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Solving the Matrix Exponential Function for Special Orthogonal
Groups SO(n) up to n = 9 and the Exceptional Lie Group G2

Norbert Kaiser

Physik-Department T39, Technische Universität München, D-85748 Garching, Germany; nkaiser@ph.tum.de

Abstract: In this work the matrix exponential function is solved analytically for the special orthogonal

groups SO(n) up to n = 9. The number of occurring k-th matrix powers gets limited to 0 ≤ k ≤ n − 1

by exploiting the Cayley–Hamilton relation. The corresponding expansion coefficients can be ex-

pressed as cosine and sine functions of a vector-norm V and the roots of a polynomial equation that

depends on a few specific invariants. Besides the well-known case of SO(3), a quadratic equation

needs to be solved for n = 4, 5, a cubic equation for n = 6, 7, and a quartic equation for n = 8, 9. As

an interesting subgroup of SO(7), the exceptional Lie group G2 of dimension 14 is constructed via the

matrix exponential function through a remarkably simple constraint on an invariant, ξ = 1. The traces

of the SO(n)-matrices arising from the exponential function are sums of cosines of several angles.

This feature confirms that the employed method is equivalent to exponentiation after diagonalization,

but avoids complex eigenvalues and eigenvectors and operates only with real-valued quantities.

Keywords: matrix exponential function; orthogonal Lie algebra so(n); exceptional Lie algebra g2

MSC: Matrix Lie groups

1. Introduction

The matrix exponential function is a basic and versatile tool in order to compute
the entire manifold of elements from a (compact) matrix Lie group, as they enter, e.g., in
lattice gauge theories and effective field theories. Besides the use of efficient algorithms for
numerically computing the matrix exponential function, analytical formulas that provide
an exact solution can also be helpful and advantageous. For special unitary SU(2) matrices
the result of evaluating the matrix exponential function, U = exp(i⃗τ·v⃗ ) = 1 cos |⃗v |+ i⃗τ·v̂
sin |⃗v |, with τ⃗ = (τ1, τ2, τ3) the Pauli matrices, is well known and frequently used in
effective field theories [1] where U comprises three low-energy excitations (e.g., pions)
and thus serves as the basic field variable. In a recent work [2] the solution of the matrix
exponential function has been extended to the SU(3) group with eight real parameters. By
employing the Cayley–Hamilton relation the required matrix powers could be reduced to
the zeroth, first and second. The resulting analytical formula involved the sum over three
real roots of a cubic equation, corresponding thus to the so-called irreducible case, where
one employs for its solution the trisection of an angle. This straightforward solution should
be compared with the overly long expositions about an analytic SU(3) matrix in ref. [3].
When going to the special unitary group SU(4) with 15 real parameters, the analytical
formula involved the sum over four real roots of a quartic equation. The associated cubic
resolvent equation with three positive roots belonged again to the irreducible case. By
imposing the pertinent condition on SU(4) matrices one could also treat the symplectic
group Sp(2) with ten real parameters. Since the roots occurred as two pairs of opposite
signs, this simplified the analytical formula for Sp(2) matrices considerably. An outlook
on the situation with semi-analytical formulas for SU(5), SU(6), and Sp(3) has also been
given in ref. [2].
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The purpose of the present work is to continue the approach of ref. [2] by solving
the matrix exponential function analytically for the special orthogonal groups SO(n) up
to n = 9. Again, by exploiting the Cayley–Hamilton relation for the elements of the Lie
algebra so(n) (i.e., antisymmetric n × n matrices), the number of required matrix powers
ranges from 0 up to n − 1. The corresponding expansion coefficients will be expressed
as cosine and sine functions of a vector-norm V = |⃗v | and the roots yj of a polynomial
equation that depends on some specific invariants (the determinant and the traces of even
matrix powers). Putting aside the almost trivial cases of SO(2) and SO(3), a quadratic
equation needs to be solved for n = 4, 5, a cubic equation for n = 6, 7, and a quartic
equation for n = 8, 9 (where the latter leads to a cubic resolvent equation). The exceptional
Lie group G2 ⊂ SO(7) of dimension 14 (and rank 2), defined as the automorphism group
of the octonions, is constructed via the matrix exponential function by first deriving seven
homogeneous linear relations for the 21 parameters of a general so(7) Lie algebra element.
These restricting relations translate into a remarkably simple constraint on an invariant,
ξ = 1. The calculation of the trace of the SO(n)-matrices arising from the exponential
function, gives as a result a simple sum of cosines of several angles, which specify the
associated conjugation class as a point on a maximal torus SO(2)× · · · × SO(2).

In the following one uses the generators Ja, a = 1, . . . , n(n − 1)/2 (i.e., basis elements
of the Lie algebra so(n)), where the antisymmetric n × n matrix Ja has exactly one entry
1 above the diagonal that is reflected to a −1 below the diagonal. These generators are
normalized as tr(Ja Jb) = −2δab. Following a gradually extended strategy one works from
the easy case n = 3 up to n = 9, with an insertion after SO(7) that treats in detail the
interesting subgroup G2 ⊂ SO(7). In perspective, one remarks that for higher n = 10, 11
analogous semi-analytical formulas could be written down to solve the matrix exponential
function, but these involve a sum over the five (positive) roots of quintic equation for which
no algebraic solution formulas in terms of radicals of its coefficients exist.

