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ABSTRACT

STUDY OF T}, AND HIDDEN CHARMONIUM 17~ AND 0**
TETRAQUARKS IN QCD SUM RULES

Ferah, Semra Sari
Ph.D., Department of Physics

Supervisor: Prof. Dr. Altug Ozpineci

January 2025, [166| pages

Recently, exotic hadrons have become a very important and interesting topic for par-
ticle physics, especially after the observation of the exotic particle X (3872). The 7.}
tetraquark, which has a very similar structure to X (3872), was observed in the LHCB
experiment of CERN in 2021. However, this new particle has different properties
than the previously observed exotic hadrons, as it contains two heavy quarks and no
heavy antiquark. In this study, the masses of the double open charm T tetraquark,
and hidden charm states with J©¢ = 1t~ and JP¢ = 0T+, and with the motivation
taken from heavy-quark spin symmetry, their mass relations are studied. QCD sum
rules method, which allows successful results in hadron phenomenology, is used in
the calculations. As a result of the analyses, by determining the most appropriate val-
ues of the parameters required for the QCD sum rules, the mass of the T tetraquark
is obtained in a manner comparable to the experiments and as predicted by heavy-
quark spin symmetry, the mass differences of the 17~ and 0" states are found to be

small enough, only a few MeV, as expected.



Keywords: Exotic hadron, X (3872), T, tetraquark, double open charm, JF¢ = 17~
and J¢ = 0*7 states, hidden charm, heavy-quark spin symmetry, QCD, QCD Sum
Rules
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0z

T VE GIZLI CARMONYUM 17~ VE 0** TETRAKUARKLARIN KRD
TOPLAM KURALLARINDA CALISILMASI

Ferah, Semra Sari

Doktora, Fizik Bolimii

Tez Yoneticisi: Prof. Dr. Altug Ozpineci

Ocak 2025 ,[166] sayfa

Son zamanlarda, egzotik hadronlar, 6zellikle X (3872) egzotik par¢acidinin gozlem-
lenmesinden sonra, pargacik fizigi icin cok onemli ve ilging bir konu haline gelmis-
tir. X (3872) ile olduk¢a benzer bir yapiya sahip olan 7.} tetrakuark, 2021 yilinda
CERN’in LHCB deneyinde gozlemlenmistir. Ancak bu yeni parcacik, iki agir kuark
icerdigi ve antikuark icermedigi icin, daha 6nce gozlemlenen egzotik hadronlardan
farkli 6zelliklere sahiptir. Bu ¢alismada agik ¢ift carm 7T tetrakuark ve gizli carm
JPC = 17~ ve JP¢ = 0** durumlarimin kiitleleri ve agir kuark spin simetriden
alinan motivasyonla, onlarin kiitle iliskileri calisilmistir. Hesaplamalarda hadron fe-
nomolojisinde basarili sonuclar elde edilmesine olanak saglayan KRD toplam kural-
lar1 yontemi kullanilmistir. Analizler sonucunda KRD toplam kurallart i¢in gerekli
olan parametrelerin en uygun degerleri belirlenerek, 7'} tetrakuarkin kiitlesi, deney-
lerle kiyaslanabilir bir sekilde elde edilmis ve agir kuark spin simetrisinin 6ngordiigii

gibi, 17~ ve 07" durumlarinin kiitle farkinin yeterince kiigiik, sadece bir kag MeV

civarinda oldugu goriilmiistiir.
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Anahtar Kelimeler: Egzotik hadron, X (3872), T tetrakuark, acik ¢ift carm, JF¢ =
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CHAPTER 1

INTRODUCTION

Subatomic particles that are composed of quarks and gluons are known as hadrons.
The quark model proposed by Murray Gell-Mann and Georg Zweig in 1964 is a
quite successful model for explaining hadrons and their properties. According to this
model, conventional hadrons can be classified into two groups: mesons, consisting of
one valence quark and one valence antiquark, and baryons, composed of three valence
quarks (three quarks or three antiquarks) [7, |8]. Since the early days when the quark
model was introduced, there has been a prediction/theory that there were more quark
and antiquark states than mesons and baryons. However, since there has been not
yet enough experimental data to support this theory/prediction, this topic remained a

mysterious and important subject of study for particle physics in those years [9, [10].

Recently, hadron states with quantum properties different from conventional hadrons
have been observed in independent experiments and research conducted at many ac-
celerator centers such as LHCb, BaBar, CLEO, Belle, CDF, DO, and BESIII [|11} |12,
131114, 115, 116, 117, 18, [19, 20, 21]]. In the ongoing process, the emergence of Quan-
tum Chromo Dynamics (QCD), which has properties such as asymptotic freedom
and confinement, has opened the way for more detailed theoretical research on these

particles [22} 23] 24]].



Hadrons that do not meet the definition of conventional hadrons are called exotic
hadrons [25, 26, 27]. One such example is hadrons with valence-gluon content. Al-
though the structure of exotic hadrons is very different from conventional hadrons,
there is no need for a new theory to explain them. Instead, it is thought to be suffi-

cient to make serious progress in the already existing strong interaction theory [28]].

Just like ordinary hadrons, exotic hadrons are divided into two categories: fermions
like ordinary baryons and bosons like ordinary mesons. This scheme further classifies
pentaquarks that comprise five valence quarks (one being an antiquark), as exotic
baryons, whereas tetraquarks (which comprise four valence quarks: two quarks and
two antiquarks) and hexaquarks (which contain six quarks that consist of dibaryons

or three pairs of quarks-antiquarks ) are called exotic mesons [29,30].

Therefore, exotic hadrons are divided into some categories according to the quark and
gluon states they contain. Some selected quark configurations for exotic hadrons are
given in Figure [I.1] In the figure, a tetraquark state consists of four valence quarks,
specifically they are include two quarks and two antiquarks. The hadro-quarkonium
model states that there is a Q@ structure formed by heavy quarks in the center and
around it there are ¢g quarkoniums formed by light quarks [31} 32]. In the hadronic
molecule model, a heavy quark and a light antiquark ()¢ and a heavy antiquark and a
light quark ¢Q) are thought to come together to form a molecule. The hybrid model
states that a heavy quark and its antiquark form a bound state, and the gluon in the
valence band acts actively in the bound state. The states in the glueball model are

composite particles formed by gluons and do not contain any quark structure.

As mentioned above, the most crucial development with respect to exotic hadrons

was the observation of a new particle with unexpected properties in 2003 [[11]. The



HADRO-
QUARKONIUM

TETRAQUARK

GLUEBALL

HADRONIC
MOLECULE

Figure 1.1: Some selected quark configurations for exotic hadrons [5]]

HYBRID

particle called X (3872) has an important place in particle physics, as it is the first
tetraquark observed. This new particle was first discovered in the Bt — J/Untn~ KT
decay by the Belle collaboration and was quickly confirmed by the CDF, DO and
BaBar collaborations very soon thereafter and was observed most recently by the
LHCb collaboration in 2012 [11},33] 34, 35 36]. It decays to J/WUnt7~ with a very
small natural width for a state above the DD threshold with spin-parity quantum
number JF¢ = 17+, Using the world average as reference, X (3872) with a mass of
3871.69 & 0.17 MeV is very close to the threshold DD*? of 3872.68 % 0.07 MeV.
Therefore, this particle with a mass and width less than 2 MeV does not match any
of the theoretically predicted charmonium states 38|, 39, 140]. The discovery of
X (3872) ushered in a new era of exotic states, and after its observation, subsequently,
studies on this subject have been intensified and new states with many unusual prop-

erties, including various charged states, were observed.

European Physical Society Conference on High Energy Physics (EPSHEP), a new
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tetraquark was presented as a discovery by the CERN’s LHCb experiment in 2021.

Named 77

cec?

this new particle has two charm quarks and an up and down antiquark
with quantum numbers J = 17, I = 0, which is found in the invariant mass spec-

trum D° D7+ with a mass around 3875 MeV [41], 42]).

Recently, many tetraquarks have been discovered. Counting the one which con-
tained two charm quarks and two charm antiquarks, this would be the first time that
a tetraquark was discovered having two charm quarks, and no anti- charm. This is
referred to as an open charm by physicists, but in this situation it would be considered

a "double open charm".

The T} is also the first tetraquark to be observed, which contains two heavy quarks
and two light antiquarks. Similarly, the =** baryon contains two ¢ quarks and a u
quark; the similarity in the contents of these two states causes a relationship between
the properties of them [43]. One of the similar properties is the mass, and from
the measured mass of the =1 baryon [43] 44} 45| 146], it is stated that the mass of
the T} tetraquark is close to the sum of the masses of the D** and D° mesons, as
supported in [47]. According to theoretical estimates for the mass of the ground state

of . tetraquark with spin-parity quantum numbers J* = 1* and isospin I = 0 with

respect to the D** D° mass threshold dm is

dm = mps — (mp-+ +mpo) = —273 £ 61 + 577 keV, (1.1)

where mp-+ and mpo denote the known masses of the D**(cd) and D°(cti) mesons
respectively, and mq is the mass of the T\ tetraquark; this state is the narrowest
exotic state observed to date [41} 42]. T.! tetraquark decays into particles that are
easily detected, and when they are combined with the small amount of energy that is

available in the decay, it results in fine precision on its mass that helps to study these

4



fascinating particle quantum numbers. These also may generate a strict test for the

existing theoretical models, which could lead to a potential probe of effects.

In this study, the masses of the double open charm 7'} tetraquark and the hidden
charm states J°¢ = 17 which have a similar interpolating current with 7'} and
its spin-symmetry partner J”¢ = 0%, and their mass relations with the motivation
taken from the heavy-quark spin symmetry, are studied. For this purpose, in the
d Chapter, under the title "Theoretical Foundations", general information in the
Standard Model (SM) is summarized and explanations are made with field theories.
In the d Chapter, necessary definitions are made for the QCD sum rules method
used in this study. In the h Chapter, analytical expressions have been obtained for
the mass expressions of the particles that are the subject of the thesis, and in the h
Chapter, the numerical results obtained by performing numerical analyzes for these
analytical expressions are given. In the @h Chapter, the numerical data obtained are
physically interpreted by comparing them with the results of similar studies on the

same subject.






CHAPTER 2

THEORETICAL FOUNDATIONS

2.1 The Standard Model of Particle Physics

The particle physics at its most fundamental level tries to find out what the building
blocks of matter are, explains how these basic structures are formed, and describes
how the parts interact with each other. Particle physics is also called high-energy
physics because it is not possible to investigate the properties of fundamental particles
under normal conditions in nature, and therefore high energies are needed. For this
purpose, many theoretical and experimental researches have been carried out in the
particle physics, and as a result of these researches, a basic theory called the SM has

emerged.

Elementary particles in SM can be grouped under two main headings: Fermions,
which consist of leptons and quarks with half-number spins, form the basic structure
of matter and comply with Fermi-Dirac statistics, and bosons, which mediate funda-
mental interactions, including the spin 0 Higgs boson that gives mass to the particles,

have integer spins and comply with Bose-Einstein statistics.

So far, six different types of leptons have been found in nature, known as "flavors":

Electron, electron neutrino, muon, muon neutrino, tau, tau neutrino, and antileptons

7



corresponding to these leptons. Of these leptons, electrons (e) and electron neutrinos
(v.) that form electronic leptons, are called the first generation; muons () and muon
neutrinos (v,) that form muonic leptons, are called the second generation; and taus

(7) and tau neutrinos (v, ) form tauonic leptons, are called the third generation.

Each generation of leptons has a quantum number associated with it, called the lepton
number. From neutrino oscillations, it is known that these individual lepton numbers
are not conserved but the total lepton number is conserved perturbatively. The first of

these lepton numbers is the number of electrons L. and for any situation

Le

N(€_> - N(€+) + N(”e) - N(ﬂe) (21)

is as defined. In Equation N(e™), N(e"), N(v.), N(7.) are the numbers of
electrons, positrons, electron neutrino and anti-electron neutrino present, respectively.
For single particle states, L, = 1 for e~ and v,, L, = —1 for e™ and 7, and L, = 0
for all other particles. Similarly, the following definitions are made for the number of

muon L, and tau L, respectively [48]]:

L, =N(u") = N(u) + N(v,) - N(5,). (2.2)

L. = N(r) = N(#*) + N(») — N(,). 2.3)

Six types of leptons and six types, or "flavors" of quarks have been observed to date,
and the types and some known properties of these leptons and quarks are given in

detail in Table [2.T]and Table [2.2] respectively [49, 150, 6].

There are four types of fundamental interaction (forces) known in nature: weak, elec-
tromagnetic, strong, and gravitational interaction. The areas of influence of these

forces are different from each other. The ranges of the strong force and the weak

8



Table 2.1: Properties of the Leptons

. Anti- Rest Mass Lifetime
Particle Symbol Charge
Particle MeV (seconds)
Electron e et 0.511 -1 Stable
Neutrino
Ve Te 0(<7x107%) 0 Stable
(Electron)
Muon wo ut 105.7 -1 2.20 x 1076
Neutrino -
vy, Uy 0(< 0.27) 0 Stable
(Muon)
Tau T~ Tt 1777 -1 2.96 x 10713
Neutrino
Uy Uy 0(< 31) 0 Stable
(Tau)
Table 2.2: Properties of the Quarks
. ) Baryon
Quark | Symbol | Charge | Spin | Isospin Rest Mass
Number
up +2/3 | 12 | +122 1/3 2.1670 5 MeV
down 173 12 | -2 1/3 4.67101% MeV
charm +2/3 172 0 1/3 1.27 £ 0.02 GeV
strange -1/3 12 0 1/3 93.475% MeV
top +2/3 172 0 1/3 172.69 + 0.30 GeV
bottom -1/3 12 0 1/3 4181005 GeV

force are very short and have an influence only on the distances shorter than the size

of protons.

SM is a gauge theory with the gauge group SU(3)c @ SU(2), @ U(1)y that de-

fines the fundamental symmetries of particle physics. This gauge group is the union

of three separate groups: U(1)y associated with the electromagnetic force, SU(2),

9




associated with the weak force, and SU(3). associated with the strong force. These
groups are of great importance for explaining how particles interact for each interac-

tion and for describing how conservation laws arise through symmetries.

The gravitational interaction is the gravitational force to which all objects with mass
or energy are exposed in direct proportion to these masses. This interaction, defined
scientifically by Isaac Newton in the 17¢h century, is the first force to be studied sci-
entifically. The intermediate vector bosons that carry the gravitational force are the
hypothetical gravitons with spin 2 and mass 0. The range of interaction of gravita-

tional interactions is infinite |51} 52]].

The electromagnetic interaction takes place between only electrically charged par-
ticles, connecting electrons to nuclei to form atoms and then keeping the atoms to-
gether, contributing to the formation of molecules and matter. The intermediate vector
carrier bosons of the electromagnetic interaction are photons with spin 1 and mass 0.
The electromagnetic interaction is an interaction with an infinite interaction range.
The field theory of this interaction in particle physics is quantum electrodynamics

(QED) [153, 154, 155, 156]].

Another way to call the weak force is the nuclear weak interaction. The weak inter-
action is responsible for the instability of many particles and some atomic nuclei and
therefore for radioactive decay. The effective range of the weak interaction is quite
short, approximately 10~'® m. The weak force is carried through the vector bosons
W+, W~ and Z°, which were discovered at CERN in 1983 by Carlo Rubbia and
Simon van der Meer [37]. W+, W ~and Z° vector bosons are particles with a mass

of around 90 GeV [58 (59,160, 61, 162, 163]].
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The strong interaction is the force between subatomic particles found in the atomic

nucleus, thus keeping the nuclei together. The carrier intermediate vector bosons

of the interaction are massless gluons that have a color charge. Due to these color

charges, the gluons interact with themselves. As its name suggests, it is the strongest

of the four fundamental forces and has an interaction range of around 10~ m [64].

SM can successfully explain all of these interactions except gravity [65, [66]. Al-

though there is no definitive information about the gravitational force, the other three

fundamental forces arise as a result of the interaction of force-carrying particles

(bosons). All fundamental forces have their own carrier particles, and these parti-

cles are listed with their properties in Table[2.3]

Table 2.3: Force and force carrier particles and their main properties [/1} 2]

Associated Carrier . Relative
Force Range Spin
Property Particle Strength
Infinite but
Gravi- ]
Mass weakens with Graviton 2 10736
tational
distance
Infinite but
Electro- Electric
weakens with Photon 1 1
magnetic charge )
distance
~ 107'® meters
Color (distance between
Strong Gluon 1 102
charge protons in atomic
nucleus)
~ 10~'® meters W+ 1
Weak .
Weak (1/1000" proton W- 1 10~
charge )
diameter ) &7 1

11




2.2 The Quantum Chromodynamics

QCD is a quantum field theory of strong interactions that describes the interaction of
quarks and gluons, which form the building blocks of hadrons. QCD was first pro-
posed by Chen Ning Yang and Robert Mills in the 1950s [[67]]. In QCD, unlike photons
in QED, carrier vector bosons can emit carrier vector bosons outside themselves, and
this feature has led to increased interest in research aimed at understanding the nature
of the strong interaction. Thus, in 1973, physicists named Murray Gell-Mann, Harald
Fritzsch, and Heinrich Leutwyler developed QCD, inspired by the concept of "color"

that creates a strong interaction field [68]].

