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Abstract
A semi-classical analysis of the quantum rigid-rotormotion based on a phase-space description of the
rotation in terms of a SO(3) covariantWigner-like distribution is presented. The results are applied to
the description of the intense-field alignment of an anisotropically polarizablemolecule with high
rotational excitation.

1. Introduction

The visualization of quantum systems in phase space is a useful tool for the ‘identification’ of states by invoking
our classical intuition about the shape of statistical distributions and the interference patterns between them
[1–3]. Themain idea of this approach consists inmapping quantum states on distributions (symbols) on some
classical phase space. The self-dual symbols, which arise when the same type ofmapping is used both for the
density operator and for the observables in order to compute average values by convoluting corresponding
symbols, are usually calledWigner symbols3. The properties of suchmappings essentially depend on the
symmetry of the quantum system and on the requirements of covariance under a certain group of
transformations [4–14]. In the simplest case of harmonic oscillators and spin-like systems, the transformation
groups—Heisenberg–Weyl and SU(2), respectively—are easily identified. The corresponding phase spaces can
be constructed in a standardway if the operators from the group representation act irreducibly in theHilbert
space of the quantum system. In the simplest example of spin-like systems this corresponds to subspaces with a
fixed value of the spin or orbital quantumnumber. The situation ismore involvedwhen a quantum systemwith
natural action of some dynamic group belongs simultaneously to several invariant (under the group action)
subspaces ormay ‘transit’ between irreducible subspaces in its course of evolution. This is precisely the situation
of a quantum rotor, with its natural transformation group being SO(3), when the total angularmomentum is
changed due to the action of an external agent. The concept of a phase-space for such a system can be obtained,
adopting different points of view and demanding different types of covariance of themappings fromoperators
to c-number distributions [15, 16]. The advantage of using one or anothermapping depends crucially on the
class of states and limiting cases that are of physical interest.

It is worth noting that in the framework of a phase-space approach one not only can visualize states of
quantum systems but alsomay develop specific perturbation theories in the semiclassical limit. This can be
achieved by expanding the image of theHeisenberg equation for the density operator, the so-calledMoyal
equation [17], in a series with respect to a small (semiclassical) parameter. Neglecting higher-order derivatives,
one arrives then at a first-order Liouville-type equation [18] that describes the time evolution of the initial phase-
space distribution via trajectories defined by a set offirst-order ordinary differential equations. The choice of the
mapping is particularly important in the semiclassical limit, when the ‘physical’ parameter is the number of total
excitations of the quantum system. Then, an adequate choice of covariance requirements leads to the classical
Hamiltonian equations in terms of standard physical observables and the dynamics of quantum systems, with
large numbers of excitations that can be successfully analyzed in terms of a phase-space description for
sufficiently long times [19–24].
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In this paperwe provide a semiclassical analysis of the quantum rigid-rotormotion that is based on a phase-
space description of the rotation, using aWigner-likemappingwith SO(3) symmetry. The SO(3) covariant
mapping allows us to semiclassically expand the phase-space distribution and the equation ofmotion based on
the physicallymeaningful parameter of rotational energy. In this waywe arrive at the standardHamiltonian
equation describing the rigid-rotormotion. In particular, we showhow classical trajectories in phase space
emerge and how such a set of trajectories generates the time-dependent phase-space distribution of the rigid
rotor. Each trajectory lives in a four-dimensional space, and thus only four coupled equations ofmotion have to
be solved. Expectation values can be obtained as statistical averages over the initial distribution fromwhich the
semiclassical trajectories originate. In particular, we apply our treatment to the description of the intense-field
alignment of anisotropically polarizablemolecules with high rotational excitations and study the degree of
alignment.