2. SO(3)

Elements of the three-dimensional Lie algebra so(3) are antisymmetric 3 × 3 matrices
of the form

J⃗ ·v⃗ =





0 v1 v2

−v1 0 v3

−v2 −v3 0



, (1)

with the length V =
√

v2
1 + v2

2 + v2
3 of the three-component real vector v⃗. The normalized

matrix Σ = J⃗ ·v̂ = J⃗ ·v⃗/V satisfies the relation Σ3 = −Σ, and therefore, all powers of Σ can
be reduced to the first two. The matrix exponential function for the special orthogonal
group SO(3) takes the following simple form

R3 (⃗v ) = exp(⃗J ·v⃗ ) = 1 + sin V J⃗ ·v̂ + (1 − cos V) (⃗J ·v̂)2 , (2)

where 1 denotes the 3× 3 unit matrix. The formula in Equation (2) describes a right-handed
rotation in three-dimensional space about the axis n⃗ = (−v3, v2,−v1)/V with an angle
φ = V. Starting from the linear transformation (⃗J ·v̂ )x⃗ = n⃗× x⃗, one reproduces the well-
known formula [4] for the rotation of a three-component vector x⃗:
R3 x⃗ = n⃗ (⃗n· x⃗) + cos φ (x⃗ − n⃗ (⃗n· x⃗)) + sin φ n⃗× x⃗, sorted into pieces parallel and perpen-
dicular to the axis n⃗. The involved rotation angle follows also directly from the trace,
trR3 (⃗v ) = 1 + 2 cos V. Note that φ = V parametrizes at fixed v̂ a so-called maximal torus
SO(2) = S1 (circle line) in SO(3) = RP3 (three-dimensional real projective space [5]). For
comparison, the almost trivial result for SO(2)-rotations in a plane reads:

R2(v) = exp(Iv) = 1 cos v + I sin v , I =

(

0 1
−1 0

)

, I2 = −1 (3)

with the trace, trR2(v) = 2 cos v, of this 2 × 2 rotation matrix.
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3. SO(4)

Elements of the six-dimensional Lie algebra so(4) are antisymmetric 4 × 4 matrices of
the form

J⃗ ·v⃗ =









0 v1 v2 v3

−v1 0 v4 v5

−v2 −v4 0 v6

−v3 −v5 −v6 0









, (4)

with the corresponding length V =
√

v2
1 + v2

2 + v2
3 + v2

4 + v2
5 + v2

6 of the six-component

real vector v⃗. For any antisymmetric matrix, the traces of its odd powers vanish altogether.
Based on the relation tr(Σ2) = −2 the characteristic polynomial [6] of the normalized
matrix Σ = J⃗ ·v̂ = J⃗ ·v⃗/V is given by

P4(x) = x4 + x2 + η , (5)

with the invariant

η = det(⃗J ·v̂) =
( v1v6 − v2v5 + v3v4

v2
1 + v2

2 + v2
3 + v2

4 + v2
5 + v2

6

)2
≥ 0 . (6)

The four roots of the equation P4(x) = 0 are the eigenvalues of Σ and these must be purely
imaginary since Σ = −Σ† is antihermitean (actually it is real antisymmetric). This fact
about the roots implies for the solutions −x2

± of the intermediate quadratic equation (in
y = −x2) the inequality

−2x2
± = 1 ±

√

1 − 4η ≥ 0 , (7)

from which one deduces the allowed range 0 ≤ η ≤ 1/4 for the determinant η. As a
consequence of the Cayley–Hamilton relation Σ4 = −Σ2 − η1 the number of independent
matrix powers that get produced by the exponential series is limited to the first three
(including the 4× 4 unit-matrix 1). Starting at order n with Σn = αn 1+ βn Σ+γn Σ2 + δn Σ3

and multiplying with Σ, one obtains via the mentioned relation the expansion coefficients
at order n + 1. The resulting linear recursion reads in matrix-vector notation









αn+1

βn+1

γn+1

δn+1









= M4









αn

βn

γn

δn









, M4 =









0 0 0 −η

1 0 0 0
0 1 0 −1
0 0 1 0









, (8)

and the initial values are α0 = 1, β0 = 0, γ0 = 0, δ0 = 0. By diagonalization the exponential
series exp(VM4) = ∑

∞
k=0(VM4)

k/k! can be solved, but when using Mathematica, the rou-
tine MatrixExp[ , ] gives the result directly in terms of RootSum[ , ]. After multiplication
with (1, 0, 0, 0) from the right, one obtains the four-component vector of expansion coef-
ficient with respect to (1, Σ, Σ2, Σ3). Putting all the pieces together, one ends up with the
following analytical formula for SO(4) rotation matrices:

R4 (⃗v ) = exp(⃗J ·v⃗ ) =
1

1 − 2z

{

[

(1 − z) cos
(

V
√

z
)

− z cos
(

V
√

1 − z
)

]

1

+
[1 − z√

z
sin

(

V
√

z
)

− z√
1 − z

sin
(

V
√

1 − z
)

]

J⃗ ·v̂ (9)

+
[

cos
(

V
√

z
)

− cos
(

V
√

1 − z
)

]

(⃗J ·v̂)2

+
[ 1√

z
sin

(

V
√

z
)

− 1√
1 − z

sin
(

V
√

1 − z
)

]

(⃗J ·v̂)3

}

.

The auxiliary parameter z is introduced via the relation η = z(1 − z) to the determinant
η. Since Equation (9) is invariant under the substitution z → 1 − z, one can restrict the
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values of z to the interval 0 ≤ z ≤ 1/2, taking the solution z = (1 −
√

1 − 4η )/2. Note
that the four expansion coefficients in Equation (9) depend only on V and z. Calculating
the trace of the special orthogonal 4 × 4 matrix, trR4 (⃗v ) = 2 cos(V

√
z ) + 2 cos(V

√
1 − z ),

reveals that the two involved rotation angles are φ1 = V
√

1 − z and φ2 = V
√

z, which
satisfy the conditions φ1 ≥ φ2, φ2

1 + φ2
2 = V2 and φ1 φ2 =

√
η V2. Both angles specify to

which element on a maximal torus SO(2)× SO(2) = S1 × S1 in SO(4) = S3 × RP3 the
given rotation matrix R4 (⃗v ) is related by conjugation [5]. Note that a conventional maximal
torus in SO(4) consists of independent rotations that take place in the x1x2-plane and the
x3x4-plane of four-dimensional space.