In QCD, quark fields are represented by the fundamental representation of the Yang-
Mills gauge theory with gauge group SU(3)¢, consisting of complex 3-dimensional
matrices, while antiquark fields are represented in the conjugate representation. The
index "C™" here is for the color charge, which is a new quantum number specifically
defined for QCD theory. Although the color charges mentioned are known as red (7),
blue (b), green (g) for quarks, and their antis for antiquarks, this color concept has

no relation with the colors known in daily life and is just a kind of naming [69, /0]].

The Lagrangian density of QCD is

Lga G (2.4)

L =% (iv") (D), Uy — iy - 4

where w} represents a quark field as



with flavor f, ¢y € {u,d,s,c,t, b} and color indices i, ¢ = 1,2, 3, corresponding
to r, g and b, u and v denote Lorentz vector indices with u,v = 0,1,2,3, 4 are
the Dirac-gamma matrices consisting of 4 x 4 matrices, m are the non-zero quark
masses generated by SM Higgs or similar mechanisms, D, is the covariant derivative
and G, is the gluon field strength tensor [71]. In QCD, covariant derivative and

gluon-field strength tensor are usually defined as

(D,U)ij = (51'3'8“ - igsﬂ(;AZ, (2.5)

Fi, = 0,A, — 0,A; — gs freAb A (2.6)

v

where g, is the strong interaction coupling constant, A}, represents the gluon fields,
fa (a,b,c€[l,...,8]) are the structure constants and T7; represents the generators

of the SU(3)¢ symmetry group with

a ]' a
Tij = 5)\U 2.7)

where A\ refers to 3 x 3 hermitian and traceless Gell-Mann matrices, with a ( a €
[1,...,8]), there are 8 independent generators of SU(3)c and, hence, there are 8
different gluons with different color combinations, corresponding to each generator

[71, 172,173, [74].

The Lagrangian of QCD has non-Abelian local symmetry, and the strong interaction
coupling constant, although called a constant, is not actually a constant and varies
according to distance (momentum). This means that QCD, unlike other quantum field
theories, has two very important new features: asymptotic freedom and confinement

[75,176].
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Although the phrase confinement is often used in this way, it is actually "color con-
finement". Confinement states that colored isolated systems cannot exist and there-
fore colored particles such as quarks and gluons cannot be observed under normal
conditions. Due to the color charges of the gluons that enable the interaction be-
tween the quarks, a gluon cloud forms around the quarks. As large distances are
reached, these gluon clouds and, therefore, the interactions between the quarks in-
crease. As a result of increasing interactions, quarks behave as if they were impris-
oned in hadrons.However, although there is no definitive proof for this, these fields,
also called chromoelectric fields, resulting from the color charge between two static
quarks, are distributed in tubelike structures. These structures are called "flux tubes"
[777, 78, 79, 180, 81, [82]. According to this model, there is a linear potential between
static color charges resulting from these tube-like structure charges, which appear to
arise naturally. This can be considered as numerical evidence for color confinement

[83, 84].

Therefore, the confinement has been seen as a necessity because no quark has been
observed in isolation, although many properties of quarks such as their masses, elec-
tric charges, and color charges have been determined in many experiments carried out
so far. For example, when two quarks are required to be separated from each other in
high-energy scattering reactions, the energy of the force fields increases at long dis-
tances, and thanks to this increased energy, new quarks are formed from the gap. The
initial quarks tend to come together with these new quarks to form hadrons, which
do not have a net color charge, and behave more like fundamental entities than the

quarks that form them [85]].

The asymptotic freedom term is used to describe the behavior of quarks at short dis-
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tances (high energy or high momentum). As the distance between the quarks de-
creases, the effect of the gluon clouds, and therefore the interaction between the
quarks, weakens, and the quarks behave as if they are free. Since this decrease in
interaction changes asymptotically depending on the distance between the quarks,
this situation is called "asymptotic freedom" [86, 85]. Asymptotic freedom was first
predicted in 1973 by D. Politzer, D. Gross, and F. Wilczek unaware of each other, and

they were awarded the Nobel Prize in Physics in 2004.

In QCD, dependence of the strong coupling constant g on the monentum is described
as [87, 188l [89]:

2 127
(@) = G52 (@/ABen) 28

Here, ny is the quark flavor number, () is the 4-dimensional momentum, and Agcp

is the QCD energy reference scale. The value of Agcp obtained experimentally is
approximately 200 MeV. This value is taken as a reference in classifying quarks as
heavy and light. Quarks with a mass below this value are classified as light quarks
(u,d, s), and quarks with a mass above this value are classified as heavy quarks

(¢, b, t) [90,O1].

Due to the asymptotic freedom property of QCD, at energies lower than Agcp or at
long distances, perturbative QCD is no longer useful. The changes of o, (Q?) accord-
ing to the energy scale Q [GeV] are shown in Figure 2.1l In summary, in QCD, for
short distances (or large momentum), perturbative expansion is possible with respect
to the running coupling constant «;. Due to the asymptotic freedom property of this
method, the perturbation theory can be used in this region. For long distances (or
small momentums), on the other hand, quark-gluon interactions are strong; therefore,

non-perturbative effects are important. Thus, a non-perturbative approach is required.
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Figure 2.1: Summary of measurements of o, ((QQ?) as a function of the energy scale Q

[GeV] [6]

Therefore, non-perturbative models are needed to describe physical quantities at low

energy levels.

One of these methods is QCD sum rules. QCD sum rules method is a powerful
method that associates QCD parameters with hadronic properties. As one of the most
popular methods used to study hadrons, this method can also be used to study exotic
particles. Mass is one of the significant properties of the particles and QCD sum rules

can be used to study the masses of hadrons.
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2.2.1 Heavy-Quark Spin Symmetry

Hadrons consisting of heavy and light quarks have a more simple structure than
hadrons that do not contain heavy quarks. The heavy quark is surrounded by the
interaction cloud formed by the strong interaction of other particles (light quarks
and antiquarks, gluons) in the hadron. In this case, the size of the hadron, which
is O(1/Agep), is much larger than the Compton wavelength of the heavy quark,

1/my, so it would be appropriate to make some simplifications.

In the heavy quark limit, the spin of the heavy quark decouples from the dynamics.
Hence, systems in which light quarks have the same configuration are degenerate.
The difference in such hadrons can be thought of as resulting from the effects 1/mg

due to the heavy quark they contain [92, (93] 194} 95, 196].

For example, considering a hadron containing a heavy quark at speed v, when this
heavy quark is replaced by a heavy quark of another flavor or spin at speed u, the
configuration of light degrees of freedom of the hadron does not change, because
these two heavy quarks have the same color field. Heavy-quark symmetry is only an
approximate symmetry. However, quark masses are not actually infinity and some

corrections for this symmetry may be needed [97].
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CHAPTER 3

THE QCD SUM RULES METHOD

The QCD sum rules method, which is widely used in hadron phenomenology, is a
powerful method developed by M. A. Shifman, A. I. Vainshtein and V. 1. Zakharov
for mesons in 1979 [98]] and generalized to baryons by B. L. Ioffe in 1981 [99]. In

this method, hadrons are represented by their interpolating currents.

The QCD sum rules method relates QCD parameters such as quark masses, conden-
sates, etc. to hadron properties such as mass, decay constant, form factor, etc. The
first step, which is considered as the starting point of this method, is the construction
of the interpolating current in terms of quark fields such that it has the same quantum
numbers as the hadron under study. Using the interpolating currents, a suitable corre-
lation function is constructed. The two-point correlation function is used to calculate

properties such as masses, decay constants, etc. [100].

3.1 Two Point Correlation Function

In order to understand the properties of hadrons in vacuum, quarks are placed in the
QCD vacuum at the x = 0 space-time point, and their evolution is examined. For

this purpose, the following two-point correlation functions can be used for scalar and
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(axial) vector particles, respectively [101} 102]:
II(p?) = i/d%eipx (T {J(2)JT(0)}] Q), (3.1)

I,,(p%) =i / d*ze™ (T {J.(2)J5(0)}] Q) (3.2)

where p is the four momentum of the hadron, |(2) is the physical non-perturbative
hadronic vacuum, J(z) and J,(x) are the interpolating currents for the scalar and

axial vectors, respectively, and 7 is the time ordering operator.

The time ordering operator reorders the operators in its argument on the basis of the

earlier time and for the products of two operators, it is defined as:

gY (ZEQ)X (l’l) 11 < 9
T{X ()Y (22)} =

X (.I‘1> Y (.1’2) to <t

= [0 (t2 — 1) Y (22) X (1) + 0 (t1 —t2) X (21) Y (22)],

(3.3)

where t; = x(l), ty = xg and X, Y are two arbitrary operators, and 6(t) is the Heaviside
step function. The value of £ changes depending on whether the operators X and Y
are fermionic or bosonic. If they are bosonic, then £ = 1, but if they are fermionic,

then £ = —1.

For conventional mesons, the interpolating currents in the correlation function are

expressed as;
J(x) = 4 ()15 (x), (3.4)
and for conventional baryons, these currents can be expressed as;

J(z) = e [ (x) D102 (z) Doty ()] - (3.5)
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Here, i, j, k and a, b, c represent the flavor and color of the quarks, respectively. £

is the Levi-Civita tensor. I' and I'; can be any of 1, s, y,,757v, and 0,,, which are

the Dirac matrices and can also involve derivatives.

The main quantum numbers taken into account in the selection of the interpolating
current are the total angular momentum .J, parity P, charge conjugation parity C
(if the particle under study has C' parity) and the flavor quantum number. For con-
ventional conventional mesons, the parity P is P = (—1)!*! and the parity C is
C = (—1)"** where [ and s are the orbital and spin angular momentum of the quark-
antiquark pair that makes the meson. In terms of [ and s, the total spin .J of the meson
can have any value in the parity range |l — s| < J < |l + s|. Possible interpolating
currents without derivatives for mesons according to the relevant quantum numbers

of the quark-antiquark pairs are given in Table[3.1] In Table [3.1] the ¢ and j indices

Table 3.1: Interpolating currents of different types of mesons according to their cor-

responding quantum numbers [3]]

Meson JPC|'S Hermitian Quark Current Operators

Py = i
Vi = U
Sij = Vit
Al = 0y

Pseudoscalar | 0" | 0
Vector 1/ | 1
Scalar ot |1

Axial Vector | 171 | 1

— = o ||l -

represent the corresponding quark fields.

The correlation function is written in terms of hadronic degrees of freedom in the
p? > 0 region, which is called the hadronic (phenomenological) part, and quark-
gluon degrees of freedom in the p? < 0 region, using the Operator Product Expansion

(OPE), which is called the QCD (theoretical) part. Then, the physical quantity to be
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calculated is obtained by matching these two parts using analytic continuity [103].

3.1.1 Hadronic (Phenomenological) Side of the Correlation Function

The value of p? determines the behavior of the correlation function. The hadronic
side is defined in the p?> > 0 region. In this region, the correlation function can be

written in terms of hadronic properties.

On the hadronic side, the correlation function is calculated in terms of hadronic pa-
rameters. For this purpose, if the time ordering operator in Equation (3.2) is written

explicitly, IT%¢ (p?) will take the form
et (p*) =i / d'ze™ (Q](0 (z°) JT(2)J(0) + 0 (—2°) J(0)J'(2))| Q). (3.6)

The resolution of identity in terms of Hamiltonian eigenstates is inserted. Hadron
states that have the same quantum numbers as the interpolating current contribute to

the correlation function (equation [3.7).

1= >  In)nl

Eigenstates
of Hamiltonian

=0 + I |h1<QI)><h1(Q1)l+ Zj 1 (q) (o)) (R (q0) (o) |+ - -

vacuum N ~ ~  Higher States

Vv
States with one hadron States with two hadron

—10)(0+ Y gy (270 (6) 8 6 ) W) ()] + -

h

(3.7

Here, hy, ho, .. represent the hadron states, m;, represents the mass of the hadron, and

also I represents a sum over all the hadrons and their discrete quantum numbers as
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well as an integral over their continuous quantum numbers such as their momentum.

By inserting equation [3.7]into Equation [3.6) between two operators;

x {0 (%) (01.7(2)| ()} (h(g) | 7+(0)] 0)
+0/(=2") (0]77(0)| k(@) {h(a)|T()]0)} (3:8)

can be obtained. Here, when ¢ = i = 1 is used, J(z) can be written in terms of .J(0)

using the translation operator.

J(z) = P J(0)e P, (3.9)

Hence, the matrix elements can be written as:

(017 (2)[h(q)) = (017 (0)| h(q)) ™",
(h(q)|J ()]0) = €™ (h(q) |7 (0)| 0) .

(3.10)

Using equation [3.10} the following result is obtained:

mHed (p?) =i Zi d%(élﬂ(; (2m)d (¢* —m3) 0 (¢°)
h
L7 asero () (0170 ) o) O10

n / 427 (—o) (Q17(0)|h(a)) (hlg \ﬁ(oﬂ@},

[e.e]

taking space integrals I17%¢ (p?) can be written as
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Had (,2\ _ - ipoTo d'q 2 2 0
I1 (p ) —z/dxoe i o) (2m)o (q — mh) 0 (q )

h

X {9 (xo) e 7070 (27 Y35% (5 + ) <Q |JT(O)’ h(q)> (h(q)]7(0)]) (3.12)

+ 6 (2°) 0% (271)38° (7' — §) (2] J(0)|h(q)) (h(q) |TT(0)| )} .

Using the properties of the Dirac-Delta function, the ¢ integrals can be evaluated

explicitly:

I (%) =i Z 41
ho 24/p* +m3

—1 0o 0o (3.13)
. {Z_@O — 7 21O b =) ¢hl, LI 0)1)

+ QU 7)) [ 1O ) 55

where, 2V integral is also evaluated. To ensure the convergence of 2° integrals, ¢ = 0
are inserted in the exponents. If the quantum numbers of operator J are the same as
the relevant meson m and then . = m contributes to the first term and h = m
contributes to the second term when taking the sum over all the mesons. But if m =
m, h = m contributes to both terms. Therefore, the product of operator matrix
elements for particles and antiparticles is equal to each other. Then, Equation |3.13
can be written as

e (p Z (217(0)] A", 0))|’

h +m%

1 1
- {i(p0+q0—ie) _i(po—qo—i-ie)}' (3.14)

The sum in Equation [3.14] contains only particles and not antiparticles. In addition,

Equation is written in the frame where p = 0. This is possible because this side

is for the kinematical region p? > 0. After further simplifications,
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[[Had (p2) _ Z (6217 (0)] h(p)>|2 (3.15)

2 )
h

2

is obtained by taking the limit e — 0. In this case, the following expression is found

for the correlation function I179?(p?) for the hadronic side (in the region p* > 0):

[1Had (p2) _ (2] J(0)] hG(p)>|2

2 _ 2
My, — D

+ Higher States + - - - (3.16)

Here, h¢ represents the energy of the lowest-mass hadron corresponding to the inter-

polating current operator.

3.1.2 QCD (Theoretical) Side of the Correlation Function

In order to calculate the QCD part of the correlation function, the Wilson operator
product expansion of the time-order product of two or more interpolating currents is

calculated.

3.1.2.1 Wilson Operator Product Expansion

OPE was developed by K.G.Wilson in 19609 to separate short and long distances in the
relevant physical process [104, 105, [106]]. This is achieved by writing the time-order

product in the correlation function as:
T {J(2)J70)} =" ¢ (2?) O;, i=0,1,2,... . (3.17)

Here, C; are the Wilson coefficients, providing information about short distance physics.

O; are the local gauge-invariant operators ordered by dimension, containing contri-
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butions from non-perturbative low energies (long distances). The perturbative contri-
bution is provided by the unit operator in the lowest dimension (d = 0). Since the
QCD vacuum is colorless, the gauge invariant operators for d = 1,2 dimensions do
not contribute to the correlation function. O; operators for higher dimensions up to

i = 6 are listed in Table[3.2

Table 3.2: Some non-zero local operators up to 6 dimensions [4]

Operator Dimension

Og = I (Unit Operator) | d =0
O3 = Py

O, = mwﬁw

O, = G}, G

Os = QZUW)‘—;GWU@b
Og = (Y,9) (PT50))
Op = fupe G2, Gl Ger

Q| | & & & X

Il
olo o | e || w

Here, the term 0, = %[vﬂ, 7] is defined in terms of gamma matrices.