The paper is organized as follows: in section 2 the SO(3) covariantmapping and the resulting generalized
Wigner function are introduced. Amore intuitive classical phase-space picture is then elaborated in section 3 by
applying a suitable rotation of the reference system. In section 4we apply our results to a rigid rotor in an
externalfield that tends to align the rotorʼs axis. The numerical solution to this problem is then shown in
section 5. Finally a summary and conclusions are given in section 6.

2.Generalized SO(3)Wigner function

In this sectionwe briefly outline a generalizedWigner-likemapping for systemswith SO(3) symmetry thatmaps
Hilbert space to ameta-phase space introduced in [25] (for the covering SU(2) group). The latter is
parametrized by three Euler angles Θ ϕ θ ψ= ( , , ) adapted to the rotor description, i.e., considering only integer
values of the angularmomentum. The ranges of values for these angles are therefore ϕ π∈ [0, 2 ), θ π∈ [0, ],
and ψ π∈ [0, 2 ).

Themapping is defined as

Θ⇔ = …{ }f W jˆ ( ), 0, 1, , (1)f
j

where the j-symbol of an operator f̂ is obtained by tracing it over a kernel,

Θ ω Θ= ( )W f( ) Tr ˆ ˆ ( ) , (2)f
j

j

with the kernel being defined as

ω Θ Θ ω Θ= D Dˆ ( ) ˆ ( ) ˆ (0) ˆ ( ), (3)j j
†
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+= =−

+ −K
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Tˆ (0)
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0

2 2

Here the rotation operator is given as

Θ = ϕ θ ψ− − −D̂ ( ) e e e , (5)J J Ji ˆ i ˆ i ˆ
z y z

and the irreducible tensor operator reads

∑= +
′ +

′ ′ 〈 ∣
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, , (6)Kq
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mm
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where ′ ′C jm Kq
j m are theClebsch–Gordan coefficients.

The reconstruction relation for the j-component (equation (8)) of the operator is

∫
π

Θ Θ ω Θ=
+

f
j

Wˆ 1

8
d ( ) ˆ ( ), (7)j f

j
j2

where Θ θ θ ϕ ψ=d sin d d d and the completely reconstructed operator is then obtained as

∑=f fˆ ˆ . (8)
j

j

This allows us to express a trace over a product of two operators as an overlap integral of their j-symbols:

∫∑
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Thismapping is covariant under transformations from the SO(3) group and permits us to represent the
complete operator in terms of c-valued functions and not only its components in each SO(3) irreducible
subspace. As wewill see below, the covariance of themap (equations (1)–(4)), results in the possibility to
introduce a natural semiclassical parameter inversely proportional to the index j, i.e., related to the rotor angular
momentum.

The particular case when f̂ acts in a single SO(3) invariant subspace corresponds to =q 0 in equation (4),
fromwhich the standard Stratonovich–Weyl symbol (independent of the angleψ) in the irreducible subspace of
dimension +j 1 [12–14] is reconstructed.

As an example, the j-symbol of the total angularmomentumoperator Ĵ
2
results as

∑Θ δ= +
= …

W
j j

( )
2 2

1 , (10)
J
j

n

j n

0,1,

,2

⎛
⎝⎜

⎞
⎠⎟

which is obviously a constant in each irreducible subspace.
For the operator θ= n̂ cosz , for example, that can bewritten as

∫ Ω θ θ ϕ θ ϕ=n̂ d cos , , , (11)z

with Ω θ θ ϕ=d sin d d (here θ andϕ denote angles in the configuration space) and

∑θ ϕ θ ϕ= Y l m, ( , ) , . (12)
l m

lm

,

*

The j-symbol has a non-trivial form and depends on the angleψ:

∑Θ θ ψ δ=
=

+W ( ) sin cos . (13)n
j

n

j n

0,1 ,..

,2 1z

This operatormixes different SO(3) irreducible subspaces. One can observe that only odd values of j are
admissible in this case.