4. SO(5)

Elements of the ten-dimensional Lie algebra so(5) are antisymmetric 5 × 5 matrices of
the form

J⃗ ·v⃗ =













0 v1 v2 v3 v4

−v1 0 v5 v6 v7

−v2 −v5 0 v8 v9

−v3 −v6 −v8 0 v10

−v4 −v7 −v9 −v10 0













, (10)

with the corresponding norm V =
√

v2
1 + · · ·+ v2

10 of the ten-component real vector v⃗.

Since the determinant of J⃗ · v⃗ vanishes (in all odd dimensions), det(⃗J · v⃗ ) = 0, one has
as a new invariant for so(5)-matrices the trace of the fourth power, ξ = tr(Σ4), where
Σ = J⃗ ·v̂ = J⃗ ·v⃗/V. The invariant ξ enters the characteristic polynomial [6] of degree five

P5(x) = x5 + x3 + x
(1

2
− ξ

4

)

. (11)

Again all its roots (including zero) must be purely imaginary. This fact implies for the
solutions −x2

± of the intermediate quadratic equation (in y = −x2) the inequality

−2x2
± = 1 ±

√

ξ − 1 ≥ 0 , (12)

from which one deduces the allowed range of ξ as the interval 1 ≤ ξ ≤ 2. Based on
the Cayley–Hamilton relation Σ5 = −Σ3 + Σ(ξ − 2)/4 one constructs the 5 × 5 iteration
matrix as

M5 =













0 0 0 0 0
1 0 0 0 ξ/4−1/2
0 1 0 0 0
0 0 1 0 −1
0 0 0 1 0













, (13)

with which one can solve exp(VM5) and multiply with (1, 0, 0, 0, 0). It is furthermore
advantageous to parametrize ξ = 1 + cos2 2θ in terms of an angle θ, that is taken from
the interval 0 ≤ θ ≤ π/4, namely θ = 1

2 arccos
√

ξ − 1. Putting all the pieces together, the
solution of the matrix exponential function for the SO(5) rotation group reads

R5 (⃗v ) = exp(⃗J ·v⃗ ) = 1 +
1

cos 2θ

{[

cos2 θ

sin θ
sin(Vsin θ)− sin2 θ

cos θ
sin(Vcos θ)

]

J⃗ ·v̂

+

[

1

sin2 θ
− 1

cos2 θ
+ tan2 θ cos(Vcos θ)− cot2 θ cos(Vsin θ)

]

(⃗J ·v̂)2

+

[

sin(Vsin θ)

sin θ
− sin(Vcos θ)

cos θ

]

(⃗J ·v̂)3 (14)

+

[

1 − cos(Vsin θ)

sin2 θ
− 1 − cos(Vcos θ)

cos2 θ

]

(⃗J ·v̂)4

}

,
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where 1 denotes the 5 × 5 unit matrix. Note, again that the four expansion coefficients
depend only on V and θ. The occurring trigonometric functions of θ are related to the
invariant ξ ∈ [1, 2] by the relations

cos 2θ =
√

ξ − 1 , sin θ =

√
1−√

ξ−1√
2

, cos θ =

√
1+

√
ξ−1√

2
,

tan θ = 1−√
ξ−1√

2−ξ
, cot θ = 1+

√
ξ−1√

2−ξ
.

(15)

By calculating the trace of the special orthogonal matrix, trR5 (⃗v ) = 1 + 2 cos(Vcos θ) +
2 cos(Vsin θ), one recognizes that the two involved rotation angles are φ1 = V cos θ and
φ2 = V sin θ, subject to the conditions φ1 ≥ φ2, φ2

1 + φ2
2 = V2 and φ1 φ2 =

√
2 − ξ V2/2.

Again, these two angles specify the conjugation class [5] of R5 (⃗v ) as a point on the maximal
torus SO(2)× SO(2) = S1 × S1 in SO(5). By convention, such a maximal torus consists of
independent rotations in the x1x2-plane and the x3x4-plane of five-dimensional space.

5. SO(6)

Elements of the 15-dimensional Lie algebra so(6) are antisymmetric 6 × 6 matrices of
the form

J⃗ ·v⃗ =

















0 v1 v2 v3 v4 v5

−v1 0 v6 v7 v8 v9

−v2 −v6 0 v10 v11 v12

−v3 −v7 −v10 0 v13 v14

−v4 −v8 −v11 −v13 0 v15

−v5 −v9 −v12 −v14 −v15 0

















, (16)

with the corresponding norm V =
√

v2
1 + · · ·+ v2

15 of the 15-component real vector v⃗. The

characteristic polynomial [6] of Σ = J⃗ ·v̂ is of degree six and it reads

P6(x) = x6 + x4 + x2
(1

2
− ξ

4

)

+ η , (17)

with coefficients ξ = tr(⃗J ·v̂)4 and η = det(⃗J ·v̂). The substitution y = −x2 leads to a cubic
polynomial (of a half degree)

P̃3(y) = y3 − y2 + y
(1

2
− ξ

4

)

− η , (18)

whose three roots y1, y2, y3 ≥ 0 all have to be positive, since those of P6(x) = 0 are the
purely imaginary eigenvalues of the antihermitean 6 × 6 matrix Σ. Figure 1 shows the
generic behavior of such a cubic polynomial. From P̃3(0) = −η ≤ 0 one learns first η ≥ 0,
and the fact that the positions of the local minimum and maximum at y± lie on the positive
y-axis, leads to the inequality

