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ABSTRACT

After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of
betatron and synchrotron oscillations, we consider two examples of collective instabilities which can
limit the performances of high-energy storage rings: the transverse mode coupling instability, due to
wake fields, and the incoherent beam — beam instability.

Special emphasis is placed on the localization of the interactions between particles and
surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the
linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent
synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show
that the effect of the beam —beam kicks in electron— positron machines can be described by new
diffusive terms in a “renormalized” Fokker—Planck equation and is therefore equivalent to an
additional source of noise for the betatron oscillations.
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GENERAL INTRODUCTION

A storage ring is a machine which can control the behaviour of a large number (in the range
10'°—10'*) of high-energy charged particles, during a very long time (typically 10 hours), by means of
electromagnetic fields. Owing to the form of the Lorentz force, energy exchanges are governed by
electric fields, whereas magnetic fields are generally used to guide the particles along stable trajectories.

The importance of storage rings in high-energy physics depends on the possibility of colliding
two counter-rotating beams of relativistic particles, thus attaining high values of the centre-of-mass
energy: however the resulting luminosity, i.e. the counting rate of events for a process of unit
cross-section, is low compared to that of fixed-target accelerators, since the density of particles in a
fixed target is higher than the beam density. In order to obtain the maximum luminosity, one has to
store the largest possible number of particles and to minimize the cross-section area of the beams.

Owing to collective effects, a system of many charged particles in interaction with their
surroundings and with one another may become unstable when the number or the density of particles
exceeds a threshold value. The study of these collective instabilities is therefore of great importance for
the design of new accelerators and for the improvement of the already existing ones. Indeed, in order
to optimize the performances of a given machine, one has to understand the dependence of the
different instability thresholds upon physical parameters such as the particle energy, the ring radius, the
beam size or the betatron and synchrotron tunes. Two main effects give rise to collective instabilities
in a high-energy storage ring, namely:

i) The Beam —Environment Interaction.
It consists in the electromagnetic interaction of a beam with the structures of its environment,
such as the accelerating RF cavities or any other cross-section variation of the vacuum chamber.
As a consequence of the charges induced in these structures, particles generate wake fields which
react on the beam, thus affecting its behaviour.

ii) The Beam — Beam Interaction.
It is the interaction between two counter-rotating beams. When a charged particle of a beam
intersects a bunch of particles of the opposite beam, it experiences a collective electromagnetic
force having a non-linear dependence on the particle transverse coordinates.

We shall consider two examples of collective instabilities, in electron — positron storage rings, which set
an upper limit to the maximum achievable current and to the maximum attainable luminosity,
respectively. The first one is a coherent single-bunch instability due to the beam —environment
interaction. It is known as “transverse mode coupling instability” or “fast head —tail effect” and leads
to the exponential growth of a transverse oscillation mode of the bunch, consisting in a tidy motion of
the particles. The second one is an incoherent instability due to the beam — beam interaction. In this
case the transverse motion of each particle may be greatly enhanced, but there is no phase correlation
between the oscillations of different particles. It is worth mentioning, however, that the beam —beam
interaction can give rise to a coherent instability as well.

Part 1 provides an introduction to the physics of high-energy storage rings. The starting point is
a unified Hamiltonian treatment of the betatron and synchrotron oscillations in strong-focusing
machines. After linearizing the equations of motion around a reference equilibrium orbit, we show
that each particle can be considered as an anisotropic oscillator, characterized by a (relativistic)
transverse mass m, = ym and by a longitudinal mass m = y®m. A series of canonical



transformations allows then to decouple the three normal modes of the system. By a last
transformation, leading to the corresponding action —angle variables, we obtain the Courant — Snyder
betatron invariants as well as an exact invariant for the linearized synchrotron oscillations associated
with a localized RF cavity. This synchrotron invariant can be useful when computing the emittance
growth caused by intra-beam scattering in proton—antiproton storage rings. The stability of the
betatron motion is then discussed in smooth approximation.

In the case of electron — positron machines, because of the small mass of the particles, there is
considerable synchrotron radiation leading to damping of the normal modes. Moreover, quantum
fluctuations of the emitted photons give rise to a random force, similar to white noise, which drives the
particle oscillations: as a consequence, the phase-space distribution function satisfies the
Fokker — Planck equation and, after a few damping times, it relaxes to a Gaussian steady state.

In Part 2 we consider the beam—environment interaction, focusing our attention on the
transverse mode coupling instability caused by localized impedance. As we have seen, a relativistic
charged particle passing through the surrounding structures of a storage ring, induces electromagnetic
wake fields which react on the following particles. If the beam current is increased beyond a threshold
value, this phenomenon leads to a coherent instability generally described in terms of transverse mode
coupling.

Starting from the Vlasov equation for a simplified model of an electron — positron machine, we
show the existence of instability stop bands at currents below threshold, which are due to the coupling
between high-order and low-order dipole modes. Since the global effect of wake fields is represented
by a transverse kick localized at a single point of the machine, the stop-band pattern repeats
periodically (every half-integer) in the betatron tune vg: Denoting by A"B = g mod 1/2 the
fractional betatron tune, the bunch may become unstable at very low currents near the resonant values
A"B =nvg or Avﬂ = 1/2 — nvg, where v is the synchrotron tune.

In Part 3, it is shown that the beam —beam interaction in electron— positron storage rings is
equivalent to an additional source of noise for the betatron oscillations.

A white noise acting upon a non-linear oscillator causes a fast loss of coherence in its phase.
This loss of coherence induces a broadening of the resonances, thus avoiding the problem of the
divergent perturbative series which arises in the study of non-integrable Hamiltonian systems.
A “renormalized” Fokker—Planck equation is established which contains new diffusive terms
corresponding to the presence of resonances. The solution of this equation is exhibited explicitly in a
simplified case. This allows an analytical approach to the problem of the incoherent beam —beam
instability, which sets an upper limit to the maximum attainable luminosity in storage rings.



Part 1

UNIFIED HAMILTONIAN APPROACH TO SINGLE-PARTICLE DYNAMICS

We present an introduction to single-particle dynamics in high-energy storage rings. Starting
from a unified Hamiltonian treatment of the betatron and synchrotron motion, we derive the
Courant — Snyder invariants as well as an exact invariant for the linearized synchrotron oscillations
associated with a localized RF cavity. The stability of the betatron motion and the effects related to
synchrotron radiation in electron— positron machines are then discussed in smooth approximation.
This leads to a few qualitative relations between the basic parameters of a storage ring, which will be
used in Parts 2 and 3.

1.1 INTRODUCTION

The Hamiltonian formulation for synchrotron or for betatron oscillations in high-energy particle
storage rings has been extensively used in the study of stability problems and resonances [1—5]. It
allows a straightforward computation of invariant quantities and supplies the basis for the development
of perturbation techniques. Also the effect of radiation damping in electron — positron storage rings
can be studied by means of Lagrange invariants [6], which are closely related to the Hamiltonian
formalism. On the other hand, synchrotron oscillations are generally discussed separately from
betatron oscillations and the few existing unified approaches [7—10] tend either to be very
complicated, owing to the effect of damping and non-linearities, or to oversimplify the resulting
coupled equations, adopting the so-called “smooth approximation” [11].

As an introduction to single-particle dynamics in high-energy storage rings, we present a unified
Hamiltonian treatment of the linearized motion around a reference equilibrium orbit. We shall consider
only one RF cavity, giving rise to a longitudinal electric field localized at a single azimuth of the
reference orbit. Under these assumptions, the search for the normal modes of the system, which can
be carried out by means of subsequent canonical transformations, leads automatically to the betatron
and synchrotron oscillations. This procedure is equivalent to the separation of variables in the
Hamilton — Jacobi equation: the final transformation to action—angle variables is then a relatively
simple task and, besides the well-known Courant—Snyder betatron invariants, it yields an exact
invariant for the linearized synchrotron oscillations. The derivation of such an invariant has not only
didactic purposes, but can be useful in connection with intra-beam scattering in strong-focusing
machines [12, 13].

The content of the next three sections can be summarized in the following logical steps:

i) Using as independent variable the ratio s/c, where s is the curvilinear abscissa along the
reference orbit ry(s), the new Hamiltonian becomes H, = —cPs(x,y,t,px,py,—H;s/c). Here P,
is the covariant longitudinal component of the canonical momentum along the reference orbit, x,
Y: Py and p_ are the transverse curvilinear coordinates and momenta, and H is the initial
single-particle Hamiltonian.

ii) By a first canonical transformation, we can choose a reference frame moving with constant speed
v, = ¢ along the equilibrium orbit, corresponding to the particle nominal energy E,. The new
Hamiltonian is then H, = H; + Hc/vy = H — cP_. It is the curvilinear analogue of the
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Hamiltonian H — wPp, which describes the motion in a rotating system with constant angular
velocity w. By expanding H, up to second-order terms, we obtain the Hamiltonian of an
anisotropic oscillator, characterized by the (relativistic) transverse and longitudinal masses m L
and m, respectively.

iii) A particle with energy deviation ¢ from the nominal value E, will have a displaced closed
orbit. By a second canonical transformation, we can decouple the radial betatron motion from
the energy-dependent closed-orbit displacement, which is proportional to the so-called dispersion
function D(s). The new Hamiltonian H, is the sum of three independent terms, corresponding
to the normal modes of the system.

iv) By a last canonical transformation, we can go over to action—angle variables both for betatron
and for synchrotron oscillations. The final Hamiltonian H, does not depend on the phases and
therefore the action variables are invariants of motion. The stability of the synchrotron motion
associated with a localized RF cavity is then discussed in terms of the dispersion function.

In Section 1.5, we derive the stability condition for betatron oscillations in smooth approximation,
while in Section 1.6 we consider the effects associated with synchrotron radiation in electron — positron
machines. This leads to a few qualitative relations between the basic parameters of a storage ring.

1.2 REFERENCE ORBIT AND SYNCHRONOUS FRAME

Expressing the electric field E and the magnetic field B in terms of the scalar potential ®
and of the vector potential A

E = —Vv® — (1/c)(0A/at), B = VxA, (1.1)

the relativistic Hamiltonian of a particle with rest mass m and electric charge e, in interaction with
the electromagnetic field, reads [14]

H(r,P.t) = {m%* + c?[P — (e/c)A(r,)]?}}? + ed(ry), (1.2)

where P is the canonical momentum of the particle.
The fields E and B are invariant under gauge transformations of the potentials

®’ = @ — (1/c) (9x/at),

(1.3)
A=A+ vy,

while the Hamiltonian H and the canonical momentum P are not gauge invariant. Thus neither H
nor P have a direct physical meaning: this is the main drawback of the Hamiltonian formulation.
However we can choose the Coulomb gauge, in which ® = 0 and H can be identified with the
mechanical energy of the particle. Then, as a consequence of Egs. (1.1) and (1.3), the vector potential
is given by
t
Art) = ASY(r) — ¢ [ E(rt) dt. (1.4)
0
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Fig. 1 Reference orbit and Frenet-Serret unit vectors.

We see that the vector potential is naturally split into a static part, corresponding to the static magnetic
field, plus a time-dependent part, describing the effects of the accelerating electric field.

Instead of the particle Cartesian coordinates r, we introduce curvilinear coordinates (x,y,s)
with respect to a closed reference trajectory ry(s) (see Fig. 1), lying in the plane y = 0. We can
express r as a function of (x,y,s)

r(x,y,s) = ro(s) + xex(s) +y ey. (1.5)

The Frenet — Serret unit vectors es(s) and ex(s) satisfy the following differential relations:
ro’(s) = ey(s), e.(s) = —G(s) ey(s), e, '(s) = G(s) ey(s), (1.6)

where G(s) = 1/p(s) is the curvature of the reference orbit and the prime denotes derivative with
respect to the azimuth s.

If the vector potential has no transverse curvilinear components Ay and AW’ the
corresponding canonical momenta | and P_ reduce to the particle mechanical momenta Py and
Py and the Hamiltonian (1.2) reads [1, 2]

H(x,y,s,px,py,Ps,t) = {m?*c* + csz2 + czpy2 + [cPs - eAs(x,y,s,t)]z/[l + G(s)x1%}12, (1.7

where Aq and Pg are the covariant longitudinal components of A and P. Let us remark that, if
Aq depends on the azimuth s, the assumption of vanishing A, and Ay is not compatible with
Maxwell’s equations. However, since a storage-ring lattice consists of a series of long uniform magnets
placed along the reference orbit, we shall consider the case in which A, is a piecewise constant
function of s, thus neglecting the end fields associated with the magnet edges.

The longitudinal motion in high-energy particle storage rings is ultrarelativistic and, instead of
time t, it is convenient to choose the ratio s/c as the independent variable. Then the phase-space
variables become (x,y,t,px,py,—H) and the new Hamiltonian is H; = —cP, ie.



H(xytpy by, —Hisfe) = —eA(xysit) = [1 + GE)x {H? — c*p® = c’py? — mic*}!2. (1.8)
Let us remark that, at this point, all the phase-space variables are gauge-invariant quantities.

We assume the reference trajectory to be an equilibrium orbit [15], corresponding to a nominal
energy E,. In order to discuss the linearized particle motion around this equilibrium orbit, we
consider only dipole and quadrupole magnetic fields, so that B, and By depend only linearly on x
and y:

B, = —(Bovo/ec) K()y, By = (Egvo/ec) [G(s) — K(s) x]. (1.9)

The function K(s) is known as the quadrupole strength [1, 11, 16] and, from Fig. 1, we see that a
positive value of K corresponds to a transverse Lorentz force which is focusing in the vertical
direction and defocusing in the radial one. The particle velocity v, along the equilibrium orbit is

vo = ¢ {Ex?2 — m%c*}!2 | E, (1.10)

and in high-energy storage rings it is very close to c. Neglecting terms of third order in x and y, the
static part of the vector potential A, corresponding to the magnetic field (1.9), is given by

A:t(x,y,s) = —(Egvo/ec) {G(s)[x+ G(s)x?/2] + K(s)[y* —x?1/2}. (1.11)

The RF cavities are generally placed along the straight sections of the machine, where the
curvature G(s) vanishes. Thus the covariant longitudinal component of the electric field can be
identified with its projection E-e, along the reference orbit. The longitudinal electric field E,,
generated by a single RF cavity localized at s = 0, will be approximated by

E(s) = (s mod C) V(1), (1.12)

where 8(s mod C) is a periodic Dirac delta-function, with period equal to the ring circumference C,
and V(t) is the instantaneous voltage across the cavity. Also V(t) is a periodic function of time,
with a period which is an integer submultiple of the particle revolution period C/v,. This is an
idealized model, which does not contain the complicated field pattern of a real accelerating cavity: in
particular, we have neglected the transverse dependence of E,.

We now perform a canonical transformation to the “synchronous frame”, which is a frame
moving with velocity v, along the reference orbit. The generating function [14], depending on the
old coordinate t and the new momentum P, is

gtp,8) = (s — vot) (p, + Eo/v), (1.13)

corresponding to the transformation formulae
z = dg/dp, = s — Ve, H = —ag/at = B, + vop,. (1.14)
The variable z measures the longitudinal displacement of the particle with respect to a “synchronous

particle”, travelling along the reference orbit at constant speed v, and P, = €/v, denotes the energy
deviation from the nominal energy E, divided by v,. The new Hamiltonian is



H, = H, + cag/os = H, + (E, + Von) c/vg. (1.15)

It is the curvilinear analogue of the Hamiltonian H — wPj, which describes the motion in a rotating
system with constant angular velocity «. From Egs. (1.4), (1.8), (1.11) and (1.12), we obtain

H,(xy2.pgPy:P5/c) = Eo {Gx + [(G*~K)x* + Ky’)/2} vo/c + (B + Vop,) ¢/Vo

(s—2)/vo
— (1 + GX) [(E, + vop,)* — ¢’py — czpy2 - m**)'? +ec | E(st)dt.  (1.16)
0

1.3 NORMAL MODES OF OSCILLATION
AROUND THE REFERENCE ORBIT

In order to linearize the particle motion in the synchronous frame, we expand the Hamiltonian
(1.16) up to second-order terms in p,, Py P, and z. In particular, using the periodicity of the
oscillating RF voltage V(t) appearing in Eq. (1.12), we obtain

(8—2)/vo —z/vg
] E(s;t) dt = &(s mod C) [ V() dt = &smod C) [~V (z/v,) + Vo (2/v0)?/2). (1.17)
0 0

Here V, = V(0) is the voltage experienced by a synchronous particle and \"0 = \"(0) is the slope of
the function V(t) at t = 0. In this section we consider the case of a hadron storage ring,
corresponding to V, = 0: then, since the radiation losses are negligible, the energy of a synchronous
particle remains constant.

Expanding the square root appearing in Eq. (1.16) and using (1.10), we have

[(Eq +V0Pz 2 _cszz _czl-’y2 —m?c*]*"? = Eyvy/c + P, — (1/2yom) [sz “'Py2 + (Pz/Yo)z] c/vo,
(1.18)

where vy, = Ey/mc? is the Lorentz factor corresponding to the nominal energy E,. Then, replacing
Vo £ ¢, the Hamiltonian H, becomes

H,(%y.2.pgPy:P,is/c) = (1/2) {[pg*/m; + m;cH(G*~K) %] + [p?/m | + mc’K y’]

+ [p,2/m; + (eVo/c) 8(s mod C) z%]} — Ge xp,. (1.19)

Here m; = yom is the relativistic (transverse) mass of the particle, while m = Yo’m is the
so-called longitudinal mass and expresses the inertia of the particle in the direction of motion. We see
that H, is the sum of three quadratic terms, depending on the pairs of conjugate variables (x, Py)
(y,p,) and (z, p,), plus a curvature term — Gcxp, which couples radial and longitudinal
oscillations. The origin of this coupling term is in the energy dependence of the equilibrium closed
orbit.



