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Abstract

Waves propagating near an event horizon display interesting features including
logarithmic phase singularities and caustics. We consider an acoustic horizon
in a flowing Bose—Einstein condensate where the elementary excitations obey
the Bogoliubov dispersion relation. In the Hamiltonian ray theory the solutions
undergo a broken pitchfork bifurcation near the horizon and one might there-
fore expect the associated wave structure to be given by a Pearcey function, this
being the universal wave function that dresses catastrophes with two control
parameters. However, the wave function is in fact an Airy-type function supple-
mented by a logarithmic phase term, a novel type of wave catastrophe. Similar
wave functions arise in aeroacoustic flows from jet engines, path integrals in
radio astronomy, and also gravitational horizons if dispersion which violates
Lorentz symmetry in the UV is included. The approach we take differs from
most previous authors in that we analyze the behavior of the integral repres-
entation of the wave function using exponential coordinates. This allows for a
different treatment of the branch cuts and gives rise to an analysis based purely
on saddlepoint expansions. We are thereby able to resolve the multiple real
and complex waves that interact at the horizon and its companion caustic. We
find that the horizon is a physical manifestation of a Stokes surface, marking
the place where a wave is born, and that the horizon and the caustic do not in
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general coincide: the finite spatial region between them delineates a broadened
horizon.

Keywords: Stokes’s phenomenon, catastrophe theory, event horizon,
analogue black hole, Hawking radiation

(Some figures may appear in colour only in the online journal)
1. Dedication

This paper is dedicated to Sir Michael Berry in celebration of his 80th birthday. Of his many
contributions to physics and physical asymptotics, one of the major themes of his work is
his interest in waves near singularities, ranging from the most dramatic occurrences such as
tsunamis [1, 2] and tidal bores [3, 4], to the most gentle (yet profound) in the form of Stokes’s
phenomenon [5-8]. In particular, he has devised minimal models for undular bores that reveal
in a characteristically clear way the central role played by caustics as well as an analogy to the
Hawking effect [3], and it is a related connection we pick up here in the context of a flowing
superfluid. Starting in the 1970s [9] and continuing today [10], Michael Berry has championed
the application of catastrophe theory to caustics and we humbly follow in his footsteps in this
paper, focusing on novel catastrophes with logarithmic phase singularities that accompany an
acoustic event horizon in a superfluid.

2. Introduction

If the flow speed of a fluid exceeds the speed of waves in the fluid then the latter are unable to
propagate against the flow and an analogue of an event horizon occurs. This situation is cap-
able of mimicking many aspects of black hole physics where the effective spacetime metric
depends on the fluid flow and acoustic waves play the role of light [11-15]. Analogue event
horizons for classical waves, including the classical analogue of Hawking radiation, have been
observed in water tank experiments [16—22] and also in optical fibres [23-25]. Another system
where analogue event horizons can be created is a flowing Bose—Einstein condensate (BEC)
formed from ultracold atoms. These are among the simplest examples of superfluids and are
so cold that quantum processes such as the analogue of spontaneous Hawking radiation can
dominate thermally activated phonons. Analogue Hawking radiation in BECs has been anti-
cipated theoretically for over twenty years [14, 26—35], and was recently realized in a series of
experiments by J. Steinhauer and coworkers [36—41]. In the present paper we focus on event
horizons in BECs where excitations obey the Bogoliubov dispersion relation, but many of our
results apply to event horizons in general.

Tidal bores (shock waves that travel up rivers due to a rising tide being funnelled into an
V-shaped estuary) are a dramatic wave phenomenon that also involves hydrodynamic event
horizons, as pointed out by Michael Berry in his studies of undular bores [2, 3]. His work
emphasizes that the wave front corresponds to a caustic where two waves coalesce, and this
is the approach we adopt in this paper. The connection between event horizons and caustics is
illuminating because caustics take on certain universal shapes described by catastrophe theory
that are structurally stable against perturbations (and hence generic), and furthermore each
catastrophe is dressed by a unique wave function. In the simplest case of two coalescing waves
the caustic is a fold catastrophe and the wave function is the Airy function [42]. References
[2, 3] show that the wave profile of an undular bore can indeed be expressed in terms of an
integral which has the Airy function as its kernel.
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In this paper we find that in the vicinity of a horizon in a BEC the waves satisfy a third
order differential equation in position space which is similar to the one obeyed by undular
bores. However, we generalize the treatment given in [3] to the case where the wave frequency
w is nonzero and show that this leads to an Airy-like wave function but with an additional
logarithmic contribution wlogk to the phase, giving a ‘log-Airy function’. A logarithmic term
has previously been shown to arise in aeroacoustic flows from jet engines [43], in certain
path integrals in radio astronomy as studied by Feldbrugge et al from a wave catastrophe
point of view (albeit one which differs from both our own and the standard approaches) [44,
45], and also for gravitational black holes when dispersion is present [46]. The fact that a
logarithmic phase singularity is a very general feature of waves in accelerated frames (such as
near event horizons) has been highlighted by U. Leonhardt and collaborators [47, 48], who first
suggested a connection between horizons and wave catastrophes in a general sense, although
a characterization in terms of the Thom-Arnold catastrophe theory which underlies standard
caustics was not pursued. Links between caustics, Airy functions, and black hole physics have
also been previously reported in more detail by Nardin et al in the context of water waves with
subluminal dispersion [49]. They pointed out the presence of a fold catastrophe bifurcation
by taking a ‘dynamical systems’ approach which is similar in spirit to ours. However, we will
show in this paper that the logarithmic phase term connects the wave structure near the horizon
to higher wave catastrophes than the fold.

Indeed, the main motivation of the present paper is the observation that the coefficient mul-
tiplying the logarithmic term in the log-Airy function adds a second control parameter and
thus the underlying catastrophe has some of the character of a cusp catastrophe, the next in
Thom’s hierarchy of catastrophes beyond the fold (which only has a single control parameter).
This feature is supported by classical solutions of Hamilton’s equations describing the motion
of wavepackets which show that an event horizon gives rise to a broken pitchfork bifurcation
in (z,k) phase space where a single solution bifurcates into three. The universal wave func-
tion dressing a cusp catastrophe is the Pearcey function, but unlike the Pearcey function the
logarithm leads to mathematical complications in the evaluation of the integral representation
of the solution, such as the need to introduce branch cuts and multiple Riemann sheets. We
describe a systematic method for handling these complications using exponential coordinates
[43]. Along the way we shall identify instances of Stokes’s phenomenon which occurs when an
exponentially small wave appears behind a dominant wave and constitutes the ‘quietly beating
heart of asymptotics’ [50]. In particular, we find that the horizon itself is the edge of a Stokes
surface, giving some physical meaning here to this mathematical concept.

3. Acoustic event horizons

3.1. Bogoliubov dispersion relation
Elementary excitations in a BEC obey the Bogoliubov dispersion relation [51, 52]

k2
w2:c2k2<1+4k2> (1)

where ¢ = (m2%) 2 s the speed of sound expressed in terms of the mass m of the atoms
and the compressibility of the gas On/OP (n is the number density and P the pressure). k. =
mc/h is analogous to the Compton wavenumber (inverse of the healing length) [14, 28], and
provides the characteristic scale at which the Bogoliubov relation becomes dispersive: at small
wavenumbers such that k < k. the relation reduces to the linear form w = ck but for k > k.
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Figure 1. Schematic representation of a quasi-one dimensional acoustic black hole
formed within a flowing fluid. The blue circles represent the constituent particles of the
fluid, and the blue arrows indicate their direction and magnitude of flow. The vertical
dashed line at z = 0 indicates the position of an acoustic event horizon so that the flow is
supersonic when z < 0 (inside the black hole), and subsonic when z > 0 (outside). The
wavepackets represent Hawking radiation (pairs of back-to-back phonons) that propag-
ate away from the horizon. One phonon escapes and moves rightwards, while the other
gets swept leftwards into the black hole.

the relation curves upwards and hence is supersonic, or ‘superluminal’ in the gravitational
context. This implies that there are no true event horizons in BECs because there can be waves
with arbitrarily large speed. However, these are energetically suppressed and, crucially, there
is still a bifurcation when the flow speed exceeds the speed of sound so that essentially the
same phenomena arise as in fluids with subluminal dispersion relations [16, 49, 53, 54]. In a
Lorentz invariant system the dispersion is purely linear, however this leads to divergences at
the horizon known as the trans-Planckian problem which can be resolved by the introduction
of dispersion [12, 14, 28, 46, 55-65].

