seeds can sink very efficiently
in these cases.
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Figure 6.5.3: Evolution of the AGN luminosities (top row in each panel), star formation
rate (middle row in each panel), and MBH pair separation (bottom row in each panel) in
the resimulation. For the SFR and orbital separation we also compare the resimulation
(purple) with the original ASTRID systems (orange). We show six systems representative
of the orbital properties of the fifteen resimulations. system2, system3, system10, and
system11 go through efficient orbital decay, while system5, system8 stall at the kpc scale.
The SFRs in the resimulations resemble those of the ASTRID system well during and after the
ASTRID merger. The initial few orbits also show a good resemblance to the ASTRID orbits.

6.5.2 Seed MBH merging timescale

In ASTRID, MBH orbits are resolved down to scales of ∼ 1 kpc, and so MBH pairs are assumed
to “merge" after that. However, in high-redshift dwarf galaxies, it is typical for seed MBHs
to stall on kpc scale orbits for over a few Gyrs [e.g. Ma et al., 2021, Partmann et al., 2023,
Pfister et al., 2019]. In this section, we study the merging timescales and the stalling of
MBH seeds of the systems in the resimulation, and the correlation with large-scale orbital
and galaxy properties.

Figure 6.5.3 shows the AGN luminosities, star-formation rate, and MBH pair separation
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of six resimulation systems. These systems are chosen to cover the range of galaxy and the
orbit properties across the 15 resimulated systems. Out of the six systems, four go through
relatively fast orbital decay and merge within the resimulation after < 800Myrs, while two
systems show stalling at kpc separations for over a Gyr. Notably, the initial few orbits of the
resimulation agree well with the ASTRID pair, even though we alleviate the boost in dynamical
mass on the seeds (as we will show later, this is because the first few orbits are governed
by the gravitational potential). This agreement indicates that cosmological simulations with
well-calibrated dynamical friction treatment faithfully model the initial orbital properties of
the MBH pairing. Such orbital properties can provide useful initial conditions for subsequent
orbital evolution or analytical modeling of the MBH merging timescales [Gualandris et al.,
2022].

The middle panels in Figure 6.5.3 compare the resimulation SFR with that of the cor-
responding ASTRID systems. We find general agreement between the two before and after
the ASTRID merger. In almost all systems, we find an increase in AGN activity and star
formation rate associated with the first few pericentric passages. In particular, fast orbital
decays are associated with stronger AGN activities (system2, system10, system11). This
comes as no surprise since these systems are also on the high-mass, high-density end of the
galaxy population (see e.g. Figure 6.3.2).

We note that in the resimulation we still do not resolve the full dynamical range until
the MBH coalescence, and so the MBHs “merge" when their orbital separation is ∼ 20 pc.
To validate that the MBHs’ motion is not affected by numerical noise above the merging
distance, we measure the wandering radius of the merger remnant following Bortolas et al.
[2016], by averaging the mean displacement of the merger remnant from the galaxy center
over time. We find that for all systems that merged, the remnant MBH has a mean displace-
ment of ∼ 20 pc. By numerically merging the MBH at this separation, we pick out systems
that will likely form a bound binary, since the stalling in the dynamical friction regime is
seen at ∼ kpc scales [e.g. Gualandris et al., 2022, Koehn et al., 2023, Partmann et al., 2023].
Further stalling may happen at ∼ pc scales due to the depletion of the loss cone, but here
we only focus on the pair evolution in the dynamical friction regime and defer the smaller
scale dynamics to future works.

The left panel of Figure 6.5.4 summarizes the correlation between galaxy properties and
seed MBH merging timescales in all resimulation systems. Each system is labeled with the
corresponding number in the plot. Out of 13 resimulated systems in isolation, 8 MBH pairs
will merge within 1.5 Gyrs (i.e. before z ∼ 3). We find a strong correlation between the
merging timescales and the central stellar density, both at the ASTRID merging time and the
resimulation merging time. We note that in our simulations, we do not hold any other galaxy
or MBH properties constant while varying the stellar densities. Therefore, this correlation
is a result of marginalizing over other parameters in the merger [see also e.g. Tremmel et al.,
2018a]. In this plot, we leave out the two systems with multiple MBHs (system14 and
system15), as the MBH dynamics are more complex in those cases and a simple scaling with
stellar density may not apply. We will discuss these systems in a later section.