6y± = 2 ±
√

3ξ − 2 ≥ 0 , (19)

from which one deduces the allowed range 2/3 ≤ ξ ≤ 2 for the invariant ξ. Moreover, the
product P̃(y+)P̃(y−) ≤ 0 is negative, and this condition gives rise to a further inequality:

(3ξ − 2)3 ≥ (9ξ + 108η − 10)2 . (20)

The resulting allowed range for the invariants ξ and η is the bounded region shown in
Figure 2, from which one deduces also the maximal value ηmax = 1/27. With three positive
real roots, the cubic polynomial equation P̃3(y) = 0 corresponds to the so-called irreducible
case, where the problem is effectively solved by the trisection of an angle. The ansatz
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y1 = (1 +
√

3ξ − 2 cos ψ)/3 leads to a determining equation for cos 3ψ, that is immediately
solved by

ψ =
1

3
arccos

9ξ + 108η − 10

(3ξ − 2)3/2
, (21)

with ψ ∈ [0, π/3]. Note, that the inequality derived in Equation (20) guarantees that the
argument of the arc-cosine function lies between −1 and 1. The other two roots are given by

y2,3 =
1

6

[

2 +
√

3ξ − 2
(

±
√

3 sin ψ − cos ψ
)]

, (22)

and with this assignment, the three roots are ordered as y1 ≥ y2 ≥ y3 ≥ 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
y

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

P
3
(y

)

ξ = 1,    η = 0.01 

Figure 1. Generic behavior of the cubic polynomial P̃3(y) = y3 − y2 + y(1/2 − ξ/4)− η.

0.8 1 1.2 1.4 1.6 1.8 2

ξ

0

0.01

0.02

0.03

η

Figure 2. The allowed values of the invariants ξ and η for so(6) lie inside the bounded region. The

enclosed area in the ξη-plane amounts to 1/120, and the circumference of the tricorn measures 2.6695.
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Based on the Cayley–Hamilton relation Σ6 = −Σ4 + Σ2(ξ − 2)/4 − η1 one constructs
the 6 × 6 iteration matrix as

M6 =

















0 0 0 0 0 −η

1 0 0 0 0 0
0 1 0 0 0 ξ/4−1/2
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 0

















, (23)

with which one can solve exp(VM6) and multiply with (1, 0, 0, 0, 0, 0). One ends up with
the following analytical formula for the matrix exponential function so(6) → SO(6):

R6 (⃗v ) = exp(⃗J ·v⃗ ) =
3

∑
j=1

1

3y2
j − 2yj + 1/2 − ξ/4

{ η

yj
1 + (1 − yj)(⃗J ·v̂)2 + (⃗J ·v̂)4

}

×
{

cos
(

V
√

yj

)

1 +
1

√
yj

sin
(

V
√

yj

)

J⃗ ·v̂
}

, (24)

where the sum goes over the three positive roots of the cubic equation P̃3(y) = 0. Note,
that the denominator of the prefactor is the derivative P̃′

3(yj), and one finds a remarkable

factorization for the terms with (up to fifth) powers of J⃗ ·v̂. When taking the trace of the
special orthogonal matrix R6 (⃗v ) one obtains

trR6 (⃗v ) =
3

∑
j=1

cos
(

V
√

yj

)

3y2
j − 2yj + 1/2 − ξ/4

{6η

yj
+ 2(yj − 1) + ξ

}

= 2
3

∑
j=1

cos
(

V
√

yj

)

, (25)

where the final expression is obtained by eliminating η in favor of the root yj, using

its determining equation P̃3(yj) = 0. The three angles φj = V
√

yj satisfy the conditions

φ1 ≥ φ2 ≥ φ3, φ2
1 + φ2

2 + φ2
3 = V2 (due to the root-sum y1 + y2 + y3 = 1), φ1 φ2 φ3 =

√
η V3.

In SO(6) the maximal torus SO(2)× SO(2)× SO(2) = S1 × S1 × S1 is three-dimensional
and by convention, the three independent rotations occur in the x1x2-plane, x3x4-plane,
and x5x6-plane of six-dimensional space.

6. SO(7)

Elements of the 21-dimensional Lie algebra so(7) are antisymmetric 7 × 7 matrices of
the form

J⃗ ·v⃗ =





















0 v1 v2 v3 v4 v5 v6

−v1 0 v7 v8 v9 v10 v11

−v2 −v7 0 v12 v13 v14 v15

−v3 −v8 −v12 0 v16 v17 v18

−v4 −v9 −v13 −v16 0 v19 v20

−v5 −v10 −v14 −v17 −v19 0 v21

−v6 −v11 −v15 −v18 −v20 −v21 0





















, (26)

with the corresponding norm V =
√

v2
1 + · · ·+ v2

21 of the 21-component real vector v⃗. The

characteristic polynomial [6] of Σ = J⃗ ·v̂ is of degree seven and it reads

P7(x) = x7 + x5 + x3
(1

2
− ξ

4

)

+ x
(1 − ζ

6
− ξ

4

)

, (27)

with in addition to ξ = tr(⃗J ·v̂)4 a new invariant ζ = tr(⃗J ·v̂)6. Besides the trivial root x = 0
of P7(x) the other purely imaginary ones are found via the substitution y = −x2 from the
cubic polynomial

P̃3(y) = y3 − y2 + y
(1

2
− ξ

4

)

+
ζ − 1

6
+

ξ

4
. (28)
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It has the same form as the cubic polynomial in Equation (18) relevant for so(6) after
identifying the constant term with −η. Although det(⃗J ·v̂) = 0 in so(7), this connection
motivates to introduce the auxiliary parameter

η7 =
1 − ζ

6
− ξ

4
≥ 0 . (29)

The steps to construct the three positive roots y1, y2, y3 of P̃3(y) = 0 are the same as in the
previous section about so(6). One just replaces η by η7 and gets for the trisected angle ψ

the modified expression

ψ =
1

3
arccos

8 − 18(ξ + ζ)

(3ξ − 2)3/2
, (30)

and the inequality in Equation (20) turns into (3ξ − 2)3 ≥ 4[4 − 9(ξ + ζ)]2. The resulting
allowed range for the invariants ξ and ζ is the thin bounded region shown in Figure 3, from
which one deduces also the extremal values ζmax = −2/9 and ζmin = −2. Note, that this
bounded region is obtained from the one shown in Figure 2 by the shear-transformation
ζ = 1 − 6η − 3ξ/2 from the ξη-plane to the ξζ-plane.