In order to find the normal modes of the linearized particle motion, it is customary to
decompose the radial displacement x into a betatron displacement Xg and a closed-orbit
displacement, proportional to the energy deviation e [16—18]. This can be accomplished in a more
formal way, by means of a canonical transformation whose generating function, depending on the new
coordinates Xgs Zg and the old momenta Py Py is given by

B(xgZ,Py:Pyi8) = —(xgpy + zp)) + [D(s)xg — D(s)py/m | cl p, + D(s)D(s) p,’/2m  c. (1.20)

The periodic function D(s) is known as the dispersion. The transformation formulae corresponding
to (1.20) are

X = —ag/apx xB + D pz/m s pr -—aglaxB =Py~ D’ P,

(1.21)

i

z = —é)g/apz zg — D’ Xg + Dpr/m_Lc, Py = —aglazs =P,

and the new Hamiltonian is
H, = H, + cdg/as = H, + (D'ch - D’pr/m 1) p, + [(DD’/2)y — D3] pzzlm 1 (1.22)

We start by assuming that the dispersion D(s) and its derivative D’(s) are both zero in
correspondence with the azimuthal position s = 0 of the RF cavity

D(0) = 0, D'(0) = 0. (1.23)

Then the term &(s mod C) z?, appearing in Eq. (1.19), can be replaced by (s mod C) z? and the
new Hamiltonian reads

H, = (1/2) {[Pxﬁz/m_L + m_ch(Gz—K) sz] + [pyz/mJ_ + mJ_czK VAl
+ [y + (GZ-K) D? — 2GD + (DD’Y — D3] stzlm 1t (e\'lo/c) &(s mod C) zsz}
+ [D” + (G*=K) D — Glc X3Py (1.24)

It follows that, in order to decouple Xg from P, the dispersion must satisfy the well-known
equation [16]

D*(s) + [G(s)> — K(s)] D(s) = G(s). (1.25)

Since the curvature G(s) and the quadrupole strength K(s) are periodic functions of s, this is a

non-homogeneous Hill’s equation. The dispersion D(s) is defined as the unique periodic solution of

Eq. (1.25), so that the closed-orbit displacement is a single-valued function of the azimuth s. From
Eq. (1.25), we also have

(G*=K)D? — 2GD + (DDY — D’* = —=GD (1.26)

and the Hamiltonian H; can be written as the sum of three independent terms

Ha(xB,Y.Zs-PstPy,stis/c) = HX(XB:PXB:S/C) + I'ly(y,Py,S/C) + Hz(zsvpzsis/ C), (127)



corresponding to radial and vertical betatron oscillations and to synchrotron oscillations, respectively:
H(xgpegisle) = (1/2) {pyg7m, + m ¢ (G — K(9)] xg7,
Hypyise) = (1/2) [py?/m; + m ¢ K(s) ¥, (1:28)

H(23P,8/) = (1/2) [p,g2/my(s) + (eVo/c) 8(s mod C) z2].

These are the three normal modes of oscillation associated with the linearized particle motion around
the equilibrium orbit. The mass m,(s) appearing in the last equation (1.28) is given by

m,(s) = vo’m /[1 = v,*G(s)D(s)]. (1.29)

We want to emphasize that both the normal coordinates xg and z, defined by Eqgs. (1.21) and
(1.25), differ from the physical coordinates x and z. However, since the synchrotron frequency is
typically very low compared to the betatron frequency, one usually identifies the synchrotron
coordinate z with the longitudinal displacement z. This allows a separate discussion of betatron
and synchrotron oscillations. Although the average longitudinal motion of the particles (over many
betatron periods) can be adequately described in this approximation, the exact transformation formulae
(1.21) should be used to compute the local geometry of the beam, especially in those regions where the
dispersion D or its derivative D’ are not negligible.

1.4 BETATRON AND SYNCHROTRON INVARIANTS

Although the Hamiltonian (1.27) is the sum of three decoupled terms, none of these terms is an
invariant of motion, since they depend explicitly upon s. By a last canonical transformation, however,
we can go over to action—angle variables for the three normal modes: the corresponding actions J_,
Jy and J, are invariants of motion, and the equations for the phases o, and @, can be solved
by quadratures.

The three Hamiltonians (1.28) are associated with pseudo-harmonic oscillators having
frequencies which depend periodically on the azimuth s. Thus, according to Floquet’s theory [19, 20],
we consider the following type of canonical transformation:

y

xg(B T y8) = [2J; By(s)/m el sin @,

(1.30)
pr(‘Dx,Jx,s) =[2) m J_c/Bx(s)]l’z {cos @ — a(s) sin o}
y(tI>y,Jy,s) =[2 Jy By(s)/m \.© 172 sin <I>y,
(1.31)
py(tby,ly,s) =[2 Jy m _I_c/By(s)]l‘2 {cos <I>y - ay(s) sin (I>y},
2y(®,.0,.8) = [2], B,(s)/ Iﬂls,lc]l'2 sin @,
(1.32)

P, (21,8 = [2], imglc/B,(s))*"? {cos @, — a,(s) sin @},



where a,(s), ay(s), a,(s) and By(s), By(s), B,(s) are unknown periodic functions of s. This set of
equations can be considered as an “ansatz”, defining the form of the canonical transformation. Then
the free parameters Ays Byr Bx’ By and Bz are determined by requiring that the action variables
Jx’ Jy and Jz be invariants of motion. It is worth noting that the beta functions Bx’ By and Bz
have the dimensions of a length, while ay ay and a, are dimensionless. The constant synchrotron
mass m, is defined so that the average value (ms/mZ(s)) over the ring circumference is equal to one;

therefore, from Eq. (1.29)

s = vo'm/[1 = (rolrp?l, (1.33)

where the Lorentz factor Y corresponding to the transition energy [11], depends on the so-called

momentum compaction factor a c

1y = (GE)D(s) = a. (1.34)

Above transition, the synchrotron mass becomes negative: this means that the average longitudinal

motion of a particle having a positive momentum p, (and thus a positive energy deviation & = cp,

with respect to the nominal energy E,) is in the negative z-direction. The reason is that the particle

velocity cannot exceed c, while an energy increase leads to a lengthening of the equilibrium orbit. In

Egs. (1.32) we have used the absolute value of m, so that the synchrotron action variable 1, is

positive definite.

The generating function of the transformations (1.30), (1.31) and (1.32) can be written

g(xﬁ,y,zs,d)x@y,@z;s) = gx(xB,(Dx;s) + gy(y,(I)y;s) + gz(zs,Qz;s), (1.35)

where
gx(xB,(Dx;s) = [m J_c/ZBK(s)] xB2 [cot o - ax(s)],

8, (y,@yi8) = [m c/2B ()] y* [cot By — ay(s)], (1.36)

y

8,(2,2,:8) = [Imslc/ZBz(s)] zs2 [cot @, — az(s)].

When the beta functions are constant and the a’s are zero, each of these expressions corresponds to
the generator of the transformation to action —angle variables for a standard harmonic oscillator [14].
Using Egs. (1.27) and (1.35), the new Hamiltonian becomes

H, = Hy + c 9g/s = K (@ T is/c) + K@ Juisfe) + Ky(@,.,:s/0), (1.37)
with
K, = ¢ (I /B,) (cos?®@, — [2a,+B’ ] sin ® cos ® + [a, B ~Bra’+a P +(G ~K)B,?] sin’d ],
K, = ¢ (Iy/By) {cos?®y — [2a,+B,"] sin @ cos Dy + [a B/~ Bua ' +ay?+KA 1 sin'd), s

K, = c (I/B,) [Imy|/m, ()] {c0s?®, — [2a,+ (m,(s)/Im,))B,’ ] sin @, cos B,

+ (m)/imy) [e,B, —B,a, + (lmyl/m,(s)),? + (eVo/Imylc®) 8(s mod C) B,?] sin®}).
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If the Hamiltonian (1.37) does not depend on the phases @, <I>y and ®,, the action variables I Jy
and J, are invariants of motion. This is true, provided the following conditions are satisfied

a B — Bl +al + (GF - KB =1, 2a, + By =0,
oyfy T Byry tayt KA =1, 2ny * By =0,
(1.39)
a,B, = By, + limglimy(s)] a,® + (eVo/lmglc®) 8(s mod C) B,* = |m|/m,(s),
2, + [m,(s)/Imy18,” = 0.
In terms of the quantities
=0 +adB, vy =01+al)B, v, =0+a)B, (1.40)
these conditions can be written
ay = (G* = K) By — 7 | By = —2a,, (1.41)
ayl =K By - Yy’ By, = —2ay’ (1'42)
a, = (eVo/lmglc*) 8(s mod C) B, — [Imy|/m,(s)] v,, (1.43)
B, = —2limy/im,(s)] a,. (1.44)

By combining the first-order coupled equations (1.41) or (1.42), we obtain
BB, 12 — ﬁx’z/4 + [G(s)? — K(s)] ﬁxz =1, (1.45)
» — ”2 2 -
ByB,7I2 = By14 + K(5) B2 = 1, (1.46)
These equations for the betatron functions By(s) and By(s) are well known [1, 11, 16} and will be
discussed in the next section. Thanks to the presence of the delta-function, the remaining two coupled

equations (1.43) and (1.44) can be solved explicitly in terms of the dispersion D(s), which appears in
the mass m,(s). Then the final Hamiltonians (1.38) become

K Jgsl0) = 1 /8@, Ky is/c) = ¢ B (5)
K,(,s/c) = ¢ [imyl/my(s)] 1,/B,(s) (147)
and the azimuthal dependence of the phase variables is given by
0,0 = [dslpye)  By(e) = [ dsiB (o),

@_(s) = | [imgl/m,(s)] ds/B,(s). (1.48)

To solve the coupled equations (1.43) and (1.44), we start by remarking that the periodic
function 7,(8) defined by Eq. (1.40) satisfies the equation

11



1,9 = 2 (eVo/Imylc?) a,(s) 8(s mod C) (1.49)
and is therefore a constant, since 7,/(8) = 0 for s# 0. Thus we have
O =1, a0 =0 (1.50)
From Eq. (1.43), we see that the function a,(s) has a discontinuity corresponding to the azimuthal
position s = 0 of the RF cavity. Therefore the only possibility to have a,0) = 0 is that
a,(07) = —az(0+), i.e. the left and the right limits of a,(s), at s = 0, have opposite values. Thus,
using Eq. (1.50) and solving Eq. (1.43) in the range 0 < s < C, we find
(]

a,(s) = v, sgn(my) [C/2 = [ds m/m,(s)]. (1.51)
0

From Egs. (1.40) and (1.50), B,(s) can be written
B,8) = [1 + a, (s, (1.52)

and, as a consequence of Eq. (1.51), it is a continuous function of s. At this point, we can determine
the constant y, by inserting (1.51) back into Eq. (1.43):

7, C sgn(ms) 6(s mod C) = (eVo/|m8|c3) 8(smod C)[1 + ozz(s)zl/yz (1.53)

Since, from Eq. (1.51),

@, (0)* = lLm a,(s)* = (1/4) C*v,%, (1.54)
s-=0%
we eventually obtain
1, = (1/C) {A2*/[1 — (Ay/2)’]} 2, (1.55)

where A®, is the synchrotron phase advance as computed in smooth approximation [see (1.113)]
A®y? = (eVo/mc?) C. (1.56)

Expressions (1.51), (1.52) and (1.55) represent an explicit solution of Egs. (1.43) and (1.44) in terms of
the dispersion D(s), which enters in the definition (1.29) of the mass m,(s).

By inversion of the transformations (1.30) and (1.31), the betatron action variables I and Jy
can be written as follows

T, = (m ¢/2) {Xg?/By(s) + By(s) [pyg/m ¢ + ay(s) xg/By()I2),
(1.57)
I, = (m c/2) {y*/By(s) + By(s) [py/m ¢ + ayfs) yIB(s)I%).
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They are proportional to the well-known Courant—Snyder invariants [1]. On the other hand, the
synchrotron motion is usually discussed in smooth approximation (although the non-linearity of the
sinusoidal RF voltage V(t) is generally taken into account [11, 16]). From Eq. (1.32), however, we
obtain

1, = (Imyc/2) {z2B,() + B,(5) [p,g/Im Jc + a,(s) z /B ()1}, (1.58)

where a,(s) and B,(s) are given by Eqgs. (1.51) and (1.52), respectively (see Fig. 2). Expression
(1.58) provides an exact invariant for the linearized synchrotron oscillations associated with a localized
RF cavity. This invariant should be properly used to build a steady-state distribution function: it can
lead to more refined results when computing the emittance growth caused by intra-beam scattering in

A,(s)
I
3 Yz
|
E i |
| ' [
+ | ]
-2ci -c: 0 q] 2C s
!
| | |
__120/z
By(s)
1 1 242
-Y; [bzc YZ ] W
N N A
Y,
-2 -C 0 C 2C S
Pzs
~ V21, mid

/f 1/{@' s=o+
RE cavity )
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B,0 I
V2,/mgic

&

Fig. 2 Linearized synchrotron motion above transition energy in the case where G(s)D(s) = const.
The first two pictures are the plots of the periodic functions a,(s) and B,(s). The last
picture represents the phase-space ellipses corresponding to the invariant 1,(2:p,:8) for
s = 0t and s = 07, ie. just after and just before the passage through the RF cavity.
During the regular arc, the points A; and A, are fixed and the ellipse remains tangent to
the upper and lower sides of the rectangle. During the RF kick, the points R, and R, are
fixed and the ellipse remains tangent to the right and left sides of the rectangle.
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hadron machines [12, 13] and is useful to discuss the thermodynamic properties of bunched beams [21,
22]. The transformation formulae (1.21) allow then to obtain the beam distribution as a function of
the physical variables x,y, z, p,, Py and p,.

Before concluding this section, let us discuss the stability of the linearized synchrotron
oscillations. Using Egs. (1.43) and (1.52) and denoting by az(C‘) the left limit of the discontinuous
function a(s) at s = C, the actual synchrotron phase advance obtained by Eq. (1.48) is given by

C-
Ae, = - | ds a/(s)/[1 + az(s)Z] = arctan[a,(0*)] — arctan[a (C7)]. (1.59)
0+

From Eqgs. (1.51) and (1.55) this can be written as
A®, = 2 arctan{(1/2) sgn(m,) [A®y%)(1 — (ADy/2)H)]Y?) = 2 sgn(my) arcsin(A®,/2) (1.60)

and, using Eqgs. (1.33) and (1.56), we see that the stability condition for the linearized synchrotron
oscillations associated with a localized RF cavity is the following [23, 24]:

0 < (eVoClrome®) (Iire® = 1/vy?) < 4. (L.61)

Below transition energy [11], when 1/y,2 is larger than llytz, this implies that the slope \./o of the
RF voltage must be positive, while the opposite is true above transition. However, in both cases the
absolute value of \./0 cannot exceed a threshold value given by (1.61): this result is contrary to the
simple-minded argument, valid in smooth approximation, according to which the slope of the RF
voltage is a direct measure of the linear restoring force toward the synchronous particle. It is worth
noting that, in the case where G(s)D(s) = const, we have m,(s) = m, and the function Bz(s) is
parabolic in the range 0 < s < C (see Fig. 2). Indeed the effect of a localized RF cavity on the
synchrotron motion is similar to that of a thin focusing quadrupole on the betatron motion. Therefore
B,(s) corresponds to the betatron function for a “FOFO” lattice [11].

1.5 THE SMOOTH APPROXIMATION

In this section, we discuss the stability of the betatron motion in smooth approximation [1, 11].
The Hamilton equations associated with the betatron Hamiltonians H, and Hy’ given by Eq. (1.28),
lead to the following Hill’s equations for xg and y

xB’ + [G(s)? — K(s)] xg = 0, e
y" + K(s)y = 0.

If the curvature G(s) and the quadrupole strength K(s) are constant along the reference orbit, the
stability condition for both radial and vertical betatron oscillations is

0 <K < G (1.63)
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This corresponds to the so-called “weak-focusing” scheme: the number of betatron oscillations per
ring revolution, i.e. the betatron tune, is less than one, and the quadrupole focusing in the vertical
plane is accompanied by a reduction of the geometrical focusing (associated with curvature) in the
horizontal plane.

However, if the absolute value of the quadrupole strength |K(s)| is much larger than G(s)?, it
is possible to achieve stability in both betatron planes, provided K(s) is a rapidly oscillating function
of s. This focusing scheme is known as “alternating gradient” or “strong focusing” [1] and allows a
very efficient transverse confinement of the particles around the equilibrium orbit in high-energy
storage rings. We can rewrite both equations (1.62) in the form

y + gy =0, (1.64)

where the focusing function g(s) corresponds to K(s) for the vertical oscillations and to
G(s)2—K(s) = —K(s) for the radial ones. As we will see, the smooth approximation consists in
replacing the focusing function g(s) by a constant “effective” focusing Boff this is possible if the
betatron functions By(s) and By(s), which are the unique periodic solutions of Eqgs. (1.45) and (1.46),
can be replaced by their averages.

We discuss Eq. (1.64) in the case where g(s) is piecewise constant and takes the two values g,
and g, over subsequent intervals of length L (see Fig. 3a), namely

g(s) = g + Ag(s),
(1.65)
E= (s +8)2, Ag(s) = (g — 8)/2
Following an idea of Kapitza (see Ref. [25]), we look for an approximate solution of Eq. (1.64) by
splitting y(s) into the sum of a “slow” term Y(s) and a small, oscillating term £(s), having the same
periodicity as the focusing function g(s):
y(s) = Y(s) + £(s). (1.66)

We assume that Y(s) varies very little over one period As = 2L of the focusing g(s) and we
choose £(s) such that its average £ over As be zero. Inserting Eq. (1.66) into Eq. (1.64) and using
Eq. (1.65) yields
Y + & +[g+ AgI(Y+§)=0. (1.67)
Taking the average of the Lh.s. over one period As, we get
Y +8Y + AgE =0, (1.68)
and, by subtracting Eq. (1.68) from Eq. (1.67), we have
£+ Ag(s)Y + B¢ + Agls) ¢ — AgEl = 0. (1.69)

Compared to ¢” = £/L2, the terms in square brackets can be neglected provided

Bl <1, |AgL? << 1. (1.70)
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Fig. 3 Stability of the betatron motion in alternating-gradient machines.

