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ABSTRACT

STUDY OF T+
CC AND HIDDEN CHARMONIUM 1+− AND 0++

TETRAQUARKS IN QCD SUM RULES

Ferah, Semra Sarı
Ph.D., Department of Physics

Supervisor: Prof. Dr. Altuğ Özpineci

January 2025, 166 pages

Recently, exotic hadrons have become a very important and interesting topic for par-

ticle physics, especially after the observation of the exotic particle X(3872). The T+
cc

tetraquark, which has a very similar structure to X(3872), was observed in the LHCB

experiment of CERN in 2021. However, this new particle has different properties

than the previously observed exotic hadrons, as it contains two heavy quarks and no

heavy antiquark. In this study, the masses of the double open charm T+
cc tetraquark,

and hidden charm states with JPC = 1+− and JPC = 0++, and with the motivation

taken from heavy-quark spin symmetry, their mass relations are studied. QCD sum

rules method, which allows successful results in hadron phenomenology, is used in

the calculations. As a result of the analyses, by determining the most appropriate val-

ues of the parameters required for the QCD sum rules, the mass of the T+
cc tetraquark

is obtained in a manner comparable to the experiments and as predicted by heavy-

quark spin symmetry, the mass differences of the 1+− and 0++ states are found to be

small enough, only a few MeV, as expected.
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cc tetraquark, double open charm, JPC = 1+−
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Rules
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ÖZ

T+
cc VE GİZLİ ÇARMONYUM 1+− VE 0++ TETRAKUARKLARIN KRD

TOPLAM KURALLARINDA ÇALIŞILMASI

Ferah, Semra Sarı
Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Altuğ Özpineci

Ocak 2025 , 166 sayfa

Son zamanlarda, egzotik hadronlar, özellikle X(3872) egzotik parçacığının gözlem-

lenmesinden sonra, parçacık fiziği için çok önemli ve ilginç bir konu haline gelmiş-

tir. X(3872) ile oldukça benzer bir yapıya sahip olan T+
cc tetrakuark, 2021 yılında

CERN’in LHCB deneyinde gözlemlenmiştir. Ancak bu yeni parçacık, iki ağır kuark

içerdiği ve antikuark içermediği için, daha önce gözlemlenen egzotik hadronlardan

farklı özelliklere sahiptir. Bu çalışmada açık çift çarm T+
cc tetrakuark ve gizli çarm

JPC = 1+− ve JPC = 0++ durumlarının kütleleri ve ağır kuark spin simetriden

alınan motivasyonla, onların kütle ilişkileri çalışılmıştır. Hesaplamalarda hadron fe-

nomolojisinde başarılı sonuçlar elde edilmesine olanak sağlayan KRD toplam kural-

ları yöntemi kullanılmıştır. Analizler sonucunda KRD toplam kuralları için gerekli

olan parametrelerin en uygun değerleri belirlenerek, T+
cc tetrakuarkın kütlesi, deney-

lerle kıyaslanabilir bir şekilde elde edilmiş ve ağır kuark spin simetrisinin öngördüğü

gibi, 1+− ve 0++ durumlarının kütle farkının yeterince küçük, sadece bir kaç MeV

civarında olduğu görülmüştür.
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thesis wouldn’t have been possible without his guidance, support and advice. He

contributed to every stage of my study, showed endless patience and tolerance, and

was just a message away whenever I needed it, regardless of the hour.
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CHAPTER 1

INTRODUCTION

Subatomic particles that are composed of quarks and gluons are known as hadrons.

The quark model proposed by Murray Gell-Mann and Georg Zweig in 1964 is a

quite successful model for explaining hadrons and their properties. According to this

model, conventional hadrons can be classified into two groups: mesons, consisting of

one valence quark and one valence antiquark, and baryons, composed of three valence

quarks (three quarks or three antiquarks) [7, 8]. Since the early days when the quark

model was introduced, there has been a prediction/theory that there were more quark

and antiquark states than mesons and baryons. However, since there has been not

yet enough experimental data to support this theory/prediction, this topic remained a

mysterious and important subject of study for particle physics in those years [9, 10].

Recently, hadron states with quantum properties different from conventional hadrons

have been observed in independent experiments and research conducted at many ac-

celerator centers such as LHCb, BaBar, CLEO, Belle, CDF, D0, and BESIII [11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21]. In the ongoing process, the emergence of Quan-

tum Chromo Dynamics (QCD), which has properties such as asymptotic freedom

and confinement, has opened the way for more detailed theoretical research on these

particles [22, 23, 24].
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Hadrons that do not meet the definition of conventional hadrons are called exotic

hadrons [25, 26, 27]. One such example is hadrons with valence-gluon content. Al-

though the structure of exotic hadrons is very different from conventional hadrons,

there is no need for a new theory to explain them. Instead, it is thought to be suffi-

cient to make serious progress in the already existing strong interaction theory [28].

Just like ordinary hadrons, exotic hadrons are divided into two categories: fermions

like ordinary baryons and bosons like ordinary mesons. This scheme further classifies

pentaquarks that comprise five valence quarks (one being an antiquark), as exotic

baryons, whereas tetraquarks (which comprise four valence quarks: two quarks and

two antiquarks) and hexaquarks (which contain six quarks that consist of dibaryons

or three pairs of quarks-antiquarks ) are called exotic mesons [29, 30].

Therefore, exotic hadrons are divided into some categories according to the quark and

gluon states they contain. Some selected quark configurations for exotic hadrons are

given in Figure 1.1. In the figure, a tetraquark state consists of four valence quarks,

specifically they are include two quarks and two antiquarks. The hadro-quarkonium

model states that there is a QQ̄ structure formed by heavy quarks in the center and

around it there are qq̄ quarkoniums formed by light quarks [31, 32]. In the hadronic

molecule model, a heavy quark and a light antiquark Qq̄ and a heavy antiquark and a

light quark qQ̄ are thought to come together to form a molecule. The hybrid model

states that a heavy quark and its antiquark form a bound state, and the gluon in the

valence band acts actively in the bound state. The states in the glueball model are

composite particles formed by gluons and do not contain any quark structure.

As mentioned above, the most crucial development with respect to exotic hadrons

was the observation of a new particle with unexpected properties in 2003 [11]. The

2



Figure 1.1: Some selected quark configurations for exotic hadrons [5]

particle called X(3872) has an important place in particle physics, as it is the first

tetraquark observed. This new particle was first discovered in theB+ → J/Ψπ+π−K+

decay by the Belle collaboration and was quickly confirmed by the CDF, D0 and

BaBar collaborations very soon thereafter and was observed most recently by the

LHCb collaboration in 2012 [11, 33, 34, 35, 36]. It decays to J/Ψπ+π− with a very

small natural width for a state above the DD̄ threshold with spin-parity quantum

number JPC = 1++. Using the world average as reference, X(3872) with a mass of

3871.69 ± 0.17 MeV is very close to the threshold D̄D∗0 of 3872.68 ± 0.07 MeV.

Therefore, this particle with a mass and width less than 2 MeV does not match any

of the theoretically predicted charmonium states [37, 38, 39, 40]. The discovery of

X(3872) ushered in a new era of exotic states, and after its observation, subsequently,

studies on this subject have been intensified and new states with many unusual prop-

erties, including various charged states, were observed.

European Physical Society Conference on High Energy Physics (EPSHEP), a new
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tetraquark was presented as a discovery by the CERN’s LHCb experiment in 2021.

Named T+
cc , this new particle has two charm quarks and an up and down antiquark

with quantum numbers JP = 1+, I = 0, which is found in the invariant mass spec-

trum D0D0π+ with a mass around 3875 MeV [41, 42].

Recently, many tetraquarks have been discovered. Counting the one which con-

tained two charm quarks and two charm antiquarks, this would be the first time that

a tetraquark was discovered having two charm quarks, and no anti- charm. This is

referred to as an open charm by physicists, but in this situation it would be considered

a "double open charm".

The T+
cc is also the first tetraquark to be observed, which contains two heavy quarks

and two light antiquarks. Similarly, the Ξ++
cc baryon contains two c quarks and a u

quark; the similarity in the contents of these two states causes a relationship between

the properties of them [43]. One of the similar properties is the mass, and from

the measured mass of the Ξ++
cc baryon [43, 44, 45, 46], it is stated that the mass of

the T+
cc tetraquark is close to the sum of the masses of the D∗+ and D0 mesons, as

supported in [47]. According to theoretical estimates for the mass of the ground state

of T+
cc tetraquark with spin-parity quantum numbers JP = 1+ and isospin I = 0 with

respect to the D∗+D0 mass threshold δm is

δm ≡ mT+
cc
− (mD∗+ +mD0) = −273± 61± 5+11

−14 keV, (1.1)

where mD∗+ and mD0 denote the known masses of the D∗+(cd̄) and D0(cū) mesons

respectively, and mT+
cc

is the mass of the T+
cc tetraquark; this state is the narrowest

exotic state observed to date [41, 42]. T+
cc tetraquark decays into particles that are

easily detected, and when they are combined with the small amount of energy that is

available in the decay, it results in fine precision on its mass that helps to study these

4



fascinating particle quantum numbers. These also may generate a strict test for the

existing theoretical models, which could lead to a potential probe of effects.

In this study, the masses of the double open charm T+
cc tetraquark and the hidden

charm states JPC = 1+− which have a similar interpolating current with T+
cc and

its spin-symmetry partner JPC = 0++, and their mass relations with the motivation

taken from the heavy-quark spin symmetry, are studied. For this purpose, in the

2nd Chapter, under the title "Theoretical Foundations", general information in the

Standard Model (SM) is summarized and explanations are made with field theories.

In the 3rd Chapter, necessary definitions are made for the QCD sum rules method

used in this study. In the 4th Chapter, analytical expressions have been obtained for

the mass expressions of the particles that are the subject of the thesis, and in the 5th

Chapter, the numerical results obtained by performing numerical analyzes for these

analytical expressions are given. In the 6th Chapter, the numerical data obtained are

physically interpreted by comparing them with the results of similar studies on the

same subject.
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CHAPTER 2

THEORETICAL FOUNDATIONS

2.1 The Standard Model of Particle Physics

The particle physics at its most fundamental level tries to find out what the building

blocks of matter are, explains how these basic structures are formed, and describes

how the parts interact with each other. Particle physics is also called high-energy

physics because it is not possible to investigate the properties of fundamental particles

under normal conditions in nature, and therefore high energies are needed. For this

purpose, many theoretical and experimental researches have been carried out in the

particle physics, and as a result of these researches, a basic theory called the SM has

emerged.

Elementary particles in SM can be grouped under two main headings: Fermions,

which consist of leptons and quarks with half-number spins, form the basic structure

of matter and comply with Fermi-Dirac statistics, and bosons, which mediate funda-

mental interactions, including the spin 0 Higgs boson that gives mass to the particles,

have integer spins and comply with Bose-Einstein statistics.

So far, six different types of leptons have been found in nature, known as "flavors":

Electron, electron neutrino, muon, muon neutrino, tau, tau neutrino, and antileptons
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corresponding to these leptons. Of these leptons, electrons (e) and electron neutrinos

(νe) that form electronic leptons, are called the first generation; muons (µ) and muon

neutrinos (νµ) that form muonic leptons, are called the second generation; and taus

(τ) and tau neutrinos (ντ ) form tauonic leptons, are called the third generation.

Each generation of leptons has a quantum number associated with it, called the lepton

number. From neutrino oscillations, it is known that these individual lepton numbers

are not conserved but the total lepton number is conserved perturbatively. The first of

these lepton numbers is the number of electrons Le and for any situation

Le ≡ N(e−)−N(e+) +N(νe)−N(ν̄e) (2.1)

is as defined. In Equation 2.1, N(e−), N(e+), N(νe), N(ν̄e) are the numbers of

electrons, positrons, electron neutrino and anti-electron neutrino present, respectively.

For single particle states, Le = 1 for e− and νe, Le = −1 for e+ and ν̄e, and Le = 0

for all other particles. Similarly, the following definitions are made for the number of

muon Lµ and tau Lτ , respectively [48]:

Lµ ≡ N(µ−)−N(µ+) +N(νµ)−N(ν̄µ), (2.2)

Lτ ≡ N(τ−)−N(τ+) +N(ντ )−N(ν̄τ ). (2.3)

Six types of leptons and six types, or "flavors" of quarks have been observed to date,

and the types and some known properties of these leptons and quarks are given in

detail in Table 2.1 and Table 2.2, respectively [49, 50, 6].

There are four types of fundamental interaction (forces) known in nature: weak, elec-

tromagnetic, strong, and gravitational interaction. The areas of influence of these

forces are different from each other. The ranges of the strong force and the weak

8



Table 2.1: Properties of the Leptons

Particle Symbol
Anti-

Particle

Rest Mass

MeV
Charge

Lifetime

(seconds)

Electron e− e+ 0.511 -1 Stable

Neutrino

(Electron)
ve v̄e 0 (< 7× 10−6) 0 Stable

Muon µ− µ+ 105.7 -1 2.20× 10−6

Neutrino

(Muon)
vµ v̄µ 0(< 0.27) 0 Stable

Tau τ− τ+ 1777 -1 2.96× 10−13

Neutrino

(Tau)
vτ v̄τ 0(< 31) 0 Stable

Table 2.2: Properties of the Quarks

Quark Symbol Charge Spin Isospin
Baryon

Number
Rest Mass

up u +2/3 1/2 +1/2 1/3 2.16+0.48
−0.26 MeV

down d -1/3 1/2 -1/2 1/3 4.67+0.48
−0.17 MeV

charm c +2/3 1/2 0 1/3 1.27± 0.02 GeV

strange s -1/3 1/2 0 1/3 93.4+8.6
−3.4 MeV

top t +2/3 1/2 0 1/3 172.69± 0.30 GeV

bottom b -1/3 1/2 0 1/3 4.18+0.03
−0.02 GeV

force are very short and have an influence only on the distances shorter than the size

of protons.

SM is a gauge theory with the gauge group SU(3)C
⊗

SU(2)L
⊗

U(1)Y that de-

fines the fundamental symmetries of particle physics. This gauge group is the union

of three separate groups: U(1)Y associated with the electromagnetic force, SU(2)L
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associated with the weak force, and SU(3)C associated with the strong force. These

groups are of great importance for explaining how particles interact for each interac-

tion and for describing how conservation laws arise through symmetries.

The gravitational interaction is the gravitational force to which all objects with mass

or energy are exposed in direct proportion to these masses. This interaction, defined

scientifically by Isaac Newton in the 17th century, is the first force to be studied sci-

entifically. The intermediate vector bosons that carry the gravitational force are the

hypothetical gravitons with spin 2 and mass 0. The range of interaction of gravita-

tional interactions is infinite [51, 52].

The electromagnetic interaction takes place between only electrically charged par-

ticles, connecting electrons to nuclei to form atoms and then keeping the atoms to-

gether, contributing to the formation of molecules and matter. The intermediate vector

carrier bosons of the electromagnetic interaction are photons with spin 1 and mass 0.

The electromagnetic interaction is an interaction with an infinite interaction range.

The field theory of this interaction in particle physics is quantum electrodynamics

(QED) [53, 54, 55, 56].

Another way to call the weak force is the nuclear weak interaction. The weak inter-

action is responsible for the instability of many particles and some atomic nuclei and

therefore for radioactive decay. The effective range of the weak interaction is quite

short, approximately 10−18 m. The weak force is carried through the vector bosons

W+, W− and Z0, which were discovered at CERN in 1983 by Carlo Rubbia and

Simon van der Meer [57]. W+,W−and Z0 vector bosons are particles with a mass

of around 90 GeV [58, 59, 60, 61, 62, 63].
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The strong interaction is the force between subatomic particles found in the atomic

nucleus, thus keeping the nuclei together. The carrier intermediate vector bosons

of the interaction are massless gluons that have a color charge. Due to these color

charges, the gluons interact with themselves. As its name suggests, it is the strongest

of the four fundamental forces and has an interaction range of around 10−15 m [64].

SM can successfully explain all of these interactions except gravity [65, 66]. Al-

though there is no definitive information about the gravitational force, the other three

fundamental forces arise as a result of the interaction of force-carrying particles

(bosons). All fundamental forces have their own carrier particles, and these parti-

cles are listed with their properties in Table 2.3.

Table 2.3: Force and force carrier particles and their main properties [1, 2]

Force
Associated

Property
Range

Carrier

Particle
Spin

Relative

Strength

Gravi-

tational
Mass

Infinite but

weakens with

distance

Graviton 2 10−36

Electro-

magnetic

Electric

charge

Infinite but

weakens with

distance

Photon 1 1

Strong
Color

charge

≈ 10−15 meters

(distance between

protons in atomic

nucleus)

Gluon 1 102

Weak
Weak

charge

≈ 10−18 meters(
1/1000th proton

diameter )

W+

W−

& Z

1

1

1

10−7
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2.2 The Quantum Chromodynamics

QCD is a quantum field theory of strong interactions that describes the interaction of

quarks and gluons, which form the building blocks of hadrons. QCD was first pro-

posed by Chen Ning Yang and Robert Mills in the 1950s [67]. In QCD, unlike photons

in QED, carrier vector bosons can emit carrier vector bosons outside themselves, and

this feature has led to increased interest in research aimed at understanding the nature

of the strong interaction. Thus, in 1973, physicists named Murray Gell-Mann, Harald

Fritzsch, and Heinrich Leutwyler developed QCD, inspired by the concept of "color"

that creates a strong interaction field [68].

In QCD, quark fields are represented by the fundamental representation of the Yang-

Mills gauge theory with gauge group SU(3)C , consisting of complex 3-dimensional

matrices, while antiquark fields are represented in the conjugate representation. The

index "C" here is for the color charge, which is a new quantum number specifically

defined for QCD theory. Although the color charges mentioned are known as red (r),

blue (b), green (g) for quarks, and their antis for antiquarks, this color concept has

no relation with the colors known in daily life and is just a kind of naming [69, 70].

