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Abstract

A semi-classical analysis of the quantum rigid-rotor motion based on a phase-space description of the
rotation in terms of a SO(3) covariant Wigner-like distribution is presented. The results are applied to
the description of the intense-field alignment of an anisotropically polarizable molecule with high
rotational excitation.

1. Introduction

The visualization of quantum systems in phase space is a useful tool for the ‘identification’ of states by invoking
our classical intuition about the shape of statistical distributions and the interference patterns between them
[1-3]. The main idea of this approach consists in mapping quantum states on distributions (symbols) on some
classical phase space. The self-dual symbols, which arise when the same type of mapping is used both for the
density operator and for the observables in order to compute average values by convoluting corresponding
symbols, are usually called Wigner symbols’. The properties of such mappings essentially depend on the
symmetry of the quantum system and on the requirements of covariance under a certain group of
transformations [4—14]. In the simplest case of harmonic oscillators and spin-like systems, the transformation
groups—Heisenberg—Weyl and SU(2), respectively—are easily identified. The corresponding phase spaces can
be constructed in a standard way if the operators from the group representation act irreducibly in the Hilbert
space of the quantum system. In the simplest example of spin-like systems this corresponds to subspaces with a
fixed value of the spin or orbital quantum number. The situation is more involved when a quantum system with
natural action of some dynamic group belongs simultaneously to several invariant (under the group action)
subspaces or may ‘transit’ between irreducible subspaces in its course of evolution. This is precisely the situation
of a quantum rotor, with its natural transformation group being SO(3), when the total angular momentum is
changed due to the action of an external agent. The concept of a phase-space for such a system can be obtained,
adopting different points of view and demanding different types of covariance of the mappings from operators
to c-number distributions [ 15, 16]. The advantage of using one or another mapping depends crucially on the
class of states and limiting cases that are of physical interest.

Itis worth noting that in the framework of a phase-space approach one not only can visualize states of
quantum systems but also may develop specific perturbation theories in the semiclassical limit. This can be
achieved by expanding the image of the Heisenberg equation for the density operator, the so-called Moyal
equation [17], in a series with respect to a small (semiclassical) parameter. Neglecting higher-order derivatives,
one arrives then at a first-order Liouville-type equation [ 18] that describes the time evolution of the initial phase-
space distribution via trajectories defined by a set of first-order ordinary differential equations. The choice of the
mapping is particularly important in the semiclassical limit, when the ‘physical’ parameter is the number of total
excitations of the quantum system. Then, an adequate choice of covariance requirements leads to the classical
Hamiltonian equations in terms of standard physical observables and the dynamics of quantum systems, with
large numbers of excitations that can be successfully analyzed in terms of a phase-space description for
sufficiently long times [19-24].

? Although non-self-dual mappings are also frequently used, especially for representation purposes.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In this paper we provide a semiclassical analysis of the quantum rigid-rotor motion that is based on a phase-
space description of the rotation, using a Wigner-like mapping with SO(3) symmetry. The SO(3) covariant
mapping allows us to semiclassically expand the phase-space distribution and the equation of motion based on
the physically meaningful parameter of rotational energy. In this way we arrive at the standard Hamiltonian
equation describing the rigid-rotor motion. In particular, we show how classical trajectories in phase space
emerge and how such a set of trajectories generates the time-dependent phase-space distribution of the rigid
rotor. Each trajectory lives in a four-dimensional space, and thus only four coupled equations of motion have to
be solved. Expectation values can be obtained as statistical averages over the initial distribution from which the
semiclassical trajectories originate. In particular, we apply our treatment to the description of the intense-field
alignment of anisotropically polarizable molecules with high rotational excitations and study the degree of
alignment.

The paper is organized as follows: in section 2 the SO(3) covariant mapping and the resulting generalized
Wigner function are introduced. A more intuitive classical phase-space picture is then elaborated in section 3 by
applying a suitable rotation of the reference system. In section 4 we apply our results to a rigid rotor in an
external field that tends to align the rotor’s axis. The numerical solution to this problem is then shown in
section 5. Finally a summary and conclusions are given in section 6.

2. Generalized SO(3) Wigner function

In this section we briefly outline a generalized Wigner-like mapping for systems with SO(3) symmetry that maps
Hilbert space to a meta-phase space introduced in [25] (for the covering SU(2) group). The latter is
parametrized by three Euler angles ©® = (¢, 0, y) adapted to the rotor description, i.e., considering only integer
values of the angular momentum. The ranges of values for these angles are therefore ¢ € [0, 2x), 6 € [0, =],
and y € [0, 27).