The validity of these conditions, together with the assumption that Y(s) varies very little over one
period As = 2L, will be checked at the end of the calculations.
Then Eq. (1.69) can be easily integrated, yielding

’

8 s
£s) = & — Y(s) [ ds’ [ ds” Ag(s"). (L.71)
0 0

The integration constant £, is chosen so that the average £ be zero. However, since we are mainly
interested in solving Eq. (1.68) for the slow term Y(s), we have to compute only Ag ¢ which does
not depend on £,. Indeed

Agé = (1/12) (Ag L)* Y. (1.72)
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At this point, Eq. (1.68) can be written
Y+ ggY =0, (1.73)

where the effective focusing is given by
g = 8 + (AgL)%/12. (1.74)

The stability condition is therefore Boff > 0 and we see that the quadratic term, associated with the
oscillating component Ag(s) of the focusing function, contributes to stabilizing the motion even if g
is negative. A similar effect occurs, for example, when the suspension point of a pendulum performs
vertical oscillations at a frequency @ much higher than the pendulum frequency: for « high enough,
the unstable equilibrium position of the pendulum may become stable [25].

The smooth approximation consists in replacing the s-dependent focusing g(s) of Eq. (1.64) by
the constant effective focusing g, of Eq. (1.73). It is valid only if the frequency ./g.g, at which
Y(s) oscillates, is much lower than the frequency 1/2L of the focusing function. Thus, recalling that
g(s) = +K(s) for vertical or for radial betatron oscillations, respectively, we can combine the stability
condition and the condition of validity of the smooth approximation as follows

0 < (AgL)/12 % g << /L2 (1.75)

Let us remark that also (1.70) follows from (1.75).
By introducing the dimensionless quantities

n, =g L% n,=-g L% (1.76)
the inequality (1.75) can be written, using (1.65),
0 < (n, +n,)?/48 + (n; — n,;)/2 < 1. (1.77)

A graphic representation of (1.77) is given by the shaded region in Fig. 3b: the complete “necktie”
stability region can be obtained by a more refined calculation [1], leading to the expressions

cos A<I)y = cos \/n; cosh \/n; — [(n, — n,)/2,/mn; ] sin \/n; sinh /0,
cos A®_ = cos \/n, cosh \/n; + [(n, — n,)/2\/nn, ] sin \/n; sinh \/n;.

Here A®_ and A®_ are the betatron phase advances over one “cell” of length As = 2L and the
stability condition follows from the condition that both the phase advances be real numbers.
In smooth approximation, from Eq. (1.73), we have

(1.78)

A® = 2L [g - (1.79)
If the number of cells in the ring circumference is N, the total betatron tune is
v = NA®/2z = (N/m) (gog L?)' 2. (1.80)
Thus, from Egs. (1.65), (1.74) and (1.76), the vertical and radial betatron tunes are given by
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(y)° = (N/m)? [(ny + n,)*/48 £ (n; — nz)/2). (1.81)

The same result can be obtained by expanding the exact formulae (1.78) up to second order in n,
and n, [1]. Thus, from (1.77), the smooth approximation is valid when the betatron tunes are not

too large
v << N/m. (1.82)

Comparing Eq. (1.73) with Eqgs. (1.30), (1.31) and (1.48), we see that in smooth approximation
the betatron functions Bx(s) and By(s) are constant and can be written

B2 (g (1.83)

This is equivalent to neglecting B’ and B” in Egs. (1.45) and (1.46) and to replacing the alternating
focusing +K(s) by the constant effective focusing Bofr = (Ag L)?/12 + g. By applying the same
procedure to Eq. (1.25), the dispersion D is given by

D= G/geﬁ = 1/(R geﬂ')’ (1.84)

where R is the average machine radius. Since R = N L/, from Eq. (1.80) we obtain the following
approximate relations between the basic optical parameters of a storage ring:

B=Rp, D=Rp?, a,=(GD) =1 (1.85)

The stability condition associated with Eqgs. (1.78) does not take into account the effect of
non-linear magnetic elements such as sextupoles, which are indispensable to compensate for the
natural chromaticity of the machine [3]. Owing to these non-linear elements, the transverse motion of
a particle may become unstable if the oscillation amplitude exceeds a threshold value, known as the
dynamic aperture of the machine [5]. Moreover, in a real storage ring there are unavoidable magnet
imperfections, leading to field and gradient errors as well as to the coupling between radial and vertical
oscillations. Because of field errors in the bending magnets, for example, the closed orbit is distorted
and the betatron oscillations around the ideal equilibrium orbit are driven by a periodic force F(s),
with period equal to the machine circumference C. Thus we have to consider the inhomogeneous
Hill’s equation associated with Eq. (1.64), namely

y” + g(s)y = F(s). (1.86)
If we introduce the normalized betatron variable q and the phase ¢, defined as
q = y/\/B, ¢ = (1/») [ ds/B(s), (1.87)
using Eqs. (1.45) and (1.46) our equation (1.86) becomes
(d®q/d¢?) + v* q = v2 B*? F. (1.88)
The forcing term on the r.h.s. can be regarded as a function of the new independent variable ¢,

periodic with period 27 in ¢ corresponding to the period C in s. Thus we have reduced an
inhomogeneous Hill’s equation to the equation of a driven harmonic oscillator. From Eq. (1.88), we
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see that the motion becomes unbounded when the tune » is integral, i.e. when the perturbing force is
in resonance with the free betatron oscillations. Taking into account the other possible effects of
magnet errors together with the non-linearities of the machine, it is possible to show that the betatron
motion may become unstable if the following resonance condition is satisfied [26 — 28]:

nv, + mvy = P, (1.89)

where n, m and p are integer numbers. The lowest-order resonances, corresponding to
n + m < 4, are in practice the most dangerous ones [1] and have to be carefully avoided when
choosing the working point of a storage ring.

1.6 DAMPING AND NOISE IN ELECTRON STORAGE RINGS

In electron — positron machines, because of the small mass of the particles, there is considerable
synchrotron radiation leading to damping of the normal modes. Moreover, quantum fluctuations of
the emitted photons give rise to a random force, similar to white noise, which drives the particle
oscillations: as a consequence, the phase-space distribution function satisfies the Fokker— Planck
equation [29—31] and, after a few damping times, it relaxes to a Gaussian steady state.

In the extreme relativistic limit (y >> 1), the radiation reaction force R acting on a particle
moving with velocity v in a magnetic field B, orthogonal to v, is given by

R = —[W(t)/c?]v, (1.90)

where W(t) is the instantaneous radiated power which fluctuates owing to quantum effects. This
expression corresponds to neglecting angular deviations of the emitted photons, of order 1/y, from the
direction of v [32]. Equation (1.90) shows that R is a friction force and thus gives rise to an
irreversible particle flux in momentum space. The non-Hamiltonian character of R remains true even
at the classical level, when quantum fluctuations are neglected. This is related to the dependence of
the microscopic radiation fields of each particle on its own trajectory.

Since the emission of an individual photon takes place within an azimuthal angle of order 1/y,
the correlation time between two emissions is negligible with respect to the ring revolution period.
Thus the stochastic variable W(t) can be assumed to be Gaussian and to satisfy the following
conditions [10]:

W) = W,
(1.91)

WEOWE) — W) W) = « W ey at—t),

where x is a dimensionless constant of order unity; W is the mean instantaneous radiated power and
toh is the critical energy of the emitted photons. Their expressions, in terms of particle energy and
magnetic field intensity, are [16]:

W = (2/3) (r, ¥ B)*c
(1.92)
EPh =3 'Yz I B.

Here 1, = e?/mc? is the classical electron radius and p = efi/2mc the Bohr magneton.
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The mean radiation reaction force leads to a progressive reduction of the six-dimensional
phase-space volume occupied by the particles. By computing the rate of such volume reduction, it is
possible to obtain a general relation between the damping constants of the three normal modes [33].
From Eqgs. (1.9) and (1.14), the total particle energy and the magnetic field intensity are given by

yme? = Eg + & = Eg + cp,,
(1.93)
B? = B, + By* = (Eo/e)’ {K(s) y)* + [G(s) — K(s) xI%}.

Using these expressions in Egs. (1.92) and recalling Eq. (1.90), the mean radiation reaction force reads

R = —f(xy.,p,.s) (V/c), (1.94)

where

f=Wic = fo(s) {1 + 2(cp,/Eo) — 2[K(s)/G(s)] x} + O(x*,y*p,"),

(1.95)
fo(s) = (2/3) €? vo* G(s).

Using the Hamiltonian H,, given by Eq. (1.16), and denoting by q = (x,y,z) and p = (px,py,pz)
the curvilinear coordinates and momenta in the synchronous frame [see Eq. (1.14)], the equations of
motion can be written in the following differential form:

dq = (dH,/dp) ds/c, dp = —(dH,/dq) ds/c + F ds/c. (1.96)

The generalized force F = (Fx'Fy'Fz) represents the non-Hamiltonian rate of change of the
momenta p as a function of the curvilinear abscissa s along the reference orbit. Therefore, in the
extreme relativistic limit, it is related to the radiation reaction force R through the geometric factor
c(dt/ds) = 1 + G(s) x. Since we want to consider the average effect of the synchrotron radiation, we
can replace R by R and, using Eqs. (1.94) and (1.95), in linear approximation we have [6]

Fy

¢ (dt/ds) ﬁ’ex —-fx'= —f, cp,/ Eo,

Fy

¢ (dt/ds) ii~ey —fy = —f; cp /E,, (1.97)
F, = (dt/ds)Rv= —f [1 + G() X = —f, {1 + 2(cp,/Bo) + [(G* — 2K)/G] x}.

The Jacobian determinant D of the infinitesimal phase-space transformation associated with the
equations of motion (1.96) is given by

D = |3(q+dq,p+dp)/a(a,p)l = 1 + tx(8F/ap) ds/c + 0(ds?), (1.98)

where the first term is a consequence of Liouville’s theorem and the second one represents the
contribution of the non-Hamiltonian, diagonal terms of the Jacobian

tr(9F/3p) = 9F,/op, + OF Jopy + OF /ap,. (1.99)
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To first order in ds, from Eq. (1.97), we obtain
D = 1 — 4[f,(s)/E,] ds. (1.100)

If we assume that the average energy loss U, of a particle over one machine revolution is a small
fraction of the nominal energy E,, which is the case in most storage rings, the ratio of the final to the
initial phase-space volume occupied by the particles, after one turn, is

C
/8, = 1 — 4 [ds fy(s)/Eq = 1 — 4 (Up/Ey). (1.101)
0

In linear approximation, this volume contraction is the same for any region of phase space. In
particular, we can consider the region delimited by a torus [34] corresponding to given values IoJ
and Jz of the action variables: its six-dimensional volume is proportional to the product JnyJz'
Recalling that the action variables are quadratic functions of the particle coordinates and momenta, we
can write

I, = 3y exp(~2ayp), (1.102)
T, = Jp0 xP(—2a),

where aypr @yp and @,  are (small) dimensionless damping constants, describing the relative change
in the amplitude of the normal modes after one machine revolution. Thus we have

2/, = exp[—-2 (axB + %8 + azs)] =1-2 (aXB + *yB + a,). (1.103)

Comparing this expression with Eq. (1.101), we obtain the following general relation for the sum of
the three damping constants:

axg + ayg + az = 2 (Up/By). (1.104)

In general, it is not possible to define normal modes of oscillation for a linear system under the effect
of dissipative forces. Indeed the three matrices associated, in linear approximation, with the kinetic
energy, with the potential energy and with the dissipation function, respectively, cannot be diagonalized
simultaneously [14]. From Eq. (1.97), however, we see that the mean radiation reaction force couples
only the radial with the longitudinal oscillations. Since the synchrotron frequency is typically very low
compared to the betatron frequency, the mixing of the corresponding modes is weak and can be
neglected in the adiabatic limit.

We shall now determine the damping constant of each normal mode. The calculation of the
vertical damping constant « B is straightforward, while @, will be derived in smooth
approximation. Then, from the general relation (1.104), we will obtain the radial betatron damping
constant ayp Using Eqgs. (1.96) and (1.97) and expanding the Hamiltonian (1.16) as in Section 1.3,
the linearized equations of motion including the effect of the mean radiation reaction force can be

written
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"
|

= py/m,c, Py = —(Bo/) (G*~K) x + Gp, — (fo/Eo) Py

<
I

= py/m, ¢, Py = ~(Bo/) Ky ~ (a/Eo) by,
(1.105)

z = op,/Egve* — G x, p, = (¢/c) (Vo = V, z/c) (s mod C)

— (f/e) {1 + 2(cp,/Eo) + [(G*—2K)/G] x}.

In the equations for the slopes x’ and y’, we have to retain the dependence of the relativistic
(transverse) mass m,; = ym on the total particle energy and thus on P, [see Eq. (1.93)]. The
reason is that the radiation reaction force cannot affect the slope of the particle trajectory [16] since it

has the same direction as the velocity v. This can be verified by combining the equations for x’, Py
and y’, py’: using the equation for P, and neglecting second-order terms, we obtain

X" + (€Vo/Eo) 8(s mod C) X + (G*—K) x = G cp,/E,, (1.106)
¥ + (eVo/Eg) 8(smod C)y’ + Ky = 0. (1.107)

The terms proportional to the radiation reaction force f, cancel each other, but the longitudinal kicks
experienced by the particle in the RF cavity reduce the slopes x° and y’. The effect of the RF cavity
is included in the Hamiltonian (1.16) and, as a consequence of Liouville’s theorem, it cannot change
the phase-space volume occupied by the particles. This is confirmed by a phenomenon known as
adiabatic damping [2, 11], which occurs during acceleration in proton machines. In order to have
acceleration, the magnetic field is slowly increased so that the energy E, of the synchronous particle
becomes higher [see Eq. (1.9)], while the orbit radius and the optical parameters of the machine remain
constant. Then, since the action variables are adiabatic invariants, the oscillation amplitudes in Xg ¥
and z, decrease, whereas those in Prg: P and p,, increase [see Egs. (1.30)—(1.32)]. This
example shows that, in general, we have to distinguish between “damping of the coordinates” and
“damping of the momenta”.

In electron storage rings, there is a balance between the synchronous RF energy gain eV, and
the average radiation loss per turn U,

C
Vo = [dsfy(s) = U,. (1.108)
0

(During acceleration this is not strictly true, but in this case the net energy gain of a particle after each
revolution is generally small compared to U,.) From the virial theorem, it follows that the average

oscillation amplitudes in X3 ¥ and z_ are proportional, via constant factors, to the corresponding

s
amplitudes in Pxp: Py and p,.. Therefore each normal mode is characterized by a unique damping
constant, which is the same for the coordinate and the momentum. In particular, from Eq. (1.107) it

is simple to show that the dimensionless damping constant ayg of the vertical betatron motion is

ayp = (1/2) (eVo/Ep) = (1/2) (Up/Ey). (1.109)

In smooth approximation, we can replace the longitudinal variables z and p, by their average
values (z) and (p,) over one machine revolution. This amounts to neglecting the discrete nature of
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the synchrotron motion, which is related to the localization of the RF cavity. By averaging the last
two equations in (1.105) and using Eq. (1.108), we have

@ = clp)/Egro® — (GR),
. (1.110)
(p) = —(eVo/c?) @/C — 2 () (p)/By — (f[(G* - 2K)/Glx/e.

From the usual decomposition (1.21) of the radial displacement x into a betatron displacement xg
plus a closed-orbit displacement D cp,/E,, we obtain the following approximate relations

(Gx = (GD) cip, /By,
(1.111)
(fo[(G? — 2K)/GIx) = (f[(G* — 2K)/GID) cip,)/E.

Thus, substituting these into Eq. (1.110) and combining the equations for (z)* and (p,)’, we finally get
(2" + 2 (a,/C) (2 + (42,/C)* () = O, (1.112)
where the synchrotron phase advance A®, is given by
A®,? = (eV,Clyome?) (1he? = 1) (1.113)
and the dimensionless damping constant a,. can be written

a,s = (1/2) (Ug/Eo) 2 + d),
(1.114)
d = {,[(G*-2K)/GID)/{f,) = (DG(G?—2K)}/(G?).

In the last equation for the parameter d, which is typically positive and small compared to unity, we
have used the definition (1.95) of f,. Having computed the vertical damping constant g and the
synchrotron one @ from the general relation (1.104) we can deduce the radial betatron damping
constant ayg- Indeed, using Egs. (1.109) and (1.114), we obtain [35]

ayg = (1/2) (Uy/Eg) (1 = d). (1.115)

In electron machines with combined-function alternating-gradient magnets [36], the parameter d is
greater than unity and, as a consequence of (1.115), the radial betatron oscillations are antidamped.
This problem can be overcome by choosing the defocusing magnets stronger than the focusing ones
[33].

Let us now consider the effect produced by the quantum fluctuations of the synchrotron
radiation [37]. Adopting the semi-classical approach leading to Egs. (1.90) and (1.91), the radiation
reaction force R contains a random component which behaves like white noise. The same is true for
the generalized force F obtained by inserting R, instead of R, in Eq. (1.97). Then the stochastic
equations of motion (1.96) are equivalent to a Fokker— Planck equation for the phase-space particle
density [10, 22, 29—31]. In linear approximation, the steady-state solution is Gaussian and depends
on the action variables of the three normal modes (see Section 3.2). It is characterized by the
corresponding standard deviations 9% %y and o_.
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The energy spread o_ is related to the fluctuations of the number of photons Nph emitted in
one synchrotron damping time [16]. This number is roughly given by the ratio between the particle
energy E, and the typical photon energy €oh

Nph = EO/EPh. (1-116)

Since the number of photons emitted during a given time interval has a Poisson distribution, the r.m.s.
deviation from the mean is (Nph)"2 and the corresponding energy spread can be approximated by

o, = (Nph)l'2 ®oh = (E, €oh 12, (1.117)
From Egs. (1.92) and (1.93), we obtain
(0./Eo)® = vo® X /R, (1.118)

where X e = A/mc is the Compton wavelength of the electron and R is the average machine radius.