The exact image of the vonNeumann equation for the density operator is quite involved and can be obtained
from the explicit formof the star product [25]. In the semiclassical limit, i.e., for the initial states distributed
among SO(3) irreducible subspaces of large dimensions, ≫j 1, and localized in the anglesΘ in each j-subspace

(i.e., the relative fluctuations of the angles θ andϕ is ≲ −j 1 2, respectively), one arrives at the truncated evolution

equation for theWigner function ρW j, being the j-symbol of the densitymatrix (equation (2)). It has the formof
Poisson brackets on a four-dimensionalmanifold, where the index j is considered as a dynamical variable,

Θ Θ≈ρ ρW W j( ) ( , )j , so that

∂ = +ρ ρ
−{ } ( )W W W O j2 , , (14)t H

j 2

whereWH
j is the j-symbol of theHamilton operator. In this case theDarboux coordinates are θ ϕ+j(( 1) cos , )

and ψj( , ) (so that the Poisson bracket operator is of order −j 1). This has a clear physicalmeaning: the projection
θ+j( 1) cos of themomentum j to thefixed axis z generatesϕ-rotations in the laboratory reference frame, while

themomentum j producesψ-rotations in themoving frame (reference frame fixed to the rotor). In this sense,
theWigner function ΘρW j( , ) can be asymptotically considered as a distribution in a four-dimensional
manifold.

3. Classical point of view

In spite of the simplicity of equation (14), it does notfit with the standard description of a classical rotor, since,
according to the formof theDarboux coordinates in this representation, the quantization axis (which is always
parallel to the total angularmomentum) is tight to the axis z′ in the non-inertial reference frame. Thismeans
that classically the rotor axis lies in the plane orthogonal to the z′-axis, so that themoment of inertia =′I 0x (the
axis of the rotor is along x′), while =′ ′I Iy z , so that only two angles are sufficient to specify the position of the
rotor (in contrast to the symmetric top case, when three angles are required). Thus, the quantization axis is
related to the total angularmomentum andnot to the axis of the rigid rotor (see figure 1). For an intuitive
description of the orientation of the rotor axis, it is advantageous to change the quantization axis from the z- to
the x-axis, and the polar angle θ corresponds then to the angle between the z- and rotor axes (see figure 2). This
change of reference axis allows for an interpretation of the rotormotion consistent with the classical picture
[26], where =′ ′I Ix y and =′I 0z , and the position of the rotor is defined by the angles θ andϕ, as is indicated in
figure 2. In order to change the quantization axis from z to x, we therefore apply a π 2-rotation around the y-axis
to the kernel (equation (4)), to obtain

3
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∑ ∑

ω ω

π

=

= +
+

π π−

= ′=−
′

+ ′ − ′K

j
T

ˆ (0) e ˆ (0)e

2 1

1
d ( 2) , (15)

j
y J

j
J

K

j

q q K

K

qq
K

Kq

j q j q

i 2 i 2

0 ,

2 2

y y

where theWigner dmatrix is given by θ = 〈 ∣ ∣ ′〉θ
′

−j m j md ( ) , e ,mm
j Ji ŷ . Then, the quantization axis coincides with

the body symmetry axis, and the kernel acquires the form

Figure 1.The position of the (non-inertial) ′ ′ ′x y z( , , ) reference frame tight to the rotorwith respect to the inertial x y z( , , ) reference
frame in terms of Euler angles ϕ θ ψ( , , ). The rotor axis R is aligned along the axis x′ so that themoments of inertia are =′I 0x and

=′ ′I Iy z .

Figure 2.The position of the rotor after π 2 rotation around y′ axis. The rotor is aligned along the z′ axis so that =′I 0z and =′ ′I Ix y .
The total angularmomentum J is directed along the x′ axis.