A schematic representation of a localized event horizon in a fluid is shown in figure 1. An
early suggestion for experimentally realizing such a situation was to consider a BEC flowing
around a ring that has a localized constriction such that the flow speed inside the constriction
is forced to increase above the speed of sound in order to maintain the current and there is no
buildup of atoms [26]. This set-up actually generates two horizons: a black hole horizon where
the fluid enters the constriction and from which long wavelength phonons cannot escape and a
white hole horizon on the other side where phonons cannot enter. In the eventual experiments
performed by the Steinhauer group a potential step (formed by a laser) is swept through a long
thin cigar-shaped BEC and this effectively creates a waterfall over which the atoms flow [36].
We shall not attempt to model the details of these situations but instead content ourselves with
the simplest theoretical model and consider a quasi-one dimensional BEC with a stationary
velocity profile u(z) that close to the horizon changes linearly in space [53, 63]

u(z) = —c+ Kz 2)

where the velocity gradient « (analogus to the surface gravity of a graviational black hole) is
positive and c is the speed of sound at the horizon. This describes a flow from right to left
whose magnitude is linearly increasing in the direction of the flow. At the point z =0 the flow
speed is the same as the speed of sound and hence this is the location of the horizon: for z >0
the flow is subluminal and for z <0 it is superluminal (the speed of sound in a BEC made
of a dilute gas of ultracold atoms is of the order of millimetres per second so this is easy to
achieve).
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The frequency that appears in equation (1) is that in the fluid’s rest frame, but an observer in
the laboratory frame (where the horizon is fixed in space) will see a Doppler shifted frequency.
A Galilean shift between the two frames gives the relation w’ = w — u(z)k where here and from
now on we use the unprimed notation to represent the laboratory frame. Thus, w will be the
frequency (energy) of the excitations seen from the laboratory frame. It is constant if the flow is
time independent and must obey w > 0 in order to be physical. Conversely, w’ can be negative
and this leads to an analogy to antiparticles.

3.2. Nondispersive case: trans-Planckian singularity

We will first consider the long wavelength nondispersive regime where the nonlinear terms in
the Bogoliubov dispersion relation can be ignored. The linearized dispersion relation in the
laboratory frame is given by

(w—u(2)k)* = . 3)

In the limit where the flow varies very little over the wavelength of the produced sound waves,
one can use a ray picture (geometrical acoustics). Treating w(z, k) in equation (3) as a Hamilto-
nian function, Hamilton’s equations read

dz  Ow dk ow

dt ok’ e 0z
These rays describe the center of mass motion (z)(#) and (k)(#) of wavepackets [14, 28].
Equation (4) can be numerically integrated in time starting from an initial choice of posi-
tion and wavenumber (z;,k;), and in the left image of figure 2 we have plotted the trajectories
for two different initial conditions, one just inside and one just outside the horizon, the idea
being that these show the fate of spontaneous excitations starting near z = 0. We see that in the
phase space provided by the canonical variables (z, k) the horizon behaves like a hyperbolic
fixed point: rays move away from the horizon and tend asymptotically to z = £oo whilst the
magnitude of their wavenumbers are reduced asymptotically to zero (red shifting). These two
solutions can be interpreted as the classical manifestation of Hawking pair production where
one excitation escapes the black hole and the other is trapped inside [53]. Indeed, both solu-
tions have the same (positive) value of the lab frame frequency w but have different signs of
the fluid rest frame frequency w’ = w — u(z)k and hence can be considered to be a particle-
antiparticle pair. If we instead run the time evolution backwards we find that these solutions
of the linear model track back to the horizon where they develop wavenumbers of infinitely
large magnitude +k. This is the trans-Planckian problem where the horizon seems to connect
low energy physics to infinitely high energy physics.

We have only included the positive roots of equation (3) in figure 2. The negative root also
gives a physical solution, however, it describes waves that move with the flow which pass
through the horizon relatively undisturbed and so will not be included here, not least because
they are almost completely decoupled from the Hawking effect [46, 63]. However, including
these other solutions is important if one wants total momentum ) k; and total energy >, w —
u(z)k; conservation in the fluid rest frame (the laboratory frame frequency w is automatically
conserved by Hamilton’s equations).

In the left plot of figure 2 we have introduced the notation ¢g" and ¢°'} to label the two solu-
tions. This is adapted from the paper by Coutant, Parentani, and Finazzi (CPF) [63] upon which
much of the present work is based. In particular, we use a wave scattering formalism where
‘out’ indicates that a wave is moving away from the horizon (in either direction), whereas
the subscript +k indicates whether the wave has a positive or negative wavenumber. In the

“
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Figure 2. Left: Solutions of Hamilton’s equations (equation (4)) for linear dispersion
(equation (3)) with a finite value of w > 0. The plot is in the (z, k) phase space describ-
ing the position and wavenumber of wavepackets. The BEC is flowing from right to left:
the right hand side of this figure is outside the black hole, and the left hand side is inside

it. The red and blue branches ¢}, are classical analogues of Hawking pairs that propag-

ate away from the horizon towards z = £o0o. The wavenumbers diverge at the horizon.
Right: Same as the leftmost plot but now for a nonlinear dispersion (equation (8)). The
resulting broken pitchfork bifurcation is the structure associated with a cusp catastrophe.
Both solutions start at the initial point z;, and the critical point z. marks the turning point

of the blue branch and is the location of a caustic where two real solutions merge to

become two complex rays. Of these, only the decaying complex ray ¢‘i”‘ is physical and

is denoted by the gray dashed line.

dispersive problem we treat in the next section we will also have ‘in” waves that propagate
towards the horizon. Finally, we note that within the linear theory the two sides of the horizon
are disconnected: trajectories cannot cross the horizon.

3.3. Wave theory in the nondispersive case: logarithmic phase singularity

To obtain the effective wave equation that describes these waves we will follow Berry [3] and
treat the frequency w(z,k) as a Hamiltonian which can be canonically quantized: w(z,k) —
w(z, lAc) where z — zand k — k = —i0,. Using equation (3) we find that Schrodinger’s equation
w1 = wp for this system takes the form

—iKkz0.9(z,w) = wi(z,w) %)

(the question of operator ordering in this equation is addressed in [3, 63]). This equation
describes a stationary solution ¢ (z,w,f) = 1 (z,w)e ™" where

P(z,w) = Ae' =), (6)

and A is a constant. The logarithmic phase singularity at the horizon means the phase is
undefined there and is a further manifestation of the trans-Planckian problem. Note that we
have explicitly included the eigenvalue w within the argument of ) to later make connections
to catastrophe theory.
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3.4. Classical solutions in the dispersive case: broken pitchfork bifurcation

In terms of the laboratory frequency w, the full Bogoliubov dispersion relation is

[ R
w—u(z)k = *ck 1+4T<§' (7)

We will again keep only the positive root and furthermore will expand the right hand side and
keep only the first nonlinear term. This is sufficient to capture the essential physics (a caustic
where two or three waves coalesce depending on whether w #£ 0 or w =0, respectively). We
therefore work with the cubic dispersion relation

ck’

w—u(z)k~ck+ ek

®)

The trajectories this generates via Hamilton’s equations are plotted in the right image of
figure 2. The initial conditions (z;,k;) are indicated by black dots, and this time we choose
the initial position z; for both trajectories to be inside the horizon as this allows a fuller picture
of the dynamics: if the positive k branch (red) were to start outside of the horizon it would
continue to propagate to the right away from the horizon, whereas here we see that it passes
through the horizon. Thus, the Bogoliubov dispersion relation allows the connection of the
inside and outside of the black hole. In fact, comparison of both the left and right plots in
figure 2 shows that the effect of nonlinearity is to generate a broken pitchfork bifurcation such
that for some values of z inside the horizon there are three different possible values of k. The
structure of the solutions means the divergence of the wavenumbers at the horizon is now
eliminated but despite this change the Hawking process is robust to the introduction of disper-
sion because at large length scales we still have a pair of outgoing solutions ¢ and only the
near-horizon behavior is strongly modified [12, 46, 55-65].