The fluctuations of the particle energy are associated with a fluctuation of the closed-orbit radial
displacement D ¢/E,. Moreover, during the emission of a single photon, the total radial displacement
X = xg + D ¢/E, does not change and, as a consequence, the radial betatron motion is also affected
by quantum excitation. Since the synchrotron and the betatron frequencies are very different, the
resulting mean square radial spread "xz can be written as the sum of two statistically independent
contributions

02 = 0,7 + D (o,/By)%. (1.119)

In smooth approximation, these two contributions are of the same order [16] and, from Eqgs. (1.85)
and (1.118), we obtain

0,2 = 1o% X, Rp*. (1.120)

The normalized radial betatron spread [see Eq. (1.87)] is therefore

0= om/@ =y (X /v?)! 2. (1.121)

The angular deviations of the emitted photons from the direction of the particle velocity lead to
a very small vertical betatron spread o_, which is of order 1/y, compared to %’ However, the
vertical dimension of the beam in a real machine is mainly determined by the coupling between radial
and vertical betatron oscillations [1, 38]. Owing to imperfections in the construction of the magnets,
misalignments, solenoids or orbit offsets in the sextupoles, such a coupling is unavoidable. It can be
(partially) compensated by the introduction of skew quadrupoles, which thus allow control of the
vertical beam size [39].
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Part 2

TRANSVERSE MODE COUPLING INSTABILITY
DUE TO LOCALIZED STRUCTURES

A relativistic charged particle passing through localized structures of a storage ring, such as RF
cavities, induces electromagnetic wake fields which react on the following particles. If the beam
current is increased beyond a threshold value, this phenomenon leads to a fast single-bunch instability
generally described in terms of transverse mode coupling.

Starting from the Vlasov equation for a simplified model of an electron — positron machine, we
show the existence of instability stop bands at currents below threshold, which are due to the coupling
between high-order and low-order dipole modes. Since the global effect of wake fields is represented
by a transverse kick localized at a single point of the machine, the stop-band pattern repeats
periodically (every half-integer) in the betatron tune v B Denoting by Av B = g mod 1/2 the
fractional betatron tune, the bunch may become unstable at very low currents near the resonant values

or AvB = 1/2 — nv_, where vy is the synchrotron tune.

AvB =nv §

S

2.1 INTRODUCTION

Electromagnetic fields in a storage ring are the superposition of external fields, such as those due
to magnets and RF cavities, and the fields generated by particles in interaction with their environment.
The latter will be referred to as wake fields: they give rise to collective instabilities which set an upper
limit to the maximum achievable current.

Among these collective phenomena, the so-called “fast head —tail effect” or “transverse mode
coupling instability” is of great importance for large electron —positron machines such as PETRA
[40—42], PEP [43] and TRISTAN [44], and it will play a crucial role for LEP at injection energy [45].
The physical mechanism driving the instability can be described as follows: the leading particles of a
bunch create wake fields proportional to their transverse displacement, giving rise to a collective force
on the trailing particles. Under the effect of such a force alone, the transverse oscillations of the bunch
tail could grow linearly with time and this phenomenon has been discussed in relation to linacs [46].
In circular storage rings, however, synchrotron oscillations periodically exchange leading particles and
trailing ones, thus stabilizing the system up to a threshold current (this is strictly true only for
vanishing chromaticity [47]). Above threshold, the combined effect of wake fields and longitudinal
motion leads to a coherent transverse blowup, characterized by a rise-time comparable to the
synchrotron period. The stabilizing effect due to longitudinal oscillations increases with increasing
frequency of head —tail exchange; thus the threshold current is proportional to the synchrotron tune.
It is also proportional to particle energy, because high-energy particles are more rigid against
perturbations: that is why the instability is important at injection.

Most of the analytical theories on beam stability [9, 46— 54] have considered a “distributed
impedance”, corresponding to a collective force smeared out all along the ring. On the other hand, for
particle tracking by computer simulation [55— 58] the effect of wake fields is represented by localized
kicks. These two models lead to different predictions when the betatron tune » B happens to be close
to some resonant values, depending on the synchrotron tune v.. In this case, both the results of
simulation and the conclusions drawn from a discrete two-particle model [45, 59] indicate that the
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stabilizing effect due to synchrotron oscillations may fail at quite low currents, although it works again
for higher currents up to nearly the same threshold as between the resonances.

The distributed impedance of a machine is associated with many different small objects in the
vacuum chamber, such as bellows or pick-ups, placed at essentially random betatron phases along the
ring. The localized impedance, on the contrary, depends on a few large structures whose longitudinal
extent is still short compared to the betatron wavelength: in particular, the accelerating cavities of an
RF station can often be considered as a single localized object. Let us remark that the concept of
localized impedance also implies that the attenuation length of the travelling high-frequency wake fields
is much shorter than a betatron wavelength, which is generally the case. The relative importance of
distributed versus localized impedance is different for different machines and in some cases, e.g. for
PETRA, the smooth approximation is a good one. However, the effect of the transverse localized
impedance is enhanced by larger values of the betatron function at the RF cavities (corresponding to
larger transverse displacements of the particles) and, for machines such as PEP, this represents the
dominant contribution. In the design of LEP, the distributed impedance times the average beta
function in the lattice is kept below the localized impedance times the average beta function in the
cavities.

In order to obtain a better understanding of the coherent synchro-betatron resonances due to
localized impedance, we present an analytical approach based on the Vlasov equation for a simplified
model of a storage ring. We consider a single localized structure and confine our analysis to transverse
dipole wake fields. In Section 2.2, we derive the Vlasov equation for our system, specifying the form
of the collective force. In Section 2.3, we obtain a linear integral equation for the transverse dipole
density which, in the case of a bunched beam (see Section 2.4), can be simplified by assuming linear
synchrotron oscillations and by neglecting the exact azimuthal coordinate of the kicks on the scale of
the bunch length. By Fourier analysis, the integral equation is then reduced to an equivalent
eigenvalue problem, whose solution represents a dispersion relation for the frequencies of the dipole
modes. In Section 2.5, we consider electron—positron machines: for a bunch with Gaussian
distribution, the dipole motion is expanded in the so-called Hermite modes. In this basis, the infinite
matrix to be diagonalized can be truncated to quite small dimensions and its eigenvalues can be
computed easily.

Owing to the assumption of transverse kicks localized at a single point of the storage ring, the
frequency of the dipole modes is only defined modulo the revolution frequency of the bunch. This
means that high-order synchro-betatron satellites are “reflected back” toward low-order satellites.
Thus, for a given range of currents, there can be coupling between modes apparently quite far apart
and such a mechanism gives rise to instability stop bands at currents below threshold.

Section 2.6 presents a numerical study of the eigenvalue problem: we also introduce an
empirical selection rule for mode coupling, which accounts for the stop-band pattern. Section 2.7
contains a few concluding remarks.

2.2 VLASOV EQUATION AND COLLECTIVE FORCE

In our simplified model of a storage ring, all particles perform betatron oscillations with the
same frequency B and are assumed to have an unperturbed synchrotron motion. At a fixed azimuth
0,, particles experience a transverse kick at each turn which depends on their relative longitudinal
positions.
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The pseudo-harmonic betatron motion in the physical phase space (y, py) reduces to harmonic
motion in the normalized phase space (q, p), with respect to a new periodic time coordinate known as
quasi-time [42, 60]. Since we are only concerned with particle dynamics at the fixed azimuth 6,
quasi-time can be replaced by time. Moreover the normalized variable q can be related to the
transverse displacement y through the beta function B at 6, [see Eq. (1.87)]

q = y/\/B. @.1)

Then, if v and p_ denote conjugate synchrotron variables, the single-particle equations of motion
can be written as follows:

T = W Py }ST = —(ws/wRF) sin(wRF'r), (2.2a)
q = wg P, P = —wgq+ B F(rt)yme, (2.2b)

where E (7.t) is the transverse collective force, YRE the RF frequency, wg the synchrotron
frequency corresponding to small-amplitude oscillations and ymc is the particle momentum in the
extreme relativistic case.

Let us now introduce the distribution function y(7,p,.q,p.t), giving the phase-space particle
density at position r = (r,p,,q,p) and at time t. It satisfies the Vlasov equation [46, 47]

(8¢/at) + 7(8y/dr) + p_(8v/dp,) + q(3¥/dq) + p(d¥/dp) = 0. (2.3)
Since the collective force F R is localized at a given azimuth 8, of the storage ring, we need

a relation between time, synchrotron delay t and azimuth 6. Denoting by w, the angular revolution
frequency of particles around the machine, this relation can be written

0 =8, + w (t + 7). (2.4)
Thus the distribution function ¥ must be a periodic function of r with period T, = 27/w,.

In order to specify the form of the collective force F (.t), we introduce the transverse dipole
distribution D('r,p,r,t), which is the first moment of ¢ with respect to q:

D(rpt) = | | dadp qy(r.p,.qpst). (2.5)

Also D must be periodic in 7 with period T,.
Using (2.4), the collective force F_(6.t) produced by wake fields can be expressed in the
following general form:

27 oo
Fc(B,t) = _f j de’ dt’ G(6,t,0°t) A(6't), (2.6)
0 —c

where G(6,t,0't") is a Green function specifying the properties of the storage ring, while A(6,t)
describes the collective motion of the charged particles. Since we want to confine our analysis to wake
fields generated by electric dipole moments, we assume A(8,t) to be given by the average transverse
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displacement at azimuth 6 and at time t, weighted by the longitudinal charge density at that point.
Then, from (2.1), (2.4) and from the definition of the usual dipole density D(7,t)

D(rt) = [ dp, D(r,p,.t), 27
we put
A@Bt) = e /B DI(0—8,—wot)/wo,t]. (2.8)

The Green function G(0,t,0°,t") is the transverse force on a particle at azimuth 6 and at time
t resulting from a point-like dipole excitation at azimuth 6’ and at time t’. Our assumption of
representing the global effect of wake fields by a kick localized at 6 = 6, leads to the following
expression for G:

G(0.4,0't) = (e/R) 8(8—0) (8 —0") w(t—t), (2.9)

where R is the average machine radius and w(At) the transverse wake potential associated with the
localized structure.

It is worth explaining the physical meaning of the factors appearing in Eq. (2.9). The
delta-function 6(60—0") guarantees that wake fields which give rise to a kick at azimuth 6 are excited
at the same azimuth 6’ = 6. However, since our storage-ring model is not invariant under “azimuthal
translation”, the Green function G(6,t,8’t") cannot depend only on the difference 8 — 6’ [61]: we
need to include the factor (8 —8,) in order to describe the localization of the kicks.

The wake potential w(At) can be considered as the “memory” of our localized structure and,
owing to causality, it vanishes for negative values of the argument At. The appearance of the ring
radius R is related to the usual definition of w(At), having the dimensions of a force divided by the
square of a charge or, in standard units, volt/(coulombxmetre). It is the integral over the ring
circumference of the transverse force on a unit charge, following an exciting unit electric dipole at a
fixed time delay At. We represent the global effect of wake fields by an azimuthally localized kick
whose intensity is proportional to the azimuthally integrated force w(At)/R.

Inserting (2.8) and (2.9) into (2.6) and going back to the synchronous frame, which amounts to
replacing 8 by its expression (2.4) in terms of 7 and t, we obtain our final form of the collective
force F (r.t)

2 t
F (rt) = i JBol(t+r)mod Tyl | dt’ wit—t) D(—t't). (2.10)
c

The periodic delta-function 8[(t+7) mod T,] comes from the factor 8(6—6,) in (2.9) and
specifies that particles undergo a localized kick at each machine revolution.

Since the collective force depends on the transverse dipole density D, which in turn is defined
through the distribution function ¢, the Vlasov equation (2.3) is a non-linear integro-differential
equation for . In the next section we will show that, without any further simplifying assumption, it
is possible to derive from (2.3) a linear integral equation for the dipole density D.
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2.3 THE INTEGRAL EQUATION

The Vlasov equation can be used to obtain a second-order differential equation for the dipole
distribution which is formally identical to that of a driven harmonic oscillator, the driving term being
proportional to the collective force F c('r,t). Since the synchrotron motion is assumed to be known, it
is possible to make use of the harmonic oscillator Green function to get a relation between D and the
driving force (2.10), i.e. a linear integral equation for the transverse dipole distribution.

Starting from the definition (2.5) and using Egs. (2.2) and (2.3), we obtain the following
equation for the dipole distribution D(r,p,,t) [62]

D+ wg? D = B ag p(r;p,.t) F(r)fyme, (2.11)

where p(7,p,.t) is the particle distribution function in the synchrotron phase space

p(rp,t) = [ [ dadp ¥(r.p.q.p.) (2.12)

It is a periodic function of = with period T, and, from (2.3) and (2.12), it satisfies the “reduced”
Vlasov equation

(3p/t) + #(3p/7) + D_(3p/3p,) = 0. (2.13)

Equation (2.11) is formally identical to that of a driven harmonic oscillator, but the further dependence
on the synchrotron variables 7 and p,_ has to be taken into account.

Owing to (2.13), the longitudinal distribution p(7,p,,t) is invariant under synchrotron motion
and thus can be considered a constant. Then, if we are able to express the 7-dependence of F (7.t)
through a suitable starting value 7% Eq. (2.11) can be solved by means of the harmonic oscillator
Green function (1l/w ﬁ) sin(w Bt). This is indeed the case and we obtain

t
D(r,p, 1) = (/B/ymc) p(r,p_t) | dt’ sinfwp(t —t)] F[r°(r,p t—t)t], (2.14)

provided the invariant 7°(T,pT,t—t’) reduces to 7 when t’ = t: therefore it is the initial longitudinal
position at time t’ of a particle having final synchrotron coordinates = and p_ at time t. The rh.s.
of Eq. (2.14) takes into account the effect of the collective force F, at all previous times t' <t and
at the corresponding longitudinal positions -r°(-r,p,r,t—t’). An explicit expression for 7° will be given
in the next section, where we consider the case of linear synchrotron oscillations. Inserting the
collective force (2.10) into our solution (2.14) and integrating over p,, we obtain the following
integral equation for D(r.t):

-] t oo
D(rt) = (*B/B) [ dp, p(r;p,.1) | dt’ sinlwp(t—1)] 8I(t' +°) mod Tl | dx w(x) Dix—t't' = x), (2.15)
—o0 —o0 0

where E = ymc? is the relativistic particle energy and we have changed the integration variable t’, in
Eq. (2.10), to x.



According to our model, wake fields are excited by the dipole density D at the fixed azimuth
6, and, as a consequence, the r.h.s. of Eq. (2.15) depends only on D(x—1t’t’—x) [see (2.4)]. Thus we
can focus our attention on the transverse dipole density I—)n(-r) at § = 0, after n machine
revolutions: thanks to the periodicity of D(r,t) as a function of T, it can be written

D, () = D(rnT, — 7). (2.16)

In order to avoid ambiguities, we assume —T,/2 < 7 < T,y/2.

The “reduced” Vlasov equation (2.13) can be solved independently from (2.15) and we assume
the existence of a steady-state longitudinal distribution p(7,p,). Furthermore, we neglect long-range
terms in the wake potential w(x). Then, substituting (2.16) into (2.15) and carrying out the
integration over t’, we obtain an equation for I—)n(")

e o0 sinfw B(kTO + 'rﬁ —7)] %
D, (v) = (¢*B/E) [dp_ p(rp,) = f dxw(x) D _y (x+D),
e k=0 1=[0-°(p, /0t —yrr, 4 0| O
(2.17)
where, because of the delta-function in Eq. (2.15), -rﬁ is implicitly defined as follows:
Tﬁ(’r,pf) = 'r°(T,pT,kTo + 'r]g —7). (2.18)

This happens because the arrival time of a particle at 8 = 8, depends on its longitudinal position.

By a proper choice of the synchrotron distribution p and of the invariant 7°, the integral
equation (2.17) can also be used to discuss the transverse effects of a localized impedance on a coasting
beam.

2.4 BUNCHED BEAMS AND FOURIER ANALYSIS

To simplify the analysis in the case of a bunched beam, we will assume that particles perform
harmonic synchrotron oscillations. Then the invariant 7°, appearing in Eqgs. (2.14) and (2.18), reads

(r,p,t—t) = 7 coslo(t—t)] — p_sin[w(t—t)]. (2.19)

Up to now we have always considered periodic functions of 7 with period T,; nevertheless 7° is
not periodic in 7. However, Eq. (2.17) contains the longitudinal distribution p(7,p,) which, for
bunch lengths o, much shorter than T,, is sharply peaked around = = 0 and p, = 0. Thus the
lack of periodicity in = has no practical consequence.

From Egs. (2.18) and (2.19), we see that =, p_ and -rﬁ are of the same order of magnitude,
given by the bunch length 0. Since, for a normal storage ring, both betatron and synchrotron phase
advances are completely negligible over the length of a bunch, this allows considerable simplification of
(2.17) and (2.18), yielding our final integral equation

D () = (*B/E) [ dp_e(rp,) 2 sin(kwgT,) [ dx w(x) D, _y(x+m), (2.20)
—0 k=0 0
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where
Tk(T,pT) =7 cos(kwsTo) - p, sin(kwsTo). (2.21)

By Fourier analysis, Eq. (2.20) can be reduced to an equivalent eigenvalue problem. As we will
see in the following, this procedure has two main advantages: it leads to a direct interpretation of the
instability in terms of transverse mode coupling and allows a numerical solution based on standard
computer routines for matrix diagonalization.

We start by defining the Fourier transform D(w), with respect to time t = nT, — 7 [see
Eq. (2.16)], of the dipole density l—jn(-r) at the azimuth 8, after n machine revolutions

et To/2
Dw)= = [ dr expl—iw(nTo—n)] D (7). (2.22)
n=-w —Ty/2

We also introduce the Fourer transform Z (@) of the transverse wake potential w(t). This is
generally known as the transverse impedance, having the dimensions of ohm/metre, and is defined as

Z ()= i | dt exp(—iwt) w(t). (2.23)

—oco

Let us now express the betatron and synchrotron frequencies in units of the revolution
frequency w,: thus vg = wB/wo is the betatron tune and vy = wglwg the synchrotron tune. We
can also write the frequency « (which is a complex number) as an integer multiple of w, plus a
fractional tune », whose real part is assumed to be in the range [—1/2, 1/2]

0=+ w,, |Re@]|<1/2 (2.24)

where / is an integer.