The mapping is defined as
fel{wie,ji=o1,..} (1)
where the j-symbol of an operator f is obtained by tracing it over a kernel,
wie) =Tr (fa;(0)), )
with the kernel being defined as
@;(0) = D(0)d <0>D*<@), 3)
R 2K+1 4 J
@; (0) = Z 2 2, (4)
K=0g=-K
Here the rotation operator is given as
D(0) = etk e i) vk, (5)

and the irreducible tensor operator reads

Nz K+T
TKq Z 2] +1 ]m Kq ><] ml (6)
where C/ ™ i Kq are the Clebsch—Gordan coefficients.

The reconstruction relation for the j-component (equation (8)) of the operator is
N i+ 1 . .
=L [aowj@)a; (0, (7)

where d® = sin 8df0d¢dy and the completely reconstructed operator is then obtained as

f=24 (8)
J

This allows us to express a trace over a product of two operators as an overlap integral of their j-symbols:

Tr (f¢) = Z]“fd@w;(@)WI(@) (9)
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This mapping is covariant under transformations from the SO(3) group and permits us to represent the
complete operator in terms of c-valued functions and not only its components in each SO(3) irreducible
subspace. As we will see below, the covariance of the map (equations (1)—(4)), results in the possibility to
introduce a natural semiclassical parameter inversely proportional to the index j, i.e., related to the rotor angular
momentum.

The particular case when f acts in a single SO(3) invariant subspace corresponds to g = 0 in equation (4),
from which the standard Stratonovich—-Weyl symbol (independent of the angle y) in the irreducible subspace of
dimension j + 1[12—14]isreconstructed.

As an example, the j-symbol of the total angular momentum operator |  results as
j if(J
j =Z2|< ,
w/.(6) = 2(2 + 1) > S (10)
n=0,1,...

which is obviously a constant in each irreducible subspace.
For the operator 71, = cos 6, for example, that can be written as

A =chQcose|9, )0, b, (11)
with dQ2 = sin 8d0d¢ (here @ and ¢ denote angles in the configuration space) and
10, ¢) = D Y3 (0, )L, m). (12)
ILm

The j-symbol has a non-trivial form and depends on the angle -

W,{Z (@) =sin @ cos y Z Oj2nt1- (13)

n=0,1,..

This operator mixes different SO(3) irreducible subspaces. One can observe that only odd values of jare
admissible in this case.

The exact image of the von Neumann equation for the density operator is quite involved and can be obtained
from the explicit form of the star product [25]. In the semiclassical limit, i.e., for the initial states distributed
among SO(3) irreducible subspaces of large dimensions, j > 1, and localized in the angles @ in each j-subspace
(i.e., the relative fluctuations of the angles fand ¢ is < j‘” 2 respectively), one arrives at the truncated evolution
equation for the Wigner function Wg , being the j-symbol of the density matrix (equation (2)). It has the form of
Poisson brackets on a four-dimensional manifold, where the index jis considered as a dynamical variable,

Wi (@) ~ W, (8, j),so that

atw,zz{w,g,m}+o(j-2), (14)

where W/, is the j-symbol of the Hamilton operator. In this case the Darboux coordinates are ((j + 1) cos 6, ¢)
and (j, y) (so that the Poisson bracket operator is of order j~!). This has a clear physical meaning: the projection
(j + 1) cos 0 of the momentum j to the fixed axis z generates ¢-rotations in the laboratory reference frame, while
the momentum j produces y-rotations in the moving frame (reference frame fixed to the rotor). In this sense,
the Wigner function W, (0, j) can be asymptotically considered as a distribution in a four-dimensional
manifold.

3. Classical point of view

In spite of the simplicity of equation (14), it does not fit with the standard description of a classical rotor, since,
according to the form of the Darboux coordinates in this representation, the quantization axis (which is always
parallel to the total angular momentum) is tight to the axis z’ in the non-inertial reference frame. This means
that classically the rotor axis lies in the plane orthogonal to the z’-axis, so that the moment of inertia [, = 0 (the
axis of the rotor is along x"), while I, = L, so that only two angles are sufficient to specify the position of the
rotor (in contrast to the symmetric top case, when three angles are required). Thus, the quantization axis is
related to the total angular momentum and not to the axis of the rigid rotor (see figure 1). For an intuitive
description of the orientation of the rotor axis, it is advantageous to change the quantization axis from the z- to
the x-axis, and the polar angle @ corresponds then to the angle between the z- and rotor axes (see figure 2). This
change of reference axis allows for an interpretation of the rotor motion consistent with the classical picture
[26], where I = I, and I = 0, and the position of the rotor is defined by the angles # and ¢, as is indicated in
figure 2. In order to change the quantization axis from z to x, we therefore apply a #/2-rotation around the y-axis
to the kernel (equation (4)), to obtain
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where the Wigner d matrix is given by dfnm, @) = (G, m| e i% | j, m'). Then, the quantization axis coincides with
the body symmetry axis, and the kernel acquires the form