When Equation is inserted into the two-point correlation function in Equation

[3.2] it can be expressed as

‘ (3.18)

The term "<Q ‘OAZ

Q> " 1s defined as the expected vacuum value, or the condensates,

of the QCD operators, characterizing non-perturbative effects.
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3.1.3 Analytic Continuity and Dispersion Relation

The correlation function has been expressed in terms of the hadronic parameters for
p?> > 0 and in terms of the QCD parameters for p> < 0. Since these results are
from different regions, it is not possible to equate them. In order to relate these
two expressions, the analytical continuity of the correlation function is used. Since
the correlation function is an analytic function of p?, it can be expressed using the
Cauchy formula. Looking at the obtained Equation [3.16; the expression has poles at
positive values of p* due to the expression mj, . — p* in the denominator, and also has
a brunch cut from a threshold value on the positive axis, due to multi-hadronic states.
For a given negative p*> < 0 value using the C; contour, as shown in Figure the

correlation function can be written as:

P

£y
N
Ci

Figure 3.1: C; contour in the z = p* complex plane. The dark points in the figure
show the pole points, i.e. the states of the hadrons, and the zigzag lines show the

branch cuts.

1
O(p*)=-—¢ d . 3.1
(p) 27 j{ol Ss—p2 (3.19)



The integrand in Equation has a single pole at s = p?, within the contour 1,

its residue is the value of TI(p?). According to complex analysis, the contour can be

deformed as desired, as long as no pole or branch cut is crossed. It is possible to

deform the contour C; and draw it as shown in Figure[3.2] and thus the equivalent of

the integral given in Equation [3.19]can be written for the new contour as follows:

Figure 3.2: Cr contour in the 2 = p? complex plane. The dark points in the figure

show the pole points, i.e. the states of the hadrons, and the zigzag lines show the

brunch cuts.

In Figure [3.2] contour can be splitted as:
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1 (s) |, 1 sé’ds TI(s — ic) +L/Rd5 TI(s + ic)

I (p?) = — ds —
") 2mi Jig—p S—p* 2miJp  s—p’—ie 2miJgp s—p?+tie

R : _
L% s I1(s) N l/ s 1 II(s +ie) - II(s — ie) 321)
|s|=R s

T omi s—p* w)p s—p? 2i ’

where sk is the threshold for the creation of real states. Taking the limit ¢ — 0
in Equation [3.21] the Schwarz reflection principle will be used. According to this
principle the discontinuity of an analytic function on the positive real axis is equal to

its imaginary part if it takes real values on the negative real axis [[107, 108, [109]:

(s 4 ie) — (s — ie) = 20 Im TI(s). (3.22)

When the radius R of the circular part of the contour goes to infinity, the fraction can

be Taylor expanded in terms of (p*/s) as:

1 0 2\n
oy (3.23)

Using Equation [3.23] Equation [3.21] can be written as

— ()" I < Imll
I(p*) ZZ%/HmdsﬁjL/S dsmT<S). (3.24)

h
n=0 0

In the summation over the n value in the first term of the left side of the Equation
3.24] after a certain n value, TI(p*) goes to zero in the |s| — oo limit and only a finite
polynomial in terms of p?, called subtraction terms, will remain. In this case, the

dispersion relation can be expressed as
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1 [  ImlIl
(p*) = —/ ds— (5) + Subtraction Terms. (3.25)
sh (S - p2)

Here, ImIl(s)/m = p(s) is the spectral density. Using this dispersion relation,

1724 (p?) for positive values of p* and TI°FF (p?) at negative values of p? can be

connected to each other.

The point to be noted about Equation [3.25]is that using this expression, the value of
I1(p?) in the p? < 0 region can be calculated using the expression Im II(s) in the

s > 0 region. Taking (Q]J(0)| h(p)) = A, and using equations and [3.25| the

following equation can be written for the hadronic side of the correlation function

HHacl <p2):

A 2 [e's) Had
[Had (p2) _ % + / ds’o—(i) + Subtraction Terms . (3.26)
th - p 56” S — p

Here, p%? (s) is the spectral density of the hadronic side that includes the spectral

properties of hadrons.

On the other hand, by evaluating the correlation function for the OPE side defined
for negative values of p? in the large Euclidean deep momentum limit, the following

expression is obtained:

() pOPE ( S)
[19F¥ (p2) = / ds o~ + Subtraction Terms . (3.27)
0 §—P
Here, p°FF () is the spectral density of the QCD side that includes the spectral prop-

erties of quarks and gluons.

The correlation function obtained in two different regions (Equations and [3.27)
can be matched, and hence the relation to match the results of the obtained correlation

function in two different regions, using Equations [3.26]and
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o8] OPE
/ dsp—('z)%—Subtmction Terms
0 s§—p

A 2 00 Had
_ 2| A +/ ds” () + Subtraction Terms,  (3.28)
N

th -
can be written. However, it can be seen from Equation [3.2§] that it cannot be used
to extract useful information due to unknown subtraction terms. These subtraction
terms consist of polynomials in p? whose degree is unknown. By taking an infinite
number of derivatives, any polynomial can be eliminated. This can be achieved by

Borel transform in Equation [3.2§]

3.1.4 Borel Transformation

The Borel transformation is defined as [[110]:

2 5 2 . (_pz)nH d\" 2
I1(M?) = By [11(p%)] = g2 ) B (»*)- (3.29)
—pz/’n—>M2

As mentioned above, the Borel transformation eliminates polynomials of unknown

degree by taking infinite derivatives. It also suppresses the contribution of higher

1

—s/M?
5—p2 :

states by converting the expression

— €

Using the definition of Borel transformations, some explicit transformations are ob-

tained as follows [111]].
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Bu [ (—p)'] =0fort >0, (3.30)

5 1 1 1 \!
for {(—p2f] Tt 1) (ﬁzi) ! (3.31)
5 1 1 6me/M2
B {(mQ _]92)4 - (t — 1) (M2)=1’ (3.32)
Bare |(9°) log (—p*/%)] = 11 (-22) " (3.33)

Considering all these situations, when the Borel transformation is applied to the phe-
nomenological and OPE parts of the correlation function, the corresponding results

are obtained. For the phenomenological part,

BWWW@MZ&WWW+/dWWWWW (3.39)
56
and for the OPE part,
&WWWEWH:/’@WWQEWW. (3.35)
0

Hence, Equation [3.28| becomes

)\iemi/MQ—l—/ dsp(s)e=*/M* :/ dspPPE (s)e=M”. (3.36)

sg 0
According to the local quark-hadron duality assumption, the integral on the left hand
side of Equation can be written in terms of p©F'F as [112]],
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/ dspH“d(s)eS/MQZ/ dspOP® (s)e=*M” (3.37)

4 50

where s 1s called the continuum threshold. Substituting Equation [3.37|into Equation

the sum rules is obtained as

S0
A2 e~/ M —/ dspPPE(s)e=s/M. (3.38)
0

Using this expression, the mass of the hadron in the ground state can be calculated by
taking the derivative of Equation with respect to the parameter —1/M? and then

dividing it by Equation [3.38}

fOSU dSSpOPE (S>€—S/M2

fOSO dspOFE (s)e—s/M2 )

mjy =

(3.39)

Once m; is obtained, it can be used in Equation m to calculate the decay constant

2
Aj as

s0
— emi/MQ/ dspPPE (s)e=M”. (3.40)
0
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CHAPTER 4

QCD SUM RULES FOR THE MASS OF TETRAQUARKS

4.1 THE MASS OF 7 TETRAQUARK

This section consists of detailed calculations to obtain the mass of the ground state
of the T} tetraquark. As mentioned in the Chapter application of QCD sum rules
to calculate the mass of the given hadron follows three important steps: The first is
the calculation of the hadronic side or the phenomenological side used to express the
correlation function in hadronic degrees of freedom in the p?> > 0 region. In the
second step, the correlation function is expressed in terms of the gluon and quark
properties in the p? < 0 region and is called the QCD side or the theoretical side. In

the final step, these two expressions are matched using analytical continuity.

Then, using Equation the two-point correlation function for the 7.} tetraquark

can be written as:

M, s (%) = i/d‘*g;eim <Q ’7’ {JF () JT (0)}’ Q> . @.1)

In order to calculate Equation 4.1} it is first necessary to determine the interpolating
current. The spin-parity quantum numbers of the state 7'\, tetraquark is determined

as J = 17 and the measured mass of the 7.} tetraquark is located at (—273 +
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61+ 511}) keV just below the D°D** mass threshold [41] 42]. For this reason, the
molecular picture is quite attractive for studying the properties of the T state. Thus,
considering the quantum flavor contents and spin numbers of the D mesons, where
D° : cu(0), D : ¢d(0), D** : cd(1), D' : cu(1), the following equation is

obtained.

|D°D*" = D*D*) =|I=0, I3=0)
|D°D** — DYD*) = |(cu) (0)) ® |(cd) (1)) — |(ed) (0)) @ |(cu) (1))

= |ty — cyiy) @ |erdy) — [erdy — eydr) @ |erty)
4.2)

= ‘CT’[L¢C¢CZ¢> — ‘Ci’[LTC¢CZ¢> — ‘CTdicTﬂT> + }C¢CZ¢CTET>
= crey (wydy — tpdy) + pdy (erey — cyey)

D°D*t — D*D*) = — (cc) (1) (ud) (0) + (ud) (1) (cc) (0)

As can be seen from Equation @.2] in the molecular picture, there are two cases:
One of them, the total spin of the heavy quarks is 1, and the total spin of the light
quarks is 0 and the other, the total spin of the heavy quarks is 0 and the total spin of
the heavy quarks is 1. In these cases, when the total spin of the heavy quarks is 0,
the color wave function must be symmetric, since the wave function of the diquark
must be antisymmetric according to the Pauli Exclusion Principle. However, since
color interactions are not attractive in the symmetric case, the probability of the sym-
metric wavefunction forming a diquark is low [[113} [114} [115, [116]. Therefore, in
this study, the construction of the interpolating current, the component for which the

heavy quarks have total spin 1 is considered.

Taking into account the fact that the observed particle has positive parity, P = +, the

interpolating current .J, TCC( ) for the T} tetraquark can be written as follows:
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JZ“ (x) = [(C“TC”yucb) (x) (ﬂCnyg,JdT) (a:)} gabegede, 4.3)

where a, b, c are colors, £ is the Levi-Civita tensor, 75, and -y, are the Dirac matri-
ces, u, d and c represent u quark, d quark, c quark fields, respectively, and C' is charge

conjugation operator.

4.1.1 Hadronic Side of the 7. Tetraquark Correlation Function

To calculate the hadronic representation of the T tetraquark correlation function,

starting from Equation the following equation is obtained.

Q|77 h(p) ) (h(p) |77 @
Hfﬁ; () = Zh: < - p2>_<m% > o

T
JEE 0% () (0% (v) | 72

2 %)
- ZO: p* = mi+

Jgret

(o

1(2,p)) (1*(e,)

2 2
pT—miy

Q>+ (4.4)

2.

Note that the chosen current can couple to states with S = 0 as well as states with

S = 1. Using the following matrix elements,

+1
JEC c

(5=0%p)

Q) =\, 4.5)

+T
Jch c

<S =1"(e,p)

Q> = Afer, (4.6)

in Equation[4.4] the hadronic representation becomes:
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[Had ( 2) _ | Ao+ |*pups n A+ P32, 5;‘;@_

v, T 2 2 2 2
HSee b —myt pbT—mis

4.7)

In Equation 4.7, only the contributions of the lowest-mass scalar and axial-vector
mesons are explicitly stated, and other terms are not shown. Then using the sum over

all polarizations,

* DuDPv
> D)) =~ + P, 4.8)

Equation [4.7]is expressed as:

_ DosPrupy A ? (=g + 228

e, (p® 4.9
v, To (p ) p2 _ m3+ p2 _ m%r ( )
If the definitions
o, (p?) = Z Ao (4.10)
Upen P2 — mg+ g
and
ﬁ1+ (pQ) :ZL 4.11)
T P2 — m%+ )
are used, Equation 4.9|can be written as:
ad N - PuDv
0t () = () e+ 1, 07) (o 22) . @)

Note that two masses of axial vectors appear as the poles of ﬂcht (p?), which is the

coefficient of —g,, in the correlation function. Hence, only HIT;; (p?) will be studied.
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4.1.2 Theoretical Side of the 7 Tetraquark Correlation Function

To obtain the expression of the correlation function in terms of the QCD parameters,
first the interpolating current expression in Equationf4.3]is inserted into the correlation

function in Equation {.1]
M rs (07) =i / d'ze™ (Q|T { (T Cruc?) () (@°Crsd™) (x)] stbeccde

X [(dd,'yg)Cuc/T) (0) <§'%CEGIT> (0)} ga/bleledd,el}’ Q> :
(4.13)

Using Wick’s theorem, time-ordered products can be written in terms of normal-order

products as follow:
. i be _cde _a'b'e’ _c'd'e’
IL, .+ (p°) = z/d‘*xeme“ gt e
pv, Tee

x {<Q):{Kchvm%xxxa%xw&wvcwn«ﬂh%cudTxoxéﬂncwdeoﬂ>JQ>

(o) { 0}
<'{”wi (O d Y@@ 1) O Ce )0}

- 1

(T Cryuc®) () (@ Crys AT ) (@)][(d” 75 CutT)(0) (&7, Ce™

”Om ><@7Wwﬂw%ww%mwvﬂc

+@:Kﬂmﬁmmwm%ww%@ﬂmw%&m@ ﬁ>

+ (all possible contractions)} 4.14)
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Here, the sign "r—1" represents the contractions of the relevant quarks, and only one
example of each of the situations involving one contraction, two contractions, three
contractions, and four contractions is shown. The "(€2| : : [{2)" notation is used
to denote normal ordering in quantum field theory and indicates that the creation
operators precede the annihilation operators. For example, if a and b represent the
annihilation operators, and a and b' represent the creation operators, normal ordering

is defined as:

<Q ‘: aatbbf :‘ Q> = <Q ‘a”ﬂab! Q> . (4.15)

Here, NV is the number of commutations required to convert the original ordering to
the final ordering, » = —1 and ) = 1 are used for the fermionic and bosonic operators,
respectively. In cases where there are c quarks that are not contracted with each other,
the corresponding terms are equal to zero since there are no heavy quarks in the QCD

vacuuin.

Contributions to the correlation function in Equation 4.14] include perturbative and
non-perturbative contributions. Situations in which all quark fields are contracted are
called perturbative contributions. In Figure the mentioned contributions taken

into account in this study are shown schematically in terms of Feynman diagrams.

In Figure .1} the diagram (a) corresponds to the perturbative part which is the con-
tribution of the zero-dimensional operator in OPE. The other diagrams show the con-
tributions from non-perturbative parts sorted according to the mass dimension of the
corresponding operator in OPE. The diagram (b) shows the contribution of d = 3
operator containing the light quark propagator (Gq), the diagrams (c1) and (c2) show

the contribution of two-gluon operator’s containing (g2G?) condensate, the diagrams
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(d1) and (d2) diagrams show the contribution of 5-dimensional operator consisting of
the light quark-gluon mixture containing (gqgsG) condensate, the diagram (e) shows
the contribution of the operator, two light quarks consisting of (ggGq) condensates.
The contributions of the 8-, 10-, 12- and 14- dimensional mixed condensates are also
represented in Figure .1]by diagrams (f1) and (f2), (g1) and (g2), (h1) and (h2), and

(i1) and (i2), respectively.