Since the particles undergo periodic kicks at time intervals T,, the Fourier transform D(w) of
the dipole density contains only discrete spectral lines. As we will see, it can be obtained as a
superposition of “dipole modes” characterized by a regular pattern of spectral lines with frequency
intervals ,. Then it is convenient to use the decomposition (2.24) in order to define the following
two functions:

D,(») = Di(¢+7) w,],

(2.25)
Z_ () = Z [(m+v) o).
Indeed a Fourier analysis of the integral equation (2.20) yields the following eigenvalue problem:
o0
D) = 2 Ay, () D (), (2.26)

m= —oo
where the matrix A, (v) is given by [62]
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oo

Apn®) = (e?Bwo/E) Z () = sin(2nkvp) exp(—i2no)

k=0
{a¥ p(d) Jo(wo{2T [(£+v)*+ (m+v)*— 2(¢/ +v)(m+v) COS(ZﬂTkJ’s)]}l’z). (2.27)
0

In this formula, J,(x) is the Bessel function of the first kind of order 0 and p(J) is the steady-state
longitudinal distribution expressed as a function of the synchrotron action variable J, which is defined
by J = (+2 +p_rz)/2. Since we consider bunches whose length in time o, is much shorter than T,
corresponding to a longitudinal distribution p(J) strongly localized near J = 0, the limits of
integration over J have been extended from 0 to . Equations (2.26) and (2.27) are similar to
Eqgs. (13) and (18) —(20) in Ref. [52] and to Egs. (77) —(79) in Ref. [9], where a distributed impedance
was assumed. However, instead of an integral equation for D(«), we obtain the eigenvalue problem
(2.26) relating the discrete spectral lines D,(v). Moreover, our kernel Apn®) contains a sum over k
(contrasted with an integral over time) which leads to the resonant stop bands discussed in Section 2.1.

Equation (2.26) can be solved only for a discrete set of values of the fractional tune », fulfilling
the condition

det {8, — A, )} = 0. (2.28)

This represents a dispersion relation for the frequency spectrum of the transverse dipole modes D,(v),
obtained as corresponding eigenvectors of Eq. (2.26).

If condition (2.28) is satisfied by a complex value of » with negative imaginary part, the system
is unstable. In the following, we shall study the fractional tune of each mode as a function of the
bunch current Iy: when two of these modes get coupled, i.e. when they happen to have the same
fractional tune », a further increase of current leads to instability.

2.5 GAUSSIAN BUNCHES

In order to compute the matrix elements Apn®) given by Eq. (2.27), we have to specify the
impedance Z _(v) and the longitudinal distribution p(J). Since we want to consider the case of
electron — positron storage rings, let us start by assuming a Gaussian distribution with standard
deviation oy in the synchrotron phase space (7, p,). This distribution will be normalized to the total
number of particles per bunch Ny and, owing to the definition of J, it becomes

p(J) = (Np/270,%) exp(— J/o?). (2.29)

Then the integration over the action variable J, appearing in Eq. (2.27), can be carried out
explicitly and the matrix A, m®) reduces to a very simple form, namely [62]:

Alm(") =K Zm(v) b Cn(v) Hn[o(! +v)] Hn[a(m+v)], (2.30)
n=0
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where ¢ = wg o, is the angular bunch length and the parameter K, given by
K= i(NbeZBw°/21rE) = iel B/E, (2.31)

is proportional to the bunch current Iy = Nbe/To.
The functions Hn[o(f +»)] represent the so-called Hermite modes, defined by

H_(x) = (n)*2 exp(—x%/2) (x/y/2)™ (2.32)

Indeed their Fourier transform corresponds to a Gaussian times a Hermite polynomial of order n.
The coefficients C,() are given by

C, = 2 sin(ZWkVB) exp(—i2nkv) [2 cos(2nkv )I". (2.33)
k=0

The infinite sum over k takes into account the effect of the localized kicks at all previous turns. As
we will see, these coefficients contain “small denominators” corresponding to synchrotron satellites of
the betatron tune v = ’g + my, and their periodicity leads to the instability stop-band pattern
described in Section 2.1.

Since the Hermite modes Hn[o(l+v)] form a complete set, we can expand the eigenvectors
Dy(v) of Eq. (2.26) in this basis

8

D)) = 2 « 2 Hn[o(é’ +»)]. (2.39)
n=0

Then, inserting (2.30) and (2.34) into (2.26), we get our final eigenvalue problem for the expansion
coefficients a_:

n
ap =KC () = M_0)a, (2.35)
m=0
where M| (v) is given by
M) = 2 HJo(f+v)]Z,@) H_ [o(/+)]. (2.36)
l=—-w

This represents the “impedance matrix” in the basis of the Hermite modes. Equations (2.35) and (2.36)
are again similar to those obtained for a distributed impedance (see in particular Ref. [9]), but our
assumption of localized kicks leads to the appearance of the resonant coefficients C,0).

The eigenvalue problem (2.35) is associated with the following compatibility condition:

det 5 — KC () M ()} = 0. (2.37)
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This is a dispersion relation giving the fractional tune » as a function of the parameter K, which is
proportional to the bunch current Iy [see (2.31)].

Let us remark that our problem has two main “inputs”, namely the longitudinal distribution
p(J) and the impedance Z (@) The choice of a Gaussian distribution leads to a natural basis given
by the Hermite modes [see (2.30)]. The impedance matrix M, () in this basis, multiplied by the
resonant coefficients Cn(v), characterizes the final eigenvalue problem.

To investigate the effects of localized structures on a short bunch of electrons or positrons, we
assume the following model impedance:

Z,(@) =R, (@) /(1 —iQ/e, — o). (2.38)

For a quality factor Q = 1, this represents the transverse impedance of a broad-band resonator with
resonant frequency w. and peak value R 1 These parameters are chosen so as to obtain a best fit of
the realistic impedance computed by numerical methods [63, 64]. The resonant frequency w, tumns
out to be of the order of the pipe cut-off frequency, i.e. the minimum frequency required for field
propagation inside the pipe, and the ratio w /@0 is generally very much larger than unity. Therefore
the impedance matrix elements M, ®), defined by (2.36), become independent of the fractional tune
v and can be computed analytically with very good accuracy [65]. They are proportional to
(n! m! 20+ M)-172 a4 decrease very quickly for large values of n and m. Thus we can truncate the
infinite-dimensional eigenvalue problem (2.35) to a reasonable size (usually a matrix dimension of a
few tens is sufficient), relying upon numerical methods for its solution.

Before concluding this section, let us come back to the resonant coefficients C,(). Expressing
the trigonometric functions sin(2zky B) and cos(2'nkvs) by means of complex exponentials and using
the Newton binomial formula, Eq. (2.33) becomes

n -]
C,0) = (1/2) = (mn) kZ {exp[ —i27k(» + (n— 2mpy —v B)] — expl —i27sk( + (n— 2mp +v B)]}’
m=0 =0

(2.39)

where (mn) are binomial coefficients. Thus the infinite sum over k reduces to a geometric series: in
the convergence half-plane Im(y) < 0, we obtain the following result

n sin{2n[y B~ (n—2m)» s]}
C,0) = (1/2) = (n’i) (2.40)
m=0 cos(2mv) — cos{2a{v B~ (n—2m J}

The form of this expression is a direct consequence of representing the global effect of wake fields by
localized kicks and a careful discussion of its implications is given below.

We start by remarking that the coefficients C_(v) depend on the fractional coherent tune »
only through cos(27v) and therefore C,» is equal to Cn(-—v). Since we have assumed a
broad-band impedance, the dependence of the matrix elements M_ = on » is negligible. Thus, at a
given current I, if v = v, is a solution of the dispersion relation (2.37), the opposite value
v = —v, is a solution as well. Since a negative imaginary part of the fractional tune » corresponds
to bunch instability, we see that a stable situation is only possible when all the solutions of the
dispersion relation are real numbers. Moreover, from (2.24), we can consider Re(r) to be in the
range [0, 1/2].
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If the betatron tune Vg is replaced by vg + 1/2, the coefficients C_(v) remain the same
provided » is replaced by 1/2 — ». Since bunch instabilities depend only on the imaginary part of »,
this means that the behaviour of our system at a given current repeats periodically, every half-integer in
vg- Thus let us choose also vg in the range [0, 1/2].

Expression (2.40) shows that, if v approaches a synchro-betatron satellite vg + m v, then all
the coefficients C_(v) with n having the same parity as m and n > |m| become unbounded.
From the dispersion relation (2.37), we see that a resonant value for these coefficients is only
compatible with a vanishing value of the parameter K, proportional to the bunch current Iy Thus,
in the limit of vanishing current, the orthogonal dipole modes are characterized by a fractional
coherent tune » approaching the synchrotron side bands v, + m» g in the following, we will refer
to each of these modes as “mode of order m” or simply “mode m”.

Let us consider the case » + v, i.e. the case of mode 0 for vanishing current. From (2.40), it
follows that all the odd coefficients C2n + I(VB) have a finite value, whereas the even coefficients
Czn(vB) diverge. We have

im  [Cp@)/Co)] = (). (241)

V-’VB

If we factorize C_(v) in the product C (v) M appearing in the eigenvalue problem (2.35), in the
limit » - » B the odd rows of the impedance matnx will be multiplied by zero and the even rows by
the binomial coefficients (l'zln)' Then, for vanishing current, the orthogonal mode 0 is a mixing of all
the even Hermite modes Hy, starting from H . By similar considerations we conclude that, always
for vanishing current, each orthogonal mode m is a mixing of all the Hermite modes with the same
parity starting from H|m|'

Since the denominators in expression (2.40) contain only cosines and we have chosen Re(v) in
the range [0, 1/2], any synchro-betatron satellite » = vg + my, falling out of this interval is
“reflected back” at the edges 0 or 1/2. Thus, in the limit of vanishing current, the dipole modes
have a fractional tune » approaching the synchrotron side bands » i + myg if a side band falls out

of the interval [0, 1/2], it is reflected back into this range.

2.6 RESULTS OF THE NUMERICAL ANALYSIS

The conclusions presented in this section have been drawn from a numerical study of the linear
system (2.35). These conclusions therefore have an empirical character, although their simplicity and
regularity suggest a deeper connection with the structure of the resonant coefficients C_ (v), given by
(2.40), and thus a more general validity.

Let us recall that Eq.(2.35) represents our final eigenvalue problem for the expansion
coefficients @, expressing the transverse dipole modes in the basis of the Hermite modes. The
parameter K, defined by (2.31), is proportional to the bunch current I and the matrix M_ = can
be considered independent of the fractional tune » because we have assumed a broad-band
impedance.

The first result of the numerical analysis can be stated as follows:

i) When the fractional betatron tune AvB =g mod 1/2 is close to the resonant values Av g = Mg

or Av g = 12 = nvgan instability stop band appears at very low currents.
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If the current is increased beyond this stop band, the system is stable again, but it becomes definitively
unstable above a threshold value Ly, (see Figs. 4, 5, 6 and Table 1).

The threshold current is weakly dependent on the betatron tune and can be approximated by
the same formula obtained for a distributed impedance, namely [41, 42, 45]

v, (Efe)
Iy = 2n F(o). (2.42)
B (@ /wo) (R | /Q)

The form factor F(o) is minimum when the bunch length is of the order of the beam-pipe radius
(which is true for LEP) and in this case it is near unity.

According to the discussion following (2.40), the behaviour of our system at a given current
repeats periodically every half-integer in vg- Thus let us choose vg in the range [0, 1/2]. As already
remarked in the last section, if a synchrotron side band Vg + myg is out of the interval [0, 1/2], it is
“reflected back” into this range. If we choose a sufficiently high mode number |m|, depending on the
values of » B and v, it will happen that » B + m, is reflected back and falls between modes 0 and
—1 (ie. between v, and vg ~ vy). This phenomenon accounts for the second result of the

numerical analysis:

ii) The instability stop bands are due to the coupling of mode 0 or mode —1 with a higher-order
mode.
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Table 1: Parameter List

In all numerical calculations we have assumed the following set of parameter values
(suitable for LEP):

Energy (at injection) E = 20 GeV
Revolution angular frequency wo = 2w 11245.5 Hz
Bunch length (¢ = o, €) ! = 2cm
Betatron function in the RF cavities = 40m
Synchrotron damping time g = 0202
Betatron damping time 8 = 0.404 s

Broad-band resonator model:

Localized transverse impedance R, = 1920 k@/m
Resonant frequency w. = 10° w,
Quality factor Q =1

The case of the coupling between mode 0 and mode 4 is illustrated in Fig. 7. Starting from current
I, =0 and increasing I mode 0 moves downward until it reaches mode 4 (whose fractional tune
v changes very little with current). After the coupling and the instability stop band, where » becomes
a complex number, mode 0 “emerges” and moves again downward: when it couples to mode —1,
the ultimate threshold Ln is attained. We should point out that the role of modes 0 and —1 in
the statement (ii) depends on our choice of a bunch length o suitable for LEP (see Table 1).
Indeed the impedance matrix Mim is a function of the bunch length and thus, changing o, modes 0
and —1 might be replaced by different modes, suchas —1 and —2 or —2 and —3 [59].

The statement (ii) does not specify if it is mode 0 or mode —1 which couples to a
higher-order mode. This is an important question because, as shown in Fig. 8, the appearance of a
stop band for a given value of vg depends on the answer to this question. From the results of the
numerical analysis, we have established the following “selection rule”, accounting for the instability
stop-band pattern:

ili) Only modes with the same parity can couple giving rise to an instability stop band.

It is worth explaining what is the parity of a mode and to clarify the meaning of this selection rule. In
the last section we showed that, for vanishing current, the eigenvectors of the linear system (2.26) do
not reduce to pure Hermite modes, but rather to a mixing of an infinite number of them. However,
owing to the structure of the resonant coefficients Cn(v), which is a direct consequence of our
assumption of localized kicks, each eigenvector can only contain even Hermite modes or odd ones,
thus allowing a definition of its parity. Our selection rule refers to this “vanishing-current parity”,
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although, at finite currents, the eigenvectors become a mixing of the whole set of Hermite modes. The
numbers marked near each branch in Figs. 7 and 8 express only the dominant Hermite component at
that current.

In order to illustrate the role of the selection rule (iii) in explaining the instability stop-band
pattern, let us compare Figs. 6 and 9. In Fig. 9 we have indicated the coupling modes giving rise to
each instability gap. When the betatron tune vg is in the ranges [0, »_/2] or ["3/2’ vs], we find only
an ultimate threshold due to the coupling of modes 0 or -1, respectively, with “themselves”. This
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means that the fractional tune » at threshold current is 0 and it is a consequence of the symmetry
C,0) = C (—v) of the resonant coefficients (2.40). For increasing values of » g We see that modes
=2, —3, —4 and -5, reflected back at » = 0, are alternatively coupled with modes 0 or —1,
according to their parity. A similar pattern is obtained starting from vg = 1/2 and considering
descending values. When vg is in the range [(1 —vyl2, 1/2], we find only an ultimate threshold due
to the coupling between modes —1 and 1. Then, for decreasing values of vg: modes 2, 3, 4 and
5, which are reflected back at » = 1/2, get coupled alternatively with modes 0 or —1, according to
our selection rule (iii). The reason why we do not consider higher-order modes will be explained in
the following.

We should remark that, in the instability stop bands due to the coupling between even modes
and mode 0, the transverse dimensions of the bunch and the oscillation amplitude of its barycentre are
comparable. On the contrary, when the instability is due to the coupling between odd modes and
mode —1, the main blowup concerns the transverse dimensions of the bunch, without a
correspondingly large barycentre displacement. This phenomenon can be understood by remembering
that the orthogonal mode 0 has a dominant component given by the Hermite mode H o Since the
Hermite modes H, correspond to a dipole distribution described by a Gaussian times a Hermite
polynomial of order n, only the excitation of Hj leads to a transverse displacement of the bunch
barycentre. From Fig. 9, we see that the stop bands associated with mode 0 always occur on the
right of a resonance, whereas those associated with mode —1 occur always on the left of a resonance.

The following is another result of the numerical analysis.

iv) The instability growth rate in a stop band is proportional to the width of the stop band itself and
this width decreases for increasing mode numbers.

In an electron—positron storage ring, only those instabilities with a growth rate larger than the
damping rate are effective. Then, from the statement (iv), we see that stop bands associated with
very-high-order modes will disappear.

We have shown that the synchrotron side bands v, + m vy are reflected back at the edges of
the interval [0, 1/2] and, for |m| large enough, multiple reflections can take place. If Ve is an
irrational number, this mechanism gives rise to an infinite set of resonant values for »,, which is dense
in the interval [0, 1/2]. Thanks to damping (or to other stabilizing effects such as Landau damping),
statement (iv) leads to a high-order mode cut-off which limits the number of resonances.
Considering typical damping times and synchrotron tunes in electron — positron machines, the only
stop bands actually observable correspond to mode numbers up to +5. For LEP at injection energy
(E = 20 GeV), the instability rise-time in these stop bands is of the order of a thousand machine
revolutions, i.e. about one-fifth of the betatron damping time.

2.7 CONCLUSIONS

Starting from the Vlasov equation and confining our analysis to transverse wake fields generated
in a single localized structure, we have derived a linear integral equation for the dipole density. By a
numerical study of the associated eigenvalue problem, we have shown the existence of instability stop
bands at currents below threshold, which are due to the coupling between high-order and low-order
modes.

This prediction is in good agreement with the results of particle tracking, based on computer
simulation, and with the conclusions drawn from a multi-particle model recently investigated [66]. For
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example, Fig. 10 shows the transverse evolution of the bunch near a stop band, for three increasing
values of current: it was obtained by means of the simulation program SIMTRAC [57], with
longitudinal wake fields switched off. Up to now, the existence of such instability gaps has not been
confirmed by direct observation; however, a machine experiment aimed at measuring the rise-time in
these stop bands would give information about the ratio between the localized impedance (mainly due
to RF cavities) and the distributed impedance [67].

A more realistic model of electron — positron storage rings should include effects not considered
here. For example, in order to obtain better estimates of the instability growth rates and to prove the
disappearance of stop bands associated with very-high-order modes, the Vlasov equation should be
replaced by the Fokker— Planck equation [68, 69] taking into account damping and noise caused by
synchrotron radiation. Other possible mechanisms which can affect the instability stop-band pattern
are the particle tune spread, leading to Landau damping [70, 71], and the combined effect of two or
more localized structures [72, 73].
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Part 3

BEAM - BEAM INTERACTION
AND RENORMALIZED FOKKER —PLANCK EQUATION

It is shown that the beam — beam interaction in electron — positron storage rings is equivalent to
an additional source of noise for the betatron oscillations.