Besides the stellar density, it is known that the orbital eccentricity also has a large im-
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Figure 6.5.4: Left panel: relation between MBH merging timescale and stellar density at
50 pc from the galaxy center. We measure density both at the ASTRID merger time (green)
and at the resimulation merger time (pink). We see a tight correlation between the merging
timescale and stellar densities. We plot densities in systems that do not merge within 1.5
Gyrs in the resimulation on the right of the box. Right panel: initial (green) and final
(pink) orbital eccentricity of MBH pairs in the resimulation and the correlation with the
merging timescale. The eccentricity clusters around 0.8 when the pair starts entering into
the hardening phase.
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Figure 6.5.5: Sinking time of MBH seed pairs for the thirteen mergers simulated in isolation.
Top panel : sinking time on the plane of stellar density and initial eccentricity of the MBH
pair in ASTRID. Bottom panel : sinking time on the plane of halo mass ratio and pericentric
radius between the galaxies (computed based on relative velocities and positions). In eight
systems (squares) the MBH merges in the resimulation in ∼ 1.2Gyr (i.e. by z ∼ 3.5). The
colors indicate the sinking time of each system that merged. Five pairs do not merge in the
simulation (black circles). The merged systems are mostly characterized by high stellar
density, high orbital eccentricity, and major halo mergers.

pact on the MBH merging timescales, both in the dynamical friction regime [e.g. Gualandris
et al., 2022, Taffoni et al., 2003] and in the loss-cone scattering regime [e.g. Sesana, 2010]. In
the right panel of Figure 6.5.4, we show the eccentricity evolution between the ASTRID MBH
merger time and the resimulation merger time. For the systems that merged efficiently, the
orbital eccentricity from at ASTRID merger falls above 0.8, and we find slight circularization
during the subsequent dynamical friction phase. At the resimulation merger time, the ec-
centricities of the MBHs all fall close to a value of ∼ 0.8. The two systems with e < 0.8
at the ASTRID merger time do not merge in the resimulation within 1.5Gyr (system4 and
system9). These results imply that the high-redshift seed mergers more likely come from
MBH pairs with high initial orbital eccentricities, and would retain these high e values by
the end of the dynamical friction phase.
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Figure 6.5.6: Evolution of apocentric distances of the secondary MBH rmax since the first
pericentric passage in systems that merged in the simulation (top) and systems that stalled
(bottom). We show the comparison between the distances in the original ASTRID systems
(dotted lines) and the resimulated systems (solid lines).

6.5.3 MBH mergers and large-scale properties

One main motivation for using cosmological simulations to set up resimulations of galaxy
and MBH mergers is to understand whether we can use the information from cosmological
simulations to predict the dynamics of MBHs at sub-resolution scales. In this section, we
connect each resimulation and the MBH merging time back to properties of the ASTRID-
resolved quantities and investigate what would be a good indicator for the sub-resolution
dynamical behavior of MBH seeds.

Figure 6.5.5 shows the quantities from the ASTRID system that we found most correlated
with the orbital decay timescale in the resimulation. From the top panel, we see that systems
that merge in the resimulation are characterized by high initial eccentricity between the MBH
pair (≳ 0.4), and high stellar density at ∼ kpc scales (≳ 5 × 10−2M⊙/pc

3). The bottom
panel shows the relation between the sinking timescale and the properties of the host halo
mergers. rfirst is the pericentric radius of the initial galaxy merger, computed from the halo
masses, initial relative positions and velocities of the two galaxies. We note that in some
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cases there are more than two halos involved in the merger, and so the orbits cannot be
exactly characterized by a Keplerian orbit. The stalled seeds are mostly found in minor
halo mergers with small pericentric radii. In these mergers, the host halo and galaxy of the
secondary MBH are most quickly disrupted, leaving the MBH completely bare from the very
early stages.

We further investigate if the resolved first orbits in ASTRID show an indication of the
subsequent orbital properties. In Figure 6.5.6, we plot the evolution of the apocentric radius
rmax in all resimulated systems, since the first pericentric passage between the two galaxies.
We separate the systems by whether the MBH pair merged or stalled in the resimulation.
A comparison between the top and bottom panels shows that the merged systems typically
started with lower orbital energies at the beginning of MBH pairing, and sink to rmax < 1 kpc
within ∼ 200Myr of the first pericentric passage. For systems that stalled in the resimulation,
none of the MBH sink to rmax < 1 kpc within the first ∼ 300Myr. If the MBHs’ initial orbital
sizes are larger, they would experience less efficient dynamical-friction-driven decay due to
the lower local densities, and as a result will stall on rmax ∼ 1 kpc for longer than a Gyr.