0.8 1 1.2 1.4 1.6 1.8 2

ξ

-2

-1.5

-1

-0.5

ζ

Figure 3. The allowed values of the invariants ξ and ζ for so(7) lie inside the thin bounded region.

The enclosed area in the ξζ-plane amounts to 1/20, and the circumference of the tricorn measures

4.4612. The short vertical line at ξ = 1 of length 1/9 corresponds to the subgroup G2 ⊂ SO(7).

Based on the Cayley–Hamilton relation Σ7 = −Σ5 +Σ3(ξ − 2)/4− η7Σ one constructs
the 7 × 7 iteration matrix as

M7 =





















0 0 0 0 0 0 0
1 0 0 0 0 0 −η7

0 1 0 0 0 0 0
0 0 1 0 0 0 ξ/4−1/2
0 0 0 1 0 0 0
0 0 0 0 1 0 −1
0 0 0 0 0 1 0





















, (31)

with which one can solve exp(VM7) and multiply with (1, 0, 0, 0, 0, 0, 0). One ends up with
the following analytical formula for the matrix exponential function so(7) → SO(7):
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R7 (⃗v ) = exp(⃗J ·v⃗ ) = 1 +
1

η7

{(1

2
− ξ

4

)

(⃗J ·v̂)2 + (⃗J ·v̂)4 + (⃗J ·v̂)6
}

+2
3

∑
j=1

[

7y3
j − 5y2

j +
3

4
(2 − ξ)yj − η7

]−1{η7

yj
1 + (1 − yj)(⃗J ·v̂)2 + (⃗J ·v̂)4

}

×
{

√

yj sin
(

V
√

yj

)

J⃗ ·v̂ − cos
(

V
√

yj

)

(⃗J ·v̂)2
}

, (32)

where the sum goes over the three positive roots of the cubic equation P̃3(y) = 0 in
Equation (28) and η7 = (1 − ζ)/6 − ξ/4 is an auxiliary parameter. Again one finds a
remarkable factorization for the terms with (up to sixth) powers of J⃗ ·v̂. Note, also the extra
terms outside the sum in addition to the 7 × 7 unit-matrix 1. Taking the trace of the special
orthogonal matrix trR7 (⃗v ) one finds the result

trR7 (⃗v ) = 1 + 2
3

∑
j=1

cos
(

V
√

yj

)

, (33)

where this short expression is obtained by first using ζ = 1− 3ξ/2− 6η7, and then eliminat-
ing η7 in favor of the root yj through the equation P̃3(yj) = 0. The three angles φj = V

√
yj

appearing in Equation (33) satisfy the conditions φ1 ≥ φ2 ≥ φ3, φ2
1 + φ2

2 + φ2
3 = V2,

φ1 φ2 φ3 =
√

η7 V3 and they parametrize a three-dimensional maximal torus SO(2) ×
SO(2)× SO(2) = S1 × S1 × S1 in SO(7). By convention, the three independent rotations
take place in the x1x2-plane, x3x4-plane, and x5x6-plane of seven-dimensional space.

7. Exceptional Lie Group G2

The special orthogonal group SO(7) of dimension 21 (and rank 3) has an interesting
subgroup, namely the exceptional Lie group G2 of dimension 14 (and rank 2). From the
point of view of geometrical symmetries, G2 is interpreted as the automorphism group
of the octonions O, which form an eight-dimensional real division algebra spanned by 1
and seven imaginary units ij, j = 1, . . . , 7. The multiplication ∗ of two imaginary units is
anticommutative

ij ∗ ik + ik ∗ ij = −2δjk1 , (34)

and non-associative for higher products. The multiplication rule for two different imaginary
units reads

ij ∗ ik =
7

∑
l=1

f jkl il , j ̸= k ̸= l , (35)

with totally antisymmetric structure constants f jkl . Among 480 equivalent realizations a
possible choice is to set f jkl = 1 for the cyclic index-combinations ijk = 123, 145, 176, 246,
257, 347, 365.

An automorphism of O is defined as a linear transformation to seven new imagi-
nary units:

i′j =
7

∑
m=1

Sjmim , (36)

which leaves the entire multiplication table invariant. From anticommutativity i′j ∗ i′k +

i′k ∗ i′j = −2δjk1 one deduces ∑
7
m=1 SjmSkm = δjk, thus S is a 7 × 7 orthogonal matrix. Since

S = −1 changes the sign in Equation (35) and O(7) = SO(7)× {−1, 1} as a group, one
arrives at the necessary condition S ∈ SO(7). From the multiplication rule involving the
structure constant f jkl one derives the set of coupled cubic equations

7

∑
m,n,o=1

SjmSknSlo fmno = f jkl , (37)
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which states that G2 is the invariance group of an alternating trilinear form in seven
variables. Note, that orthogonality has been used to bring all three S-matrices onto the
left-hand side of Equation (37). In order to deduce the implication of Equation (37) on the
Lie algebra elements one considers infinitesimal transformations Sjm = δjm + ϵ Tjm + . . .