Like in the linear case, the negative k solutions (blue) in the left plot of figure 2 corres-
pond to antiparticles because w’ < 0 when k < 0. Their dynamics restricts them to be inside
the horizon but this time they can travel in either direction. We recall that the motion of
wavepackets is dictated by the group velocity dw/dk = dw’/dk + u(z) and bearing in mind
that in our setup u(z) < 0 this means dw/dk can be positive or negative irrespective of the
sign of k, although for a large enough magnitude of k it will always be positive due to the
superluminality of the Bogoliubov dispersion. The critical point z. shown in the right plot
of figure 2 marks the place where q&ifk turns around and becomes "j‘}{ which is a caustic
because turning points are places where two solutions coalesce. This coalescence ‘interacts’
strongly with the third solution provided by the positive k branch to give the broken pitchfork
structure. This is the signature of a cusp-type catastrophe which has two control parameters:
one determines where we are in the bifurcation (the z coordinate) and the other determines
the degree to which the pitchfork is broken (this will turn out to be w). Right at the cusp
point itself, which occurs at w =0 and z=0 (see figure 4), we find an unbroken pitchfork
where all three solutions coalesce. The caustic at z. also marks the point where two com-
plex rays appear. One is physically reasonable since it corresponds to a decaying mode qﬁi”‘.
The other corresponds to a growing mode d)%”‘ so we do not include it in our considerations
[63].
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3.5. Length scale associated with quantum effects

The wave function for the dispersionless case given in equation (6) is scale free and has no
intrinsic length scale to cut off the logarithmic divergence. However, the presence of k. in the
dispersive case allows the introduction of a new length scale

c 1/3
4= (8,() ©

which provides the characteristic distance over which the horizon becomes smeared out [46].
For the remainder of this work we will work in units where lengths are scaled by d, and times

are scaled by !

2—>z , kt—t , kd—k %—Mu. (10)

The length d has a quantum origin because it depends on the Compton wavelength 4 /mc
which sets the scale below which pair creation becomes important. The role that d plays in
regulating the logarithmic phase singularity suggests that it is 2nd quantization of the classical
wave theory that ultimately resolves our analogue trans-Planckian problem even though we
do not explicitly 2nd quantize in this paper. In the classical theory of the pair production, the
nonlinearity is sufficient to regulate it.

3.6. Wave theory in the dispersive case: log-Airy function

Canonically quantizing equation (8) (in scaled units) yields a third-order linear ordinary dif-
ferential equation in z-space

i(02 = 2) 0.4 (z,w) = wib(z,w). an

This approximately describes v(z,w) for both small z and small , although we keep in mind
that although & has been approximated to be small, it is not so small as to be equivalent to
the linear dispersion approximation w — u(z)k = ck. Ignoring the nonlinear dispersive effects
equates to removing the 97 operator within the brackets, and equation (11) reduces to the linear
case of equation (5) as expected.

Although equation (11) may be solved for ¢(z,w) exactly in terms of a linear combination
of three | F, hypergeometric functions, it is more instructive to use a Fourier transform to give
an equivalent integral representation [46, 63]

o0
Y(z,w) ~ 2’% / %e‘f(k’z’“)dk, flk,z,w) = —i[k* /3 + kz — win(k)], (12)
where A is an arbitrary complex constant. Note that although equation (11) is only valid for
small k, we can extend the domain to include all k € (—o0,00) by assuming that the integrand
in equation (12) primarily contributes near k = 0 and vanishes as k becomes larger in both the
+k directions. With careful choice of cuts, this turns out to be true in our case.

The wave function in equation (12) is the primary object of interest in this work. We refer
to it as the log-Airy function because the cubic polynomial in the exponential in the integ-
rand is analogous to that of an Airy function [66, 67] (see chapter 9 of [68] for the stand-
ard modern definition), which is the universal wave function that dresses a fold catastrophe
[69-72], but differs due to the parametrically prefactored additional logarithm in the phase.
There is a temptation to combine the logarithm with the pole term to produce a complex order
branch cut, however, as we shall see, it proves analytically important to retain this term in the
exponent.
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Equation (12) has appeared before in a number of related contexts. The most closely related
to our present treatment is the study of black hole radiation in Lorentz-violating theories in
the papers by Coutant and Parentani [46] and CPF [63], where the coefficient multiplying the
logarithmic term is inversely proportional to the surface gravity which in turn sets the Hawking
temperature. Similar logarithmic catastrophes have also been studied by Stone et al [43, 73]
in the context of aeroacoustic noise, although equation (12) differs from [43, 73] in that it
contains a 1/k pole term within the integrand, and its integration range is from k € (—o0, 00).
An integral of the form of equation (12) also appears in Berry [3] in the context of tidal bores.
Berry works in a frame of reference that moves along with the bore such that the bore is
stationary, which is equivalent to setting w = 0. This collapses equation (12) back to the integral
studied by Boyd [74] without the logarithm within the phase.

4. The log-airy function

4.1 Strategy

Our goal now is to investigate the behavior of equation (12) by characterizing its behavior in
the (z,w) plane through a study of saddlepoint contributions and Stokes’s phenomenon that
determine the physical ray and wave behavior. The negative k range of the integration leads
to differences (and simplifications) from the work of Stone et al [43, 73]. In particular, the
complex logarithm within the phase requires a choice of branch cut in order to define In(k)
when k < 0. Following CPF [46, 54, 63, 75], there are two physically motivated choices of
branch cut which can be made for our system in the complex k-plane:

(a) along the negative imaginary k-axis, leading to In(k) = In(|k|) + iw when k <0,
(b) along the positive imaginary k-axis, leading to In(k) = In(||) — iw when k <0.

We will refer to (a) as the +i7 choice of branch cut, and (b) as the —im choice. Through large
|z| asymptotics of equation (12), CPF determine that not all the waves scattered by the horizon
can be obtained by a single choice of branch cut, and a description involving contributions
from both is required. In fact, a complete solution of the third order differential equation (11)
requires three linearly independent global modes obtained by different choices of branch cuts
and contours. Luckily one of the modes (the one associated with the exponentially growing
wave qS%“‘) is not needed for the Hawking problem and we will ignore it here.

Our approach differs from CPF because we use exponential coordinates that allow us to
focus on the near horizon behavior in greater detail. In particular, CPF deform the contour
of integration in the k-plane of equation (12) towards steepest descent paths over the saddles.
However, some of the resulting deformed contours snag on the branch cuts and do not inter-
sect saddles. In order to stay on the principal Riemann sheet, they make the approximation
that w is small and pull the logarithm within the phase out of their asymptotic approximation
(see equation 57 in [63]). To deal with the snagged contours, they use an additional approx-
imation referred to as the ‘dominated convergence theorem’ which requires that k. — oo (so
that the dispersion is approximated to be linear). These two separate approximations result in
a partial loss of the near horizon wave structure, although it accurately describes the asymp-
totic behavior sufficiently far from the horizon. By contrast, exponential coordinates allow
us to treat multiple Riemann sheets in a transparent manner and we freely pass through the
branch cut onto other sheets where we pick up additional saddlepoints in a straightforward
way, without the need for additional asymptotic approximations. Furthermore, our method
allows us to resolve caustics (coalescence of saddlepoints) and Stokes’s phenomenon (sudden

9
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change of contour as new saddlepoints appear) which are the elemental processes that determ-
ine the structure close to the horizon.

We shall treat the lab frame frequency of the emitted quanta w as a real parameter. For the
system in question w is small and positive (to observe the Hawking effect). The details of the
calculation will be explained for this case, although a similar approach can be taken for both
larger w and w < 0.

4.2. The large parameter, self-similar scaling properties and the classical limit

Saddlepoint methods work well in the semiclassical regime where the phase oscillates rapidly
(apart from at the saddlepoint itself). A large parameter A that performs the role of an inverse
Planck’s constant A~! can be introduced into the log-Airy function by changing variables in
equation (12) from k — s where k = \'/3s, resulting in

_ i —i%InA > 1 =M (s,z,w)
P(z,w) = 5-¢ /_oo e ds,
fls,z,w) = —i[s*/3 +5z/ N3 — (w/N)In(s)]. (13)

Like in the cases of the standard diffraction integrals (Airy, Pearcey, etc), this procedure gives
redefined control parameters, in this case z/A\%/3 and w/\. Therefore, in addition to the redefin-
itions given in equation (10), we henceforth make the further redefinition

Sz, %—m. (14)

z
N7
The powers (2/3,1) to which X is raised are known as Berry indices and determine how the
fringe spacing in the wave function evolves in the directions specified by the control parameters
as A is changed [76]. The index 2/3 matches that of the Airy function, but the unity power for
w does not have a counterpart in the standard diffraction integrals, see table 36.6.1 in [68] (the
Pearcey function has the indices 3/4 and 1/2). Another difference to the standard diffraction
integrals is that the scaling does not change the overall magnitude of ¢(z,w) since the new
factor e~/(«/3)nA outside the integral is a pure phase term. This is different to the Airy case
for which the amplitude diverges as \!/®, where the exponent 1/6 is the Arnol’d singularity
index [68, 70]. For the Pearcey function it is 1/4. Thus, the classical limit A — oo leads to an
infinitely rapidly varying phase of the wave function but does not lead to an infinite amplitude
as it does for standard caustics.
What physical parameter should we choose for A? The natural choice is the quantum length
scale d defined in equation (10). More precisely, we choose the dimensionless ratio

=
where dj is an arbitrary reference length scale. The classical limit in our problem is therefore
dy/d — oo where pair creation occurs only at vanishingly small length scales and the spectrum
is linear to infinitely large values of the wavenumber. Recalling that z in equation (13) is already
scaled by d, we find that the redefined coordinate in equation (14) grows as d~'/3. In other
words, the fringe spacing in physical space shrinks, as expected.