Motivated by the study in Bortolas et al. [2020], we calculate the torque onto the MBHs at
different times of the pairing, and from large-scale gravitational force to the local dynamical
friction force. In Figure 6.5.7, we show the magnitude of the total gravitational torque on
the sinking MBHs from all resimulations compared with the dynamical friction torque. The
torque is calculated as a cross product between r (distance to the primary galaxy center or
the remnant galaxy) and Fgrav or FDF. Fgrav is taken as the total resolved gravitational force
on the MBH in the simulation, and Fgrav is the subgrid-dynamical friction force computed at
each MBH time step. Corroborating the results shown in Bortolas et al. [2020], we also find
that the large-scale gravitational torque dominates the local dynamical friction force by ∼ 2
orders of magnitude. This is true both during the galaxy merger and during the subsequent
sinking of the MBHs. By splitting again between merged and stalled resimulation systems,
we find that during the initial pairing stage (∼ 200Myrs since the first pericentric passage),
the stalled systems generally experience less τgrav, but not significantly. We also compare
the gravitational and dynamical friction torque from ASTRID (before the MBH merger) with
the torque from the resimulation, to evaluate if we miss any influence of the large-scale
structures on the MBH dynamics. In general, we find that the τgrav,resim matches well with
the τgrav,ASTRID values. Because the dynamical mass of BH particles in ASTRID is boosted by
∼ 100, its magnitude is closer to the gravitational torque and may have a larger impact on
the dynamics. This can also possibly lead to the early merger of the five systems that stalls
in the resimulation.

Finally, Figure 6.5.8 shows the change in the total energy of the secondary MBH after the
first pericentric passage between the pairs, compared with the energy loss due to dynamical
friction (in the resimulation). We find a striking contrast between the merged and stalled
system at the very early stage of the merger: the merged MBHs lost most of their energy
within the first ∼ 100Myrs. The energy loss due to dynamical friction then begins to take
effect after ∼ 200Myrs to further drive the merger. In contrast, the stalled MBHs gained
energy in this beginning phase from the gravitational torque. As a result, the MBHs never
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Figure 6.5.7: Time evolution of the gravitational torque on the secondary MBH since the first
pericentric passage in ASTRID (thick orange) and the resimulation (thin blue). The pink
lines show the dynamical friction torque from the resimulations. The gravitational torque in
ASTRID is recovered by the resimulation in most systems, and it is two orders of magnitude
larger than the dynamical friction torque, as was also shown in Bortolas et al. [2020]. The
diamonds show the median torque among each group within time bins of 100Myrs. The
green diamonds are the median DF torque from ASTRID.
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Figure 6.5.8: Left column: Rate of total energy change of the secondary MBH (blue) com-
pared with the energy loss rate due to dynamic friction (pink). The lines show each system
and the diamonds are the median across all systems in each time bin. We plot the sys-
tems that merged in the resimulation in the top panel and the systems that stalled in the
bottom panel. The merged MBHs experience loss of energy dominated by gravity, while the
stalled MBHs gain energy during the first ∼ 200Myrs of the galaxy merger. Middle column:
Cumulative change in the MBH energy since the first pericentric passage between the pair.
Right column: visualization of two galaxy mergers that lead to a merged pair (top) and a
stalled pair (bottom). The stalled MBHs are mostly found in head-on collisions of minor
galaxy mergers, in which the secondary host is quickly dissolved.
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made their way into the central region where dynamical friction acts effectively. On the right,
we show a typical example of both the merged and stalled scenarios. Consistent with the
picture in Figure 6.5.5, the MBHs in major mergers experience energy loss at the potential
center of their hosts, whereas those in minor mergers with head-on collisions gain energy
from the tidal disruption of their host galaxies. In future development of subgrid merger
models in cosmological simulations, it will be useful to measure the energy change rates of
MBHs as an indication of the merging timescales and the likelihood of stalling.

6.5.4 Effect of new infalling galaxies and MBHs

The results shown for the seed MBH merging timescale so far exclude the effect of a third
galaxy and MBH on the evolution of the original MBH pair. Recall that in the system
selection in Section 6.3, 6 systems (8-13) will start to have new infalling MBHs at z ∼ 6,
and two systems (14 and 15) are already in the multiple-MBH environment at z ∼ 9. In this
section, we study the MBH pairing and orbits with considerations of multiple MBHs.

Figure 6.5.9 shows the bolometric luminosities and the orbits of all MBHs in four systems
undergoing close interactions between multiple MBHs and galaxies. In all four cases, we find
stalling of all MBHs on kpc scales. In particular, for the systems with new infalls (system8
and system9), the third MBH/galaxy does not accelerate the sinking of the initial secondary.
In system8 the secondary orbit widens with the infall of a new galaxy. For the systems with
simultaneous merger between several MBH-hosting galaxies, the MBHs exhibits more chaotic
orbits except for the primary MBH. These multiple MBH mergers lead to many wandering
MBH seeds that do not grow efficiently in the remnant galaxy. This picture is also consistent
with the earlier findings that the seed dynamics are governed by large-scale torques. The
galaxy structure is often more complicated with changing potentials for the multiple merger
case and can lead to energy increases of seed MBHs.