4
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where theWignerDmatrix is defined as Θ Θ= 〈 ∣ ∣ ′〉′D j m D j m( ) , ˆ ( ) ,mm
j , and Θ′ are the rotated angles

determined by

θ ϕ ϕ ψ

θ ψ ψ θ
θ θ ψ

′ ′ − =
′ ′ =

′ = −

( )sin sin sin ,

sin sin sin sin ,

cos sin cos . (17)

In otherwords, the transformation equation (15) leads to the standard classical picture: the rotor axis is along
the z′ axis, while its angularmomentum is in the x′-y′ plane. TheDarboux coordinates in new coordinates can be
obtained directly from the conjugate pairs θ ϕ+j(( 1) cos , ) and ψj( , )by the change of variables equation (17),
representing a canonical transformation. Then, theDarboux coordinates in this representation become θθp( , )
and ϕϕp( , ), where the conjugatemomenta to coordinates θ andϕ are [27]

ψ= +θp j( 1) sin , (18)

θ ψ= +ϕp j( 1) sin cos . (19)

On the other hand, as is seen infigure 2, the conjugatemomentum to the coordinate θ is just the projection
of the angularmomentum J to the line of nodes, and the conjugatemomentum toϕ is the (negative) projection
of J to the z-axis; since the rotor is aligned along the z′-axis, which is orthogonal to J, no conjugatemomentum
toψ exists.

4. Rigid rotor in an externalfield

Let us consider the followingHamiltonian governing the evolution of a quantum rigid rotor in an external field
directed along the z-axis,

= −H BJ gnˆ ˆ , (20)z
2 2

where = −B I(2 ) 1with I being themoment of inertia (ℏ = 1) and >g 0. This is themodel for an anisotropically
polarizablemolecule interacting with off-resonant light of intensity I0, linearly polarized in the z-direction,

where α α= −∥ ⊥g I( )1

4 0, with α α>∥ ⊥ being themolecular polarizabilities parallel and perpendicular to the
molecular symmetry axis [28–41]. The externalfield produces a dynamical alignment of themolecular axis
along the direction of the externalfield (z-axis).

Themolecular alignment has been shown to enhance bimolecular and photochemical reactions [42] and
high-harmonic generation [43] and to be crucial for attosecond physics [44], the ionization rate of themolecule
[45–49], themolecular dipole force [50, 51], and laser filamentation [52]. The quantum-theoretical description
of this dynamics leads to a set of coupled equations ofmotion for the state amplitudes whose size depends on the
number of rotational levels that are taken into account, so that the numerical simulation is the only possible
treatment even in the case of low rotational excitations. Herewe apply our semiclassical treatment and compare
it later (see section 5), to the solution of the exact quantum-mechanical problem.

The operator n̂z (equation (11)), acts on the spherical harmonics as

θ ϕ θ θ ϕ=n Y Yˆ ( , ) cos ( , ) (21)z lm lm

where θ is the angle between themolecular axis and the applied electric field (z-axis). A substantial degree of
alignment of themolecular axis along the z-direction is obtained for sufficiently strong intensities, ≫g B, and a
commonly usedmeasure for this alignment is given by the expectation value 〈 〉n̂ .z

2

We suppose that initially the rotor is highly excited, and its angularmomentum is aligned in a certain
direction (ϑ φ,0 0). This corresponds to the initial SU(2) coherent state

∑ϑ φ
ϑ ϑ

=
− +

φ

=−

− − +( )
( ) ( )

l
l

l m l m
l m, ,

2 !

! !
e sin

2
cos

2
, , (22)

m l

l
m l m l m

0 0 0

0

0 0

i 0 0
0

0

0

0 0 0

in a subspacewith a large value of the orbital (l0 is an integer) quantumnumber ≫l 10 . Such types ofmolecular
states are generated by the use of an optical centrifuge, which drives the rotational energy to very high values by
applying a chirped laser pulse to the anisotropically polarizable non-polarmolecule [53–56]. In this semiclassical
limit we can apply equation (14) in order to determine the rotorʼs dynamics.