Our approach to the large parameter needed for the saddlepoint analysis is different to that
employed in other works such as that by CPF where their parameter (equation 34 in [63]) is
spatially dependent and vanishes at the horizon. By contrast, our A is spatially constant which
is important because we seek to resolve the saddlepoint structure even at the horizon.

A 5)
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Figure 3. Steepest descent plots for the log-Airy function in the s-plane when w = 0.
Each panel is for a different value of z: z < 0 (inside), z = 0T (on), and z > 0 (outside)
the black hole horizon. The dots denote the saddlepoints at s = £,/z and the pole at
s=0. The steepest descent paths must run between valleys Vi » 3 (blue) as |s| — +o0
where the Re[— A/ (s,z,w)] < 0, A > 0 (arg(k) = 57/6 and 7 /6) so that the integral con-
verges. Specifically, paths must start in V; and end in V3, but may take an excursion to
and from the intermediate V, valley. Red regions denote regions as |s| — +oo where
Re[—Xf(s,z,w)] > 0. The steepest paths pass over the pole at s =0 for z < 0 forcing a
residue contribution. The red dots denotes the values of z where the pole contributes,
black where it does not. The case of w =0 shown in this figure is special because the
horizon and the caustic coincide (at z =0).

4.3. w=0 case and pole contribution

To make a link with previous work, we first study the case when w = 0, which is related to
a zero-energy ‘soft mode’. In that case the logarithmic term in equation (13) vanishes and it
reverts to an integral which appeared in Berry [3] in the context of tidal bores. The integrand
then becomes effectively an Airy-function exponent with a pole and may be evaluated as an
integral of the Airy function itself and was studied by Boyd [74].

This integral contains three asymptotic contributions, two from the saddlepoints and one
from the pole, see figure 3. There is but a single caustic point at z =0, where the two saddles
coalesce with the pole at s =0. As z runs from z < 0 to z > 0, the steepest descent contours in
the s-plane will deform and reconnect as is the case for the Airy function. As the system passes
through z =0 the contours unavoidably cross the pole and so generate an additional residue
contribution, essential for the step function of the initial data in the case of the bore. The overall
result is the well known bore form of a step function modulated by an Airy function.

By contrast, we shall see for w # 0 below that although the waveform at fixed z mimics that
of a bore, the rise in the overall magnitude for z < 0 is not due to the pole. Rather an equivalent
analysis shows that steepest paths in the s-plane do not ever cross the pole at s = 0. They deform
around it, but never generate a residue from it. The modulated step function appearance of the
exact result can be seen to be generated from pairs of saddlepoint contributions, where one of
the saddles comes from adjacent Riemann sheets.

4.4. Similarity to cusp catastrophe

We now study the case of w # 0. The location of the saddlepoints on the principal sheet of the
k-plane is given by 0, f(s,z,w) = 0. For fixed w # 0 the locations of the saddles s; are therefore
given by

sj2+z—w/sj:0, = sf—kzsj—w:O, j=1,2,3. (16)

1
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Figure 4. Left: Modulus of the Pearcey function for A =1 as defined by equation (17).
The black curve indicates the cusp caustic where two waves coalesce, except at the very
tip (origin) where three waves coalesce. The red curve indicates the Stokes set [77],
where an evanescent wave is born. Right: The number of waves (saddles) in each region
relative to the cusp caustic and the Stokes set. The notation ‘wave’ is short for ‘real
wave’ (i.e. non-evanescent).

Hence the presence of the logarithm increases the number of saddlepoints by one to three,
rather than the two underpinning the Airy function. Thus, we expect the analytical skeleton of
the log-Airy function equation (13) to be more akin to that of the next most complex function
in the catastrophe theory hierarchy, the cusp, whose waveform is given by the Pearcey function
[68, 69, 71, 72]

A o0 . 4 2
\Iqusp(yvx; )\) = %/ eiA(s™ /4dys /2+xs)ds7 (17)

Pe(y,x) = Yeup(y,x;1) .

The diffraction pattern generated by this integral is depicted in the left hand panel of figure 4
and features a two dimensional set of fringes generated by three wave interference below a
cusp-shaped caustic (black curve). The highest intensity fringes are close to the caustic which
is the place on which the saddles of equation (17) coalesce in pairs except right at the tip of the
cusp where all three saddles coalesce. Asymptotic expansions about the saddlepoints diverge
on the caustic but the exact waveform given by equation (17) is smooth: interference between
the waves resolves the ray singularity on the caustic. The overall wave behavior of the Pearcey
function relative to the caustic (depicted by the black curve) is shown in the right panel of
figure 4. The red curve gives the position of the Stokes set for the Pearcey function (as first
found by Wright [77]).

The ray limit of the Pearcey function, which provides the scaffold upon which the waves
are hung, is obtained from the saddlepoints of the exponent of the integrand in equation (17)
which satisfy sf -+ ys;j +x = 0. This equation is identical to equation (16) for the log-Airy func-
tion with (x, y) playing the roles of (—w,z). This implies that, at least as far as real rays are
concerned, the ray structure for the log-Airy function is identical to that of the cusp.

12
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Figure 5. Density (upper row) and surface (lower row) plots of the log-Airy function
defined by equation (13) (with A = 1) for the +im (left column) and —i7 (right column)
choices of branch cut. The white areas are where the intensity begins to diverge as w
becomes sufficiently positive or negative, depending on the choice of branch cut. The
black curves in each image represent the caustic, given by equation (18), and the green
dashed lines give the location of the event horizon at z=0, where the flow velocity
u = —c. The scale in the z direction has been compressed in relation to that of figure 4
so as to show the oscillations below the caustic.

The position of the caustic for the log-Airy function is given by the condition for
coalescence of two or more saddles by the simultaneous satisfaction of 9;f(s,z,w) =0 and
9%sf(s,z,w) = 0. Eliminating s from these two equations yields

27w + 473 = 0. (18)

Since the real saddles of the log-Airy function obey the same equation as those of the Pearcey
function the classical caustic structure for the two functions is also identical. In fact, the local
similarity to the next highest form in the catastrophe hierarchy of functions will be true for all
such cuspoid diffraction integrals perturbed by logarithms in their exponent [68].

Despite the identical caustic structure for the log-Airy and Pearcey functions, their wave-
forms differ significantly. It is a relatively straightforward numerical calculation to evaluate
the log-Airy integral in equation (13) and the results for A = 1 for both choices of branch cut
are displayed in figure 5. The two dimensional fringe pattern of the Pearcey function inside

13
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Figure 6. Points of interest in the (z,w) plane relative to the caustic (solid black curve)
and horizon (green dashed line). Each point resides in a distinct region and will be stud-
ied in detail in figures 8 and 9. Points (a) resides upstream of the horizon outside of
the black hole, point (b) resides on the horizon, and the remaining points (c) through
(e) reside within the black hole: points (c) are between the horizon and the caustic, point
(d) is on the caustic, and points (e) are downstream of the caustic. Although we will
only study these specific points, the respective regions they occupy also display equi-
valent behavior for w > 0. For w < 0 the dominance of contributing saddles is simply the
opposite of the corresponding w > 0 regions, but we only focus on w > 0 in this paper.

the cusp caustic and its damped nature outside are not replicated for the log-Airy function.
Rather, for values of z below the caustic the log-Airy function has one dimensional fringes.
For the same range of w these are more pronounced for the choice of +im cut. For the same
choice of cut, the magnitude of equation (13) grows indefinitely as w — +o00 and decays when
w — —o0. The opposite is true for the —im cut: the amplitude grows for w — —oo and decays
when w — co. We now seek to explain this behavior using a steepest descent analysis.