For the T’} tetraquark, there are two terms with four contractions forming the pertu-
bative part. One of these terms, which is also present in Equation[4.14] can be written

as

4.1 . . VAT
1™ . (pQ) = d4xezngabe€cdegabe gcde
pvTee

<Qr (¢ O ) (&) (@ s A7) @] (0 35Cu ™) (0) (@ 7,0 T)(0)] Q>

(4.16)

Expressing the matrix products in terms of summations over spinor indices, Equation

can be written as:

T

H4,1 (pQ) _ 7:/d4$eipx(07,u)ij('YVC)kl(075>a6(/75C)ydgabeecdega/b,e,5C,d/e,

x <Q L9 | @) (@) @ ) (0)] | (@gdsh) () (dy us ™) (0)] ¢ - Q>
(4.17)

where the number "4" in the superscript "4, 1" represents terms that contain four con-
tractions, and the number 1 represents the first of the terms with four contractions. To

evaluate Equation the following definitions are needed.
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Figure 4.1: Feynman diagrams of the contributions to the correlation function con-
sidered in the 7! tetraquark mass calculation are given by selecting only one of
those expressing similar cases. Here, the thick(thin) lines represent the corresponding

heavy(light) quarks and the spirals represent the soft gluons.
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1

Q" (2) ™ (0)[Q) = i ()5,
(9 ¢j (@) & (0)[€2) = 15 (2)0™,

1

(Qlag (x) us T (0)]92) = i(—1) S5, (—2)0™,

1

(Q|d4F (z)d? (0) |) = i(—1)S5(—z)5™ (4.18)

where S§ () and S¢4(—x) are light-quark propagators and Sfj(z) and S§,(z) are

heavy-quark propagators, and they are generally defined as

iS25% () = (T {¢2(2)q5(0) }] Q) (4.19)

for the light quarks and
iS&(x) = (T {Q%(2)Q%(0) }] ) (4.20)

for the heavy quarks. These propagators include perturbative and non-perturbative
contributions. The parts of these propagators that contain only perturbative contri-
butions are indicated with the subscript free S, . (x), and they are expressed with

Equations .21 and [4.22] for light and heavy quarks [103}[117,[110], respectively.

o) = [ LA M ] 421

22zt An2g2

SQ

free

T B

Here, £ = x,7* and K, (mQ Vi —x2) are the modified Bessel functions of the second
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kind, which can be expressed as [[118]]:

n 0 2
K, (mQ\/—qﬂ) __ (mo)" / dtt "D exp [—@ +m2} L (423)
0

(—a2)"/? 2n+1 4t

The propagators are inserted into Equation [4.16]to obtain:

T

H4,1 (pQ) _ i/d4$€ipx(0’)/u)z‘j(’7y0)kl(C’Y5)a5(750)758(11)680(168(1%/6,€c/d/e/

x S5 (2)6% Sy ()8 (—1) S, ()8 (—1) 855 (—2)0™

. : / / / ! AN ! gl !
— Z/d4xezpa:5aa (Sbb §ee 5dd Eabegcdega be scde

x [Si(@) (0 O)iiSky (@) (Cy)7i] [Sha(=2)(C5)as S (=) (15C)s) -

(4.24)

The following expressions are needed to evaluate the last equation.
gabegabe _ o) 5ec’ (4.25)
56 = 3, (4.26)
[Si(@) (W CSis (2)(C)js] = Tr [S°(2) (1, C)T S (2)(C) ] (4.27)

[Sha(=2)(C5)asSis (—2)(15C)5s] = T [S*(=2)(C5)S™ (—2)(1:C)] - (4.28)

Using these equations, Equation [d.24] can be rewritten as

I e (07) =126 / d'ze™
x Tr [39(2) (1) S (@) (Cy) '] Tr [S"(=2)(C5)S™ (=) (%:C)] -

(4.29)

Equation .29 can be simplified using the properties of the charge conjugation matrix
C given in the Appendix [A.0.2}
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Hi’le_f (p2) :12i/d4xeim

xTr [S°(2)7, S (—2)v,) Tr [S*(—2)(Cv5) S (—2) (15C)] . (4.30)

In order to simplify the notation, the following definitions are used:

A9 () = [mé Ki (mq —x2)] 7 B () = —i { mg Ky <mQ\/_—x2>} ’

472 V—x2 Am2p2
(4.31)
2\ — m N 1
A5 (2%) = - | 15 Bl (2?) = {%21’4} . (4.32)
The expressions of propagators in terms of these definitions are given as:
Shree(w) = AF (2%) + B (%) 4. (433)
Sree(w) = A (2%) + B (2°) £- (4.34)

In terms of these newly defined functions, Equation 4.30] can be written as:

Hi’im (p2) = —12i/d4xei’”
x Tr [(A§ (%) + BS (¢%) ) (4§ (%) = BS () £) ]
x Tr [(Af (2?) — By (2*) £)(Cs)(AF (2%) — B (2%) £)(1:C)]

(4.35)
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Here, taking advantage of the properties of the gamma matrices given in Appendix

[A.0.1] the results for the traces are obtained as:

Tr[(A5 (#%) + B5 (%) A)v (45 (%) = B (¢°) 4) 7] =

4 <A8 (:U2)2 + B§ (x2)2 xz) 9w — 885 (x2)2 T,x,,  (4.36)

Tr[(Ap (2%) = By (2%) £)(Cys)(A] (%) — By (2%) £7)(1:C)] =

—4AY (2°) Af (2°) — ABY (2°) BY (2*) 2®. (4.37)

When the traces in Equations .36 and are inserted into Equation 4.33] the fol-

lowing expression is obtained.

I (7) = (30)2° [ d'ae™ A5 (%) A5 (o) A7 (+°) o

+(30)2° [ dwe™ 22 AG (2%)? By () BE (22) g
+(30)2° [ d'we™ 2 B (2%)* AL (42) AL (42) gy
+(30)2° [ d*zea* B (%) BY (¢2) BY (22) g
— (3027 [ d'ae™ B (a7)" Af (a7) AF (o) aa,

— (30)27 | d*ze™ B (x2)2 By (2*) By (2%) zyx, (4.38)

— e Y S Y

Here, every integral is named by the i indice (i = 1,2, 3...,6) such as Hi’,}i (p?). In

this case, the solution of the first integral H;‘;’Vll (p?) is as:

I (%) = (3020 [ dhoe s (22)° A3 (02) A () g 439

By substituting the expressions of the relevant constants and Bessel functions,
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. 2
4,1 2\ _ (9:\06 4 iz | LA
ot () = (302 / e [QMJ

m? m o0 m2 2
c c (-2) _Q 2
- {47r2\/—_332 V—x222 /o att exp [ 4t e H v (440)

can be written. Then, making the necessary adjustments, the integral takes the form

o0 _m2 0 _m2
X / dtltl_2 exp € 4 tx? / dtgtgz exp © 4+ tox?| .
; it 4t

1 0 2

(4.41)

Consider a general integral defined as

6ipz 00 _m2 oo _m2
I = | de—0 dtit;™e €t tia? / dtot; e 4 tox?
1 / x(—ﬁ)"/o 1ty exp [ it 1z ; 2ly €XP Aty 2L

eipac 00 00 m2 m2
= [ d&* dt dtot7 ™5 — (== c t + ty)x>
/ x(—aﬂ)"/o 1/0 ot "'ty eXP{ <4t1+4t2)+(1+ 2)T7|

(4.42)

where d*z = dxodridvodrs = dtdwdydz and to do the calculation, it is deemed
appropriate to switch from Minkowskian to Euclidean space. For this purpose, the
Wick rotation is applied. In Wick rotation ¢t — it, g — ixg, po — ipo, d'r =
id*z, and hence 22> — —22, p? — —p? and pr — —pz. Then, Wick’s rotation of
Equation #.42] becomes:
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—1ipx 00 oo 2 2
Il = Z/d4x F{E2)n /O dtl/o dtgtfmtgl exp |:— (T—ti + T—tz> - (tl + t2)$2:| .

(4.43)
Using the Schwinger representation expressed as follows in Appendix |B.3
! ! / h dtt" ! exp (—At) (4.44)
— == exp (— .
A" T (n) Jo v
the integral /; takes the form:
7 o o o m2  m?
L=—— [ dt dt dtsty ™ty 'y — (=t 4+ =5
' F(n)/o 1/o 2/0 e exp[ (4t1+4t2)}
X /d4x exp [—ipx — (t1 + ta + t3) fL‘2] . (4.45)

Defining a new variable K for the integral d*z in the second row of the Equation[4.45]

K :/ d*z exp [—ipz — (t1 + to + t3) 2°]

:/ dxq exp [—z’poxo — (ty + ta + t3) :13(2)} / dx exp [—ipm — (ty + ta + t3) xﬂ
X / dyexp [—ipz — (t1 + to + t3) y°] / dzexp [—ipz — (t1 + t2 + t3) 2°]
(4.46)
is written and one of these integrals,
/dxo exp [—ipxo — (ty + ta + t3) x%} (4.47)
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is chosen. To make this integral similar to the Gaussian integral, o« = —ip,,, [ =

t1 + ty + t3 definitions are made, and

oo 0 a 2 042
/ dzgexp [azo — fzy] = / dxoexp [—ﬁ <x0 — %> + ]

is found. Since this form has not yet been fully transformed into a Gaussian integral,

another transformation needs to be applied. Defining y = zy — % the desired form ,

/Oo dyexp [~By?) exp | - =i (4.49)
ex — ex — | = — €X .
—oo yexp 4 P 4 t1 + 1ty + 13 p 4(t1+t2+t3) ’

is obtained. The same operations are also applied to the other integrals given in

Equation #.46]. As a result of these transformations, Equation [4.45| can be rewritten

as

7/7]_ o0 o0 o0
I, = dt dt dtat T (1 4ty 4 tg) 2
1 F (n) /0 1/0 2/0 301 2 U3 ( 1 + 2 ‘|‘ 3)

m2 m2 p2
Y (L . 4.50
XeXp[ <4t1+4t2+4(t1+t2+t3)>} (430)

To simplify Equation a change of variables is carried out by defining ¢; = xt,

ty = yt, t3 = (1 — x — y)t. Also, switching back to the Minkowskian space, using

(p~ — p?), after which
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etre o0 —m? o0 —m?
drr——— dtyt;™e € 4t / dtstste
/ (_12)”/(; 141 Xp |: 4t1 1 o 209 Xp

C t 2
At +2£L‘}

7:77-2 1 1—x oo
/ dq;/ dy(1—az—y)" oy / dgtn—mt
I'(n) Jo 0 0

y me e\ P
exp | — —< —
PUT\ et Tyt ) T

(4.51)

is obtained. In the last case, to simplify the notation in Equation s(z,y)

m?/x + m?/y is defined and the following expression is obtained for H LT (p?)

6
e ( 2) _ Zmcmumaguy
/u/l,Tct p 7T627

_ 2
/ dx/ y(l—x — y)3x_2y_2/dtt_3 exp l—s(x,y) P

m } (4.52)

Applying similar methods to other integrals in Equation 4.38] the following expres-
sion is obtained.

6
H4,1 ( 2) - —M My MaGuy
;u/,T:Z 7T627

1 1-a _ 2
X / da:/ dy(1 —z — y)31:_2y_2/dtt_3 exp [M}
0 0

4t
1—x 2
cGuv -2 -2 -3 —S<l’, y) +p
m?/d:c/ y(1 -z —y)*a?y /dtt exp{T
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MMy Mag,, P _ —s(z,y) + p?
6011 — o / / y(1—z —y)'a%y 3/dtt L exp [4—15}
11—z 2
S G _ —s(z,y) +p
7r659/ d:v/ y(l — 2 —y)°z 3/dtt *exp [T}

m My My _a
57r6211 / dm/ y(l — 2 —y)’z 3y ™?

o Duby —s(z,y) + p?
[ (g P e [0
/O G =5y ) XP 4t

3m oMmyMy 6,.—3, -3
y(1—x —
156911 / dx/ r—y)x "y
3 W%) —s(z,y) +p?
x / att ™ (g + - exp[ = (4.53)

As mentioned above, there are two terms with 4 contactions that constitute the per-
turbative part of the correlation function. One of them is given in Equation 4.53] The

second term contributing to H4 ! Tk (p*) can be calculated following the same steps.

It is obtained that IT* Tct (p?) = Hi’j’T + (p?). Hence,

7 () = 8L () 102 ) =210 ).

/"[/V7TCC I'I‘V7TCC Mlj?TCC

(4.54)

The contribution of the d = 3 operators arises from terms in Equation |4.14| with 3

contractions. Consider one of the possible terms with three contractions in Equation

414
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Hi;,ll’Tct (pQ) _ i/d4$€ipx(C’Yu)ij(’)/I,C)kl(C")/g,)aﬁ(750)758(1[]680(168(1%/6/€C/d,6/

<Q (e et () (& @'T) (0) | |(@ediT) () (d¥ ™) <o>] Q>
(4.55)

Using the propagators defined in Equation[4.55|can be rewritten as

I e (%) =i / d'ze™* (C)i5 (3 Cri(Cr5)ap (15C) e ecte™ e
X 195 ()0 iS5, (2) 0" (—1)i Sk, (—)8° (Q] + d (x) df " (0) : |2).

(4.56)

In perturbation theory, when an annihilation operator is applied to vacuum, the result
will be 0, but it will not equal to 0 in the non-perturbative regime of the QCD. In order

to simplify the computations, the Fock-Schwinger gauge z#A,, = 0 is used.

For convenience, the matrix element (| : @& (x) ¢3(0) : [€2) is considered. The

Taylor expansion of ¢%(x) is written as

= 72 (0) + (qaa D) " + - - (4.57)



where in the last step, the Fock-Schwinger gauge is used to write 0 ,2* = D ,x".

Using Equation 4.57, the matrix element (Q| : ¢4 () ¢5(0) : |€2) can be expressed as

1 = = \@
- (q‘a(O)D#Dy> o

(00502 () (0)519) = 91 [0+ (1(0)B,) "o+

S

2i ( 53% g) ahat e 4 - ] q%(o) L |$2)

= (01 (2(0)g3(0) : 1)+ (] (2(0)D,) " wg5(0) £ 12)

TV
First Term

~
Second Term

€1 (a z>%> o2y (0) 1)

Third Term

f[\3|,_.

+?Q( Dﬁg)ﬂ%WMQWQ

Fourth Term

+24 ( 5§§§> hav ) xoq (0) . |Q>j_|_ cee (4.58)

Fifth Term

Starting from the first term (| : (g%(0)g3(0) : |€), the a and b indices must be
the same because the vacuum is colorless for this term and, also, due to parity and
rotational symmetry, it is expected that (| : (g%(0)g3(0) : |€) is proportional to
the unit matrix in the spinor space. Taking into account all these considerations, the
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matrix element can be parametrized as:
(€ : 72(0)g5(0) = |2) = Ad™Gng. (4.59)
To obtain A this term is multiplied by, d,,6°“ and the following equation is obtained:

5500720 : q‘g(O)qg(O) 2 |Q) = Adpa6P¥6% 5. (4.60)

The terms in Equation [4.60| are

%6, = N, = 3, (4.61)
Sap0’™ = 4. (4.62)

From Equation [4.60]it is concluded that

A= E@J), (4.63)

where (Gq) = (| : ¢(0) ¢ (0) : |€2). As a result, the following equation is obtained.
(4q)0™60s. (4.64)
If the second term in Equation [4.58]is to be calculated, considering that the second
term has a Lorentz index and two spinor indices, it can be written as

(92 5 (@ (0)D)"a5(0) + 19) = BI™(3)as (4.65)

Since 7, is the only quantity with a Lorentz index on which the matrix element can
depend. For this term, because of the chosen Fock-Schwinger gauge, simplifications

are possible with the help of the equation of motion of quark fields, g( /0 — im,) = 0
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Multiplying this equation by &;,(7,,)?* on both sides, the equation can be written as

Bba (1) (O] - (%(0)&)%(0) 2 192) = B6“0a ()" (V) ag- (4.66)

Using Equation and the relation 7'r[,7*] = 16 in Equation the following

result is obtained for the value B:

img

B =
48

(qq)- (4.67)

In this case, the following equation is obtained.

qu

(1 (@(0)D,)°d5(0) : |2) = %

—279) 0" (V) ap- (4.68)

The third term in Equation [4.58|can be written as

1
54 (@a(0)D (D ) 2" g5 (0) : Q). (4.69)

Here, curly braces imply that the indices within them must be symmetrized.

Multiplying the relation,

1 = < 1 = 4=
D.D, = 5(7)“%” + D, D)+ 5(%#7)” ~D,D,) (4.70)

with the expression z#x",

:B“ZL‘V%M%V = %(%M%V—F% % Yot x” + % % % % )it

e D
(D,D,+ D,D,)a"s" (4.71)

1
2

is obtained. This equation is used in Equation #.69]and this result in

= 2"27(Q) : [7(0)(D, D, + D, DIGA0) Q) (@72)



In Equation there are two Lorentz indices as well as two spinor indices on the

left side. Consequently, the following equality can be written.

SO @O DD, + DD G0):10) = Coud®ss @T

Note that since the left-hand side is symmetric under the exchange of ;v and v, o,

cannot appear on the right-hand side. Multiplying with g**§,,6°“ and using Equations

4.61]and #.62]and g,, 9" = 4, Equation is obtained.

L o, pag
C = %az (Q] - q(0)D=q(0) : |£2) 4.74)
Using the following relation
D =D? %GWJW, (4.75)
the C value can be written as:
1 — gS v
C = %x2<9| - q(0)(P* + 5 Gwa™)a(0) + |)
1

= =249 : q(0)P?¢(0) : |2) + %ﬁ(m : q(O)%Guya“”)q(()) L), (4.76)

Since the first term of this equation is of the order of mg, it can be neglected for light

quarks and one obtains:

1
C = rﬂx?(m 1 4(0)gsG ™ )q(0) : |€2). 4.77)
Thus, the result for C is
C= L:c2<— Gq) (4.78)
= 19g% (19:0Gq), :
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where (qg,0Gq) = (| : §(0)gsG,,0")q(0) : |€2). The value obtained for C' is

substituted in Equation and the third term is found as

OB,D, + DBIF0) £ 19) = 155709.0Ga) g0 (479

The mixed condensate (Ggs0(Gq) is usually parametrized in terms of (gq) as

(49s0Gq) = m§{qq). (4.80)

Next step, for the fourth term; similar to the preceding terms, an equation of the form
below can be formulated for this term by taking into account the Lorentz indices and

color spinor indices.