4
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i 2K + 1 iz

j
@](©) =D(@)v!(0)D"(6) =) H—ID;;(@f)Tqu 7, (16)

K=0q,9'=—K

where the Wigner D matrix is defined as D,j;mf (@) = (j, m| D ()| j, m'), and @’ are the rotated angles
determined by

sin @’ sin (qﬁ/ - qb) = sin y,
sin @' sin ' = sin y sin 0,
cos 8’ = —sin O cos . (17)

In other words, the transformation equation (15) leads to the standard classical picture: the rotor axis is along
the 2’ axis, while its angular momentum is in the x’-y’ plane. The Darboux coordinates in new coordinates can be
obtained directly from the conjugate pairs ((j + 1) cos 8, ¢) and (j, w) by the change of variables equation (17),
representing a canonical transformation. Then, the Darboux coordinates in this representation become (p, , 6)
and (p¢ , @), where the conjugate momenta to coordinates # and ¢ are [27]

pp =+ 1) siny, (18)
py = (j+ 1) sin 0 cos y. (19)

On the other hand, as is seen in figure 2, the conjugate momentum to the coordinate 8 is just the projection
of the angular momentum J to theline of nodes, and the conjugate momentum to ¢ is the (negative) projection
of J to the z-axis; since the rotor is aligned along the z'-axis, which is orthogonal to J, no conjugate momentum
toy exists.

4. Rigid rotor in an external field

Let us consider the following Hamiltonian governing the evolution of a quantum rigid rotor in an external field
directed along the z-axis,

H = Bf® - g2, (20)

where B = (2I)~! with I being the moment of inertia (% = 1) and g > 0. This is the model for an anisotropically
polarizable molecule interacting with off-resonant light of intensity Iy, linearly polarized in the z-direction,
where g = i (o — ay)Ip, with o > a being the molecular polarizabilities parallel and perpendicular to the
molecular symmetry axis [28—41]. The external field produces a dynamical alignment of the molecular axis
along the direction of the external field (z-axis).

The molecular alignment has been shown to enhance bimolecular and photochemical reactions [42] and
high-harmonic generation [43] and to be crucial for attosecond physics [44], the ionization rate of the molecule
[45-49], the molecular dipole force [50, 51], and laser filamentation [52]. The quantum-theoretical description
of this dynamics leads to a set of coupled equations of motion for the state amplitudes whose size depends on the
number of rotational levels that are taken into account, so that the numerical simulation is the only possible
treatment even in the case of low rotational excitations. Here we apply our semiclassical treatment and compare
itlater (see section 5), to the solution of the exact quantum-mechanical problem.

The operator 71, (equation (11)), acts on the spherical harmonics as

ﬁz Ylm (9) ¢) = COos HYlm (9> ¢) (21)

where 0 is the angle between the molecular axis and the applied electric field (z-axis). A substantial degree of
alignment of the molecular axis along the z-direction is obtained for sufficiently strong intensities, g > B,and a
commonly used measure for this alignment is given by the expectation value (717 ).

We suppose that initially the rotor is highly excited, and its angular momentum is aligned in a certain
direction (8, ¢,). This corresponds to the initial SU(2) coherent state

b 21!
PRI )

m=—1o (lo—m)'(l()'l'm)'

in a subspace with a large value of the orbital (I, is an integer) quantum number [, > 1. Such types of molecular
states are generated by the use of an optical centrifuge, which drives the rotational energy to very high values by
applying a chirped laser pulse to the anisotropically polarizable non-polar molecule [53-56]. In this semiclassical
limit we can apply equation (14) in order to determine the rotor’s dynamics.