The Lagrangian density of QCD is

L = ψ̄if (iγ
µ) (Dµ)ij ψ

j
f −mf ψ̄

i
fψfi −

1

4
Ga
µνG

aµν , (2.4)

where ψif represents a quark field as

ψif =


ψr
f

ψg
f

ψb
f

 ,
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with flavor f , ψf ∈ {u, d, s, c, t, b} and color indices i, i = 1, 2, 3, corresponding

to r, g and b, µ and ν denote Lorentz vector indices with µ, ν = 0, 1, 2, 3, γµ are

the Dirac-gamma matrices consisting of 4 × 4 matrices, mf are the non-zero quark

masses generated by SM Higgs or similar mechanisms, Dµ is the covariant derivative

and Ga
µν is the gluon field strength tensor [71]. In QCD, covariant derivative and

gluon-field strength tensor are usually defined as

(Dµ)ij = δij∂µ − igsT aijAaµ, (2.5)

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (2.6)

where gs is the strong interaction coupling constant, Aaµ represents the gluon fields,

fabc ( a, b, c ∈ [1, . . . , 8] ) are the structure constants and T aij represents the generators

of the SU(3)C symmetry group with

T aij =
1

2
λaij (2.7)

where λa refers to 3 × 3 hermitian and traceless Gell-Mann matrices, with a ( a ∈

[1, . . . , 8]), there are 8 independent generators of SU(3)C and, hence, there are 8

different gluons with different color combinations, corresponding to each generator

[71, 72, 73, 74].

The Lagrangian of QCD has non-Abelian local symmetry, and the strong interaction

coupling constant, although called a constant, is not actually a constant and varies

according to distance (momentum). This means that QCD, unlike other quantum field

theories, has two very important new features: asymptotic freedom and confinement

[75, 76].
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Although the phrase confinement is often used in this way, it is actually "color con-

finement". Confinement states that colored isolated systems cannot exist and there-

fore colored particles such as quarks and gluons cannot be observed under normal

conditions. Due to the color charges of the gluons that enable the interaction be-

tween the quarks, a gluon cloud forms around the quarks. As large distances are

reached, these gluon clouds and, therefore, the interactions between the quarks in-

crease. As a result of increasing interactions, quarks behave as if they were impris-

oned in hadrons.However, although there is no definitive proof for this, these fields,

also called chromoelectric fields, resulting from the color charge between two static

quarks, are distributed in tubelike structures. These structures are called "flux tubes"

[77, 78, 79, 80, 81, 82]. According to this model, there is a linear potential between

static color charges resulting from these tube-like structure charges, which appear to

arise naturally. This can be considered as numerical evidence for color confinement

[83, 84].

Therefore, the confinement has been seen as a necessity because no quark has been

observed in isolation, although many properties of quarks such as their masses, elec-

tric charges, and color charges have been determined in many experiments carried out

so far. For example, when two quarks are required to be separated from each other in

high-energy scattering reactions, the energy of the force fields increases at long dis-

tances, and thanks to this increased energy, new quarks are formed from the gap. The

initial quarks tend to come together with these new quarks to form hadrons, which

do not have a net color charge, and behave more like fundamental entities than the

quarks that form them [85].

The asymptotic freedom term is used to describe the behavior of quarks at short dis-
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tances (high energy or high momentum). As the distance between the quarks de-

creases, the effect of the gluon clouds, and therefore the interaction between the

quarks, weakens, and the quarks behave as if they are free. Since this decrease in

interaction changes asymptotically depending on the distance between the quarks,

this situation is called "asymptotic freedom" [86, 85]. Asymptotic freedom was first

predicted in 1973 by D. Politzer, D. Gross, and F. Wilczek unaware of each other, and

they were awarded the Nobel Prize in Physics in 2004.

In QCD, dependence of the strong coupling constant αs on the monentum is described

as [87, 88, 89]:

αs
(
Q2

)
=

12π

(33− 2nf ) ln
(
Q2/Λ2

QCD

) . (2.8)

Here, nf is the quark flavor number, Q is the 4-dimensional momentum, and ΛQCD

is the QCD energy reference scale. The value of ΛQCD obtained experimentally is

approximately 200 MeV. This value is taken as a reference in classifying quarks as

heavy and light. Quarks with a mass below this value are classified as light quarks

(u, d, s), and quarks with a mass above this value are classified as heavy quarks

(c, b, t) [90, 91].

Due to the asymptotic freedom property of QCD, at energies lower than ΛQCD or at

long distances, perturbative QCD is no longer useful. The changes of αs (Q2) accord-

ing to the energy scale Q [GeV] are shown in Figure 2.1. In summary, in QCD, for

short distances (or large momentum), perturbative expansion is possible with respect

to the running coupling constant αs. Due to the asymptotic freedom property of this

method, the perturbation theory can be used in this region. For long distances (or

small momentums), on the other hand, quark-gluon interactions are strong; therefore,

non-perturbative effects are important. Thus, a non-perturbative approach is required.
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Figure 2.1: Summary of measurements of αs(Q2) as a function of the energy scale Q

[GeV] [6]

Therefore, non-perturbative models are needed to describe physical quantities at low

energy levels.

One of these methods is QCD sum rules. QCD sum rules method is a powerful

method that associates QCD parameters with hadronic properties. As one of the most

popular methods used to study hadrons, this method can also be used to study exotic

particles. Mass is one of the significant properties of the particles and QCD sum rules

can be used to study the masses of hadrons.
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2.2.1 Heavy-Quark Spin Symmetry

Hadrons consisting of heavy and light quarks have a more simple structure than

hadrons that do not contain heavy quarks. The heavy quark is surrounded by the

interaction cloud formed by the strong interaction of other particles (light quarks

and antiquarks, gluons) in the hadron. In this case, the size of the hadron, which

is O(1/ΛQCD), is much larger than the Compton wavelength of the heavy quark,

1/mQ, so it would be appropriate to make some simplifications.

In the heavy quark limit, the spin of the heavy quark decouples from the dynamics.

Hence, systems in which light quarks have the same configuration are degenerate.

The difference in such hadrons can be thought of as resulting from the effects 1/mQ

due to the heavy quark they contain [92, 93, 94, 95, 96].

For example, considering a hadron containing a heavy quark at speed v, when this

heavy quark is replaced by a heavy quark of another flavor or spin at speed u, the

configuration of light degrees of freedom of the hadron does not change, because

these two heavy quarks have the same color field. Heavy-quark symmetry is only an

approximate symmetry. However, quark masses are not actually infinity and some

corrections for this symmetry may be needed [97].

17



18



CHAPTER 3

THE QCD SUM RULES METHOD

The QCD sum rules method, which is widely used in hadron phenomenology, is a

powerful method developed by M. A. Shifman, A. I. Vainshtein and V. I. Zakharov

for mesons in 1979 [98] and generalized to baryons by B. L. Ioffe in 1981 [99]. In

this method, hadrons are represented by their interpolating currents.

The QCD sum rules method relates QCD parameters such as quark masses, conden-

sates, etc. to hadron properties such as mass, decay constant, form factor, etc. The

first step, which is considered as the starting point of this method, is the construction

of the interpolating current in terms of quark fields such that it has the same quantum

numbers as the hadron under study. Using the interpolating currents, a suitable corre-

lation function is constructed. The two-point correlation function is used to calculate

properties such as masses, decay constants, etc. [100].

3.1 Two Point Correlation Function

In order to understand the properties of hadrons in vacuum, quarks are placed in the

QCD vacuum at the x = 0 space-time point, and their evolution is examined. For

this purpose, the following two-point correlation functions can be used for scalar and
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(axial) vector particles, respectively [101, 102]:

Π(p2) = i

∫
d4xeipx

〈
Ω
∣∣T {

J(x)J†(0)
}∣∣Ω〉 , (3.1)

Πµν(p
2) = i

∫
d4xeipx

〈
Ω
∣∣T {

Jµ(x)J
†
ν(0)

}∣∣Ω〉 , (3.2)

where p is the four momentum of the hadron, |Ω⟩ is the physical non-perturbative

hadronic vacuum, J(x) and Jµ(x) are the interpolating currents for the scalar and

axial vectors, respectively, and T is the time ordering operator.

The time ordering operator reorders the operators in its argument on the basis of the

earlier time and for the products of two operators, it is defined as:

T {(X (x1)Y (x2)} =


ξY (x2)X (x1) t1 < t2

X (x1)Y (x2) t2 < t1

= [θ (t2 − t1) ξY (x2)X (x1) + θ (t1 − t2)X (x1)Y (x2)] ,

(3.3)

where t1 = x01, t2 = x02 andX , Y are two arbitrary operators, and θ(t) is the Heaviside

step function. The value of ξ changes depending on whether the operators X and Y

are fermionic or bosonic. If they are bosonic, then ξ = 1, but if they are fermionic,

then ξ = −1.

For conventional mesons, the interpolating currents in the correlation function are

expressed as;

J(x) = ψ̄ai (x)Γψ
a
j (x), (3.4)

and for conventional baryons, these currents can be expressed as;

J(x) = εabc
[
ψai (x)Γ1ψ

b
j(x)Γ2ψ

c
k(x)

]
. (3.5)
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Here, i, j, k and a, b, c represent the flavor and color of the quarks, respectively. εabc

is the Levi-Civita tensor. Γ and Γi can be any of 1, γ5, γµ, γ5γµ and σµν , which are

the Dirac matrices and can also involve derivatives.

The main quantum numbers taken into account in the selection of the interpolating

current are the total angular momentum J , parity P , charge conjugation parity C

(if the particle under study has C parity) and the flavor quantum number. For con-

ventional conventional mesons, the parity P is P = (−1)l+1 and the parity C is

C = (−1)l+s where l and s are the orbital and spin angular momentum of the quark-

antiquark pair that makes the meson. In terms of l and s, the total spin J of the meson

can have any value in the parity range |l − s| ≤ J ≤ |l + s|. Possible interpolating

currents without derivatives for mesons according to the relevant quantum numbers

of the quark-antiquark pairs are given in Table 3.1. In Table 3.1, the i and j indices

Table 3.1: Interpolating currents of different types of mesons according to their cor-

responding quantum numbers [3]

Meson JPC S L Hermitian Quark Current Operators

Pseudoscalar 0−+ 0 0 Pij = ψ̄jiγ
5ψi

Vector 1−− 1 0 V µ
ij = ψ̄jγ

µψi

Scalar 0++ 1 1 Sij = ψ̄jψi

Axial Vector 1++ 1 1 Aµij = ψ̄jγ
5γµψi

represent the corresponding quark fields.

The correlation function is written in terms of hadronic degrees of freedom in the

p2 > 0 region, which is called the hadronic (phenomenological) part, and quark-

gluon degrees of freedom in the p2 ≪ 0 region, using the Operator Product Expansion

(OPE), which is called the QCD (theoretical) part. Then, the physical quantity to be
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calculated is obtained by matching these two parts using analytic continuity [103].

3.1.1 Hadronic (Phenomenological) Side of the Correlation Function

The value of p2 determines the behavior of the correlation function. The hadronic

side is defined in the p2 > 0 region. In this region, the correlation function can be

written in terms of hadronic properties.

On the hadronic side, the correlation function is calculated in terms of hadronic pa-

rameters. For this purpose, if the time ordering operator in Equation (3.2) is written

explicitly, ΠHad (p2) will take the form

ΠHad
(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣(θ (x0) J†(x)J(0) + θ

(
−x0

)
J(0)J†(x)

)∣∣Ω〉 . (3.6)

The resolution of identity in terms of Hamiltonian eigenstates is inserted. Hadron

states that have the same quantum numbers as the interpolating current contribute to

the correlation function (equation 3.7).

1 =
∑

Eigenstates
of Hamiltonian

|n⟩⟨n|

= |Ω⟩⟨Ω|︸ ︷︷ ︸
vacuum

+
∑∫
|h1(q1)⟩⟨h1(q1)|︸ ︷︷ ︸

States with one hadron

+
∑∫
|h1(q1)h2(q2)⟩⟨h1(q1)h2(q2)|︸ ︷︷ ︸

States with two hadron

+ · · · · · ·︸ ︷︷ ︸
Higher States

=|Ω⟩⟨Ω|+
∑∫
h

d4q
1

(2π)4
(2π)θ

(
q0
)
δ
(
q2 −m2

h

)
|h(q)⟩⟨h(q)|+ · · · .

(3.7)

Here, h1, h2, .. represent the hadron states, mh represents the mass of the hadron, and

also
∑∫

represents a sum over all the hadrons and their discrete quantum numbers as
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well as an integral over their continuous quantum numbers such as their momentum.

By inserting equation 3.7 into Equation 3.6 between two operators;

ΠHad
(
p2
)
= i

∫
d4xeipx

∑∫
h

d4q

(2π)4
(2π)δ

(
q2 −m2

h

)
θ
(
q0
)

×
{
θ
(
x0
)
⟨0|J(x)|h(q)⟩

〈
h(q)

∣∣J+(0)
∣∣ 0〉

+ θ
(
−x0

) 〈
0
∣∣J+(0)

∣∣h(q)〉 ⟨h(q)|J(x)|0⟩} (3.8)

can be obtained. Here, when c = ℏ = 1 is used, J(x) can be written in terms of J(0)

using the translation operator.

J(x) = eip̂xJ(0)e−ip̂x, (3.9)

Hence, the matrix elements can be written as:

⟨0|J(x)|h(q)⟩ = ⟨0 |J(0)|h(q)⟩ e−iqx,

⟨h(q)|J(x)|0⟩ = eiqx ⟨h(q) |J(0)| 0⟩ .
(3.10)

Using equation 3.10, the following result is obtained:

ΠHad
(
p2
)
=i

∑∫
h

d3x
d4q

(2π)4
(2π)δ

(
q2 −m2

h

)
θ
(
q0
)

{∫ ∞

0

dx0eipx−iqxθ
(
x0
) 〈

Ω
∣∣J†(0)

∣∣h(q)〉 ⟨h(q)|J(0)|Ω⟩
+

∫ 0

−∞
dx0eipx+iqxθ

(
−x0

)
⟨Ω|J(0)|h(q)⟩

〈
h(q)

∣∣J†(0)
∣∣Ω〉} ,

(3.11)

taking space integrals ΠHad (p2) can be written as
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ΠHad
(
p2
)
=i

∫
dx0e

ip0x0
∑∫
h

d4q

(2π)4
(2π)δ

(
q2 −m2

h

)
θ
(
q0
)

×
{
θ
(
x0
)
e−iq0x0(2π)3δ3(p⃗+ q⃗)

〈
Ω
∣∣J†(0)

∣∣h(q)〉 ⟨h(q)|J(0)|Ω⟩
+ θ

(
x0
)
eiq0x0(2π)3δ3(p⃗− q⃗)⟨Ω|J(0)|h(q)⟩

〈
h(q)

∣∣J†(0)
∣∣Ω〉} .

(3.12)

Using the properties of the Dirac-Delta function, the q integrals can be evaluated

explicitly:

ΠHad
(
p2
)
=i

∑
h

1

2

√
p⃗2 +m2

h

×
{

−1
i(p0 − q0 + iϵ)

〈
Ω
∣∣J†(0)

∣∣h(q0,−p⃗)〉 ⟨h(q0,−p⃗)|J(0)|Ω⟩
+ ⟨Ω|J(0)|h(q0, p⃗)⟩

〈
h(q0, p⃗)

∣∣J†(0)
∣∣Ω〉 1

i(p0 + q0 − iϵ)

}
,

(3.13)

where, x0 integral is also evaluated. To ensure the convergence of x0 integrals, ϵ = 0+

are inserted in the exponents. If the quantum numbers of operator J are the same as

the relevant meson m and then h = m contributes to the first term and h = m̄

contributes to the second term when taking the sum over all the mesons. But if m =

m̄, h = m contributes to both terms. Therefore, the product of operator matrix

elements for particles and antiparticles is equal to each other. Then, Equation 3.13

can be written as

ΠHad
(
p2
)
=
∑
h

1

2

√
p⃗2 +m2

h

∣∣〈Ω |J(0)|h(q0, 0)〉∣∣2
×

{
1

i(p0 + q0 − iϵ)
− 1

i(p0 − q0 + iϵ)

}
. (3.14)

The sum in Equation 3.14 contains only particles and not antiparticles. In addition,

Equation 3.14 is written in the frame where p⃗ = 0. This is possible because this side

is for the kinematical region p2 > 0. After further simplifications,
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ΠHad
(
p2
)
=

∑
h

|⟨Ω |J(0)|h(p)⟩|2

m2
h − p2

, (3.15)

is obtained by taking the limit ϵ → 0. In this case, the following expression is found

for the correlation function ΠHad(p2) for the hadronic side (in the region p2 > 0):

ΠHad
(
p2
)
=
|⟨Ω |J(0)|hG(p)⟩|2

m2
hG
− p2

+ Higher States + · · · (3.16)

Here, hG represents the energy of the lowest-mass hadron corresponding to the inter-

polating current operator.

3.1.2 QCD (Theoretical) Side of the Correlation Function

In order to calculate the QCD part of the correlation function, the Wilson operator

product expansion of the time-order product of two or more interpolating currents is

calculated.

3.1.2.1 Wilson Operator Product Expansion

OPE was developed by K.G.Wilson in 1969 to separate short and long distances in the

relevant physical process [104, 105, 106]. This is achieved by writing the time-order

product in the correlation function as:

T
{
J(x)J†(0)

} x→0
=

∑
i

Ci
(
x2
)
Oi, i = 0, 1, 2, . . . . (3.17)

Here,Ci are the Wilson coefficients, providing information about short distance physics.

Oi are the local gauge-invariant operators ordered by dimension, containing contri-
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butions from non-perturbative low energies (long distances). The perturbative contri-

bution is provided by the unit operator in the lowest dimension (d = 0). Since the

QCD vacuum is colorless, the gauge invariant operators for d = 1, 2 dimensions do

not contribute to the correlation function. Oi operators for higher dimensions up to

i = 6 are listed in Table 3.2.

Table 3.2: Some non-zero local operators up to 6 dimensions [4]

Operator Dimension

O0 = I (Unit Operator) d = 0

O3 = ψ̄ψ d = 3

O4 = mψψ̄ψ d = 4

O4 = Ga
µνG

aµv d = 4

O5 = ψ̄σµν
λa

2
Gaµvψ d = 5

O6 =
(
ψ̄Γrψ

) (
ψ̄Γsψ

)
d = 6

O6 = fabcG
a
µνG

bv
σ G

cσµ d = 6

Here, the term σµν =
i
2
[γµ, γν ] is defined in terms of gamma matrices.