0)%@&%7})%}2(0) 1) = F™ (g + Gun o + 9oy )™. (481

Following steps similar to the previous cases, the value of F'is determined as

m

Equation {.80] is written here and replaced in Equation 4.81] the fourth term is ob-

tained as

0)5“51,57 ‘i’ qh(0) Q) = My m2o™(qq)x? f. (4.83)

Thus, the first four contributions to the matrix element given in Equation arising
from the Taylor expansion have been derived. Likewise, it will be feasible to compute

the subsequent terms.
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1 m
—a b ab T ab
Q- @ () q3(0) = Q) = 12<qq>5 dap + 2 (q@)0™ £
1 — \ . 2cab My b\
+192m0<qq> r70%00p + ——= 1159 mgd®{(qq)x” £+ ) (4.84)

As can be seen, the contributions from each term can be calculated by performing this
calculation for three contractions. In the same way, for the complete calculation of
the non-perturbative part, the remaining two and one contraction must be calculated

in terms of the condensates.

However, there is an easier method for non-perturbative calculation. In that method, it
is possible to obtain all possible cases, except for a few exceptions, by writing the full
propagator and using it to calculate the correlation function. The full propagators for
light quarks and heavy quarks are written in Equations 4.85|and [4.86][117, [L10} [119],

respectively.

ab,q /@ ab Mg ab <QQ> . % ab
e () = 5 5 (1 i /t)é

27‘(‘25(]4 4292 12

272
. m ab _af —X A
—igGilo (m( y ) n 27E)} e (4.85)



d4k —tkx ! /k +m
zgs/?e F / d 5 f G (va)o b
(2m) 0 (mQ —k )
v G (4.86)
mé — k2 @

Previously, to make the calculations more understandable, the free propagator is re-
defined in terms of functions A(x?) and B(x?). Considering the Feynman diagrams
discussed in this study, the same method is continued for the full propagator, and in

addition to the previous definitions, contributions are made as follows.

AQ ( 2) = —(g2G?) 2| Ky (mov/—1?) — 2G2>A6Q (%) 2
P\ = TN g ot a2 TV T 52
(4.87)
A9 (acQ) — —i(g2G?) mou® | Ky (va _xQ) = —i{ 2G2>B§2 (2%) 2
2 *7 1320872 V=12 * 1 32.20mg
(4.88)
BQ (:[2) = i(62G?) mez” | K (va _332) ( 2G2>A§2 (2?) 2
! 955 30 982 N 732 96,
(4.89)
2 2 1 m
aq x _ 9s ux
(4.90)
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2.2
. {qq mgmiz?
BY (:v2) = zmq—< ). B ([E2> = z—i]1502 (qq)- 4.91)

And so, for the variables A and B depending on z, in terms of all these terms can be

written as

A9 (27) = A (2?) + AP (2?) + AT (27) (4.92)
B? (2?) = BY (2*) + BY (2%, (4.93)
A7 (22) = A% (22) + AL () + AY (27) + AY (22) (4.94)
B (2*) = B{ (2*) ,+B{ (¢*) + Bf (%) . (4.95)

In this case, the expressions of full propagators in terms of these new definitions are

SPu(x) = A% (2%) + BY (2%) £, (4.96)

Sta(x) = A7 (2?) + B (2?) £ (4.97)

Adding new contributions to the functions A and B in the integrals in Equation
it becomes possible to evaluate the diagrams except for some special cases. Since
m, = mg = 0 in this study, the functions Af (z?), A% (z?), B} (z?), B (z?) are zero

and therefore will not be taken into account.

In this study, the first integral of Equation will be called IT!

T (p*) and will be

calculated in detail. For this purpose, the following expression is obtained by placing

new functions in IT* . (p?).

p, T
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Lo () = (30)2° / oc™ A5 (22) + A¢ (1) + A5 ()]

()] [A7 (2) + A5 () + 45 (%) ] g

= (30)2° [ atoer {45 («7) 41 (a7) A1 ()

h (x2) + Ay (x2) + A

x|
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d
3
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u
3

(xz) + A (:I:2)2

d
2

(%)
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u
2
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u
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(%)

d
3
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u
3
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Since the Feynman diagrams containing 4 gluons of these terms are not taken into
account, the expressions A (z2)°, AS (22)°, BS (¢2), B (x%) containing these contri-
butions are not taken into account, and the following results can be obtained following

the same steps used in the calculation of the perturbative part.

2 (@u) (dd) g -2, -
iy Tct(p):_ i u/ / y(1 —z — )2y~

_ 2
X /dtt_?’ exp {—s(:c,y) P }

4t

11—z
mémé(uu){(dd)g,.
+ 321%2 / d:c/ dyz 2y 2

B 2
X /dtt4 exp {—S@’i) P ]

mSmi (i) (dd) g,
g g0 / / dya"y™

_ 2
X /dtt_4 exp [—S(I’ft) TP }

memg(au) (dd) g, (1 i
- 3 12 /de:v (1—x)

=5 gy | 2@) +P°
X / dtt exp{ o }
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mi () (dd %) Guv o
37 21%2 / dx/ dy:c y

—4 _S('Ta y) + p2
X / dtt™" exp {—415 }

m4m0<uu> <dd>< §G2> Guv ! ) —92
32 9172 . /0 drz™"(1 — )

_ —5(x) + p?
dtt—6 S(L
X / exp[ m

mgm§(uu) (dd) (g2G?) p*gu 1, 5 _2
- 32 92072 . /o drz™*(1 — )

_ —5(x) + p?
det™7 L
X / exp[ ym

4,22 /5 7, 2,72 1
+mcm0<uu> <dd> <gsG > g,uzz / dilfl’_z(l _ ZL')_Z
0

32.2147‘-2

-5 —3(z) +p?
X / dtt™> exp {—415 }

+m4m0<uu> (dd)(g2G?) gyu /1 dra2(1 —x)~2

32'21471-2

_ —3(z) + p?
dtt—® S(L
X / exp{ m
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+

4,,2 /5 2 2 _ 2
mcm0< >< G g,U«V/ d.]?/ dyfﬂ y /dtt5exp[ S(l’,y)+p

33. 2127r2 4t

33.21972 4t

| memp{au) (dd){g;C?) gus / 1 dez (1 —z)~ / dtt exp [—_5(‘”) Ty 2}

64 [0 N (TN (212N 12 1 . 5
+mcmo(uu>(dd><gsG )P g/u// dwx_Q(l—x)_?’/dtt_Sexp[ s(x)+p}
0

33.22272 4t

I g [yt 1) [ e [P

33.21672 4t

G g [ gy [ty ECr)

33.21672 4t

(4.99)

Here, 5 () = m?/x+m?/(1—z). The remaining terms are named Hz Tk (p*) where

(t =1,2,..6) are given below.

Later, other integrals in Equation 4.38| called HZ VT (p?) where (1 = 1,2,..6) were

evaluated with similar methods and included in the calculation.

2 2y _ ) dd )G 2 -3 -3
H,ul/,Tct (p)__ 3.2972 1_1‘_?/)1' Y

_ 2
X /dtt_4 exp [—8@’4?? TP }
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mEm2 (i) (dd) g,., —3, -3
* 32127r2 / / w1 =@ =gy

4t

B 9
X /dtt“r’ exp {—s(x,y) tp }

mSm? (i) (dd) g, -3, -3
+ 3212#2 / / y(l—z —y)z™y

_ —S(I,y)+p2
dtt™ _—
TR

m8m0 () (dd) g, 6 —s(z,y) +p°
3 o161 / / dyx >y~ /dtt eXp |

mS (uu) (dd) (g2 G?) g
33 2127r2 : dx dya: y

_ —s(x,y)+p2
dtt= _—
«Joren [SEEE]

6,2 (770N { TN (a2 (32 1
_mcmo(uu><dd)<gSG >9w// dez (1 — z) 73
0

33.21671-2

-6 —3(x) + p?
X / dtt™ exp [—415 }

6,002 [ \ [ TN [ 212 1
_mcmo(uu><dd><gsG >9W/ dra (1 —x)7?
0

33'2167-‘-2

-6 —§(I’) + p2
X / dtt™ exp {—475
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memg(au)(dd)(g2G*) g [ —2 -3
— 0 35 9192 /Od:m (1—2x)

T | 3@ +P°
X /dtt exp{ o }

mﬁmo(uu><dd>< s2,G2>p29;w /1 dx:cd(l . x)—S

33'2227-‘-2

s 2
x / dtt 8 exp {%} : (4.100)
m v 9 _
H?LV,Tct ( 27;]_% / dx/ 1 — T — y)4;p 2y 2

—s(z,y) +p?
X /dtexp{ m }
G2 guv 3,.-2 -2
32%6 / / y(1—z —y)’z ™y
X /dtt exp{ m

G2 g;w 3.-2 -3
32211ﬂ-6 / / 1—x—y):€ Y

_ 2
x / dtt =2 exp {S(x+t)+p] , 4.101)
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cgl/ -3 —
H4 Tct< = 5297':6/d1'/ y(l — oz —y)’z3y™3

B 2
X /dtt‘lexp {—s(:c,y) P }

4t

2G2

g,uy 3,.—2,—3

322117T6 / / 1—:U—y):c Yy
. 2

X /dtt2 exp {—S(I’i) P } ;

5 2 3,.—3,—3
H;LV,T; (p ) - 32 2971'4 / / ]' - - y) r 'y

_ Puby —s(z,y) + p?
71 (g P e [ 200 £
X/ v+ ~op ) XP At

mm uu) {(dd) 1:(: 3 _
02137r2 / dx/ y(1 —z —y)z 3y ™?

~ Pulv —s(z,y) + p?
1 (g + P2 g [ 208
X/ Gur + 7oy ) XP At

s pupy) —s(z,y) + p?
x/dtt (g#,,—l— or ) &XP {—#

mm uu){(dd) 3 _
302167r2 / dx/ y(l —x —y)z 3y ™?

6 p,%) —s(z,y) +p°
X/dtt <9;w+ o7 exp{ m

67

(4.102)



mS (uw)(ds G2gu L,
33 2127r2 - 1—x—y)x 2?/ 3

s pupy) —s(z,y) + p?
x/dtt (g#,,—l— o ) &XP {—415

33,2202

Rl AT

_ Dby —s(z,y) + p?
17 (g 4 P2 ey [ 200 P
[ e (g + ) exp | 2
mSm(au) (dd) (g2G*) g,u e
+ 33 216ﬂ-2 / d$/ dyx y
6 pupy) —s(z,y) + p?
X / dtt <gﬂ,,—|— of exp {—41%

e ) (@) 2 g [ [
+ 33 2167r2 /dx/ dyz 2y ~3

o 2
% /dttG (gW n p;zgu) exp {—S("@’y) tp ] , (4.103)

e, . (b)) :3_m§/ d /1 Cdy(1 -z — )ty
v Te 5.32.21076 [ 1 |
_ v - +p2
it 1< y bupy ) s(z,y)
X/ Juw + "oy ) XP At
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mSmi(uu) (dd) (g>G?)
- 33 2167r2 dym y’

-6 pupzz) _S(xa y) +p2
x/dtt <g,w+ o7 exp {—415 )

(4.104)

Since there are two possible cases for the contraction of ¢ quarks, all results must be
multiplied by 2. Thus, the contributions obtained using the full propagator for 7.

cc?

called Hf ull

et (p?), can be written as follows:

i (p?) =2 [, o (07) + T2, o (07) + 10, . (0?)

P, (07) T, e () TS, e ()] (4.105)

g \P

In addition to these results, there are special situations that cannot be obtained using
a full propagator. One of them is the situation where gluon emissions from heavy
quarks form condensate. As an example, specifying only the important steps, a solu-

tion for this situation is made as follows.

To evaluate the Feynman diagram of this process given in Figure (cl), the corre-

lation function,
Mt (0%) = [ ataer (9|7 {0 s} 2) @106

is used. Here, £;,, is the interaction term.

The interaction term is placed inside the correlation function and written as follows,

using the necessary propagators for the relevant contractions:
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In the Fock Schwinger gauge, the gluon field can be written as

1
Ga (v) = —5Gas 0y + -+, 4.107)
and using
N o 5NM
(262G, (0) G5, (0) 1 19) = 5= (9as 9 — Gavgus) (9:G°) , (4.108)
Gl ted [ 4 o a, Ba0
Sab (.CL’) = 7 d ySac (.’L‘ - y) Ty Sdb (y)7 (4109)

one obtains

(& c /l N IANDN /
va,gct (p2) = _3 24 <g§G2> /d4xezngabe€a e 566 (gﬁFgwn - gﬁngwf‘)

<Tr [$" (=) (C75) S (=) (35C)| Tr [ () (,€) S () (€]

(4.110)

The propagator expression for gluon emission in this equation is

G . MgQ

K1 (m%Q \/—_372>
mq,Q\/—_yﬂ)

X {imq,Q (0“5 £+ ﬁao‘ﬁ) + 20" K, (m%Q\/—_x?)} .

4.111)

Furthermore, the evaluation of one of the traces in Equation|4.110]is given in Equation
For the other trace,

mT

71 [59% (2) (uC) S (2) (€| (Gasthr = Gnus) (g = gevir)

tpur {)\lg’ 2 2)2
= (2w + 27,1,) A (2°) . (4.112)
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can be obtained. Here,

’

gabegatle'y 4. 5% = —4 (4.113)

1s also needed. Hence

Hi:§+ (]92) =— ﬁ(ng% /d%eipmAg (952)2 A (372) Al (mz) %G,

37:13 (g2G?) /d%eiprg (a:2)2 A" (x2) Al (132) T,Ty

(g2G?) /d4xeipmA8 (m2)2 B (xz) B¢ (x2) x4gw,

3.2m?2

[

3' (g2G?) / d*ze” A (22)? B* (¢2) B (42) 2%x,z,. (4.114)

In these integrals, again assuming m, — 0 and taking the contributions from states

with at most two gluons, the following results are obtained.

HS:(T;JC (") =- 32 2127T6 / / y(1 —z —y)’z~2y?
X /dtt‘1 exp [__S(z’zlyt) +p2]
- 32 ;i;éq - / / y(l—z —y)'a 7y
X /dtt‘l <g,u1/+ p;f”) exp [W} : (4.115)

Calculations similar to this calculation are made for other contributions, and contri-

butions that did not yield zero are added to the results.
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As stated in Chapter [3] to evaluate a certain physical quantity in the QCD sum rules
method, the hadronic and theoretical parts must be calculated, and the results obtained

by applying the Borel transformation must be matched.

Accordingly, in this section, just as an example, the following result is obtained from
the results obtained for the perturbative part by applying the Borel transformation and

continuum subtraction to the contributing terms.

0 0

meg e o [ o
+59 %V/ dse_W/ dm/ dy(1 —z —y)°xy°0(s — s(z,y))
7T 0 0 0

v 9 _q _s(zy)
Sfﬁf / d”’/ y(1 =z — )%y P G(so — s(x,y))

(4.116)

In addition, the Borel transformations of all results have been obtained with similar
methods and included in the study. Explicit expressions for the correlation function

for T, are given in Appendix
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4.2 MASS CALCULATION OF THE HIDDEN CHARMONIUM

17~ AND 0" TETRAQUARKS

In this section, the 17~ and 0" tetraquarks will be examined. Since the calculations
for T} are shown in detail in Section the outlines of the calculations for these
particles will be mentioned in this section. In order to facilitate follow-up and com-
parison, the same definitions and symbols are used, and existing definitions are not

restated.

Using Equations|3.2|and the two-point correlation functions for the 1t~ and 0

tetraquarks can be given by, respectively,
e (p?) =i / dize? <Q ‘T{J;**(x)Jg**T (0)}’ Q> , @.117)
Moes (p?) =i / d'zer (0 ‘T{J0++ () g (())H 0). 4.118)
Here, for 17~ and 01 tetraquarks, interpolating currents are chosen as

T (@) = [(@9.¢%) (2) (0" 502") (2)] e, (4.119)

T (2) = [(@5¢%) (@) (@ "1502%) ()] €. (4.120)

C parity assignments correspond to the case when ¢; = ¢o. In this work, the ¢; = u

and ¢, = d quark is taken, but the C' parity assignments are kept as if ¢; = ¢o.

4.2.1 Hadronic Side of the 17~ and 0" Tetraquarks Correlation Functions

Since 17~ is an axial vector particle similar to the T’ tetraquark, the hadronic side
of 177 is very similar to 7. Therefore, as in the T} tetraquark, the hadronic side of

17~ can be written as
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2 (_ PuPv
HHad+ (pQ) _ |/\0|2pupu |)\1| ( g,u,y + 2 )
My, 1 p2 _ mg p2 _ m%-'—_

The hadronic side of the 0% particle is given as

ot+T1
)OI

0++

<Q ‘J0++
Had Z
h

5 <Q JOt 0(p)2> <0(§9) JortT Q> .

pT—my

Defining

<S —0 ‘JO*”

Q>:)\0

for the hadronic side of the particle 01, IIf\% (p?) can be written as

e () = o
0 p2_m8++

4.2.2 Theoretical Side of the 1*~ and 0" " Tetraquarks

4.121)

(4.122)

(4.123)

(4.124)

By inserting the interpolating currents for both tetraquarks into the relevant correla-

tion function, the function can be written as for 17—

T4 (pQ) = i/d%eim <Q ‘T{ [(Ea%cc) (z) (ab%dd) (x)} gabegedega'tle c'dle!