A white noise acting upon a non-linear oscillator causes a fast loss of coherence in its phase.
This loss of coherence induces a broadening of the resonances, thus avoiding the problem of the
divergent perturbative series which arises in the study of non-integrable Hamiltonian systems.
A ‘“renormalized” Fokker— Planck equation is established which contains new diffusive terms
corresponding to the presence of resonances. The solution of this equation is exhibited explicitly in a
simplified case. This allows an analytical approach to the problem of the incoherent beam —beam
instability, which sets an upper limit to the maximum attainable luminosity in storage rings.

3.1 INTRODUCTION

The study of the beam—beam interaction in high-energy particle storage rings is of great
importance for the design of new accelerators and for the improvement of the already existing ones. It
is experimentally observed [16] that, when the number of stored particles exceeds a threshold value
which depends on the physical parameters of the machine, the size of the beams blows up; this means
that the luminosity ceases to increase or that one of the beams is lost. The main problem is to
understand the dependence of this threshold value on the physical parameters, for example, on the
particle energy, the ring radius, the number of bunches per beam and the betatron frequency. Such an
understanding would allow the designer to choose the optimum values for these parameters and to
suggest a way to prevent beams from blowing up.

In the case of electron— positron storage rings, as we have seen in Section 1.6, there is large
betatron damping and quantum noise due to synchrotron radiation. This leads to a fast relaxation to
the steady-state distribution and makes it possible to rely on computer simulation [74—77]. Analytical
approaches to the problem of the beam —beam interaction in storage rings have usually been
attempted by means of simplified models [78] based on the theory of non-linear resonances [79].
These models do not take into account the fundamental role of damping and noise. To our
knowledge only two attempts have been made to tackle this problem [80, 81], but unfortunately none
of them leads to a satisfactory explanation of the diffusion induced by the resonances in the presence
of noise.

We present a statistical approach to the simplified problem of the “strong beam —weak beam”
interaction which was suggested by the phenomenological analysis quoted in Ref. [82]. This approach
allows us to calculate on an idealized model (see Section 3.5) the dependence of the maximum
luminosity on the physical parameters of the storage ring. Our starting point is the Fokker — Planck
equation for the particle distribution function in betatron phase space, with the effect of damping and
noise included. The beam —beam interaction adds to this equation a term proportional to the
first-order derivatives in the phase-space variables with a time-dependent coefficient. We will show
that the main contribution of this term is equivalent to the effect of an additional source of noise. The
new equation, obtained by a properly defined average process, will be referred to as the “renormalized”
Fokker — Planck equation. It will be shown further that, under suitable assumptions, the problem can
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be reduced to a discrete noisy map. Indeed our approach is similar to the one used to deduce the
Chapman — Kolmogorov equation [83— 85] and the path-integral solutions [86] which appear in the
study of period-doubling bifurcations and transition to chaos [87]. Though our discussion is
specifically aimed at the problem of the beam — beam interaction in electron storage rings, the method
we shall present has a wider applicability.

We now specify the parameters which characterize our system. Let us consider a linear
oscillator of given mass and frequency. Its phase-space trajectories are circles, when the momentum is
normalized using the oscillator mass and frequency. According to the fluctuation — dissipation theorem
[88], dissipation is always accompanied by a noise which drives the oscillations and causes a
fluctuation of their amplitude. We shall assume this noise to be white, which is justified in the case of
betatron oscillations of high-energy particles in storage rings (see Section 1.6). The dissipation is
described by a damping time = d giving the time interval after which the phase-space distribution
function relaxes to a Gaussian steady-state distribution, characterized by a standard deviation o.

Let us now suppose that our system undergoes a series of instantaneous interactions (kicks)
equally spaced in time at intervals At. The interaction potential is assumed to be a function of the
phase-space variables and to vary strongly on a scale equal to o. The natural unit for the potential is
o?/At; in this unit, the strength of the interaction is expressed by a dimensionless parameter e.

Owing to damping and noise, our system is not Hamiltonian and the strength of its
non-Hamiltonian part is characterized by the dimensionless parameter p = At/r a which is the inverse
of the number of kicks per damping time. We shall assume both the parameters ¢ and p to be
small compared to unity.

For times much shorter than the damping time, the white noise gives rise to a stochastic change
of the oscillation amplitude similar to that of a Brownian motion. (It also gives rise to a fluctuation in
the phase of the oscillations, which is negligible since it is much smaller than 27.) Owing to the
non-linearity of the interactions, the perturbed frequency of the oscillations depends upon their
amplitude. Thus the “diffusion in amplitude”, caused by the white noise, gives rise to a “diffusion in.
phase”, i.e. to a loss of correlation in the phase of the oscillations.

Our renormalization procedure for the Fokker— Planck equation is based on the assumption
that the following inequality holds:

(p/e)"? << 1. (3.1)

As we will see in the next section, this condition is equivalent to assuming the diffusion in phase to be
much faster that the diffusion in amplitude.

When applying these considerations to the betatron oscillations in electron — positron storage
rings, it is found convenient to introduce new coordinates and momenta. These are related to the
usual variables through the square root of the beta function [see Eq. (1.87)]. Then, apart from a factor
of order unity depending on the geometry of the storage ring, the quantity o for the radial betatron
oscillations is given by [see Eq. (1.121)]

o =y (k)2 (3.2)

where X, is the Compton wavelength of the electron, v is the particle relativistic dilation factor and
v is the betatron tune, i.e. the betatron frequency measured in units of the ring revolution frequency.
The corresponding value of o for vertical oscillations is given by the same expression, but is
multiplied by a factor depending on the coupling between radial and vertical betatron oscillations. The
time interval At between two kicks is

At = wR/cny, (3.3)

where R is the average machine radius and ny is the number of bunches per beam.



The beam —beam interaction is the interaction of a single particle of one beam with a whole
bunch of particles of the other beam. Thus, if Ny is the number of particles per bunch, related to
the beam current and to the number of bunches 0y, the dimensionless parameter ¢ expressing the
strength of the interaction is given by

e = Ny (r/%p) @), (34)

where I, is the classical radius of the electron. The value of & divided by 2« is the so-called “linear
tune shift”, provided the following condition is satisfied [89]:

e cot(2mv) << 1. 3.5)

From Egs. (1.95), (1.108) and (1.109), the dimensionless parameter p, i.e. the inverse of the
number of kicks per damping time, can be written

p = (n/ng) C/R) 7. (3.6)

A typical value of p for the existing storage rings [75, 78] is p = 5x 10~*. The value of ¢ is chosen
so as to obtain the maximum increase of the beam luminosity without causing the beam to blow up.
For the existing accelerators, the maximum values of ¢ are of order ¢ = 2x10~! (corresponding to
a linear tune shift of about 0.04). These values satisfy our assumption (3.1).

We will, however, restrict our study of the beam —beam interaction to values of ¢ somewhat
smaller than the maximum value. Indeed, computer simulation [77] shows that the first basic
modifications of the particle distribution function, such as “exponential tails”, already occur at these
smaller values of e. For example, in the case of LEP [90] at a particle energy of 50 GeV and with a
beam current of about 1 mA, we obtain ¢ = 5x1072 and p = 5x 10™*%, which give (p/e)!’® = 0.2.
Thus, besides assumption (3.1), which is still quite well satisfied, we will in the following assume

e << (p/e)'”3. 3.7

Section 3.2 contains a discussion of the assumptions used and gives a qualitative interpretation
of the role of noise as a “detuning” mechanism. In Section 3.3, we shall derive the renormalized
Fokker — Planck equation for a rather general class of systems. Section 3.4 contains a mathematical
description of the detuning mechanism based on considerations of operator algebra, stochastic
differential equations and symplectic maps [29— 31, 91, 92]. In Section 3.5, we shall apply our results
to an idealized model of the strong beam — weak beam interaction in electron — positron storage rings.
There we derive the dependence of the maximum luminosity on the physical parameters of the storage
ring. This dependence is in qualitative agreement with the experimental data. Section 3.6 contains a
summary of the results.

3.2 THE BEAM - BEAM INTERACTION IN ELECTRON STORAGE RINGS
3.2.1 The Fokker— Planck Equation for Betatron Oscillations

For simplicity we shall only consider one-dimensional betatron oscillations; the extension to the
realistic two-dimensional case is in principle straightforward. The equations of motion are customarily
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written for the normalized variables q and p, which are related to the particle displacement y and
its conjugate momentum Py through the formulae [see Eqs. (1.57) and (1.87)]

a=y/B »p=BUC/B)py — yB/28), (3.8)

where B is the betatron function and E the particle energy.

According to the discussion of Section 1.6, in the new variables q and p the equations of
motion including the effect of the synchrotron radiation are equivalent to those of a linear, damped
oscillator, driven by white noise

qQ=wp, P= —wq-—ap+ 2K (3.9

Here «, is the betatron frequency, a« is the damping constant and K is the intensity of the
quantum noise, associated with the stochastic variable £(t) which has zero mean value and is
delta-correlated, 1.e.

E@) =0, (&) &+ = (). (3.10)

Let us consider the distribution function y(q,p;t) in the phase space with coordinates q and p at
time t. The Fokker—Planck equation [29—31] associated with the system (3.9) of stochastic
equations can be written

ay/ot = Ly, (3.11)
where L is an elliptic differential operator given by
L = w, (q 8/0p — p 3/8q) + (98/9p) (a p + K 8/8p). (3.12)

If y(ty) is the initial distribution function, the formal solution of Eq. (3.11) is

(1) = expl(t—to) L1 ¥(to)- (3.13)

The diffusive term in L, i.e. the one containing the second-order derivative with respect to p, gives
rise to a “spreading” of y(t) while the streaming terms, i.e. those containing at most first-order
derivatives, determine the motion of the “centre of mass” of the distribution. The deterministic part of
Eq. (3.9) causes this centre of mass to move with frequency w, along a spiral toward the origin.

With the damping constant « and the intensity of the quantum noise K, we can form a
quantity having the same dimensions of q and p,

o = (K/a)'2. (3.14)

It can be used as a natural unit for q and p; from Egs. (3.11) and (3.12), it follows that after a time
of the order of the damping time 4 S 1 the system reaches a steady state characterized by a
distribution function \[zs(q,p) which is a Gaussian with standard deviation o,

¥4(a,p) = (1/270?) expl —~(q* +p?)/20°]. (3.15)

The quantity o2, related to the beam emittance [60], is proportional to the average energy of the
betatron oscillations and its thermodynamical interpretation is therefore that of a temperature.
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3.2.2 The Effect of the Bearn— Beam Interaction

When a charged particle of a beam intersects a bunch of particles of the other beam, it
experiences an electric and a magnetic force which at ultrarelativistic velocities are essentially equal.
Their components in the betatron plane arise from a potential as in the electrostatic case.

Since the bunches are equally spaced and since their longitudinal extension is much shorter than
the betatron wavelength, we can describe the effect of the beam —beam interaction on a charged
particle as a sequence of instantaneous kicks with a constant time interval At.

To simplify the analysis, we shall assume that one of the two beams (the “strong” beam)
contains many more particles than the other one (the “weak” beam). Therefore the former is not
affected in practice by the latter and the problem is reduced to the study of the influence of the strong
beam on the weak one. In the one-dimensional case, the distribution function of the strong beam
relaxes to the steady state ¢ (q,p) of Eq. (3.15). Such a distribution generates an interaction potential
which varies on the natural “length” scale given by ¢ and can be written as ¢U, where the
dimensionless parameter e measures the strength of the interaction and U is of order o%/At. We
shall further assume that the beam —beam interaction does not affect the focusing properties of the
storage ring. This is true provided condition (3.5) is satisfied [16, 89].

Since the interactions are assumed to be instantaneous, instead of the distribution function y(t)
of the weak beam we shall use its “snapshots” immediately after and immediately before the kth kick,
namely

P*(k) = lim y(k At + 1),
T=0*
(3.16)
P (k) = lim kAt — 7).

T+07

As we will see in Section 3.3, the effect of a single kick on the distribution function can be described
by the evolution operator exp(At M). Here M is the so-called Lie operator associated with the
interaction potential ¢U and defined by

Mf = e [Uf], 3.17)
where f is an arbitrary (regular) function on the phase space and [U,f] is the Poisson bracket [14]
between U and f. The factor At, which multiplies M in the evolution operator, has been

introduced only for dimensional reasons and depends on the normalization chosen for the interaction
potential ¢U. Taking into account Egs. (3.13) and (3.16), we have

P*(k) = exp(At M) P~ (k),

(3.18)
P~ (k+1) = exp(At L) P* (k).
Putting together these two equations one obtains
P*(k+1) = exp(At M) exp(At L) P*(k),
(3.19)

P~ (k+1) = exp(At L) exp(At M) P~ (k).
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Denoting the limits for k+x of P*(k) and P~ (k) by P* and P-, respectively, the
steady-state distributions P* and P, if they exist, satisfy the equations

P* = exp(At M) exp(At L) P* = exp(R*) P*,

(3.20)

P~ = exp(At L) exp(At M) P~ = exp(R7) P~,

where the operators R* and R~ are related to M and L through the so-called
Campbell — Baker — Hausdorff formula [91]. A class of solutions of Egs. (3.20) can be obtained by
solving the differential equations

R*P* =0, R-P- =0 (3.21)

From Eq. (3.12) we see that for a Hamiltonian system, containing neither damping nor noise terms,
the evolution operator exp(At L) reduces to a rotation in phase space of an angle w, At. In this case
the series defining R* and R~ [through Eq. (3.20) and the Campbell — Baker — Hausdorff formula]
would not converge [92] owing to the effect of resonances, which leads to the so-called problem of
“small denominators”.

3.2.3 Qualitative Interpretation of the Role of the Noise

Before discussing the problem of the convergence of the perturbative series, we want to give a
qualitative interpretation of the effect of the white noise on the resonances. Instead of the Cartesian
coordinates q and p in phase space, we will use the polar coordinates A and ¢, where A is the
amplitude and ¢ is the phase of the betatron oscillations. As we will see, the main effect of the white
noise is a loss of coherence in the phase ¢. This loss of coherence gives rise to a “broadening” of the
resonances and introduces an effective cut-off in the series defining R* and R~.

From our previous assumption on the interaction potential eU, it follows that the maximum
change in ¢ due to a single kick is of order e. In the absence of noise, and to first order in &, the
average effect of the beam —beam interaction on ¢ is to change the betatron frequency from its
unperturbed value w, to @, + &€ Aw(A). Here Aw(A), which depends on the interaction potential,
is a non-linear function of the amplitude A with natural scale o. The equation of motion for the
phase ¢ isthen

¢ = w, + e Aw[A(t)] + O(e?). (3.22)
For times t much shorter than the damping time 74 = 1/a, the effect of the white noise is to
introduce a stochastic change in the oscillation amplitude A similar to that of a Brownian motion.

Indeed, from Eq. (3.9),

A(t) = Ay + AA(t), (AA() =0,

(3.23)
(AA(t) AA(t+7) = Kt (72 0),
follows. Using natural units o for the amplitude and At for time, from Egs. (3.14) and (3.23)
[AA(t)/e]?) = (a At) (t/At) = p (t/At), (3.24)
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follows. The dimensionless quantity p = a At gives a measure of the intensity of the white noise.
Expanding A«[A(t)] in powers of AA(t), we obtain

Ac[A(1)] = Aw(Ay) + Aw’(Ap) AA(L) + 0([AA(t)/0]?), (3.25)
where Aw’ is the derivative of Aw with respect to A.
To solve Eq. (3.22), we begin by splitting the variable ¢(t) into the sum of a deterministic part
and a stochastic one A¢(t). Using (3.22) and (3.25), the equation of motion for the stochastic part is
Ad(t) = (1) — ((t) = & Aw’ AA() + O(e?). (3.26)
Integrating this equation, squaring, and averaging the result, from (3.23) and (3.24) one obtains

[Ap(®)]? = 2 (Aw’)? [AAM)]) t2 = (Aw’ o At)? €2 p (t/AL)°. (3.27)

In the natural units o and At, the dimensionless quantity Aw’ o At is of order one, so that

[As(1)]2) = €2 p (t/At)3. (3.28)
We can now define a correlation time + corr oY
Teorr = At (2 p)~173. (3.29)

After a time t = 1 corT the uncertainty A¢ in the phase of the betatron oscillations becomes of order
one. This is equivalent to saying that the kicks become uncorrelated. The series defining R* and
R~ can thus be limited to a finite number of terms, which corresponds to the number of correlated
kicks N opr 8iven by

N JAt = (e2 p)~172. (3.30)

corr  "corr

In order that expansion (3.25), in which only the first order term in [AA(t)/o] has been
retained, be valid after a time t = Tcorr’ the amplitude variation AA(r must be much smaller
than o. Since, from Egs. (3.24) and (3.29), we have

COIT)

AA(rgy o = ([AA(r Mol = [p (1, JADI = (p/e)?, (3.31)

we must require the validity of (3.1). This assumption implies that the process of “phase diffusion” is
much faster than the process of “amplitude diffusion”. In order that the term ¢ Aw’ AA(T o in
Eq. (3.26) be larger than the term of order &%, which has been neglected, a further assumption is
needed, namely, condition (3.7).

In the next section, we shall formulate the whole problem in a more general way, deriving an
equation which is equivalent to (3.21) and which will be referred to as the renormalized

Fokker — Planck equation.
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3.3 THE RENORMALIZED FOKKER - PLANCK EQUATION

In this section we shall derive the renormalized Fokker — Planck equation for a general class of
systems. By Fourier analysis of the distribution function with respect to the phase variable ¢, it is
possible to consider separately the problem of the interaction between the resonances and the effect of
the white noise on each resonance. Though our method applies to the general case, we shall assume
for simplicity that each resonance is isolated, i.e. that there is no overlap between resonances in phase
space [79].