4.5. Steepest descent contour diagrams

We perform a careful steepest descent analysis of equation (13), extending the work of CPF
[63] to study particular regions of interest relative to the horizon and caustic. Due to the fact
that the horizon and the caustic do not coincide except at w = 0, there is effectively a broadened
horizon (gap between horizon and caustic) on the length scale of d which grows in width as
8z o< w?/3 [14, 63]. This broadening is seen in figure 2 as the gap between the turning point
located at z. and the horizon at z =0, and also as the region between the solid black and dashed
green curves in figure 5.

We identify five distinct points (a) through (e) as indicated in figure 6, and will apply our
method at these points for each choice of branch cut, starting with the +ir cut, although our
method can just as well be applied for the —im choice (as will later be shown) and to the
w < 0 half plane. Each steepest descent contour diagram is created in the s integration plane
for a particular set of control parameters (z,w). To ensure convergence of the integral the
real s contour must be deformed into paths of steepest ascent/descent starting and ending in
asymptotic valleys at infinity V| and V3 respectively where

Re[M(s,z,w)] = +00, |s] = +o0,
passing through saddles s;, j = 1,2, 3 of the phase and satisfying
Im {\[f(s,z,w) — f(sj,2,w)]} = 0.

14
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The steepest descent contours may take excursions to and from intermediate valleys, for
example, V, or its copies on different Riemann sheets. The arguments of s that determine the
asymptotic valleys will depend on which choice of cut is taken for the logarithm, but copies
on different sheets will always have values of arg(s) separated by 27.

Different subsets of saddles s; can contribute at different values of (z,w). This is as a result
of the topology of the steepest descent paths changing at a Stokes’s line in the (z,w) plane.
The steepest paths emerging from two (or more) saddles i # j connect in the complex s-plane
when

Im {A[fsi; z,0) = (5,2, 0)]} = 0.

If the number of saddlepoints contributing to the asymptotic expansion of the integral changes
as a Stokes line is crossed this is termed a Stokes’s phenomenon, see for example [5].

4.6. +im branch cut

We shall first focus on the region characterized by points ) in figure 6. The steepest descent
contour diagram of equation (13) at these points is given by the left hand plot in figure 7. The
presence of the cut complicates progress in the s-plane. The dashed black line indicates the
+im branch cut, and at first glance there seems to be no obvious choice of contour (solid black
line) starting in V|, passing through any of the saddles (black points), and ending in V3.

CPF [63] proceeded by effectively removing the logarithmic term from the phase (which
requires w to be small) for the purposes of saddlepoint analysis such that the analysis reduces to
that of the Airy function modified by the logarithmic branch cut. They allowed their deformed
steepest descent contours to snag on the branch cut and expanded asymptotically around that
loop contour. This loop contour is not along a path of steepest descent, but is approximately
evaluated in terms of a complex gamma function by the ‘dominated convergence theorem’
(k. = 00), which to zeroth order ignores nonlinear dispersive effects.

Here, we instead continue to follow the steepest paths, even as they encounter the branch
cut and flow onto adjacent Riemann sheets. The result is a calculation that then relies just on
simple expansions around saddlepoints including, where required, on the non-principal sheet.
This has a potential for an easier physical interpretation than the loop contour around the
cut, and additionally does not neglect any near horizon behavior since the nonlinearity in the
dispersion is taken into account. We discuss the relative differences of the approach of CPF
[63] and this paper further in the discussion below.

To that end, we follow Stone et al [43], and apply the exponential transformation

s=¢e" (19)

to the integrand of equation (13) to give

Vio

A
P(z,w) = g/ e VW) gy, fw,z,w) = —i(e3w/3 + ze" — ww). (20)
v

1,0

This unfolds the infinite number of Riemann sheets arising from the logarithm in the complex
s-space, whose boundaries are defined by the choice of +im branch cut, into a single complex
w-space. It also removes the need to consider the pole contribution in the original integral for
w # 0 (when w =0, this transformation generates a third saddlepoint at w — —oo equivalent
to the pole).
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Figure 7. Left: The steepest paths (solid black lines) in the original s integration plane for
a choice of control parameters (z,w) corresponding to all points (e) in figure 6, together
with the choice of +i7 branch cut (dashed black line). The black dots denote the saddle-
points s; of the phase, given by equation (16), and the arrows indicate the contributing
(converging) steepest descent contours. Right: Equivalent steepest descent contour dia-
gram in the transformed w-space. The horizontal dashed lines denote the mappings of
the (now no longer) +im branch cut, and the black dots are the unfolded saddlepoints
wj,». In both the left and right panels the larger arrows indicate contributing contours
on the principal sheet, and the smaller arrows indicate those contributing on adjacent
sheets. It is clear that it is easier to follow the contributing contour in w-space than in
s-space.

Each sheet is mapped to a horizontally stacked semi-infinite strip of height 277 in the w-
plane, starting with this choice of branch cut at w = +i7. As a consequence, the w-plane con-
tains an infinite number of periodically stacked valleys V; , and saddlepoints

Wi = Wj o + 2nmi, 2D

where j = 1,2,3, and n € Z denotes the Riemann sheet on which the valleys or saddles sit
(n =0 being the principal sheet for the +im choice of branch cut). There is a basis of 3 saddle-
points on the principal sheet, with copies equally spaced out at a complex distance 27i on each
mapped sheet.

The w-plane representation is shown in the right hand plot in figure 7. The solid black lines
in the w-plane denote the images of the steepest descent contours. The horizontal black dashed
lines denote the mappings of the (now no longer) +im branch cut. The blue regions denote
the asymptotic valleys of convergence, and the red regions are the asymptotic hills where the
integration along a contour would diverge. In w-space the periodically repeating valleys V; ,
all lie along the positive Re(w) side as w — co. The arrows in both plots of figure 7 indicate
the direction of travel along the now continuously deformed steepest path staring from Vo in
the principal sheet, passing through a subset of the saddles w; ,, on different Riemann sheets
if needs be, before ending back at V3 o back on the principal sheet.
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In w-space starting at V; o within the principal sheet, the contour intersects the first saddle
wi,0 and runs off into the V, g valley ‘above it’, along the bottom of the branch cut at w =
—+im. The deformed contour then re-emerges from V; g intersects a second saddle w o, before
leaving the principal sheet to encounter w, _; which is a copy of the saddle w; ¢ at a point 27i
vertically below on the next lowest sheet. The contour then turns by a right angle (indicating
Stokes’s phenomenon) before passing into V, _; which is a copy of V, o on the lower side
of border with the principal sheet. The last component of the contour re-emerges from V, _
and passes through saddle ws ( before finally running into the asymptotic valley V3o on the
principal sheet. The contours are considerably easier to follow in w-space than s-space, and it is
seen that all asymptotic contributions to the integral arise from saddlepoints (or the pole outside
the exponential), rather than loops around branch cuts, allowing for a (local) application of
catastrophe theory (the topological theory underlying the coalesence of stationary points) to
understand the properties of the integral.

4.7 Asymptotic contributions

In terms of asymptotic contributions from saddlepoints in the original s and transformed w-
plane, we have the correspondence:

Wi < 81, Wo 0 <— 82, Wy | > S2,_1, wig <83, (22)

where s, _1 is the image of saddle s, on the next lowest Riemann sheet in the s-plane. The
asymptotic contribution from the expansion about each saddlepoint w; ,, along the doubly infin-
ite steepest decent contour that passes through it takes the form [8]

Nin—1  Ni—l (i
& e~ Min "L Tr(j’")(z w)

YU (z,w) = zw (@) ~ (1) SYa (23)
r=0

where, with fj , = fiw; n,z,w),

; I'(r+1/2) dw g(w)
(jon) —
Tr/ (Z,OJ) = i yﬁw}_,n (f(W,Z7W) _ﬁ’n)r-',-l/z- 24)

Nj ,, is the number of terms taken in the asymptotic series expansion for the corresponding w; ,,
saddlepoint, I" denotes the gamma function, g(w) = 1/(27) which does not actually depend
on w and is constant in our case, and ¢ =0 or 1, depending on the direction of traversal of
the contour relative to the computed T,(j ") When the expansion is undertaken over a semi-
infinite contour, as occurs at a Stokes’s phenomenon, additional terms at half powers of the
large asymptotic parameter are required, see [78, 79].