6.5.5 Effect of nuclear star clusters

Recent works suggest that if MBHs are embedded in extended stellar systems such as NSCs,
the sinking and formation of MBH binaries can be enhanced. This enhancement arises from
the additional mass, which aids in dynamical friction, and the tidal effects exerted by the
cluster [e.g., Mukherjee et al., 2023, Ogiya et al., 2020]. Our objective is to understand how
resolving these clusters using N-body methods influences the outcomes obtained from the
resimulations and compare the inspiral time obtained from the subgrid dynamical friction
prescription used in ASTRID resimulations.

We use the Fast Multipole Method (FMM) based N-body code Taichi [Mukherjee et al.,
2021, 2023, Zhu, 2021] to perform N -body simulations of the resimulated ASTRID systems.
Taichi has explicit error control with time-symmetrized adaptive timesteps that allow the
code to produce accurate results, even at mpc scales, and consistent with those obtained
from direct summation-based N -body codes. Taichi is highly efficient at simulating large-
N systems owing to the O(N) force calculations rather than O(N2) that is typical of direct
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Figure 6.5.9: The bolometric luminosities and the orbits of all MBHs in four systems under-
going close interactions between multiple MBHs and galaxies. In all four cases, interactions
between > 2 galaxies and infalling MBHs lead to wandering MBHs on kpc scales.
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summation based N -body codes.
We perform preliminary investigations of two systems - system5 and system8. These

systems are chosen since they lie at the density and energy criterion boundary separating
merged systems from stalled ones. We are motivated to understand if embedding the MBHs
in these systems in stellar clusters allows them to sink to sub-pc scales where the binary
enters the hard-binary limit.

The particle data is obtained at t = 968.2 Myr for system5 and t = 500 Myr for system8.
We take the particle data from the resimulations and perform radial cuts of 3 kpc and 5
kpc respectively from the centers of potentials of both systems. This was done to reduce
the computational expenses. Cropping the systems results in N = 1.3× 106 particles being
retained from system5 and N = 2.4 × 106 particles being retained from system8. We
ensured that the cropping did not affect the overall dynamics of the MBHs and simulations
were performed with non-cropped and cropped systems to verify consistency.

We infer the total mass present in clusters by extrapolating the stellar density profile
obtained from the resimulations beyond 100 pc. Since the mass is sensitive to the profile
used for extrapolation, we use three different slopes to generate three different models for
each system: a shallow cusp with ρ(r) ∝ r−1, a slightly steeper cusp with ρ(r) ∝ r−1.5, and a
steep cusp with ρ(r) ∝ r−2. The mass of each cluster, Mc, is then calculated by subtracting
the mass present within the inner 100 pc and dividing it by two.

To ensure that the masses of the clusters are physically realistic, we compare the initial
cluster mass in each of the three models to the initial stellar mass present within 100 pc
of the MBHs in each of the galaxies before they get disrupted. For system5, we find that
the lowest mass cluster is about 2× the mass contained around the primary MBH. For the
highest mass cluster, we find that the cluster mass is about 5× that contained around the
primary MBH initially. Similar values are obtained in the case of system8. The lower initial
mass inferred from the galaxies is caused due to the suppression in the density profile within
100 pc of the MBHs owing to softening. In general, we would expect cusps to form around
the MBHs leading to a larger stellar mass which would be more consistent with the masses
of the clusters that we used in this study. Additionally, we note that the total cluster mass
to stellar mass in the galaxy ranges from 1-3%, which is quite consistent with NSC to bulge
stellar masses of some known nucleated dwarf galaxies [e.g., Khan and Holley-Bockelmann,
2021].

Since Taichi cannot handle gas effects, the gas particles are treated as stellar particles.
We do not expect this to affect our overall results since gas is subdominant in the region of
interest. N -body realizations of the stellar clusters are generated using the galactic modeling
toolkit Agama [Vasiliev, 2019] by taking into account the potentials of the cluster, the MBH,
and the galaxy. We use a Dehnen density profile [Dehnen, 1993] to model the cluster with
a shallow inner cusp of γ = 0.5 and scale radius a = 1.4 pc. All of the generated clusters
have a half-mass radius of about 4.3 pc. The cluster particles are assigned masses of 103M⊙
each. Ideally, even smaller cluster particles are desirable to model the tidal effects accurately.
While that is beyond the scope of this work, future work will include clusters that have a mass
resolution of 10− 100M⊙. We summarize the initial conditions for our N -body simulations
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System Cluster model Mc[M⊙]

system5
Low mass
Intermediate mass
High mass

2.1× 106

3.1× 106

6.3× 106

system8
Low mass
Intermediate mass
High mass

2.5× 106

3.7× 106

7.5× 106

Table 6.5.1: A summary of the different stellar cluster models used in the N -body simulations
and the masses of each individual cluster.