X [(c]d/%ub/) (0) <Eclfyucal) (O)] €a/b/el56ld/el}‘ Q> )
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and 0T T

H0++ (p2) — i/d4$€ipx <Q ‘7’{ [(6“7560) (LC) (ﬁb’}/5dd) (l’)] gabegcdega’b’e/gc’d’e’

X [(c]d/’yg,ub/) (0) (56/’}/5Ca/> (0)} 5“%/6/6“’6'}‘ Q> :

Wick’s rotation is applied to these correlation functions, and by repeating the steps
detailed for 7'}, in Section 4.1}, the following equations are obtained for 17~ and 0,

respectively.
Hiy,ﬁf (p2) =12i/d4xeim

Tr [S9(=2),8(x) 0] Tr [S*(=2)(35)S(2) (7)), (4.125)

H§++ (p2) :12i/d4xeim

Tr [S(~2)5S ()] Tr [S"(~2)(15)8%0)(15)] . (4.126)

Here, the superscripts "4" refer to the situation with 4 contractions, as in Section

To simplify, using the definitions in equations @3] and F32} equations 123 and
126 become

I, e (07) = (30)2° [ d'ze™ A5 (22)” Ay (22) AF (22) g
d* w2 AG (22)? By () BE (%) g
d'ze e By (2)" Af (¢) AF (2) gy
e B (1) BY (22) B (2) g

d*re™” BS (:U2)2 Ay (2*) AL (2°) zyy,

+
\\\\m\\

d*ze™ BS (12)° BY (¢2) BY (+*) myx,,  (4.127)
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1., () = 30)2° [ atoe a5 () 45 (o) 45 (+")
T (30)2° / dhwem 2 AS (:2)° BY (+2) BY (+2)
4 (30)2° / dhwe™ 2 BE (22)° A (%) A2 (22)
+(30)2° / d*ze? 1 BS (12)° By () BE (27) . (4.128)

respectively. As seen in Equation|4.127, these integrals obtained for 11~ are the same
as the integrals in Equation given for 7.f. In addition, the results of 0" appear

the same as the first four integrals, except for the coefficient g,,,, .
Thus, except for some special cases, the results for 17~ are the same as for 7.

One of the situations that causes the difference in the calculations of the correlation
function of 17~ compared to T is that the ¢ quarks in 7’} can contract in two ways,
while in the charmonium case 177, a ¢ quark and an ¢ antiquark can contract in only

one way.

Thus, the results obtained using the full propagator for 1~ can be written in terms of

the results obtained for 7'}, as

[p/ul (p2) _ lnfull (p2) ) (4.129)

pv, 1t 2 ul/,ch
Similarly, it is possible to write the results of 0™ obtained from the full propagator

in terms of the results of 7.\.. These results of 07 are related to the first 4 terms of

the results 77 in Equation 4.105|and can be expressed exactly as

29, 1L (P°) =10 o (97) + 112, 1 (V) + 102, s (P°) + 10, 1 (0°) -

(4.130)
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The other reason for the difference between the results is due to the color factors in

the interaction terms. For T

cc?

color factors are present in the identity in Appendix
while for 17~ and 0, the identity in Appendix appears. Therefore, as
can be seen from these identities, there is also an additional coefficient (1/2) between

the interaction terms of 7 and the particles 17—, and 07+,

As in the T, tetraquark, after all these cases were obtained and collected, the Borel
transformation was applied and the obtained results are analysed numerically. These

analytical results obtained for the 17~ and the 0" tetraquarks are given in Appendix

[D.T]and in Appendix [E.1] respectively.
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CHAPTER 5

NUMERICAL ANALYSIS

In this section, a numerical analysis of the sum rules obtained in previous sections
is presented. The QCD sum rules method has many input parameters, such as quark
masses, quark and gluon condensates, etc. Numerical values of these parameters are
needed to perform numerical calculations. The numerical values of the parameters

used in this thesis are listed in Table [5.1][6, 98, 120} [121]].

Table 5.1: Input parameters used in calculations

Parameters Values

My, 0

my 0

Me 1.27 £ 0.02 GeV
(uu) (—0.24 £0.01)3 GeV?
(dd) (—0.24 £ 0.01)3 GeV?3
ma (0.8 £0.1) GeV?

(g>G?) 472(0.012 £ 0.004) GeV*

The two-point QCD sum rules method includes, in addition to these input parameters,
two auxiliary parameters called the Borel parameter M2 and the continuum threshold
s0. Since these auxiliary parameters are not physical quantities, the physical quanti-

ties to be calculated must be independent of them. Due to the approximation used, a
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slight dependence is acceptable.

It is not possible to find regions where the physical parameters are completely inde-
pendent of the continuum threshold. The continuum threshold is related to the energy

threshold for multi hadron states and also the excited states.

The value of s is usually chosen based on the mass of the hadron under consideration

as

(mp + 0.3 GeV)? < 59 < (my, + 0.5 GeV)?. (5.1)

When the Borel transformation is applied to the correlation function, it is seen that the
resulting integral has an exponential expression. Due to this expression, the largest
contribution to the integral comes from the values of s < M?, and it is expected that

the contribution of the ground state is dominant if M? is chosen as small as possible.

However, choosing the M 2 value below a certain limit causes the contribution of the
condensates to increase. Hence, a range must be determined for the possible values

of M?. Therefore, M? should be as large as possible.

For the upper limit of M?, the pole contribution to the correlation function for mul-
tiquark systems, the following ratio must be the largest it can be. The maximum
possible value for M? can be determined by considering the pole contribution frac-

tion (PC) defined as

< — (5.2)

where IT% [M?, 5] is the Borel transformation of the correlation function.
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On the other side, the lower limit of M? is obtained from the analysis of the fractional

contributions of the condensates

Hd[MQ, 80]

—H[MQ, sl (5.3)

RY(M2) =

where T1¢[M?, s¢] represents the contribution of the d dimensional condensate to the
correlation function. For d = 0, this ratio should be as large as possible, and should
be as small as possible as d gets larger. This equation expresses the convergence of

the OPE and the resulting QCD sum rules.

5.1 Numerical Analysis of the Sum Rules for 7. Tetraquark

To determine the minimum value of AM? for the T, tetraquark, R?()M?) in Equation

is plotted as a function of the Borel parameter M/? in Figure

In Figure d = 0 represents the contribution of the perturbative part of the con-
tribution and d = 4,6... represent the convergences of the condensates of higher
dimensions. In this study, the contributions to the correlation function are from
0,4,6,8,10,12 and 14 dimensional condensates. Note that there is no contribution

from the d = 3 operators.

Looking at Figure it can be seen that although the contributions from the d = 6
and d = 8 dimensions seem large, they cancel out each other; however, the contri-
bution from the perturbative part is still dominant. Thus, as can be seen from Figure

M? > 2.5 GeV? is enough to guarantee convergence.

Furthermore, the contribution of each dimension to the correlation function is cumu-
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Figure 5.1: The convergence of the contribution of each dimension separately ob-

tained as a function of M? at sp = 19.0 GeV? value for T,

. tetraquark

latively added to create the Figure[5.2]

As can be seen in Figure [5.2] the contribution of the perturbative part is sufficiently

dominant.

In order to obtain the upper limit for M2, the pole contributions of the correlation

function T} tetraquark can be calculated using Equation For the values s

18.0, 19.0 and 20.0 GeV?, this contribution is shown in Figure

Upon examination of Figure it can be seen that up to M? = 3.5 GeV?, the
pole contribution is still more than about 30%, and it is an acceptable value as the

maximum value of M?2.

In this case, as a result of the convergence and pole contributions, the appropriate

interval chosen for the Borel parameter M? is M? = [2.5 — 3.5] GeV2.
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Figure 5.2: The cumulative contribution of each dimension to the correlation function

as a function of M? at sg = 19.0 GeV? value for T, tetraquark

5.1.1 Mass Calculation of 7. Tetraquark

As mentioned in the d chapter, the mass can be obtained using Equation 3.39 which

can also be written as

d(Ti[M2,50])
d(33)

m2 —_— .
HIB[MZ, 80]

2, [M2, 9] = (5.4)

Here, I1};(M?) is the Borel transform of the part related to the T/ tetraquark of the

correlation function specified in section F.1.1]

In Figure the M? dependence of the predicted mass for T is shown for sy =

18.0, 19.0, and 20.0 GeV? for the central values of the input parameters shown in
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Figure 5.3: The pole contribution to the correlation function of the T}, tetraquark as

a function of Borel parameter M2 for different s, values

Table [5.1]

As can be noticed in Figure the mass of the T tetraquark is almost independent
of the Borel parameter M? in the working region and when s, changes in the range

of so = [18.0 — 20.0] GeV?, the mass value changes at most by 5%.

Borel parameter M2 and the continuum threshold s, are not the only uncertain ex-
pressions in the calculations; there are also uncertainties in the condensate values.
To determine the uncertainty in the mass predictions due to uncertainties in all the
parameters a Monte Carlo analysis is performed. The procedure is presented in detail

in [[122]]. The histogram of the values of the mass predictions is shown in Figure[5.5]

Upon examination of Figure[5.5] it is clearly seen that the distribution forms a distinct

peak, with a mean value ; = 3.91 GeV and a standard deviation value 0 = 0.05 GeV.
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Figure 5.6: The convergence of the contribution of each dimension separately ob-

tained as a function of M? at sg = 19.0 GeV?2 value for 17~ tetraquark

Therefore, the mass is predicted to be Myt = 3.91 =+ 0.10 where the shown error is

20 so that ~ 95% of the predictions lie within this range.

5.2 Numerical Analysis of 17~ and 0" Tetraquarks

For the 17~ and the 0" tetraquarks, the analysis is similar to the analysis of the 7.}
tetraquark. As in the 7'} tetraquark, the contribution of each condensate to the corre-
lation function is examined to determine the minimum Borel parameter value M? for
the 17~ and the 0" tetraquarks. The convergence of the contribution of the pertur-
bative part and other condensates of the contribution to the correlation function of the

1+~ and the 0"+ tetraquarks are shown in Figure[5.6|and in Figure[5.7] respectively.

Looking at Figures and it can be seen that for the 17~ and 0™ tetraquarks, it
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Figure 5.7: The convergence of the contribution of each dimension separately ob-

tained as a function of M? at sy = 19.0 GeV? value for 0" tetraquark

would be appropriate to choose M? > 2.5 GeV? to ensure convergence, as in the 7.,

tetraquark.

Furthermore, the contribution of each dimension to the correlation function was in-
vestigated by adding the dimension cumulatively, and these are shown in Figure [5.8]

and in Figure |5.9|for 17~ and 0", respectively.

Taking into account Figure [5.8|for 17~ and Figure [5.9|for 07, it is clearly seen that

perturbate contributions to the correlation function are dominant for both particles.

For particles 17~ and 07, it is also necessary to look at the pole contribution to

obtain the appropriate maximum value of M?2. The pole contributions are shown in

Figure and in Figure for 17~ and 0, respectively.

As seen in Figures and Figure [5.11] at the value M? = 3.5 GeV? as in the T,
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Figure 5.8: The cumulative contribution of each dimension to the correlation function

as a function of M? at sg = 19.0 GeV?2 value for 17~ tetraquark

tetraquark, the pole contribution is greater than 30% for 17~ and 0", and therefore

the upper bound of the working region for M? < 3.5 GeV?.
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Figure 5.9: The cumulative contribution of each dimension to the correlation function

as a function of M? at sg = 19.0 GeV?2 value for 0 tetraquark

5.2.1 Mass Calculation of 17~ and 07+ Tetraquarks

The Borel mass dependence of the predicted masses for the 17~ and 07 tetraquarks

are shown in Figures [5.12] and [5.13] respectively.

Looking at Figure |5.12 it can be seen that for 17—, the mass value in the range of
M? = [2.5 — 3.5] GeV? is almost independent of the Borel parameter M? and the

continuum threshold, as desired.

Likewise, examining Figure for 07, the mass is independent of the Borel pa-

rameter in the working region M? = [2.5 — 3.5] GeV2.

As a result of the analysis, it is seen that the working region for 17~ and 0% is

the same as 7. Therefore, in order to obtain the uncertainty arising from other
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Figure 5.10: The pole contribution to the correlation function of the 17~ tetraquark

as a function of Borel parameter M2 for different s, values

parameters, as well as from M? and s, dependencies, random values are chosen for
the input parameters within their uncertainties, and masses are calculated using these

random values.

In this regard, histogram graphs showing the distribution of the masses in Figure[5.14]

and are shown for 17~ and 0", respectively.

Therefore, the masses of these tetraquarks are predicted as:

my+- = 3.93 £ 0.10 GeV (5.5)

Mot = 3.94 £ 0.10 GeV (5.6)

Upon examination of Figures and it can easily be seen that they have pre-

cise peak distributions, with a mean value ¢ = 3.93 GeV and a standard deviation
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Figure 5.11: The pole contribution to the correlation function of the 0"+ tetraquark

as a function of Borel parameter M2 for different s, values

value o = 0.05 GeV, and a mean value ;o = 3.94 GeV and a standard deviation value

o = 0.05 GeV, for 17~ and 07, respectively.

In order to reduce uncertainty, instead of calculating the mass of each particle indi-
vidually, it is possible to evaluate each particle by taking advantage of heavy-quark
symmetry and looking at the mass difference with its symmetry partners. In line with
this information, the difference between the particles 17~ and 0% is shown in Figure

[5.16| using the same data set, used for the uncertainty in mass calculations.

Note that in calculating the mass difference, the same random values for the parame-

ters are used in both the mass of 17~ and 0.

For the mass difference of the particles 17~ and 0", looking at Figure [5.17, it is

seen that the distribution has a distinct peak, with value dm = (mg++ — my+-) =
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Figure 5.12: The mass obtained for 17~ tetraquark as a function of M? for different

sq values

14.65 £ 6.14 MeV.

Furthermore, in order to make a prospective interpretation, the difference between
the particles 7, and 17—, which behave very similarly, is examined, and the result is

shown in Figure[5.17]

Taking into account Figure|5.17| it is seen that the mass difference of the particles 11—
and T, behaves as expected, but there are slight deviations and a peak distribution,
as in the mass difference of 17~ and 0™*. Therefore, Figure with the value

om = (M- — mpt) = 11.52F2% MeV has a distribution skewed to the left.
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CHAPTER 6

CONCLUSIONS

In this study, first, general information about particle physics and QCD theory was
given. Then, the QCD sum rules method, a theoretically strong and reliable non-
perturbative approach, was discussed and applied to calculate the masses of the 7.\,

0"+, and 11~ tetraquarks. The working regions for the Borel parameters are deter-

mined to be M? = [2.5 — 3.5] GeV? and for sj to be sp = 19.0 + 1.0 GeV>.

In addition to these values, to eliminate the uncertainties arising from the uncertainties
in the condensates, a data set consisting of random variables is used, and as a result,
the mass of 7 tetraquark is found to be m+ = 3.91 £ 0.10 GeV. It is clearly seen
that this result is compatible with the experimental value m,+ = 3.88 GeV [19, 42].

The error of the experimental value is 0.8%.

The predictions obtained from theoretical studies using different methods for the cal-
culation of the mass (or delta mass difference from the two-meson threshold) of the
T\ tetraquark are listed in Table Upon examination of the values in Table it
is seen that the mass value obtained from this study is consistent with other theoretical

results.

All analyses performed for T are also performed for 0" and 17, and it is seen
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Table 6.1: The predictions of the mass of the 7'} tetraquark obtained using different

theoretical methods

Works Methods m or dm[MeV]

This Study 3914 £ 94

QCD Sum Rules [123]] 3868 £ 124

QCD Sum Rules [[124] 4000 =+ 200

Double Ratios of Sum Rules (DRSR) [[125]] 3872.2 £39.5
Quark Model [47] 3882 £ 12
Heavy Quark Limit [126]] 3978

QCD Sum Rules [127]] 3900 £+ 90
Lattice QCD [[128]] om=-23+11

Lattice QCD [129]] 3947 £ 11

Chromomagnetic (CMI) Model [130] 3929.3
Constituent Quark Model[131] om = —23

that the working regions suitable for 7. are also suitable for these tetraquarks. In this
direction, in order to make a more accurate comparison, the data set created for 7.
is also used for these particles, and for the range M? = [2.5 — 3.5] GeV? and value
so = 19.0 £ 1.0 GeV?, my+— = 3.93 +0.10 GeV, and my++ = 3.94 + 0.10 GeV is

obtained for 17~ and 0", respectively.