Without loss of generality we may choose ¢, = 0. Then the j-symbol of the density operator, the j-Wigner
function W,(0, j) = Tr(e jy (0)p), corresponding to the initial coherent state | Iy, 99, ¢, = 0), which islocalized

oo 9 9
e—lm(pn Sll’llo_m _0 C0510+m —0 |l0, m>, (22)
2 2

5
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in a subspace of dimension 2[; + 1, has the form

210
W, (6, 1t=0) =52 )
K=0

2K + 1
20y + 1

e‘K(K+1)/2(2l°+1)PK(cos 6’”), (23)

where B (z) is the Legendre polynomial, and its argument is determined by

cos 8" = cos 0" cos 9g + sin 0’ sin 9 cos ¢, (24)
cos @' = —sin @ cosy, cot (zf)’ - (,i)) = cos 0 cot y. (25)
Taking into account equation (10) and the approximate expression for the symbol of 71 2
Wi (6) = Tr(&](@)n]) ~ cos? 0 Y 5100 + O(j2), (26)
n=0,1,.

we arrive at the symbol of the Hamiltonian
W/ (6) =B%(% + 1)—gc0329=Hd. (27)

Using the dimensionless time ¢ = Bt together with the dimensionless interaction strength x = g/B, the
truncated evolution equation (14) in new coordinates (equations (18) and (19)) for W, (6, j) takes then the
form

) . 0
oW, = + 1)(Cfﬂa¢wp T sinpa,W, + M@WP)
sin 6 sin 6

cos 6 sin 6 cos y

— 4k cos 0 sin 0 sin yo; W, — 4k 1 oy W,. (28)
J
The general solution of the above equation is
m(@,]|T)—A djovfdgoé (@—@(90;]0 |T))
x 6(j = (0 Jy I7) ) W, (€0, jy |7 = 0) (29)

where 8 (0, j, |7) = (¢ (O, j, 17), 8(Oy, jy 17); W (O, j, |7)),and j(Oy, j, |7) are the classical trajectories
defined by the following coupled set of first-order differential equations obtained from equation (28) by using
the method of characteristics,

do . .
— =G+ 1)siny, (30)
dz
i+ 1
dp _ G+ D eosy o
dr sin 6
d_t//=(]+1)c.030cosu/ _4Kc0595'1n¢9c051// (32)
dr sin @ j+1
dj . .
— = —4k cos @ sin 6 sin . (33)
dr

The above characteristic equations describe the classical dynamics of a rotor governed by the classical
Hamiltonian H (equation (27)). The initial values @y = (¢, 6o, y;) and j; are distributed according to the
phase-space distribution (equation (23)).
Itis easy to see that the above system admits two integrals of motion: p, and the total energy, as is expected.
According to equation (9) the time-dependent alignment is computed as

(i) = [ 425! fae 101!

2
where the integration is extended over the points of the initial distribution (equation (23)).

In order to relate the Hamiltonian picture of the rotor motion, (equations (30)—(33)), to the standard Euler
description, we compute the angular velocities in the non-inertial reference frame, considering the rotor being
aligned along the z’-axis in the non-inertial reference frame,

cos® Oy W, (@o, jo It = 0), (34)
8x

Qo = —¢ sin 0 cos y + 6 sin y, (35)
Q, = ¢ sin @ sin y + 6 cos y, (36)
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Figure 3. Alignment (712 ) of a rigid-rotor molecule with initial angular-momentum coherent state |l = 10, 99 = 0), asa function of

the dimensionless time Bt for the dimensionless interaction strength x = 50. The semiclassical solution (red) is compared with the
exact solution of the Schrodinger equation (blue).

Q, = cos 6 + . (37)

Then, the angular momenta (in our case the moments of inertia [y = I, = I, Iy = 0) Jy = Iy and ], = I,
lead to the total momentum

P=J2 1y =16 sk 0+0%) = G+ D24, (38)

where the last relation is obtained by using equation (30).

5. Numerical solution

To illustrate the above-developed method we may now apply it numerically to obtain the alignment dynamics of
arigid rotor-type molecule. The initial phase-space distribution is binned in the angles ©® = (¢, 0, y)ona

80 X 40 X 80 grid, where from each centred grid point a trajectory is numerically calculated according to
equations (30)—(33). To obtain the time-dependent phase-space distribution, the end points of these trajectories
are weighted by the values of the binned initial phase-space distribution taken at the originating points. The
time-dependent alignment is then obtained by sampling according to equation (34).

We choose two particular initial states, both being angular-momentum coherent states, |lp, d¢) with
Iy = 10, but with different directions, 9y = 0 and 9y = #/2, of their mean angular momentum.