Without loss of generality wemay choose φ = 00 . Then the j-symbol of the density operator, the j-Wigner

function Θ ω Θ ρ=ρW j Tr( , ) ( ˆ ( ) )j
y , corresponding to the initial coherent state ϑ φ∣ = 〉l , , 00 0 0 , which is localized
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in a subspace of dimension +l2 10 , has the form

∑Θ δ θ= = +
+

″ρ
=

− + + ( )( )W j t
K

l
P( , 0)

2 1

2 1
e cos , (23)j l

K

l
K K l

K,2

0

2

0

( 1) 2 2 1
0

0

0

where P z( )K is the Legendre polynomial, and its argument is determined by

θ θ ϑ θ ϑ ϕ″ = ′ + ′ ′cos cos cos sin sin cos , (24)0 0

θ θ ψ ϕ ϕ θ ψ′ = − ′ − =( )cos sin cos , cot cos cot . (25)

Taking into account equation (10) and the approximate expression for the symbol of n̂z
2

∑Θ ω Θ θ δ= ≈ +
=

−( )W Tr n O j( ) ( ˆ ( ) ) cos , (26)n
j

j
y

z

n

j n
2 2

0,1 ,..

,2
2

z

we arrive at the symbol of theHamiltonian

Θ θ= + − =W B
j j

g H( )
2 2

1 cos . (27)H
j

cl
2

⎛
⎝⎜

⎞
⎠⎟

Using the dimensionless time τ = Bt togetherwith the dimensionless interaction strength κ = g B, the
truncated evolution equation (14) in new coordinates (equations (18) and (19)) for ΘρW j( , ) takes then the
form

ψ
θ

ψ θ ψ
θ

κ θ θ ψ κ θ θ ψ

∂ = + ∂ + ∂ + ∂

− ∂ −
+

∂

τ ρ ϕ ρ θ ρ ψ ρ

ρ ψ ρ

W j W W W

W
j

W

( 1)
cos

sin
sin

cos cos

sin

4 cos sin sin 4
cos sin cos

1
. (28)j
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⎝

⎞
⎠

The general solution of the above equation is

∫ ∫Θ τ
π

Θ δ Θ Θ Θ τ

δ Θ τ Θ τ

=
+

−

× − =

ρ

ρ

∞

( )
( )

( )

( ) ( )

W j j
j

j

j j j W j

( , ) d
1

8
d ,

, , 0 (29)

0
0

0

2 0
(3)

0 0

0 0 0 0

where Θ Θ τ ϕ Θ τ θ Θ τ ψ Θ τ∣ = ∣ ∣ ∣j j j j( , ) ( ( , ), ( , ), ( , ))0 0 0 0 0 0 0 0 , and Θ τ∣j j( , )0 0 are the classical trajectories
defined by the following coupled set offirst-order differential equations obtained from equation (28) by using
themethod of characteristics,

θ
τ

ψ= +j
d

d
( 1) sin , (30)

ϕ
τ

ψ
θ

=
+jd

d

( 1) cos

sin
, (31)

ψ
τ

θ ψ
θ

κ θ θ ψ=
+

−
+

j

j

d

d

( 1) cos cos

sin
4

cos sin cos

1
, (32)

τ
κ θ θ ψ= −

jd

d
4 cos sin sin . (33)

The above characteristic equations describe the classical dynamics of a rotor governed by the classical
Hamiltonian Hcl (equation (27)). The initial values Θ ϕ θ ψ= ( , , )0 0 0 0 and j0 are distributed according to the
phase-space distribution (equation (23)).

It is easy to see that the above system admits two integrals ofmotion: ϕp and the total energy, as is expected.