in Table 6.5.1.
The systems are evolved for ∼ 500 Myr beyond the initial time or until the formation

of a hard binary. Plummer softening is used while calculating the forces. The softening
used for the cluster particles is 0.01 pc, while that for the stellar and gas particles is 25 pc.
When the separation of the MBHs decreases below 100 pc, we decrease the softening of the
stellar and gas particles to 1 pc. Dark matter particles are assigned a softening length of
50 pc. The interactions between the MBHs are never softened. The softening lengths were
varied to understand the effects on the sinking time and no major differences were noticed.
In scenarios that result in the sinking of the MBHs to sub-pc length scales, convergence is
ensured by running the simulations again after splitting the particles such that the overall
mass resolution of the non-cluster particles is 2 × 103M⊙. Particle splitting is performed
using the same procedure as used in some previous studies [e.g., Khan et al., 2012]. In the
split-particle cases, the softening of the DM particles is reduced to 25 pc. For system5,
particle splitting results in a total of N ≈ 3× 106 particles. While the mass resolution used
in this work is somewhat insufficient to resolve the three-body hardening phase accurately,
we want to note that the main objective of this preliminary study is to compare the sinking
timescales between the ASTRID resimulations and the N -body simulations. A more detailed
analysis is in preparation which includes additional prescriptions for relativistic effects, MBH
spin, and GW recoil.

We use the fourth-order hierarchical Hamiltonian splitting integrator HHS-FSI [Rantala
et al., 2021]. We set a force error tolerance parameter of ϵ = 2× 10−5, multipole parameter
of p = 12, and timestep parameter of η = 0.3. This results in an overall relative energy error
of ∼ 10−5 at the end of the simulations. For more information on the parameters, we refer
the interested reader to Mukherjee et al. [2021]. The simulations are run using 32-48 threads
on a single AMD Epyc 7742 machine.

Examining Figure 6.5.10 where we plot the relative separation of the MBHs ∆r as a
function of time for our different N -body models, we find interesting results. For system5,
our high mass cluster helps the MBHs efficiently sink to the potential minimum of the galaxy
and form a hard binary within 1.2 Gyr. The initial periastron separation between the MBHs
is ≈ 800 pc. The separation drops primarily due to DF on the extended system until the
MBHs have a ∼ 50 pc separation after which tidal forces from the clusters helps the MBHs
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Figure 6.5.10: Relative separation between the MBHs ∆r as a function of the time for
resimulations and models with MBHs embedded in NSCs for system5 (top) and system8
(bottom). In the high mass cluster model (orange) in system5, the MBHs can sink efficiently
and form a hard binary by 1.2 Gyr. The sinking time is almost twice as long for the
intermediate mass cluster model (blue) owing to the lower mass in the cluster. The DF
prescription in the resimulations (green) predicts an inspiral time somewhere within the two
models. In system8, despite the added mass due to the clusters, the MBHs are unable to sink
and form a hard binary. Even in the large mass cluster model, the separation between the
MBHs reduces very slowly. This is quite consistent with the evolution in the resimulations.
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Figure 6.5.11: The stellar density profile upon the formation of a hard binary in the inter-
mediate mass (blue) and high mass cluster models (orange) in system5. The bumps in the
initial stellar density profile (green) represent the positions of the NSCs initially. Consistent
with our initial conditions, the density profile after the clusters have sunk form a ρ(r) ∝ r−1.5

profile in the inner 100 pc in the intermediate mass model and a ρ(r) ∝ r−2 profile in the
high mass model. The central density at 10−4 kpc is quite consistent with stellar density
values of known nucleated dwarf galaxies such as M32 or NGC 5102.
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sink rapidly to sub-pc separations, consistent with previous studies [Mukherjee et al., 2023,
Ogiya et al., 2020]. The semi-major axis of the formed binary is around 5× 10−3pc whereas
its eccentricity is ∼ 0.3 − 0.4. We caution the reader, however, that a better estimation
of eccentricity would require finer resolution in the last few Myrs before sinking, a work in
progress. In the intermediate mass cluster model, the inspiral takes twice as long owing to
the lower mass of the cluster, and some mass loss from the cluster due to tidal stripping.
Similar to the high mass model, the separation between the MBHs rapidly drops when the
separation reduces to ≤ 50 pc, and a hard binary is formed quite efficiently. Although not
presented here, we find that the low mass cluster model is not able to sink the MBHs to
sub-pc scales within ∼ 500 Myr of evolution but a decrease in the separation is noticed. We
notice that the inspiral time predicted by the ASTRID resimulation model is approximately
in between our intermediate and large cluster models.