When Equation 3.17 is inserted into the two-point correlation function in Equation

3.2, it can be expressed as

ΠOPE
(
p2
)
= i

∫
d4xeipx

∑
i

Ci
(
x2
) 〈

Ω
∣∣∣Ôi

∣∣∣Ω〉
=

∑
i

Ci
(
p2
) 〈

Ω
∣∣∣Ôi

∣∣∣Ω〉 . (3.18)

The term "
〈
Ω
∣∣∣Ôi

∣∣∣Ω〉" is defined as the expected vacuum value, or the condensates,

of the QCD operators, characterizing non-perturbative effects.
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3.1.3 Analytic Continuity and Dispersion Relation

The correlation function has been expressed in terms of the hadronic parameters for

p2 > 0 and in terms of the QCD parameters for p2 ≪ 0. Since these results are

from different regions, it is not possible to equate them. In order to relate these

two expressions, the analytical continuity of the correlation function is used. Since

the correlation function is an analytic function of p2, it can be expressed using the

Cauchy formula. Looking at the obtained Equation 3.16; the expression has poles at

positive values of p2 due to the expression m2
hG
− p2 in the denominator, and also has

a brunch cut from a threshold value on the positive axis, due to multi-hadronic states.

For a given negative p2 < 0 value using the C1 contour, as shown in Figure 3.1 the

correlation function can be written as:

Figure 3.1: C1 contour in the z = p2 complex plane. The dark points in the figure

show the pole points, i.e. the states of the hadrons, and the zigzag lines show the

branch cuts.

Π
(
p2
)
=

1

2πi

∮
C1

ds
Π(s)

s− p2
. (3.19)
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The integrand in Equation 3.19 has a single pole at s = p2, within the contour C1,

its residue is the value of Π(p2). According to complex analysis, the contour can be

deformed as desired, as long as no pole or branch cut is crossed. It is possible to

deform the contour C1 and draw it as shown in Figure 3.2, and thus the equivalent of

the integral given in Equation 3.19 can be written for the new contour as follows:

Figure 3.2: CR contour in the z = p2 complex plane. The dark points in the figure

show the pole points, i.e. the states of the hadrons, and the zigzag lines show the

brunch cuts.

Π
(
p2
)
=

1

2πi

∮
CR

ds
Π(s)

s− p2
. (3.20)

In Figure 3.2, contour can be splitted as:
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Π
(
p2
)
=

1

2πi

∫
|s|=R

ds
Π(s)

s− p2
+

1

2πi

∫ sh0

R

ds
Π(s− iϵ)
s− p2 − iϵ

+
1

2πi

∫ R

sh0

ds
Π(s+ iϵ)

s− p2 + iϵ

=
1

2πi

∮
|s|=R

ds
Π(s)

s− p2
+

1

π

∫ R

sh0

ds
1

s− p2
Π(s+ iϵ)− Π(s− iϵ)

2i
, (3.21)

where sh0 is the threshold for the creation of real states. Taking the limit ϵ → 0

in Equation 3.21 the Schwarz reflection principle will be used. According to this

principle the discontinuity of an analytic function on the positive real axis is equal to

its imaginary part if it takes real values on the negative real axis [107, 108, 109]:

Π(s+ iϵ)− Π(s− iϵ) = 2i ImΠ(s). (3.22)

When the radius R of the circular part of the contour goes to infinity, the fraction can

be Taylor expanded in terms of (p2/s) as:

1

s− p2
=

∞∑
n=0

(p2)n

sn+1
. (3.23)

Using Equation 3.23, Equation 3.21 can be written as

Π(p2) =
∞∑
n=0

(p2)n

2πi

∫
|s|→∞

ds
Π(s)

sn+1
+

∫ ∞

sh0

ds
ImΠ(s)

π
. (3.24)

In the summation over the n value in the first term of the left side of the Equation

3.24, after a certain n value, Π(p2) goes to zero in the |s| → ∞ limit and only a finite

polynomial in terms of p2, called subtraction terms, will remain. In this case, the

dispersion relation can be expressed as
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Π(p2) =
1

π

∫ ∞

sh0

ds
ImΠ(s)

(s− p2)
+ Subtraction Terms. (3.25)

Here, ImΠ(s)/π ≡ ρ (s) is the spectral density. Using this dispersion relation,

ΠHad (p2) for positive values of p2 and ΠOPE (p2) at negative values of p2 can be

connected to each other.

The point to be noted about Equation 3.25 is that using this expression, the value of

Π(p2) in the p2 ≪ 0 region can be calculated using the expression ImΠ(s) in the

s > 0 region. Taking ⟨Ω |J(0)|h(p)⟩ = λh and using equations 3.16 and 3.25, the

following equation can be written for the hadronic side of the correlation function

ΠHad (p2):

ΠHad
(
p2
)
=

|λh|2

m2
hG
− p2

+

∫ ∞

sh0

ds
ρHad(s)

s− p2
+ Subtraction Terms . (3.26)

Here, ρHad (s) is the spectral density of the hadronic side that includes the spectral

properties of hadrons.

On the other hand, by evaluating the correlation function for the OPE side defined

for negative values of p2 in the large Euclidean deep momentum limit, the following

expression is obtained:

ΠOPE
(
p2
)
=

∫ ∞

0

ds
ρOPE(s)

s− p2
+ Subtraction Terms . (3.27)

Here, ρOPE (s) is the spectral density of the QCD side that includes the spectral prop-

erties of quarks and gluons.

The correlation function obtained in two different regions (Equations 3.26 and 3.27)

can be matched, and hence the relation to match the results of the obtained correlation

function in two different regions, using Equations 3.26 and 3.27,
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∫ ∞

0

ds
ρOPE(s)

s− p2
+Subtraction Terms

=
|λh|2

m2
hG
− p2

+

∫ ∞

sh0

ds
ρHad(s)

s− p2
+ Subtraction Terms, (3.28)

can be written. However, it can be seen from Equation 3.28 that it cannot be used

to extract useful information due to unknown subtraction terms. These subtraction

terms consist of polynomials in p2 whose degree is unknown. By taking an infinite

number of derivatives, any polynomial can be eliminated. This can be achieved by

Borel transform in Equation 3.28.

3.1.4 Borel Transformation

The Borel transformation is defined as [110]:

Π
(
M2

)
= B̂M2

[
Π
(
p2
)]

= lim
−p2,n→∞
−p2/n→M2

(−p2)n+1

n!

(
d

dp2

)n

Π
(
p2
)
. (3.29)

As mentioned above, the Borel transformation eliminates polynomials of unknown

degree by taking infinite derivatives. It also suppresses the contribution of higher

states by converting the expression 1
s−p2 → e−s/M

2 .

Using the definition of Borel transformations, some explicit transformations are ob-

tained as follows [111].
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B̂M2

[(
−p2

)t]
= 0 for t ⩾ 0, (3.30)

B̂M2

[
1

(−p2)t

]
=

1

(t− 1)!

(
1

M2

)t−1

, (3.31)

B̂M2

[
1

(m2 − p2)t

]
=

1

(t− 1)!

e−m
2/M2

(M2)t−1
, (3.32)

,B̂M2

[(
−p2

)t
log

(
−p2/Λ2

)]
= t!

(
−M2

)t+1
. (3.33)

Considering all these situations, when the Borel transformation is applied to the phe-

nomenological and OPE parts of the correlation function, the corresponding results

are obtained. For the phenomenological part,

B̂M2

[
ΠHad

(
p2
)]

= λ2he
−m2

h/M
2

+

∫ ∞

sh0

dsρhad(s)e−s/M
2

(3.34)

and for the OPE part,

B̂M2

[
ΠOPE

(
p2
)]

=

∫ ∞

0

dsρOPE(s)e−s/M
2

. (3.35)

Hence, Equation 3.28 becomes

λ2he
−m2

h/M
2

+

∫ ∞

sh0

dsρhad(s)e−s/M
2

=

∫ ∞

0

dsρOPE(s)e−s/M
2

. (3.36)

According to the local quark-hadron duality assumption, the integral on the left hand

side of Equation 3.36 can be written in terms of ρOPE as [112],
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∫ ∞

sh0

dsρHad(s)e−s/M
2

=

∫ ∞

s0

dsρOPE(s)e−s/M
2

, (3.37)

where s0 is called the continuum threshold. Substituting Equation 3.37 into Equation

3.36, the sum rules is obtained as

λ2he
−m2

h/M
2

=

∫ s0

0

dsρOPE(s)e−s/M
2

. (3.38)

Using this expression, the mass of the hadron in the ground state can be calculated by

taking the derivative of Equation 3.38 with respect to the parameter −1/M2 and then

dividing it by Equation 3.38:

m2
h =

∫ s0
0
dssρOPE (s)e−s/M

2∫ s0
0
dsρOPE (s)e−s/M2 . (3.39)

Once m2
h is obtained, it can be used in Equation 3.39 to calculate the decay constant

λ2h as

λ2h = em
2
h/M

2

∫ s0

0

dsρOPE(s)e−s/M
2

. (3.40)
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CHAPTER 4

QCD SUM RULES FOR THE MASS OF TETRAQUARKS

4.1 THE MASS OF T+
cc TETRAQUARK

This section consists of detailed calculations to obtain the mass of the ground state

of the T+
cc tetraquark. As mentioned in the Chapter 3, application of QCD sum rules

to calculate the mass of the given hadron follows three important steps: The first is

the calculation of the hadronic side or the phenomenological side used to express the

correlation function in hadronic degrees of freedom in the p2 > 0 region. In the

second step, the correlation function is expressed in terms of the gluon and quark

properties in the p2 ≪ 0 region and is called the QCD side or the theoretical side. In

the final step, these two expressions are matched using analytical continuity.

Then, using Equation 3.2, the two-point correlation function for the T+
cc tetraquark

can be written as:

Πµν,T+
cc

(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣∣T {

JT
+
cc

µ (x)JT
+
cc

ν

†
(0)

}∣∣∣Ω〉 . (4.1)

In order to calculate Equation 4.1, it is first necessary to determine the interpolating

current. The spin-parity quantum numbers of the state T+
cc tetraquark is determined

as JP = 1+ and the measured mass of the T+
cc tetraquark is located at (−273 ±
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61± 5+11
−14

)
keV just below the D0D+∗ mass threshold [41, 42]. For this reason, the

molecular picture is quite attractive for studying the properties of the T+
cc state. Thus,

considering the quantum flavor contents and spin numbers of the D mesons, where

D◦ : cū (0), D+ : cd̄ (0), D∗+ : cd̄ (1), D∗0 : cū (1), the following equation is

obtained.

∣∣D0D∗+ −D+D∗0〉 ≡ |I = 0, I3 = 0⟩∣∣D0D∗+ −D+D∗0〉 ≡ |(cū) (0)⟩ ⊗ ∣∣(cd̄) (1)〉− ∣∣(cd̄) (0)〉⊗ |(cū) (1)⟩
≡ |c↑ū↓ − c↓ū↑⟩ ⊗

∣∣c↑d̄↑〉− ∣∣c↑d̄↓ − c↓d̄↑〉⊗ |c↑ū↑⟩
≡

∣∣c↑ū↓c↑d̄↑〉− ∣∣c↓ū↑c↑d̄↑〉− ∣∣c↑d̄↓c↑ū↑〉+ ∣∣c↓d̄↑c↑ū↑〉
≡ c↑c↑

(
ū↓d̄↑ − ū↑d̄↓

)
+ ū↑d̄↑ (c↑c↓ − c↓c↑)∣∣D0D∗+ −D+D∗0〉 ≡ − (cc) (1)

(
ūd̄

)
(0) +

(
ūd̄

)
(1) (cc) (0)

(4.2)

As can be seen from Equation 4.2, in the molecular picture, there are two cases:

One of them, the total spin of the heavy quarks is 1, and the total spin of the light

quarks is 0 and the other, the total spin of the heavy quarks is 0 and the total spin of

the heavy quarks is 1. In these cases, when the total spin of the heavy quarks is 0,

the color wave function must be symmetric, since the wave function of the diquark

must be antisymmetric according to the Pauli Exclusion Principle. However, since

color interactions are not attractive in the symmetric case, the probability of the sym-

metric wavefunction forming a diquark is low [113, 114, 115, 116]. Therefore, in

this study, the construction of the interpolating current, the component for which the

heavy quarks have total spin 1 is considered.

Taking into account the fact that the observed particle has positive parity, P = +, the

interpolating current JT
+
cc

µ (x) for the T+
cc tetraquark can be written as follows:
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JTccµ (x) =
[(
caTCγµc

b
)
(x)

(
ūcCγ5d̄

dT
)
(x)

]
εabeεcde, (4.3)

where a, b, c are colors, εabc is the Levi-Civita tensor, γ5, and γµ are the Dirac matri-

ces, u, d and c represent u quark, d quark, c quark fields, respectively, and C is charge

conjugation operator.

4.1.1 Hadronic Side of the T+
cc Tetraquark Correlation Function

To calculate the hadronic representation of the T+
cc tetraquark correlation function,

starting from Equation 3.16, the following equation is obtained.

ΠHad
µν,T+

cc

(
p2
)
=

∑
h

〈
Ω
∣∣∣JT+

cc
µ

∣∣∣h(p)〉〈
h(p)

∣∣∣JT+
cc

ν

†∣∣∣Ω〉
p2 −m2

h

+ · · ·

=
∑
0

〈
Ω
∣∣∣JT+

cc
µ

∣∣∣ 0+(p)〉〈
0+(p)

∣∣∣JT+
cc

ν

†∣∣∣Ω〉
p2 −m2

0+

+
∑
1

〈
Ω
∣∣∣JT+

cc
µ

∣∣∣ 1+(ε, p)〉〈
1+(ε, p)

∣∣∣JT+
cc

ν

†∣∣∣Ω〉
p2 −m2

1+
+ · · · . (4.4)

Note that the chosen current can couple to states with S = 0 as well as states with

S = 1. Using the following matrix elements,〈
S = 0+(p)

∣∣∣JT+
cc

ν

†∣∣∣Ω〉 = λ+0 pν , (4.5)〈
S = 1+(ε, p)

∣∣∣JT+
cc

ν

†∣∣∣Ω〉 = λ+1 ε
∗
ν , (4.6)

in Equation 4.4, the hadronic representation becomes:
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ΠHad
µν,T+

cc

(
p2
)
=
|λ0+|2pµpν
p2 −m2

0+
+
|λ1+ |2

∑
s ε

∗
µεν

p2 −m2
1+

. (4.7)

In Equation 4.7, only the contributions of the lowest-mass scalar and axial-vector

mesons are explicitly stated, and other terms are not shown. Then using the sum over

all polarizations, ∑
s

ε∗µ(p)εν(p) = −gµν +
pµpν
p2

, (4.8)

Equation 4.7 is expressed as:

ΠHad
µν,T+

cc

(
p2
)
=
|λ0+|2pµpν
p2 −m2

0+
+
|λ1+|2

(
−gµν + pµpν

p2

)
p2 −m2

1+
. (4.9)

If the definitions

Π̃0
T+
cc

(
p2
)
≡

∑ λ20+

p2 −m2
0+
, (4.10)

and

Π̃1
T+
cc

(
p2
)
=

∑ λ21+

p2 −m2
1+
, (4.11)

are used, Equation 4.9 can be written as:

ΠHad
µν,T+

cc

(
p2
)
= Π̃0

T+
cc

(
p2
)
pµpν + Π̃1

T+
cc

(
p2
)(
−gµν +

pµpν
p2

)
. (4.12)

Note that two masses of axial vectors appear as the poles of Π̃1
T+
cc
(p2), which is the

coefficient of −gµν in the correlation function. Hence, only Π1
T+
cc
(p2) will be studied.
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4.1.2 Theoretical Side of the T+
cc Tetraquark Correlation Function

To obtain the expression of the correlation function in terms of the QCD parameters,

first the interpolating current expression in Equation 4.3 is inserted into the correlation

function in Equation 4.1.

Πµν,T+
cc

(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣T {[(

caTCγµc
b
)
(x)

(
ūcCγ5d̄

dT
)
(x)

]
εabeεcde

×
[(
dd

′
γ5Cu

c′T
)
(0)

(
c̄b

′
γνCc̄

a′T
)
(0)

]
εa

′b′e′εc
′d′e′

}∣∣∣Ω〉 .
(4.13)

Using Wick’s theorem, time-ordered products can be written in terms of normal-order

products as follow:

Πµν,T+
cc

(
p2
)
= i

∫
d4xeipxεabeεcdeεa

′b′e′εc
′d′e′

×

{〈
Ω
∣∣∣: {[(caTCγµcb)(x)(ūcCγ5d̄dT )(x)][(dd′γ5Cuc′T )(0)(c̄b′γνCc̄a′T )(0)} :

∣∣∣Ω〉

+

〈
Ω

∣∣∣∣: {[(caTCγµcb)(x)(ūcCγ5 d̄dT )(x)][(dd′ γ5Cuc′T )(0)(c̄b′γνCc̄a′T )(0)} :

∣∣∣∣Ω〉

+

〈
Ω

∣∣∣∣: {[(caTCγµ cb)(x)(ūcCγ5 d̄dT )(x)][(dd′ γ5Cuc′T )(0)(c̄b′γνCc̄a′T )(0)} :

∣∣∣∣Ω〉

+

〈
Ω

∣∣∣∣∣∣:
[(caTCγµ c

b)(x)(ūcCγ5 d̄
dT )(x)][(dd

′
γ5Cu

c′T )(0)(c̄b
′
γνCc̄

a′T )(0)

 :

∣∣∣∣∣∣Ω
〉

+

〈
Ω

∣∣∣∣∣∣:
[(caTCγµ c

b)(x)(ūcCγ5 d̄
dT )(x)][(dd

′
γ5Cu

c′T )(0)(c̄b
′
γνCc̄

a′T )(0)

 :

∣∣∣∣∣∣Ω
〉

+ (all possible contractions)

}
(4.14)
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Here, the sign " " represents the contractions of the relevant quarks, and only one

example of each of the situations involving one contraction, two contractions, three

contractions, and four contractions is shown. The "⟨Ω| : : |Ω⟩" notation is used

to denote normal ordering in quantum field theory and indicates that the creation

operators precede the annihilation operators. For example, if a and b represent the

annihilation operators, and a† and b† represent the creation operators, normal ordering

is defined as:

〈
Ω
∣∣: aa†bb† :∣∣Ω〉 = ηN

〈
Ω
∣∣a†b†ab∣∣Ω〉 . (4.15)

Here, N is the number of commutations required to convert the original ordering to

the final ordering, η = −1 and η = 1 are used for the fermionic and bosonic operators,

respectively. In cases where there are c quarks that are not contracted with each other,

the corresponding terms are equal to zero since there are no heavy quarks in the QCD

vacuum.