with T = J⃗ ·v⃗ ∈ so(7). The resulting linear equations read

7

∑
m=1

(

Tjm fmkl + Tkm fmlj + Tlm fmjk

)

= 0 . (38)

By analyzing these 343 equations in packages of 49, one obtains from l = 1 six linear
relations for the components of v⃗, from l = 2 one further linear relation, but no further
constraints from l = 3, 4, 5, 6, 7. The resulting seven homogeneous linear relations for the
21 components of v⃗ read

v12 = v5 − v9 , v13 = v6 + v8 , v14 = v11 − v3 , v15 = −v4 − v10 ,
v19 = v1 + v18 , v20 = v2 − v17 , v21 = v7 + v16 ,

(39)

and these specify how the 14-dimensional exceptional Lie algebra g2 can be projected out of
the 21-dimensional Lie algebra so(7). After introducing 14 new parameters w1, . . . , w14 via

w1,8 = v1 ± v18 , w2,9 = v2 ∓ v17 , w3,10 = v3 ∓ v11 , w4,11 = v4 ± v10 ,

w5,12 = v5 ∓ v9 , w6,13 = v6 ± v8 , w7,14 = v7 ± v16 , (40)

the length square of the yet 21-component vector v⃗ becomes a sum of 14 squares:

V2 =
3

2
(w2

1 + w2
2 + w2

3 + w2
4 + w2

5 + w2
6 + w2

7)

+
1

2
(w2

8 + w2
9 + w2

10 + w2
11 + w2

12 + w2
13 + w2

14) . (41)

More interesting is the effect of the seven linear relations in Equation (39) on the invari-
ants ξ and ζ. The explicit calculation gives tr(⃗J ·v⃗ )4 = (⃗v·v⃗ )2, which translates into the
remarkable constraint

ξ = tr(⃗J ·v̂ )4 = 1 , for g2 ⊂ so(7) , (42)

whereas the other invariant ζ = tr(⃗J ·v̂ )6 is confined to the small interval −11/18 ≤ ζ ≤
−1/2 (see Figure 3). The expressions for the three positive roots yj and the angle ψ simplify
accordingly to

y1 =
1

3
(1 + cos ψ) , y2,3 =

1

6

(

2 ±
√

3 sin ψ − cos ψ
)

, ψ =
1

3
arccos(−10 − 18ζ) . (43)

As a result, the matrix exponential function for the exceptional (real) Lie algebra g2 and
corresponding compact Lie group G2 is solved analytically by the formula in Equation (32),
setting ξ = 1 and η7 = −(1 + 2ζ)/12 (ranging over the interval 0 ≤ η7 ≤ 1/54) and
implementing the linear relations written in Equation (39) into V and v̂.

The g2-constraint ξ = 1 implies for the three roots the additional relation
y2

1 + y2
2 + y2

3 = 1/2. This translates into a constraint on the angles φj = V
√

yj:

2(φ4
1 + φ4

2 + φ4
3)− (φ2

1 + φ2
2 + φ2

3)
2

= (φ1 + φ2 + φ3)(φ1 + φ2 − φ3)(φ1 − φ2 + φ3)(φ1 − φ2 − φ3) = 0 , (44)

which in view of the chosen ordering is solved by φ1 = φ2 + φ3. Consequently, the trace of
G2-matrices in SO(7) is given by

trRG2
(⃗v ) = 1 + 2

[

cos(φ2 + φ3) + cos φ2 + cos φ3

]

, (45)
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and the two independent angles φ2, φ3 parametrize a two-dimensional maximal torus
SO(2)× SO(2) = S1 × S1 in G2. Stated differently, by passing to the subgroup G2 ⊂ SO(7)
the angle for the rotation in the x1x2-plane is fixed to the sum of the rotation angles in the
x3x4- and x5x6-planes, φ1 = φ2 + φ3.

8. SO(8)

Elements of the 28-dimensional Lie algebra so(8) are antisymmetric 8 × 8 matrices of
the form

J⃗ ·v⃗ =

























0 v1 v2 v3 v4 v5 v6 v7

−v1 0 v8 v9 v10 v11 v12 v13

−v2 −v7 0 v14 v15 v16 v17 v18

−v3 −v9 −v14 0 v19 v20 v21 v22

−v4 −v10 −v15 −v19 0 v23 v24 v25

−v5 −v11 −v16 −v20 −v23 0 v26 v27

−v6 −v12 −v17 −v21 −v24 −v26 0 v28

−v7 −v13 −v18 −v22 −v25 −v27 −v28 0

























, (46)

with the corresponding norm V =
√

v2
1 + · · ·+ v2

28 of the 28-component real vector v⃗. The

characteristic polynomial [6] of J⃗ ·v̂ is of degree eight and it reads

P8(x) = x8 + x6 + x4
(1

2
− ξ

4

)

+ x2
(1 − ζ

6
− ξ

4

)

+ η , (47)

with the invariants ξ = tr(⃗J ·v̂)4, ζ = tr(⃗J ·v̂)6 and η = det(⃗J ·v̂) forming its coefficients. By
setting y = −x2 one is led to a quartic polynomial

P̃4(y) = y4 − y3 + y2
(1

2
− ξ

4

)

+ y
( ζ − 1

6
+

ξ

4

)

+ η , (48)

whose four roots y1, y2, y3, y4 ≥ 0 all have to be positive, since those of P8(x) = 0 are the
purely imaginary eigenvalues of the antihermitean 8 × 8 matrix J⃗ ·v̂. The determination of
the four roots yj proceeds via three auxiliary quantities Θ1, Θ2, Θ3 in the following way [7]

y1,2 =
1

4

[

1 +
√

Θ1 ±
(
√

Θ2 +
√

Θ3

)