The terms in the expansion may be computed via the residue integral representation of
equation (24) or via the Lagrange reversion method [80]. The first couple of terms in a doubly
infinite contour expansion over w; ,, are:

—im /4

(o) 2 e

T Z w —_— W»wn = 5 (25)
( ) ]:;lg( J ) \/27ri(3€3wfv"+Z6Wf~”)

i 1

T](]7 )(Z,UJ): 12f//7/2\/>(12f”2 /l+5gfl”2 3f”(4g,f‘”l+gf””))
—3ir /4 1 AWj n 2
_ T Blemr 47 (26)

12V/27(3e2%in 4 z)7/2
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The expressions for f; , are algebraically complicated and will not be written out here but they,
and hence the associated saddlepoint expansions, are valid for a general range of w. However,
for the purposes of comparison with [63], we only need their analytical form in the small w
limit (this is also the regime where the coupling between the positive and negative wavenumber
solutions that gives the Hawking effect is strongest).

In order to demonstrate our method we focus our attention on points e) which lie below
the caustic in figure 6, although it can and will be later applied to the remaining points (it
could also be applied for w < 0). Points e) correspond to saddlepoint diagrams equivalent to
that of figure 7. At such points, the principal sheet contributes three real (in s-space) saddles,
describing three wave interference for w > 0 inside of the horizon and below the caustic, like in
the Pearcey function. However, here the outer two saddles in the left-hand plot of figure 7 give
contributions that dominate the third, leading to the Airy-like interference pattern observed
in the w > 0 region of the v ;. plots in figure 5. Furthermore, this approach also reveals the
presence of a contribution from a fourth saddle, w, _;. In this way we find that for the +im

branch cut at points e), the formal asymptotic expansion ”(/}Sfi)ﬂ_ (z,w) takes the form

P @) ~ 90 (00) + 9 () 4 200D () 4 9E D (ew). @)

The contribution from w; _; is exponentially smaller than that from w» ¢ by a factor e~ ATw

(w > 0). Such real exponential factors are associated with pair production [46, 54, 63]. The
factor of 1/2 is due to the presence of the Stokes’s phenomenon which may be inferred
from the contour intersecting this saddle making a sudden sharp ‘dog-leg’ turn as it encoun-
ters the saddle (see the right hand panel in figure 7), a characteristic signature of a Stokes’s
phenomenon.

Due to the fact that the 7,/ (z,w) effectively only depend on derivatives of f{w,z,w) at
Wi, it is easy to see that for each r,

T30 (z,0) = TV (z,w). (28)

Taking into account the relative sense of the traversal of the contours over w, o and wy _; we
find that equation (27) simplifies at leading order to

() 1 { A0 1(1,0) ( 1 2AW) A0 (2,0) | _afGO (3,0)}
(W)~ —=<e + |14 ze e T,""7 +e T . (29
+ ( ) \/X 0 2 0 0

From equations (10) and (14) we see that in the notation of [63], their w/  factors are equivalent
to our \w factors. In order to compare against the results of CPF we observe that we need to
consider the small w regime: taking the limit w — 0" of f; , and Té’ ’"), we find that the factors
that contribute to equation (29) can be written as

2.41.13/2 . .
-V 7(10) e T3 |z| =A@/ AT ot 3im /4 30)
" 2wl ’
iIdw ,—idwlogw |, |iAw i /4 A Tw
20 (2 ee 7|/ %e
N0 p(20) 2l 7 an
0
2mw
24132 . :
—ZiAz] —idw/2 ,—3ir/4
EVICK)IG] e 3 Z e
A PSRN i (32)

2y/m|z|3/*
Up to overall prefactors (see also the next paragraph), equations (30) and (32) are consistent

with the results given in equations 62 and 63 of [63] respectively, with the identification of
CPF’s A(z) = |z|*/2. The removal in [63] of the log term from the exponent before undertaking
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a steepest descent approach assumes both |z| > 1 and |z| > w?/? [46, 63], and is consistent
with the small w approximation made here. However, our retention of the logarithm in the
exponent increases the range of validity of the results in w (albeit at the expense of algebraic
complexity). A consequence of removing the logarithm from the saddlepoint exponent in [63]
is that although this gives an accurate asymptotic approximation for large enough z, it does not
capture the presence of a separate horizon and cusp caustic.

As we now explain, our equation (31), multiplied by the (1+e~2*"/2) factor from
equation (29), is equivalent to CPF’s more complicated looking third contribution which is
given by equation 64 in [63]. In that paper equation 64 does not come from a saddlepoint con-
tribution but instead from a loop contour around the cut along —iR in the s-plane (the left image
in their figure 4). The authors then apply the dominated convergence theorem which requires
that k. — oo (equivalent to our A — oo) and so to lowest order ignores the cubic term in the
integral exponent. After notational translations, equation 64 in [63] contains terms involving
sinh(Awm)T'(—iAw). Their result expands on the Stokes line of the gamma function according
to equation 3.4 of [81] for z = —iAw, with Aw > 0 as:

F(Z) ~ \/2?221/261{1 + L +0 <12) } (1 _ e*27TiZ)*1/2

12z Z
1 1 1 .
~ z—1/2 —z - 2wz
V2rz e {1+12Z+(’)<Z2>}(1+2e +...). (33)

Hence for large A the leading order result of equation 64 in [63] yields equation (31).
The additional subdominant contribution in the second line of equation (33), +(1/2)e2™i= =
+(1/2)e=? " corresponds to the contribution of the fourth saddle wy _; which, since
29 — 2= = 27, combines to give the prefactor (1 +e~2*™ /2) in the overall w; o term in
equation (29). From this, it can be seen that the pure-saddlepoint approach not only incorpor-
ates the cubic terms in the exponent but also avoids the need for complex gamma functions (and
the complexity of the correct analytical representation of them on their Stokes lines) whether
for small or more general values of w.

Physically speaking, and for values of z below the cusp, the contributions wig
(equation (30)) and ws o (equation (32)) correspond to the two waves on ¢ and (b}(“ respect-
ively, in the right plot of figure 2 (these waves are responsible for the Airy-like interference in
the wave plots shown in figure 5). The combination of w; o and w, _ (equation (31) multiplied
by the (1 + 1/2e~2*™) factor from equation (29)) generates the ¢° wave in the same region
(responsible for the step function which is modulated by the Airy-like interference). The dir-
ection of travel of these three waves can be confirmed by realizing that the spatially dependent
parts of the phases in equations (30)—(32) are given by the WKB result fo” kdz’, so that k(z)
can be obtained by differentiation, and the group velocity found from vg, = (dk/dw)~". For
the waves in equations (30) and (32) this gives vy, = 2rd|z|/ A confirming that they are right
moving. For the wave in equation (31) it is vy, = —rd|z|/\ showing that it is left moving.
Interestingly, the group velocity does not depend on the ‘Airy factors” +(2/3)i)|z|>/? as these
do not depend on w.

4.8. +im branch cut contributions

We can proceed in the same way for each point in the (z,w > 0) half-plane. The qualitat-
ive steepest paths and the associated contributing saddles at these locations are displayed in
figure 8.

Along the caustic at point (d), as expected, two of the saddles from (e) (figure 7 or the right-
most column in figure 8) have coalesced into one, w4 o, and contribute whilst simultaneously
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Figure 8. Summary of the saddlepoint contributions at points (a) through (e) from
figure 6, for the +im branch cut. The upper plots are the complex s-space contour dia-
grams, while the lower plots are the corresponding w-space ones. We use the notation
sit+j (i # J) to denote when multiple saddlepoints s; and s; coalesce (which happens at a
caustic) and become equal to one another. We also adopt this notation for the w saddles.

undergoing a Stokes’s phenomenon with an exponentially subdominant pair of coalesced cop-
ies wi2, 1, together with a simple real saddle w3 o with a purely imaginary phase.

For values of z that lie between the caustic and the horizon, corresponding to points (c),
there is one real saddle w3 ¢ and one complex saddle w; o undergoing a continuous Stokes’s
phenomenon with the contributing subdominant saddle w, _;. The latter saddle lies outside
of the principle Riemann sheet, and all together the contributing saddles yield 1/)52-#. By a
continuous Stokes’s phenomenon we mean it occurs for a range of z as opposed to at a single
value of z.

At the horizon z = 0, which is point b), w; o now undergoes an instantaneous Stokes’s phe-
nomenon (i.e. only at the single point z = 0) inside the principle sheet with the subdominant
contributing saddle w3 o. Finally, at points a) we see the real saddle no longer contributes and
only a single complex saddle w o remains (corresponding to cbj“t in the right plot of figure 2).