Instead of Eq. (3.9), let us consider a more general system of stochastic differential equations of
the type

q = 8H(q,p.t)/dp, p = —0H(q,p,t)/dq + Flg,p.£(t)]. (3.32)

The Hamiltonian H is given by an unperturbed term Hy(q,p) plus a perturbation ¢ U(q,p) n(t)
representing a series of instantaneous interactions (kicks) at time intervals At

H(q,p,t) = Ho(q,p) + = U(g,p) n(t),
o0 (3.33)
n(t) = At 2 &(t — nAt).

n= —o

The function F in Eq. (3.32) is the sum of two terms, one representing the effect of the damping
p f(q,p) and the other that of the white noise ﬁ g(q,p) £(t), related to the Gaussian, delta-correlated
stochastic variable £(t)

Flq.p£(t)] = p f(a.p) + /p &(a.p) £(1),
(3.34)

@) = 0, (&) &t+1) = 8(7).

As in Section 3.2, we shall assume all the dimensionless quantities constructed from U, f and
g to be of order one; thus the parameter e represents the intensity of the perturbation, while the
parameter p gives the strength of the non-Hamiltonian part of the system, i.e. the intensity of noise
and damping. According to the qualitative discussion of Section 3.2, we will make the assumption

e << (ple)t? < 1 (3.35)

and any expansion in powers of ¢ and p will be limited to second-order in e and to first order in
p, respectively.

Let us introduce, instead of the coordinates q and p, the action —angle variables J and ¢ of
the unperturbed Hamiltonian H,. Thus Egs. (3.32) become

¢ = wp + e U/ n(t) + o f; + b & £(1),
(3.36)

I = —¢(3U/3g) n(t) + p £, + /o 82 &(1),

where w, is the unperturbed frequency of the system (which in general depends upon the action
variable J)

wo(J) = dH,o(J)/a], 3.37)
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while the functions f;, g,,f, and g, are related to f and g by the transformations

fi = faxi/ap, g = 89x;/dp, i=1,2,
(3.38)
X = ¢, x, =1

The Fokker — Planck equation for the distribution function y(¢,J;t) associated with the system (3.36)
of stochastic equations is [30]

ay/ot = [L + Ma(t)] ¢, (3.39)

where the differential operators L and M are given by

L = —wq (2/39) — p [ (3/0%) § ~ (1/2) = (2/0%,) & (3/3%,) g,
i i
(3.40)
M = & [(8U/a¢) 8/d] — (8U/aJ) 3/84].

Integrating Eq. (3.39) over t and introducing the distributions P*(k) and P~(k) given by (3.16),
we obtain the relations (3.18) — (3.20).

To separate the effect of the noise on each resonance from that of the interaction between
resonances, we perform a Fourier analysis with respect to the phase ¢. Thus we write

27 27
P = (1/27) [ &0¢ P* dg, U, = (1/2n) [ 0% U do,
0 0
(3.41)
27 27
Lym = (1/20) [0 Le™Mé dg, M = (1/2n) [ Me~im¢ g,
0 0
Performing the Fourier analysis of the first of Egs. (3.20) written in the form
exp(—At M) P* = exp(At L) P* (3.42)
and isolating diagonal terms, one obtains
—eAy _ (B = B — (a— €A
[e™*Npp = €l Pr = 2 [Py — €7 5N 0] P (3.43)

m#n

The dimensionless matrix operator A represents the effect of the perturbation, whereas B is the sum
of two terms, B = C + p D, one representing the unperturbed evolution corresponding to the
Hamiltonian H, and the other the combined effect of damping and noise. The explicit expressions
for A and B are

eAnm=Atan

eiAt[m (dUn_m/dJ) —@-mU _ . d/di],
(3.44)

Bnm = At an
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The operator Dym has a complicated form, which is given in Appendix A. It is only important to
notice that, owing to the effect of the noise, Dn.m contains at most second-order derivatives with
respect to J. For any realistic choice of the interaction potential U, its Fourier components Un
decrease rapidly with increasing |n|. Thus the off-diagonal terms ALy which contain Un-—

m’
decrease rapidly with increasing |n—m)|.
In Appendix B it is shown that, under the assumption (3.35), Eq. (3.43) becomes
{{1 — exp(eA ) exp(B )] + (2/2) = Apm Amn} P;’l =e 2 A P (3.45)

m#n m#n

Before attempting a solution of the system (3.45), we remark that the equation for n = 0 has a
radically different structure from those corresponding to n # 0. The main difference comes from
Bnn’ which is of order p only for n = 0. Indeed in Section 3.2, we have seen that the noise gives
rise to a stochastic change of the oscillation amplitude similar to that of a Brownian motion.
Moreover, owing to the non-linearity of the interactions, the noise causes a loss of correlation in
phase. Now P; represents the amplitude distribution function averaged over the phase. On the
other hand, the P;l with n # 0 vanish unless P*(J,¢) depends explicitly on ¢. Therefore the P;‘l
with n # 0 give a measure of the correlation in phase. Thus we expect that the effect of the noise
will be represented by a second-order differential operator acting on P}, i.e. by a diffusion, and by a
multiplicative factor (smaller than one) on P;‘l with n # 0.

We first consider Eq.(3.45) for n = 0. From (3.44) it follows that A =0 and

B,, = p D, thus to order €2 and p we have
pD, PL — (22 (2 A, A )P +e 2 AP’ =0 (3.46)
m#0 m#0

The effect of the noise is represented by the diffusive operator p D, which contains second-order
derivatives with respect to J. The second term in Eq. (3.46) takes into account the direct effect of the
interaction on the average distribution P;, whereas the last term, of order e, represents the coupling
to the higher “modes” P;l due to the interaction.

For the sake of simplicity, let us suppose that the unperturbed frequency w, does not depend
on the action J. This approximation is compatible with the condition prevailing in storage rings, i.e.
the unperturbed system is a linear oscillator. To study Eq. (3.45) in the case n # 0, we begin by
remarking that the term in square brackets can be written as

1 - exp(eAnn) exp(Bnn) = 1 — explin(w, + ¢ dUo/dJ)At] exp(pD ). 3.47)
Far from resonances, i.e. when the condition
n(wy + ¢ dUo/dJ) At = 2om (3.48)

is not satisfied, we can neglect the factor exp(po) in Eq. (3.47). Therefore the operator Cn
defined by

C, = [1 — exp(eA} ) exp(Bm)]‘l (3.49)

reduces to the multiplicative factor {1 — explin(w, + ¢ dUo/dJ)At]}‘l. The operator Cn contains
the effect of resonances and of the detuning caused by the white noise. In the next section we shall
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show that even when resonances are present, C  can still be approximated by a multiplicative
coefficient, having the following upper bound

ICqyl < (€2 )77 (3.50)

This upper bound is consistent with the qualitative discussion preceding Eq. (3.30). Making use of
(3.49), Eq. (3.45) for n # 0 becomes

[1+0(*C)IP; =eC = A _PY

m#n

n# 0. (3.51)

Thanks to the inequalities (3.35) and (3.50), the term of order eZCn is small compared to unity,
ezcn < e(elp)?<<1, (3.52)

and therefore can be neglected.

The derivation contained in Appendix B and the discussion following Eq. (3.45), which leads to
the definition (3.49) of the resonant coefficients C,; are different from those appearing in Ref. [93].
This is a consequence of the remarks contained in Ref. [94] and is related to the difficulty of dealing, at
the same time, with conventional power expansions and with power expansions in the exponents.
However, it is worth mentioning that a similar difficulty occurs in canonical perturbation theory too
[14], as soon as one considers “small denominators” depending on the perturbed frequencies. In the
case of the beam — beam interaction, the betatron frequency w, can be treated as a constant and so it
is indispensable to take into account the amplitude-dependent perturbation & dU o)/dJ [see
Egs. (3.22) and (3.48)].

Our aim is now to solve Eq. (3.51) expressing P;, with n # 0, in terms of P;. Substituting
the result into (3.46), we obtain the renormalized Fokker— Planck equation for the steady-state
distribution function PE(J). Equation (3.51), which is an infinite set of coupled first-order differential
equations, contains the mutual interactions between the ‘“modes” P1+1’ and some simplifying
assumption is needed in order to get an approximate solution. The coefficients C, are functions of
the action variable J and take their maximum value when J passes through a resonance. In the next
section we will prove that the resonant values of Cn tend to unity as n increases, so that only a
small number of these coefficients may become much greater than one. Moreover, Anm decreases
with increasing |n—m)|, which reflects the fact that the coupling between distant modes tends to zero.
In view of these considerations we can assume the following approximate solution of Eq. (3.51):

P} =eC A P (3.53)

This formula is valid, to first order in €, provided one of these conditions holds (for a fixed value
of I):

i) There is no resonance corresponding to a small value of n; then all the C, are of order (or
smaller than) unity.

i) There is only one, isolated resonance corresponding to a small value of n, with the relative Cn
much greater than unity.

52



In the latter case, the solution (3.53) is correct only for the resonant value of n. However, the

corresponding P;'l is the largest one and gives rise to the dominant contribution when substituted into

Eq. (3.46). As the perturbation parameter & increases, it becomes more and more likely that, for

some value of J, neither condition (i) nor (ii) hold. This means that two, or more than two,

simultaneous low-order resonances may overlap and in this case a more refined, but not significantly

different calculation is needed. For simplicity, we will assume the “single resonance” solution (3.53).
Substituting (3.53) in Eq. (3.46) we obtain

pDoo Py — (*2) (2 Ay Apyg

m#0 m#0

YPL+ 2 (2 A, Co A )P} =0 (3.54)

Making use of (3.44), Eq. (3.54) can be written as

{p Dy, + 2 = Ao [Re(Cp) — 121A P =0, (3.55)
m

where Re(C ) is the real part of C .. Equation (3.55) is our renormalized Fokker— Planck
equation. The differential operator in curly brackets is a diffusive operator: the first term p D
takes into account the direct effect of noise and damping; the second one represents the diffusion
induced by the non-linear interactions. From Egs. (3.47) and (3.48) we see that, far from resonances,
the real part of Cn reduces to 1/2. Thus the diffusive effect induced by the interactions [see
Eq. (3.55)] is localized near the values of J corresponding to resonances.

3.4 THE EFFECT OF THE WHITE NOISE ON THE RESONANCES

In this section we shall compute the operators C defined by Eq. (3.49) and we shall show
that, for n # 0, they reduce to multiplicative coefficients. The maximum values of these coefficients
occur in the presence of resonances and they remain finite due to the loss of phase correlation induced
by the white noise.

Let us expand the r.h.s. of Eq. (3.49) in a power series of the product exp(¢A ) exp(B, )

C,= = [exp(eA_) exp(B_ )IK. (3.56)
k=0

We shall now make use of the following algebraic result: let a and b be two arbitrary operators,
then [91, 92, 95]

exp(b) exp(a) = exp(a) exp({exp(—a),b}), (3.57)
where
{e73b} =b — [ab] + (1/2") [a[a,b]] — (1/3") [a[afa,bll] + .... (3.58)

From Eq. (3.57) it follows, by induction on k, that
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0
[exp(a) exp(b)[¥ = exp(ka) II exp({exp(—ma),b}). (3.59)
m=k—1

In our case, setting a = eAnn and b = Bnn’ from (3.44) we have
{exp(—meA ).B 1} = i(nweAt) + p(Dy, — me[A D 1+ (m2£2/2) [A 1A, Dy 1D, (3.60)
where only the first- and second-order commutators appear. This is due to the fact that A is a
function of J, while Dnn’ which is a diffusive operator, contains at most second-order derivatives
with respect to J; thus all commutators between A, and D, of order higher than two vanish.
Since we have assumed that the unperturbed frequency w, does not depend on the action J,
from Eqgs. (3.59) and (3.60) it follows that
0
[exp(eA, ) exp(B )X = explk(inwoAt + eA )1 TT  exp{p(D,,
m=k—1
—me[A D 1+ (m2e2/2) (VNN - W D 2N 1)) B (3.61)

The product in the r.h.s. of this equation, which we denote by Sy, can be further simplified by
considering the following two cases:

a) k < 1/e. In this case, me is smaller than one and we have

0
Sk = II exp{p[Dml + 0(me)]} = exp{kp[Dnll + o(ke)l} = 1 + O(p/e), (3.62)
m=k—1

where, as a consequence of (3.35), p/e is much smaller than one.

b) k >> 1/e. Then S; can be written as the product of the terms with m smaller than 1/e and of
those larger than 1/e

1/e
S =8 e I exp{p(D,,, — me (A Dol + (m2e2/2) [A ,[Ann,Dnn]])}. (3.63)

m=k—1

In the second product, me is larger than one and, using (3.62), we have

1/e
S = [1+0p/e)] T exp(p(me?/2) [App[A, Dyl + O(me))
m=k—1
= [1 + 0(p/e)] exp{(1/2)p(k?/3)e? [Ann’[Ann’Dnn]] + 0(pkZe)}. (3.64)

It is worth noticing that, if k is smaller than or comparable to 1/¢ as in case (a), formula (3.64)
becomes
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S, = [1 + 0(p/e)] exp{O(p/e)} = 1 + O(p/e), (3-65)

which is the same as (3.62). Thus, except for a critical range of values of k which will be considered
later, Eq. (3.64) is valid in general. Inserting (3.64) into (3.61), we obtain

[exp(eAnn) exp(Bnn)]k = explk(inw At + eAnn)] exp{(1/6)pk3ez[Ann,[Am,Dnn]]}. (3.66)
We have to check that, when k takes the critical value N corr’ such that [see Eq. (3.30)]

pNéon,ez =1, (3.67)
the quantity pk?e, that we have neglected in Eq. (3.64), is much smaller than one and thus actually
negligible. Indeed from (3.67)

PNZ e = (p/e)'7, (3.68)

which is much smaller than one, thanks to the assumption (3.35). Inserting (3.66) into Eq. (3.56) we
obtain

-}

C, = = explk(inwoAt + eA Y] exp{(1/6)ok*c*[A _[A .D_1I}. (3.69)
k=0

Making use of expression (3.44) for A, Wecan write C, in the form

C, = = explikn(w, + ¢ dU_/dJ)At] exp{—k*(1/6)p(enAt)?[dU_/dJ[dU_/dID_ TI}.  (3.70)
k=0

This expression shows that, even at resonance, the operator C,, does not contain derivatives with
respect to J and thus it reduces to a simple multiplicative function of J. When J takes a value
corresponding to a resonance, i.e. when an integer m exists such that condition (3.48) is satisfied, C,
becomes of order e

(C)™MaX = (pe?n?)~17, (3.71)

Equation (3.71) justifies the condition (3.50), used in the last section. From Eq. (3.70) we see that, at
resonance, C, tends to unity for very large values of n, ie. that only the k = 0 term in the
summation gives its contribution to Cn'

3.5 SOLUTION OF THE RENORMALIZED FOKKER — PLANCK EQUATION
IN A SIMPLE CASE

In this section we shall apply our results to the case of the beam—beam interaction in
electron — positron storage rings. We consider the renormalized Fokker — Planck equation written for a
“quasi-logarithmic” interaction potential. By requiring that the size of the weak beam does not blow
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up, we obtain a relation between the maximum attainable interaction strength e and the noise
intensity p. This relation can be used to express the dependence of the maximum attainable
luminosity on the physical parameters of the storage ring, such as particle energy, machine tune and
- number of bunches per beam.

The renormalized Fokker — Planck equation (3.55), for the system described in Section 3.2, reads
(see Appendix A)

(d/dJ){JP; + [02 + (2¢%/p) = (Rc(Cm)—1/2) ImUmAtF] dP;/dJ} = 0, (3.72)
m>0

where, from Section 3.4, we have

Re[C_(N] = = coslkma(J)] exp[ — (A, (Nk)’], (3.73)
k=0
with

aJ) = o(DAt, o) = w, + e dU_(J)/d],
(3.79)
A (D) = [(1/3)p(mw’(DAL)?6T]' .

We recall that Eq. (3.72) applies to an idealized storage ring, with one-dimensional betatron
oscillations, where the beam—beam interaction is treated in the strong beam—weak beam
approximation.

The solution of Eq. (3.72), which satisfies the condition that its integral over J is finite, is

J
P;(J) = Z exp{—(1/0?) de /1 + (2¢%/po?)) = (Re(Cm)— 1/2) lmUmAt|2]}. (3.75)
0 m>0

where Z is a normalization constant.
When the denominator of the integrand in Eq. (3.75) approaches one, the diffusive effect of the
interaction is negligible. Indeed, in this case we obtain #a steady-state distribution function
(*) = Z exp(—1J/o?), which goes over to the unperturbed Gaussian distribution (3.15) when the action
J is expressed as a function of q and p. If instead, in a given interval AlJ, the denominator of the
integrand in Eq. (3.75) is much greater than one, which can only be the case if there is a low-order
resonance, the distribution PS(J) is essentially constant over AJ. Thus the diffusive effect of the
interaction causes a considerable flattening of the distribution P;(J) when the following condition is
satisfied:

(2e2/po?)) = (Re(Cm)—I/Z) |mUmAt|2 > 1. (3.76)
m>0

When the interaction strength e increases, the “flattening condition” (3.76) holds for a large number
of resonances, corresponding to intervals AJ which tend to overlap. Thus the width of the
distribution P; becomes much larger than ¢ and, when e approaches a threshold value E4lyy the
size of the weak beam blows up, causing the incoherent beam—beam instability described in
Section 3.1.
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The flattening condition (3.76) has the following functional form: G(U;e,p,J) > 1. Thus, once
we have specified the interaction potential U, this condition becomes a relation between &, p and J.
In order to obtain & as a function of p, we have to fix J. This reflects the fact that the
beam — beam instability starts at different values of &, depending on the region of phase space. For
any realistic choice of the interaction potential U, the smallest &h corresponds to intermediate values
of J, of the order of a few times o2.