The cluster models in system8 do not show the same signs of rapid inspiral as those
observed in system5. Even in the high mass cluster model system8, the MBHs are only able
to reduce their periastron separation from 2.6 kpc to 2 kpc within 500 Myr. The decrease is
even smaller in the case of the intermediate mass cluster model. Since system5 and system8
share similar initial MBH orbits and stellar density profiles, it suggests that NSCs become
an effective method of sinking only when the periastron separation between the MBHs is
≲ 1 kpc. This underscores the importance of taking into account the global effects and
the necessity of ASTRID-like simulations where the initial orbits of the MBHs are modeled
accurately. The first few kpc scale orbits contain very useful information on the subsequent
orbital evolution and the fate of the binary.

We also examine the overall stellar profile of the galaxy once a hard binary has formed
in Figure 6.5.11. Consistent with the initial conditions used, once the clusters have merged,
we find that a ρ(r) ∝ r−1.5 profile forms in the inner 100 pc in the intermediate mass cluster
model while a ρ(r) ∝ r−2 profile forms in the high mass cluster model. Since the softening
of the cluster particles is quite small and they dominate the mass at r ≲ 0.1 kpc, the
density profile is accurate to ≈ 10−4 kpc. The stellar profile is quite consistent with those
from known nucleated dwarf galaxies such as M32, NGC 5012, and NGC 5206 [Khan and
Holley-Bockelmann, 2021], especially in the inner-pc. The stellar profiles are obtained at the
beginning of the hard-binary stage and no core scouring has taken place. With time, due
to core-scouring, we expect the density within the influence radius of the binary (∼ 1pc) to
become shallower.

6.6 Discussion
The dynamics of MBHs in the dynamical friction regime (from a few kpc to < 10 pc scales)
have not been understood in great detail, partly due to the intrinsic stochasticity [e.g. Nasim
et al., 2020, Rawlings et al., 2023] and the wide range of physics processed involved [e.g.
Banik and van den Bosch, 2021, Dosopoulou and Antonini, 2017, Park and Bogdanović,
2017, Tamburello et al., 2017]. Recently, several works have been focusing on bridging this
gap in the dynamical range by following the dynamics of MBH pairs from galaxy mergers to
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binary hardening, and some even to binary coalescence. Here we briefly discuss our work in
the context of these emerging literatures.

Probably most relevant to our work are the recent studies by Koehn et al. [2023] and
Partmann et al. [2023], both of which take into account realistic consecutive galaxy mergers
with > 2 MBHs. The former uses a similar resimulation approach to resimulate triple SMBHs
in the Romulus simulation, with a focus on the massive galaxies. The latter considers the
infall of several seed MBHs in satellite halos into the main halo, and finds that a seed mass
of ∼ 105M⊙ is needed for MBHs to merge in these low-mass galaxies. Compared to these
works, our study uniquely considers the effect of gas physics in high-redshift galaxies, and
shows that the growth in stellar density due to star formation allows seed MBHs to enter
into the hardening phase within ∼ 1Gyr. However, we currently lack the self-consistent
treatments of triple MBH interactions and gravitational recoil, which have been shown to
lead to a high fraction of MBH ejections according to these works. Despite the differences
in the subgrid models, the three works reach agreements on the production of numerous
wandering MBHs due to various mechanisms in multiple-MBH systems. We also explicitly
show that such systems are numerous as a result of the high-redshift early galaxy assemblies,
and so it is important to understand such systems in greater detail and implications for early
MBH growths.

Other works on the seed MBH dynamics include Tamfal et al. [2018], Pfister et al. [2019],
Ma et al. [2021]. In particular, both Pfister et al. [2019] and Ma et al. [2021] considered the
effect of clumpy gas on the sinking of MBH seeds. The key finding is that seed-mass MBHs
cannot sink efficiently in clumpy high-redshift galaxies, or even in idealized cases. By taking
initial conditions from cosmologically merged systems instead of putting MBHs on more
ad hoc orbits, our resimulations naturally favor the initial orbital parameters and galaxy
configurations (such as rotation angles) that are more likely to sink the MBHs efficiently.
With initial conditions that favor efficient orbital decay, it is still likely that the MBHs can
migrate into the dense central star-forming regions before they get significantly scattered.
In future works, we will explore if more detailed ISM modeling significantly impacts our
conclusion.

6.7 Conclusion
We present a suite of the MAGICS simulations, consisting of 15 idealized high-resolution
galaxy merger simulations with initial conditions directly reproducing the configurations of
galaxy mergers in the large-volume cosmological simulation ASTRID. This suite encapsulates
a wide range of realistic galaxy merger environments directly drawn from ASTRID, with
both isolated dwarf galaxy mergers with an MBH pair and consecutive galaxy mergers with
multiple MBHs. The simulation suite is run with the full subgrid physics model of the
ASTRID simulation using MP-Gadget to include realistic gas and star-formation physics, the
feedback from the supernova, as well as the accretion onto MBHs and the AGN feedback.