According to equation (9) the time-dependent alignment is computed as

∫ ∫τ
π

Θ
Θ τ

π
θ Θ τ=

+ +
=ρ

∞ ( )
( )n j

j j j
W jˆ ( ) d

1

8
d

, 1

8
cos , 0 , (34)z

2

0
0

0

2 0

0 0

2
2

0 0 0

where the integration is extended over the points of the initial distribution (equation (23)).
In order to relate theHamiltonian picture of the rotormotion, (equations (30)–(33)), to the standard Euler

description, we compute the angular velocities in the non-inertial reference frame, considering the rotor being
aligned along the z′-axis in the non-inertial reference frame,

Ω ϕ θ ψ θ ψ= − +′ ˙ sin cos ˙ sin , (35)x

Ω ϕ θ ψ θ ψ= +′ ˙ sin sin ˙ cos , (36)y

6
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Ω ϕ θ ψ= +′ ˙ cos ˙ . (37)z

Then, the angularmomenta (in our case themoments of inertia = =′ ′I I Ix y , =′I 0z ) Ω=′ ′J Ix x and Ω=′ ′J Iy y

lead to the totalmomentum

ϕ θ θ= + = + = +′ ′ ( )J J J I j˙ sin ˙ ( 1) 4, (38)x y
2 2 2 2 2 2 2 2

where the last relation is obtained by using equation (30).

5.Numerical solution

To illustrate the above-developedmethodwemay now apply it numerically to obtain the alignment dynamics of
a rigid rotor-typemolecule. The initial phase-space distribution is binned in the angles Θ ϕ θ ψ= ( , , )on a

× ×80 40 80 grid, where from each centred grid point a trajectory is numerically calculated according to
equations (30)–(33). To obtain the time-dependent phase-space distribution, the end points of these trajectories
areweighted by the values of the binned initial phase-space distribution taken at the originating points. The
time-dependent alignment is then obtained by sampling according to equation (34).

We choose two particular initial states, both being angular-momentum coherent states, ϑ∣ 〉l ,0 0 with
=l 10,0 but with different directions, ϑ = 00 and ϑ π= 20 , of theirmean angularmomentum.
For the case when the initial orientation of themean angularmomentum is in the direction of the z-axis

(ϑ = 00 ), themolecular axis is rotating (on average) in the x-y plane, and, therefore, the alignment parameter

〈 〉n̂z
2 is initially at itsminimumvalue, deviating from zero only by the quantumfluctuations in themolecular axis

direction of the initial coherent state. Later on, amaximumalignment at short times can be appreciated that is
followed by an oscillation (see red curve infigure 3). To explain this dynamics wemay consider the semiclassical
effective potential, which the angle θ of themolecular axis is subjected to. As the initial coherent state coincides
with the angularmomentum eigenstate ∣ 〉l l,0 0 , it is clear that a strong centrifugal potential barriers appear at the
poles, i.e., formolecular axis angles θ = 0 and θ π= (see left part offigure 4). Due to these barriers, the
molecular axis cannot completely align to the external field direction (i.e., the z-axis) but is reflected from the
barrier at the poles and continues with an oscillatory dynamics that for larger κ is of the double-well type.

When comparedwith the exact solution of the corresponding Schrödinger equation, as shown by the blue
curve infigure 3, wemay observe an increasing deviation from the exact solution after the firstmaximum.
Besides, the time interval for which the semiclassical approximation remains valid decreases with decreasing
angularmomentum. For instance, numerical simulations using =l 40 show that deviation from the exact result
in the vicinity of the firstminimum is of the order of 10%, while for =l 100 this error is roughly 5%.

It should be stressed here that in the framework of a one-dimensional approach, the standard semiclassical
approximation fails to describe even the principal characteristics of a quantum systemwhen the total energy is
close to the bottomof the effective semiclassical potential energy. A relatively good agreement between quantum
and semiclassical calculations is explained by the kind of the perturbation theorywe have employed
(equation (14)), where the real semiclassical parameter is the intensity of the rotational excitations rather than
the gap between total and potential energies.