Contributions to the correlation function in Equation 4.14 include perturbative and

non-perturbative contributions. Situations in which all quark fields are contracted are

called perturbative contributions. In Figure 4.1, the mentioned contributions taken

into account in this study are shown schematically in terms of Feynman diagrams.

In Figure 4.1, the diagram (a) corresponds to the perturbative part which is the con-

tribution of the zero-dimensional operator in OPE. The other diagrams show the con-

tributions from non-perturbative parts sorted according to the mass dimension of the

corresponding operator in OPE. The diagram (b) shows the contribution of d = 3

operator containing the light quark propagator ⟨q̄q⟩, the diagrams (c1) and (c2) show

the contribution of two-gluon operator’s containing ⟨g2sG2⟩ condensate, the diagrams
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(d1) and (d2) diagrams show the contribution of 5-dimensional operator consisting of

the light quark-gluon mixture containing ⟨q̄qgsG⟩ condensate, the diagram (e) shows

the contribution of the operator, two light quarks consisting of ⟨q̄qq̄q⟩ condensates.

The contributions of the 8-, 10-, 12- and 14- dimensional mixed condensates are also

represented in Figure 4.1 by diagrams (f1) and (f2), (g1) and (g2), (h1) and (h2), and

(i1) and (i2), respectively.

For the T+
cc tetraquark, there are two terms with four contractions forming the pertu-

bative part. One of these terms, which is also present in Equation 4.14, can be written

as

Π4,1

µν,T+
cc

(
p2
)
= i

∫
d4xeipxεabeεcdeεa

′b′e′εc
′d′e′

〈
Ω

∣∣∣∣∣∣:
[(caTCγµ c

b)(x)(ūcCγ5 d̄
dT )(x)][(dd

′
γ5Cu

c′T )(0)(c̄b
′
γνCc̄

a′T )(0)]

 :

∣∣∣∣∣∣Ω
〉
.

(4.16)

Expressing the matrix products in terms of summations over spinor indices, Equation

4.16 can be written as:

Π4,1

µν,T+
cc

(
p2
)
= i

∫
d4xeipx(Cγµ)ij(γνC)kl(Cγ5)αβ(γ5C)γδε

abeεcdeεa
′b′e′εc

′d′e′

×

〈
Ω

∣∣∣∣∣∣:

(caTi cbj) (x) (c̄

b′

k c̄
a′T
l ) (0)

(ūcα d̄dTβ ) (x) (dd
′

γ u
c′T
δ ) (0)

 :

∣∣∣∣∣∣Ω
〉
,

(4.17)

where the number "4" in the superscript "4, 1" represents terms that contain four con-

tractions, and the number 1 represents the first of the terms with four contractions. To

evaluate Equation 4.17, the following definitions are needed.
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Figure 4.1: Feynman diagrams of the contributions to the correlation function con-

sidered in the T+
cc tetraquark mass calculation are given by selecting only one of

those expressing similar cases. Here, the thick(thin) lines represent the corresponding

heavy(light) quarks and the spirals represent the soft gluons.
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⟨Ω| caTi (x) c̄a
′T
l (0)|Ω⟩ ≡ iScil(x)δ

aa′ ,

⟨Ω| cbj (x) c̄b
′

k (0) |Ω⟩ ≡ iScjk(x)δ
bb′ ,

⟨Ω| ūcα (x)uc
′T
δ (0) |Ω⟩ ≡ i(−1)Suδα(−x)δcc

′
,

⟨Ω| d̄dTβ (x) dd
′

γ (0) |Ω⟩ ≡ i(−1)Sdγβ(−x)δdd
′
, (4.18)

where Suδα(x) and Sdγβ(−x) are light-quark propagators and Scil(x) and Scjk(x) are

heavy-quark propagators, and they are generally defined as

iSq,abαβ (x) ≡
〈
Ω
∣∣T {

qaα(x)q̄
b
β(0)

}∣∣Ω〉 (4.19)

for the light quarks and

iSQ,abαβ (x) ≡
〈
Ω
∣∣T {

Qa
α(x)Q̄

b
β(0)

}∣∣Ω〉 (4.20)

for the heavy quarks. These propagators include perturbative and non-perturbative

contributions. The parts of these propagators that contain only perturbative contri-

butions are indicated with the subscript free Sqfree(x), and they are expressed with

Equations 4.21 and 4.22 for light and heavy quarks [103, 117, 110], respectively.

Sqfree(x) =

[
i ̸ x
2π2x4

− mq

4π2x2

]
, (4.21)

SQfree(x) =

[
m2
Q

4π2

K1

(
mQ

√
−x2

)
√
−x2

− i
m2
Q ̸ x

4π2x2
K2

(
mQ

√
−x2

)]
. (4.22)

Here, ̸ x = xαγ
α andKn

(
mQ

√
−x2

)
are the modified Bessel functions of the second
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kind, which can be expressed as [118]:

Kn

(
mQ

√
−x2

)
=

(mQ)
n

(−x2)n/2 2n+1

∫ ∞

0

dtt(−n−1) exp

[
−
m2
Q

4t
+ tx2

]
. (4.23)

The propagators are inserted into Equation 4.16 to obtain:

Π4,1

µν,T+
cc

(
p2
)
= i

∫
d4xeipx(Cγµ)ij(γνC)kl(Cγ5)αβ(γ5C)γδε

abeεcdeεa
′b′e′εc

′d′e′

× Scil(x)δaa
′
Scjk(x)δ

bb′(−1)Suδα(−x)δcc
′
(−1)Sdγβ(−x)δdd

′

= i

∫
d4xeipxδaa

′
δbb

′
δcc

′
δdd

′
εabeεcdeεa

′b′e′εc
′d′e′

×
[
Scil(x)(γνC)

T
lkS

cT
kj (x)(Cγµ)

T
ji

] [
Suδα(−x)(Cγ5)αβSdTβγ (−x)(γ5C)γδ

]
.

(4.24)

The following expressions are needed to evaluate the last equation.

εabcεabc
′
= 2!δcc

′
, (4.25)

δcc
′
δcc

′
= 3, (4.26)[

Scil(x)(γνC)
T
lkS

cT
kj (x)(Cγµ)

T
ji

]
= Tr

[
Sc(x)(γνC)

TScT (x)(Cγµ)
T
]
, (4.27)[

Suδα(−x)(Cγ5)αβSdTβγ (−x)(γ5C)γδ
]
= Tr

[
Su(−x)(Cγ5)SdT (−x)(γ5C)

]
. (4.28)

Using these equations, Equation 4.24 can be rewritten as

Π4,1

µν,T+
cc

(
p2
)
= 12i

∫
d4xeipx

× Tr
[
Sc(x)(γνC)

TScT (x)(Cγµ)
T
]
Tr

[
Su(−x)(Cγ5)SdT (−x)(γ5C)

]
.

(4.29)

Equation 4.29 can be simplified using the properties of the charge conjugation matrix

C given in the Appendix A.0.2:
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Π4,1

µν,T+
cc

(
p2
)
=12i

∫
d4xeipx

×Tr [Sc(x)γνSc(−x)γµ]Tr
[
Su(−x)(Cγ5)SdT (−x)(γ5C)

]
. (4.30)

In order to simplify the notation, the following definitions are used:

AQ0
(
x2
)
≡

[
m2
Q

4π2

K1

(
mQ

√
−x2

)
√
−x2

]
, BQ

0

(
x2
)
≡ −i

[
m2
Q

4π2x2
K2

(
mQ

√
−x2

)]
,

(4.31)

Aq0
(
x2
)
≡ −

[ mq

4π2x2

]
, Bq

0

(
x2
)
≡

[
i

2π2x4

]
. (4.32)

The expressions of propagators in terms of these definitions are given as:

SQfree(x) = AQ0
(
x2
)
+BQ

0

(
x2
)
̸ x, (4.33)

Sqfree(x) = Aq0
(
x2
)
+Bq

0

(
x2
)
̸ x. (4.34)

In terms of these newly defined functions, Equation 4.30 can be written as:

Π4,1

µν,T+
cc

(
p2
)
= −12i

∫
d4xeipx

× Tr
[
(Ac0

(
x2
)
+Bc

0

(
x2
)
̸ x)γν

(
Ac0

(
x2
)
−Bc

0

(
x2
)
̸ x
)
γµ
]

× Tr
[
(Au0

(
x2
)
−Bu

0

(
x2
)
̸ x)(Cγ5)(Ad0

(
x2
)
−Bd

0

(
x2
)
̸ x)(γ5C)

]
(4.35)
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Here, taking advantage of the properties of the gamma matrices given in Appendix

A.0.1, the results for the traces are obtained as:

Tr
[
(Ac0

(
x2
)
+Bc

0

(
x2
)
̸ x)γν

(
Ac0

(
x2
)
−Bc

0

(
x2
)
̸ x
)
γµ
]
=

4
(
Ac0

(
x2
)2

+Bc
0

(
x2
)2
x2
)
gµν − 8Bc

0

(
x2
)2
xνxµ, (4.36)

Tr
[
(Au0

(
x2
)
−Bu

0

(
x2
)
̸ x)(Cγ5)(Ad0

(
x2
)
−Bd

0

(
x2
)
̸ xT )(γ5C)

]
=

−4Au0
(
x2
)
Ad0

(
x2
)
− 4Bu

0

(
x2
)
Bd

0

(
x2
)
x2. (4.37)

When the traces in Equations 4.36 and 4.37 are inserted into Equation 4.35, the fol-

lowing expression is obtained.

Π4,1

µν,T+
cc

(
p2
)
= (3i)26

∫
d4xeipxAc0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
gµν

+ (3i)26
∫
d4xeipxx2Ac0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
gµν

+ (3i)26
∫
d4xeipxx2Bc

0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
gµν

+ (3i)26
∫
d4xeipxx4Bc

0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
gµν

− (3i)27
∫
d4xeipxBc

0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
xνxµ

− (3i)27
∫
d4xeipxBc

0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
xνxµ (4.38)

Here, every integral is named by the i indice (i = 1, 2, 3..., 6) such as Π4,1
µνi (p

2). In

this case, the solution of the first integral Π4,1
µν1 (p

2) is as:

Π4,1

µν1,,T+
cc

(
p2
)
= (3i)26

∫
d4xeipxAc0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
gµν . (4.39)

By substituting the expressions of the relevant constants and Bessel functions,
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Π4,1

µν1,T+
cc

(
p2
)
= (3i)26

∫
d4xeipx

[
i ̸ x
2π2x4

]2

×
[

m2
c

4π2
√
−x2

mc√
−x222

∫ ∞

0

dtt(−2) exp

[
−
m2
Q

4t
+ tx2

]]2
gµν (4.40)

can be written. Then, making the necessary adjustments, the integral takes the form

Π4,1

µν1,T+
cc

(
p2
)
=
−3im6

cgµν
π826

∫
d4xeipx

1

(−x2)5

×
∫ ∞

0

dt1t
−2
1 exp

[
−m2

c

4t1
+ t1x

2

] ∫ ∞

0

dt2t
−2
2 exp

[
−m2

c

4t2
+ t2x

2

]
.

(4.41)

Consider a general integral defined as

I1 =

∫
d4x

eipx

(−x2)n
∫ ∞

0

dt1t
−m
1 exp

[
−m2

c

4t1
+ t1x

2

] ∫ ∞

0

dt2t
−l
2 exp

[
−m2

c

4t2
+ t2x

2

]

=

∫
d4x

eipx

(−x2)n
∫ ∞

0

dt1

∫ ∞

0

dt2t
−m
1 t−l2 exp

[
−
(
m2
c

4t1
+
m2
c

4t2

)
+ (t1 + t2)x

2

]
,

(4.42)

where d4x = dx0dx1dx2dx3 = dtdxdydz and to do the calculation, it is deemed

appropriate to switch from Minkowskian to Euclidean space. For this purpose, the

Wick rotation is applied. In Wick rotation t→ it, x0 → ix0, p0 → ip0, d4x =

id4x, and hence x2 → −x2, p2 → −p2 and px → −px. Then, Wick’s rotation of

Equation 4.42 becomes:
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I1 = i

∫
d4x

e−ipx

(x2)n

∫ ∞

0

dt1

∫ ∞

0

dt2t
−m
1 t−l2 exp

[
−
(
m2
c

4t1
+
m2
c

4t2

)
− (t1 + t2)x

2

]
.

(4.43)

Using the Schwinger representation expressed as follows in Appendix B.3

1

An
=

1

Γ (n)

∫ ∞

0

dttn−1 exp (−At) , (4.44)

the integral I1 takes the form:

I1 =
i

Γ (n)

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3t
−m
1 t−l2 t

n−1
3 exp

[
−
(
m2
c

4t1
+
m2
c

4t2

)]

×
∫
d4x exp

[
−ipx− (t1 + t2 + t3)x

2
]
. (4.45)

Defining a new variableK for the integral d4x in the second row of the Equation 4.45,

K =

∫ ∞

−∞
d4x exp

[
−ipx− (t1 + t2 + t3)x

2
]

=

∫ ∞

−∞
dx0 exp

[
−ip0x0 − (t1 + t2 + t3)x

2
0

] ∫ ∞

−∞
dx exp

[
−ipx− (t1 + t2 + t3)x

2
]

×
∫ ∞

−∞
dy exp

[
−ipx− (t1 + t2 + t3) y

2
] ∫ ∞

−∞
dz exp

[
−ipx− (t1 + t2 + t3) z

2
]

(4.46)

is written and one of these integrals,

∫
dx0 exp

[
−ipx0 − (t1 + t2 + t3)x

2
0

]
(4.47)
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is chosen. To make this integral similar to the Gaussian integral, α = −ipx0 , β =

t1 + t2 + t3 definitions are made, and

∫ ∞

−∞
dx0 exp

[
αx0 − βx20

]
=

∫ ∞

−∞
dx0 exp

[
−β

(
x0 −

α

2β

)2

+
α2

4β

]
(4.48)

is found. Since this form has not yet been fully transformed into a Gaussian integral,

another transformation needs to be applied. Defining y = x0 − α
2β

, the desired form ,

∫ ∞

−∞
dy exp

[
−βy2

]
exp

[
α2

4β

]
=

√
π

t1 + t2 + t3
exp

[
−p20

4 (t1 + t2 + t3)

]
, (4.49)

is obtained. The same operations are also applied to the other integrals given in

Equation 4.46 . As a result of these transformations, Equation 4.45 can be rewritten

as

I1 =
iπ2

Γ (n)

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3t
−m
1 t−l2 t

n−1
3 (t1 + t2 + t3)

−2

× exp

[
−
(
m2
c

4t1
+
m2
c

4t2
+

p2

4 (t1 + t2 + t3)

)]
. (4.50)

To simplify Equation 4.50, a change of variables is carried out by defining t1 = xt,

t2 = yt, t3 = (1 − x − y)t. Also, switching back to the Minkowskian space, using

(p→ − p2), after which
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∫
d4x

eipx

(−x2)n
∫ ∞

0

dt1t
−m
1 exp

[
−m2

c

4t1
+ t1x

2

] ∫ ∞

0

dt2t
−l
2 exp

[
−m2

c

4t2
+ t2x

2

]

=
iπ2

Γ (n)

∫ 1

0

dx

∫ 1−x

0

dy (1− x− y)n−1 x−my−l
∫ ∞

0

dttn−m−l−1

× exp

[
−
(
m2
c

4xt
+
m2
c

4yt

)
+
p2

4t

]
(4.51)

is obtained. In the last case, to simplify the notation in Equation 4.41, s(x, y) =

m2
c/x+m2

c/y is defined and the following expression is obtained for Π4,1

µν1,T+
cc
(p2).

Π4,1

µν1,T+
cc

(
p2
)
=
−m6

cmumdgµν
π627

×
∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−2

∫
dtt−3 exp

[
−s(x, y) + p2

4t

]
(4.52)

Applying similar methods to other integrals in Equation 4.38, the following expres-

sion is obtained.

Π4,1

µν,T+
cc

(
p2
)
=
−m6

cmumdgµν
π627

×
∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−2

∫
dtt−3 exp

[
−s(x, y) + p2

4t

]

+
m6
cgµν
π627

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−2

∫
dtt−3 exp

[
−s(x, y) + p2

4t

]
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−m
8
cmumdgµν
π6211

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)4x−3y−3

∫
dtt−4 exp

[
−s(x, y) + p2

4t

]

−m
8
cgµν

5π629

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)5x−3y−3

∫
dtt−4 exp

[
−s(x, y) + p2

4t

]

+
m8
cmumd

5π6211

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)5x−3y−3

×
∫ ∞

0

dtt−5
(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]

−3m8
cmumd

15π6211

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)6x−3y−3

×
∫
dtt−3

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
(4.53)

As mentioned above, there are two terms with 4 contactions that constitute the per-

turbative part of the correlation function. One of them is given in Equation 4.53. The

second term contributing to Π4,1

µν,T+
cc
(p2) can be calculated following the same steps.

It is obtained that Π4,2

µν,T+
cc
(p2) = Π4,1

µν,T+
cc
(p2). Hence,

Πpert

µν,T+
cc

(
p2
)
= Π4,1

µν,T+
cc

(
p2
)
+Π4,2

µν,T+
cc

(
p2
)
= 2Π4,1

µν,T+
cc

(
p2
)
.

(4.54)

The contribution of the d = 3 operators arises from terms in Equation 4.14 with 3

contractions. Consider one of the possible terms with three contractions in Equation

4.14
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Π3,1

µν1,T+
cc

(
p2
)
= i

∫
d4xeipx(Cγµ)ij(γνC)kl(Cγ5)αβ(γ5C)γδε

abeεcdeεa
′b′e′εc

′d′e′

×

〈
Ω

∣∣∣∣∣∣:

(caTi cbj) (x) (c̄

b′

k c̄
a′T
l ) (0)

[
(ūcαd̄

dT
β ) (x) (dd

′

γ u
c′T
δ ) (0)

] :

∣∣∣∣∣∣Ω
〉
.