We use these simulations to study the merger and sinking of high-redshift (z ∼ 6) mergers
between MBH seeds (5× 104M⊙ < MBH < 106M⊙), in early gas-rich, star-forming galaxies
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with a typical gas fraction > 1, galaxy mass between ∼ 108M⊙ and ∼ 3× 109M⊙, and halo
mass between ∼ 5×1010M⊙ and ∼ 5×1011M⊙. For selected systems with inefficient orbital
decay, we continue the galaxy merger simulation during the evolution of the final ∼ kpc scale
with the FMM-based N-body code Taichi with MBHs embedded in NSCs.

We show that the resimulation method can create galaxy merger initial conditions and
orbital configurations that resemble the original galaxy merger system in cosmological sim-
ulation. Furthermore, the subsequent evolution of the cosmological merger is also paralleled
in the resimulations regarding the MBH orbits, host galaxy density profiles, and host galaxy
star formation rates. We find a good match between the MBH orbits of the ASTRID mergers
and the resimulation mergers above the ASTRID resolution limit (the first ∼ 3 orbits). This
validates using cosmological simulations with dynamical friction modeling for setting the
initial distribution of MBH orbital eccentricities and separations for idealized galaxy/MBH
mergers simulations and analytical models.

In 8 out of 15 resimulated ASTRID mergers, the MBH pairs can sink efficiently to sepa-
rations below 20 pc in 1.5Gyrs and before other galaxies start to interfere with the binary
system. ASTRID mergers with high initial eccentricity (einit > 0.5), high density at kpc scales
(ρstar > 0.05M⊙/pc

3), and low halo mass ratio (qhalo < 0.3) will sink efficiently to ∼ 20 pc
in the resimulation. The MBH will stall at 0.1 − 1 kpc orbits if any of these conditions are
not satisfied. Moreover, the central stellar density can grow by a factor of 2 ∼ 3 between
the cosmological merger and the end of the dynamical friction regime and over a factor of
∼ 10 from before the galaxy merger to the binary hardening. We find that all merger rem-
nant galaxies have a central stellar density of ρstar,50pc > 1M⊙/pc

3 and orbital eccentricity
of ∼ 0.8 when the MBHs begin entering into the binary hardening regime. Our predicted
eccentricity is in broad agreement with the results in Gualandris et al. [2022].

By directly linking the resimulation MBH mergers (or non-mergers) with the cosmological
system, we find that galaxy and orbital properties at the ASTRID MBH merger time and
resolution are already good indicators of whether the MBH pair can sink efficiently or not.
Specifically, the energy loss of the seed MBH that leads to fast sinking is dominated by
gravitational torque during the first ∼ 200Myrs of galaxy merger, and dynamical friction
plays a subdominant role. The seed MBHs in merged systems lose energy at a rate of
∼ 10 − 100 km s−2Myr−1 during the galaxy merger, whereas the stalled seeds gain energy
in this phase. As a result of the initial energy loss driven by large-scale torques, some seeds
experience efficient orbital decay during the first few orbits of MBH paring, with apocentric
orbital sizes below 1 kpc in ∼ 200Myrs after the first pericentric passage between the MBHs.

Consecutive mergers between multiple galaxies and MBHs are common (∼ 50%) among
high-redshift seed MBH mergers, and thus need to be taken into account when modeling
the merging between MBH seeds. We find that the consecutive merger scenario generally
hinders the sinking of MBH seeds. The 4 resimulated systems with multiple galaxy mergers
involving > 2 MBHs all lead to the stalling of several MBHs at ∼ 1 kpc from the remnant
galaxy center, with only one MBH sinking and accreting efficiently at the galaxy center.
In particular, we find that the orbit of the initial MBH pairs widens with the infall of new
galaxies.
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Finally, by resimulating the sub-kpc evolution of MBH pairs for two systems with the
secondary MBHs stalling on ∼ 1 kpc scales with MBH embedded in NSCs, we find that a
cluster mass of ∼ 3 × 106M⊙ facilitate the sinking of the secondary and allows for a rapid
formation of a hard binary in the case where the orbital size is already below 1 kpc. By
applying the criterion of rapid MBH sinking derived in this work (high-density and high-
eccentricity mergers in isolation) to the properties of ASTRID MBH mergers shown in ?,
we find that about ∼ 10 − 20% MBH seeds that pair at z ∼ 9 will enter into the binary
hardening phase before z ∼ 3. Since binary hardening is also relatively efficient for dense
and high-eccentricity mergers, we expect that these pairs will be detected by LISA around
z ∼ 3.
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Conclusion

In this thesis, I have used a combination of hydrodynamical simulations (in an idealized and
a cosmological context) and semi-numerical simulations to study the evolution of galaxies
and massive black holes since cosmic dawn, with a particular focus on cosmic reionization
and massive black hole binaries.