Figure 3.Alignment 〈 〉n̂z
2 of a rigid-rotormolecule with initial angular-momentum coherent state ϑ∣ = = 〉l 10, 00 0 , as a function of

the dimensionless timeBt for the dimensionless interaction strength κ = 50. The semiclassical solution (red) is comparedwith the
exact solution of the Schrödinger equation (blue).
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Aswasmentioned in section 2, theWigner function ΘρW ( )j can be asymptotically considered as a

distribution in a four-dimensional phase-space, Θ Θ≈ρ ρW W j( ) ( , )j or Θ θ ϕ≈ρ ρ θ ϕW W p p( ) ( , , , )j , in terms of

the angles θ ϕ( , ) and the corresponding conjugatemomenta. It is illustrative to observe the rotor dynamics in
the reduced phase-space ( θp , θ), where themarginal distribution function is obtained by the integration over

ϕϕp( , ),

∫ ∫θ ϕ θ ϕ=ρ θ ϕ

π
ρ θ ϕ−∞

∞

( )( )W p p W p p, d d , , , . (39)
0

2

Infigure 5 this dynamics is shown for times corresponding to the initial state (upper left), the firstmaximum
(upper right), thefirstminimum (lower left), and the secondmaximum (lower right) in the alignment shown in
figure 3.Of course, as the distribution is shownon a ‘reduced’ phase space, the state does not lookwell localized
in the sense of a semiclassical state. In fact, substantial interference fringes can be observed throughout the time
evolution.However, in the full four-dimensional phase-space, the state is well localized for a sufficiently
long time.

Rather different is the situation for an initial coherent state with the orientation of themean angular
momentumwithin the x-y plane; i.e., for ϑ π= 20 . In this initial state themolecular axis is rotating, say, around
the x-axis, and thus the centrifugal barriers at θ = 0 and π are now less strong, allowing for the externalfield to
contribute to the semiclassical effective potential in the formof a double well (see right part offigure 4). Thus
there is no substantial centrifugal effect thatmay limit the alignment of themolecular axis along the direction of
the externalfield (z-axis). Thus an oscillation is observed due to the initial rotation of themolecule that
periodicallymaximizes the alignment (see figure 6). Over time the oscillation of the semiclassical solution (red
curve) is damped, whereas the exact solution keeps oscillating (blue curve). However, in this case, as the energy is
much higher than the bottomof the potential (see figure 4), the semiclassical approach is well justified, as can be
seen from themuch lower deviation from the exact solution as compared to the case ϑ = 00 (see figures 3 and 6).

The evolution of the reducedWigner function θθW p( , ) is in figure 7 for the interaction strength κ = 100 at
times corresponding to the initial state (upper left), the firstmaximum (upper right), the firstminimum (lower
left), and the secondmaximum (lower right) in the alignment shown infigure 6. In can be seen that the range of
angles is now substantially larger than in the case ϑ = 00 , as is to be expected due to theweaker centrifugal
barrier.

6. Summary and conclusions

In summarywe have shown how a phase-space representation of a rigid-rotormotion can be developed that
satisfies both SO(3) group covariance and also includes information about all correlations between invariant
subspaces. It is thus a complete description that also allows a physical interpretation of the resultingWigner
function in terms of standardHamiltonianmechanics, including its projection on the reduced phase space.

Figure 4. Semiclassical effective potential (red) and energy (blue) for the alignment angle θ. In the case of the initial coherent state
ϑ∣ = = 〉l 10, 00 0 (left figure), the potential reads θ θ κ θ= + −V l l( ) ( 1) sin cos0 0 0

2 2 , which is shown for κ = 50 (solid line) and
κ = 200 (dashed line). For the initial coherent state ϑ π∣ = = 〉l 10, 20 0 (right figure) the potential reads

θ θ κ θ= −πV l( ) sin cos2 0
2 2 , which is shown for κ = 50 (solid line) and κ = 100 (dashed line).
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Moreover, a natural semiclassical parameter exists in this representation, which is the inverse number of
rotational excitations j. For large j a semiclassical approximation can be devised that allows us to describe the
quantumdynamics by the classical trajectories that originate at an initial quantumphase-space distribution.
These phase-space trajectories have been shown to be perfectly compatible with the classical Euler dynamics of a