]

, y3,4 =
1

4

[

1 −
√

Θ1 ±
(
√

Θ2 −
√

Θ3

)

]

, (49)

where the product of the three square-roots must fulfill the condition
√

Θ1

√
Θ2

√
Θ3 =

1/3 − ξ − 4ζ/3. This means that if the right-hand side is negative, 3ξ + 4ζ > 1, one square-
root must be chosen as negative. The three positive Θ-values are the roots of the cubic
resolvent polynomial

R3(Θ) = Θ3 + Θ2(1 − 2ξ) + Θ
(5

3
− 64η − 4ξ + ξ2 − 8ζ

3

)

− 1

9

(

3ξ + 4ζ − 1
)2

. (50)

The solution of R3(Θ) = 0 belongs again to the irreducible case and is performed with the
trigonometric ansatz

Θ =
1

3

(

2ξ − 1 + 2
√

192η + 8ζ + 8ξ + ξ2 − 4 cos ψ
)

. (51)

The determining equation for cos 3ψ yields for the trisected angle ψ the result

ψ =
1

3
arccos

8(1 − 36η − 3ζ + 3ζ2)− ξ3 + 42ξ2 + 12ξ(5ζ + 48η − 3)

(192η + 8ζ + 8ξ + ξ2 − 4)3/2
, (52)

and the three auxiliary quantities Θ1, Θ2, Θ3 follow by evaluating Equation (51) at the
angles ψ and ψ ± 2π/3. The necessary conditions that the radicand in Equation (52)
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is positive, and that the numerator is smaller in magnitude than the denominator fol-
lowing from considering the local minimum and maximum located at Θ± = (2ξ − 1 ±
√

192η + 8ζ + 8ξ + ξ2 − 4 )/3 ≥ 0 together with R3(Θ+)R3(Θ−) ≤ 0. One should re-
mark here that the cubic polynomial R3(Θ) has actually the same form as P̃3(y) shown
in Figure 1. Considering the coefficients of the quadratic terms in Equations (48) and (50)
one deduces from the positivity of all roots the inequalities 2 − ξ ≥ 0 and 1 − 2ξ ≤ 0,
which lead to the range 1/2 ≤ ξ ≤ 2 for the invariant ξ. In a further detailed study
(e.g., at fixed ξ) one finds for the other two invariants the intervals 0 ≤ η ≤ 1/64 and
−2 ≤ ζ ≤ −1/8, pertinent to the case of so(8). Altogether the bounded region of allowed
values in ξηζ-space fills a volume of 0.001385 ≃ 1/722. The less obvious boundary values
ηmin = 0, ηmax = 1/64, ζmin = −2, ζmax = −1/8 are confirmed by observing that this
volume would decrease, if the integration intervals were narrowed, but stay constant when
they are widened.

Based on the Cayley–Hamilton relation Σ8 = −Σ6 + Σ4(ξ − 2)/4 + Σ2[ξ/4 + (ζ −
1)/6]− η 1 one constructs the 8 × 8 iteration matrix as

M8 =

























0 0 0 0 0 0 0 −η

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 ξ/4+(ζ−1)/6
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 ξ/4−1/2
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0

























, (53)

with which one can solve exp(VM8) and multiply with (1, 0, 0, 0, 0, 0, 0, 0). This way one
derives the following analytical formula for the matrix exponential function so(8) → SO(8):

R8 (⃗v ) = exp(⃗J ·v⃗ ) =
4

∑
j=1

[

4y3
j − 3y2

j + yj

(

1− ξ

2

)

+
ξ

4
+

ζ−1

6

]−1

×
{

cos
(

V
√

yj

)

1 +
1

√
yj

sin
(

V
√

yj

)

J⃗ ·v̂
}

(54)

×
{

− η

yj
1 +

( ξ

4
− 1

2
+ yj − y2

j

)

(⃗J ·v̂)2 + (yj − 1)(⃗J ·v̂)4 − (⃗J ·v̂)6
}

,

where the sum goes over the four positive roots of the quartic equation P̃4(y) = 0. Note
that the denominator of the prefactor is the derivative P̃′

4(yj), and one gets a remarkable

factorization for the terms with (up to seventh) powers of J⃗ ·v̂. The trace of the orthogonal
matrix R8 (⃗v ) comes out as

trR8 (⃗v ) = 2
4

∑
j=1

cos
(

V
√

yj

)

, (55)

where the simplification is achieved by eliminating each summand η in favor of the root yj

through the equation P̃4(yj) = 0. The four angles φj = V
√

yj specify to which element on a

four-dimensional maximal torus SO(2)× SO(2)× SO(2)× SO(2) = S1 × S1 × S1 × S1 a
given SO(8)-matrix R8 (⃗v ) is related by conjugation [5].
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9. SO(9)

Elements of the 36-dimensional Lie algebra so(9) are antisymmetric 9 × 9 matrices of
the form

J⃗ ·v⃗ =































0 v1 v2 v3 v4 v5 v6 v7 v8

−v1 0 v9 v10 v11 v12 v13 v14 v15

−v2 −v9 0 v16 v17 v18 v19 v20 v21

−v3 −v10 −v16 0 v22 v23 v24 v25 v26

−v4 −v11 −v17 −v22 0 v27 v28 v29 v30

−v5 −v12 −v18 −v23 −v27 0 v31 v32 v33

−v6 −v13 −v19 −v24 −v28 −v31 0 v34 v35

−v7 −v14 −v20 −v25 −v29 −v32 −v34 0 v36

−v8 −v15 −v21 −v26 −v30 −v33 −v35 −v36 0































, (56)

with the corresponding norm V =
√

v2
1 + · · ·+ v2

36 of the 36-component real vector v⃗. The

characteristic polynomial [6] of J⃗ ·v̂ is of degree nine and it reads

P9(x) = x9 + x7 + x5
(1

2
− ξ

4

)