(4.55)

Using the propagators defined in Equation 4.55 can be rewritten as

Π3,1

µν1,T+
cc

(
p2
)
= i

∫
d4xeipx(Cγµ)ij(γνC)kl(Cγ5)αβ(γ5C)γδε

abeεcdeεa
′b′e′εc

′d′e′

× iScil(x)δaa
′
iScjk(x)δ

bb′(−1)iSuδα(−x)δcc
′⟨Ω| : d̄dTβ (x) dd

′T
δ (0) : |Ω⟩.

(4.56)

In perturbation theory, when an annihilation operator is applied to vacuum, the result

will be 0, but it will not equal to 0 in the non-perturbative regime of the QCD. In order

to simplify the computations, the Fock-Schwinger gauge xµAµ = 0 is used.

For convenience, the matrix element ⟨Ω| : q̄aα (x) qbβ(0) : |Ω⟩ is considered. The

Taylor expansion of q̄aα(x) is written as

q̄aα(x) = q̄aα(0) + q̄aα(0)
←−
∂µx

µ +
1

2
q̄aα(0)

←−
∂µ
←−
∂νx

µxν

+
1

6
q̄aα(0)

←−
∂µ
←−
∂ν
←−
∂αx

µxνxα +
1

24
q̄aα(0)

←−
∂µ
←−
∂ν
←−
∂α
←−
∂δx

µxνxαxδ + · · ·

= q̄aα (0) + (q̄aα
←−
D µ)

axµ + · · · (4.57)
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where in the last step, the Fock-Schwinger gauge is used to write
←−
∂ µx

µ =
←−
D µx

µ.

Using Equation 4.57, the matrix element ⟨Ω| : q̄aα (x) qbβ(0) : |Ω⟩ can be expressed as

⟨Ω| : q̄aα (x) qbβ(0) : |Ω⟩ = ⟨Ω| :
[
q̄aα(0) +

(
q̄α(0)

←−
D µ

)a
xµ +

1

2

(
q̄α(0)

←−
D µ
←−
D ν

)a
xµxν

+
1

6

(
q̄α(0)

←−
Dµ
←−
Dν
←−
Dα

)a
xµxνxα

+
1

24

(
q̄α(0)

←−
Dµ
←−
Dν
←−
Dα

←−
∂δ

)a
xµxνxαxδ + · · ·

]
qbβ(0) : |Ω⟩

= ⟨Ω| : (q̄aα(0)qbβ(0) : |Ω⟩︸ ︷︷ ︸
First Term

+ ⟨Ω| :
(
q̄α(0)

←−
D µ

)a
xµqbβ(0) : |Ω⟩︸ ︷︷ ︸

Second Term

+
1

2
⟨Ω| :

(
q̄α(0)

←−
D µ

←−
D ν

)a
xµxνqbβ(0) : |Ω⟩︸ ︷︷ ︸

Third Term

+
1

6
⟨Ω| :

(
q̄α(0)

←−
D µ
←−
Dν
←−
D γ

)a
xµxνxγqbβ(0) : |Ω⟩︸ ︷︷ ︸

Fourth Term

+
1

24
⟨Ω| :

(
q̄α(0)

←−
Dµ
←−
Dν
←−
Dγ
←−
Dδ

)a
xµxνxγxδqbβ(0) : |Ω⟩︸ ︷︷ ︸

Fifth Term

+ · · · . (4.58)

Starting from the first term ⟨Ω| : (q̄aα(0)q
b
β(0) : |Ω⟩, the a and b indices must be

the same because the vacuum is colorless for this term and, also, due to parity and

rotational symmetry, it is expected that ⟨Ω| : (q̄aα(0)q
b
β(0) : |Ω⟩ is proportional to

the unit matrix in the spinor space. Taking into account all these considerations, the
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matrix element can be parametrized as:

⟨Ω| : q̄aα(0)qbβ(0) : |Ω⟩ = Aδabδαβ. (4.59)

To obtain A this term is multiplied by, δbaδβα and the following equation is obtained:

δbaδ
βα⟨Ω| : q̄aα(0)qbβ(0) : |Ω⟩ = Aδbaδ

βαδabδαβ. (4.60)

The terms in Equation 4.60 are

δabδba = Nc = 3, (4.61)

δαβδ
βα = 4. (4.62)

From Equation 4.60 it is concluded that

A =
1

12
⟨q̄q⟩, (4.63)

where ⟨q̄q⟩ ≡ ⟨Ω| : q̄ (0) q (0) : |Ω⟩. As a result, the following equation is obtained.

⟨Ω| : q̄aα(0)qbβ(0) : |Ω⟩ ≡
1

12
⟨q̄q⟩δabδαβ. (4.64)

If the second term in Equation 4.58 is to be calculated, considering that the second

term has a Lorentz index and two spinor indices, it can be written as

⟨Ω| : (q̄α(0)
←−
Dµ)aqbβ(0) : |Ω⟩ = Bδab(γµ)αβ. (4.65)

Since γµ is the only quantity with a Lorentz index on which the matrix element can

depend. For this term, because of the chosen Fock-Schwinger gauge, simplifications

are possible with the help of the equation of motion of quark fields, q̄(̸ D− imq) = 0

.
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Multiplying this equation by δba(γµ)βα on both sides, the equation can be written as

δba(γµ)
βα⟨Ω| : (q̄α(0)

←−
Dµ)aqbβ(0) : |Ω⟩ = Bδabδba(γµ)

βα(γµ)αβ. (4.66)

Using Equation 4.61 and the relation Tr[γµγµ] = 16 in Equation 4.66, the following

result is obtained for the value B:

B =
imq

48
⟨q̄q⟩. (4.67)

In this case, the following equation is obtained.

⟨Ω| : (q̄α(0)
←−
Dµ)aqbβ(0) : |Ω⟩ =

imq

48
⟨q̄q⟩δab(γµ)αβ. (4.68)

The third term in Equation 4.58 can be written as

1

2
⟨Ω| : (q̄α(0)

←−
D {µ
←−
D ν})

axµxνqbβ(0) : |Ω⟩. (4.69)

Here, curly braces imply that the indices within them must be symmetrized.

Multiplying the relation,

←−
D µ
←−
D ν =

1

2
(
←−
D µ
←−
D ν +

←−
D ν
←−
D µ) +

1

2
(
←−
D µ
←−
D ν −

←−
D ν
←−
D µ) (4.70)

with the expression xµxν ,

xµxν
←−
D µ

←−
D ν =

1

2
(
←−
D µ
←−
D ν +

←−
D ν
←−
D µ)x

µxν +
1

2
(
←−
D µ
←−
D ν −

←−
D ν
←−
D µ)x

µxν

=
1

2
(
←−
D µ
←−
D ν +

←−
D ν
←−
D µ)x

µxν (4.71)

is obtained. This equation is used in Equation 4.69 and this result in

xµxν⟨Ω| : (q̄α(0)
←−
D {µ
←−
D ν})

aqbβ(0) : |Ω⟩

= xµxν⟨Ω| : [q̄α(0)(
←−
D µ

←−
D ν +

←−
D ν

←−
D µ)]

aqbβ(0) : |Ω⟩ (4.72)

55



In Equation 4.72, there are two Lorentz indices as well as two spinor indices on the

left side. Consequently, the following equality can be written.

1

2
⟨Ω| : [q̄α(0)(

←−
Dµ
←−
Dν +

←−
Dν
←−
Dµ)]aqbβ(0) : |Ω⟩ = Cgµνδ

abδαβ (4.73)

Note that since the left-hand side is symmetric under the exchange of µ and ν, σµν

cannot appear on the right-hand side. Multiplying with gµνδbaδβα and using Equations

4.61 and 4.62 and gµνgµν = 4, Equation 4.74 is obtained.

C =
1

96
x2⟨Ω| : q̄(0)

←−
D2q(0) : |Ω⟩ (4.74)

Using the following relation

D2 ≠ D2 +
gs
2
Gµνσ

µν , (4.75)

the C value can be written as:

C =
1

96
x2⟨Ω| : q̄(0)(̸D2 +

gs
2
Gµνσ

µν)q(0) : |Ω⟩

=
1

96
x2⟨Ω| : q̄(0)̸D2q(0) : |Ω⟩+ 1

96
x2⟨Ω| : q̄(0)gs

2
Gµνσ

µν)q(0) : |Ω⟩. (4.76)

Since the first term of this equation is of the order of m2
q , it can be neglected for light

quarks and one obtains:

C =
1

192
x2⟨Ω| : q̄(0)gsGµνσ

µν)q(0) : |Ω⟩. (4.77)

Thus, the result for C is

C ≡ 1

192
x2⟨q̄gsσGq⟩, (4.78)
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where ⟨q̄gsσGq⟩ ≡ ⟨Ω| : q̄(0)gsGµνσ
µν)q(0) : |Ω⟩. The value obtained for C is

substituted in Equation 4.73 and the third term is found as

1

2
⟨Ω| : [q̄α(0)(

←−
Dµ
←−
Dν +

←−
Dν
←−
Dµ)]aqbβ(0) : |Ω⟩ ≡

1

192
x2⟨q̄gsσGq⟩gµνδabδαβ. (4.79)

The mixed condensate ⟨q̄gsσGq⟩ is usually parametrized in terms of ⟨q̄q⟩ as

⟨q̄gsσGq⟩ ≡ m2
0⟨q̄q⟩. (4.80)

Next step, for the fourth term; similar to the preceding terms, an equation of the form

below can be formulated for this term by taking into account the Lorentz indices and

color spinor indices.

1

6
⟨Ω| : (q̄α(0)

←−
D {µ
←−
Dν
←−
D γ})

aqbβ(0) : |Ω⟩ = Fδab(gµνγγ + gµγγν + gνγγµ)
αβ. (4.81)

Following steps similar to the previous cases, the value of F is determined as

F =
imq

576
⟨q̄gsσGq⟩. (4.82)

Equation 4.80 is written here and replaced in Equation 4.81, the fourth term is ob-

tained as

1

6
⟨Ω| : (q̄α(0)

←−
∂µ
←−
∂ν
←−
∂γ)

axµxνxγqbβ(0) : |Ω⟩ ≡
imq

1152
m2

0δ
ab⟨q̄q⟩x2 ̸ x. (4.83)

Thus, the first four contributions to the matrix element given in Equation 4.58 arising

from the Taylor expansion have been derived. Likewise, it will be feasible to compute

the subsequent terms.
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⟨Ω| : q̄aα (x) qbβ(0) : |Ω⟩ =
1

12
⟨q̄q⟩δabδαβ +

imq

48
⟨q̄q⟩δab ̸ x

+
1

192
m2

0⟨q̄q⟩x2δabδαβ +
imq

1152
m2

0δ
ab⟨q̄q⟩x2 ̸ x+ · · · . (4.84)

As can be seen, the contributions from each term can be calculated by performing this

calculation for three contractions. In the same way, for the complete calculation of

the non-perturbative part, the remaining two and one contraction must be calculated

in terms of the condensates.

However, there is an easier method for non-perturbative calculation. In that method, it

is possible to obtain all possible cases, except for a few exceptions, by writing the full

propagator and using it to calculate the correlation function. The full propagators for

light quarks and heavy quarks are written in Equations 4.85 and 4.86 [117, 110, 119],

respectively.

Sab,qfull(x) =i
̸ x

2π2x4
δab − mq

4π2x2
δab − ⟨qq̄⟩

12

(
1− imq

4
̸ x
)
δab

− x2

192
m2

0⟨qq̄⟩
(
1− imq

6
̸ x
)
δab

− igs
∫ 1

0

du

[
̸ x

16π2x2
Gab
αβ(ux)σ

αβ − uxµGab
αβ(ux)γ

ν i

4π2x2

−i mq

32π2
Gab
αβσ

αβ

(
ln

(
−x2Λ2

4

)
+ 2γE

)]
· · · , (4.85)
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Sab,Qfull (x) =

[
m2
Q

4π2

K1

(
mQ

√
−x2

)
√
−x2

]
− i

[
m2
Q

4π2x2
K2

(
mQ

√
−x2

)]
̸ x

− igs
∫

d4k

(2π)4
e−ikx

∫ 1

0

dv

[
̸ k +mQ(
m2
Q − k2

)2Gab
αβ(vx)σ

αβ

+
1

m2
Q − k2

vxαG
ab
αβγ

β

]
+ · · · . (4.86)

Previously, to make the calculations more understandable, the free propagator is re-

defined in terms of functions A(x2) and B(x2). Considering the Feynman diagrams

discussed in this study, the same method is continued for the full propagator, and in

addition to the previous definitions, contributions are made as follows.

AQ1
(
x2
)
= −⟨g2sG2⟩ x2

3.27π2

[
K1

(
mQ

√
−x2

)
√
−x2

]
= −⟨g2sG2⟩A

Q
0 (x2)x2

3.25m2
Q

,

(4.87)

AQ2
(
x2
)
= −i⟨g2sG2⟩ mQx

2

32.28π2

[
K2

(
mQ

√
−x2

)
√
−x2

]
= −i⟨g2sG2⟩B

Q
0 (x2)x4

32.26mQ

,

(4.88)

BQ
1

(
x2
)
= i⟨g2sG2⟩ mQx

2

32.28π2

[
K1

(
mQ

√
−x2

)
√
−x2

]
= i⟨g2sG2⟩A

Q
0 (x2)x2

32.26mQ

,

(4.89)

Aq1 = −
⟨q̄q⟩
12

, Aq2 = −
x2

192
m2

0⟨q̄q⟩, Aq3 = −
g2s
4π2

∫ 1

0

du
uxµ

x2
Gµν (ux) γ

ν ,

(4.90)
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Bq
1

(
x2
)
= imq

⟨q̄q⟩
48

; Bq
2

(
x2
)
= i

mqm
2
0x

2

1152
⟨q̄q⟩. (4.91)

And so, for the variables A and B depending on x, in terms of all these terms can be

written as

AQ
(
x2
)
= AQ0

(
x2
)
+ AQ1

(
x2
)
+ AQ2

(
x2
)
, (4.92)

BQ
(
x2
)
= BQ

0

(
x2
)
+BQ

1

(
x2
)
, (4.93)

Aq
(
x2
)
= Aq0

(
x2
)
+ Aq1

(
x2
)
+ Aq2

(
x2
)
+ Aq3

(
x2
)
, (4.94)

Bq
(
x2
)
= Bq

0

(
x2
)
,+Bq

1

(
x2
)
+Bq

2

(
x2
)
. (4.95)

In this case, the expressions of full propagators in terms of these new definitions are

SQfull(x) = AQ
(
x2
)
+BQ

(
x2
)
̸ x, (4.96)

Sqfull(x) = Aq
(
x2
)
+Bq

(
x2
)
̸ x. (4.97)

Adding new contributions to the functions A and B in the integrals in Equation 4.38,

it becomes possible to evaluate the diagrams except for some special cases. Since

mu = md = 0 in this study, the functions Aq0 (x
2), Aq3 (x

2), Bq
1 (x

2), Bq
2 (x

2) are zero

and therefore will not be taken into account.

In this study, the first integral of Equation 4.38 will be called Π1
µν,T+

cc
(p2) and will be

calculated in detail. For this purpose, the following expression is obtained by placing

new functions in Π1
µν,T+

cc
(p2).
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Π1
µν,T+

cc

(
p2
)
= (3i)26

∫
d4xeipx

[
Ac0

(
x2
)
+ Ac1

(
x2
)
+ Ac2

(
x2
)]2

×
[
Au1

(
x2
)
+ Au2

(
x2
)
+ Au3

(
x2
)] [

Ad1
(
x2
)
+ Ad2

(
x2
)
+ Ad3

(
x2
)]
gµν

= (3i)26
∫
d4xeipx { Ac0

(
x2
)2
Au1

(
x2
)
Ad1

(
x2
)

+ Ac0
(
x2
)2
Au2

(
x2
)
Ad2

(
x2
)
+ Ac0

(
x2
)2
Au3

(
x2
)
Ad3

(
x2
)

+ 2Ac0
(
x2
)2
Au1

(
x2
)
Ad2

(
x2
)
+ 2Ac0

(
x2
)2
Au1

(
x2
)
Ad3

(
x2
)

+ 2Ac0
(
x2
)2
Au2

(
x2
)
Ad3

(
x2
)
+ Ac1

(
x2
)2
Au1

(
x2
)
Ad1

(
x2
)

+ Ac1
(
x2
)2
Au2

(
x2
)
Ad2

(
x2
)
+ Ac1

(
x2
)2
Au3

(
x2
)
Ad3

(
x2
)

+ 2Ac1
(
x2
)2
Au1

(
x2
)
Ad2

(
x2
)
+ 2Ac1

(
x2
)2
Au1

(
x2
)
Ad3

(
x2
)

+ 2Ac1
(
x2
)2
Au2

(
x2
)
Ad3

(
x2
)
+ Ac2

(
x2
)2
au1

(
x2
)
Ad1

(
x2
)

+ Ac2
(
x2
)2
Au2

(
x2
)
Ad2

(
x2
)
+ Ac2

(
x2
)2
Au3

(
x2
)
Ad3

(
x2
)

+ 2Ac2
(
x2
)2
Au1

(
x2
)
Ad2

(
x2
)
+ 2Ac2

(
x2
)2
Au1

(
x2
)
Ad3

(
x2
)

+ 2Ac2
(
x2
)2
Au2

(
x2
)
Ad3

(
x2
)
+ 2Ac0

(
x2
)
Ac1

(
x2
)
Au1

(
x2
)
Ad1

(
x2
)

+ 2Ac0
(
x2
)
Ac1

(
x2
)
Au2

(
x2
)
Ad2

(
x2
)
+ 2Ac0

(
x2
)
Ac1

(
x2
)
Au3

(
x2
)
Ad3

(
x2
)

+ 4Ac0
(
x2
)
Ac1

(
x2
)
Au1

(
x2
)
Ad2

(
x2
)
+ 4Ac0

(
x2
)
Ac1

(
x2
)
Au1

(
x2
)
Ad3

(
x2
)

+ 4Ac0
(
x2
)
Ac1

(
x2
)
Au2

(
x2
)
Ad3

(
x2
)
+ 2Ac0

(
x2
)
Ac2

(
x2
)
Au1

(
x2
)
Ad1

(
x2
)

+ 2Ac0
(
x2
)
Ac2

(
x2
)
Au2

(
x2
)
Dd

2

(
x2
)
+ 2Ac0

(
x2
)
Ac2

(
x2
)
Au3

(
x2
)
Ad3

(
x2
)

+ 4Ac0
(
x2
)
Ac2

(
x2
)
Au1

(
x2
)
Ad2

(
x2
)
+ 4Ac0

(
x2
)
Ac2

(
x2
)
Au1

(
x2
)
Ad3

(
x2
)

+ 4Ac0
(
x2
)
Ac2

(
x2
)
Au2

(
x2
)
Ad3

(
x2
)
+ 2Ac0

(
x2
)
Ac3

(
x2
)
Au1

(
x2
)
Ad1

(
x2
)

+ 2Ac0
(
x2
)
Ac3

(
x2
)
Au2

(
x2
)
Ad2

(
x2
)
+ 2Ac0

(
x2
)
Ac3

(
x2
)
Au3

(
x2
)
Ad3

(
x2
)

+ 4Ac0
(
x2
)
Ac3

(
x2
)
Au1

(
x2
)
Ad2

(
x2
)
+ 4Ac0

(
x2
)
Ac3

(
x2
)
Au1

(
x2
)
Ad3

(
x2
)

+ 4Ac0
(
x2
)
Ac3

(
x2
)
Au2

(
x2
)
Ad3

(
x2
)
} gµν . (4.98)
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Since the Feynman diagrams containing 4 gluons of these terms are not taken into

account, the expressions Ac1 (x
2)

2, Ac2 (x
2)

2, Bc
1 (x

2), Bc
2 (x

2) containing these contri-

butions are not taken into account, and the following results can be obtained following

the same steps used in the calculation of the perturbative part.