Consideration of the steepest contours in figure 8 shows that there is a change in the number
of contributions across the event horizon at z =0 (w1 o contributes on both sides, but w3 o only
contributes for z < 0). Hence the event horizon is a Stokes line for real w.

This is consistent with WKB analysis in a single complex dimension, where Stokes lines
sprout from turning points, of which the caustic here is a higher dimensional version. The
connection between certain types of black holes, horizons, pair-production, and Stokes’s phe-
nomenon has also been studied in various other contexts [82—85]. In our case the Stokes surface
differs: it intersects real 2-parameter space in a line corresponding with the horizon.
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Figure 9. Summary of the saddlepoint contributions at points (a) through (e) from
figure 6, but this time for the —i7 branch cut. The upper plots are the complex s-space
contour diagrams, while the lower plots are the corresponding w-space ones. The con-
tours and saddles are the same as those shown in figure 8 for the +im choice of branch
cut, but the Riemann sheets in w-space have all shifted down by i7 in comparison. This
forces the initial and final valleys (Vi,_1 and V3 g, respectively) to differ from those in
figure 8, and thus different saddles contribute. For consistency we have kept the same
labelling of saddles as in figure 8.

4.9. —im branch cut contributions

We can proceed in the same way for the —im choice of branch cut. For both s- and w-space,
the contours and saddles in figure 9 are exactly the same as those in figure 8. However, the
different location of branch cut forces the starting valley V| o to be shifted to its copy Vi _1, a
distance 27i below in the w integration plane. In other words, the principle sheet for the —im
cut has been shifted and differs from that of the +i7 cut, as can be seen by comparing figures 8
and 9. At points (e) the two saddles wy _; and ws o contribute (again corresponding to ¢, and

}c“, respectively), in contrast to the four contributions from the analogous (z,w) point for the
+im branch cut. This describes the wave interference we see in the right plot of figure 5. At
the caustic (d), two of these saddles w; _; and w, _; coalesce, so that there is one double
saddle and one simple saddle contribution. Above the caustic at (c) a Stokes’s phenomenon
is continuously occurring between wy _; and wy _y, (wy,—; is subdominant to wy _1). This
persists until the horizon at z = 0 is the reached, at which point a double Stokes’s phenomenon
takes place at point (b) (two dog leg turns on the steepest path from wy _{ towy _; tows ), with
w30 dominant, wp _; subdominant and w; _; sub-subdominant. Finally, beyond the horizon
at points (a), the contour over wy _; (qﬁ‘i‘“) passes onto the next lowest sheet, running into and
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Stokes/horizon: 1 complex > 1 real Double Stokes/horizon: 1 real > 2 complex

3 real coalesce 3 real coalesce

1 real > 1 complex
> 1 complex

1 real > 1 complex || 1 real > 1 complex
> 1 complex > 1 complex

1 real > 1 complex
> 1 complex
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> 2 complex
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> 2 complex
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+ 1 pole

3 real >1:complex

w

Figure 10. The qualitative behavior of real and complex saddles w; , of the log-Airy
function equation (12) for both +im (left) and —i7w (right) choices of branch cut. Their
relative dominance is denoted by the ‘>’ signs. Black lines represent the caustic while
red text or lines denote saddles/points in the (z,w) plane that are a part of the Stokes
set. The light grey dashed line denotes where w = 0 and there is a pole contribution, as
previously discussed in the context of figure 3.

out of V3 _ before encountering w3 _; (¢3™) turns through a right angle before running back
up to the principal sheet, passing over ws (o before running into V3. From this we observe
that ws _; is always undergoing a Stokes’s phenomenon above the horizon for z > 0, and is
subdominant when compared to wj o.

We make the following remarks: First, the two choices of branches +im and —im display
complementary contributions from sub-subdominant saddles located outside their respective
principal Riemann sheets. Whenever the +im contour diagrams have contributing saddles out-
side the principal sheet the —im diagrams do not, and vice versa.

Second, at points (a), aside from the a single real wave, we have two additional waves:
the evanescent wave from within the principal sheet and the sub-subdominant saddle from an
adjacent one. This differs from the results of CPF [63], where they only find there to be a single
real saddle. This is because of their exclusion of the cubic term from the phase (k. — o), prior
to applying the dominated convergence theorem (see equation 66 in [63]). The two approaches
would agree if exponentially subdominant asymptotic contributions were to be neglected in
the presence of more dominant ones.

Third, along the horizon at z=0, a double Stokes’s phenomenon takes place, as three
saddlepoints are simultaneously joined by a single steepest path. This is also an indication
of the potential for a higher order Stokes’s phenomenon [86], which would lead to additional
interesting behavior in the non-physical complex (z,w) space. The horizon is indeed a part of a
Stokes set (intersecting the already-identified real (z,w) Stokes surface), no matter the choice
of cut.

The overall qualitative behavior of the contributing saddlepoints (waves) is summarized in
figure 10 for both choices of cut, and describes the wave behavior observed in figure 5. The
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Figure 11. Numerically obtained exact plot (solid black line) of the log-Airy function
equation (13) for the +im choice of branch cut with w = 1/5 and A = 5. This is simply
aw > 0 slice of the lefthand plots in figure 5. The zeroth » = 0 order asymptotic approx-
imations (a) through (e) (solid red lines) and optimally truncated asymptotics (blue dots,
see appendix) are also plotted for comparison. The red dot at z=0 corresponds to the

asymptotic expression z/)filr which is only valid at the horizon, and we do not label wf,)ﬁ
since point (d) corresponds to the caustic where the asymptotic approximation diverges.
As expected, the asymptotic expansions provide an (exponentially) good approximation
to the exact result except near the caustic at z. = —3/ (102/ 3). The slight disagreement
in the asymptotics at the horizon will vanish for large A — oo. The saddles w; , that the
steepest paths encounter in each region are also indicated, together with their relative
dominance (denoted by ‘>"). The saddles wy o and w3 o have equal real parts for z below

the caustic (denoted by ‘~’).

number of contributing real and complex saddlepoints together with their relative dominance
throughout the (z,w) plane is shown. Red lines and text denotes contributing saddles which are
a part of the Stokes set, whether it be from within or outside of the principle Riemann sheet.
The dominance of the saddles is denoted by the ‘>’ signs. These plots can be compared against
figure 4 for the Pearcey function. Clearly, the event horizon catastrophe has considerably more

structure.

4.10. Numerical comparison and validity of asymptotics

In figures 11 and 12 we demonstrate that our exponential approach yields an accurate approx-
imation by plotting the asymptotic expressions against the exact wave functions ¢, obtained
by numerically solving the integral in equation (13) for the two choices of branch cut. The plots
are for z lying in the range —8 < z < 3 and have the parameter values w =1/5 and A =5.
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Figure 12. Numerically obtained exact plot (solid black line) of the log-Airy function
equation (13) but now for the —im choice of branch cut. The notation and selected para-
meters are the same as those used in figure 11, and similarly this represents a constant
w > 0 slice of the righthand plots in figure 5. The zeroth r = 0 order asymptotic approx-
imations (a) through (e) (solid red lines) and optimally truncated asymptotic approx-
imations (blue dots, see appendix) are again plotted for comparison. As expected, the
asymptotic expansions provide an (exponentially) good approximation to the exact res-
ult except near the caustic at z. = —3/(10*/?) and exactly at the horizon z=0. The
saddles wi, 1 and w3 o have equal real parts for z below the caustic (denoted by ‘~’).

The solid black curves in the figures give the exact results whereas the red curves are com-
posed of the asymptotic expressions given in equations (23)—(25) applied to the spatial points
(a) through (e) (the latter of which we have explicitly studied for the 4im cut and is given by
equation (29)). In the figures we have also included the information about the relevant contrib-
uting saddlepoints w; , and their dominance for each of the spatial regions. Unlike CPF [63],
we have not made any small w or k. — 0o approximations.

In making the red curves in figures 11 and 12 we have used only the zeroth order terms
r =0 in the asymptotic expansions (see equation (23)) and yet find an excellent match to the
exact results (sufficiently far from the caustic). This is despite the fact that our ‘large’ para-
meter A is only of order unity. The blow up close to the caustic could be fixed by using a
uniform approximation [68, 87]. It is also noteworthy that the asymptotic approximations for
the different spatial regions match together so well at their respective borders. The only slight

discrepancy is at the horizon between the asymptotic values of w(f;, wf}w (the lone red dot in

figure 11), and ¢(+"3,r. We find that when we use larger values of A this difference vanishes as

(c)

expected so that zpfi)w ~ Sfl)ﬂ ~yioatz=0as A — oo.
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Equation (23) is a diverging series, so there is an optimal series truncation in » which can
be made for each saddlepoint contribution, giving the approximation of lowest possible error.
Taking terms higher than this value of r will actually decrease the validity of the approximation
and increase the error. Although we find that the lowest order » = 0 truncation already gives a
good visual match, we have also evaluated the higher terms and these are included as the blue
dots in figures 11 and 12. The details of the calculations of the higher order terms are given in
appendix of this work.