For the case when the initial orientation of the mean angular momentum is in the direction of the z-axis
(80 = 0), the molecular axis is rotating (on average) in the x-y plane, and, therefore, the alignment parameter
(A2) is initially at its minimum value, deviating from zero only by the quantum fluctuations in the molecular axis
direction of the initial coherent state. Later on, a maximum alignment at short times can be appreciated that is
followed by an oscillation (see red curve in figure 3). To explain this dynamics we may consider the semiclassical
effective potential, which the angle 6 of the molecular axis is subjected to. As the initial coherent state coincides
with the angular momentum eigenstate | Iy, Iy ), itis clear that a strong centrifugal potential barriers appear at the
poles, i.e., for molecular axis angles = 0 and 0 = = (see left part of figure 4). Due to these barriers, the
molecular axis cannot completely align to the external field direction (i.e., the z-axis) but is reflected from the
barrier at the poles and continues with an oscillatory dynamics that for larger x is of the double-well type.

When compared with the exact solution of the corresponding Schrédinger equation, as shown by the blue
curve in figure 3, we may observe an increasing deviation from the exact solution after the first maximum.
Besides, the time interval for which the semiclassical approximation remains valid decreases with decreasing
angular momentum. For instance, numerical simulations using /, = 4 show that deviation from the exact result
in the vicinity of the first minimum is of the order of 10%, while for /; = 10 this error is roughly 5%.

It should be stressed here that in the framework of a one-dimensional approach, the standard semiclassical
approximation fails to describe even the principal characteristics of a quantum system when the total energy is
close to the bottom of the effective semiclassical potential energy. A relatively good agreement between quantum
and semiclassical calculations is explained by the kind of the perturbation theory we have employed
(equation (14)), where the real semiclassical parameter is the intensity of the rotational excitations rather than
the gap between total and potential energies.
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Figure 4. Semiclassical effective potential (red) and energy (blue) for the alignment angle 0. In the case of the initial coherent state
|lp = 10, 99 = 0) (left figure), the potential reads V; () = Iy (Iy + 1)/sin*> @ — k cos’ @, which is shown for x = 50 (solid line) and
Kk = 200 (dashed line). For the initial coherent state | [y = 10, 99 = 7/2) (right figure) the potential reads

Vi (8) = lp/sin® @ — k cos @, which is shown for k = 50 (solid line) and x = 100 (dashed line).

As was mentioned in section 2, the Wigner function WZ (@) can be asymptotically considered as a
distribution in a four-dimensional phase-space, W/j () = W, (0O, j)or ij (@) = W, (py, Py 0, ¢),in terms of
the angles (8, ¢) and the corresponding conjugate momenta. It is illustrative to observe the rotor dynamics in
the reduced phase-space (p,, 0), where the marginal distribution function is obtained by the integration over

(P¢ > ¢))

2

W (p0) = [ dpy [ do Wi (pyr 0 00 9): (39)

In figure 5 this dynamics is shown for times corresponding to the initial state (upper left), the first maximum
(upper right), the first minimum (lower left), and the second maximum (lower right) in the alignment shown in
figure 3. Of course, as the distribution is shown on a ‘reduced’ phase space, the state does not look well localized
in the sense of a semiclassical state. In fact, substantial interference fringes can be observed throughout the time
evolution. However, in the full four-dimensional phase-space, the state is well localized for a sufficiently
long time.

Rather different is the situation for an initial coherent state with the orientation of the mean angular
momentum within the x-y plane; i.e., for 8o = z/2. In this initial state the molecular axis is rotating, say, around
the x-axis, and thus the centrifugal barriers at @ = 0 and 7 are now less strong, allowing for the external field to
contribute to the semiclassical effective potential in the form of a double well (see right part of figure 4). Thus
there is no substantial centrifugal effect that may limit the alignment of the molecular axis along the direction of
the external field (z-axis). Thus an oscillation is observed due to the initial rotation of the molecule that
periodically maximizes the alignment (see figure 6). Over time the oscillation of the semiclassical solution (red
curve) is damped, whereas the exact solution keeps oscillating (blue curve). However, in this case, as the energy is
much higher than the bottom of the potential (see figure 4), the semiclassical approach is well justified, as can be
seen from the much lower deviation from the exact solution as compared to the case 9y = 0 (see figures 3 and 6).