In addition, due to the heavy-quark symmetry, in order to reduce the uncertainty in the
mass calculation, the mass differences have also been examined using the same data
set and for this purpose the mass difference of the particles 17~ and 0™ is obtained
as om = (mg++ — my+—) = 14.65 + 6.24 MeV. As expected by the heavy-quark
spin symmetry, it is clearly seen from the result obtained that the uncertainty that will
arise by obtaining the 17~ and 0™" masses separately decreases by calculating the

mass difference, and even it only takes values around a few MeV.
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To be able to comment further, the mass difference of 7)), and 17~ states is also
examined, based on the similarity of their quark contents and structures, and a fairly
uniform distribution is obtained, dm = (mg — my+-) = 11.52*295 MeV. This
value is quite small, as expected, since the 7.} and 17~ particles have very similar

structures.

In this study, the motivation was taken from heavy-quark spin symmetry, but it should
be noted here that heavy-quark spin symmetry is also an approximate symmetry, be-
cause in reality the mass of heavy quarks is not infinite. Especially since the subject
of this study is ¢ heavy quarks, their masses are not very large. In this case, some cor-
rections are needed. In the future, it is possible to study heavy-quark spin symmetry

in more detail, to do studies on these corrections, and to obtain more accurate results.
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Appendix A

GENERAL IDENTITIES

A.0.1 Gamma Matrices and Properties

In Dirac representation, the four contravariant gamma matrices are

10 0 0 0 0 01
. 01 0 0 1 0 0 10
7= , Y= )
00 —1 0 0 -1 00
00 0 -1 1 0 0 0
0 00 —i 0 01 0
, 0 0 i 0 0 00 —1
Vo= , V= , (A.1)
0 i 0 0 100 0
i 00 0 0 10 0

and the identity matrix is

I, = , (A2)




and the 7 matrix is

v’ =iy’yly%yt = . (A.3)

()" =1, (A4)
7=, (A.5)
Vorty® = 1, (A.6)
(35)° =1, (A7)
P =17, (A.8)
(3)" = s (A.9)
{vs, 7.} =0, (A.10)
YW} =291 (A.11)
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A.0.2 Charge Conjugation and Properties

The definition of charge conjugation and some properties related to it can be written

as

C = iv*y°, (A.12)
ct=-C, (A.13)

Ch =, (A.14)

C? =-1, (A.15)
(Cs) = (150, (A.16)
CysC = —v = —s, (A.17)
Cv,.C = —., (A.18)
CrpCT = =, (A.19)
CysCt =+ ()", (A.20)
Co,Ct = —(0,)", (A.21)
CrsmC ™ =+ (5m) " - (A.22)
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A.0.3 Trace Samples Identities

Some situations regarding traces are as follows:

Tr[ odd # of gamma matrices | = 0,

Tr[ odd # of gamma matrices °] = 0,

Tr (Y97 y7) = 4 (9" 9" — 9" 9" + g"7g""),

Tr (799"7"y77) = —die"?,

T (y# . oytn) = T (y# . 4",

/ivyv =2z, — T /L’,

£ £y, =220 Y — 1Ty,

Tr[ﬁ%/ ﬁf)/,u] = 8xux,u - 43729#1/-
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(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)



A.0.4 Some Other Identities

Also some identities used in calculations are

Eabc€abe = 67 (A.35)

EabcCabe! = 2500’7 (A36)

5aa’ 5ab’ (sac’
Eabc€a't'c = | Opar  Opty  Oper

5ca/ 5cb’ 5cc’

- 6aa’ (5bb’ 500’ - 6bc' 601)’) - 5ab’ (5ba’ 600’ - 5()6’ 50&’) + 5ac’ (5ba’ 561)’ - 5bb’ 50&’)

= 5bb’ 500’ - 5bc’ 6cb’ .

(A37)

For tV = AN /2 where \" are the Gell-Mann matrices:
Tr (V) =0, (A.38)
Tr (¢V¢Y) = 4, (A.39)

N M NM N 4N
Eabc€a't/ ¢! 5aa’tbb/tcc/ J = EabcCab' ! 5aa’ tbb/ tcc/
N 4N
- (5bb’ 500’ - 5bc’ 5b’ c) tbb/tcc/
_ N N N N
- (tbbtcc - tbctcb)

=Tr (¢V) Tr (¢) — Tr (tVtY) = —4,  (A40)

5abc€a’b’c’6aa’5bb’ti\[1té\£/ 6NM - Eabcga’b’c’(saa’ 6bb’té\gtfi\£'
= 26,0t = 2tNtl! (A.41)
=2Tr (t"VtV) = 8. (A42)
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Appendix B

SOME SPECIAL FUNCTIONS

B.0.1 Gamma Function

The integral representation of the gamma function is as follows.

['(n) = /Oo t"letdt. (B.1)
0

For positive integer n, Gamma function can be written as

I'(n)=(n-1).L (B.2)

Using the definition of the Gamma function, the Schwinger representation can be

given as

1 1 > n—1
Yol m/o ditt" " exp (—At) for A >0. (B.3)

B.0.2 Heaviside Step Function and Dirac-Delta Function and Relationship

The Heaviside step function ©(z) is defined as
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\

Integral representation of the Heaviside step function is

1 +oo  izx
O(z) = lim —/ S

—02m J_oo 2z — 1€

Dirac-Delta function is defined as

oo ifx=0

0 ifz#0,

such that

/_ " f(@)b(@)dr = £(0).

The integral representation of the Dirac-Delta function is

1 o
) = 5 / et .

—0o0

(B.4)

(B.5)

(B.6)

B.7)

(B.8)

The relationship between the Heaviside Step function and the Dirac-Delta function is

given as

(B.9)



and

x 0 ifz<0
H(m):/ d(z)dx =

1 ifx>0.

B.0.3 Properties of Dirac-Delta Function

Some properties of Dirac-Delta function can be given as

S(a) = 8(~a),
d d
55(93) = —%5(—90)7
[ j@)te - ayie = f),

dofa) = 3 rpd @ =),

where g(z;) = 0, and

6 (z* — a®) = |2a]7'[6(x — a) + 6(z + a)].
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(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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Appendix C

ANALYTICAL RESULTS OF 7. TETRAQUARK

For the T tetraquark the numerical results obtained are as follows:

8 50 R 1 1—z 1 — o — 65 B
Huuﬂt (M2750) — W/ dse_M?/ dx/ dy( x—y)°%(s — s(z,y))
0 0 0

x3y3

8 S0 . 1 11—z 1—1— 6M25 _
L+ MG / Py / i / gy L= 2 =Y M70(s = s(w,y))
0 0 0

768076 x3y3

4/ .22 S0 1 11—z o 4772 _
o 2mc<gsG >gMV/ d86_1;2/ d{Z’/ dy(l T y) M 5(8 S('%.?y))
7372876 0 0 0 x2y?

2m{giG*)pupy /SO . /1 " /H dy(l — 2 —y)*o(s — s(z,y))
3686476 J, A 722

_ 2mely, G2>9W/ Jse- MQ/ dx/ (1= 2 —y)*M?6(s — s(x,y))

1843276 x2y?

L m s (ua) (dd) g, _LdS [/ dm/ (1 —z —y)*0(so — s(z,y))

3672 233

mS(ua) (dd) g, _ =0 [ (=2 —y)3(so — s(,y))
C P )
+ 36M?272 e / da:/ dy 23y?
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mS(uu)(dd) g, [, _ [ T (L—2 —y)*(s — s(z,y))
c d T [ d d ’
Ty /0 e /0 x/o Y adys

L melun)(dd)pupy s, & [ / - /1 g y>35(80—s<x,y))]

1872 ds? x3y3

L me{u){dd)pp, di { /1 N /u gy L=~ y)*5(s0 — s(m,y))}

18 M?7? x3y3

8 — 7 s 1 1—x _ _ 3 o
me (uu){dd)ppy - s, / I / gy L= 2 = 9)°0(s0 = s(x,y))
18 M 472 0 0 x3y3

| me{u){dd)p,p, /SO g, /1 " /H gy L= 7 = 9)%0(s — s(x.9)
0 0 0

18 M 672 373

G g, L/d?/ o =il o)

21672 x2y3

GG g i L[ [ g [ g 2= 0 sl

216 M3272 x?y3

mi(g:G?)(ut
216M47T2

e 1 —x —y)d(so — s(z,y))
$2y3

da:

mg(g:G?) (ut) (dd) g, /50 g /1 " /” gy (L= 2 = 0)0(s — s(x.y))

216 M 672 x?y3

mS{g G2><uu><dd>p#p,, 2y 43 {/ d:z:/l o (1—x2—1y)0(so — s(z,y))

10872 ds3 x2y3
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108 M2 72 z?y?

AT D | [ar [ a1zt )

m8{g?G?) (uw)(dd)p.p, _IfTOdSO [/ dm/ (1—2—1y)d(sy— s(x,y))]

108 M 472 x2y3

me(giG?) (ut) (dd)pupy - =, (1 =2 —y)d(so = s(x,9))
108 M 672 / / 22

MGG [ 4o [ gy [ L2000 = o0)

108 M 872 x?y3

6/,,2/2 S0 . 1 11—z 1—1— 4 _
_ me{gsG >g;w/ dsem/ dx/ gL =2 = 9)70(s = s(z,9))
0 0 0

921675 22y

me (9 G*)pupy
460870

1 —x —y)*o(so — s(x,y))
l’2y3

d.r

6/ .22 50 . 1 -z 1 — g —u)d _
mc<gsG >p,up1// dse_M2/ dl‘/ dy< T y) 5(5 S(.CC,y))
0 0 0

4608 M 276 x2y3

_ 2mEmg () (dd) g, d? U dw/ 1—x—y)25(80—s<x,y))}

4872 x3y3

 2mEmi (i) (dd) g,u, deso {/ dl’/l fol-z—y )25(80—8(1’,(@))}

A8 M? 72 x3y3

) gy [* g, [ g, =2 =90 o)
0 0

A8 M7 x3y3
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2w ) (ddyg,,
A8 M 672

 2mimg(ua) (dd)pupy s
2472

o () A,
- AN 272 ¢

B 2mSma (uu) (d@p“pl, .
24 M472

24 M 672

2mimg(ua)( (dd)p.p. _i/ dx/

B 2mém3 (uu)(dd)p,p,
24 M 872

| 2memi(giG?) (ut) (dd) g

S0
/ dse”
0

8642

d3
dso

dsg

1
S
th/"
0

1
d:zc/
0

o] o

S0 . 1 1—
/ dse” M2 / da:/
0 0 0

s d?
M2

dso

2mSm2(g>G?) (uu) (dd) gw, 2y

864 M2 7?

d2 1 11—z 1
— {/ d:z:/ dy(
0 0
1 11—z
Mozi{/ dx/ dy<1_x_
dso [ Jo 0

LT = 9)(s — s(r.w)

x3y3

(1—2—y)*5(so — 5(95»?/))]

$3y3

— y)*0(s0 — s(z, y))]

$3y3

y)*0(s0 — s(x, y))}

$3y3

(1 =2 —y)*d(so — s(z,9))

o] o
gl o] o

I3y3

”Edy(1 — 1z —y)*0(s — s(z,y))

3y’
8(s0 — SSx y))}
6(s0 — s;c y))}

(O gy L[ [, [ g S s

864 M2

2memg(g2G?) (u

864 M67?

><dd> Yuv e =0

M2

froef o
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so—s:vy))
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| 2mEmi(giG?) (ua 2><dd>gw/ dse~ 30 / dx/l T2 s@y)

864 M3

| 28R (GG) (wn) dd)p,p,

43272

2mem (g5 G*) (utt) (dd)pypy

432 M2 72

2mgmi (g:G?) (ua) (dd)p,py

432 M 472

2mim(g>G*)(u ><dd>pupu

432M67?

2mgmi(93G?) (uit)(dd)p,p,

432 M 872

2mimi (93 G?) (uit)(dd)p,p,

432 M 872

m&mg (i) (dd) guy .y d3

9672

m&mg (ua) (dd) guu _gg,dQ

96 M 272 dso

7n§7ng(uu><dd ) G
96 M 472

g d*

dso

— d?

ds0

S0

,SO
M?2

dS()

o

faef
farf o
gl o] o

o—sxy))]

3

3

o—sxy))}

0(s0 — 5390 y))}

[/ dm/lx 30—3;@)]

30'— s(z,y))

/dsew/dx/

L]
[
e U d””/l Ay
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3

d(s — s(x y))

(1 =2 —y)d(so — S(:v,y))}
23y3

(1 -2 —y)d(s0 — S(x,y))}
233

y)o(so — s(x, y))}

x3y3



memi (ui) (dd) g,.,
96 M52

e

mEm(ui) (dd) g,
96 M 872

mSmg(u) <dd)pupy

4872

mem(uu) (dd)pyp, -

A8 M 272

memi () (dd)pyp, |

A8 M4

memi (ut) (dd)pupy |

A8 M 672

mgm(ut) <dd)pﬂpy

A8 M 872

memg (ui)(dd)p,p,

A8 M 1072

_m emg(g2G?) (uar) (dd) g, oz d

50 . 1 1—
/ dse” M2 / dx/
0 0 0

i dso [/ dm/
gl o] o

= d?
dso

_id

dSQ

L]
R d:v/

so . 1 1—
/ dse” M2 / daz/
0 0 0

345672

_ memy(giG®) (u

u)(dd)g Gpw —=4 & ’

4
ds;

3456 M 272

dsd

128

it (o [ a2 0 s

x3y3

R R )
3y

(1 —2z—y)d(so — s(x, y))]
23y

(1 =2 —y)d(s0 — s(z, y))}
233

R

(1—2—y)d(so— s(x,y))]
$3y3

(1 =z —y)d(so — s(z,y))

$3y3

" 4y A= = )3l = s(y)

$3y3

[ o]

[




G gy ] [y s, )
3456 M 472 ds? (1 —x)322

mémi(g>G?) (uu)(dd) o d b 8(sg — s(z, (1 — 1))
3456 M 672 ’ " s { / oy }

mymg (g GZ)(UUHddMW _s [T 0(s0 — s(x, (1 — )
N 3456 M52 /0 N R

m8ma(g>G?) (uui)(dd)g,. s b o§(s — sz, (1 —2)))
N 345611072 /0 dse /0 R ey

Ch call L L CRLEA ()

172872 ds? 1 — )32

mSma(g>G?) (uui) (dd)p,p, RS d* b 6(sg — s(z, (1 — 1))
N 1728 M2 st { / R e }

mSmg(g 2G2)(uu>(dd>pupl, s a3 b 8(sg — s(z, (1 —2)))
- 1728 M 72 s [/ R P ]

mimy(g3G*) () (dd)p,p, s, d* / b0 = s(z, (1 - )))
1728 M 672 ds? (1 —z)322

mSma(g>G?) (uui) (dd)p,p, iy d d b 6(so — sz, (1 — 1))
N 91728M87T2 " dso { / o }

mémg(g2G*) (u) (dd)p,p, Y b d(so = s(x, (1 =)
1728 M 1072 " /0 S F g
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N e [ g [, 00 )
1728 M 1272 0 0 (1 —x)322

8 S0 1 11—z _ _ 5 2 _
_ MG / dse_A;Q/ dm/ gy L= 2 — Y M0(s = s(x,y))
128076 J, 0 0 x3y3

m(92G) gy (1 —z—y)*i(s — s(z,y))
+ 230476 / dse e / du / x2y3

g gy [ [y [ g 0 o)

1272 € 233

_ me(ua){dd) g, -, /1 " /1‘” dy(l — 2 —y)*(s — s(z,y))

12M272 23y?

g [ e [y [ g Lm0 sl

12 M472 23y3

21672

L milg 2G2) (uti) (dd) g, _sdso U dx/ 80—s:c y))}

ot [ e[

mg< 2G2>< g;u/ _7 S0 — S x y))
+ 216M47r2 / du /
mS(g2G?)(uu) (dd) g, e d(s — s(x y))
216 M672 /O dse- / du /
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L2 emi(uu{dd) gy, o, & {/ dm/1 v (L=x —y)d(so — s(z, y))}

2472 ds? x3y3

2mém3 (ui) (dd)g,., _sq d / / (1 —2—y)d(so — s(x,y))
* 24 M?72 v dsg de x3y3

2m§m3<uﬂ> <d6z>g;w e ;402 /1 dzr /1_36 dy(l — - y)6(30 - 5<x7 y))
24M47T2 0 0 x3y3

R D [ g [ [ g Lm0 sl
0 0 0

24 M 672 2393

_ 2mimi(giG?) (uu) (dd) gy s, & {/1(1335(80 zls(fa (1 —35)))}

86472 ds3 — x)3z?