Π1
µν,T+

cc

(
p2
)
= −m

6
c⟨ūu⟩⟨d̄d⟩gµν
3.26π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)x−2y−2

×
∫
dtt−3 exp

[
−s(x, y) + p2

4t

]

+
m6
cm

2
0⟨ūu⟩⟨d̄d⟩gµν
3.210π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−2

×
∫
dtt−4 exp

[
−s(x, y) + p2

4t

]

+
m6
cm

2
0⟨ūu⟩⟨d̄d⟩gµν
3.210π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−2

×
∫
dtt−4 exp

[
−s(x, y) + p2

4t

]

−m
6
cm

4
0⟨ūu⟩⟨d̄d⟩gµν
3.214π2

∫ 1

0

dxx−2(1− x)−2

×
∫
dtt−5 exp

[
−s̃(x) + p2

4t

]
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−m
4
c⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

32.210π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−2

×
∫
dtt−4 exp

[
−s(x, y) + p2

4t

]

−m
4
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

32.217π2

∫ 1

0

dxx−2(1− x)−2

×
∫
dtt−6 exp

[
−s̃(x) + p2

4t

]

−m
4
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ p2gµν

32.220π2

∫ 1

0

dxx−2(1− x)−2

×
∫
dtt−7 exp

[
−s̃(x) + p2

4t

]

+
m4
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

32.214π2

∫ 1

0

dxx−2(1− x)−2

×
∫
dtt−5 exp

[
−s̃(x) + p2

4t

]

+
m4
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

32.214π2

∫ 1

0

dxx−2(1− x)−2

×
∫
dtt−5 exp

[
−s̃(x) + p2

4t

]
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+
m4
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

33.212π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−3

∫
dtt−5 exp

[
−s(x, y) + p2

4t

]

+
m6
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

33.219π2

∫ 1

0

dxx−2(1− x)−3

∫
dtt−7 exp

[
−s̃(x) + p2

4t

]

+
m6
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩p2 gµν

33.222π2

∫ 1

0

dxx−2(1− x)−3

∫
dtt−8 exp

[
−s̃(x) + p2

4t

]

−m
6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

33.216π2

∫ 1

0

dxx−2(1− x)−3

∫
dtt−6 exp

[
−s̃(x) + p2

4t

]

−m
6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩ gµν

33.216π2

∫ 1

0

dxx−2(1− x)−3

∫
dtt−6 exp

[
−s̃(x) + p2

4t

]
.

(4.99)

Here, s̃ (x) = m2
c/x+m

2
c/(1−x). The remaining terms are named Πi

µν,T+
cc
(p2) where

(i = 1, 2, ..6) are given below.

Later, other integrals in Equation 4.38, called Πi
µν,T+

cc
(p2) where (i = 1, 2, ..6) were

evaluated with similar methods and included in the calculation.

Π2
µν,T+

cc

(
p2
)
= −m

8
c⟨ūu⟩⟨d̄d⟩gµν
3.29π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)2x−3y−3

×
∫
dtt−4 exp

[
−s(x, y) + p2

4t

]
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+
m8
cm

2
0⟨ūu⟩⟨d̄d⟩gµν
3.212π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)x−3y−3

×
∫
dtt−5 exp

[
−s(x, y) + p2

4t

]

+
m8
cm

2
0⟨ūu⟩⟨d̄d⟩gµν
3.212π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)x−3y−3

×
∫
dtt−5 exp

[
−s(x, y) + p2

4t

]

−m
8
cm

4
0⟨ūu⟩⟨d̄d⟩gµν
3.216π4

∫ 1

0

dx

∫ 1−x

0

dyx−3y−3

∫
dtt−6 exp

[
−s(x, y) + p2

4t

]

+
m6
c⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.212π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−3

×
∫
dtt−5 exp

[
−s(x, y) + p2

4t

]

−m
6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.216π2

∫ 1

0

dxx−2(1− x)−3

×
∫
dtt−6 exp

[
−s̃(x) + p2

4t

]

−m
6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.216π2

∫ 1

0

dxx−2(1− x)−3

×
∫
dtt−6 exp

[
−s̃(x) + p2

4t

]
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−m
6
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.219π2

∫ 1

0

dxx−2(1− x)−3

×
∫
dtt−7 exp

[
−s̃(x) + p2

4t

]

−m
6
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩p2gµν

33.222π2

∫ 1

0

dxx−2(1− x)−3

×
∫
dtt−8 exp

[
−s̃(x) + p2

4t

]
, (4.100)

Π3
µν,T+

cc

(
p2
)
= −m

6
cgµν

27π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)4x−2y−2

×
∫
dt exp

[
−s(x, y) + p2

4t

]

−m
4
c⟨g2sG2⟩gµν
3.29π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−2

×
∫
dtt−1 exp

[
−s(x, y) + p2

4t

]

+
m6
c⟨g2sG2⟩gµν
32.211π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−3

×
∫
dtt−2 exp

[
−s(x, y) + p2

4t

]
, (4.101)
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Π4
µν,T+

cc

(
p2
)
= −m

8
cgµν

5.29π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)5x−3y−3

×
∫
dtt−1 exp

[
−s(x, y) + p2

4t

]

+
m6
c⟨g2sG2⟩gµν
32.211π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−3

×
∫
dtt−2 exp

[
−s(x, y) + p2

4t

]
, (4.102)

Π5
µν,T+

cc

(
p2
)
=
m8
c⟨ūu⟩⟨d̄d⟩
32.29π4

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−3y−3

×
∫
dtt−4

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]

−m
8
cm

2
0⟨ūu⟩⟨d̄d⟩

3.213π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)2x−3y−3

×
∫
dtt−5

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
− m8

cm
2
0⟨ūu⟩⟨d̄d⟩

3.213π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)2x−3y−3

×
∫
dtt−5

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]

+
m8
cm

4
0⟨ūu⟩⟨d̄d⟩

3.216π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)2x−3y−3

×
∫
dtt−6

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
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−m
6
c⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.212π2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)x−2y−3

×
∫
dtt−5

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]

−m
6
cm

4
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩
33.220π2

∫ 1

0

dx(1− x)−3x−2

×
∫
dtt−7

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]

+
m6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.216π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−3

×
∫
dtt−6

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]

+
m6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩gµν

33.216π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−3

×
∫
dtt−6

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
, (4.103)

Π6
µν,T+

cc

(
p2
)
=

3m8
c

5.32.210π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)6x−3y−3

×
∫
dtt−1

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
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−m
6
cm

2
0⟨ūu⟩⟨d̄d⟩⟨g2sG2⟩
33.216π2

∫ 1

0

dx

∫ 1−x

0

dyx−2y−3

×
∫
dtt−6

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
.

(4.104)

Since there are two possible cases for the contraction of c quarks, all results must be

multiplied by 2. Thus, the contributions obtained using the full propagator for T+
cc ,

called Πfull

µν,T+
cc
(p2), can be written as follows:

Πfull

µν,T+
cc

(
p2
)
= 2

[
Π1
µν,T+

cc

(
p2
)
+Π2

µν,T+
cc

(
p2
)
+Π3

µν,T+
cc

(
p2
)

+ Π4
µν,T+

cc

(
p2
)
+Π5

µν,T+
cc

(
p2
)
+Π6

µν,T+
cc

(
p2
)]
. (4.105)

In addition to these results, there are special situations that cannot be obtained using

a full propagator. One of them is the situation where gluon emissions from heavy

quarks form condensate. As an example, specifying only the important steps, a solu-

tion for this situation is made as follows.

To evaluate the Feynman diagram of this process given in Figure 4.1 (c1), the corre-

lation function,

Πint
µν,T+

cc
(p2) = i

∫
d4xeipx

〈
Ω
∣∣∣T {

Jµ(x)J
†
ν(0)e

i
∫
d4yLint (y)

}∣∣∣Ω〉 (4.106)

is used. Here, Lint is the interaction term.

The interaction term is placed inside the correlation function and written as follows,

using the necessary propagators for the relevant contractions:
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In the Fock Schwinger gauge, the gluon field can be written as

GN
α (y) = −1

2
GN
αβ (0) y

β + · · · , (4.107)

and using

⟨Ω| : g2sGN
αµ (0)G

M
βν (0) : |Ω⟩ =

δNM

96
(gαβgµν − gανgµβ) ⟨g2sG2⟩ , (4.108)

S
GN

αβ

ab (x) =
itcd
2

∫
d4yS0

ac (x− y) γαyβS0
db (y) , (4.109)

one obtains

ΠGcGc

µν,T+
cc

(
p2
)
= − i

3.24
⟨g2sG2⟩

∫
d4xeipxεabeεa

′b′e′δee
′
(gξΓgωκ − gξκgωΓ)

×Tr
[
Su (−x) (Cγ5)Sd

T

(−x) (γ5C)
]
Tr

[
SG

N
ξω (x) (γνC)S

GMT

Γκ (x) (Cγµ)
T
]
.

(4.110)

The propagator expression for gluon emission in this equation is

S
GN

αβ

ab (x) = −mq,Q

32π2

×

{
imq,Q

(
σαβ ̸ x+ ̸ xσαβ

) K1

(
mq,Q

√
−x2

)
mq,Q

√
−x2

) + 2σαβK0

(
mq,Q

√
−x2

)}
.

(4.111)

Furthermore, the evaluation of one of the traces in Equation 4.110 is given in Equation

4.37. For the other trace,

Tr
[
SG

N
ξω (x) (γνC)S

GMT

Γκ (x) (Cγµ)
T
]
(gαβgµν − gανgµβ) (gξΓgωκ − gξκgωΓ)

=
tNaa′t

N
bb′

m2
c

(
x2gµν + 2xµxν

)
Ac0

(
x2
)2
. (4.112)
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can be obtained. Here,

εabeεa
′b′e′taa′tbb′δ

ee
′

= −4 (4.113)

is also needed. Hence

ΠGcGc

µν,T+
cc

(
p2
)
=− i

3.2m2
c

⟨g2sG2⟩
∫
d4xeipxAc0

(
x2
)2
Au

(
x2
)
Ad

(
x2
)
x2gµν

− i

3m2
c

⟨g2sG2⟩
∫
d4xeipxAc0

(
x2
)2
Au

(
x2
)
Ad

(
x2
)
xµxν

− i

3.2m2
c

⟨g2sG2⟩
∫
d4xeipxAc0

(
x2
)2
Bu

(
x2
)
Bd

(
x2
)
x4gµν

− i

3m2
c

⟨g2sG2⟩
∫
d4xeipxAc0

(
x2
)2
Bu

(
x2
)
Bd

(
x2
)
x2xµxν . (4.114)

In these integrals, again assuming mq → 0 and taking the contributions from states

with at most two gluons, the following results are obtained.

ΠGcGc

µν,T+
cc

(
p2
)
=− m4

c⟨g2sG2⟩
32.212π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)3x−2y−2

×
∫
dtt−1 exp

[
−s(x, y) + p2

4t

]

−m
4
c⟨g2sG2⟩gµν
32.214π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)4x−2y−2

×
∫
dtt−1

(
gµν +

pµpν
2t

)
exp

[
−s(x, y) + p2

4t

]
. (4.115)

Calculations similar to this calculation are made for other contributions, and contri-

butions that did not yield zero are added to the results.
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As stated in Chapter 3, to evaluate a certain physical quantity in the QCD sum rules

method, the hadronic and theoretical parts must be calculated, and the results obtained

by applying the Borel transformation must be matched.

Accordingly, in this section, just as an example, the following result is obtained from

the results obtained for the perturbative part by applying the Borel transformation and

continuum subtraction to the contributing terms.

Πpert,B̂
µν,T+

cc

(
M2, s0

)
=− m6

cgµν
26π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)4x−2y−2

× (s− s(x, y))θ(s− s(x, y))

−m
8
cgµν

5.26π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)5x−3y−3θ(s− s(x, y))

+
m8
cgµν

29π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)6x−3y−3θ(s− s(x, y))

+
m8
cpµpν
28π6

∫ 1

0

dx

∫ 1−x

0

dy(1− x− y)6x−3y−3e−
s(x,y)

M2 θ(s0 − s(x, y))

(4.116)

In addition, the Borel transformations of all results have been obtained with similar

methods and included in the study. Explicit expressions for the correlation function

for T+
cc are given in Appendix C.1.
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4.2 MASS CALCULATION OF THE HIDDEN CHARMONIUM

1+− AND 0++ TETRAQUARKS

In this section, the 1+− and 0++ tetraquarks will be examined. Since the calculations

for T+
cc are shown in detail in Section 4.1, the outlines of the calculations for these

particles will be mentioned in this section. In order to facilitate follow-up and com-

parison, the same definitions and symbols are used, and existing definitions are not

restated.

Using Equations 3.2 and 3.1, the two-point correlation functions for the 1+− and 0++

tetraquarks can be given by, respectively,

Πµν,1+−
(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣∣T {

J1+−

µ (x)J1+−

ν

†
(0)

}∣∣∣Ω〉 , (4.117)

Π0++

(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣∣T {

J0++

(x)J0++†
(0)

}∣∣∣Ω〉 . (4.118)

Here, for 1+− and 0++ tetraquarks, interpolating currents are chosen as

J1+−

µ (x) =
[
(c̄aγµc

c) (x)
(
q̄1
bγ5q2

d
)
(x)

]
εabeεcde, (4.119)

J0++

(x) =
[
(c̄aγ5c

c) (x)
(
q̄1
bγ5q2

d
)
(x)

]
εabeεcde. (4.120)

C parity assignments correspond to the case when q1 = q2. In this work, the q1 = u

and q2 = d quark is taken, but the C parity assignments are kept as if q1 = q2.

4.2.1 Hadronic Side of the 1+− and 0++ Tetraquarks Correlation Functions

Since 1+− is an axial vector particle similar to the T+
cc tetraquark, the hadronic side

of 1+− is very similar to T+
cc . Therefore, as in the T+

cc tetraquark, the hadronic side of

1+− can be written as
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ΠHad
µν,1+−

(
p2
)
=
|λ0|2pµpν
p2 −m2

0

+
|λ1|2

(
−gµν + pµpν

p2

)
p2 −m2

1+−
. (4.121)

The hadronic side of the 0++ particle is given as

ΠHad
0++

(
p2
)
=

∑
h

〈
Ω
∣∣∣J0++

∣∣∣h(p)〉〈
h(p)

∣∣∣J0++†
∣∣∣Ω〉

p2 −m2
h

+ · · ·

=
∑
0

〈
Ω
∣∣∣J0++

∣∣∣ 0(p)〉〈
0(p)

∣∣∣J0++†
∣∣∣Ω〉

p2 −m2
0

+ · · · .

(4.122)

Defining 〈
S = 0

∣∣∣J0++†∣∣∣Ω〉 = λ0 (4.123)

for the hadronic side of the particle 0++, ΠHad
0++ (p2) can be written as

ΠHad
0++

(
p2
)
=

|λ0|2

p2 −m2
0++

. (4.124)

4.2.2 Theoretical Side of the 1+− and 0++ Tetraquarks

By inserting the interpolating currents for both tetraquarks into the relevant correla-

tion function, the function can be written as for 1+−

Πµν,1+−
(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣T {[

(c̄aγµc
c) (x)

(
ūbγ5d

d
)
(x)

]
εabeεcdeεa

′b′e′εc
′d′e′

×
[(
d̄d

′
γ5u

b′
)
(0)

(
c̄c

′
γµc

a′
)
(0)

]
εa

′b′e′εc
′d′e′

}∣∣∣Ω〉 ,
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and 0++

Π0++

(
p2
)
= i

∫
d4xeipx

〈
Ω
∣∣T {[

(c̄aγ5c
c) (x)

(
ūbγ5d

d
)
(x)

]
εabeεcdeεa

′b′e′εc
′d′e′

×
[(
d̄d

′
γ5u

b′
)
(0)

(
c̄c

′
γ5c

a′
)
(0)

]
εa

′b′e′εc
′d′e′

}∣∣∣Ω〉 .
Wick’s rotation is applied to these correlation functions, and by repeating the steps

detailed for T+
cc in Section 4.1, the following equations are obtained for 1+− and 0++,

respectively.

Π4
µν,1+−

(
p2
)
=12i

∫
d4xeipx

Tr [Sc(−x)γµSc(x)γν ]Tr
[
Su(−x)(γ5)Sd(x)(γ5)

]
, (4.125)

Π4
0++

(
p2
)
=12i

∫
d4xeipx

Tr [Sc(−x)γ5Sc(x)γ5]Tr
[
Su(−x)(γ5)Sd(x)(γ5)

]
. (4.126)

Here, the superscripts "4" refer to the situation with 4 contractions, as in Section 4.1.