Using the semi-numerical code for reionization AMBER, I model the patchy kinetic
Sunyaev-Zel’dovich (kSZ) effect by directly specifying the reionization history with the red-
shift midpoint zmid, duration ∆z, and asymmetry Az. I constrain the redshift midpoint
6.0 < zmid < 8.9 using the Planck2018 Thomson optical depth result, and find that the am-
plitude of DpkSZ

ℓ=3000 is consistent with the 1σ upper limit from the South Pole Telescope results
up to ∆z < 5.1. I show that constraints on the asymmetry require ∼ 0.1µk2 measurement
accuracy at multipoles other than ℓ = 3000. Finally, the amplitude and shape of the kSZ
spectrum are only weakly sensitive to Mh under a fixed reionization history and radiation
mean-free path. This means that using only the two-point statistics at a few multipole
values of the patchy kSZ map gives limited constraints on the detailed reionization history
and morphology. Higher-order statistics or map-level information can be useful in providing
more information about the reionization process.

Another probe of galaxy formation comes from the observation of massive black holes or
AGNs. Specifically, massive black hole binaries are promising for understanding the growth
and accretion of MBHs, especially given the current and future gravitational wave observa-
tions targeting BHs on the massive end. Aiming for accurate theoretical modeling of the
MBH binary population, I developed and validated the numerical modeling of MBH dynam-
ics within cosmological simulations, which allows for a more physical and accurate prediction
of the MBH binary formation and merger rate. Compared with previous simulations, this
model takes into account the MBH orbital decay process after galaxy mergers and postpones
binary formation by a few hundred Myrs to several Gyrs.

Using the state-of-the-art large-volume cosmological simulation ASTRID with the new
dynamical modeling, I compute the initial eccentricities of MBH orbits directly from the
simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before
the numerical merger. After accounting for the full evolution stages of MBH binaries, only
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≲ 20% of seed MBH pairs merge at z > 3. These z > 3 seed-mass mergers are hosted in a
biased population of galaxies with the highest stellar masses of > 109M⊙. With the high
initial eccentricity prediction, we estimate an expected merger rate of 0.3−0.7 per year from
the z > 3 MBH population. This is a factor of ∼ 7 higher than the prediction using the
circular orbit assumption.

Then I also investigate the electromagnetic signatures of MBH pairs. ASTRID provides
one of the largest statistical samples of the rare quasar pairs down to kpc scales. I search for
the distinctive features of AGN pairs compared to the underlying single AGN population,
and find that dual AGN have an overall high-accretion efficiency and obscurations. Following
the evolution of the pair systems during and after the galaxy merger, I show that in the most
massive halos, MBH pairs often exist in the offset AGN form, with the secondary deactivated
by severe gas stripping and stall at 5kpc for a few hundred Myrs. On the contrary, the pairing
to GW emission timescales of dual AGN is typically less than 1 Gyrs, and could be as short
as 100 Myrs for the brightest duals. These pairs can lead to the majority of gravitational
wave sources in LISA and PTA observations.

Finally, noticing that the current dynamics model still fails to accurately model the
dynamics and merger of seed-mass MBHs at the resolution of cosmological simulations, I de-
veloped idealized galaxy merger simulations with initial conditions informed by cosmological
merger events to study the binary evolution of high-redshift MBH seeds at high-resolution.
I find that the initial orbital configuration of the galaxy merger and the galaxy mass ratio
play a major role in the subsequent dynamical evolution of the binary, by either adding or
decreasing the orbital energy of the MBHs. These simulations showed that current cosmo-
logical simulations potentially overpredict seed-mass MBH mergers, and most MBH seeds
may end up wandering in the host galaxy at different radii.

This thesis constitutes a step forward in refined modeling of the high-redshift galax-
ies, particularly the progress of cosmic reionization and the evolution of massive black hole
binaries. More importantly, it made several theoretical predictions based on our current un-
derstanding of high-redshift galaxy formation, which is testable through current and future
observations. It is now an exciting era for studying the galaxy evolution in the high-redshift
Universe, and relate it spatially to the evolution of instruction on larger scales, and tempo-
rally to the present-day galaxies. The state of the field rapidly changing change due to a
suite of instruments and telescopes that are operating now or will become available in the
next few years. On the theory side, there has been a lot of progress since the recent cosmo-
logical galaxy formation simulations used in this work in all aspects of the physics involved.
In the future, we should incorporate those developments in cosmological simulations, and
understand how the resulting prediction compared against the new observations.
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