_ 2mimi(giGP) (utt) (dd) gy o, & [ [T (50 — s(x, (1 — 7))
8640272 ds? U e (1 — )32 }

S T U T PR P L A B
864 M 472 dso | Jo (1 —x)322

2mimg(g GZ)(UU><dd>9W s [ (so — s(, (1))
N 864N 672 /0 R C S

6,72/ 27712 - 7 S0 1 _ _
_ 2mcm0<gsG ><uu> <dd>g;w / dse_z\;Q/ dx(S(S S($, (1 33)))
864 M8 0 0 (1 — z)322

m8m§<uu>(dd gm, iy d? / s /1 ’ s — s(x y))
9672 ds?
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m8m§<uu>(dd g,w — / d /1 “ o 6(so — s(x y))
96 M 272 dso v

8 “ _
m 8mi (ua) (dd) g’“’e_mi / d:v/ d(sp — s(x y))
96 M 472 dso

8 -z

_m o1 (U
96]\/[67r2

so—sxy))

m Sma(uu)(dd)g,., = 5(s — s(x y))
V= Vai [l oAy

86472

b (g2 (wn) (dd) gy & [ 1 S0 — sl (1 2)))
s U G

— z)3%?

~m m0<gsG2><uu>(dd>gW - d? {/ dx5(80 zls(x, (1—1)))

864 M2m? ds3

— )32

~m m0<gSG2><uu)(dd>guye_i d? [/0 dm5(80 as(z, (1—1)))

864 M4m2 ds? — x)322

_ i) ) g, L [ a0 ste. 1)

864 M 672 ds —x)3a?

~m Smg(g2G?) (uu) (dd>gm, o, b 8(sg— s(z, (1 —x)))
864N 72 /0 o

|
|
|
|

mmg (g2 G®) (i) (dd)g,., e [t 0(s = s(x, (1= 2)))
+ /0 dse” ™ /0 dx i

8640 1072 —
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2mimi (g2 G?) (uu)(dd)g,., _sy b 6(so — s(w, (1 — 1))
* 345672 ¢ ds? {/ da (1 —x)*a3 }

804 /[ 4212\ [0 7 s d* 1 _ _
el L GRS CE)
3456 M 2?72 ds; (1 —x)ta?

2mémi(g>G*) (un)(dd) g, 5o, d3 b §(sg — s(z, (1 — 1))
* 3456072 ¢S { / R s vy }

2mémg (g G2><uu>(dd>gW _=q d? b 8(sp — s(z, (1 — 1))
* 3456 M67>2 s [/ & (1 —z)tz? }

2mem (g5 G?) (uu) (dd) gy 20, d /1 45080 — (@, (1 — 2)))
3456 M 372 ds (1 —x)4x3

oG ) D -y [ g, 0=t )
3456 M 1072 0 (1 —a)ta3

804/ 20712 — 7 S0 1 _ _
+ chm()(gsG )(uu) <dd>gw/ / dse_f\;/ d:L‘(S(S S(Qf, (1 :L‘)))
3456 M 1272 0 0 (1—x2)%a?

L Mely G )pupy -2 . [/ dm/l (1 =2 —y)*(so — s(z,y))

614476 x3y3

+

< 2G2 pupu —— / d(L‘/ 1 — T — y)45($ - S($ay))
6144 M3?76 x3y3

m8<92G2>pupV %0 = ! e (1 - T — y)45(3 B S(LL‘ y))
Y T d :
T 6144070 /0 e /0 : /0 Y 23y
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me(g:G*) g
1228376

1=z 1—x— y)26(s — s(z,y))
2343

—|— dw

8/.2,42 50 1 1-z N Y
m@ﬁm@/%ewfw/ 4y (L= =)0 = s(z,y))
0 0

12288M276 J, w3y’

e — y)°0(s — s(x,y))
23y?

me(9:G*) g
30727T6

da:

87,272 1-z — )3 _
_ me(g;G >gw// dse™ Mz/ dx/ (I —2—y)°(s — s(z,y))
3072M?276  J, 2y

e 1—x—y)5(8—8($ y))
x2y?

m <uu dd gw, _

daz

D [ g [y [ gm0 sl

6M?272 722

_ mi(g? G?g:;}(dd Gpw 25, U dm/ 50—523: ,Y))

47 2,72 — 7 S 1 l—x
mc(.gsG ><UU> <dd>glﬂf / 0 d8€1\;2/ dfl?/ dy(s(s _ S(l’,y))
T2M 472 0 0 0 7292

+mg<g§G2>( ><dd ,Lw -2 / d:L’/l v So—Sx y))
21672 dso Y3
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m8(g*G?) (uau) (dd) g,“, 2 / / (so — s(z,y))
e 216022 dso | ) I

11—z

me{gsG?)
216M47r2

sg—sxy))
3

m$(g2G?) (ut) (dd) g, s T b(s — s( y))
+ 216062 / dse M / d:c/ _

6 S0 1 1—x - o 4 4 _
- mcglll/ / d86ﬂ52/ dx/ dy(l T y) M 6(‘9 S(I,y))
25676 J, 0 0 x2y?

47 2,72 s0 1 1-x o N3AS28( e
o mc<gsG >ng/ dS@I\;2/ dl’/ dy(l T y) M 6(‘9 S('ruy))
76876 0 0 0 x2y?

6/,22 EN) . 1 11—z 1—1— 3M2 _
L melgsG >g;w/ dse_MQ/ dx/ gy L= 2 =y M70(s = s(w,y))
0 0 0

230476 x2y3

N mSm2 (ui) (dd) gm, " [/ daz/ d(s0 — s(z,y))

2472 y?

6,,,2 1m

mSm2 (uu)(dd) gW _

24 M2 72

so—sxy))
y?

mémg (ua) (dd)g,, [ . [ T 0(s = s(r,y))
+ 24M47T2 = /0v dse MQ\/O dfl?/o dny—yZ

| 2memg(9iGP) (ut a){dd) G 20, Ul PG zls(% (1—-12)))

28872 ds? — )3z
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2mim3(g2G2) () (ddy g o d [ [ 3(so— sz, (1 - 2))
288 M 272 ¢ s U o e

2mim2(g?G*) (un)(dd) g, _ so ld d(so — s(z, (1 —x)))

e m?

283 M 72 N >

| 2mim} (3G (ut) {dd) gy, / p— /1 5,00 = 8@, (1 — 7))
288 M 672 0 0 (1 —x)22?

 2mimi(g G2)<uu)(dd>guu s d? {/1 dxé(so zls(%(l —-T)))}

86472 ds3 — x)32?

_ 2mimi(giG?) (uu) (dd) g 2 d? Ul PRIC zls(l%(l - x)))]

2
864 M?27? <" ds? —x)32?

_ 2m Sma(g G2)<uu)(dd>gw, - d b 8(sg— s(z, (1 — 1))
864M 72 dso V T ]

_ 2mimi(giG?) (utt) (dd) g~ 20, /1 4080 = s(@, (1 — 2)))
864 M 672 ‘ 0 ’ (1 —x)3a?

_ 2m Sm2(g2G?) (uu)(dd) g, [*° . V(s — sz, (1 —2)))
6o /0 dse M /0 dx (1 —2)22

m6m0<uu><dd>guu6_570 d? [/1 dx5(80 ?15(33;3(1 - x)))}

9672 ds? — x)322

st o [ sl
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m m0<uu guy -0 (1 B :E)))
96 M 472 (1-— :E)2I2

b (ut) (dd)g,. / et [ gl = s (L= 2)))
96 M 672 0 0 (1 —x)22?

mimg(g Gz)(uu>(dd>guy S d3 L 6(so — s(z, (1 — 1))
* 38472 ds3 {/ d (1 —x)22? }

mima(g G2)<uu>(dd>glﬂ, _ g d? b 8(sg — s(z, (1 — 1))
- 3840272 ¢ M { / A C 1

mimd(g GZ)(uu>(dd)gW _— d ! d(sg — s(z, (1 —x)))
- 384 M2 d_SO {/ d (1 —x)2x? ]

N milm%(g?GQ)(uﬂﬂddmwe—Vg /1 gy 050 — sz, (1 — 2)))
3840672 e T

_|_

memi(g2G2) (ui) (dd) g [ | a0 o(s — s(z, (1 = 2)))
384M57 /0 dse /0 N T

i) g £ T [ 0 sl 1)

86472 dst — x)32?

~m mo(gsG2)<uu>(dd>gW s d? b 8(sp — s(z, (1 — 1))
864 M 272 ds3 [/ da (1 —x)32? ]

_ mimy(gG?) (ua)(dd) gy, s, d® T [T d(s0 — s, (1 — )))
864 M 472 ¢ ds? {/ da (1 —x)322 }
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_m m0<92G2><Uﬂ><dd>g;¢u67%i {/ dx5(80 zls(x, (1-2)))

864 M 672 dso

— z)32?

~m m0(92G2)<uu)(dd>gW6_7 ! J d(so — sz, (1 —x)))

864 M 32 0 v (1 —x)3a?

mimglg G wa){dd) g, [ o [* L 6(s — s(r (1~ )
e, P

e ) g 8 | [ g, sl L)

115272 dsg — x)3z3

_ il o) g [ [ oo 1))

1152 M2 72 dsd —x)323

m mo(gsG2)<uu>(dd>gW - d? b 8(sp — s(z, (1 — 1))
1152M 72 “ s U o }

- O ) g 3y 4 [ [ g, Hon— sl L))

1152M 672 dsg —z)3a3

~ mimg{gsG?) (wi) (dd) g =0 1 8(so — s(z, (1 —x)))
1152 M572 ¢ /0 R T e

~ mimg(g:G?) (uti) (dd) g,u _ey [ 0(s = s(, (1 - 1))
/0 dse” /0 dx i

115201072 — )33

67,2012 s0 1-z — —
_ me{gsG >g,w/ dse_MQ/ dx/ (1-2—y) 5(8 s(@,y))
0

T
(C.1)
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Appendix D

ANALYTICAL RESULTS OF 17~ TETRAQUARK

For the 17~ tetraquark the analytical results obtained are as follows:

_ 3 S0 . 1 1—g 1— 7 — 158(s —
I (0s0) = Tl [ asesie [ aa | gy (L= = )"0 = 5(w.p)
0 0 0

768076 23y3

8 s 1 1—x - o 6 2 _
meGuv / 0 dSG_M% / dl’/ d’y(l x y) M 5(‘9 S(l’,y))
0 0 0

1536076 x3y3

4/ .22 80 1 1-x o oA A2 .
o mc<gsG >gHV/ dS(EJ‘;z/ dQZ/ dy(l r y) M 5(‘9 S(l’,y))
14745676 J, 0 0 x2y?

47,272 1-x o B
_ (g G)pupy / P / I / (1—2—y) 5(8 s(z,y))
7372876 0 x2y?

47,22 s 1 -z N3 .
_ me{giG) G / Ods(”;/ dx/ gy L= 2 = 9P M70(s = 5(x,9)
3686476 J, 0 0 x2y?

4 e s (u) (dd) g, 7Ld {/ d:c/l t (L= —y)*(so — s(2,y))

7272 233

8 — 7 s 1 1—x o o 3 o
R g [, [ g, 175 =M )
T2M?7? 0 0 x3y3
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PG [* 4o [ [ g (Lm0 sl
0 0 0

T2M4 72 23y?

L melun)(dd)pupy o, & [ / - /1 g y>35(80—s<x,y))]

3672 ds? x3y3

L me{u){dd)p,p, di { /1 N /u gy L=~ y)*5(s0 — s(m,y))}

36 M 272 233

8 — 7 s 1 1—x _ _ 3 o
me uu){dd)ppy - 2, / I / gy L= 2 = 9)°0(s0 = s(x,y))
36 MAm? 0 0 x3y3

| me{ua){dd)p,p, /SO g, /1 " /H gy L= 7 = 9)%0(s — s(x.9)
0 0 0

36 M672 238

G )i 5 [ o =il o)

43272 x2y3

GO ) g 3 L[ [ g [ g 2= 0 sl

432 M?7? x?y3

me{gsG?) (u
432M47T2

e 1 —x —y)d(so — s(z,y))
$2y3

da:

6/ 2,2 — 7 S0 1 1—x . . o
me(gsG ><Uu><dd>9;w/ dseA;Q/ dx/ gy L= =y = s(@,y))
432 M 672 0 0 0 x2y3

mS{g G2><uu><dd>p#p,, 2y 43 {/ d:z:/l o (1—x2—1y)0(so — s(z,y))

21672 ds3 x2y3
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216 M?7? x2y3

g ), | [ar [ a1zt )

m8{g?G?) (uw)(dd)p.p, _IfTOdSO [/ dm/ (1—2—1y)d(sy— s(x,y))]

216 M 472 x2y3

_ m{g2G?) (uti)(dd) )Puby 25, / / (1 -z —y)d(so — s(x,y))

216 M 672 x2y3

MGG [ 4o [ gy [ L2000 = o0)

216 M 872 x?y3

6/,,2/2 S0 . 1 11—z 1—1— 4 _
_ me{gsG >g;w/ dsem/ dx/ gL =2 = 9)70(s = s(z,9))
0 0 0

1843276 x?y3

me(g3G*)pupy
921676 dm

1 —x —y)*o(so — s(x,y))
l’2y3

6/ .22 50 . 1 -z 1 — g —u)d _
_ mc<gsG >p,up1// dse_M2/ dl‘/ dy< T y) 5(5 S(.CC,y))
0 0 0

9216270 22

mEmd (i) (dd) g, =, d? U dm/ 1—x—y)25(80—s(a:,y>>}

4872 x3y3

et i [ o [ gy S0 Z o)
48 M7 dsy 23y’

) W [ g [ gy = =0 le0)
A8 MAm? 0 0 x3y3
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8012 /0177 7\ 50
_mcm0<uu)(dd>gw/ dse~

B mSmg(ui) (dJ>pMpl, o

A8 M 672

~ mgmi{ua) (dd}pup,, 2 d?

2472

m8m0<uu) (dd>p“p,, _

24 M2 72

24 M472

8

m 8m2 (ua) (dd) pup,, _

24 M 672

8

B mEm2 (i) (dd)p,p,

+

24 M 872

dso

ﬁf/ol
TR

1_
d:p/
0

57°d2 [/ da:/

1 1—x
A}Ei{/ dg;/ dy(l_x_
dso | Jo 0
i [lae [
S0 . 1 1-
/ dse_W/ dx/
0 0 0

mSm2(g2G?) (uii) (dd) g, & d?

8642

dso

e (GG (i) (dd) gy 3,

864 M2 7?

emi(gyG?) (uu) (dd) gy, - o

864 M2

emi(g:G?) (uit) (dd) gy o

864 M67?

(1 =2 —y)*(s0 — s(x,9))

v dy(l —x —y)*0(s — s(z,y))

x3y3

(1 =z —y)*(s0 — 5(z, y))

$3y3

(1 =z —y)*0(so — s(x,y))

$3y3

y)*(s0 — s(x,y))

$3y3

Lo o
ig[[o] o

o]
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$3y3

|
|
|

¢ dy(l — 1 —y)?0(s — s(z,y))

a3y?
d(s0 — sSx y))}
d(s0 — 83:6 y))}

([ ae

So—Siﬂy))
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memi (g3 G?) (uti) (dd) g,

864 M8m?

mSm2(u) <d‘j>pupv

43272

mSm2 (ui) <dd)p”pl, _

432 M?7?

nﬁnﬁ(uaﬂddhmpu

432M*4m?

6

m&m (uu)(dd) pupv -

432 M 672

mSm (u) (dd)p,p,

i/dgc/

432 M 872

8

m m0<uu> <dd gl“’ -

19272

8

1920?72

%U@/

2 11—z
vl d {/ dx/
dso
" 1—x
-5 d
dso {/ 1:/

/dse /d:r/

s d?

o—sxy))}

3

3

o—sxy))}

5(sp — 8396 y))}

So—Sxy))

/ dse” 1\42/ d:E/
0

s d3

s [/ dx/
+m%WWMWﬂWW/m/

N mSmg(ua)(dd) guv —a [/ dz /1 ’
dSo

192M 472

mSm(ua) (dd) g,
e
192M 672

1 1
_ S0
M2 / dl‘/
0 0

3

s—SZEy))

(1 —2—y)d(so — s(x,y))

s—Sxy))

I3y3

1 —x — y)d(SO — S(ZC,y))

$3y3

(1—2—y)d(so — s(z,y))

x3y3

Lm0 = ()
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N mSma(ui) (dd)g,., /80 dse— i3 /1 d /lx dy(l —z—y)d(s — s(z,y))
0 0 0

192 M 872 x3y3

_|_

mem (ui) (dd)p,p, =, d' V o /1 T (1—x—y)d(s0 — s(z, y))}

9672 dst 33

N mgmo(uuﬂdd)pup,, g d? dm 1 —x —1y)d(so — s(z,y))
96.M 272 ds3 x3y3

b e iy B [ gy [ g 000 sl

96 M 472 x3y3

N m8m0<uu><dd)Pupu67;02 d {/1 s /190 dy(l —z —y)d(so — 5(%@)]

96 M 672 dsg x3y3

mEmg (uu)(dd) pupy o dx 1 —x —y)d(so — s(z,y))
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Appendix E

ANALYTICAL RESULTS OF 0" TETRAQUARK

For the 0 tetraquark the analytical results obtained are as follows:
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