To simplify, using the definitions in equations 4.31 and 4.32, equations 4.125 and

4.126 become

Π4
µν,1+−

(
p2
)
= (3i)26

∫
d4xeipxAc0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
gµν

+ (3i)26
∫
d4xeipxx2Ac0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
gµν

+ (3i)26
∫
d4xeipxx2Bc

0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
gµν

+ (3i)26
∫
d4xeipxx4Bc

0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
gµν

− (3i)27
∫
d4xeipxBc

0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)
xνxµ

− (3i)27
∫
d4xeipxBc

0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
xνxµ, (4.127)
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Π4
0++

(
p2
)
= (3i)26

∫
d4xeipxAc0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)

+ (3i)26
∫
d4xeipxx2Ac0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)

+ (3i)26
∫
d4xeipxx2Bc

0

(
x2
)2
Au0

(
x2
)
Ad0

(
x2
)

+ (3i)26
∫
d4xeipxx4Bc

0

(
x2
)2
Bu

0

(
x2
)
Bd

0

(
x2
)
. (4.128)

respectively. As seen in Equation 4.127, these integrals obtained for 1+− are the same

as the integrals in Equation 4.38 given for T+
cc . In addition, the results of 0++ appear

the same as the first four integrals, except for the coefficient gµν .

Thus, except for some special cases, the results for 1+− are the same as for T+
cc .

One of the situations that causes the difference in the calculations of the correlation

function of 1+− compared to T+
cc is that the c quarks in T+

cc can contract in two ways,

while in the charmonium case 1+−, a c quark and an c̄ antiquark can contract in only

one way.

Thus, the results obtained using the full propagator for 1+− can be written in terms of

the results obtained for T+
cc as

Πfull
µν,1+−

(
p2
)
=

1

2
Πfull

µν,T+
cc

(
p2
)
. (4.129)

Similarly, it is possible to write the results of 0++ obtained from the full propagator

in terms of the results of T+
cc . These results of 0++ are related to the first 4 terms of

the results T+
cc in Equation 4.105 and can be expressed exactly as

2gµνΠ
full
0++

(
p2
)
= Π1

µν,T+
cc

(
p2
)
+Π2

µν,T+
cc

(
p2
)
+Π3

µν,T+
cc

(
p2
)
+Π4

µν,T+
cc

(
p2
)
.

(4.130)
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The other reason for the difference between the results is due to the color factors in

the interaction terms. For T+
cc , color factors are present in the identity in Appendix

A.37, while for 1+− and 0++, the identity in Appendix A.40 appears. Therefore, as

can be seen from these identities, there is also an additional coefficient (1/2) between

the interaction terms of T+
cc and the particles 1+−, and 0++.

As in the T+
cc tetraquark, after all these cases were obtained and collected, the Borel

transformation was applied and the obtained results are analysed numerically. These

analytical results obtained for the 1+− and the 0++ tetraquarks are given in Appendix

D.1 and in Appendix E.1, respectively.
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CHAPTER 5

NUMERICAL ANALYSIS

In this section, a numerical analysis of the sum rules obtained in previous sections

is presented. The QCD sum rules method has many input parameters, such as quark

masses, quark and gluon condensates, etc. Numerical values of these parameters are

needed to perform numerical calculations. The numerical values of the parameters

used in this thesis are listed in Table 5.1 [6, 98, 120, 121].

Table 5.1: Input parameters used in calculations

Parameters Values

mu 0

md 0

mc 1.27± 0.02 GeV

⟨ūu⟩ (−0.24± 0.01)3 GeV3

⟨d̄d⟩ (−0.24± 0.01)3 GeV3

m2
0 (0.8± 0.1) GeV2

⟨g2sG2⟩ 4π2(0.012± 0.004) GeV4

The two-point QCD sum rules method includes, in addition to these input parameters,

two auxiliary parameters called the Borel parameter M2 and the continuum threshold

s0. Since these auxiliary parameters are not physical quantities, the physical quanti-

ties to be calculated must be independent of them. Due to the approximation used, a
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slight dependence is acceptable.

It is not possible to find regions where the physical parameters are completely inde-

pendent of the continuum threshold. The continuum threshold is related to the energy

threshold for multi hadron states and also the excited states.

The value of s0 is usually chosen based on the mass of the hadron under consideration

as

(mh + 0.3 GeV)2 ≤ s0 ≤ (mh + 0.5 GeV)2. (5.1)

When the Borel transformation is applied to the correlation function, it is seen that the

resulting integral has an exponential expression. Due to this expression, the largest

contribution to the integral comes from the values of s ⪅ M2, and it is expected that

the contribution of the ground state is dominant if M2 is chosen as small as possible.

However, choosing the M2 value below a certain limit causes the contribution of the

condensates to increase. Hence, a range must be determined for the possible values

of M2. Therefore, M2 should be as large as possible.

For the upper limit of M2, the pole contribution to the correlation function for mul-

tiquark systems, the following ratio must be the largest it can be. The maximum

possible value for M2 can be determined by considering the pole contribution frac-

tion (PC) defined as

PC =
ΠB̂[M2, s0]

ΠB̂[M2,∞]
=

∫ s0
smin

dsρ(s)e−
s

M2∫∞
smin

dsρ(s)e−
s

M2
, (5.2)

where ΠB̂[M2, s0] is the Borel transformation of the correlation function.
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On the other side, the lower limit ofM2 is obtained from the analysis of the fractional

contributions of the condensates

Rd
(
M2

)
=

Πd[M2, s0]

Π[M2, s0]
, (5.3)

where Πd[M2, s0] represents the contribution of the d dimensional condensate to the

correlation function. For d = 0, this ratio should be as large as possible, and should

be as small as possible as d gets larger. This equation expresses the convergence of

the OPE and the resulting QCD sum rules.

5.1 Numerical Analysis of the Sum Rules for T+
cc Tetraquark

To determine the minimum value of M2 for the T+
cc tetraquark, Rd(M2) in Equation

5.3 is plotted as a function of the Borel parameter M2 in Figure 5.1.

In Figure 5.1, d = 0 represents the contribution of the perturbative part of the con-

tribution and d = 4, 6... represent the convergences of the condensates of higher

dimensions. In this study, the contributions to the correlation function are from

0, 4, 6, 8, 10, 12 and 14 dimensional condensates. Note that there is no contribution

from the d = 3 operators.

Looking at Figure 5.1, it can be seen that although the contributions from the d = 6

and d = 8 dimensions seem large, they cancel out each other; however, the contri-

bution from the perturbative part is still dominant. Thus, as can be seen from Figure

5.1, M2 ≥ 2.5 GeV2 is enough to guarantee convergence.

Furthermore, the contribution of each dimension to the correlation function is cumu-
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Figure 5.1: The convergence of the contribution of each dimension separately ob-

tained as a function of M2 at s0 = 19.0 GeV2 value for T+
cc tetraquark

latively added to create the Figure 5.2.

As can be seen in Figure 5.2, the contribution of the perturbative part is sufficiently

dominant.

In order to obtain the upper limit for M2, the pole contributions of the correlation

function T+
cc tetraquark can be calculated using Equation 5.2. For the values s0 =

18.0, 19.0 and 20.0 GeV2, this contribution is shown in Figure 5.3.

Upon examination of Figure 5.3, it can be seen that up to M2 = 3.5 GeV2, the

pole contribution is still more than about 30%, and it is an acceptable value as the

maximum value of M2.

In this case, as a result of the convergence and pole contributions, the appropriate

interval chosen for the Borel parameter M2 is M2 = [2.5− 3.5] GeV2.
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Figure 5.2: The cumulative contribution of each dimension to the correlation function

as a function of M2 at s0 = 19.0 GeV2 value for T+
cc tetraquark

5.1.1 Mass Calculation of T+
cc Tetraquark

As mentioned in the 3rd chapter, the mass can be obtained using Equation 3.39 which

can also be written as

m2
T+
cc
[M2, s0] =

d(Π̃1
B[M

2,s0])
d( −1

M2 )

Π̃1
B[M

2, s0]
. (5.4)

Here, Π̃1
B(M

2) is the Borel transform of the part related to the T+
cc tetraquark of the

correlation function specified in section 4.1.1.

In Figure 5.4, the M2 dependence of the predicted mass for T+
cc is shown for s0 =

18.0, 19.0, and 20.0 GeV2 for the central values of the input parameters shown in
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Figure 5.3: The pole contribution to the correlation function of the T+
cc tetraquark as

a function of Borel parameter M2 for different s0 values

Table 5.1

As can be noticed in Figure 5.4, the mass of the T+
cc tetraquark is almost independent

of the Borel parameter M2 in the working region and when s0 changes in the range

of s0 = [18.0− 20.0] GeV2, the mass value changes at most by 5%.

Borel parameter M2 and the continuum threshold s0 are not the only uncertain ex-

pressions in the calculations; there are also uncertainties in the condensate values.

To determine the uncertainty in the mass predictions due to uncertainties in all the

parameters a Monte Carlo analysis is performed. The procedure is presented in detail

in [122]. The histogram of the values of the mass predictions is shown in Figure 5.5.

Upon examination of Figure 5.5, it is clearly seen that the distribution forms a distinct

peak, with a mean value µ = 3.91 GeV and a standard deviation value σ = 0.05 GeV.
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Figure 5.4: The mass obtained for T+
cc tetraquark as a function of M2 for different s0

values

Figure 5.5: Distribution of the mT+
cc

for M2 = [2.5 − 3.5] GeV2 and s0 = [18.0 −
20.0] GeV2 values
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Figure 5.6: The convergence of the contribution of each dimension separately ob-

tained as a function of M2 at s0 = 19.0 GeV2 value for 1+− tetraquark

Therefore, the mass is predicted to be mT+
cc
= 3.91 ± 0.10 where the shown error is

2σ so that ∼ 95% of the predictions lie within this range.

5.2 Numerical Analysis of 1+− and 0++ Tetraquarks

For the 1+− and the 0++ tetraquarks, the analysis is similar to the analysis of the T+
cc

tetraquark. As in the T+
cc tetraquark, the contribution of each condensate to the corre-

lation function is examined to determine the minimum Borel parameter value M2 for

the 1+− and the 0++ tetraquarks. The convergence of the contribution of the pertur-

bative part and other condensates of the contribution to the correlation function of the

1+− and the 0++ tetraquarks are shown in Figure 5.6 and in Figure 5.7, respectively.

Looking at Figures 5.6 and 5.7, it can be seen that for the 1+− and 0++ tetraquarks, it
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Figure 5.7: The convergence of the contribution of each dimension separately ob-

tained as a function of M2 at s0 = 19.0 GeV2 value for 0++ tetraquark

would be appropriate to choose M2 ≥ 2.5 GeV2 to ensure convergence, as in the T+
cc

tetraquark.

Furthermore, the contribution of each dimension to the correlation function was in-

vestigated by adding the dimension cumulatively, and these are shown in Figure 5.8

and in Figure 5.9 for 1+− and 0++, respectively.

Taking into account Figure 5.8 for 1+− and Figure 5.9 for 0++, it is clearly seen that

perturbate contributions to the correlation function are dominant for both particles.

For particles 1+− and 0++, it is also necessary to look at the pole contribution to

obtain the appropriate maximum value of M2. The pole contributions are shown in

Figure 5.10 and in Figure 5.11 for 1+− and 0++, respectively.

As seen in Figures 5.10 and Figure 5.11, at the value M2 = 3.5 GeV2 as in the T+
cc
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Figure 5.8: The cumulative contribution of each dimension to the correlation function

as a function of M2 at s0 = 19.0 GeV2 value for 1+− tetraquark

tetraquark, the pole contribution is greater than 30% for 1+− and 0++, and therefore

the upper bound of the working region for M2 ⩽ 3.5 GeV2.
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Figure 5.9: The cumulative contribution of each dimension to the correlation function

as a function of M2 at s0 = 19.0 GeV2 value for 0++ tetraquark

5.2.1 Mass Calculation of 1+− and 0++ Tetraquarks

The Borel mass dependence of the predicted masses for the 1+− and 0++ tetraquarks

are shown in Figures 5.12 and 5.13, respectively.

Looking at Figure 5.12, it can be seen that for 1+−, the mass value in the range of

M2 = [2.5 − 3.5] GeV2 is almost independent of the Borel parameter M2 and the

continuum threshold, as desired.

Likewise, examining Figure 5.13 for 0++, the mass is independent of the Borel pa-

rameter in the working region M2 = [2.5− 3.5] GeV2.

As a result of the analysis, it is seen that the working region for 1+− and 0++ is

the same as T+
cc . Therefore, in order to obtain the uncertainty arising from other
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Figure 5.10: The pole contribution to the correlation function of the 1+− tetraquark

as a function of Borel parameter M2 for different s0 values

parameters, as well as from M2 and s0 dependencies, random values are chosen for

the input parameters within their uncertainties, and masses are calculated using these

random values.

In this regard, histogram graphs showing the distribution of the masses in Figure 5.14

and 5.15 are shown for 1+− and 0++, respectively.

Therefore, the masses of these tetraquarks are predicted as:

m1+− = 3.93± 0.10 GeV (5.5)

m0++ = 3.94± 0.10 GeV (5.6)

Upon examination of Figures 5.14 and 5.15, it can easily be seen that they have pre-

cise peak distributions, with a mean value µ = 3.93 GeV and a standard deviation
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Figure 5.11: The pole contribution to the correlation function of the 0++ tetraquark

as a function of Borel parameter M2 for different s0 values

value σ = 0.05 GeV, and a mean value µ = 3.94 GeV and a standard deviation value

σ = 0.05 GeV, for 1+− and 0++, respectively.

In order to reduce uncertainty, instead of calculating the mass of each particle indi-

vidually, it is possible to evaluate each particle by taking advantage of heavy-quark

symmetry and looking at the mass difference with its symmetry partners. In line with

this information, the difference between the particles 1+− and 0++ is shown in Figure

5.16 using the same data set, used for the uncertainty in mass calculations.

Note that in calculating the mass difference, the same random values for the parame-

ters are used in both the mass of 1+− and 0++.

For the mass difference of the particles 1+− and 0+−, looking at Figure 5.17, it is

seen that the distribution has a distinct peak, with value δm = (m0++ − m1+−) =
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Figure 5.12: The mass obtained for 1+− tetraquark as a function of M2 for different

s0 values

14.65± 6.14 MeV.

Furthermore, in order to make a prospective interpretation, the difference between

the particles T+
cc and 1+−, which behave very similarly, is examined, and the result is

shown in Figure 5.17.

Taking into account Figure 5.17, it is seen that the mass difference of the particles 1+−

and T+
cc behaves as expected, but there are slight deviations and a peak distribution,

as in the mass difference of 1+− and 0++. Therefore, Figure 5.17 with the value

δm = (m1+− −mT+
cc
) = 11.52+9.08

−5.18 MeV has a distribution skewed to the left.
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Figure 5.13: The mass obtained for 0++ tetraquark as a function of M2 for different

s0 values

Figure 5.14: Distribution of the m1+− for M2 = [2.5− 3.5] GeV2 and s0 = [18.0−
20.0] GeV2 values
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Figure 5.15: Distribution of the m0++ for M2 = [2.5− 3.5] GeV2 and s0 = [18.0−
20.0] GeV2 values

Figure 5.16: Distribution of the (m0+− −m1+−) for M2 = [2.5 − 3.5] GeV2 and

s0 = [18.0− 20.0] GeV2 values
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Figure 5.17: Distribution of the (m1+− −mT+
cc
) for M2 = [2.5 − 3.5] GeV2 and

s0 = [18.0− 20.0] GeV2 values
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CHAPTER 6

CONCLUSIONS

In this study, first, general information about particle physics and QCD theory was

given. Then, the QCD sum rules method, a theoretically strong and reliable non-

perturbative approach, was discussed and applied to calculate the masses of the T+
cc ,

0++, and 1+− tetraquarks. The working regions for the Borel parameters are deter-

mined to be M2 = [2.5− 3.5] GeV2 and for s0 to be s0 = 19.0± 1.0 GeV2.

In addition to these values, to eliminate the uncertainties arising from the uncertainties

in the condensates, a data set consisting of random variables is used, and as a result,

the mass of T+
cc tetraquark is found to be mT+

cc
= 3.91± 0.10 GeV. It is clearly seen

that this result is compatible with the experimental value mT+
cc
= 3.88 GeV [19, 42].

The error of the experimental value is 0.8%.

The predictions obtained from theoretical studies using different methods for the cal-

culation of the mass (or delta mass difference from the two-meson threshold) of the

T+
cc tetraquark are listed in Table 6.1. Upon examination of the values in Table 6.1, it

is seen that the mass value obtained from this study is consistent with other theoretical

results.

All analyses performed for T+
cc are also performed for 0++ and 1+−, and it is seen
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Table 6.1: The predictions of the mass of the T+
cc tetraquark obtained using different

theoretical methods

Works Methods m or δm[MeV]

This Study 3914± 94

QCD Sum Rules [123] 3868± 124

QCD Sum Rules [124] 4000± 200

Double Ratios of Sum Rules (DRSR) [125] 3872.2± 39.5

Quark Model [47] 3882± 12

Heavy Quark Limit [126] 3978

QCD Sum Rules [127] 3900± 90

Lattice QCD [128] δm = −23± 11

Lattice QCD [129] 3947± 11

Chromomagnetic (CMI) Model [130] 3929.3

Constituent Quark Model[131] δm = −23

that the working regions suitable for T+
cc are also suitable for these tetraquarks. In this

direction, in order to make a more accurate comparison, the data set created for T+
cc

is also used for these particles, and for the range M2 = [2.5 − 3.5] GeV2 and value

s0 = 19.0± 1.0 GeV2, m1+− = 3.93± 0.10 GeV, and m0++ = 3.94± 0.10 GeV is

obtained for 1+− and 0++, respectively.

In addition, due to the heavy-quark symmetry, in order to reduce the uncertainty in the

mass calculation, the mass differences have also been examined using the same data

set and for this purpose the mass difference of the particles 1+− and 0++ is obtained

as δm = (m0++ − m1+−) = 14.65 ± 6.24 MeV. As expected by the heavy-quark

spin symmetry, it is clearly seen from the result obtained that the uncertainty that will

arise by obtaining the 1+− and 0++ masses separately decreases by calculating the

mass difference, and even it only takes values around a few MeV.
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To be able to comment further, the mass difference of T+
cc and 1+− states is also

examined, based on the similarity of their quark contents and structures, and a fairly

uniform distribution is obtained, δm = (mT+
cc
− m1+−) = 11.52+9.08

−5.18 MeV. This

value is quite small, as expected, since the T+
cc and 1+− particles have very similar

structures.