+ x3
(1 − ζ

6
− ξ

4

)

+ x
( 1

24
− ξ + χ

8
+

ξ2

32
− ζ

6

)

, (57)

with a new invariant, χ = tr(⃗J ·v̂)8, the trace of the eighth matrix power. Besides the trivial
root x = 0 of P9(x), the other purely imaginary ones are found via the substitution y = −x2

from the quartic polynomial

P̃4(y) = y4 − y3 + y2
(1

2
− ξ

4

)

+ y
( ζ − 1

6
+

ξ

4

)

+
1

24
− ξ + χ

8
+

ξ2

32
− ζ

6
, (58)

which after identification of the constant term with η is identical to P̃4(y) in Equation (48)
pertinent to the case of so(8). Therefore, when working with the auxiliary parameter

η9 =
1

24
− ξ + χ

8
+

ξ2

32
− ζ

6
≥ 0 , (59)

the construction of the four positive roots y1, y2, y3, y4 can be copied from the previous
section by making merely the substitution η → η9. The denominator of the arc-cosine
function in Equation (52) becomes this way

192η9 + 8ζ + 8ξ + ξ2 − 4 = 7ξ2 − 16ξ − 24(ζ + χ) + 4 , (60)

while the numerator polynomial turns into

8(1 − 36η9 − 3ζ + 3ζ2)− ξ3 + 42ξ2 + 12ξ(5ζ + 48η9 − 3)
= ξ2(17ξ − 39) + 12ξ(2 − 3ζ − 6χ) + 12(2ζ + 2ζ2 + 3χ)− 4 ,

(61)

where the corresponding ranges are 1/2 ≤ ξ ≤ 2, −2 ≤ ζ ≤ −1/8, and 0 ≤ η9 ≤ 1/64.
The allowed region in ξζχ-space fills a volume of 0.01108 ≃ 8/722, and within this region,
the invariant χ takes on values from the interval 1/32 ≤ χ ≤ 2.
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Based on the Cayley–Hamilton relation Σ9 = −Σ7 + Σ5(ξ − 2)/4 + Σ3[ξ/4 + (ζ −
1)/6]− Σ η9 one constructs the 9 × 9 iteration matrix as

M9 =































0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −η9

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 ξ/4+(ζ−1)/6
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 ξ/4−1/2
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 1 0































, (62)

with which one can solve exp(VM9) and multiply with (1, 0, 0, 0, 0, 0, 0, 0, 0). This way one
derives the following analytical formula for the matrix exponential function so(9) → SO(9):

R9 (⃗v ) = exp(⃗J ·v⃗ ) = 1 +
1

η9

{(1 − ζ

6
− ξ

4

)

(⃗J ·v̂)2 +
(1

2
− ξ

4

)

(⃗J ·v̂)4 + (⃗J ·v̂)6 + (⃗J ·v̂)8
}

+2
4

∑
j=1

[

9y4
j − 7y3

j +
5

4
y2

j (2 − ξ) +
yj

4
(3ξ + 2ζ − 2) + η9

]−1

×
{η9

yj
1 +

(1

2
− ξ

4
− yj + y2

j

)

(⃗J ·v̂)2 + (1 − yj)(⃗J ·v̂)4 + (⃗J ·v̂)6
}

×
{

cos
(

V
√

yj

)

(⃗J ·v̂)2 −√

yj sin
(

V
√

yj

)

J⃗ ·v̂
}

. (63)

The calculation of the trace of the orthogonal matrix R9 (⃗v ) gives the result

trR9 (⃗v ) = 1 + 2
4

∑
j=1

cos
(

V
√

yj

)

, (64)

where one first uses χ = 1/3− ξ + ξ2/4− 4ζ/3− 8η9 and then eliminates η9 in favor of the
root yj via the equation P̃4(yj) = 0. The four angles φj = V

√
yj specify to which element on

a four-dimensional maximal torus SO(2)× SO(2)× SO(2)× SO(2) = S1 × S1 × S1 × S1 a
given SO(9)-matrix R9 (⃗v ) is related by conjugation [5]. By convention, the independent
rotations take place in the x1x2-plane, x3x4-plane, x5x6-plane, and x7x8-plane of nine-
dimensional space.

10. Conclusions

In this work the matrix exponential function has been solved analytically for the
special orthogonal groups SO(n) up to n = 9. By exploiting the Cayley–Hamilton relation
for the elements of the underlying Lie algebra so(n) (i.e., antisymmetric real n × n matrices)
the number of required matrix powers ranges from 0 up to n − 1. The pertinent expansion
coefficients have been expressed as cosine and sine functions of a vector norm V = |⃗v |
and the roots yj of a polynomial equation that depended on some specific invariants (the
determinant and the traces of even matrix powers). A quadratic equation needed to be
solved for n = 4, 5, a cubic equation for n = 6, 7, and a quartic equation for n = 8, 9 (where
the latter leads to a cubic resolvent equation of irreducible type). The exceptional Lie group
G2 ∈ SO(7) of dimension 14, defined as the automorphism group of the octonions, has
been constructed via the matrix exponential function by first deriving seven linear relations
for the 21 parameters of a general so(7) Lie algebra element. These linear relations turned
into a remarkably simple constraint on the invariant ξ = tr(⃗J ·v̂)4 = 1.
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It is hoped that the given analytical formulas will be useful to generate the full manifold
of special orthogonal SO(n)-matrices and (exceptional) G2-matrices in various applications,
such as lattice gauge theories [8–11] and effective field theories [1,12].
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