To evaluate &y WE need to estimate the width AJ and the spacing DJ between resonances.
Instead of the variable J, it is more convenient to consider the “phase” a(J) defined by Eq. (3.74).
We begin by remarking that the strong-beam Gaussian distribution function (3.15) gives rise to an
interaction potential £U(q), which is an even function of the betatron displacement q = (2J)'*? sin ¢.
As a consequence the odd Fourier components U, ;(J) vanish. From the resonance condition
(3.48) and from Eq. (3.74), it appears that in an interval Aa there are (Aa/27)2n resonances of
order 2n. The total number of even resonances of order smaller than or equal to 2n is therefore
given by (Aa/2w) times the sum of the first n even numbers, i.e. times n(n+1). For n >> 1 the
“average spacing in phase” (Da),, between any two even resonances of order smaller than or equal
to 2n is

(Da),, = 2u/n?. (3.77)

According to the qualitative discussion leading to Eq. (3.30), we expect the width of the resonances of
order 2n to be inversely proportional to N . = 1 [A o Indeed, from Eq. (3.73), it follows that the
“width in phase” (Aa)y, of the resonances of order 2n is given by

(Aa)y = 2 A, /20, (3.78)

From Egs. (3.74) and (3.78), (Aa)?.n decreases as n~!’3. Thus a sufficient condition for a complete
overlap between even resonances of order smaller than or equal to 2n is that the width (Aa)y, is
equal to the spacing (Da),,,. However, this condition is too restrictive, because the width of the
resonances of order lower than 2n is larger than (Aa),,. Furthermore, one can expect that when a
complete overlap is reached, the beam has already blown up. Thus, to obtain an estimate of the
threshold value &4y WE shall assume the width (Aa),, to be only a fraction, let us say about 1/4, of
the spacing (Da),,,. From (3.77) and (3.78), this is equivalent to the condition

Ay (D) = 1/20. (3.79)

Combining (3.79) with the expression of Ay given by Eq. (3.74), we obtain n as a
function of ¢, p and J:

n = {3/[32 pe?(U,"()o?At)2 0?1}, (3.80)

Making use of Egs. (3.73) and (3.79), we can approximate the resonant value of Re(C,)) by
Ncon' = 1/A,, = 2n. The flattening condition (3.76) is then satisfied if

16(62/p)n3IUzn(J)Atlz/(on) > L (3.81)

At fixed J, from Eqgs. (3.80) and (3.81) we obtain the threshold value e, as a function of ». This
relation, combined with Egs. (3.4) and (3.6), gives the dependence of the maximum beam current on
the physical parameters of the storage ring.
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We now consider the case of a “quasi-logarithmic” interaction potential
U(q) = (¢?/At) log(1 + q*/0?), (3.82)
which is a good approximation to the potential generated by a beam with circular cross-section and
with bunches whose longitudinal extension is much larger than their transverse size o. Then the

components U (J) and Uy, in Egs. (3.80) and (3.81), have the expressions

U,d) = (0?/At) logR(J)/2],

(3.83)
U, () = —(o*/nAt) [J/o?RIIY,
where
RQA) = 1 + (JJo?) + [1 + 2(3/o?)] 2. (3.84)
Taking for J the typical value J = 402, Eq. (3.80) becomes
n = (20/pe?)!’s, (3.85)
which, inserted into Eq. (3.81), gives
(p£2)1"S log(150 4/p®) 2 6. (3.86)

When this inequality is satisfied, the weak beam blows up. In Fig. 11 we have plotted the threshold
value &y, against p obtained from (3.86). This plot is only valid for those values of ¢ and p
satisfying our previous assumptions. In Appendix C it is shown that this is the case, provided p isin
the range 0.02 < p < 0.08. Let us remark that, in the range of validity of the theory, the maximum
attainable interaction strength €h is an increasing function of p (see Fig. 11). This behaviour has
actually been observed experimentally [89], though for different values of ¢ and p. We should have
expected such a discrepancy since we have used only a one-dimensional idealized model, but it is
encouraging that our results are at least in qualitative agreement with experience. ’

Em
N
9
.8 Instability
7
6 Stability
.S + +
0 .02 06 .06 08 10 12 P

Fig. 11 Maximum attainable interaction strength e, as a function of the inverse of the number of
kicks per damping time p.
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3.6 CONCLUSIONS

We have considered a damped, noisy oscillator subject to the effect of a non-linear perturbation,
consisting of a regular sequence of kicks. Our main result is the derivation of an equation satisfied by
the steady-state distribution function averaged over the phase variable ¢. This equation, referred to as
the renormalized Fokker — Planck equation, takes into account the effect of the noise, of the damping
and of the non-linear perturbation. The results presented here apply to the general theory of discrete
maps with noise, establishing a formal procedure to deal with the classical problem of the “small
denominators”.

In the case of the strong beam —weak beam interaction in an electron — positron storage ring,
the solution of the renormalized Fokker — Planck equation, subject to the condition that the size of the
weak beam does not blow up, gives the dependence of the maximum attainable luminosity on the
physical parametrs of the storage ring. Since we have considered only an idealized model of
one-dimensional betatron oscillations, it is not possible to make a detailed comparison between our
results and the experimental data. However, these results are at least in qualitative agreement with
experience.

APPENDIX A

In this appendix we will give the explicit expression of the operator Dy introduced in
Eq. (3.44), in terms of the functions f,, f,, g, and g, defined by (3.34) and (3.38). Then we shall
apply this formula to the case of the betatron oscillations described by Eq. (3.9).

We begin by recalling that the Fourier transform of the product of two functions is the
convolution integral between the Fourier transforms of those two functions. When the functions
under consideration are periodic, the convolution integral becomes a “convolution series”. Thus, if we
denote by a subscript the Fourier components of a function with respect to the phase variable ¢, from
Egs. (3.40), (3.41) and (3.44) we obtain

D, = At {in(f), _ o, — @dDE), _
+ (1/2) = [(Q/d)(Ea)y, — 1 (/) (gl — ilk+m)(A/dI)(E,),, — oy — (B
k
~ in(g)y — - K@/ANE), — nl+m)(eg)y, — o — @) (AD)

From Egq. (3.70) we see that the coefficients C, depend only on the diffusive part of D . i.e. on the
term with second-order derivatives. Equation (A.1) for D = can thus be written as

D, = (non-diffusive terms) + (1/2) At [(g;)*], d?/dJ?, (A2)
where, according to our previous notation, [(g;)*] o is the average over ¢ of the function (82)%.
In the case of the betatron oscillations discussed in Section 3.2, by a comparison between

Egs. (3.9), (3.14), (3.32) and (3.34), we see that the functions f and g are

flap) = —p/At,  glap) = o (2/A1)'"2 (A.3)
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Thus from Eq. (3.38) we have

f, = (1/2At) sin 2¢, f, = —(2/At) coss,

g = —o(JAt)y 2 sing, g, = 20 (J/At)!2 cos ¢.
From (A.1) and (A.2) it then follows that

D, = (d/dD{J + 02J d/dJ),

D__ = (non-diffusive terms) + 02J d?/dJ>.

nn

These results are used in Section 3.5.

APPENDIX B

(A4)

(A.5)

In this appendix we shall show that, under the assumption (3.35), Eg.(3.43) becomes
Eq. (3.45). We begin by multiplying both sides of Eq. (3.43) by the factor exp(eA ), thus obtaining

lexp(eAp,) (6754 — exp(eA, ) (eB) 1P = expeA ) = [(eB), ) — 7*A) 1P (B

m#n
From (3.44) it follows
©B)n = explB, + 07,

exp(eA ) (€AY = 1+ (s2/2) = A A+ (),

m#n
and, for n # m,
©B)pm = 00),
n#m,
—eA = —
(e™ ¢ dam = ~fApm T 0(e?).

Thus Eq. (B.1) becomes

{1+ (2/2) = Anm Amn + 0(e?) — exp(eAnn) exP[Bnn + 0]} P;x
m#n

=[1+0()] = [0(p) + 0(e?) + eAmn] Pr;l'
m#n

(B.2)

(B.3)

(B.4)

From (3.35) we see that p is much smaller than e and so, in the r.h.s. of Eq. (B.4), we can neglect
0(p) and O(e?) with respect to the term of order e. In the Lh.s. of the same equation, we can
neglect 0(p?) with respect to B, =~ and 0(e®) with respect to the term of order €2, thus obtaining

Eq. (3.45).
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APPENDIX C

In this appendix we check if there is some range of values of p, such that our previous
assumption (3.35) is satisfied by the corresponding threshold value of e, given by (3.86) with the equal
sign assumed.

We remark that the first inequality in (3.35) is needed in order to satisfy condition (3.52). Since
in the derivation of Eq. (3.86) we have only used an estimate of Conr with n given by (3.85), from
(3.71) we see that condition (3.52) can be replaced by

e°Coy < ¢ [e/p(20)217 = [e/(20)] (e/p)"® << 1. (C.)
Thus our previous assumption (3.35) becomes
e/(2n)?? < (ple)t? << 1, (C.2)
where n is given by Eq. (3.85).
When p isin the range 0.02 < p < 0.08, the maximum attainable ¢ given by (3.86) is about

&, = 0.7. Since in this range (p/e)'* = 0.3, n= 5 and thus €/(2n)?"?* = 0.15, conditions (C.2) are
quite well satisfied. Therefore the range of validity of our results is 0.02 < p < 0.08.

61



ACKNOWLEDGEMENTS

It is a pleasure to thank B. Zotter, who stimulated the work on the transverse mode coupling
instability, and Professors L.A. Radicati and F. Pegoraro for their helpful suggestions and for a critical
reading of the manuscript. I am particularly indebted to Professor E. Picasso, who drew my attention
to the problem of the beam —beam interaction, and to M. Bassetti who contributed many valuable
ideas. I have greatly profited from discussions with S. Myers and D. Brandt. I have also profited from
discussions with Professor H. Haken and I am grateful to the Institute of Theoretical Physics,
University of Stuttgart, for its kind hospitality. Finally, I would like to express my thanks to CERN,
which has permitted the writing up of this thesis.

62



(1
(21

(3]
(41
(51
(6l
(7
(8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]
[36]
[37
[38]

REFERENCES

E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).

B.W. Montague, Proc. First Course of the International School of Particle Accelerators of the
“Ettore Majorana” Centre for Scientific Culture, Erice, 1976, ed. M.H. Blewett (CERN 77-13,
Geneva, 1977), p. 37 and p. 63.

E.J.N. Wilson, CERN-PS/86-2 (AA) (1986). See also same Proc. as Ref. [2], p. 111.

G. Guignard, CERN 76-06 (1976) and CERN 78-11 (1978).

G. Guignard and J. Hagel, CERN-LEP-TH/85-3 (1985).

M. Bell and J.S. Bell, CERN-PS-DL/82-10 (1982).

C. Bernardini and C. Pellegrini, Ann. Phys. 46, 174 (1968).

T. Suzuki, Part. Acc. 12, 237 (1982).

R.D. Ruth, Brookhaven report BNL 51425 (1981).

J.M. Jowett, Proc. Joint US-CERN School on Particle Accelerators, Santa Margherita di Pula,
Sardinia, 1985, ed. J.M. Jowett, M. Month and S. Turner (Lecture Notes in Physics, Vol. 247,
Springer-Verlag, Berlin, 1986), p. 343.

H. Bruck , Accélérateurs circulaires de particules (Presses Univ. France, Paris, 1966).

A. Piwinski, Proc. Sth Int. Conf. on High-Energy Accelerators, Stanford, 1974 (USAEC,
Washington, 1974), p. 405.

1.D. Bjorken and S.K. Mtingwa, Part. Acc. 13, 115 (1983).

H. Goldstein, Classical mechanics (Addison-Wesley Publishing Co., Reading, Mass., 1981).
A.A. Kolomensky and A.N. Lebedev, Theory of cyclic accelerators (North-Holland,
Amsterdam, 1966).

M. Sands, Stanford report SLAC-121 (1970).

K.L. Brown, Stanford report SLAC-PUB-75 (1967).

H. Wiedemann, Stanford report PEP-220 (1976).

M.G. Floquet, Ann. Sci. Ecole Normale Sup., 12 (IV 6), 47 (1883).

A.H. Nayfeh, Introduction to perturbation techniques (Wiley, New York, 1981).

R.C. Davidson, Theory of non-neutral plasmas (W.A. Benjamin, London, 1974).

L.A. Radicati, E. Picasso and F. Ruggiero, in same Proc. as Ref. [10], p. 1.

K.R. Symon, J.D. Steben and L.J. Laslett, Proc. 5th Int. Conf. on High-Energy Accelerators,
Frascati, 1965 (CNEN, Rome, 1966), p. 296.

B.W. Montague, CERN LEP note 132 (1979).

L.D. Landau and E.M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1960).

R. Hagedomn, CERN 57-1 (1957).

A. Schoch, CERN 57-21 (1957).

G. Guignard, CERN 70-24 (1970).

N. Wax, Selected papers on noise and stochastic processes (Dover, New York, 1954).

R.L. Stratonovich, Theory of random noise (Gordon & Breach, New York, 1963).

H. Risken, The Fokker — Planck equation (Springer-Verlag, Berlin, 1984).

J.D. Jackson, Classical electrodynamics (Wiley, New York, 1975).

K.W. Robinson, Phys. Rev. 111, 373 (1958).

V.1. Amold and A. Avez, Problémes ergodiques de la mecanique classique (Gauthier-Villars,
Paris, 1967).

R.H. Helm, M.J. Lee, P.L. Morton and M. Sands, IEEE Trans. Nucl. Sci. NS-20, 900 (1973).
A. Hofmann and B. Zotter, CERN-ISR-GS/76-28 (1976).

A.A. Sokolov and I.M. Ternov, Synchrotron radiation (Pergamon Press, New York, 1968).
D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. NS-20, 885 (1973).

63



[39]
[40]

[41]
[42]
[43]

[44]
[45]
[46]
[47]
[48]
[49]
[50]
(51
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]
(631
[64]
[6s]
[66]
[67]
[68]
[69]
[70]
(71
[72]
[73]
[74]
[75]

[76]
(77
(78]

[79]
[80]
[81]

G. Guignard, CERN ISR-BOM/80-20 (1980).

R.D. Kohaupt, Proc. 11th Int. Conf. on High-Energy Accelerators, Geneve, 1980 (Birkhauser,
Basle, 1980), p. 562.

R.D. Kohaupt, DESY report 80-22 (1980).

K. Satoh and Y.H. Chin, Nucl. Instrum. Methods 207, 309 (1983).

PEP Group, Proc. 12th Int. Conf. on High-Energy Accelerators, Batavia, 1983 (Fermilab,
Batavia, 1984), p. 209.

KEK Publication, Abridged description of TRISTAN (1981).

D. Brandt and B. Zotter, CERN-LEP-TH/84-2 (1984).

A. Chao, Stanford report SLAC-PUB-2946 (1982).

C. Pellegrini, Brookhaven report BNL 51538 (1982).

F.J. Sacherer, CERN-SI-BR/72-5 (1972).

F.J. Sacherer, CERN-PS-BR/77-5 and 77-6 (1977).

K. Satoh, PEP note 357-361 (1981).

G. Besnier, Nucl. Instrum. Methods 164, 235 (1979). Also thesis Univ. of Rennes (1978).

R.D. Ruth and J.M. Wang, IEEE Trans. Nucl. Sci. NS-28, 2405 (1981).

R.D. Ruth, CERN-LEP-TH/83-46 (1983).

J.M. Jowett, CERN LEP note 474 (1983).

K. Bane, P. Wilson and K. Satoh, Stanford report SLAC-PUB-2688 (1981).

R. Siemann, same Proc. as Ref. [43], p. 271.

D. Brandt, CERN LEP note 512 (1984).

S. Myers and J. Vancraeynest, CERN-LEP-RF/84-13 (1984).

G. Besnier, D. Brandt and B. Zotter, Part. Acc. 17, 51 (1985).

E. Keil, same Proc. as Ref. [2], p. 11.

P.M. Morse and H. Feshbach, Methods of theoretical physics (McGraw-Hill, New York,
1953).

F. Ruggiero, CERN-LEP-TH/84-21 (1984). Submitted to Particle Accelerators.

T. Weiland, DESY report 82-015 (1982).

D. Brandt and H. Henke, CERN LEP note 513 (1984).

B. Zotter, CERN-ISR-TH/80-03 (1980).

M. Bassetti, CERN, private communication (1984).

R. Siemann, Comnell report CLNS 83/560 (1983).

T. Suzuki, KEK Preprints 82-34 (1982) and 83-13 A (1983).

F. Ruggiero, IEEE Trans. Nucl. Sci. NS-32, 2344 (1985).

Y.H. Chin, CERN-SPS/85-9 (DI-MST) (1985).

B. Zotter, IEEE Trans. Nucl. Sci. NS-32, 2191 (1985).

Y.H. Chin, CERN-SPS/85-33 (DI-MST) (1985).

M. Donald et al., CERN LEP note 553 (1986).

M. Bassetti, same Proc. as Ref. [23], p. 708.

F. Amman, M. Bassetti et al., Proc. 8th Int. Conf. on High-Energy Accelerators, Geneva, 1971
(CERN, Geneva, 1971), p. 132.

L.J. Laslett, same Proc. as Ref. [12], p. 394.

S. Myers, CERN LEP note 327 (1981).

Symposium on Non-linear Dynamics and the Beam — Beam Interaction, Brookhaven, 1979,
ed. M. Month and J.C. Herrera (AIP Conf. Proc. 57, New York, 1979).

B.V. Chirikov, Phys. Rep. 52, 263 (1979).

H.G. Hereward, CERN-ISR-DI/72-26 (1972).

J. LeDuff, CERN-ISR-AS/74-53 (1974).



[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[9s]

S.A. Kheifets, IEEE Trans. Nucl. Sci. NS-26, 3615 (1979).

H. Haken and G. Mayer-Kress, Phys. Condens. Matter 43, 185 (1981).

H. Haken and G. Mayer-Kress, Phys. Lett. A82, 151 (1981).

P. Manneville and Y. Pomeau, Physica D1, 219 (1980).

B. Shraiman, C.E. Wayne and P.C. Martin, Phys. Rev. Lett. 46, 935 (1981).

M.J. Faigenbaum, J. Stat. Phys. 19, 25 (1978). Also Phys. Lett. A74, 375 (1979).

H.B. Callen and T.A. Welton, Phys. Rev. 83, 34 (1951).

J. LeDuff, same Proc. as Ref. [2], p. 377.

A. Hutton, CERN LEP note 289 (1981).

G.H. Weiss and A.A. Maraudin, J. Math. Phys. 3, 771 (1962).
AJ. Dragt and J.M. Finn, J. Math. Phys. 17, 2215 (1976).

F. Ruggiero, Ann. Phys. 153, 122 (1984).

J.F. Schonfeld, same Proc. as Ref. [10], p. 315.

W. Louisell, Radiation and noise in quantum electronics, (McGraw-Hill, New York, 1964).

65



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