In this study, the motivation was taken from heavy-quark spin symmetry, but it should

be noted here that heavy-quark spin symmetry is also an approximate symmetry, be-

cause in reality the mass of heavy quarks is not infinite. Especially since the subject

of this study is c heavy quarks, their masses are not very large. In this case, some cor-

rections are needed. In the future, it is possible to study heavy-quark spin symmetry

in more detail, to do studies on these corrections, and to obtain more accurate results.
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Appendix A

GENERAL IDENTITIES

A.0.1 Gamma Matrices and Properties

In Dirac representation, the four contravariant gamma matrices are

γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, γ1 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


,

γ2 =



0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


, γ3 =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


, (A.1)

and the identity matrix is

I4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (A.2)
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and the γ5 matrix is

γ5 ≡ iγ0γ1γ2γ3 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


. (A.3)

Some identities related to these Gamma matrices can be expressed as

(γ0)
2 = 1, (A.4)

γ0
†
= γ0, (A.5)

γ0γµγ0 = γµ†, (A.6)

(γ5)
2 = 1, (A.7)

γ5
†
= γ5, (A.8)

(γ5)
T = γ5, (A.9)

{γ5, γµ} = 0, (A.10)

{γµ, γν} = 2gµν1. (A.11)
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A.0.2 Charge Conjugation and Properties

The definition of charge conjugation and some properties related to it can be written

as

C = iγ2γ0, (A.12)

CT = −C, (A.13)

C† = C, (A.14)

C2 = −1, (A.15)

(Cγ5) = (γ5C), (A.16)

Cγ5C = −γT5 = −γ5, (A.17)

CγµC = −γTµ , (A.18)

CγTµC
T = −γµ, (A.19)

Cγ5C
−1 = +(γ5)

T , (A.20)

CσµνC
−1 = − (σµν)

T , (A.21)

Cγ5γµC
−1 = +(γ5γµ)

T . (A.22)
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A.0.3 Trace Samples Identities

Some situations regarding traces are as follows:

Tr (γµ) = 0, (A.23)

Tr
(
γ5
)
= 0, (A.24)

Tr
(
γµγνγ5

)
= 0, (A.25)

Tr (γµγν) = 4gµν , (A.26)

Tr[ odd # of gamma matrices ] = 0, (A.27)

Tr[ odd # of gamma matrices γ5] = 0, (A.28)

Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) , (A.29)

Tr
(
γµγνγργσγ5

)
= −4iϵµνρσ, (A.30)

Tr (γµ1 . . . γµn) = Tr (γµn . . . γµ1) , (A.31)

̸ xγν = 2xν − γν ̸ x, (A.32)

̸ xγν ̸ xγµ = 2xν ̸ xγµ − γνx2γµ, (A.33)

Tr[̸ xγν ̸ xγµ] = 8xνxµ − 4x2gµν . (A.34)
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A.0.4 Some Other Identities

Also some identities used in calculations are

εabcεabc = 6, (A.35)

εabcεabc′ = 2δcc′ , (A.36)

εabcεa′b′c′ =

∣∣∣∣∣∣∣∣∣∣∣
δaa′ δab′ δac′

δba′ δbb′ δbc′

δca′ δcb′ δcc′

∣∣∣∣∣∣∣∣∣∣∣
= δaa′ (δbb′δcc′ − δbc′δcb′)− δab′ (δba′δcc′ − δbc′δca′) + δac′ (δba′δcb′ − δbb′δca′)

= δbb′δcc′ − δbc′δcb′ .

(A.37)

For tN = λN/2 where λN are the Gell-Mann matrices:

Tr
(
tN

)
= 0, (A.38)

Tr
(
tN tN

)
= 4, (A.39)

εabcεa′b′c′δaa′t
N
bb′t

M
cc′δ

NM = εabcεab′c′δaa′t
N
bb′t

N
cc′

= (δbb′δcc′ − δbc′δb′c) tNbb′tNcc′

=
(
tNbbt

N
cc − tNbctNcb

)
= Tr

(
tN

)
Tr

(
tN

)
− Tr

(
tN tN

)
= −4, (A.40)

εabcεa′b′c′δaa′δbb′t
N
cdt

N
dc′δ

NM = εabcεa′b′c′δaa′δbb′t
M
cd t

N
dc′

= 2δcc′t
N
cdt

N
dc′ = 2tNcdt

N
dc (A.41)

= 2Tr
(
tN tN

)
= 8. (A.42)
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Appendix B

SOME SPECIAL FUNCTIONS

B.0.1 Gamma Function

The integral representation of the gamma function is as follows.

Γ(n) =

∫ ∞

0

tn−1e−tdt. (B.1)

For positive integer n, Gamma function can be written as

Γ (n) = (n− 1)!. (B.2)

Using the definition of the Gamma function, the Schwinger representation can be

given as

1

An
=

1

Γ (n)

∫ ∞

0

dttn−1 exp (−At) for A > 0. (B.3)

B.0.2 Heaviside Step Function and Dirac-Delta Function and Relationship

The Heaviside step function Θ(x) is defined as
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Θ(x) =



1, x > 0

1
2
, x = 0

0, x < 0.

(B.4)

Integral representation of the Heaviside step function is

θ(x) = lim
ϵ→0

1

2πi

∫ +∞

−∞

eizx

z − iϵ
dz. (B.5)

Dirac-Delta function is defined as

δ(x) =


∞ if x = 0

0 if x ̸= 0,

(B.6)

such that ∫ ∞

−∞
f(x)δ(x)dx = f(0). (B.7)

The integral representation of the Dirac-Delta function is

δ(x) =
1

2π

∫ ∞

−∞
eixt dt. (B.8)

The relationship between the Heaviside Step function and the Dirac-Delta function is

given as

dH(x)

dx
= δ(x), (B.9)
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and

H(x) =

∫ x

−∞
δ(x)dx =


0 if x < 0

1 if x > 0.

(B.10)

B.0.3 Properties of Dirac-Delta Function

Some properties of Dirac-Delta function can be given as

δ(x) = δ(−x), (B.11)

d

dx
δ(x) = − d

dx
δ(−x), (B.12)

∫ ∞

−∞
f(x)δ(x− a)dx = f(a), (B.13)

∫ ∞

−∞
f(x)δ′(x− a)dx = −f ′(a), (B.14)

δ(ax) =
1

|a|
δ(x), (B.15)

δ(g(x)) =
∑
i

1

|g′ (xi)|
δ (x− xi) , (B.16)

where g(xi) = 0, and

δ
(
x2 − a2

)
= |2a|−1[δ(x− a) + δ(x+ a)]. (B.17)
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Appendix C

ANALYTICAL RESULTS OF T+
cc TETRAQUARK

For the T+
cc tetraquark the numerical results obtained are as follows:

Πµν,T+
cc

(
M2, s0

)
=
m8
cpµpν

3840π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)6δ(s− s(x, y))

x3y3

+
m8
cgµν

7680π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)6M2δ(s− s(x, y))

x3y3

− 2m4
c⟨g2sG2⟩gµν
73728π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4M2δ(s− s(x, y))

x2y2

− 2m4
c⟨g2sG2⟩pµpν
36864π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s− s(x, y))

x2y2

− 2m4
c⟨g2sG2⟩gµν
18432π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3M2δ(s− s(x, y))

x2y2

+
m8
c⟨uū⟩⟨dd̄⟩gµν

36π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3

]

+
m8
c⟨uū⟩⟨dd̄⟩gµν
36M2π2

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3
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+
m8
c⟨uū⟩⟨dd̄⟩gµν
36M4π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s− s(x, y))

x3y3

+
m8
c⟨uū⟩⟨dd̄⟩pµpν

18π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3

]

+
m8
c⟨uū⟩⟨dd̄⟩pµpν
18M2π2

e−
s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3

]

+
m8
c⟨uū⟩⟨dd̄⟩pµpν
18M4π2

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3

+
m8
c⟨uū⟩⟨dd̄⟩pµpν
18M6π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s− s(x, y))

x3y3

− m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)δ(s0 − s(x, y))

x2y3

]

− m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216M2π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)δ(s0 − s(x, y))

x2y3

]

− m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216M4π2
e−

s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)δ(s0 − s(x, y))
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0⟨uū⟩⟨dd̄⟩pµpν
24M6π2

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)2δ(s0 − s(x, y))

x3y3

− 2m8
cm

2
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0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M10π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)3x2

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩pµpν
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c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216M2π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y3

]

+
m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
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0⟨uū⟩⟨dd̄⟩gµν
96π2

e−
s0
M2

d3

ds30

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x3y3

]

131



− m8
cm

4
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96M6π2

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x3y3

− m8
cm

4
0⟨uū⟩⟨dd̄⟩gµν
96M8π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s− s(x, y))

x3y3

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864π2
e−

s0
M2

d4

ds40

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M2π2
e−

s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M4π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M6π2
e−

s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M8π2
e−

s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

+
m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
864M10π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)3x2
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+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

3456π2
e−

s0
M2

d5

ds50

[∫ 1

0

dx
δ(s0 − s(x, (1− x))

(1− x)4x3

]

+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M2π2

e−
s0
M2

d4

ds40

[∫ 1

0

dx
δ(s0 − s(x, (1− x))

(1− x)4x3

]

+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M4π2

e−
s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)4x3

]

+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M6π2

e−
s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)4x3

]

+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M8π2

e−
s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)4x3

]

+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M10π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)4x3

+
2m8

cm
4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
3456M12π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)4x3

+
m8
c⟨g2sG2⟩pµpν
6144π6

e−
s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s0 − s(x, y))

x3y3

]

+
m8
c⟨g2sG2⟩pµpν
6144M2π6

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s− s(x, y))

x3y3

+
m8
c⟨g2sG2⟩pµpν
6144M4π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s− s(x, y))

x3y3
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+
m8
c⟨g2sG2⟩gµν
12288π6

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s− s(x, y))

x3y3

+
m8
c⟨g2sG2⟩gµν

12288M2π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s− s(x, y))

x3y3

− m8
c⟨g2sG2⟩gµν
3072π6

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s− s(x, y))

x3y3

− m8
c⟨g2sG2⟩gµν
3072M2π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s− s(x, y))

x3y3

− m8
c⟨uū⟩⟨dd̄⟩gµν

6π2
e−

s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)δ(s− s(x, y))

x2y2

− m8
c⟨uū⟩⟨dd̄⟩gµν
6M2π2

∫ s0

0

dse−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)δ(s− s(x, y))

x2y2

− m4
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

72π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y2

]

− m4
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

72M2π2
e−

s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s− s(x, y))

x2y2

− m4
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

72M4π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s− s(x, y))

x2y2

+
m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y3

]
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+
m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216M2π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y3

]

+
m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216M4π2
e−

s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y3

+
m6
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

216M6π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s− s(x, y))

x2y3

− m6
cgµν

256π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4M4δ(s− s(x, y))

x2y2

− m4
c⟨g2sG2⟩gµν
768π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3M2δ(s− s(x, y))

x2y2

+
m6
c⟨g2sG2⟩gµν
2304π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3M2δ(s− s(x, y))

x2y3

+
m6
cm

2
0⟨uū⟩⟨dd̄⟩gµν
24π2

e−
s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y2

]

+
m6
cm

2
0⟨uū⟩⟨dd̄⟩gµν
24M2π2

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y2

+
m6
cm

2
0⟨uū⟩⟨dd̄⟩gµν
24M4π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
δ(s− s(x, y))

x2y2

+
2m4

cm
2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

288π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

135



+
2m4

cm
2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
288M2π2

e−
s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

]

+
2m4

cm
2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
288M4π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

+
2m4

cm
2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
288M6π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)2x2

− 2m6
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864π2
e−

s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− 2m6
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
864M2π2

e−
s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− 2m6
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
864M4π2

e−
s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− 2m6
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
864M6π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

− 2m6
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
864M8π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)3x2

− m6
cm

4
0⟨uū⟩⟨dd̄⟩gµν
96π2

e−
s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨uū⟩⟨dd̄⟩gµν
96M2π2

e−
s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

]

136



− m6
cm

4
0⟨uū⟩⟨dd̄⟩gµν
96M4π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

− m6
cm

4
0⟨uū⟩⟨dd̄⟩gµν
96M6π2

∫ s0

0

dse−
s0
M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)2x2

+
m4
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

384π2
e−

s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

]

+
m4
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

384M2π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

]

+
m4
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

384M4π2
e−

s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

]

+
m4
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

384M6π2
e−

s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

+
m4
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

384M8π2

∫ s0

0

dse−
s0
M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)2x2

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864π2
e−

s0
M2

d4

ds40

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M2π2
e−

s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M4π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]
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cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν

864M6π2
e−

s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
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4
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864M8π2
e−

s0
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∫ 1

0
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(1− x)3x2

− m6
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864M10π2
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0
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M2

∫ 1

0
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δ(s− s(x, (1− x)))

(1− x)3x2

− m6
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4
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e−

s0
M2

d4

ds40

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x3

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
1152M2π2

e−
s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x3

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
1152M4π2

e−
s0
M2

d2

ds20

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x3

]

− m6
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4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
1152M6π2

e−
s0
M2

d
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[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x3

]

− m6
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4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
1152M8π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x3

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
1152M10π2

∫ s0

0

dse−
s0
M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)3x3

− m6
c⟨g2sG2⟩gµν
1024π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)2δ(s− s(x, y))

x2y2
.

(C.1)
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Appendix D

ANALYTICAL RESULTS OF 1+− TETRAQUARK

For the 1+− tetraquark the analytical results obtained are as follows:

Π1+−

µν

(
M2, s0

)
=
m8
cpµpν

7680π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)6δ(s− s(x, y))

x3y3

+
m8
cgµν

15360π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)6M2δ(s− s(x, y))

x3y3

− m4
c⟨g2sG2⟩gµν
147456π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4M2δ(s− s(x, y))

x2y2

− m4
c⟨g2sG2⟩pµpν
73728π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)4δ(s− s(x, y))

x2y2

− m4
c⟨g2sG2⟩gµν
36864π6

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3M2δ(s− s(x, y))

x2y2

+
m8
c⟨uū⟩⟨dd̄⟩gµν

72π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3

]

+
m8
c⟨uū⟩⟨dd̄⟩gµν
72M2π2

e−
s0
M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s− s(x, y))

x3y3
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+
m8
c⟨uū⟩⟨dd̄⟩gµν
72M4π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s− s(x, y))

x3y3

+
m8
c⟨uū⟩⟨dd̄⟩pµpν

36π2
e−

s0
M2

d2

ds20

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))

x3y3

]

+
m8
c⟨uū⟩⟨dd̄⟩pµpν
36M2π2

e−
s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)3δ(s0 − s(x, y))
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0⟨uū⟩⟨dd̄⟩gµν
48M6π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx

∫ 1−x

0

dy
(1− x− y)2δ(s− s(x, y))

x3y3

− m8
cm

2
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0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
6912M6π2

e−
s0
M2

d

ds0

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩gµν
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+
m8
c⟨g2sG2⟩pµpν
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∫ s0

0

dse−
s

M2
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49152M2π6
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Appendix E

ANALYTICAL RESULTS OF 0++ TETRAQUARK

For the 0++ tetraquark the analytical results obtained are as follows:

Π0++ (
M2, s0

)
=
m6
c⟨g2sG2⟩
4608π6

∫ s0

0

dse−
s

M2

∫ 1
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dx
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dy
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∫ s0

0

dse−
s

M2
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864M8π2

∫ s0

0

dse−
s

M2

∫ 1

0

dx
δ(s− s(x, (1− x)))

(1− x)3x2

− m8
cm

4
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144π2
e−

s0
M2

d

ds0

[∫ 1

0

dx

∫ 1−x

0

dy
δ(s0 − s(x, y))

x2y2

]

− m4
c⟨g2sG2⟩⟨uū⟩⟨dd̄⟩
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288M4π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)2x2

160



+
m4
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩
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1728M6π2

e−
s0
M2

∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

− 2m6
cm

2
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩
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1728M2π2

e−
s0
M2

d3

ds30

[∫ 1

0

dx
δ(s0 − s(x, (1− x)))

(1− x)3x2

]

− m6
cm

4
0⟨g2sG2⟩⟨uū⟩⟨dd̄⟩
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• Hızlandırıcı ve Parçacık Fiziğinde Bilgisayar Uygulamaları Okulu (Accelerator

and Computer Applications in Particle Physics School - in Turkish), Feb 25-29,

2012 (Kars, Turkey)

166


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	THEORETICAL FOUNDATIONS
	The Standard Model of Particle Physics
	The Quantum Chromodynamics 
	Heavy-Quark Spin Symmetry


	THE QCD SUM RULES METHOD
	Two Point Correlation Function
	Hadronic (Phenomenological) Side of the Correlation Function
	QCD (Theoretical) Side of the Correlation Function
	Wilson Operator Product Expansion

	Analytic Continuity and Dispersion Relation
	Borel Transformation


	QCD SUM RULES FOR THE MASS OF TETRAQUARKS
	THE MASS OF Tc c+ TETRAQUARK
	Hadronic Side of the  Tc c+  Tetraquark Correlation Function
	Theoretical Side of the T+c c Tetraquark Correlation Function

	MASS CALCULATION OF THE HIDDEN CHARMONIUM =1+- AND 0++ TETRAQUARKS
	Hadronic Side of the 1+- and 0++ Tetraquarks Correlation Functions
	Theoretical Side of the 1+- and 0++ Tetraquarks


	NUMERICAL ANALYSIS
	Numerical Analysis of the Sum Rules for Tcc+ Tetraquark
	Mass Calculation of Tcc+ Tetraquark 

	Numerical Analysis of 1+ - and 0+ + Tetraquarks
	Mass Calculation of 1+ - and 0+ + Tetraquarks 


	CONCLUSIONS
	REFERENCES
	GENERAL IDENTITIES
	Gamma Matrices and Properties
	Charge Conjugation and Properties
	Trace Samples Identities 
	Some Other Identities


	SOME SPECIAL FUNCTIONS
	Gamma Function
	Heaviside Step Function and Dirac-Delta Function and Relationship
	Properties of Dirac-Delta Function


	Analytical Results of T+cc Tetraquark
	Analytical Results of 1+- Tetraquark
	Analytical Results of 0++ Tetraquark
	CURRICULUM VITAE