Figure 5.Evolution of the reducedWigner function θ θW p( , ) for the initial coherent state ϑ∣ = = 〉l 10, 00 0 for κ = 50 and for the
dimensionless timesBt: 0.00 (upper left), 0.08 (upper right), 0.16 (lower left), and 0.25 (lower right). Fromblue to red, the value of the
Wigner function increases from zero to positive values (same colour scale for all plots).

Figure 6.Alignment 〈 〉n̂z
2 of a rigid-rotatormoleculewith initial angular-momentum coherent state ϑ π∣ = 〉l , 20 0 with =l 100 as a

function of the dimensionless timeBt and for the dimensionless interaction strength κ = 100. The semiclassical solution (red) is
comparedwith the exact solution of the Schrödinger equation (blue).
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rigid rotor and thus can be interpreted in the standard classical way [26]. Thus, the semiclassical dynamics in our
SO(3) covariant approach is described in a standard form: each point of the initial distribution in a four-
dimensionalmanifold evolves along a classical trajectory, which results in a deformation of the initial
distribution. Such deformation describes quite well the systemʼs dynamicwith a variable number of rotational
excitations, even for amoderate times.

It is important to stress that the type ofmap used as an interface between the quantum and classical worlds is
of great importance, since itfixes the structure of the phase-spacemanifold. The requirement of covariance of
themapping under a given dynamical group leads to a description of the quantum evolution in terms of
trajectories inmanifolds with corresponding transformation properties. As a consequence, the phase-space
dynamics is characterized by semiclassical parameters related both to the symmetry of the interaction
Hamiltonian and the symmetry of themapping. For instance, the physical semiclassical parameter characteristic
formappings covariant under theHeisenberg–Weyl groupH(1) is the inverse number of excitations in the
corresponding one-dimensional system (the average number of photons in afieldmode, the total energy of a
massive particlemoving in a one-dimensional potential, etc). In the case of spin systems, the role of such
semiclassical parameters plays the inverse spin length, or, in algebraic terms, the dimension of the representation
of the SU(2) group.

In this sense the precision of the quantum evolution description of a rigid rotor by using the present SO(3)
covariantmapping, where the semiclassical parameter is the inverse number of rotational excitations, in
principle should be better than in the previously developed × ×E E E(2) (2) (2) covariant approach [15],
where the physical semiclassical parameters, which are the inverse angularmomenta corresponding to each
Euler angle [57], are associatedwith independentmapping kernels (while the formal expansion parameter is the

Figure 7.Evolution of the reducedWigner function θ θW p( , ) for the initial coherent state ϑ π∣ = 〉l , 20 0 for =l 100 and for the
dimensionless timesBt: 0.00 (upper left), 0.05 (upper right), 0.11 (lower left), and 0.16 (lower right). Fromblue to red, the value of the
Wigner function increases from zero to positive values (same colour scale for all plots).
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Planck constant). In other words, although the equation ofmotion obtained in [15], projected from the six-
dimensional phase-space of a top to the four-dimensional phase-space of a rigid rotor, coincides (in appropriate
variables) with the evolution equation (14), the accuracy of the semiclassical description is heavily determined
by the type of employedmapping.

We have applied our theory to the case of alignment ofmolecules by strong externalfields and have shown
that by rather simple numerical procedures, the quantum alignment dynamics of highly rotationally excited
molecules can be quite well described. This coincides with the numerical solution of the exact problemwithin a
sufficiently large time period in order to describe themaximally possible alignment. In conclusion, this
semiclassical treatmentmay serve as an alternative and numericallymore feasiblemethod, as compared to direct
integration of the Schrödinger wave equation.
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