The evolution of the reduced Wigner function W (p, , 8) isin figure 7 for the interaction strength x = 100 at
times corresponding to the initial state (upper left), the first maximum (upper right), the first minimum (lower
left), and the second maximum (lower right) in the alignment shown in figure 6. In can be seen that the range of
angles is now substantially larger than in the case 9 = 0, as is to be expected due to the weaker centrifugal
barrier.

6. Summary and conclusions

In summary we have shown how a phase-space representation of a rigid-rotor motion can be developed that
satisfies both SO(3) group covariance and also includes information about all correlations between invariant
subspaces. It is thus a complete description that also allows a physical interpretation of the resulting Wigner
function in terms of standard Hamiltonian mechanics, including its projection on the reduced phase space.
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Figure 5. Evolution of the reduced Wigner function W (6, p, ) for the initial coherent state |l = 10, 8¢ = 0) for ¥ = 50 and for the
dimensionless times Bt: 0.00 (upper left), 0.08 (upper right), 0.16 (lower left), and 0.25 (lower right). From blue to red, the value of the
Wigner function increases from zero to positive values (same colour scale for all plots).

0 0.1 0.2 0.3 04
Bt

Figure 6. Alignment (712) of a rigid-rotator molecule with initial angular-momentum coherent state |ly, & = 7/2) with I = 10asa
function of the dimensionless time Bt and for the dimensionless interaction strength k¥ = 100. The semiclassical solution (red) is
compared with the exact solution of the Schrédinger equation (blue).

Moreover, a natural semiclassical parameter exists in this representation, which is the inverse number of
rotational excitations j. For large j a semiclassical approximation can be devised that allows us to describe the
quantum dynamics by the classical trajectories that originate at an initial quantum phase-space distribution.
These phase-space trajectories have been shown to be perfectly compatible with the classical Euler dynamics of a
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Figure 7. Evolution of the reduced Wigner function W (6, p, ) for the initial coherent state |lo, 89 = 7/2) for I = 10 and for the
dimensionless times Bt: 0.00 (upper left), 0.05 (upper right), 0.11 (lower left), and 0.16 (lower right). From blue to red, the value of the
Wigner function increases from zero to positive values (same colour scale for all plots).

rigid rotor and thus can be interpreted in the standard classical way [26]. Thus, the semiclassical dynamics in our
SO(3) covariant approach is described in a standard form: each point of the initial distribution in a four-
dimensional manifold evolves along a classical trajectory, which results in a deformation of the initial
distribution. Such deformation describes quite well the system’s dynamic with a variable number of rotational
excitations, even for a moderate times.

Itis important to stress that the type of map used as an interface between the quantum and classical worlds is
of great importance, since it fixes the structure of the phase-space manifold. The requirement of covariance of
the mapping under a given dynamical group leads to a description of the quantum evolution in terms of
trajectories in manifolds with corresponding transformation properties. As a consequence, the phase-space
dynamics is characterized by semiclassical parameters related both to the symmetry of the interaction
Hamiltonian and the symmetry of the mapping. For instance, the physical semiclassical parameter characteristic
for mappings covariant under the Heisenberg—Weyl group H(1) is the inverse number of excitations in the
corresponding one-dimensional system (the average number of photons in a field mode, the total energy of a
massive particle moving in a one-dimensional potential, etc). In the case of spin systems, the role of such
semiclassical parameters plays the inverse spin length, or, in algebraic terms, the dimension of the representation
of the SU(2) group.

In this sense the precision of the quantum evolution description of a rigid rotor by using the present SO(3)
covariant mapping, where the semiclassical parameter is the inverse number of rotational excitations, in
principle should be better than in the previously developed E (2) X E(2) X E (2) covariantapproach [15],
where the physical semiclassical parameters, which are the inverse angular momenta corresponding to each
Euler angle [57], are associated with independent mapping kernels (while the formal expansion parameter is the
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Planck constant). In other words, although the equation of motion obtained in [15], projected from the six-
dimensional phase-space of a top to the four-dimensional phase-space of a rigid rotor, coincides (in appropriate
variables) with the evolution equation (14), the accuracy of the semiclassical description is heavily determined
by the type of employed mapping.

We have applied our theory to the case of alignment of molecules by strong external fields and have shown
that by rather simple numerical procedures, the quantum alignment dynamics of highly rotationally excited
molecules can be quite well described. This coincides with the numerical solution of the exact problem within a
sufficiently large time period in order to describe the maximally possible alignment. In conclusion, this
semiclassical treatment may serve as an alternative and numerically more feasible method, as compared to direct
integration of the Schrédinger wave equation.
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