5. Concluding remarks

In this paper we take a ‘catastrophe theory’ approach to horizons motivated by the obser-
vation that a nonlinear dispersion relation causes the solutions of Hamilton’s equations to
undergo a broken pitchfork bifurcation near the horizon. Pitchfork bifurcations are specified
by two control parameters which in our case are the lab frame frequency w and the position
coordinate z.

According to catastrophe theory, the universal structurally stable relationship between these
control parameters gives a cusp shape z o< —w?/? which defines the location of a caustic z.
where waves coalesce. However, whereas cusp caustics are usually dressed by the Pearcey
function wave pattern, the event horizon bifurcation gives rise to a novel form of wave pattern
described by an Airy function modified by a logarithmic term we call the log-Airy function.

Some familiar properties remain such as self-similar scaling and we use this to identify
a classical limit with a linear dispersion. Furthermore, like the Pearcey function there is a
Stokes set that occurs outside the cusp, although in the log-Airy case it is flattened into a
straight line in the (w, z) plane which coincides with the event horizon. Except for the special
case of w =0, the caustic at z. (point (d) in figure 6) and event horizon at z=0 (point (b) in
figure 6) do not sit at the same location: the caustic lies downstream behind the horizon and
the shape of the caustic implies that the spatial gap between them grows as w?/3. This scaling
has been pointed out before on the basis of the behavior of the classical solutions [63], and
the connection between caustics and horizons was previously studied in a different way in
the context of water waves [16, 49]. However, the knowledge that it is a universal prediction
of catastrophe theory and corresponds to the zone between a Stokes line and caustic adds to
our understanding of the notion of a broadened horizon. On the other hand, this challenges us
to generalize wave catastrophe theory to include logarithmic terms that ultimately arise from
particle creation in quantum field theory [47, 88, 89].

The log-Airy function has previously been analyzed by CPF in [63]. However, our treat-
ment differs in some important respects. In CPF [63] the expansion in the region characterized
by point (e) (see figure 6) is based on two saddlepoints plus a loop contour around a branch cut.
The effective removal of the logarithm by CPF from the phase significantly simplifies expres-
sions for their two saddlepoint contributions, but restricts the validity of their results to |z| > d
and |z| > d(w/x)*/? (units restored), see equations 34 and 57 in [63] and equations 11a and
11b in [46]. Their two saddlepoint contributions are equivalent to our equations (30) and (32),
which were obtained by performing a small w expansion to our large A asymptotic result,
equation (29). In fact keeping the logarithm in the exponent is necessary to understand the role
the latter plays as a Stokes line across which the number of contributing saddlepoints (and so
waves) changes. The result of their loop contribution (corresponding to our equation (31) in
the large A limit) is a complicated cut expansion involving the gamma function on its complex
Stokes line. Their expression approximates k. — 0o, ignoring nonlinear effects, and obscures
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the underlying simplicity of the contributing subdominant copies of saddlepoints on adjacent
Riemann sheets.

Although we only explicitly focused on an analytic description for points (e) (equation (29))
for the +im choice of branch cut, our method was applied to the remaining points for both
choices of cut and for a small constant value of w >0 in order to show the validity of our
approach. This is shown in figures 11 and 12 for both the zeroth order analytic approxim-
ations (obtained via equation (23)) and for the optimally truncated numerical asymptotics
(described in appendix). Again, this approach could just as well be applied for larger w and for
w < 0.

Our asymptotic contributions still diverge at the caustic as expected, but a uniform
approximation [68, 87] could be employed locally to deal with this. Due to the divergence
being attributable to a coalescence of two saddlepoints, this would take the form of an Airy
function and its derivative. The caustic at which this occurs in the (z,w) plane is one dimen-
sional and hence even though there is a logarithm perturbing the polynomial in the exponent
of the integral, the local behavior across this cusp is still structurally stable and so falls within
the realm of catastrophe theory.

Our large parameter A given in equation (15) is a constant that does not depend on pos-
ition, unlike A(z) defined in equation 34 of [63] which vanishes at the horizon. Combined
with our transformation to exponential coordinates, this allows the near horizon behavior to
be examined with exponential accuracy, including the elucidation of new sub-subdominant
contributions in regions below the caustic. Furthermore, the present catastrophe motivated
approach could allow tight bounds to be put on corrections to the Hawking spectrum of emit-
ted particles due to nonlinear dispersive effects, particularly if w is not small. In particular, CPF
[63] show how to combine the wave functions 4, to obtain the Bogoliubov coefficients that
directly give the Hawking production rate. This will be pursued in future work.
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Appendix. Numerical evaluation of higher order asymptotic contributions

The evaluation of the higher order asymptotic contributions takes some care and we shall do
it numerically. Generically the terms in the asymptotic expansion equation (23) will decrease
in magnitude, before diverging as N; , — oo. Therefore it is necessary to truncate each series
at a finite value of N; ,,. This could also be done analytically via equations (23)—(24), but at the
cost of some complexity.

In any practical numerical evaluation, the finite values of the N; , in each saddlepoint expan-

sion will depend on the relative sizes of the minimum values of |Tr(j ) (z,w)|. For large r these
terms formally have the following expansion:

T(] n) (z,w) Z 27(1 Z Fr— Tgl,p )

N £ F<r>
271 (Fj,1) 19 (2, 0)

where the singulant Fj; =f; , — f, is the difference in complex heights between the adjacent
(sub) set of all saddlepoints which contribute to the expansion, and Kj; is a Stokes constant
[80]. The term Fj,;, is the smallest in magnitude of all the singulants of the adjacent saddles
[8].

Let the set of saddles w;,, contributing at a point (z,w) be W, and let ryi, be the index of
the least term of each series (j, n), defined by

, r— +o00 (A.1)

TV (z,w)] = min [T (z,w)] . (A2)

Fmin (J511)

Furthermore, we define the largest in magnitude of each of these least terms as
747 (z.0)] = max{imin |7 (z,)] .
rx = |AF ] Wjn € W. (A.3)
Then for each 1/)0 " (z,w) in equation (23) only those terms which satisfy
T @) 2 [T @)l 7 < rin(ion) (Ad)

should be included in the sum. This will lead to an approximation that is exponentially accurate
to O(e™") [8, 80, 90].

Inclusion of terms in the divergent tail larger than the minimum only leads to increases in
the inaccuracy of the approximation. Inclusion of terms less than the size of the largest (in
modulus) least term will not improve the accuracy, and likely lead to inaccuracy, since they
ignore the (potentially resummable) contributions from the divergent tail after that largest term.

To illustrate this point, figure Al shows the relative size of the terms for (z,w) =
(—13/10,1/5) ((e) in figure 6), A =5, in each of the four saddlepoint contributions w g, w2 ¢,
wy 1, and w3 ¢. The maximum of the least term in each set of terms is that of wy o at r =2.
Hence at this value of (z,w), 7o) (z,w) = 7421,0) (z,w). The (exponentially small) error made
in truncating at this term will be around the level of the horizontal dotted line. The terms in the
expansions about w; o and w, _; are all smaller in magnitude than this error for all » and so are
numerically negligible. Therefore only the first three terms r = 0, 1,2 for w; o and the first two
terms r = 0, 1 for w3 o should be taken to contribute in the numeric asymptotic expansions.

Hence, depending on the value of (z,w) although topologically a saddle may contribute, if
only the finite (yet exponentially accurate) sum to the maximum least term is taken, that saddle
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Figure A1. The relative magnitude of terms In ‘Zr Pt (z,w)| in expansions about the

saddle wj,, at (z,w) = (—13/10,1/5), A=5. The maximum least term occurs at r =2
for the expansion about w; o as indicated by the horizontal dashed line and denoted by
the asterisk.

may not do so numerically. If a hyperasymptotic approximation [8] or a Borel-Padé approach
[91] were to be undertaken in order to achieve a better than exponentially accurate approxim-
ation, then both categories of these neglected terms would need to be included. However that
is beyond the scope of this paper.
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